| //===- InstCombineAndOrXor.cpp --------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the visitAnd, visitOr, and visitXor functions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombineInternal.h" |
| #include "llvm/Analysis/CmpInstAnalysis.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/Transforms/InstCombine/InstCombiner.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| #define DEBUG_TYPE "instcombine" |
| |
| /// This is the complement of getICmpCode, which turns an opcode and two |
| /// operands into either a constant true or false, or a brand new ICmp |
| /// instruction. The sign is passed in to determine which kind of predicate to |
| /// use in the new icmp instruction. |
| static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS, |
| InstCombiner::BuilderTy &Builder) { |
| ICmpInst::Predicate NewPred; |
| if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred)) |
| return TorF; |
| return Builder.CreateICmp(NewPred, LHS, RHS); |
| } |
| |
| /// This is the complement of getFCmpCode, which turns an opcode and two |
| /// operands into either a FCmp instruction, or a true/false constant. |
| static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS, |
| InstCombiner::BuilderTy &Builder, FMFSource FMF) { |
| FCmpInst::Predicate NewPred; |
| if (Constant *TorF = getPredForFCmpCode(Code, LHS->getType(), NewPred)) |
| return TorF; |
| return Builder.CreateFCmpFMF(NewPred, LHS, RHS, FMF); |
| } |
| |
| /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise |
| /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates |
| /// whether to treat V, Lo, and Hi as signed or not. |
| Value *InstCombinerImpl::insertRangeTest(Value *V, const APInt &Lo, |
| const APInt &Hi, bool isSigned, |
| bool Inside) { |
| assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) && |
| "Lo is not < Hi in range emission code!"); |
| |
| Type *Ty = V->getType(); |
| |
| // V >= Min && V < Hi --> V < Hi |
| // V < Min || V >= Hi --> V >= Hi |
| ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; |
| if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) { |
| Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred; |
| return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi)); |
| } |
| |
| // V >= Lo && V < Hi --> V - Lo u< Hi - Lo |
| // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo |
| Value *VMinusLo = |
| Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off"); |
| Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo); |
| return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo); |
| } |
| |
| /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns |
| /// that can be simplified. |
| /// One of A and B is considered the mask. The other is the value. This is |
| /// described as the "AMask" or "BMask" part of the enum. If the enum contains |
| /// only "Mask", then both A and B can be considered masks. If A is the mask, |
| /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0. |
| /// If both A and C are constants, this proof is also easy. |
| /// For the following explanations, we assume that A is the mask. |
| /// |
| /// "AllOnes" declares that the comparison is true only if (A & B) == A or all |
| /// bits of A are set in B. |
| /// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes |
| /// |
| /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all |
| /// bits of A are cleared in B. |
| /// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes |
| /// |
| /// "Mixed" declares that (A & B) == C and C might or might not contain any |
| /// number of one bits and zero bits. |
| /// Example: (icmp eq (A & 3), 1) -> AMask_Mixed |
| /// |
| /// "Not" means that in above descriptions "==" should be replaced by "!=". |
| /// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes |
| /// |
| /// If the mask A contains a single bit, then the following is equivalent: |
| /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0) |
| /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0) |
| enum MaskedICmpType { |
| AMask_AllOnes = 1, |
| AMask_NotAllOnes = 2, |
| BMask_AllOnes = 4, |
| BMask_NotAllOnes = 8, |
| Mask_AllZeros = 16, |
| Mask_NotAllZeros = 32, |
| AMask_Mixed = 64, |
| AMask_NotMixed = 128, |
| BMask_Mixed = 256, |
| BMask_NotMixed = 512 |
| }; |
| |
| /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C) |
| /// satisfies. |
| static unsigned getMaskedICmpType(Value *A, Value *B, Value *C, |
| ICmpInst::Predicate Pred) { |
| const APInt *ConstA = nullptr, *ConstB = nullptr, *ConstC = nullptr; |
| match(A, m_APInt(ConstA)); |
| match(B, m_APInt(ConstB)); |
| match(C, m_APInt(ConstC)); |
| bool IsEq = (Pred == ICmpInst::ICMP_EQ); |
| bool IsAPow2 = ConstA && ConstA->isPowerOf2(); |
| bool IsBPow2 = ConstB && ConstB->isPowerOf2(); |
| unsigned MaskVal = 0; |
| if (ConstC && ConstC->isZero()) { |
| // if C is zero, then both A and B qualify as mask |
| MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed) |
| : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed)); |
| if (IsAPow2) |
| MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed) |
| : (AMask_AllOnes | AMask_Mixed)); |
| if (IsBPow2) |
| MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed) |
| : (BMask_AllOnes | BMask_Mixed)); |
| return MaskVal; |
| } |
| |
| if (A == C) { |
| MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed) |
| : (AMask_NotAllOnes | AMask_NotMixed)); |
| if (IsAPow2) |
| MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed) |
| : (Mask_AllZeros | AMask_Mixed)); |
| } else if (ConstA && ConstC && ConstC->isSubsetOf(*ConstA)) { |
| MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed); |
| } |
| |
| if (B == C) { |
| MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed) |
| : (BMask_NotAllOnes | BMask_NotMixed)); |
| if (IsBPow2) |
| MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed) |
| : (Mask_AllZeros | BMask_Mixed)); |
| } else if (ConstB && ConstC && ConstC->isSubsetOf(*ConstB)) { |
| MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed); |
| } |
| |
| return MaskVal; |
| } |
| |
| /// Convert an analysis of a masked ICmp into its equivalent if all boolean |
| /// operations had the opposite sense. Since each "NotXXX" flag (recording !=) |
| /// is adjacent to the corresponding normal flag (recording ==), this just |
| /// involves swapping those bits over. |
| static unsigned conjugateICmpMask(unsigned Mask) { |
| unsigned NewMask; |
| NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros | |
| AMask_Mixed | BMask_Mixed)) |
| << 1; |
| |
| NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros | |
| AMask_NotMixed | BMask_NotMixed)) |
| >> 1; |
| |
| return NewMask; |
| } |
| |
| // Adapts the external decomposeBitTestICmp for local use. |
| static bool decomposeBitTestICmp(Value *Cond, CmpInst::Predicate &Pred, |
| Value *&X, Value *&Y, Value *&Z) { |
| auto Res = llvm::decomposeBitTest(Cond, /*LookThroughTrunc=*/true, |
| /*AllowNonZeroC=*/true); |
| if (!Res) |
| return false; |
| |
| Pred = Res->Pred; |
| X = Res->X; |
| Y = ConstantInt::get(X->getType(), Res->Mask); |
| Z = ConstantInt::get(X->getType(), Res->C); |
| return true; |
| } |
| |
| /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E). |
| /// Return the pattern classes (from MaskedICmpType) for the left hand side and |
| /// the right hand side as a pair. |
| /// LHS and RHS are the left hand side and the right hand side ICmps and PredL |
| /// and PredR are their predicates, respectively. |
| static std::optional<std::pair<unsigned, unsigned>> |
| getMaskedTypeForICmpPair(Value *&A, Value *&B, Value *&C, Value *&D, Value *&E, |
| Value *LHS, Value *RHS, ICmpInst::Predicate &PredL, |
| ICmpInst::Predicate &PredR) { |
| |
| // Here comes the tricky part: |
| // LHS might be of the form L11 & L12 == X, X == L21 & L22, |
| // and L11 & L12 == L21 & L22. The same goes for RHS. |
| // Now we must find those components L** and R**, that are equal, so |
| // that we can extract the parameters A, B, C, D, and E for the canonical |
| // above. |
| |
| // Check whether the icmp can be decomposed into a bit test. |
| Value *L1, *L11, *L12, *L2, *L21, *L22; |
| if (decomposeBitTestICmp(LHS, PredL, L11, L12, L2)) { |
| L21 = L22 = L1 = nullptr; |
| } else { |
| auto *LHSCMP = dyn_cast<ICmpInst>(LHS); |
| if (!LHSCMP) |
| return std::nullopt; |
| |
| // Don't allow pointers. Splat vectors are fine. |
| if (!LHSCMP->getOperand(0)->getType()->isIntOrIntVectorTy()) |
| return std::nullopt; |
| |
| PredL = LHSCMP->getPredicate(); |
| L1 = LHSCMP->getOperand(0); |
| L2 = LHSCMP->getOperand(1); |
| // Look for ANDs in the LHS icmp. |
| if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) { |
| // Any icmp can be viewed as being trivially masked; if it allows us to |
| // remove one, it's worth it. |
| L11 = L1; |
| L12 = Constant::getAllOnesValue(L1->getType()); |
| } |
| |
| if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) { |
| L21 = L2; |
| L22 = Constant::getAllOnesValue(L2->getType()); |
| } |
| } |
| |
| // Bail if LHS was a icmp that can't be decomposed into an equality. |
| if (!ICmpInst::isEquality(PredL)) |
| return std::nullopt; |
| |
| Value *R11, *R12, *R2; |
| if (decomposeBitTestICmp(RHS, PredR, R11, R12, R2)) { |
| if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { |
| A = R11; |
| D = R12; |
| } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { |
| A = R12; |
| D = R11; |
| } else { |
| return std::nullopt; |
| } |
| E = R2; |
| } else { |
| auto *RHSCMP = dyn_cast<ICmpInst>(RHS); |
| if (!RHSCMP) |
| return std::nullopt; |
| // Don't allow pointers. Splat vectors are fine. |
| if (!RHSCMP->getOperand(0)->getType()->isIntOrIntVectorTy()) |
| return std::nullopt; |
| |
| PredR = RHSCMP->getPredicate(); |
| |
| Value *R1 = RHSCMP->getOperand(0); |
| R2 = RHSCMP->getOperand(1); |
| bool Ok = false; |
| if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) { |
| // As before, model no mask as a trivial mask if it'll let us do an |
| // optimization. |
| R11 = R1; |
| R12 = Constant::getAllOnesValue(R1->getType()); |
| } |
| |
| if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { |
| A = R11; |
| D = R12; |
| E = R2; |
| Ok = true; |
| } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { |
| A = R12; |
| D = R11; |
| E = R2; |
| Ok = true; |
| } |
| |
| // Avoid matching against the -1 value we created for unmasked operand. |
| if (Ok && match(A, m_AllOnes())) |
| Ok = false; |
| |
| // Look for ANDs on the right side of the RHS icmp. |
| if (!Ok) { |
| if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) { |
| R11 = R2; |
| R12 = Constant::getAllOnesValue(R2->getType()); |
| } |
| |
| if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { |
| A = R11; |
| D = R12; |
| E = R1; |
| } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { |
| A = R12; |
| D = R11; |
| E = R1; |
| } else { |
| return std::nullopt; |
| } |
| } |
| } |
| |
| // Bail if RHS was a icmp that can't be decomposed into an equality. |
| if (!ICmpInst::isEquality(PredR)) |
| return std::nullopt; |
| |
| if (L11 == A) { |
| B = L12; |
| C = L2; |
| } else if (L12 == A) { |
| B = L11; |
| C = L2; |
| } else if (L21 == A) { |
| B = L22; |
| C = L1; |
| } else if (L22 == A) { |
| B = L21; |
| C = L1; |
| } |
| |
| unsigned LeftType = getMaskedICmpType(A, B, C, PredL); |
| unsigned RightType = getMaskedICmpType(A, D, E, PredR); |
| return std::optional<std::pair<unsigned, unsigned>>( |
| std::make_pair(LeftType, RightType)); |
| } |
| |
| /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single |
| /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros |
| /// and the right hand side is of type BMask_Mixed. For example, |
| /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8). |
| /// Also used for logical and/or, must be poison safe. |
| static Value *foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( |
| Value *LHS, Value *RHS, bool IsAnd, Value *A, Value *B, Value *D, Value *E, |
| ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, |
| InstCombiner::BuilderTy &Builder) { |
| // We are given the canonical form: |
| // (icmp ne (A & B), 0) & (icmp eq (A & D), E). |
| // where D & E == E. |
| // |
| // If IsAnd is false, we get it in negated form: |
| // (icmp eq (A & B), 0) | (icmp ne (A & D), E) -> |
| // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)). |
| // |
| // We currently handle the case of B, C, D, E are constant. |
| // |
| const APInt *BCst, *DCst, *OrigECst; |
| if (!match(B, m_APInt(BCst)) || !match(D, m_APInt(DCst)) || |
| !match(E, m_APInt(OrigECst))) |
| return nullptr; |
| |
| ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; |
| |
| // Update E to the canonical form when D is a power of two and RHS is |
| // canonicalized as, |
| // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or |
| // (icmp ne (A & D), D) -> (icmp eq (A & D), 0). |
| APInt ECst = *OrigECst; |
| if (PredR != NewCC) |
| ECst ^= *DCst; |
| |
| // If B or D is zero, skip because if LHS or RHS can be trivially folded by |
| // other folding rules and this pattern won't apply any more. |
| if (*BCst == 0 || *DCst == 0) |
| return nullptr; |
| |
| // If B and D don't intersect, ie. (B & D) == 0, try to fold isNaN idiom: |
| // (icmp ne (A & FractionBits), 0) & (icmp eq (A & ExpBits), ExpBits) |
| // -> isNaN(A) |
| // Otherwise, we cannot deduce anything from it. |
| if (!BCst->intersects(*DCst)) { |
| Value *Src; |
| if (*DCst == ECst && match(A, m_ElementWiseBitCast(m_Value(Src))) && |
| !Builder.GetInsertBlock()->getParent()->hasFnAttribute( |
| Attribute::StrictFP)) { |
| Type *Ty = Src->getType()->getScalarType(); |
| if (!Ty->isIEEELikeFPTy()) |
| return nullptr; |
| |
| APInt ExpBits = APFloat::getInf(Ty->getFltSemantics()).bitcastToAPInt(); |
| if (ECst != ExpBits) |
| return nullptr; |
| APInt FractionBits = ~ExpBits; |
| FractionBits.clearSignBit(); |
| if (*BCst != FractionBits) |
| return nullptr; |
| |
| return Builder.CreateFCmp(IsAnd ? FCmpInst::FCMP_UNO : FCmpInst::FCMP_ORD, |
| Src, ConstantFP::getZero(Src->getType())); |
| } |
| return nullptr; |
| } |
| |
| // If the following two conditions are met: |
| // |
| // 1. mask B covers only a single bit that's not covered by mask D, that is, |
| // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of |
| // B and D has only one bit set) and, |
| // |
| // 2. RHS (and E) indicates that the rest of B's bits are zero (in other |
| // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0 |
| // |
| // then that single bit in B must be one and thus the whole expression can be |
| // folded to |
| // (A & (B | D)) == (B & (B ^ D)) | E. |
| // |
| // For example, |
| // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9) |
| // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8) |
| if ((((*BCst & *DCst) & ECst) == 0) && |
| (*BCst & (*BCst ^ *DCst)).isPowerOf2()) { |
| APInt BorD = *BCst | *DCst; |
| APInt BandBxorDorE = (*BCst & (*BCst ^ *DCst)) | ECst; |
| Value *NewMask = ConstantInt::get(A->getType(), BorD); |
| Value *NewMaskedValue = ConstantInt::get(A->getType(), BandBxorDorE); |
| Value *NewAnd = Builder.CreateAnd(A, NewMask); |
| return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue); |
| } |
| |
| auto IsSubSetOrEqual = [](const APInt *C1, const APInt *C2) { |
| return (*C1 & *C2) == *C1; |
| }; |
| auto IsSuperSetOrEqual = [](const APInt *C1, const APInt *C2) { |
| return (*C1 & *C2) == *C2; |
| }; |
| |
| // In the following, we consider only the cases where B is a superset of D, B |
| // is a subset of D, or B == D because otherwise there's at least one bit |
| // covered by B but not D, in which case we can't deduce much from it, so |
| // no folding (aside from the single must-be-one bit case right above.) |
| // For example, |
| // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding. |
| if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst)) |
| return nullptr; |
| |
| // At this point, either B is a superset of D, B is a subset of D or B == D. |
| |
| // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict |
| // and the whole expression becomes false (or true if negated), otherwise, no |
| // folding. |
| // For example, |
| // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false. |
| // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding. |
| if (ECst.isZero()) { |
| if (IsSubSetOrEqual(BCst, DCst)) |
| return ConstantInt::get(LHS->getType(), !IsAnd); |
| return nullptr; |
| } |
| |
| // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B == |
| // D. If B is a superset of (or equal to) D, since E is not zero, LHS is |
| // subsumed by RHS (RHS implies LHS.) So the whole expression becomes |
| // RHS. For example, |
| // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). |
| // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). |
| if (IsSuperSetOrEqual(BCst, DCst)) { |
| // We can't guarantee that samesign hold after this fold. |
| if (auto *ICmp = dyn_cast<ICmpInst>(RHS)) |
| ICmp->setSameSign(false); |
| return RHS; |
| } |
| // Otherwise, B is a subset of D. If B and E have a common bit set, |
| // ie. (B & E) != 0, then LHS is subsumed by RHS. For example. |
| // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). |
| assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code"); |
| if ((*BCst & ECst) != 0) { |
| // We can't guarantee that samesign hold after this fold. |
| if (auto *ICmp = dyn_cast<ICmpInst>(RHS)) |
| ICmp->setSameSign(false); |
| return RHS; |
| } |
| // Otherwise, LHS and RHS contradict and the whole expression becomes false |
| // (or true if negated.) For example, |
| // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false. |
| // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false. |
| return ConstantInt::get(LHS->getType(), !IsAnd); |
| } |
| |
| /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single |
| /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side |
| /// aren't of the common mask pattern type. |
| /// Also used for logical and/or, must be poison safe. |
| static Value *foldLogOpOfMaskedICmpsAsymmetric( |
| Value *LHS, Value *RHS, bool IsAnd, Value *A, Value *B, Value *C, Value *D, |
| Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, |
| unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) { |
| assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && |
| "Expected equality predicates for masked type of icmps."); |
| // Handle Mask_NotAllZeros-BMask_Mixed cases. |
| // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or |
| // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E) |
| // which gets swapped to |
| // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C). |
| if (!IsAnd) { |
| LHSMask = conjugateICmpMask(LHSMask); |
| RHSMask = conjugateICmpMask(RHSMask); |
| } |
| if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) { |
| if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( |
| LHS, RHS, IsAnd, A, B, D, E, PredL, PredR, Builder)) { |
| return V; |
| } |
| } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) { |
| if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( |
| RHS, LHS, IsAnd, A, D, B, C, PredR, PredL, Builder)) { |
| return V; |
| } |
| } |
| return nullptr; |
| } |
| |
| /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) |
| /// into a single (icmp(A & X) ==/!= Y). |
| static Value *foldLogOpOfMaskedICmps(Value *LHS, Value *RHS, bool IsAnd, |
| bool IsLogical, |
| InstCombiner::BuilderTy &Builder, |
| const SimplifyQuery &Q) { |
| Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr; |
| ICmpInst::Predicate PredL, PredR; |
| std::optional<std::pair<unsigned, unsigned>> MaskPair = |
| getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR); |
| if (!MaskPair) |
| return nullptr; |
| assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && |
| "Expected equality predicates for masked type of icmps."); |
| unsigned LHSMask = MaskPair->first; |
| unsigned RHSMask = MaskPair->second; |
| unsigned Mask = LHSMask & RHSMask; |
| if (Mask == 0) { |
| // Even if the two sides don't share a common pattern, check if folding can |
| // still happen. |
| if (Value *V = foldLogOpOfMaskedICmpsAsymmetric( |
| LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask, |
| Builder)) |
| return V; |
| return nullptr; |
| } |
| |
| // In full generality: |
| // (icmp (A & B) Op C) | (icmp (A & D) Op E) |
| // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ] |
| // |
| // If the latter can be converted into (icmp (A & X) Op Y) then the former is |
| // equivalent to (icmp (A & X) !Op Y). |
| // |
| // Therefore, we can pretend for the rest of this function that we're dealing |
| // with the conjunction, provided we flip the sense of any comparisons (both |
| // input and output). |
| |
| // In most cases we're going to produce an EQ for the "&&" case. |
| ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; |
| if (!IsAnd) { |
| // Convert the masking analysis into its equivalent with negated |
| // comparisons. |
| Mask = conjugateICmpMask(Mask); |
| } |
| |
| if (Mask & Mask_AllZeros) { |
| // (icmp eq (A & B), 0) & (icmp eq (A & D), 0) |
| // -> (icmp eq (A & (B|D)), 0) |
| if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D)) |
| return nullptr; // TODO: Use freeze? |
| Value *NewOr = Builder.CreateOr(B, D); |
| Value *NewAnd = Builder.CreateAnd(A, NewOr); |
| // We can't use C as zero because we might actually handle |
| // (icmp ne (A & B), B) & (icmp ne (A & D), D) |
| // with B and D, having a single bit set. |
| Value *Zero = Constant::getNullValue(A->getType()); |
| return Builder.CreateICmp(NewCC, NewAnd, Zero); |
| } |
| if (Mask & BMask_AllOnes) { |
| // (icmp eq (A & B), B) & (icmp eq (A & D), D) |
| // -> (icmp eq (A & (B|D)), (B|D)) |
| if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D)) |
| return nullptr; // TODO: Use freeze? |
| Value *NewOr = Builder.CreateOr(B, D); |
| Value *NewAnd = Builder.CreateAnd(A, NewOr); |
| return Builder.CreateICmp(NewCC, NewAnd, NewOr); |
| } |
| if (Mask & AMask_AllOnes) { |
| // (icmp eq (A & B), A) & (icmp eq (A & D), A) |
| // -> (icmp eq (A & (B&D)), A) |
| if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D)) |
| return nullptr; // TODO: Use freeze? |
| Value *NewAnd1 = Builder.CreateAnd(B, D); |
| Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1); |
| return Builder.CreateICmp(NewCC, NewAnd2, A); |
| } |
| |
| const APInt *ConstB, *ConstD; |
| if (match(B, m_APInt(ConstB)) && match(D, m_APInt(ConstD))) { |
| if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) { |
| // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and |
| // (icmp ne (A & B), B) & (icmp ne (A & D), D) |
| // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0) |
| // Only valid if one of the masks is a superset of the other (check "B&D" |
| // is the same as either B or D). |
| APInt NewMask = *ConstB & *ConstD; |
| if (NewMask == *ConstB) |
| return LHS; |
| if (NewMask == *ConstD) { |
| if (IsLogical) { |
| if (auto *RHSI = dyn_cast<Instruction>(RHS)) |
| RHSI->dropPoisonGeneratingFlags(); |
| } |
| return RHS; |
| } |
| } |
| |
| if (Mask & AMask_NotAllOnes) { |
| // (icmp ne (A & B), B) & (icmp ne (A & D), D) |
| // -> (icmp ne (A & B), A) or (icmp ne (A & D), A) |
| // Only valid if one of the masks is a superset of the other (check "B|D" |
| // is the same as either B or D). |
| APInt NewMask = *ConstB | *ConstD; |
| if (NewMask == *ConstB) |
| return LHS; |
| if (NewMask == *ConstD) |
| return RHS; |
| } |
| |
| if (Mask & (BMask_Mixed | BMask_NotMixed)) { |
| // Mixed: |
| // (icmp eq (A & B), C) & (icmp eq (A & D), E) |
| // We already know that B & C == C && D & E == E. |
| // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of |
| // C and E, which are shared by both the mask B and the mask D, don't |
| // contradict, then we can transform to |
| // -> (icmp eq (A & (B|D)), (C|E)) |
| // Currently, we only handle the case of B, C, D, and E being constant. |
| // We can't simply use C and E because we might actually handle |
| // (icmp ne (A & B), B) & (icmp eq (A & D), D) |
| // with B and D, having a single bit set. |
| |
| // NotMixed: |
| // (icmp ne (A & B), C) & (icmp ne (A & D), E) |
| // -> (icmp ne (A & (B & D)), (C & E)) |
| // Check the intersection (B & D) for inequality. |
| // Assume that (B & D) == B || (B & D) == D, i.e B/D is a subset of D/B |
| // and (B & D) & (C ^ E) == 0, bits of C and E, which are shared by both |
| // the B and the D, don't contradict. Note that we can assume (~B & C) == |
| // 0 && (~D & E) == 0, previous operation should delete these icmps if it |
| // hadn't been met. |
| |
| const APInt *OldConstC, *OldConstE; |
| if (!match(C, m_APInt(OldConstC)) || !match(E, m_APInt(OldConstE))) |
| return nullptr; |
| |
| auto FoldBMixed = [&](ICmpInst::Predicate CC, bool IsNot) -> Value * { |
| CC = IsNot ? CmpInst::getInversePredicate(CC) : CC; |
| const APInt ConstC = PredL != CC ? *ConstB ^ *OldConstC : *OldConstC; |
| const APInt ConstE = PredR != CC ? *ConstD ^ *OldConstE : *OldConstE; |
| |
| if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue()) |
| return IsNot ? nullptr : ConstantInt::get(LHS->getType(), !IsAnd); |
| |
| if (IsNot && !ConstB->isSubsetOf(*ConstD) && |
| !ConstD->isSubsetOf(*ConstB)) |
| return nullptr; |
| |
| APInt BD, CE; |
| if (IsNot) { |
| BD = *ConstB & *ConstD; |
| CE = ConstC & ConstE; |
| } else { |
| BD = *ConstB | *ConstD; |
| CE = ConstC | ConstE; |
| } |
| Value *NewAnd = Builder.CreateAnd(A, BD); |
| Value *CEVal = ConstantInt::get(A->getType(), CE); |
| return Builder.CreateICmp(CC, CEVal, NewAnd); |
| }; |
| |
| if (Mask & BMask_Mixed) |
| return FoldBMixed(NewCC, false); |
| if (Mask & BMask_NotMixed) // can be else also |
| return FoldBMixed(NewCC, true); |
| } |
| } |
| |
| // (icmp eq (A & B), 0) | (icmp eq (A & D), 0) |
| // -> (icmp ne (A & (B|D)), (B|D)) |
| // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) |
| // -> (icmp eq (A & (B|D)), (B|D)) |
| // iff B and D is known to be a power of two |
| if (Mask & Mask_NotAllZeros && |
| isKnownToBeAPowerOfTwo(B, /*OrZero=*/false, /*Depth=*/0, Q) && |
| isKnownToBeAPowerOfTwo(D, /*OrZero=*/false, /*Depth=*/0, Q)) { |
| // If this is a logical and/or, then we must prevent propagation of a |
| // poison value from the RHS by inserting freeze. |
| if (IsLogical) |
| D = Builder.CreateFreeze(D); |
| Value *Mask = Builder.CreateOr(B, D); |
| Value *Masked = Builder.CreateAnd(A, Mask); |
| return Builder.CreateICmp(NewCC, Masked, Mask); |
| } |
| return nullptr; |
| } |
| |
| /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp. |
| /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n |
| /// If \p Inverted is true then the check is for the inverted range, e.g. |
| /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n |
| Value *InstCombinerImpl::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, |
| bool Inverted) { |
| // Check the lower range comparison, e.g. x >= 0 |
| // InstCombine already ensured that if there is a constant it's on the RHS. |
| ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1)); |
| if (!RangeStart) |
| return nullptr; |
| |
| ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() : |
| Cmp0->getPredicate()); |
| |
| // Accept x > -1 or x >= 0 (after potentially inverting the predicate). |
| if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) || |
| (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero()))) |
| return nullptr; |
| |
| ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() : |
| Cmp1->getPredicate()); |
| |
| Value *Input = Cmp0->getOperand(0); |
| Value *Cmp1Op0 = Cmp1->getOperand(0); |
| Value *Cmp1Op1 = Cmp1->getOperand(1); |
| Value *RangeEnd; |
| if (match(Cmp1Op0, m_SExtOrSelf(m_Specific(Input)))) { |
| // For the upper range compare we have: icmp x, n |
| Input = Cmp1Op0; |
| RangeEnd = Cmp1Op1; |
| } else if (match(Cmp1Op1, m_SExtOrSelf(m_Specific(Input)))) { |
| // For the upper range compare we have: icmp n, x |
| Input = Cmp1Op1; |
| RangeEnd = Cmp1Op0; |
| Pred1 = ICmpInst::getSwappedPredicate(Pred1); |
| } else { |
| return nullptr; |
| } |
| |
| // Check the upper range comparison, e.g. x < n |
| ICmpInst::Predicate NewPred; |
| switch (Pred1) { |
| case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break; |
| case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break; |
| default: return nullptr; |
| } |
| |
| // This simplification is only valid if the upper range is not negative. |
| KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1); |
| if (!Known.isNonNegative()) |
| return nullptr; |
| |
| if (Inverted) |
| NewPred = ICmpInst::getInversePredicate(NewPred); |
| |
| return Builder.CreateICmp(NewPred, Input, RangeEnd); |
| } |
| |
| // (or (icmp eq X, 0), (icmp eq X, Pow2OrZero)) |
| // -> (icmp eq (and X, Pow2OrZero), X) |
| // (and (icmp ne X, 0), (icmp ne X, Pow2OrZero)) |
| // -> (icmp ne (and X, Pow2OrZero), X) |
| static Value * |
| foldAndOrOfICmpsWithPow2AndWithZero(InstCombiner::BuilderTy &Builder, |
| ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, |
| const SimplifyQuery &Q) { |
| CmpPredicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; |
| // Make sure we have right compares for our op. |
| if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred) |
| return nullptr; |
| |
| // Make it so we can match LHS against the (icmp eq/ne X, 0) just for |
| // simplicity. |
| if (match(RHS->getOperand(1), m_Zero())) |
| std::swap(LHS, RHS); |
| |
| Value *Pow2, *Op; |
| // Match the desired pattern: |
| // LHS: (icmp eq/ne X, 0) |
| // RHS: (icmp eq/ne X, Pow2OrZero) |
| // Skip if Pow2OrZero is 1. Either way it gets folded to (icmp ugt X, 1) but |
| // this form ends up slightly less canonical. |
| // We could potentially be more sophisticated than requiring LHS/RHS |
| // be one-use. We don't create additional instructions if only one |
| // of them is one-use. So cases where one is one-use and the other |
| // is two-use might be profitable. |
| if (!match(LHS, m_OneUse(m_ICmp(Pred, m_Value(Op), m_Zero()))) || |
| !match(RHS, m_OneUse(m_c_ICmp(Pred, m_Specific(Op), m_Value(Pow2)))) || |
| match(Pow2, m_One()) || |
| !isKnownToBeAPowerOfTwo(Pow2, Q.DL, /*OrZero=*/true, /*Depth=*/0, Q.AC, |
| Q.CxtI, Q.DT)) |
| return nullptr; |
| |
| Value *And = Builder.CreateAnd(Op, Pow2); |
| return Builder.CreateICmp(Pred, And, Op); |
| } |
| |
| /// General pattern: |
| /// X & Y |
| /// |
| /// Where Y is checking that all the high bits (covered by a mask 4294967168) |
| /// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0 |
| /// Pattern can be one of: |
| /// %t = add i32 %arg, 128 |
| /// %r = icmp ult i32 %t, 256 |
| /// Or |
| /// %t0 = shl i32 %arg, 24 |
| /// %t1 = ashr i32 %t0, 24 |
| /// %r = icmp eq i32 %t1, %arg |
| /// Or |
| /// %t0 = trunc i32 %arg to i8 |
| /// %t1 = sext i8 %t0 to i32 |
| /// %r = icmp eq i32 %t1, %arg |
| /// This pattern is a signed truncation check. |
| /// |
| /// And X is checking that some bit in that same mask is zero. |
| /// I.e. can be one of: |
| /// %r = icmp sgt i32 %arg, -1 |
| /// Or |
| /// %t = and i32 %arg, 2147483648 |
| /// %r = icmp eq i32 %t, 0 |
| /// |
| /// Since we are checking that all the bits in that mask are the same, |
| /// and a particular bit is zero, what we are really checking is that all the |
| /// masked bits are zero. |
| /// So this should be transformed to: |
| /// %r = icmp ult i32 %arg, 128 |
| static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1, |
| Instruction &CxtI, |
| InstCombiner::BuilderTy &Builder) { |
| assert(CxtI.getOpcode() == Instruction::And); |
| |
| // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two) |
| auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X, |
| APInt &SignBitMask) -> bool { |
| const APInt *I01, *I1; // powers of two; I1 == I01 << 1 |
| if (!(match(ICmp, m_SpecificICmp(ICmpInst::ICMP_ULT, |
| m_Add(m_Value(X), m_Power2(I01)), |
| m_Power2(I1))) && |
| I1->ugt(*I01) && I01->shl(1) == *I1)) |
| return false; |
| // Which bit is the new sign bit as per the 'signed truncation' pattern? |
| SignBitMask = *I01; |
| return true; |
| }; |
| |
| // One icmp needs to be 'signed truncation check'. |
| // We need to match this first, else we will mismatch commutative cases. |
| Value *X1; |
| APInt HighestBit; |
| ICmpInst *OtherICmp; |
| if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit)) |
| OtherICmp = ICmp0; |
| else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit)) |
| OtherICmp = ICmp1; |
| else |
| return nullptr; |
| |
| assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)"); |
| |
| // Try to match/decompose into: icmp eq (X & Mask), 0 |
| auto tryToDecompose = [](ICmpInst *ICmp, Value *&X, |
| APInt &UnsetBitsMask) -> bool { |
| CmpPredicate Pred = ICmp->getPredicate(); |
| // Can it be decomposed into icmp eq (X & Mask), 0 ? |
| auto Res = |
| llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1), |
| Pred, /*LookThroughTrunc=*/false); |
| if (Res && Res->Pred == ICmpInst::ICMP_EQ) { |
| X = Res->X; |
| UnsetBitsMask = Res->Mask; |
| return true; |
| } |
| |
| // Is it icmp eq (X & Mask), 0 already? |
| const APInt *Mask; |
| if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) && |
| Pred == ICmpInst::ICMP_EQ) { |
| UnsetBitsMask = *Mask; |
| return true; |
| } |
| return false; |
| }; |
| |
| // And the other icmp needs to be decomposable into a bit test. |
| Value *X0; |
| APInt UnsetBitsMask; |
| if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask)) |
| return nullptr; |
| |
| assert(!UnsetBitsMask.isZero() && "empty mask makes no sense."); |
| |
| // Are they working on the same value? |
| Value *X; |
| if (X1 == X0) { |
| // Ok as is. |
| X = X1; |
| } else if (match(X0, m_Trunc(m_Specific(X1)))) { |
| UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits()); |
| X = X1; |
| } else |
| return nullptr; |
| |
| // So which bits should be uniform as per the 'signed truncation check'? |
| // (all the bits starting with (i.e. including) HighestBit) |
| APInt SignBitsMask = ~(HighestBit - 1U); |
| |
| // UnsetBitsMask must have some common bits with SignBitsMask, |
| if (!UnsetBitsMask.intersects(SignBitsMask)) |
| return nullptr; |
| |
| // Does UnsetBitsMask contain any bits outside of SignBitsMask? |
| if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) { |
| APInt OtherHighestBit = (~UnsetBitsMask) + 1U; |
| if (!OtherHighestBit.isPowerOf2()) |
| return nullptr; |
| HighestBit = APIntOps::umin(HighestBit, OtherHighestBit); |
| } |
| // Else, if it does not, then all is ok as-is. |
| |
| // %r = icmp ult %X, SignBit |
| return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit), |
| CxtI.getName() + ".simplified"); |
| } |
| |
| /// Fold (icmp eq ctpop(X) 1) | (icmp eq X 0) into (icmp ult ctpop(X) 2) and |
| /// fold (icmp ne ctpop(X) 1) & (icmp ne X 0) into (icmp ugt ctpop(X) 1). |
| /// Also used for logical and/or, must be poison safe if range attributes are |
| /// dropped. |
| static Value *foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd, |
| InstCombiner::BuilderTy &Builder, |
| InstCombinerImpl &IC) { |
| CmpPredicate Pred0, Pred1; |
| Value *X; |
| if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)), |
| m_SpecificInt(1))) || |
| !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt()))) |
| return nullptr; |
| |
| auto *CtPop = cast<Instruction>(Cmp0->getOperand(0)); |
| if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_NE) { |
| // Drop range attributes and re-infer them in the next iteration. |
| CtPop->dropPoisonGeneratingAnnotations(); |
| IC.addToWorklist(CtPop); |
| return Builder.CreateICmpUGT(CtPop, ConstantInt::get(CtPop->getType(), 1)); |
| } |
| if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_EQ) { |
| // Drop range attributes and re-infer them in the next iteration. |
| CtPop->dropPoisonGeneratingAnnotations(); |
| IC.addToWorklist(CtPop); |
| return Builder.CreateICmpULT(CtPop, ConstantInt::get(CtPop->getType(), 2)); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Reduce a pair of compares that check if a value has exactly 1 bit set. |
| /// Also used for logical and/or, must be poison safe if range attributes are |
| /// dropped. |
| static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd, |
| InstCombiner::BuilderTy &Builder, |
| InstCombinerImpl &IC) { |
| // Handle 'and' / 'or' commutation: make the equality check the first operand. |
| if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE) |
| std::swap(Cmp0, Cmp1); |
| else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ) |
| std::swap(Cmp0, Cmp1); |
| |
| // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1 |
| Value *X; |
| if (JoinedByAnd && |
| match(Cmp0, m_SpecificICmp(ICmpInst::ICMP_NE, m_Value(X), m_ZeroInt())) && |
| match(Cmp1, m_SpecificICmp(ICmpInst::ICMP_ULT, |
| m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)), |
| m_SpecificInt(2)))) { |
| auto *CtPop = cast<Instruction>(Cmp1->getOperand(0)); |
| // Drop range attributes and re-infer them in the next iteration. |
| CtPop->dropPoisonGeneratingAnnotations(); |
| IC.addToWorklist(CtPop); |
| return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1)); |
| } |
| // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1 |
| if (!JoinedByAnd && |
| match(Cmp0, m_SpecificICmp(ICmpInst::ICMP_EQ, m_Value(X), m_ZeroInt())) && |
| match(Cmp1, m_SpecificICmp(ICmpInst::ICMP_UGT, |
| m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)), |
| m_SpecificInt(1)))) { |
| auto *CtPop = cast<Instruction>(Cmp1->getOperand(0)); |
| // Drop range attributes and re-infer them in the next iteration. |
| CtPop->dropPoisonGeneratingAnnotations(); |
| IC.addToWorklist(CtPop); |
| return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1)); |
| } |
| return nullptr; |
| } |
| |
| /// Try to fold (icmp(A & B) == 0) & (icmp(A & D) != E) into (icmp A u< D) iff |
| /// B is a contiguous set of ones starting from the most significant bit |
| /// (negative power of 2), D and E are equal, and D is a contiguous set of ones |
| /// starting at the most significant zero bit in B. Parameter B supports masking |
| /// using undef/poison in either scalar or vector values. |
| static Value *foldNegativePower2AndShiftedMask( |
| Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL, |
| ICmpInst::Predicate PredR, InstCombiner::BuilderTy &Builder) { |
| assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && |
| "Expected equality predicates for masked type of icmps."); |
| if (PredL != ICmpInst::ICMP_EQ || PredR != ICmpInst::ICMP_NE) |
| return nullptr; |
| |
| if (!match(B, m_NegatedPower2()) || !match(D, m_ShiftedMask()) || |
| !match(E, m_ShiftedMask())) |
| return nullptr; |
| |
| // Test scalar arguments for conversion. B has been validated earlier to be a |
| // negative power of two and thus is guaranteed to have one or more contiguous |
| // ones starting from the MSB followed by zero or more contiguous zeros. D has |
| // been validated earlier to be a shifted set of one or more contiguous ones. |
| // In order to match, B leading ones and D leading zeros should be equal. The |
| // predicate that B be a negative power of 2 prevents the condition of there |
| // ever being zero leading ones. Thus 0 == 0 cannot occur. The predicate that |
| // D always be a shifted mask prevents the condition of D equaling 0. This |
| // prevents matching the condition where B contains the maximum number of |
| // leading one bits (-1) and D contains the maximum number of leading zero |
| // bits (0). |
| auto isReducible = [](const Value *B, const Value *D, const Value *E) { |
| const APInt *BCst, *DCst, *ECst; |
| return match(B, m_APIntAllowPoison(BCst)) && match(D, m_APInt(DCst)) && |
| match(E, m_APInt(ECst)) && *DCst == *ECst && |
| (isa<PoisonValue>(B) || |
| (BCst->countLeadingOnes() == DCst->countLeadingZeros())); |
| }; |
| |
| // Test vector type arguments for conversion. |
| if (const auto *BVTy = dyn_cast<VectorType>(B->getType())) { |
| const auto *BFVTy = dyn_cast<FixedVectorType>(BVTy); |
| const auto *BConst = dyn_cast<Constant>(B); |
| const auto *DConst = dyn_cast<Constant>(D); |
| const auto *EConst = dyn_cast<Constant>(E); |
| |
| if (!BFVTy || !BConst || !DConst || !EConst) |
| return nullptr; |
| |
| for (unsigned I = 0; I != BFVTy->getNumElements(); ++I) { |
| const auto *BElt = BConst->getAggregateElement(I); |
| const auto *DElt = DConst->getAggregateElement(I); |
| const auto *EElt = EConst->getAggregateElement(I); |
| |
| if (!BElt || !DElt || !EElt) |
| return nullptr; |
| if (!isReducible(BElt, DElt, EElt)) |
| return nullptr; |
| } |
| } else { |
| // Test scalar type arguments for conversion. |
| if (!isReducible(B, D, E)) |
| return nullptr; |
| } |
| return Builder.CreateICmp(ICmpInst::ICMP_ULT, A, D); |
| } |
| |
| /// Try to fold ((icmp X u< P) & (icmp(X & M) != M)) or ((icmp X s> -1) & |
| /// (icmp(X & M) != M)) into (icmp X u< M). Where P is a power of 2, M < P, and |
| /// M is a contiguous shifted mask starting at the right most significant zero |
| /// bit in P. SGT is supported as when P is the largest representable power of |
| /// 2, an earlier optimization converts the expression into (icmp X s> -1). |
| /// Parameter P supports masking using undef/poison in either scalar or vector |
| /// values. |
| static Value *foldPowerOf2AndShiftedMask(ICmpInst *Cmp0, ICmpInst *Cmp1, |
| bool JoinedByAnd, |
| InstCombiner::BuilderTy &Builder) { |
| if (!JoinedByAnd) |
| return nullptr; |
| Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr; |
| ICmpInst::Predicate CmpPred0, CmpPred1; |
| // Assuming P is a 2^n, getMaskedTypeForICmpPair will normalize (icmp X u< |
| // 2^n) into (icmp (X & ~(2^n-1)) == 0) and (icmp X s> -1) into (icmp (X & |
| // SignMask) == 0). |
| std::optional<std::pair<unsigned, unsigned>> MaskPair = |
| getMaskedTypeForICmpPair(A, B, C, D, E, Cmp0, Cmp1, CmpPred0, CmpPred1); |
| if (!MaskPair) |
| return nullptr; |
| |
| const auto compareBMask = BMask_NotMixed | BMask_NotAllOnes; |
| unsigned CmpMask0 = MaskPair->first; |
| unsigned CmpMask1 = MaskPair->second; |
| if ((CmpMask0 & Mask_AllZeros) && (CmpMask1 == compareBMask)) { |
| if (Value *V = foldNegativePower2AndShiftedMask(A, B, D, E, CmpPred0, |
| CmpPred1, Builder)) |
| return V; |
| } else if ((CmpMask0 == compareBMask) && (CmpMask1 & Mask_AllZeros)) { |
| if (Value *V = foldNegativePower2AndShiftedMask(A, D, B, C, CmpPred1, |
| CmpPred0, Builder)) |
| return V; |
| } |
| return nullptr; |
| } |
| |
| /// Commuted variants are assumed to be handled by calling this function again |
| /// with the parameters swapped. |
| static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp, |
| ICmpInst *UnsignedICmp, bool IsAnd, |
| const SimplifyQuery &Q, |
| InstCombiner::BuilderTy &Builder) { |
| Value *ZeroCmpOp; |
| CmpPredicate EqPred; |
| if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) || |
| !ICmpInst::isEquality(EqPred)) |
| return nullptr; |
| |
| CmpPredicate UnsignedPred; |
| |
| Value *A, *B; |
| if (match(UnsignedICmp, |
| m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) && |
| match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) && |
| (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) { |
| auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) { |
| if (!isKnownNonZero(NonZero, Q)) |
| std::swap(NonZero, Other); |
| return isKnownNonZero(NonZero, Q); |
| }; |
| |
| // Given ZeroCmpOp = (A + B) |
| // ZeroCmpOp < A && ZeroCmpOp != 0 --> (0-X) < Y iff |
| // ZeroCmpOp >= A || ZeroCmpOp == 0 --> (0-X) >= Y iff |
| // with X being the value (A/B) that is known to be non-zero, |
| // and Y being remaining value. |
| if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE && |
| IsAnd && GetKnownNonZeroAndOther(B, A)) |
| return Builder.CreateICmpULT(Builder.CreateNeg(B), A); |
| if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ && |
| !IsAnd && GetKnownNonZeroAndOther(B, A)) |
| return Builder.CreateICmpUGE(Builder.CreateNeg(B), A); |
| } |
| |
| return nullptr; |
| } |
| |
| struct IntPart { |
| Value *From; |
| unsigned StartBit; |
| unsigned NumBits; |
| }; |
| |
| /// Match an extraction of bits from an integer. |
| static std::optional<IntPart> matchIntPart(Value *V) { |
| Value *X; |
| if (!match(V, m_OneUse(m_Trunc(m_Value(X))))) |
| return std::nullopt; |
| |
| unsigned NumOriginalBits = X->getType()->getScalarSizeInBits(); |
| unsigned NumExtractedBits = V->getType()->getScalarSizeInBits(); |
| Value *Y; |
| const APInt *Shift; |
| // For a trunc(lshr Y, Shift) pattern, make sure we're only extracting bits |
| // from Y, not any shifted-in zeroes. |
| if (match(X, m_OneUse(m_LShr(m_Value(Y), m_APInt(Shift)))) && |
| Shift->ule(NumOriginalBits - NumExtractedBits)) |
| return {{Y, (unsigned)Shift->getZExtValue(), NumExtractedBits}}; |
| return {{X, 0, NumExtractedBits}}; |
| } |
| |
| /// Materialize an extraction of bits from an integer in IR. |
| static Value *extractIntPart(const IntPart &P, IRBuilderBase &Builder) { |
| Value *V = P.From; |
| if (P.StartBit) |
| V = Builder.CreateLShr(V, P.StartBit); |
| Type *TruncTy = V->getType()->getWithNewBitWidth(P.NumBits); |
| if (TruncTy != V->getType()) |
| V = Builder.CreateTrunc(V, TruncTy); |
| return V; |
| } |
| |
| /// (icmp eq X0, Y0) & (icmp eq X1, Y1) -> icmp eq X01, Y01 |
| /// (icmp ne X0, Y0) | (icmp ne X1, Y1) -> icmp ne X01, Y01 |
| /// where X0, X1 and Y0, Y1 are adjacent parts extracted from an integer. |
| Value *InstCombinerImpl::foldEqOfParts(Value *Cmp0, Value *Cmp1, bool IsAnd) { |
| if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse()) |
| return nullptr; |
| |
| CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; |
| auto GetMatchPart = [&](Value *CmpV, |
| unsigned OpNo) -> std::optional<IntPart> { |
| assert(CmpV->getType()->isIntOrIntVectorTy(1) && "Must be bool"); |
| |
| Value *X, *Y; |
| // icmp ne (and x, 1), (and y, 1) <=> trunc (xor x, y) to i1 |
| // icmp eq (and x, 1), (and y, 1) <=> not (trunc (xor x, y) to i1) |
| if (Pred == CmpInst::ICMP_NE |
| ? match(CmpV, m_Trunc(m_Xor(m_Value(X), m_Value(Y)))) |
| : match(CmpV, m_Not(m_Trunc(m_Xor(m_Value(X), m_Value(Y)))))) |
| return {{OpNo == 0 ? X : Y, 0, 1}}; |
| |
| auto *Cmp = dyn_cast<ICmpInst>(CmpV); |
| if (!Cmp) |
| return std::nullopt; |
| |
| if (Pred == Cmp->getPredicate()) |
| return matchIntPart(Cmp->getOperand(OpNo)); |
| |
| const APInt *C; |
| // (icmp eq (lshr x, C), (lshr y, C)) gets optimized to: |
| // (icmp ult (xor x, y), 1 << C) so also look for that. |
| if (Pred == CmpInst::ICMP_EQ && Cmp->getPredicate() == CmpInst::ICMP_ULT) { |
| if (!match(Cmp->getOperand(1), m_Power2(C)) || |
| !match(Cmp->getOperand(0), m_Xor(m_Value(), m_Value()))) |
| return std::nullopt; |
| } |
| |
| // (icmp ne (lshr x, C), (lshr y, C)) gets optimized to: |
| // (icmp ugt (xor x, y), (1 << C) - 1) so also look for that. |
| else if (Pred == CmpInst::ICMP_NE && |
| Cmp->getPredicate() == CmpInst::ICMP_UGT) { |
| if (!match(Cmp->getOperand(1), m_LowBitMask(C)) || |
| !match(Cmp->getOperand(0), m_Xor(m_Value(), m_Value()))) |
| return std::nullopt; |
| } else { |
| return std::nullopt; |
| } |
| |
| unsigned From = Pred == CmpInst::ICMP_NE ? C->popcount() : C->countr_zero(); |
| Instruction *I = cast<Instruction>(Cmp->getOperand(0)); |
| return {{I->getOperand(OpNo), From, C->getBitWidth() - From}}; |
| }; |
| |
| std::optional<IntPart> L0 = GetMatchPart(Cmp0, 0); |
| std::optional<IntPart> R0 = GetMatchPart(Cmp0, 1); |
| std::optional<IntPart> L1 = GetMatchPart(Cmp1, 0); |
| std::optional<IntPart> R1 = GetMatchPart(Cmp1, 1); |
| if (!L0 || !R0 || !L1 || !R1) |
| return nullptr; |
| |
| // Make sure the LHS/RHS compare a part of the same value, possibly after |
| // an operand swap. |
| if (L0->From != L1->From || R0->From != R1->From) { |
| if (L0->From != R1->From || R0->From != L1->From) |
| return nullptr; |
| std::swap(L1, R1); |
| } |
| |
| // Make sure the extracted parts are adjacent, canonicalizing to L0/R0 being |
| // the low part and L1/R1 being the high part. |
| if (L0->StartBit + L0->NumBits != L1->StartBit || |
| R0->StartBit + R0->NumBits != R1->StartBit) { |
| if (L1->StartBit + L1->NumBits != L0->StartBit || |
| R1->StartBit + R1->NumBits != R0->StartBit) |
| return nullptr; |
| std::swap(L0, L1); |
| std::swap(R0, R1); |
| } |
| |
| // We can simplify to a comparison of these larger parts of the integers. |
| IntPart L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits}; |
| IntPart R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits}; |
| Value *LValue = extractIntPart(L, Builder); |
| Value *RValue = extractIntPart(R, Builder); |
| return Builder.CreateICmp(Pred, LValue, RValue); |
| } |
| |
| /// Reduce logic-of-compares with equality to a constant by substituting a |
| /// common operand with the constant. Callers are expected to call this with |
| /// Cmp0/Cmp1 switched to handle logic op commutativity. |
| static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1, |
| bool IsAnd, bool IsLogical, |
| InstCombiner::BuilderTy &Builder, |
| const SimplifyQuery &Q) { |
| // Match an equality compare with a non-poison constant as Cmp0. |
| // Also, give up if the compare can be constant-folded to avoid looping. |
| CmpPredicate Pred0; |
| Value *X; |
| Constant *C; |
| if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) || |
| !isGuaranteedNotToBeUndefOrPoison(C) || isa<Constant>(X)) |
| return nullptr; |
| if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) || |
| (!IsAnd && Pred0 != ICmpInst::ICMP_NE)) |
| return nullptr; |
| |
| // The other compare must include a common operand (X). Canonicalize the |
| // common operand as operand 1 (Pred1 is swapped if the common operand was |
| // operand 0). |
| Value *Y; |
| CmpPredicate Pred1; |
| if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Specific(X)))) |
| return nullptr; |
| |
| // Replace variable with constant value equivalence to remove a variable use: |
| // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C) |
| // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C) |
| // Can think of the 'or' substitution with the 'and' bool equivalent: |
| // A || B --> A || (!A && B) |
| Value *SubstituteCmp = simplifyICmpInst(Pred1, Y, C, Q); |
| if (!SubstituteCmp) { |
| // If we need to create a new instruction, require that the old compare can |
| // be removed. |
| if (!Cmp1->hasOneUse()) |
| return nullptr; |
| SubstituteCmp = Builder.CreateICmp(Pred1, Y, C); |
| } |
| if (IsLogical) |
| return IsAnd ? Builder.CreateLogicalAnd(Cmp0, SubstituteCmp) |
| : Builder.CreateLogicalOr(Cmp0, SubstituteCmp); |
| return Builder.CreateBinOp(IsAnd ? Instruction::And : Instruction::Or, Cmp0, |
| SubstituteCmp); |
| } |
| |
| /// Fold (icmp Pred1 V1, C1) & (icmp Pred2 V2, C2) |
| /// or (icmp Pred1 V1, C1) | (icmp Pred2 V2, C2) |
| /// into a single comparison using range-based reasoning. |
| /// NOTE: This is also used for logical and/or, must be poison-safe! |
| Value *InstCombinerImpl::foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1, |
| ICmpInst *ICmp2, |
| bool IsAnd) { |
| CmpPredicate Pred1, Pred2; |
| Value *V1, *V2; |
| const APInt *C1, *C2; |
| if (!match(ICmp1, m_ICmp(Pred1, m_Value(V1), m_APInt(C1))) || |
| !match(ICmp2, m_ICmp(Pred2, m_Value(V2), m_APInt(C2)))) |
| return nullptr; |
| |
| // Look through add of a constant offset on V1, V2, or both operands. This |
| // allows us to interpret the V + C' < C'' range idiom into a proper range. |
| const APInt *Offset1 = nullptr, *Offset2 = nullptr; |
| if (V1 != V2) { |
| Value *X; |
| if (match(V1, m_Add(m_Value(X), m_APInt(Offset1)))) |
| V1 = X; |
| if (match(V2, m_Add(m_Value(X), m_APInt(Offset2)))) |
| V2 = X; |
| } |
| |
| if (V1 != V2) |
| return nullptr; |
| |
| ConstantRange CR1 = ConstantRange::makeExactICmpRegion( |
| IsAnd ? ICmpInst::getInverseCmpPredicate(Pred1) : Pred1, *C1); |
| if (Offset1) |
| CR1 = CR1.subtract(*Offset1); |
| |
| ConstantRange CR2 = ConstantRange::makeExactICmpRegion( |
| IsAnd ? ICmpInst::getInverseCmpPredicate(Pred2) : Pred2, *C2); |
| if (Offset2) |
| CR2 = CR2.subtract(*Offset2); |
| |
| Type *Ty = V1->getType(); |
| Value *NewV = V1; |
| std::optional<ConstantRange> CR = CR1.exactUnionWith(CR2); |
| if (!CR) { |
| if (!(ICmp1->hasOneUse() && ICmp2->hasOneUse()) || CR1.isWrappedSet() || |
| CR2.isWrappedSet()) |
| return nullptr; |
| |
| // Check whether we have equal-size ranges that only differ by one bit. |
| // In that case we can apply a mask to map one range onto the other. |
| APInt LowerDiff = CR1.getLower() ^ CR2.getLower(); |
| APInt UpperDiff = (CR1.getUpper() - 1) ^ (CR2.getUpper() - 1); |
| APInt CR1Size = CR1.getUpper() - CR1.getLower(); |
| if (!LowerDiff.isPowerOf2() || LowerDiff != UpperDiff || |
| CR1Size != CR2.getUpper() - CR2.getLower()) |
| return nullptr; |
| |
| CR = CR1.getLower().ult(CR2.getLower()) ? CR1 : CR2; |
| NewV = Builder.CreateAnd(NewV, ConstantInt::get(Ty, ~LowerDiff)); |
| } |
| |
| if (IsAnd) |
| CR = CR->inverse(); |
| |
| CmpInst::Predicate NewPred; |
| APInt NewC, Offset; |
| CR->getEquivalentICmp(NewPred, NewC, Offset); |
| |
| if (Offset != 0) |
| NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset)); |
| return Builder.CreateICmp(NewPred, NewV, ConstantInt::get(Ty, NewC)); |
| } |
| |
| /// Ignore all operations which only change the sign of a value, returning the |
| /// underlying magnitude value. |
| static Value *stripSignOnlyFPOps(Value *Val) { |
| match(Val, m_FNeg(m_Value(Val))); |
| match(Val, m_FAbs(m_Value(Val))); |
| match(Val, m_CopySign(m_Value(Val), m_Value())); |
| return Val; |
| } |
| |
| /// Matches canonical form of isnan, fcmp ord x, 0 |
| static bool matchIsNotNaN(FCmpInst::Predicate P, Value *LHS, Value *RHS) { |
| return P == FCmpInst::FCMP_ORD && match(RHS, m_AnyZeroFP()); |
| } |
| |
| /// Matches fcmp u__ x, +/-inf |
| static bool matchUnorderedInfCompare(FCmpInst::Predicate P, Value *LHS, |
| Value *RHS) { |
| return FCmpInst::isUnordered(P) && match(RHS, m_Inf()); |
| } |
| |
| /// and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf |
| /// |
| /// Clang emits this pattern for doing an isfinite check in __builtin_isnormal. |
| static Value *matchIsFiniteTest(InstCombiner::BuilderTy &Builder, FCmpInst *LHS, |
| FCmpInst *RHS) { |
| Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); |
| Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); |
| FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); |
| |
| if (!matchIsNotNaN(PredL, LHS0, LHS1) || |
| !matchUnorderedInfCompare(PredR, RHS0, RHS1)) |
| return nullptr; |
| |
| return Builder.CreateFCmpFMF(FCmpInst::getOrderedPredicate(PredR), RHS0, RHS1, |
| FMFSource::intersect(LHS, RHS)); |
| } |
| |
| Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, |
| bool IsAnd, bool IsLogicalSelect) { |
| Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); |
| Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); |
| FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); |
| |
| if (LHS0 == RHS1 && RHS0 == LHS1) { |
| // Swap RHS operands to match LHS. |
| PredR = FCmpInst::getSwappedPredicate(PredR); |
| std::swap(RHS0, RHS1); |
| } |
| |
| // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y). |
| // Suppose the relation between x and y is R, where R is one of |
| // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for |
| // testing the desired relations. |
| // |
| // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: |
| // bool(R & CC0) && bool(R & CC1) |
| // = bool((R & CC0) & (R & CC1)) |
| // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency |
| // |
| // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: |
| // bool(R & CC0) || bool(R & CC1) |
| // = bool((R & CC0) | (R & CC1)) |
| // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;) |
| if (LHS0 == RHS0 && LHS1 == RHS1) { |
| unsigned FCmpCodeL = getFCmpCode(PredL); |
| unsigned FCmpCodeR = getFCmpCode(PredR); |
| unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR; |
| |
| // Intersect the fast math flags. |
| // TODO: We can union the fast math flags unless this is a logical select. |
| return getFCmpValue(NewPred, LHS0, LHS1, Builder, |
| FMFSource::intersect(LHS, RHS)); |
| } |
| |
| // This transform is not valid for a logical select. |
| if (!IsLogicalSelect && |
| ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || |
| (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && |
| !IsAnd))) { |
| if (LHS0->getType() != RHS0->getType()) |
| return nullptr; |
| |
| // FCmp canonicalization ensures that (fcmp ord/uno X, X) and |
| // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0). |
| if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP())) { |
| // Ignore the constants because they are obviously not NANs: |
| // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y) |
| // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y) |
| return Builder.CreateFCmpFMF(PredL, LHS0, RHS0, |
| FMFSource::intersect(LHS, RHS)); |
| } |
| } |
| |
| if (IsAnd && stripSignOnlyFPOps(LHS0) == stripSignOnlyFPOps(RHS0)) { |
| // and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf |
| // and (fcmp ord x, 0), (fcmp u* fabs(x), inf) -> fcmp o* x, inf |
| if (Value *Left = matchIsFiniteTest(Builder, LHS, RHS)) |
| return Left; |
| if (Value *Right = matchIsFiniteTest(Builder, RHS, LHS)) |
| return Right; |
| } |
| |
| // Turn at least two fcmps with constants into llvm.is.fpclass. |
| // |
| // If we can represent a combined value test with one class call, we can |
| // potentially eliminate 4-6 instructions. If we can represent a test with a |
| // single fcmp with fneg and fabs, that's likely a better canonical form. |
| if (LHS->hasOneUse() && RHS->hasOneUse()) { |
| auto [ClassValRHS, ClassMaskRHS] = |
| fcmpToClassTest(PredR, *RHS->getFunction(), RHS0, RHS1); |
| if (ClassValRHS) { |
| auto [ClassValLHS, ClassMaskLHS] = |
| fcmpToClassTest(PredL, *LHS->getFunction(), LHS0, LHS1); |
| if (ClassValLHS == ClassValRHS) { |
| unsigned CombinedMask = IsAnd ? (ClassMaskLHS & ClassMaskRHS) |
| : (ClassMaskLHS | ClassMaskRHS); |
| return Builder.CreateIntrinsic( |
| Intrinsic::is_fpclass, {ClassValLHS->getType()}, |
| {ClassValLHS, Builder.getInt32(CombinedMask)}); |
| } |
| } |
| } |
| |
| // Canonicalize the range check idiom: |
| // and (fcmp olt/ole/ult/ule x, C), (fcmp ogt/oge/ugt/uge x, -C) |
| // --> fabs(x) olt/ole/ult/ule C |
| // or (fcmp ogt/oge/ugt/uge x, C), (fcmp olt/ole/ult/ule x, -C) |
| // --> fabs(x) ogt/oge/ugt/uge C |
| // TODO: Generalize to handle a negated variable operand? |
| const APFloat *LHSC, *RHSC; |
| if (LHS0 == RHS0 && LHS->hasOneUse() && RHS->hasOneUse() && |
| FCmpInst::getSwappedPredicate(PredL) == PredR && |
| match(LHS1, m_APFloatAllowPoison(LHSC)) && |
| match(RHS1, m_APFloatAllowPoison(RHSC)) && |
| LHSC->bitwiseIsEqual(neg(*RHSC))) { |
| auto IsLessThanOrLessEqual = [](FCmpInst::Predicate Pred) { |
| switch (Pred) { |
| case FCmpInst::FCMP_OLT: |
| case FCmpInst::FCMP_OLE: |
| case FCmpInst::FCMP_ULT: |
| case FCmpInst::FCMP_ULE: |
| return true; |
| default: |
| return false; |
| } |
| }; |
| if (IsLessThanOrLessEqual(IsAnd ? PredR : PredL)) { |
| std::swap(LHSC, RHSC); |
| std::swap(PredL, PredR); |
| } |
| if (IsLessThanOrLessEqual(IsAnd ? PredL : PredR)) { |
| FastMathFlags NewFlag = LHS->getFastMathFlags(); |
| if (!IsLogicalSelect) |
| NewFlag |= RHS->getFastMathFlags(); |
| |
| Value *FAbs = |
| Builder.CreateUnaryIntrinsic(Intrinsic::fabs, LHS0, NewFlag); |
| return Builder.CreateFCmpFMF( |
| PredL, FAbs, ConstantFP::get(LHS0->getType(), *LHSC), NewFlag); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Match an fcmp against a special value that performs a test possible by |
| /// llvm.is.fpclass. |
| static bool matchIsFPClassLikeFCmp(Value *Op, Value *&ClassVal, |
| uint64_t &ClassMask) { |
| auto *FCmp = dyn_cast<FCmpInst>(Op); |
| if (!FCmp || !FCmp->hasOneUse()) |
| return false; |
| |
| std::tie(ClassVal, ClassMask) = |
| fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(), |
| FCmp->getOperand(0), FCmp->getOperand(1)); |
| return ClassVal != nullptr; |
| } |
| |
| /// or (is_fpclass x, mask0), (is_fpclass x, mask1) |
| /// -> is_fpclass x, (mask0 | mask1) |
| /// and (is_fpclass x, mask0), (is_fpclass x, mask1) |
| /// -> is_fpclass x, (mask0 & mask1) |
| /// xor (is_fpclass x, mask0), (is_fpclass x, mask1) |
| /// -> is_fpclass x, (mask0 ^ mask1) |
| Instruction *InstCombinerImpl::foldLogicOfIsFPClass(BinaryOperator &BO, |
| Value *Op0, Value *Op1) { |
| Value *ClassVal0 = nullptr; |
| Value *ClassVal1 = nullptr; |
| uint64_t ClassMask0, ClassMask1; |
| |
| // Restrict to folding one fcmp into one is.fpclass for now, don't introduce a |
| // new class. |
| // |
| // TODO: Support forming is.fpclass out of 2 separate fcmps when codegen is |
| // better. |
| |
| bool IsLHSClass = |
| match(Op0, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>( |
| m_Value(ClassVal0), m_ConstantInt(ClassMask0)))); |
| bool IsRHSClass = |
| match(Op1, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>( |
| m_Value(ClassVal1), m_ConstantInt(ClassMask1)))); |
| if ((((IsLHSClass || matchIsFPClassLikeFCmp(Op0, ClassVal0, ClassMask0)) && |
| (IsRHSClass || matchIsFPClassLikeFCmp(Op1, ClassVal1, ClassMask1)))) && |
| ClassVal0 == ClassVal1) { |
| unsigned NewClassMask; |
| switch (BO.getOpcode()) { |
| case Instruction::And: |
| NewClassMask = ClassMask0 & ClassMask1; |
| break; |
| case Instruction::Or: |
| NewClassMask = ClassMask0 | ClassMask1; |
| break; |
| case Instruction::Xor: |
| NewClassMask = ClassMask0 ^ ClassMask1; |
| break; |
| default: |
| llvm_unreachable("not a binary logic operator"); |
| } |
| |
| if (IsLHSClass) { |
| auto *II = cast<IntrinsicInst>(Op0); |
| II->setArgOperand( |
| 1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask)); |
| return replaceInstUsesWith(BO, II); |
| } |
| |
| if (IsRHSClass) { |
| auto *II = cast<IntrinsicInst>(Op1); |
| II->setArgOperand( |
| 1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask)); |
| return replaceInstUsesWith(BO, II); |
| } |
| |
| CallInst *NewClass = |
| Builder.CreateIntrinsic(Intrinsic::is_fpclass, {ClassVal0->getType()}, |
| {ClassVal0, Builder.getInt32(NewClassMask)}); |
| return replaceInstUsesWith(BO, NewClass); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Look for the pattern that conditionally negates a value via math operations: |
| /// cond.splat = sext i1 cond |
| /// sub = add cond.splat, x |
| /// xor = xor sub, cond.splat |
| /// and rewrite it to do the same, but via logical operations: |
| /// value.neg = sub 0, value |
| /// cond = select i1 neg, value.neg, value |
| Instruction *InstCombinerImpl::canonicalizeConditionalNegationViaMathToSelect( |
| BinaryOperator &I) { |
| assert(I.getOpcode() == BinaryOperator::Xor && "Only for xor!"); |
| Value *Cond, *X; |
| // As per complexity ordering, `xor` is not commutative here. |
| if (!match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())) || |
| !match(I.getOperand(1), m_SExt(m_Value(Cond))) || |
| !Cond->getType()->isIntOrIntVectorTy(1) || |
| !match(I.getOperand(0), m_c_Add(m_SExt(m_Specific(Cond)), m_Value(X)))) |
| return nullptr; |
| return SelectInst::Create(Cond, Builder.CreateNeg(X, X->getName() + ".neg"), |
| X); |
| } |
| |
| /// This a limited reassociation for a special case (see above) where we are |
| /// checking if two values are either both NAN (unordered) or not-NAN (ordered). |
| /// This could be handled more generally in '-reassociation', but it seems like |
| /// an unlikely pattern for a large number of logic ops and fcmps. |
| static Instruction *reassociateFCmps(BinaryOperator &BO, |
| InstCombiner::BuilderTy &Builder) { |
| Instruction::BinaryOps Opcode = BO.getOpcode(); |
| assert((Opcode == Instruction::And || Opcode == Instruction::Or) && |
| "Expecting and/or op for fcmp transform"); |
| |
| // There are 4 commuted variants of the pattern. Canonicalize operands of this |
| // logic op so an fcmp is operand 0 and a matching logic op is operand 1. |
| Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X; |
| if (match(Op1, m_FCmp(m_Value(), m_AnyZeroFP()))) |
| std::swap(Op0, Op1); |
| |
| // Match inner binop and the predicate for combining 2 NAN checks into 1. |
| Value *BO10, *BO11; |
| FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD |
| : FCmpInst::FCMP_UNO; |
| if (!match(Op0, m_SpecificFCmp(NanPred, m_Value(X), m_AnyZeroFP())) || |
| !match(Op1, m_BinOp(Opcode, m_Value(BO10), m_Value(BO11)))) |
| return nullptr; |
| |
| // The inner logic op must have a matching fcmp operand. |
| Value *Y; |
| if (!match(BO10, m_SpecificFCmp(NanPred, m_Value(Y), m_AnyZeroFP())) || |
| X->getType() != Y->getType()) |
| std::swap(BO10, BO11); |
| |
| if (!match(BO10, m_SpecificFCmp(NanPred, m_Value(Y), m_AnyZeroFP())) || |
| X->getType() != Y->getType()) |
| return nullptr; |
| |
| // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z |
| // or (fcmp uno X, 0), (or (fcmp uno Y, 0), Z) --> or (fcmp uno X, Y), Z |
| // Intersect FMF from the 2 source fcmps. |
| Value *NewFCmp = |
| Builder.CreateFCmpFMF(NanPred, X, Y, FMFSource::intersect(Op0, BO10)); |
| return BinaryOperator::Create(Opcode, NewFCmp, BO11); |
| } |
| |
| /// Match variations of De Morgan's Laws: |
| /// (~A & ~B) == (~(A | B)) |
| /// (~A | ~B) == (~(A & B)) |
| static Instruction *matchDeMorgansLaws(BinaryOperator &I, |
| InstCombiner &IC) { |
| const Instruction::BinaryOps Opcode = I.getOpcode(); |
| assert((Opcode == Instruction::And || Opcode == Instruction::Or) && |
| "Trying to match De Morgan's Laws with something other than and/or"); |
| |
| // Flip the logic operation. |
| const Instruction::BinaryOps FlippedOpcode = |
| (Opcode == Instruction::And) ? Instruction::Or : Instruction::And; |
| |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| Value *A, *B; |
| if (match(Op0, m_OneUse(m_Not(m_Value(A)))) && |
| match(Op1, m_OneUse(m_Not(m_Value(B)))) && |
| !IC.isFreeToInvert(A, A->hasOneUse()) && |
| !IC.isFreeToInvert(B, B->hasOneUse())) { |
| Value *AndOr = |
| IC.Builder.CreateBinOp(FlippedOpcode, A, B, I.getName() + ".demorgan"); |
| return BinaryOperator::CreateNot(AndOr); |
| } |
| |
| // The 'not' ops may require reassociation. |
| // (A & ~B) & ~C --> A & ~(B | C) |
| // (~B & A) & ~C --> A & ~(B | C) |
| // (A | ~B) | ~C --> A | ~(B & C) |
| // (~B | A) | ~C --> A | ~(B & C) |
| Value *C; |
| if (match(Op0, m_OneUse(m_c_BinOp(Opcode, m_Value(A), m_Not(m_Value(B))))) && |
| match(Op1, m_Not(m_Value(C)))) { |
| Value *FlippedBO = IC.Builder.CreateBinOp(FlippedOpcode, B, C); |
| return BinaryOperator::Create(Opcode, A, IC.Builder.CreateNot(FlippedBO)); |
| } |
| |
| return nullptr; |
| } |
| |
| bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) { |
| Value *CastSrc = CI->getOperand(0); |
| |
| // Noop casts and casts of constants should be eliminated trivially. |
| if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc)) |
| return false; |
| |
| // If this cast is paired with another cast that can be eliminated, we prefer |
| // to have it eliminated. |
| if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc)) |
| if (isEliminableCastPair(PrecedingCI, CI)) |
| return false; |
| |
| return true; |
| } |
| |
| /// Fold {and,or,xor} (cast X), C. |
| static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast, |
| InstCombinerImpl &IC) { |
| Constant *C = dyn_cast<Constant>(Logic.getOperand(1)); |
| if (!C) |
| return nullptr; |
| |
| auto LogicOpc = Logic.getOpcode(); |
| Type *DestTy = Logic.getType(); |
| Type *SrcTy = Cast->getSrcTy(); |
| |
| // Move the logic operation ahead of a zext or sext if the constant is |
| // unchanged in the smaller source type. Performing the logic in a smaller |
| // type may provide more information to later folds, and the smaller logic |
| // instruction may be cheaper (particularly in the case of vectors). |
| Value *X; |
| if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) { |
| if (Constant *TruncC = IC.getLosslessUnsignedTrunc(C, SrcTy)) { |
| // LogicOpc (zext X), C --> zext (LogicOpc X, C) |
| Value *NewOp = IC.Builder.CreateBinOp(LogicOpc, X, TruncC); |
| return new ZExtInst(NewOp, DestTy); |
| } |
| } |
| |
| if (match(Cast, m_OneUse(m_SExtLike(m_Value(X))))) { |
| if (Constant *TruncC = IC.getLosslessSignedTrunc(C, SrcTy)) { |
| // LogicOpc (sext X), C --> sext (LogicOpc X, C) |
| Value *NewOp = IC.Builder.CreateBinOp(LogicOpc, X, TruncC); |
| return new SExtInst(NewOp, DestTy); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Fold {and,or,xor} (cast X), Y. |
| Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) { |
| auto LogicOpc = I.getOpcode(); |
| assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding"); |
| |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| // fold bitwise(A >> BW - 1, zext(icmp)) (BW is the scalar bits of the |
| // type of A) |
| // -> bitwise(zext(A < 0), zext(icmp)) |
| // -> zext(bitwise(A < 0, icmp)) |
| auto FoldBitwiseICmpZeroWithICmp = [&](Value *Op0, |
| Value *Op1) -> Instruction * { |
| Value *A; |
| bool IsMatched = |
| match(Op0, |
| m_OneUse(m_LShr( |
| m_Value(A), |
| m_SpecificInt(Op0->getType()->getScalarSizeInBits() - 1)))) && |
| match(Op1, m_OneUse(m_ZExt(m_ICmp(m_Value(), m_Value())))); |
| |
| if (!IsMatched) |
| return nullptr; |
| |
| auto *ICmpL = |
| Builder.CreateICmpSLT(A, Constant::getNullValue(A->getType())); |
| auto *ICmpR = cast<ZExtInst>(Op1)->getOperand(0); |
| auto *BitwiseOp = Builder.CreateBinOp(LogicOpc, ICmpL, ICmpR); |
| |
| return new ZExtInst(BitwiseOp, Op0->getType()); |
| }; |
| |
| if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op0, Op1)) |
| return Ret; |
| |
| if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op1, Op0)) |
| return Ret; |
| |
| CastInst *Cast0 = dyn_cast<CastInst>(Op0); |
| if (!Cast0) |
| return nullptr; |
| |
| // This must be a cast from an integer or integer vector source type to allow |
| // transformation of the logic operation to the source type. |
| Type *DestTy = I.getType(); |
| Type *SrcTy = Cast0->getSrcTy(); |
| if (!SrcTy->isIntOrIntVectorTy()) |
| return nullptr; |
| |
| if (Instruction *Ret = foldLogicCastConstant(I, Cast0, *this)) |
| return Ret; |
| |
| CastInst *Cast1 = dyn_cast<CastInst>(Op1); |
| if (!Cast1) |
| return nullptr; |
| |
| // Both operands of the logic operation are casts. The casts must be the |
| // same kind for reduction. |
| Instruction::CastOps CastOpcode = Cast0->getOpcode(); |
| if (CastOpcode != Cast1->getOpcode()) |
| return nullptr; |
| |
| // If the source types do not match, but the casts are matching extends, we |
| // can still narrow the logic op. |
| if (SrcTy != Cast1->getSrcTy()) { |
| Value *X, *Y; |
| if (match(Cast0, m_OneUse(m_ZExtOrSExt(m_Value(X)))) && |
| match(Cast1, m_OneUse(m_ZExtOrSExt(m_Value(Y))))) { |
| // Cast the narrower source to the wider source type. |
| unsigned XNumBits = X->getType()->getScalarSizeInBits(); |
| unsigned YNumBits = Y->getType()->getScalarSizeInBits(); |
| if (XNumBits < YNumBits) |
| X = Builder.CreateCast(CastOpcode, X, Y->getType()); |
| else |
| Y = Builder.CreateCast(CastOpcode, Y, X->getType()); |
| // Do the logic op in the intermediate width, then widen more. |
| Value *NarrowLogic = Builder.CreateBinOp(LogicOpc, X, Y); |
| return CastInst::Create(CastOpcode, NarrowLogic, DestTy); |
| } |
| |
| // Give up for other cast opcodes. |
| return nullptr; |
| } |
| |
| Value *Cast0Src = Cast0->getOperand(0); |
| Value *Cast1Src = Cast1->getOperand(0); |
| |
| // fold logic(cast(A), cast(B)) -> cast(logic(A, B)) |
| if ((Cast0->hasOneUse() || Cast1->hasOneUse()) && |
| shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) { |
| Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src, |
| I.getName()); |
| return CastInst::Create(CastOpcode, NewOp, DestTy); |
| } |
| |
| return nullptr; |
| } |
| |
| static Instruction *foldAndToXor(BinaryOperator &I, |
| InstCombiner::BuilderTy &Builder) { |
| assert(I.getOpcode() == Instruction::And); |
| Value *Op0 = I.getOperand(0); |
| Value *Op1 = I.getOperand(1); |
| Value *A, *B; |
| |
| // Operand complexity canonicalization guarantees that the 'or' is Op0. |
| // (A | B) & ~(A & B) --> A ^ B |
| // (A | B) & ~(B & A) --> A ^ B |
| if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)), |
| m_Not(m_c_And(m_Deferred(A), m_Deferred(B)))))) |
| return BinaryOperator::CreateXor(A, B); |
| |
| // (A | ~B) & (~A | B) --> ~(A ^ B) |
| // (A | ~B) & (B | ~A) --> ~(A ^ B) |
| // (~B | A) & (~A | B) --> ~(A ^ B) |
| // (~B | A) & (B | ~A) --> ~(A ^ B) |
| if (Op0->hasOneUse() || Op1->hasOneUse()) |
| if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))), |
| m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) |
| return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); |
| |
| return nullptr; |
| } |
| |
| static Instruction *foldOrToXor(BinaryOperator &I, |
| InstCombiner::BuilderTy &Builder) { |
| assert(I.getOpcode() == Instruction::Or); |
| Value *Op0 = I.getOperand(0); |
| Value *Op1 = I.getOperand(1); |
| Value *A, *B; |
| |
| // Operand complexity canonicalization guarantees that the 'and' is Op0. |
| // (A & B) | ~(A | B) --> ~(A ^ B) |
| // (A & B) | ~(B | A) --> ~(A ^ B) |
| if (Op0->hasOneUse() || Op1->hasOneUse()) |
| if (match(Op0, m_And(m_Value(A), m_Value(B))) && |
| match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) |
| return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); |
| |
| // Operand complexity canonicalization guarantees that the 'xor' is Op0. |
| // (A ^ B) | ~(A | B) --> ~(A & B) |
| // (A ^ B) | ~(B | A) --> ~(A & B) |
| if (Op0->hasOneUse() || Op1->hasOneUse()) |
| if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && |
| match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) |
| return BinaryOperator::CreateNot(Builder.CreateAnd(A, B)); |
| |
| // (A & ~B) | (~A & B) --> A ^ B |
| // (A & ~B) | (B & ~A) --> A ^ B |
| // (~B & A) | (~A & B) --> A ^ B |
| // (~B & A) | (B & ~A) --> A ^ B |
| if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) && |
| match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))) |
| return BinaryOperator::CreateXor(A, B); |
| |
| return nullptr; |
| } |
| |
| /// Return true if a constant shift amount is always less than the specified |
| /// bit-width. If not, the shift could create poison in the narrower type. |
| static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) { |
| APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth); |
| return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold)); |
| } |
| |
| /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and |
| /// a common zext operand: and (binop (zext X), C), (zext X). |
| Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) { |
| // This transform could also apply to {or, and, xor}, but there are better |
| // folds for those cases, so we don't expect those patterns here. AShr is not |
| // handled because it should always be transformed to LShr in this sequence. |
| // The subtract transform is different because it has a constant on the left. |
| // Add/mul commute the constant to RHS; sub with constant RHS becomes add. |
| Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1); |
| Constant *C; |
| if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) && |
| !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) && |
| !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) && |
| !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) && |
| !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1))))) |
| return nullptr; |
| |
| Value *X; |
| if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3)) |
| return nullptr; |
| |
| Type *Ty = And.getType(); |
| if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType())) |
| return nullptr; |
| |
| // If we're narrowing a shift, the shift amount must be safe (less than the |
| // width) in the narrower type. If the shift amount is greater, instsimplify |
| // usually handles that case, but we can't guarantee/assert it. |
| Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode(); |
| if (Opc == Instruction::LShr || Opc == Instruction::Shl) |
| if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits())) |
| return nullptr; |
| |
| // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X) |
| // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X) |
| Value *NewC = ConstantExpr::getTrunc(C, X->getType()); |
| Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X) |
| : Builder.CreateBinOp(Opc, X, NewC); |
| return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty); |
| } |
| |
| /// Try folding relatively complex patterns for both And and Or operations |
| /// with all And and Or swapped. |
| static Instruction *foldComplexAndOrPatterns(BinaryOperator &I, |
| InstCombiner::BuilderTy &Builder) { |
| const Instruction::BinaryOps Opcode = I.getOpcode(); |
| assert(Opcode == Instruction::And || Opcode == Instruction::Or); |
| |
| // Flip the logic operation. |
| const Instruction::BinaryOps FlippedOpcode = |
| (Opcode == Instruction::And) ? Instruction::Or : Instruction::And; |
| |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| Value *A, *B, *C, *X, *Y, *Dummy; |
| |
| // Match following expressions: |
| // (~(A | B) & C) |
| // (~(A & B) | C) |
| // Captures X = ~(A | B) or ~(A & B) |
| const auto matchNotOrAnd = |
| [Opcode, FlippedOpcode](Value *Op, auto m_A, auto m_B, auto m_C, |
| Value *&X, bool CountUses = false) -> bool { |
| if (CountUses && !Op->hasOneUse()) |
| return false; |
| |
| if (match(Op, m_c_BinOp(FlippedOpcode, |
| m_CombineAnd(m_Value(X), |
| m_Not(m_c_BinOp(Opcode, m_A, m_B))), |
| m_C))) |
| return !CountUses || X->hasOneUse(); |
| |
| return false; |
| }; |
| |
| // (~(A | B) & C) | ... --> ... |
| // (~(A & B) | C) & ... --> ... |
| // TODO: One use checks are conservative. We just need to check that a total |
| // number of multiple used values does not exceed reduction |
| // in operations. |
| if (matchNotOrAnd(Op0, m_Value(A), m_Value(B), m_Value(C), X)) { |
| // (~(A | B) & C) | (~(A | C) & B) --> (B ^ C) & ~A |
| // (~(A & B) | C) & (~(A & C) | B) --> ~((B ^ C) & A) |
| if (matchNotOrAnd(Op1, m_Specific(A), m_Specific(C), m_Specific(B), Dummy, |
| true)) { |
| Value *Xor = Builder.CreateXor(B, C); |
| return (Opcode == Instruction::Or) |
| ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(A)) |
| : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, A)); |
| } |
| |
| // (~(A | B) & C) | (~(B | C) & A) --> (A ^ C) & ~B |
| // (~(A & B) | C) & (~(B & C) | A) --> ~((A ^ C) & B) |
| if (matchNotOrAnd(Op1, m_Specific(B), m_Specific(C), m_Specific(A), Dummy, |
| true)) { |
| Value *Xor = Builder.CreateXor(A, C); |
| return (Opcode == Instruction::Or) |
| ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(B)) |
| : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, B)); |
| } |
| |
| // (~(A | B) & C) | ~(A | C) --> ~((B & C) | A) |
| // (~(A & B) | C) & ~(A & C) --> ~((B | C) & A) |
| if (match(Op1, m_OneUse(m_Not(m_OneUse( |
| m_c_BinOp(Opcode, m_Specific(A), m_Specific(C))))))) |
| return BinaryOperator::CreateNot(Builder.CreateBinOp( |
| Opcode, Builder.CreateBinOp(FlippedOpcode, B, C), A)); |
| |
| // (~(A | B) & C) | ~(B | C) --> ~((A & C) | B) |
| // (~(A & B) | C) & ~(B & C) --> ~((A | C) & B) |
| if (match(Op1, m_OneUse(m_Not(m_OneUse( |
| m_c_BinOp(Opcode, m_Specific(B), m_Specific(C))))))) |
| return BinaryOperator::CreateNot(Builder.CreateBinOp( |
| Opcode, Builder.CreateBinOp(FlippedOpcode, A, C), B)); |
| |
| // (~(A | B) & C) | ~(C | (A ^ B)) --> ~((A | B) & (C | (A ^ B))) |
| // Note, the pattern with swapped and/or is not handled because the |
| // result is more undefined than a source: |
| // (~(A & B) | C) & ~(C & (A ^ B)) --> (A ^ B ^ C) | ~(A | C) is invalid. |
| if (Opcode == Instruction::Or && Op0->hasOneUse() && |
| match(Op1, m_OneUse(m_Not(m_CombineAnd( |
| m_Value(Y), |
| m_c_BinOp(Opcode, m_Specific(C), |
| m_c_Xor(m_Specific(A), m_Specific(B)))))))) { |
| // X = ~(A | B) |
| // Y = (C | (A ^ B) |
| Value *Or = cast<BinaryOperator>(X)->getOperand(0); |
| return BinaryOperator::CreateNot(Builder.CreateAnd(Or, Y)); |
| } |
| } |
| |
| // (~A & B & C) | ... --> ... |
| // (~A | B | C) | ... --> ... |
| // TODO: One use checks are conservative. We just need to check that a total |
| // number of multiple used values does not exceed reduction |
| // in operations. |
| if (match(Op0, |
| m_OneUse(m_c_BinOp(FlippedOpcode, |
| m_BinOp(FlippedOpcode, m_Value(B), m_Value(C)), |
| m_CombineAnd(m_Value(X), m_Not(m_Value(A)))))) || |
| match(Op0, m_OneUse(m_c_BinOp( |
| FlippedOpcode, |
| m_c_BinOp(FlippedOpcode, m_Value(C), |
| m_CombineAnd(m_Value(X), m_Not(m_Value(A)))), |
| m_Value(B))))) { |
| // X = ~A |
| // (~A & B & C) | ~(A | B | C) --> ~(A | (B ^ C)) |
| // (~A | B | C) & ~(A & B & C) --> (~A | (B ^ C)) |
| if (match(Op1, m_OneUse(m_Not(m_c_BinOp( |
| Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)), |
| m_Specific(C))))) || |
| match(Op1, m_OneUse(m_Not(m_c_BinOp( |
| Opcode, m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)), |
| m_Specific(A))))) || |
| match(Op1, m_OneUse(m_Not(m_c_BinOp( |
| Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)), |
| m_Specific(B)))))) { |
| Value *Xor = Builder.CreateXor(B, C); |
| return (Opcode == Instruction::Or) |
| ? BinaryOperator::CreateNot(Builder.CreateOr(Xor, A)) |
| : BinaryOperator::CreateOr(Xor, X); |
| } |
| |
| // (~A & B & C) | ~(A | B) --> (C | ~B) & ~A |
| // (~A | B | C) & ~(A & B) --> (C & ~B) | ~A |
| if (match(Op1, m_OneUse(m_Not(m_OneUse( |
| m_c_BinOp(Opcode, m_Specific(A), m_Specific(B))))))) |
| return BinaryOperator::Create( |
| FlippedOpcode, Builder.CreateBinOp(Opcode, C, Builder.CreateNot(B)), |
| X); |
| |
| // (~A & B & C) | ~(A | C) --> (B | ~C) & ~A |
| // (~A | B | C) & ~(A & C) --> (B & ~C) | ~A |
| if (match(Op1, m_OneUse(m_Not(m_OneUse( |
| m_c_BinOp(Opcode, m_Specific(A), m_Specific(C))))))) |
| return BinaryOperator::Create( |
| FlippedOpcode, Builder.CreateBinOp(Opcode, B, Builder.CreateNot(C)), |
| X); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Try to reassociate a pair of binops so that values with one use only are |
| /// part of the same instruction. This may enable folds that are limited with |
| /// multi-use restrictions and makes it more likely to match other patterns that |
| /// are looking for a common operand. |
| static Instruction *reassociateForUses(BinaryOperator &BO, |
| InstCombinerImpl::BuilderTy &Builder) { |
| Instruction::BinaryOps Opcode = BO.getOpcode(); |
| Value *X, *Y, *Z; |
| if (match(&BO, |
| m_c_BinOp(Opcode, m_OneUse(m_BinOp(Opcode, m_Value(X), m_Value(Y))), |
| m_OneUse(m_Value(Z))))) { |
| if (!isa<Constant>(X) && !isa<Constant>(Y) && !isa<Constant>(Z)) { |
| // (X op Y) op Z --> (Y op Z) op X |
| if (!X->hasOneUse()) { |
| Value *YZ = Builder.CreateBinOp(Opcode, Y, Z); |
| return BinaryOperator::Create(Opcode, YZ, X); |
| } |
| // (X op Y) op Z --> (X op Z) op Y |
| if (!Y->hasOneUse()) { |
| Value *XZ = Builder.CreateBinOp(Opcode, X, Z); |
| return BinaryOperator::Create(Opcode, XZ, Y); |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| // Match |
| // (X + C2) | C |
| // (X + C2) ^ C |
| // (X + C2) & C |
| // and convert to do the bitwise logic first: |
| // (X | C) + C2 |
| // (X ^ C) + C2 |
| // (X & C) + C2 |
| // iff bits affected by logic op are lower than last bit affected by math op |
| static Instruction *canonicalizeLogicFirst(BinaryOperator &I, |
| InstCombiner::BuilderTy &Builder) { |
| Type *Ty = I.getType(); |
| Instruction::BinaryOps OpC = I.getOpcode(); |
| Value *Op0 = I.getOperand(0); |
| Value *Op1 = I.getOperand(1); |
| Value *X; |
| const APInt *C, *C2; |
| |
| if (!(match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C2)))) && |
| match(Op1, m_APInt(C)))) |
| return nullptr; |
| |
| unsigned Width = Ty->getScalarSizeInBits(); |
| unsigned LastOneMath = Width - C2->countr_zero(); |
| |
| switch (OpC) { |
| case Instruction::And: |
| if (C->countl_one() < LastOneMath) |
| return nullptr; |
| break; |
| case Instruction::Xor: |
| case Instruction::Or: |
| if (C->countl_zero() < LastOneMath) |
| return nullptr; |
| break; |
| default: |
| llvm_unreachable("Unexpected BinaryOp!"); |
| } |
| |
| Value *NewBinOp = Builder.CreateBinOp(OpC, X, ConstantInt::get(Ty, *C)); |
| return BinaryOperator::CreateWithCopiedFlags(Instruction::Add, NewBinOp, |
| ConstantInt::get(Ty, *C2), Op0); |
| } |
| |
| // binop(shift(ShiftedC1, ShAmt), shift(ShiftedC2, add(ShAmt, AddC))) -> |
| // shift(binop(ShiftedC1, shift(ShiftedC2, AddC)), ShAmt) |
| // where both shifts are the same and AddC is a valid shift amount. |
| Instruction *InstCombinerImpl::foldBinOpOfDisplacedShifts(BinaryOperator &I) { |
| assert((I.isBitwiseLogicOp() || I.getOpcode() == Instruction::Add) && |
| "Unexpected opcode"); |
| |
| Value *ShAmt; |
| Constant *ShiftedC1, *ShiftedC2, *AddC; |
| Type *Ty = I.getType(); |
| unsigned BitWidth = Ty->getScalarSizeInBits(); |
| if (!match(&I, m_c_BinOp(m_Shift(m_ImmConstant(ShiftedC1), m_Value(ShAmt)), |
| m_Shift(m_ImmConstant(ShiftedC2), |
| m_AddLike(m_Deferred(ShAmt), |
| m_ImmConstant(AddC)))))) |
| return nullptr; |
| |
| // Make sure the add constant is a valid shift amount. |
| if (!match(AddC, |
| m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(BitWidth, BitWidth)))) |
| return nullptr; |
| |
| // Avoid constant expressions. |
| auto *Op0Inst = dyn_cast<Instruction>(I.getOperand(0)); |
| auto *Op1Inst = dyn_cast<Instruction>(I.getOperand(1)); |
| if (!Op0Inst || !Op1Inst) |
| return nullptr; |
| |
| // Both shifts must be the same. |
| Instruction::BinaryOps ShiftOp = |
| static_cast<Instruction::BinaryOps>(Op0Inst->getOpcode()); |
| if (ShiftOp != Op1Inst->getOpcode()) |
| return nullptr; |
| |
| // For adds, only left shifts are supported. |
| if (I.getOpcode() == Instruction::Add && ShiftOp != Instruction::Shl) |
| return nullptr; |
| |
| Value *NewC = Builder.CreateBinOp( |
| I.getOpcode(), ShiftedC1, Builder.CreateBinOp(ShiftOp, ShiftedC2, AddC)); |
| return BinaryOperator::Create(ShiftOp, NewC, ShAmt); |
| } |
| |
| // Fold and/or/xor with two equal intrinsic IDs: |
| // bitwise(fshl (A, B, ShAmt), fshl(C, D, ShAmt)) |
| // -> fshl(bitwise(A, C), bitwise(B, D), ShAmt) |
| // bitwise(fshr (A, B, ShAmt), fshr(C, D, ShAmt)) |
| // -> fshr(bitwise(A, C), bitwise(B, D), ShAmt) |
| // bitwise(bswap(A), bswap(B)) -> bswap(bitwise(A, B)) |
| // bitwise(bswap(A), C) -> bswap(bitwise(A, bswap(C))) |
| // bitwise(bitreverse(A), bitreverse(B)) -> bitreverse(bitwise(A, B)) |
| // bitwise(bitreverse(A), C) -> bitreverse(bitwise(A, bitreverse(C))) |
| static Instruction * |
| foldBitwiseLogicWithIntrinsics(BinaryOperator &I, |
| InstCombiner::BuilderTy &Builder) { |
| assert(I.isBitwiseLogicOp() && "Should and/or/xor"); |
| if (!I.getOperand(0)->hasOneUse()) |
| return nullptr; |
| IntrinsicInst *X = dyn_cast<IntrinsicInst>(I.getOperand(0)); |
| if (!X) |
| return nullptr; |
| |
| IntrinsicInst *Y = dyn_cast<IntrinsicInst>(I.getOperand(1)); |
| if (Y && (!Y->hasOneUse() || X->getIntrinsicID() != Y->getIntrinsicID())) |
| return nullptr; |
| |
| Intrinsic::ID IID = X->getIntrinsicID(); |
| const APInt *RHSC; |
| // Try to match constant RHS. |
| if (!Y && (!(IID == Intrinsic::bswap || IID == Intrinsic::bitreverse) || |
| !match(I.getOperand(1), m_APInt(RHSC)))) |
| return nullptr; |
| |
| switch (IID) { |
| case Intrinsic::fshl: |
| case Intrinsic::fshr: { |
| if (X->getOperand(2) != Y->getOperand(2)) |
| return nullptr; |
| Value *NewOp0 = |
| Builder.CreateBinOp(I.getOpcode(), X->getOperand(0), Y->getOperand(0)); |
| Value *NewOp1 = |
| Builder.CreateBinOp(I.getOpcode(), X->getOperand(1), Y->getOperand(1)); |
| Function *F = |
| Intrinsic::getOrInsertDeclaration(I.getModule(), IID, I.getType()); |
| return CallInst::Create(F, {NewOp0, NewOp1, X->getOperand(2)}); |
| } |
| case Intrinsic::bswap: |
| case Intrinsic::bitreverse: { |
| Value *NewOp0 = Builder.CreateBinOp( |
| I.getOpcode(), X->getOperand(0), |
| Y ? Y->getOperand(0) |
| : ConstantInt::get(I.getType(), IID == Intrinsic::bswap |
| ? RHSC->byteSwap() |
| : RHSC->reverseBits())); |
| Function *F = |
| Intrinsic::getOrInsertDeclaration(I.getModule(), IID, I.getType()); |
| return CallInst::Create(F, {NewOp0}); |
| } |
| default: |
| return nullptr; |
| } |
| } |
| |
| // Try to simplify V by replacing occurrences of Op with RepOp, but only look |
| // through bitwise operations. In particular, for X | Y we try to replace Y with |
| // 0 inside X and for X & Y we try to replace Y with -1 inside X. |
| // Return the simplified result of X if successful, and nullptr otherwise. |
| // If SimplifyOnly is true, no new instructions will be created. |
| static Value *simplifyAndOrWithOpReplaced(Value *V, Value *Op, Value *RepOp, |
| bool SimplifyOnly, |
| InstCombinerImpl &IC, |
| unsigned Depth = 0) { |
| if (Op == RepOp) |
| return nullptr; |
| |
| if (V == Op) |
| return RepOp; |
| |
| auto *I = dyn_cast<BinaryOperator>(V); |
| if (!I || !I->isBitwiseLogicOp() || Depth >= 3) |
| return nullptr; |
| |
| if (!I->hasOneUse()) |
| SimplifyOnly = true; |
| |
| Value *NewOp0 = simplifyAndOrWithOpReplaced(I->getOperand(0), Op, RepOp, |
| SimplifyOnly, IC, Depth + 1); |
| Value *NewOp1 = simplifyAndOrWithOpReplaced(I->getOperand(1), Op, RepOp, |
| SimplifyOnly, IC, Depth + 1); |
| if (!NewOp0 && !NewOp1) |
| return nullptr; |
| |
| if (!NewOp0) |
| NewOp0 = I->getOperand(0); |
| if (!NewOp1) |
| NewOp1 = I->getOperand(1); |
| |
| if (Value *Res = simplifyBinOp(I->getOpcode(), NewOp0, NewOp1, |
| IC.getSimplifyQuery().getWithInstruction(I))) |
| return Res; |
| |
| if (SimplifyOnly) |
| return nullptr; |
| return IC.Builder.CreateBinOp(I->getOpcode(), NewOp0, NewOp1); |
| } |
| |
| /// Reassociate and/or expressions to see if we can fold the inner and/or ops. |
| /// TODO: Make this recursive; it's a little tricky because an arbitrary |
| /// number of and/or instructions might have to be created. |
| Value *InstCombinerImpl::reassociateBooleanAndOr(Value *LHS, Value *X, Value *Y, |
| Instruction &I, bool IsAnd, |
| bool RHSIsLogical) { |
| Instruction::BinaryOps Opcode = IsAnd ? Instruction::And : Instruction::Or; |
| // LHS bop (X lop Y) --> (LHS bop X) lop Y |
| // LHS bop (X bop Y) --> (LHS bop X) bop Y |
| if (Value *Res = foldBooleanAndOr(LHS, X, I, IsAnd, /*IsLogical=*/false)) |
| return RHSIsLogical ? Builder.CreateLogicalOp(Opcode, Res, Y) |
| : Builder.CreateBinOp(Opcode, Res, Y); |
| // LHS bop (X bop Y) --> X bop (LHS bop Y) |
| // LHS bop (X lop Y) --> X lop (LHS bop Y) |
| if (Value *Res = foldBooleanAndOr(LHS, Y, I, IsAnd, /*IsLogical=*/false)) |
| return RHSIsLogical ? Builder.CreateLogicalOp(Opcode, X, Res) |
| : Builder.CreateBinOp(Opcode, X, Res); |
| return nullptr; |
| } |
| |
| // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches |
| // here. We should standardize that construct where it is needed or choose some |
| // other way to ensure that commutated variants of patterns are not missed. |
| Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) { |
| Type *Ty = I.getType(); |
| |
| if (Value *V = simplifyAndInst(I.getOperand(0), I.getOperand(1), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (SimplifyAssociativeOrCommutative(I)) |
| return &I; |
| |
| if (Instruction *X = foldVectorBinop(I)) |
| return X; |
| |
| if (Instruction *Phi = foldBinopWithPhiOperands(I)) |
| return Phi; |
| |
| // See if we can simplify any instructions used by the instruction whose sole |
| // purpose is to compute bits we don't care about. |
| if (SimplifyDemandedInstructionBits(I)) |
| return &I; |
| |
| // Do this before using distributive laws to catch simple and/or/not patterns. |
| if (Instruction *Xor = foldAndToXor(I, Builder)) |
| return Xor; |
| |
| if (Instruction *X = foldComplexAndOrPatterns(I, Builder)) |
| return X; |
| |
| // (A|B)&(A|C) -> A|(B&C) etc |
| if (Value *V = foldUsingDistributiveLaws(I)) |
| return replaceInstUsesWith(I, V); |
| |
| if (Instruction *R = foldBinOpShiftWithShift(I)) |
| return R; |
| |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| Value *X, *Y; |
| const APInt *C; |
| if ((match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) || |
| (match(Op0, m_OneUse(m_Shl(m_APInt(C), m_Value(X)))) && (*C)[0])) && |
| match(Op1, m_One())) { |
| // (1 >> X) & 1 --> zext(X == 0) |
| // (C << X) & 1 --> zext(X == 0), when C is odd |
| Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0)); |
| return new ZExtInst(IsZero, Ty); |
| } |
| |
| // (-(X & 1)) & Y --> (X & 1) == 0 ? 0 : Y |
| Value *Neg; |
| if (match(&I, |
| m_c_And(m_CombineAnd(m_Value(Neg), |
| m_OneUse(m_Neg(m_And(m_Value(), m_One())))), |
| m_Value(Y)))) { |
| Value *Cmp = Builder.CreateIsNull(Neg); |
| return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Y); |
| } |
| |
| // Canonicalize: |
| // (X +/- Y) & Y --> ~X & Y when Y is a power of 2. |
| if (match(&I, m_c_And(m_Value(Y), m_OneUse(m_CombineOr( |
| m_c_Add(m_Value(X), m_Deferred(Y)), |
| m_Sub(m_Value(X), m_Deferred(Y)))))) && |
| isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, /*Depth*/ 0, &I)) |
| return BinaryOperator::CreateAnd(Builder.CreateNot(X), Y); |
| |
| if (match(Op1, m_APInt(C))) { |
| const APInt *XorC; |
| if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) { |
| // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) |
| Constant *NewC = ConstantInt::get(Ty, *C & *XorC); |
| Value *And = Builder.CreateAnd(X, Op1); |
| And->takeName(Op0); |
| return BinaryOperator::CreateXor(And, NewC); |
| } |
| |
| const APInt *OrC; |
| if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) { |
| // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2) |
| // NOTE: This reduces the number of bits set in the & mask, which |
| // can expose opportunities for store narrowing for scalars. |
| // NOTE: SimplifyDemandedBits should have already removed bits from C1 |
| // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in |
| // above, but this feels safer. |
| APInt Together = *C & *OrC; |
| Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C)); |
| And->takeName(Op0); |
| return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together)); |
| } |
| |
| unsigned Width = Ty->getScalarSizeInBits(); |
| const APInt *ShiftC; |
| if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC))))) && |
| ShiftC->ult(Width)) { |
| if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) { |
| // We are clearing high bits that were potentially set by sext+ashr: |
| // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC |
| Value *Sext = Builder.CreateSExt(X, Ty); |
| Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width)); |
| return BinaryOperator::CreateLShr(Sext, ShAmtC); |
| } |
| } |
| |
| // If this 'and' clears the sign-bits added by ashr, replace with lshr: |
| // and (ashr X, ShiftC), C --> lshr X, ShiftC |
| if (match(Op0, m_AShr(m_Value(X), m_APInt(ShiftC))) && ShiftC->ult(Width) && |
| C->isMask(Width - ShiftC->getZExtValue())) |
| return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, *ShiftC)); |
| |
| const APInt *AddC; |
| if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) { |
| // If we are masking the result of the add down to exactly one bit and |
| // the constant we are adding has no bits set below that bit, then the |
| // add is flipping a single bit. Example: |
| // (X + 4) & 4 --> (X & 4) ^ 4 |
| if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) { |
| assert((*C & *AddC) != 0 && "Expected common bit"); |
| Value *NewAnd = Builder.CreateAnd(X, Op1); |
| return BinaryOperator::CreateXor(NewAnd, Op1); |
| } |
| } |
| |
| // ((C1 OP zext(X)) & C2) -> zext((C1 OP X) & C2) if C2 fits in the |
| // bitwidth of X and OP behaves well when given trunc(C1) and X. |
| auto isNarrowableBinOpcode = [](BinaryOperator *B) { |
| switch (B->getOpcode()) { |
| case Instruction::Xor: |
| case Instruction::Or: |
| case Instruction::Mul: |
| case Instruction::Add: |
| case Instruction::Sub: |
| return true; |
| default: |
| return false; |
| } |
| }; |
| BinaryOperator *BO; |
| if (match(Op0, m_OneUse(m_BinOp(BO))) && isNarrowableBinOpcode(BO)) { |
| Instruction::BinaryOps BOpcode = BO->getOpcode(); |
| Value *X; |
| const APInt *C1; |
| // TODO: The one-use restrictions could be relaxed a little if the AND |
| // is going to be removed. |
| // Try to narrow the 'and' and a binop with constant operand: |
| // and (bo (zext X), C1), C --> zext (and (bo X, TruncC1), TruncC) |
| if (match(BO, m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), m_APInt(C1))) && |
| C->isIntN(X->getType()->getScalarSizeInBits())) { |
| unsigned XWidth = X->getType()->getScalarSizeInBits(); |
| Constant *TruncC1 = ConstantInt::get(X->getType(), C1->trunc(XWidth)); |
| Value *BinOp = isa<ZExtInst>(BO->getOperand(0)) |
| ? Builder.CreateBinOp(BOpcode, X, TruncC1) |
| : Builder.CreateBinOp(BOpcode, TruncC1, X); |
| Constant *TruncC = ConstantInt::get(X->getType(), C->trunc(XWidth)); |
| Value *And = Builder.CreateAnd(BinOp, TruncC); |
| return new ZExtInst(And, Ty); |
| } |
| |
| // Similar to above: if the mask matches the zext input width, then the |
| // 'and' can be eliminated, so we can truncate the other variable op: |
| // and (bo (zext X), Y), C --> zext (bo X, (trunc Y)) |
| if (isa<Instruction>(BO->getOperand(0)) && |
| match(BO->getOperand(0), m_OneUse(m_ZExt(m_Value(X)))) && |
| C->isMask(X->getType()->getScalarSizeInBits())) { |
| Y = BO->getOperand(1); |
| Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr"); |
| Value *NewBO = |
| Builder.CreateBinOp(BOpcode, X, TrY, BO->getName() + ".narrow"); |
| return new ZExtInst(NewBO, Ty); |
| } |
| // and (bo Y, (zext X)), C --> zext (bo (trunc Y), X) |
| if (isa<Instruction>(BO->getOperand(1)) && |
| match(BO->getOperand(1), m_OneUse(m_ZExt(m_Value(X)))) && |
| C->isMask(X->getType()->getScalarSizeInBits())) { |
| Y = BO->getOperand(0); |
| Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr"); |
| Value *NewBO = |
| Builder.CreateBinOp(BOpcode, TrY, X, BO->getName() + ".narrow"); |
| return new ZExtInst(NewBO, Ty); |
| } |
| } |
| |
| // This is intentionally placed after the narrowing transforms for |
| // efficiency (transform directly to the narrow logic op if possible). |
| // If the mask is only needed on one incoming arm, push the 'and' op up. |
| if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) || |
| match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { |
| APInt NotAndMask(~(*C)); |
| BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode(); |
| if (MaskedValueIsZero(X, NotAndMask, 0, &I)) { |
| // Not masking anything out for the LHS, move mask to RHS. |
| // and ({x}or X, Y), C --> {x}or X, (and Y, C) |
| Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked"); |
| return BinaryOperator::Create(BinOp, X, NewRHS); |
| } |
| if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) { |
| // Not masking anything out for the RHS, move mask to LHS. |
| // and ({x}or X, Y), C --> {x}or (and X, C), Y |
| Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked"); |
| return BinaryOperator::Create(BinOp, NewLHS, Y); |
| } |
| } |
| |
| // When the mask is a power-of-2 constant and op0 is a shifted-power-of-2 |
| // constant, test if the shift amount equals the offset bit index: |
| // (ShiftC << X) & C --> X == (log2(C) - log2(ShiftC)) ? C : 0 |
| // (ShiftC >> X) & C --> X == (log2(ShiftC) - log2(C)) ? C : 0 |
| if (C->isPowerOf2() && |
| match(Op0, m_OneUse(m_LogicalShift(m_Power2(ShiftC), m_Value(X))))) { |
| int Log2ShiftC = ShiftC->exactLogBase2(); |
| int Log2C = C->exactLogBase2(); |
| bool IsShiftLeft = |
| cast<BinaryOperator>(Op0)->getOpcode() == Instruction::Shl; |
| int BitNum = IsShiftLeft ? Log2C - Log2ShiftC : Log2ShiftC - Log2C; |
| assert(BitNum >= 0 && "Expected demanded bits to handle impossible mask"); |
| Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, BitNum)); |
| return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C), |
| ConstantInt::getNullValue(Ty)); |
| } |
| |
| Constant *C1, *C2; |
| const APInt *C3 = C; |
| Value *X; |
| if (C3->isPowerOf2()) { |
| Constant *Log2C3 = ConstantInt::get(Ty, C3->countr_zero()); |
| if (match(Op0, m_OneUse(m_LShr(m_Shl(m_ImmConstant(C1), m_Value(X)), |
| m_ImmConstant(C2)))) && |
| match(C1, m_Power2())) { |
| Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1); |
| Constant *LshrC = ConstantExpr::getAdd(C2, Log2C3); |
| KnownBits KnownLShrc = computeKnownBits(LshrC, 0, nullptr); |
| if (KnownLShrc.getMaxValue().ult(Width)) { |
| // iff C1,C3 is pow2 and C2 + cttz(C3) < BitWidth: |
| // ((C1 << X) >> C2) & C3 -> X == (cttz(C3)+C2-cttz(C1)) ? C3 : 0 |
| Constant *CmpC = ConstantExpr::getSub(LshrC, Log2C1); |
| Value *Cmp = Builder.CreateICmpEQ(X, CmpC); |
| return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3), |
| ConstantInt::getNullValue(Ty)); |
| } |
| } |
| |
| if (match(Op0, m_OneUse(m_Shl(m_LShr(m_ImmConstant(C1), m_Value(X)), |
| m_ImmConstant(C2)))) && |
| match(C1, m_Power2())) { |
| Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1); |
| Constant *Cmp = |
| ConstantFoldCompareInstOperands(ICmpInst::ICMP_ULT, Log2C3, C2, DL); |
| if (Cmp && Cmp->isZeroValue()) { |
| // iff C1,C3 is pow2 and Log2(C3) >= C2: |
| // ((C1 >> X) << C2) & C3 -> X == (cttz(C1)+C2-cttz(C3)) ? C3 : 0 |
| Constant *ShlC = ConstantExpr::getAdd(C2, Log2C1); |
| Constant *CmpC = ConstantExpr::getSub(ShlC, Log2C3); |
| Value *Cmp = Builder.CreateICmpEQ(X, CmpC); |
| return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3), |
| ConstantInt::getNullValue(Ty)); |
| } |
| } |
| } |
| } |
| |
| // If we are clearing the sign bit of a floating-point value, convert this to |
| // fabs, then cast back to integer. |
| // |
| // This is a generous interpretation for noimplicitfloat, this is not a true |
| // floating-point operation. |
| // |
| // Assumes any IEEE-represented type has the sign bit in the high bit. |
| // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt |
| Value *CastOp; |
| if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) && |
| match(Op1, m_MaxSignedValue()) && |
| !Builder.GetInsertBlock()->getParent()->hasFnAttribute( |
| Attribute::NoImplicitFloat)) { |
| Type *EltTy = CastOp->getType()->getScalarType(); |
| if (EltTy->isFloatingPointTy() && EltTy->isIEEE()) { |
| Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp); |
| return new BitCastInst(FAbs, I.getType()); |
| } |
| } |
| |
| // and(shl(zext(X), Y), SignMask) -> and(sext(X), SignMask) |
| // where Y is a valid shift amount. |
| if (match(&I, m_And(m_OneUse(m_Shl(m_ZExt(m_Value(X)), m_Value(Y))), |
| m_SignMask())) && |
| match(Y, m_SpecificInt_ICMP( |
| ICmpInst::Predicate::ICMP_EQ, |
| APInt(Ty->getScalarSizeInBits(), |
| Ty->getScalarSizeInBits() - |
| X->getType()->getScalarSizeInBits())))) { |
| auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext"); |
| return BinaryOperator::CreateAnd(SExt, Op1); |
| } |
| |
| if (Instruction *Z = narrowMaskedBinOp(I)) |
| return Z; |
| |
| if (I.getType()->isIntOrIntVectorTy(1)) { |
| if (auto *SI0 = dyn_cast<SelectInst>(Op0)) { |
| if (auto *R = |
| foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ true)) |
| return R; |
| } |
| if (auto *SI1 = dyn_cast<SelectInst>(Op1)) { |
| if (auto *R = |
| foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ true)) |
| return R; |
| } |
| } |
| |
| if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) |
| return FoldedLogic; |
| |
| if (Instruction *DeMorgan = matchDeMorgansLaws(I, *this)) |
| return DeMorgan; |
| |
| { |
| Value *A, *B, *C; |
| // A & ~(A ^ B) --> A & B |
| if (match(Op1, m_Not(m_c_Xor(m_Specific(Op0), m_Value(B))))) |
| return BinaryOperator::CreateAnd(Op0, B); |
| // ~(A ^ B) & A --> A & B |
| if (match(Op0, m_Not(m_c_Xor(m_Specific(Op1), m_Value(B))))) |
| return BinaryOperator::CreateAnd(Op1, B); |
| |
| // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C |
| if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && |
| match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) { |
| Value *NotC = Op1->hasOneUse() |
| ? Builder.CreateNot(C) |
| : getFreelyInverted(C, C->hasOneUse(), &Builder); |
| if (NotC != nullptr) |
| return BinaryOperator::CreateAnd(Op0, NotC); |
| } |
| |
| // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C |
| if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))) && |
| match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) { |
| Value *NotC = Op0->hasOneUse() |
| ? Builder.CreateNot(C) |
| : getFreelyInverted(C, C->hasOneUse(), &Builder); |
| if (NotC != nullptr) |
| return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C)); |
| } |
| |
| // (A | B) & (~A ^ B) -> A & B |
| // (A | B) & (B ^ ~A) -> A & B |
| // (B | A) & (~A ^ B) -> A & B |
| // (B | A) & (B ^ ~A) -> A & B |
| if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && |
| match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) |
| return BinaryOperator::CreateAnd(A, B); |
| |
| // (~A ^ B) & (A | B) -> A & B |
| // (~A ^ B) & (B | A) -> A & B |
| // (B ^ ~A) & (A | B) -> A & B |
| // (B ^ ~A) & (B | A) -> A & B |
| if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && |
| match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) |
| return BinaryOperator::CreateAnd(A, B); |
| |
| // (~A | B) & (A ^ B) -> ~A & B |
| // (~A | B) & (B ^ A) -> ~A & B |
| // (B | ~A) & (A ^ B) -> ~A & B |
| // (B | ~A) & (B ^ A) -> ~A & B |
| if (match(Op0, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && |
| match(Op1, m_c_Xor(m_Specific(A), m_Specific(B)))) |
| return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); |
| |
| // (A ^ B) & (~A | B) -> ~A & B |
| // (B ^ A) & (~A | B) -> ~A & B |
| // (A ^ B) & (B | ~A) -> ~A & B |
| // (B ^ A) & (B | ~A) -> ~A & B |
| if (match(Op1, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && |
| match(Op0, m_c_Xor(m_Specific(A), m_Specific(B)))) |
| return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); |
| } |
| |
| if (Value *Res = |
| foldBooleanAndOr(Op0, Op1, I, /*IsAnd=*/true, /*IsLogical=*/false)) |
| return replaceInstUsesWith(I, Res); |
| |
| if (match(Op1, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) { |
| bool IsLogical = isa<SelectInst>(Op1); |
| if (auto *V = reassociateBooleanAndOr(Op0, X, Y, I, /*IsAnd=*/true, |
| /*RHSIsLogical=*/IsLogical)) |
| return replaceInstUsesWith(I, V); |
| } |
| if (match(Op0, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) { |
| bool IsLogical = isa<SelectInst>(Op0); |
| if (auto *V = reassociateBooleanAndOr(Op1, X, Y, I, /*IsAnd=*/true, |
| /*RHSIsLogical=*/IsLogical)) |
| return replaceInstUsesWith(I, V); |
| } |
| |
| if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder)) |
| return FoldedFCmps; |
| |
| if (Instruction *CastedAnd = foldCastedBitwiseLogic(I)) |
| return CastedAnd; |
| |
| if (Instruction *Sel = foldBinopOfSextBoolToSelect(I)) |
| return Sel; |
| |
| // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>. |
| // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold |
| // with binop identity constant. But creating a select with non-constant |
| // arm may not be reversible due to poison semantics. Is that a good |
| // canonicalization? |
| Value *A, *B; |
| if (match(&I, m_c_And(m_SExt(m_Value(A)), m_Value(B))) && |
| A->getType()->isIntOrIntVectorTy(1)) |
| return SelectInst::Create(A, B, Constant::getNullValue(Ty)); |
| |
| // Similarly, a 'not' of the bool translates to a swap of the select arms: |
| // ~sext(A) & B / B & ~sext(A) --> A ? 0 : B |
| if (match(&I, m_c_And(m_Not(m_SExt(m_Value(A))), m_Value(B))) && |
| A->getType()->isIntOrIntVectorTy(1)) |
| return SelectInst::Create(A, Constant::getNullValue(Ty), B); |
| |
| // and(zext(A), B) -> A ? (B & 1) : 0 |
| if (match(&I, m_c_And(m_OneUse(m_ZExt(m_Value(A))), m_Value(B))) && |
| A->getType()->isIntOrIntVectorTy(1)) |
| return SelectInst::Create(A, Builder.CreateAnd(B, ConstantInt::get(Ty, 1)), |
| Constant::getNullValue(Ty)); |
| |
| // (-1 + A) & B --> A ? 0 : B where A is 0/1. |
| if (match(&I, m_c_And(m_OneUse(m_Add(m_ZExtOrSelf(m_Value(A)), m_AllOnes())), |
| m_Value(B)))) { |
| if (A->getType()->isIntOrIntVectorTy(1)) |
| return SelectInst::Create(A, Constant::getNullValue(Ty), B); |
| if (computeKnownBits(A, /* Depth */ 0, &I).countMaxActiveBits() <= 1) { |
| return SelectInst::Create( |
| Builder.CreateICmpEQ(A, Constant::getNullValue(A->getType())), B, |
| Constant::getNullValue(Ty)); |
| } |
| } |
| |
| // (iN X s>> (N-1)) & Y --> (X s< 0) ? Y : 0 -- with optional sext |
| if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf( |
| m_AShr(m_Value(X), m_APIntAllowPoison(C)))), |
| m_Value(Y))) && |
| *C == X->getType()->getScalarSizeInBits() - 1) { |
| Value *IsNeg = Builder.CreateIsNeg(X, "isneg"); |
| return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty)); |
| } |
| // If there's a 'not' of the shifted value, swap the select operands: |
| // ~(iN X s>> (N-1)) & Y --> (X s< 0) ? 0 : Y -- with optional sext |
| if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf( |
| m_Not(m_AShr(m_Value(X), m_APIntAllowPoison(C))))), |
| m_Value(Y))) && |
| *C == X->getType()->getScalarSizeInBits() - 1) { |
| Value *IsNeg = Builder.CreateIsNeg(X, "isneg"); |
| return SelectInst::Create(IsNeg, ConstantInt::getNullValue(Ty), Y); |
| } |
| |
| // (~x) & y --> ~(x | (~y)) iff that gets rid of inversions |
| if (sinkNotIntoOtherHandOfLogicalOp(I)) |
| return &I; |
| |
| // An and recurrence w/loop invariant step is equivelent to (and start, step) |
| PHINode *PN = nullptr; |
| Value *Start = nullptr, *Step = nullptr; |
| if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN)) |
| return replaceInstUsesWith(I, Builder.CreateAnd(Start, Step)); |
| |
| if (Instruction *R = reassociateForUses(I, Builder)) |
| return R; |
| |
| if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder)) |
| return Canonicalized; |
| |
| if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1)) |
| return Folded; |
| |
| if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) |
| return Res; |
| |
| if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder)) |
| return Res; |
| |
| if (Value *V = |
| simplifyAndOrWithOpReplaced(Op0, Op1, Constant::getAllOnesValue(Ty), |
| /*SimplifyOnly*/ false, *this)) |
| return BinaryOperator::CreateAnd(V, Op1); |
| if (Value *V = |
| simplifyAndOrWithOpReplaced(Op1, Op0, Constant::getAllOnesValue(Ty), |
| /*SimplifyOnly*/ false, *this)) |
| return BinaryOperator::CreateAnd(Op0, V); |
| |
| return nullptr; |
| } |
| |
| Instruction *InstCombinerImpl::matchBSwapOrBitReverse(Instruction &I, |
| bool MatchBSwaps, |
| bool MatchBitReversals) { |
| SmallVector<Instruction *, 4> Insts; |
| if (!recognizeBSwapOrBitReverseIdiom(&I, MatchBSwaps, MatchBitReversals, |
| Insts)) |
| return nullptr; |
| Instruction *LastInst = Insts.pop_back_val(); |
| LastInst->removeFromParent(); |
| |
| for (auto *Inst : Insts) { |
| Inst->setDebugLoc(I.getDebugLoc()); |
| Worklist.push(Inst); |
| } |
| return LastInst; |
| } |
| |
| std::optional<std::pair<Intrinsic::ID, SmallVector<Value *, 3>>> |
| InstCombinerImpl::convertOrOfShiftsToFunnelShift(Instruction &Or) { |
| // TODO: Can we reduce the code duplication between this and the related |
| // rotate matching code under visitSelect and visitTrunc? |
| assert(Or.getOpcode() == BinaryOperator::Or && "Expecting or instruction"); |
| |
| unsigned Width = Or.getType()->getScalarSizeInBits(); |
| |
| Instruction *Or0, *Or1; |
| if (!match(Or.getOperand(0), m_Instruction(Or0)) || |
| !match(Or.getOperand(1), m_Instruction(Or1))) |
| return std::nullopt; |
| |
| bool IsFshl = true; // Sub on LSHR. |
| SmallVector<Value *, 3> FShiftArgs; |
| |
| // First, find an or'd pair of opposite shifts: |
| // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1) |
| if (isa<BinaryOperator>(Or0) && isa<BinaryOperator>(Or1)) { |
| Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; |
| if (!match(Or0, |
| m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) || |
| !match(Or1, |
| m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) || |
| Or0->getOpcode() == Or1->getOpcode()) |
| return std::nullopt; |
| |
| // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). |
| if (Or0->getOpcode() == BinaryOperator::LShr) { |
| std::swap(Or0, Or1); |
| std::swap(ShVal0, ShVal1); |
| std::swap(ShAmt0, ShAmt1); |
| } |
| assert(Or0->getOpcode() == BinaryOperator::Shl && |
| Or1->getOpcode() == BinaryOperator::LShr && |
| "Illegal or(shift,shift) pair"); |
| |
| // Match the shift amount operands for a funnel shift pattern. This always |
| // matches a subtraction on the R operand. |
| auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { |
| // Check for constant shift amounts that sum to the bitwidth. |
| const APInt *LI, *RI; |
| if (match(L, m_APIntAllowPoison(LI)) && match(R, m_APIntAllowPoison(RI))) |
| if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width) |
| return ConstantInt::get(L->getType(), *LI); |
| |
| Constant *LC, *RC; |
| if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) && |
| match(L, |
| m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) && |
| match(R, |
| m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) && |
| match(ConstantExpr::getAdd(LC, RC), m_SpecificIntAllowPoison(Width))) |
| return ConstantExpr::mergeUndefsWith(LC, RC); |
| |
| // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width. |
| // We limit this to X < Width in case the backend re-expands the |
| // intrinsic, and has to reintroduce a shift modulo operation (InstCombine |
| // might remove it after this fold). This still doesn't guarantee that the |
| // final codegen will match this original pattern. |
| if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) { |
| KnownBits KnownL = computeKnownBits(L, /*Depth*/ 0, &Or); |
| return KnownL.getMaxValue().ult(Width) ? L : nullptr; |
| } |
| |
| // For non-constant cases, the following patterns currently only work for |
| // rotation patterns. |
| // TODO: Add general funnel-shift compatible patterns. |
| if (ShVal0 != ShVal1) |
| return nullptr; |
| |
| // For non-constant cases we don't support non-pow2 shift masks. |
| // TODO: Is it worth matching urem as well? |
| if (!isPowerOf2_32(Width)) |
| return nullptr; |
| |
| // The shift amount may be masked with negation: |
| // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1))) |
| Value *X; |
| unsigned Mask = Width - 1; |
| if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && |
| match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) |
| return X; |
| |
| // (shl ShVal, X) | (lshr ShVal, ((-X) & (Width - 1))) |
| if (match(R, m_And(m_Neg(m_Specific(L)), m_SpecificInt(Mask)))) |
| return L; |
| |
| // Similar to above, but the shift amount may be extended after masking, |
| // so return the extended value as the parameter for the intrinsic. |
| if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && |
| match(R, |
| m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))), |
| m_SpecificInt(Mask)))) |
| return L; |
| |
| if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && |
| match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) |
| return L; |
| |
| return nullptr; |
| }; |
| |
| Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width); |
| if (!ShAmt) { |
| ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width); |
| IsFshl = false; // Sub on SHL. |
| } |
| if (!ShAmt) |
| return std::nullopt; |
| |
| FShiftArgs = {ShVal0, ShVal1, ShAmt}; |
| } else if (isa<ZExtInst>(Or0) || isa<ZExtInst>(Or1)) { |
| // If there are two 'or' instructions concat variables in opposite order: |
| // |
| // Slot1 and Slot2 are all zero bits. |
| // | Slot1 | Low | Slot2 | High | |
| // LowHigh = or (shl (zext Low), ZextLowShlAmt), (zext High) |
| // | Slot2 | High | Slot1 | Low | |
| // HighLow = or (shl (zext High), ZextHighShlAmt), (zext Low) |
| // |
| // the latter 'or' can be safely convert to |
| // -> HighLow = fshl LowHigh, LowHigh, ZextHighShlAmt |
| // if ZextLowShlAmt + ZextHighShlAmt == Width. |
| if (!isa<ZExtInst>(Or1)) |
| std::swap(Or0, Or1); |
| |
| Value *High, *ZextHigh, *Low; |
| const APInt *ZextHighShlAmt; |
| if (!match(Or0, |
| m_OneUse(m_Shl(m_Value(ZextHigh), m_APInt(ZextHighShlAmt))))) |
| return std::nullopt; |
| |
| if (!match(Or1, m_ZExt(m_Value(Low))) || |
| !match(ZextHigh, m_ZExt(m_Value(High)))) |
| return std::nullopt; |
| |
| unsigned HighSize = High->getType()->getScalarSizeInBits(); |
| unsigned LowSize = Low->getType()->getScalarSizeInBits(); |
| // Make sure High does not overlap with Low and most significant bits of |
| // High aren't shifted out. |
| if (ZextHighShlAmt->ult(LowSize) || ZextHighShlAmt->ugt(Width - HighSize)) |
| return std::nullopt; |
| |
| for (User *U : ZextHigh->users()) { |
| Value *X, *Y; |
| if (!match(U, m_Or(m_Value(X), m_Value(Y)))) |
| continue; |
| |
| if (!isa<ZExtInst>(Y)) |
| std::swap(X, Y); |
| |
| const APInt *ZextLowShlAmt; |
| if (!match(X, m_Shl(m_Specific(Or1), m_APInt(ZextLowShlAmt))) || |
| !match(Y, m_Specific(ZextHigh)) || !DT.dominates(U, &Or)) |
| continue; |
| |
| // HighLow is good concat. If sum of two shifts amount equals to Width, |
| // LowHigh must also be a good concat. |
| if (*ZextLowShlAmt + *ZextHighShlAmt != Width) |
| continue; |
| |
| // Low must not overlap with High and most significant bits of Low must |
| // not be shifted out. |
| assert(ZextLowShlAmt->uge(HighSize) && |
| ZextLowShlAmt->ule(Width - LowSize) && "Invalid concat"); |
| |
| FShiftArgs = {U, U, ConstantInt::get(Or0->getType(), *ZextHighShlAmt)}; |
| break; |
| } |
| } |
| |
| if (FShiftArgs.empty()) |
| return std::nullopt; |
| |
| Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; |
| return std::make_pair(IID, FShiftArgs); |
| } |
| |
| /// Match UB-safe variants of the funnel shift intrinsic. |
| static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) { |
| if (auto Opt = IC.convertOrOfShiftsToFunnelShift(Or)) { |
| auto [IID, FShiftArgs] = *Opt; |
| Function *F = |
| Intrinsic::getOrInsertDeclaration(Or.getModule(), IID, Or.getType()); |
| return CallInst::Create(F, FShiftArgs); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns. |
| static Instruction *matchOrConcat(Instruction &Or, |
| InstCombiner::BuilderTy &Builder) { |
| assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'"); |
| Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1); |
| Type *Ty = Or.getType(); |
| |
| unsigned Width = Ty->getScalarSizeInBits(); |
| if ((Width & 1) != 0) |
| return nullptr; |
| unsigned HalfWidth = Width / 2; |
| |
| // Canonicalize zext (lower half) to LHS. |
| if (!isa<ZExtInst>(Op0)) |
| std::swap(Op0, Op1); |
| |
| // Find lower/upper half. |
| Value *LowerSrc, *ShlVal, *UpperSrc; |
| const APInt *C; |
| if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) || |
| !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) || |
| !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc))))) |
| return nullptr; |
| if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() || |
| LowerSrc->getType()->getScalarSizeInBits() != HalfWidth) |
| return nullptr; |
| |
| auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) { |
| Value *NewLower = Builder.CreateZExt(Lo, Ty); |
| Value *NewUpper = Builder.CreateZExt(Hi, Ty); |
| NewUpper = Builder.CreateShl(NewUpper, HalfWidth); |
| Value *BinOp = Builder.CreateOr(NewLower, NewUpper); |
| return Builder.CreateIntrinsic(id, Ty, BinOp); |
| }; |
| |
| // BSWAP: Push the concat down, swapping the lower/upper sources. |
| // concat(bswap(x),bswap(y)) -> bswap(concat(x,y)) |
| Value *LowerBSwap, *UpperBSwap; |
| if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) && |
| match(UpperSrc, m_BSwap(m_Value(UpperBSwap)))) |
| return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap); |
| |
| // BITREVERSE: Push the concat down, swapping the lower/upper sources. |
| // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y)) |
| Value *LowerBRev, *UpperBRev; |
| if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) && |
| match(UpperSrc, m_BitReverse(m_Value(UpperBRev)))) |
| return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev); |
| |
| return nullptr; |
| } |
| |
| /// If all elements of two constant vectors are 0/-1 and inverses, return true. |
| static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) { |
| unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements(); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| Constant *EltC1 = C1->getAggregateElement(i); |
| Constant *EltC2 = C2->getAggregateElement(i); |
| if (!EltC1 || !EltC2) |
| return false; |
| |
| // One element must be all ones, and the other must be all zeros. |
| if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) || |
| (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes())))) |
| return false; |
| } |
| return true; |
| } |
| |
| /// We have an expression of the form (A & C) | (B & D). If A is a scalar or |
| /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of |
| /// B, it can be used as the condition operand of a select instruction. |
| /// We will detect (A & C) | ~(B | D) when the flag ABIsTheSame enabled. |
| Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B, |
| bool ABIsTheSame) { |
| // We may have peeked through bitcasts in the caller. |
| // Exit immediately if we don't have (vector) integer types. |
| Type *Ty = A->getType(); |
| if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy()) |
| return nullptr; |
| |
| // If A is the 'not' operand of B and has enough signbits, we have our answer. |
| if (ABIsTheSame ? (A == B) : match(B, m_Not(m_Specific(A)))) { |
| // If these are scalars or vectors of i1, A can be used directly. |
| if (Ty->isIntOrIntVectorTy(1)) |
| return A; |
| |
| // If we look through a vector bitcast, the caller will bitcast the operands |
| // to match the condition's number of bits (N x i1). |
| // To make this poison-safe, disallow bitcast from wide element to narrow |
| // element. That could allow poison in lanes where it was not present in the |
| // original code. |
| A = peekThroughBitcast(A); |
| if (A->getType()->isIntOrIntVectorTy()) { |
| unsigned NumSignBits = ComputeNumSignBits(A); |
| if (NumSignBits == A->getType()->getScalarSizeInBits() && |
| NumSignBits <= Ty->getScalarSizeInBits()) |
| return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(A->getType())); |
| } |
| return nullptr; |
| } |
| |
| // TODO: add support for sext and constant case |
| if (ABIsTheSame) |
| return nullptr; |
| |
| // If both operands are constants, see if the constants are inverse bitmasks. |
| Constant *AConst, *BConst; |
| if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst))) |
| if (AConst == ConstantExpr::getNot(BConst) && |
| ComputeNumSignBits(A) == Ty->getScalarSizeInBits()) |
| return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty)); |
| |
| // Look for more complex patterns. The 'not' op may be hidden behind various |
| // casts. Look through sexts and bitcasts to find the booleans. |
| Value *Cond; |
| Value *NotB; |
| if (match(A, m_SExt(m_Value(Cond))) && |
| Cond->getType()->isIntOrIntVectorTy(1)) { |
| // A = sext i1 Cond; B = sext (not (i1 Cond)) |
| if (match(B, m_SExt(m_Not(m_Specific(Cond))))) |
| return Cond; |
| |
| // A = sext i1 Cond; B = not ({bitcast} (sext (i1 Cond))) |
| // TODO: The one-use checks are unnecessary or misplaced. If the caller |
| // checked for uses on logic ops/casts, that should be enough to |
| // make this transform worthwhile. |
| if (match(B, m_OneUse(m_Not(m_Value(NotB))))) { |
| NotB = peekThroughBitcast(NotB, true); |
| if (match(NotB, m_SExt(m_Specific(Cond)))) |
| return Cond; |
| } |
| } |
| |
| // All scalar (and most vector) possibilities should be handled now. |
| // Try more matches that only apply to non-splat constant vectors. |
| if (!Ty->isVectorTy()) |
| return nullptr; |
| |
| // If both operands are xor'd with constants using the same sexted boolean |
| // operand, see if the constants are inverse bitmasks. |
| // TODO: Use ConstantExpr::getNot()? |
| if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) && |
| match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) && |
| Cond->getType()->isIntOrIntVectorTy(1) && |
| areInverseVectorBitmasks(AConst, BConst)) { |
| AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty)); |
| return Builder.CreateXor(Cond, AConst); |
| } |
| return nullptr; |
| } |
| |
| /// We have an expression of the form (A & B) | (C & D). Try to simplify this |
| /// to "A' ? B : D", where A' is a boolean or vector of booleans. |
| /// When InvertFalseVal is set to true, we try to match the pattern |
| /// where we have peeked through a 'not' op and A and C are the same: |
| /// (A & B) | ~(A | D) --> (A & B) | (~A & ~D) --> A' ? B : ~D |
| Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *B, Value *C, |
| Value *D, bool InvertFalseVal) { |
| // The potential condition of the select may be bitcasted. In that case, look |
| // through its bitcast and the corresponding bitcast of the 'not' condition. |
| Type *OrigType = A->getType(); |
| A = peekThroughBitcast(A, true); |
| C = peekThroughBitcast(C, true); |
| if (Value *Cond = getSelectCondition(A, C, InvertFalseVal)) { |
| // ((bc Cond) & B) | ((bc ~Cond) & D) --> bc (select Cond, (bc B), (bc D)) |
| // If this is a vector, we may need to cast to match the condition's length. |
| // The bitcasts will either all exist or all not exist. The builder will |
| // not create unnecessary casts if the types already match. |
| Type *SelTy = A->getType(); |
| if (auto *VecTy = dyn_cast<VectorType>(Cond->getType())) { |
| // For a fixed or scalable vector get N from <{vscale x} N x iM> |
| unsigned Elts = VecTy->getElementCount().getKnownMinValue(); |
| // For a fixed or scalable vector, get the size in bits of N x iM; for a |
| // scalar this is just M. |
| unsigned SelEltSize = SelTy->getPrimitiveSizeInBits().getKnownMinValue(); |
| Type *EltTy = Builder.getIntNTy(SelEltSize / Elts); |
| SelTy = VectorType::get(EltTy, VecTy->getElementCount()); |
| } |
| Value *BitcastB = Builder.CreateBitCast(B, SelTy); |
| if (InvertFalseVal) |
| D = Builder.CreateNot(D); |
| Value *BitcastD = Builder.CreateBitCast(D, SelTy); |
| Value *Select = Builder.CreateSelect(Cond, BitcastB, BitcastD); |
| return Builder.CreateBitCast(Select, OrigType); |
| } |
| |
| return nullptr; |
| } |
| |
| // (icmp eq X, C) | (icmp ult Other, (X - C)) -> (icmp ule Other, (X - (C + 1))) |
| // (icmp ne X, C) & (icmp uge Other, (X - C)) -> (icmp ugt Other, (X - (C + 1))) |
| static Value *foldAndOrOfICmpEqConstantAndICmp(ICmpInst *LHS, ICmpInst *RHS, |
| bool IsAnd, bool IsLogical, |
| IRBuilderBase &Builder) { |
| Value *LHS0 = LHS->getOperand(0); |
| Value *RHS0 = RHS->getOperand(0); |
| Value *RHS1 = RHS->getOperand(1); |
| |
| ICmpInst::Predicate LPred = |
| IsAnd ? LHS->getInversePredicate() : LHS->getPredicate(); |
| ICmpInst::Predicate RPred = |
| IsAnd ? RHS->getInversePredicate() : RHS->getPredicate(); |
| |
| const APInt *CInt; |
| if (LPred != ICmpInst::ICMP_EQ || |
| !match(LHS->getOperand(1), m_APIntAllowPoison(CInt)) || |
| !LHS0->getType()->isIntOrIntVectorTy() || |
| !(LHS->hasOneUse() || RHS->hasOneUse())) |
| return nullptr; |
| |
| auto MatchRHSOp = [LHS0, CInt](const Value *RHSOp) { |
| return match(RHSOp, |
| m_Add(m_Specific(LHS0), m_SpecificIntAllowPoison(-*CInt))) || |
| (CInt->isZero() && RHSOp == LHS0); |
| }; |
| |
| Value *Other; |
| if (RPred == ICmpInst::ICMP_ULT && MatchRHSOp(RHS1)) |
| Other = RHS0; |
| else if (RPred == ICmpInst::ICMP_UGT && MatchRHSOp(RHS0)) |
| Other = RHS1; |
| else |
| return nullptr; |
| |
| if (IsLogical) |
| Other = Builder.CreateFreeze(Other); |
| |
| return Builder.CreateICmp( |
| IsAnd ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE, |
| Builder.CreateSub(LHS0, ConstantInt::get(LHS0->getType(), *CInt + 1)), |
| Other); |
| } |
| |
| /// Fold (icmp)&(icmp) or (icmp)|(icmp) if possible. |
| /// If IsLogical is true, then the and/or is in select form and the transform |
| /// must be poison-safe. |
| Value *InstCombinerImpl::foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, |
| Instruction &I, bool IsAnd, |
| bool IsLogical) { |
| const SimplifyQuery Q = SQ.getWithInstruction(&I); |
| |
| ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); |
| Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0); |
| Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1); |
| |
| const APInt *LHSC = nullptr, *RHSC = nullptr; |
| match(LHS1, m_APInt(LHSC)); |
| match(RHS1, m_APInt(RHSC)); |
| |
| // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) |
| // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) |
| if (predicatesFoldable(PredL, PredR)) { |
| if (LHS0 == RHS1 && LHS1 == RHS0) { |
| PredL = ICmpInst::getSwappedPredicate(PredL); |
| std::swap(LHS0, LHS1); |
| } |
| if (LHS0 == RHS0 && LHS1 == RHS1) { |
| unsigned Code = IsAnd ? getICmpCode(PredL) & getICmpCode(PredR) |
| : getICmpCode(PredL) | getICmpCode(PredR); |
| bool IsSigned = LHS->isSigned() || RHS->isSigned(); |
| return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder); |
| } |
| } |
| |
| // handle (roughly): |
| // (icmp ne (A & B), C) | (icmp ne (A & D), E) |
| // (icmp eq (A & B), C) & (icmp eq (A & D), E) |
| if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, IsAnd, IsLogical, Builder, Q)) |
| return V; |
| |
| if (Value *V = |
| foldAndOrOfICmpEqConstantAndICmp(LHS, RHS, IsAnd, IsLogical, Builder)) |
| return V; |
| // We can treat logical like bitwise here, because both operands are used on |
| // the LHS, and as such poison from both will propagate. |
| if (Value *V = foldAndOrOfICmpEqConstantAndICmp(RHS, LHS, IsAnd, |
| /*IsLogical*/ false, Builder)) |
| return V; |
| |
| if (Value *V = |
| foldAndOrOfICmpsWithConstEq(LHS, RHS, IsAnd, IsLogical, Builder, Q)) |
| return V; |
| // We can convert this case to bitwise and, because both operands are used |
| // on the LHS, and as such poison from both will propagate. |
| if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, IsAnd, |
| /*IsLogical=*/false, Builder, Q)) { |
| // If RHS is still used, we should drop samesign flag. |
| if (IsLogical && RHS->hasSameSign() && !RHS->use_empty()) { |
| RHS->setSameSign(false); |
| addToWorklist(RHS); |
| } |
| return V; |
| } |
| |
| if (Value *V = foldIsPowerOf2OrZero(LHS, RHS, IsAnd, Builder, *this)) |
| return V; |
| if (Value *V = foldIsPowerOf2OrZero(RHS, LHS, IsAnd, Builder, *this)) |
| return V; |
| |
| // TODO: One of these directions is fine with logical and/or, the other could |
| // be supported by inserting freeze. |
| if (!IsLogical) { |
| // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n |
| // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n |
| if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/!IsAnd)) |
| return V; |
| |
| // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n |
| // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n |
| if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/!IsAnd)) |
| return V; |
| } |
| |
| // TODO: Add conjugated or fold, check whether it is safe for logical and/or. |
| if (IsAnd && !IsLogical) |
| if (Value *V = foldSignedTruncationCheck(LHS, RHS, I, Builder)) |
| return V; |
| |
| if (Value *V = foldIsPowerOf2(LHS, RHS, IsAnd, Builder, *this)) |
| return V; |
| |
| if (Value *V = foldPowerOf2AndShiftedMask(LHS, RHS, IsAnd, Builder)) |
| return V; |
| |
| // TODO: Verify whether this is safe for logical and/or. |
| if (!IsLogical) { |
| if (Value *X = foldUnsignedUnderflowCheck(LHS, RHS, IsAnd, Q, Builder)) |
| return X; |
| if (Value *X = foldUnsignedUnderflowCheck(RHS, LHS, IsAnd, Q, Builder)) |
| return X; |
| } |
| |
| // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0) |
| // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0) |
| // TODO: Remove this and below when foldLogOpOfMaskedICmps can handle undefs. |
| if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && |
| PredL == PredR && match(LHS1, m_ZeroInt()) && match(RHS1, m_ZeroInt()) && |
| LHS0->getType() == RHS0->getType() && |
| (!IsLogical || isGuaranteedNotToBePoison(RHS0))) { |
| Value *NewOr = Builder.CreateOr(LHS0, RHS0); |
| return Builder.CreateICmp(PredL, NewOr, |
| Constant::getNullValue(NewOr->getType())); |
| } |
| |
| // (icmp ne A, -1) | (icmp ne B, -1) --> (icmp ne (A&B), -1) |
| // (icmp eq A, -1) & (icmp eq B, -1) --> (icmp eq (A&B), -1) |
| if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && |
| PredL == PredR && match(LHS1, m_AllOnes()) && match(RHS1, m_AllOnes()) && |
| LHS0->getType() == RHS0->getType() && |
| (!IsLogical || isGuaranteedNotToBePoison(RHS0))) { |
| Value *NewAnd = Builder.CreateAnd(LHS0, RHS0); |
| return Builder.CreateICmp(PredL, NewAnd, |
| Constant::getAllOnesValue(LHS0->getType())); |
| } |
| |
| if (!IsLogical) |
| if (Value *V = |
| foldAndOrOfICmpsWithPow2AndWithZero(Builder, LHS, RHS, IsAnd, Q)) |
| return V; |
| |
| // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). |
| if (!LHSC || !RHSC) |
| return nullptr; |
| |
| // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2 |
| // (trunc x) != C1 | (and x, CA) != C2 -> (and x, CA|CMAX) != C1|C2 |
| // where CMAX is the all ones value for the truncated type, |
| // iff the lower bits of C2 and CA are zero. |
| if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && |
| PredL == PredR && LHS->hasOneUse() && RHS->hasOneUse()) { |
| Value *V; |
| const APInt *AndC, *SmallC = nullptr, *BigC = nullptr; |
| |
| // (trunc x) == C1 & (and x, CA) == C2 |
| // (and x, CA) == C2 & (trunc x) == C1 |
| if (match(RHS0, m_Trunc(m_Value(V))) && |
| match(LHS0, m_And(m_Specific(V), m_APInt(AndC)))) { |
| SmallC = RHSC; |
| BigC = LHSC; |
| } else if (match(LHS0, m_Trunc(m_Value(V))) && |
| match(RHS0, m_And(m_Specific(V), m_APInt(AndC)))) { |
| SmallC = LHSC; |
| BigC = RHSC; |
| } |
| |
| if (SmallC && BigC) { |
| unsigned BigBitSize = BigC->getBitWidth(); |
| unsigned SmallBitSize = SmallC->getBitWidth(); |
| |
| // Check that the low bits are zero. |
| APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize); |
| if ((Low & *AndC).isZero() && (Low & *BigC).isZero()) { |
| Value *NewAnd = Builder.CreateAnd(V, Low | *AndC); |
| APInt N = SmallC->zext(BigBitSize) | *BigC; |
| Value *NewVal = ConstantInt::get(NewAnd->getType(), N); |
| return Builder.CreateICmp(PredL, NewAnd, NewVal); |
| } |
| } |
| } |
| |
| // Match naive pattern (and its inverted form) for checking if two values |
| // share same sign. An example of the pattern: |
| // (icmp slt (X & Y), 0) | (icmp sgt (X | Y), -1) -> (icmp sgt (X ^ Y), -1) |
| // Inverted form (example): |
| // (icmp slt (X | Y), 0) & (icmp sgt (X & Y), -1) -> (icmp slt (X ^ Y), 0) |
| bool TrueIfSignedL, TrueIfSignedR; |
| if (isSignBitCheck(PredL, *LHSC, TrueIfSignedL) && |
| isSignBitCheck(PredR, *RHSC, TrueIfSignedR) && |
| (RHS->hasOneUse() || LHS->hasOneUse())) { |
| Value *X, *Y; |
| if (IsAnd) { |
| if ((TrueIfSignedL && !TrueIfSignedR && |
| match(LHS0, m_Or(m_Value(X), m_Value(Y))) && |
| match(RHS0, m_c_And(m_Specific(X), m_Specific(Y)))) || |
| (!TrueIfSignedL && TrueIfSignedR && |
| match(LHS0, m_And(m_Value(X), m_Value(Y))) && |
| match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y))))) { |
| Value *NewXor = Builder.CreateXor(X, Y); |
| return Builder.CreateIsNeg(NewXor); |
| } |
| } else { |
| if ((TrueIfSignedL && !TrueIfSignedR && |
| match(LHS0, m_And(m_Value(X), m_Value(Y))) && |
| match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y)))) || |
| (!TrueIfSignedL && TrueIfSignedR && |
| match(LHS0, m_Or(m_Value(X), m_Value(Y))) && |
| match(RHS0, m_c_And(m_Specific(X), m_Specific(Y))))) { |
| Value *NewXor = Builder.CreateXor(X, Y); |
| return Builder.CreateIsNotNeg(NewXor); |
| } |
| } |
| } |
| |
| return foldAndOrOfICmpsUsingRanges(LHS, RHS, IsAnd); |
| } |
| |
| /// If IsLogical is true, then the and/or is in select form and the transform |
| /// must be poison-safe. |
| Value *InstCombinerImpl::foldBooleanAndOr(Value *LHS, Value *RHS, |
| Instruction &I, bool IsAnd, |
| bool IsLogical) { |
| if (!LHS->getType()->isIntOrIntVectorTy(1)) |
| return nullptr; |
| |
| if (auto *LHSCmp = dyn_cast<ICmpInst>(LHS)) |
| if (auto *RHSCmp = dyn_cast<ICmpInst>(RHS)) |
| if (Value *Res = foldAndOrOfICmps(LHSCmp, RHSCmp, I, IsAnd, IsLogical)) |
| return Res; |
| |
| if (auto *LHSCmp = dyn_cast<FCmpInst>(LHS)) |
| if (auto *RHSCmp = dyn_cast<FCmpInst>(RHS)) |
| if (Value *Res = foldLogicOfFCmps(LHSCmp, RHSCmp, IsAnd, IsLogical)) |
| return Res; |
| |
| if (Value *Res = foldEqOfParts(LHS, RHS, IsAnd)) |
| return Res; |
| |
| return nullptr; |
| } |
| |
| static Value *foldOrOfInversions(BinaryOperator &I, |
| InstCombiner::BuilderTy &Builder) { |
| assert(I.getOpcode() == Instruction::Or && |
| "Simplification only supports or at the moment."); |
| |
| Value *Cmp1, *Cmp2, *Cmp3, *Cmp4; |
| if (!match(I.getOperand(0), m_And(m_Value(Cmp1), m_Value(Cmp2))) || |
| !match(I.getOperand(1), m_And(m_Value(Cmp3), m_Value(Cmp4)))) |
| return nullptr; |
| |
| // Check if any two pairs of the and operations are inversions of each other. |
| if (isKnownInversion(Cmp1, Cmp3) && isKnownInversion(Cmp2, Cmp4)) |
| return Builder.CreateXor(Cmp1, Cmp4); |
| if (isKnownInversion(Cmp1, Cmp4) && isKnownInversion(Cmp2, Cmp3)) |
| return Builder.CreateXor(Cmp1, Cmp3); |
| |
| return nullptr; |
| } |
| |
| // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches |
| // here. We should standardize that construct where it is needed or choose some |
| // other way to ensure that commutated variants of patterns are not missed. |
| Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) { |
| if (Value *V = simplifyOrInst(I.getOperand(0), I.getOperand(1), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (SimplifyAssociativeOrCommutative(I)) |
| return &I; |
| |
| if (Instruction *X = foldVectorBinop(I)) |
| return X; |
| |
| if (Instruction *Phi = foldBinopWithPhiOperands(I)) |
| return Phi; |
| |
| // See if we can simplify any instructions used by the instruction whose sole |
| // purpose is to compute bits we don't care about. |
| if (SimplifyDemandedInstructionBits(I)) |
| return &I; |
| |
| // Do this before using distributive laws to catch simple and/or/not patterns. |
| if (Instruction *Xor = foldOrToXor(I, Builder)) |
| return Xor; |
| |
| if (Instruction *X = foldComplexAndOrPatterns(I, Builder)) |
| return X; |
| |
| // (A & B) | (C & D) -> A ^ D where A == ~C && B == ~D |
| // (A & B) | (C & D) -> A ^ C where A == ~D && B == ~C |
| if (Value *V = foldOrOfInversions(I, Builder)) |
| return replaceInstUsesWith(I, V); |
| |
| // (A&B)|(A&C) -> A&(B|C) etc |
| if (Value *V = foldUsingDistributiveLaws(I)) |
| return replaceInstUsesWith(I, V); |
| |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| Type *Ty = I.getType(); |
| if (Ty->isIntOrIntVectorTy(1)) { |
| if (auto *SI0 = dyn_cast<SelectInst>(Op0)) { |
| if (auto *R = |
| foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ false)) |
| return R; |
| } |
| if (auto *SI1 = dyn_cast<SelectInst>(Op1)) { |
| if (auto *R = |
| foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ false)) |
| return R; |
| } |
| } |
| |
| if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) |
| return FoldedLogic; |
| |
| if (Instruction *BitOp = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true, |
| /*MatchBitReversals*/ true)) |
| return BitOp; |
| |
| if (Instruction *Funnel = matchFunnelShift(I, *this)) |
| return Funnel; |
| |
| if (Instruction *Concat = matchOrConcat(I, Builder)) |
| return replaceInstUsesWith(I, Concat); |
| |
| if (Instruction *R = foldBinOpShiftWithShift(I)) |
| return R; |
| |
| if (Instruction *R = tryFoldInstWithCtpopWithNot(&I)) |
| return R; |
| |
| if (cast<PossiblyDisjointInst>(I).isDisjoint()) { |
| if (Instruction *R = |
| foldAddLikeCommutative(I.getOperand(0), I.getOperand(1), |
| /*NSW=*/true, /*NUW=*/true)) |
| return R; |
| if (Instruction *R = |
| foldAddLikeCommutative(I.getOperand(1), I.getOperand(0), |
| /*NSW=*/true, /*NUW=*/true)) |
| return R; |
| } |
| |
| Value *X, *Y; |
| const APInt *CV; |
| if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) && |
| !CV->isAllOnes() && MaskedValueIsZero(Y, *CV, 0, &I)) { |
| // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0 |
| // The check for a 'not' op is for efficiency (if Y is known zero --> ~X). |
| Value *Or = Builder.CreateOr(X, Y); |
| return BinaryOperator::CreateXor(Or, ConstantInt::get(Ty, *CV)); |
| } |
| |
| // If the operands have no common bits set: |
| // or (mul X, Y), X --> add (mul X, Y), X --> mul X, (Y + 1) |
| if (match(&I, m_c_DisjointOr(m_OneUse(m_Mul(m_Value(X), m_Value(Y))), |
| m_Deferred(X)))) { |
| Value *IncrementY = Builder.CreateAdd(Y, ConstantInt::get(Ty, 1)); |
| return BinaryOperator::CreateMul(X, IncrementY); |
| } |
| |
| // (A & C) | (B & D) |
| Value *A, *B, *C, *D; |
| if (match(Op0, m_And(m_Value(A), m_Value(C))) && |
| match(Op1, m_And(m_Value(B), m_Value(D)))) { |
| |
| // (A & C0) | (B & C1) |
| const APInt *C0, *C1; |
| if (match(C, m_APInt(C0)) && match(D, m_APInt(C1))) { |
| Value *X; |
| if (*C0 == ~*C1) { |
| // ((X | B) & MaskC) | (B & ~MaskC) -> (X & MaskC) | B |
| if (match(A, m_c_Or(m_Value(X), m_Specific(B)))) |
| return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C0), B); |
| // (A & MaskC) | ((X | A) & ~MaskC) -> (X & ~MaskC) | A |
| if (match(B, m_c_Or(m_Specific(A), m_Value(X)))) |
| return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C1), A); |
| |
| // ((X ^ B) & MaskC) | (B & ~MaskC) -> (X & MaskC) ^ B |
| if (match(A, m_c_Xor(m_Value(X), m_Specific(B)))) |
| return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C0), B); |
| // (A & MaskC) | ((X ^ A) & ~MaskC) -> (X & ~MaskC) ^ A |
| if (match(B, m_c_Xor(m_Specific(A), m_Value(X)))) |
| return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C1), A); |
| } |
| |
| if ((*C0 & *C1).isZero()) { |
| // ((X | B) & C0) | (B & C1) --> (X | B) & (C0 | C1) |
| // iff (C0 & C1) == 0 and (X & ~C0) == 0 |
| if (match(A, m_c_Or(m_Value(X), m_Specific(B))) && |
| MaskedValueIsZero(X, ~*C0, 0, &I)) { |
| Constant *C01 = ConstantInt::get(Ty, *C0 | *C1); |
| return BinaryOperator::CreateAnd(A, C01); |
| } |
| // (A & C0) | ((X | A) & C1) --> (X | A) & (C0 | C1) |
| // iff (C0 & C1) == 0 and (X & ~C1) == 0 |
| if (match(B, m_c_Or(m_Value(X), m_Specific(A))) && |
| MaskedValueIsZero(X, ~*C1, 0, &I)) { |
| Constant *C01 = ConstantInt::get(Ty, *C0 | *C1); |
| return BinaryOperator::CreateAnd(B, C01); |
| } |
| // ((X | C2) & C0) | ((X | C3) & C1) --> (X | C2 | C3) & (C0 | C1) |
| // iff (C0 & C1) == 0 and (C2 & ~C0) == 0 and (C3 & ~C1) == 0. |
| const APInt *C2, *C3; |
| if (match(A, m_Or(m_Value(X), m_APInt(C2))) && |
| match(B, m_Or(m_Specific(X), m_APInt(C3))) && |
| (*C2 & ~*C0).isZero() && (*C3 & ~*C1).isZero()) { |
| Value *Or = Builder.CreateOr(X, *C2 | *C3, "bitfield"); |
| Constant *C01 = ConstantInt::get(Ty, *C0 | *C1); |
| return BinaryOperator::CreateAnd(Or, C01); |
| } |
| } |
| } |
| |
| // Don't try to form a select if it's unlikely that we'll get rid of at |
| // least one of the operands. A select is generally more expensive than the |
| // 'or' that it is replacing. |
| if (Op0->hasOneUse() || Op1->hasOneUse()) { |
| // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants. |
| if (Value *V = matchSelectFromAndOr(A, C, B, D)) |
| return replaceInstUsesWith(I, V); |
| if (Value *V = matchSelectFromAndOr(A, C, D, B)) |
| return replaceInstUsesWith(I, V); |
| if (Value *V = matchSelectFromAndOr(C, A, B, D)) |
| return replaceInstUsesWith(I, V); |
| if (Value *V = matchSelectFromAndOr(C, A, D, B)) |
| return replaceInstUsesWith(I, V); |
| if (Value *V = matchSelectFromAndOr(B, D, A, C)) |
| return replaceInstUsesWith(I, V); |
| if (Value *V = matchSelectFromAndOr(B, D, C, A)) |
| return replaceInstUsesWith(I, V); |
| if (Value *V = matchSelectFromAndOr(D, B, A, C)) |
| return replaceInstUsesWith(I, V); |
| if (Value *V = matchSelectFromAndOr(D, B, C, A)) |
| return replaceInstUsesWith(I, V); |
| } |
| } |
| |
| if (match(Op0, m_And(m_Value(A), m_Value(C))) && |
| match(Op1, m_Not(m_Or(m_Value(B), m_Value(D)))) && |
| (Op0->hasOneUse() || Op1->hasOneUse())) { |
| // (Cond & C) | ~(Cond | D) -> Cond ? C : ~D |
| if (Value *V = matchSelectFromAndOr(A, C, B, D, true)) |
| return replaceInstUsesWith(I, V); |
| if (Value *V = matchSelectFromAndOr(A, C, D, B, true)) |
| return replaceInstUsesWith(I, V); |
| if (Value *V = matchSelectFromAndOr(C, A, B, D, true)) |
| return replaceInstUsesWith(I, V); |
| if (Value *V = matchSelectFromAndOr(C, A, D, B, true)) |
| return replaceInstUsesWith(I, V); |
| } |
| |
| // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C |
| if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) |
| if (match(Op1, |
| m_c_Xor(m_c_Xor(m_Specific(B), m_Value(C)), m_Specific(A))) || |
| match(Op1, m_c_Xor(m_c_Xor(m_Specific(A), m_Value(C)), m_Specific(B)))) |
| return BinaryOperator::CreateOr(Op0, C); |
| |
| // ((B ^ C) ^ A) | (A ^ B) -> (A ^ B) | C |
| if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) |
| if (match(Op0, |
| m_c_Xor(m_c_Xor(m_Specific(B), m_Value(C)), m_Specific(A))) || |
| match(Op0, m_c_Xor(m_c_Xor(m_Specific(A), m_Value(C)), m_Specific(B)))) |
| return BinaryOperator::CreateOr(Op1, C); |
| |
| if (Instruction *DeMorgan = matchDeMorgansLaws(I, *this)) |
| return DeMorgan; |
| |
| // Canonicalize xor to the RHS. |
| bool SwappedForXor = false; |
| if (match(Op0, m_Xor(m_Value(), m_Value()))) { |
| std::swap(Op0, Op1); |
| SwappedForXor = true; |
| } |
| |
| if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) { |
| // (A | ?) | (A ^ B) --> (A | ?) | B |
| // (B | ?) | (A ^ B) --> (B | ?) | A |
| if (match(Op0, m_c_Or(m_Specific(A), m_Value()))) |
| return BinaryOperator::CreateOr(Op0, B); |
| if (match(Op0, m_c_Or(m_Specific(B), m_Value()))) |
| return BinaryOperator::CreateOr(Op0, A); |
| |
| // (A & B) | (A ^ B) --> A | B |
| // (B & A) | (A ^ B) --> A | B |
| if (match(Op0, m_c_And(m_Specific(A), m_Specific(B)))) |
| return BinaryOperator::CreateOr(A, B); |
| |
| // ~A | (A ^ B) --> ~(A & B) |
| // ~B | (A ^ B) --> ~(A & B) |
| // The swap above should always make Op0 the 'not'. |
| if ((Op0->hasOneUse() || Op1->hasOneUse()) && |
| (match(Op0, m_Not(m_Specific(A))) || match(Op0, m_Not(m_Specific(B))))) |
| return BinaryOperator::CreateNot(Builder.CreateAnd(A, B)); |
| |
| // Same as above, but peek through an 'and' to the common operand: |
| // ~(A & ?) | (A ^ B) --> ~((A & ?) & B) |
| // ~(B & ?) | (A ^ B) --> ~((B & ?) & A) |
| Instruction *And; |
| if ((Op0->hasOneUse() || Op1->hasOneUse()) && |
| match(Op0, m_Not(m_CombineAnd(m_Instruction(And), |
| m_c_And(m_Specific(A), m_Value()))))) |
| return BinaryOperator::CreateNot(Builder.CreateAnd(And, B)); |
| if ((Op0->hasOneUse() || Op1->hasOneUse()) && |
| match(Op0, m_Not(m_CombineAnd(m_Instruction(And), |
| m_c_And(m_Specific(B), m_Value()))))) |
| return BinaryOperator::CreateNot(Builder.CreateAnd(And, A)); |
| |
| // (~A | C) | (A ^ B) --> ~(A & B) | C |
| // (~B | C) | (A ^ B) --> ~(A & B) | C |
| if (Op0->hasOneUse() && Op1->hasOneUse() && |
| (match(Op0, m_c_Or(m_Not(m_Specific(A)), m_Value(C))) || |
| match(Op0, m_c_Or(m_Not(m_Specific(B)), m_Value(C))))) { |
| Value *Nand = Builder.CreateNot(Builder.CreateAnd(A, B), "nand"); |
| return BinaryOperator::CreateOr(Nand, C); |
| } |
| } |
| |
| if (SwappedForXor) |
| std::swap(Op0, Op1); |
| |
| if (Value *Res = |
| foldBooleanAndOr(Op0, Op1, I, /*IsAnd=*/false, /*IsLogical=*/false)) |
| return replaceInstUsesWith(I, Res); |
| |
| if (match(Op1, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) { |
| bool IsLogical = isa<SelectInst>(Op1); |
| if (auto *V = reassociateBooleanAndOr(Op0, X, Y, I, /*IsAnd=*/false, |
| /*RHSIsLogical=*/IsLogical)) |
| return replaceInstUsesWith(I, V); |
| } |
| if (match(Op0, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) { |
| bool IsLogical = isa<SelectInst>(Op0); |
| if (auto *V = reassociateBooleanAndOr(Op1, X, Y, I, /*IsAnd=*/false, |
| /*RHSIsLogical=*/IsLogical)) |
| return replaceInstUsesWith(I, V); |
| } |
| |
| if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder)) |
| return FoldedFCmps; |
| |
| if (Instruction *CastedOr = foldCastedBitwiseLogic(I)) |
| return CastedOr; |
| |
| if (Instruction *Sel = foldBinopOfSextBoolToSelect(I)) |
| return Sel; |
| |
| // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>. |
| // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold |
| // with binop identity constant. But creating a select with non-constant |
| // arm may not be reversible due to poison semantics. Is that a good |
| // canonicalization? |
| if (match(&I, m_c_Or(m_OneUse(m_SExt(m_Value(A))), m_Value(B))) && |
| A->getType()->isIntOrIntVectorTy(1)) |
| return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), B); |
| |
| // Note: If we've gotten to the point of visiting the outer OR, then the |
| // inner one couldn't be simplified. If it was a constant, then it won't |
| // be simplified by a later pass either, so we try swapping the inner/outer |
| // ORs in the hopes that we'll be able to simplify it this way. |
| // (X|C) | V --> (X|V) | C |
| ConstantInt *CI; |
| if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) && |
| match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) { |
| Value *Inner = Builder.CreateOr(A, Op1); |
| Inner->takeName(Op0); |
| return BinaryOperator::CreateOr(Inner, CI); |
| } |
| |
| // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D)) |
| // Since this OR statement hasn't been optimized further yet, we hope |
| // that this transformation will allow the new ORs to be optimized. |
| { |
| Value *X = nullptr, *Y = nullptr; |
| if (Op0->hasOneUse() && Op1->hasOneUse() && |
| match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) && |
| match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) { |
| Value *orTrue = Builder.CreateOr(A, C); |
| Value *orFalse = Builder.CreateOr(B, D); |
| return SelectInst::Create(X, orTrue, orFalse); |
| } |
| } |
| |
| // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X) --> X s> Y ? -1 : X. |
| { |
| Value *X, *Y; |
| if (match(&I, m_c_Or(m_OneUse(m_AShr( |
| m_NSWSub(m_Value(Y), m_Value(X)), |
| m_SpecificInt(Ty->getScalarSizeInBits() - 1))), |
| m_Deferred(X)))) { |
| Value *NewICmpInst = Builder.CreateICmpSGT(X, Y); |
| Value *AllOnes = ConstantInt::getAllOnesValue(Ty); |
| return SelectInst::Create(NewICmpInst, AllOnes, X); |
| } |
| } |
| |
| { |
| // ((A & B) ^ A) | ((A & B) ^ B) -> A ^ B |
| // (A ^ (A & B)) | (B ^ (A & B)) -> A ^ B |
| // ((A & B) ^ B) | ((A & B) ^ A) -> A ^ B |
| // (B ^ (A & B)) | (A ^ (A & B)) -> A ^ B |
| const auto TryXorOpt = [&](Value *Lhs, Value *Rhs) -> Instruction * { |
| if (match(Lhs, m_c_Xor(m_And(m_Value(A), m_Value(B)), m_Deferred(A))) && |
| match(Rhs, |
| m_c_Xor(m_And(m_Specific(A), m_Specific(B)), m_Specific(B)))) { |
| return BinaryOperator::CreateXor(A, B); |
| } |
| return nullptr; |
| }; |
| |
| if (Instruction *Result = TryXorOpt(Op0, Op1)) |
| return Result; |
| if (Instruction *Result = TryXorOpt(Op1, Op0)) |
| return Result; |
| } |
| |
| if (Instruction *V = |
| canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) |
| return V; |
| |
| CmpPredicate Pred; |
| Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv; |
| // Check if the OR weakens the overflow condition for umul.with.overflow by |
| // treating any non-zero result as overflow. In that case, we overflow if both |
| // umul.with.overflow operands are != 0, as in that case the result can only |
| // be 0, iff the multiplication overflows. |
| if (match(&I, |
| m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)), |
| m_Value(Ov)), |
| m_CombineAnd( |
| m_SpecificICmp(ICmpInst::ICMP_NE, |
| m_CombineAnd(m_ExtractValue<0>( |
| m_Deferred(UMulWithOv)), |
| m_Value(Mul)), |
| m_ZeroInt()), |
| m_Value(MulIsNotZero)))) && |
| (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse()))) { |
| Value *A, *B; |
| if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>( |
| m_Value(A), m_Value(B)))) { |
| Value *NotNullA = Builder.CreateIsNotNull(A); |
| Value *NotNullB = Builder.CreateIsNotNull(B); |
| return BinaryOperator::CreateAnd(NotNullA, NotNullB); |
| } |
| } |
| |
| /// Res, Overflow = xxx_with_overflow X, C1 |
| /// Try to canonicalize the pattern "Overflow | icmp pred Res, C2" into |
| /// "Overflow | icmp pred X, C2 +/- C1". |
| const WithOverflowInst *WO; |
| const Value *WOV; |
| const APInt *C1, *C2; |
| if (match(&I, m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_CombineAnd( |
| m_WithOverflowInst(WO), m_Value(WOV))), |
| m_Value(Ov)), |
| m_OneUse(m_ICmp(Pred, m_ExtractValue<0>(m_Deferred(WOV)), |
| m_APInt(C2))))) && |
| (WO->getBinaryOp() == Instruction::Add || |
| WO->getBinaryOp() == Instruction::Sub) && |
| (ICmpInst::isEquality(Pred) || |
| WO->isSigned() == ICmpInst::isSigned(Pred)) && |
| match(WO->getRHS(), m_APInt(C1))) { |
| bool Overflow; |
| APInt NewC = WO->getBinaryOp() == Instruction::Add |
| ? (ICmpInst::isSigned(Pred) ? C2->ssub_ov(*C1, Overflow) |
| : C2->usub_ov(*C1, Overflow)) |
| : (ICmpInst::isSigned(Pred) ? C2->sadd_ov(*C1, Overflow) |
| : C2->uadd_ov(*C1, Overflow)); |
| if (!Overflow || ICmpInst::isEquality(Pred)) { |
| Value *NewCmp = Builder.CreateICmp( |
| Pred, WO->getLHS(), ConstantInt::get(WO->getLHS()->getType(), NewC)); |
| return BinaryOperator::CreateOr(Ov, NewCmp); |
| } |
| } |
| |
| // (~x) | y --> ~(x & (~y)) iff that gets rid of inversions |
| if (sinkNotIntoOtherHandOfLogicalOp(I)) |
| return &I; |
| |
| // Improve "get low bit mask up to and including bit X" pattern: |
| // (1 << X) | ((1 << X) + -1) --> -1 l>> (bitwidth(x) - 1 - X) |
| if (match(&I, m_c_Or(m_Add(m_Shl(m_One(), m_Value(X)), m_AllOnes()), |
| m_Shl(m_One(), m_Deferred(X)))) && |
| match(&I, m_c_Or(m_OneUse(m_Value()), m_Value()))) { |
| Value *Sub = Builder.CreateSub( |
| ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1), X); |
| return BinaryOperator::CreateLShr(Constant::getAllOnesValue(Ty), Sub); |
| } |
| |
| // An or recurrence w/loop invariant step is equivelent to (or start, step) |
| PHINode *PN = nullptr; |
| Value *Start = nullptr, *Step = nullptr; |
| if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN)) |
| return replaceInstUsesWith(I, Builder.CreateOr(Start, Step)); |
| |
| // (A & B) | (C | D) or (C | D) | (A & B) |
| // Can be combined if C or D is of type (A/B & X) |
| if (match(&I, m_c_Or(m_OneUse(m_And(m_Value(A), m_Value(B))), |
| m_OneUse(m_Or(m_Value(C), m_Value(D)))))) { |
| // (A & B) | (C | ?) -> C | (? | (A & B)) |
| // (A & B) | (C | ?) -> C | (? | (A & B)) |
| // (A & B) | (C | ?) -> C | (? | (A & B)) |
| // (A & B) | (C | ?) -> C | (? | (A & B)) |
| // (C | ?) | (A & B) -> C | (? | (A & B)) |
| // (C | ?) | (A & B) -> C | (? | (A & B)) |
| // (C | ?) | (A & B) -> C | (? | (A & B)) |
| // (C | ?) | (A & B) -> C | (? | (A & B)) |
| if (match(D, m_OneUse(m_c_And(m_Specific(A), m_Value()))) || |
| match(D, m_OneUse(m_c_And(m_Specific(B), m_Value())))) |
| return BinaryOperator::CreateOr( |
| C, Builder.CreateOr(D, Builder.CreateAnd(A, B))); |
| // (A & B) | (? | D) -> (? | (A & B)) | D |
| // (A & B) | (? | D) -> (? | (A & B)) | D |
| // (A & B) | (? | D) -> (? | (A & B)) | D |
| // (A & B) | (? | D) -> (? | (A & B)) | D |
| // (? | D) | (A & B) -> (? | (A & B)) | D |
| // (? | D) | (A & B) -> (? | (A & B)) | D |
| // (? | D) | (A & B) -> (? | (A & B)) | D |
| // (? | D) | (A & B) -> (? | (A & B)) | D |
| if (match(C, m_OneUse(m_c_And(m_Specific(A), m_Value()))) || |
| match(C, m_OneUse(m_c_And(m_Specific(B), m_Value())))) |
| return BinaryOperator::CreateOr( |
| Builder.CreateOr(C, Builder.CreateAnd(A, B)), D); |
| } |
| |
| if (Instruction *R = reassociateForUses(I, Builder)) |
| return R; |
| |
| if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder)) |
| return Canonicalized; |
| |
| if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1)) |
| return Folded; |
| |
| if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) |
| return Res; |
| |
| // If we are setting the sign bit of a floating-point value, convert |
| // this to fneg(fabs), then cast back to integer. |
| // |
| // If the result isn't immediately cast back to a float, this will increase |
| // the number of instructions. This is still probably a better canonical form |
| // as it enables FP value tracking. |
| // |
| // Assumes any IEEE-represented type has the sign bit in the high bit. |
| // |
| // This is generous interpretation of noimplicitfloat, this is not a true |
| // floating-point operation. |
| Value *CastOp; |
| if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) && |
| match(Op1, m_SignMask()) && |
| !Builder.GetInsertBlock()->getParent()->hasFnAttribute( |
| Attribute::NoImplicitFloat)) { |
| Type *EltTy = CastOp->getType()->getScalarType(); |
| if (EltTy->isFloatingPointTy() && EltTy->isIEEE()) { |
| Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp); |
| Value *FNegFAbs = Builder.CreateFNeg(FAbs); |
| return new BitCastInst(FNegFAbs, I.getType()); |
| } |
| } |
| |
| // (X & C1) | C2 -> X & (C1 | C2) iff (X & C2) == C2 |
| if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C1)))) && |
| match(Op1, m_APInt(C2))) { |
| KnownBits KnownX = computeKnownBits(X, /*Depth*/ 0, &I); |
| if ((KnownX.One & *C2) == *C2) |
| return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *C1 | *C2)); |
| } |
| |
| if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder)) |
| return Res; |
| |
| if (Value *V = |
| simplifyAndOrWithOpReplaced(Op0, Op1, Constant::getNullValue(Ty), |
| /*SimplifyOnly*/ false, *this)) |
| return BinaryOperator::CreateOr(V, Op1); |
| if (Value *V = |
| simplifyAndOrWithOpReplaced(Op1, Op0, Constant::getNullValue(Ty), |
| /*SimplifyOnly*/ false, *this)) |
| return BinaryOperator::CreateOr(Op0, V); |
| |
| if (cast<PossiblyDisjointInst>(I).isDisjoint()) |
| if (Value *V = SimplifyAddWithRemainder(I)) |
| return replaceInstUsesWith(I, V); |
| |
| return nullptr; |
| } |
| |
| /// A ^ B can be specified using other logic ops in a variety of patterns. We |
| /// can fold these early and efficiently by morphing an existing instruction. |
| static Instruction *foldXorToXor(BinaryOperator &I, |
| InstCombiner::BuilderTy &Builder) { |
| assert(I.getOpcode() == Instruction::Xor); |
| Value *Op0 = I.getOperand(0); |
| Value *Op1 = I.getOperand(1); |
| Value *A, *B; |
| |
| // There are 4 commuted variants for each of the basic patterns. |
| |
| // (A & B) ^ (A | B) -> A ^ B |
| // (A & B) ^ (B | A) -> A ^ B |
| // (A | B) ^ (A & B) -> A ^ B |
| // (A | B) ^ (B & A) -> A ^ B |
| if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)), |
| m_c_Or(m_Deferred(A), m_Deferred(B))))) |
| return BinaryOperator::CreateXor(A, B); |
| |
| // (A | ~B) ^ (~A | B) -> A ^ B |
| // (~B | A) ^ (~A | B) -> A ^ B |
| // (~A | B) ^ (A | ~B) -> A ^ B |
| // (B | ~A) ^ (A | ~B) -> A ^ B |
| if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))), |
| m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) |
| return BinaryOperator::CreateXor(A, B); |
| |
| // (A & ~B) ^ (~A & B) -> A ^ B |
| // (~B & A) ^ (~A & B) -> A ^ B |
| // (~A & B) ^ (A & ~B) -> A ^ B |
| // (B & ~A) ^ (A & ~B) -> A ^ B |
| if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))), |
| m_c_And(m_Not(m_Deferred(A)), m_Deferred(B))))) |
| return BinaryOperator::CreateXor(A, B); |
| |
| // For the remaining cases we need to get rid of one of the operands. |
| if (!Op0->hasOneUse() && !Op1->hasOneUse()) |
| return nullptr; |
| |
| // (A | B) ^ ~(A & B) -> ~(A ^ B) |
| // (A | B) ^ ~(B & A) -> ~(A ^ B) |
| // (A & B) ^ ~(A | B) -> ~(A ^ B) |
| // (A & B) ^ ~(B | A) -> ~(A ^ B) |
| // Complexity sorting ensures the not will be on the right side. |
| if ((match(Op0, m_Or(m_Value(A), m_Value(B))) && |
| match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) || |
| (match(Op0, m_And(m_Value(A), m_Value(B))) && |
| match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))) |
| return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); |
| |
| return nullptr; |
| } |
| |
| Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, |
| BinaryOperator &I) { |
| assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS && |
| I.getOperand(1) == RHS && "Should be 'xor' with these operands"); |
| |
| ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); |
| Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); |
| Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); |
| |
| if (predicatesFoldable(PredL, PredR)) { |
| if (LHS0 == RHS1 && LHS1 == RHS0) { |
| std::swap(LHS0, LHS1); |
| PredL = ICmpInst::getSwappedPredicate(PredL); |
| } |
| if (LHS0 == RHS0 && LHS1 == RHS1) { |
| // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) |
| unsigned Code = getICmpCode(PredL) ^ getICmpCode(PredR); |
| bool IsSigned = LHS->isSigned() || RHS->isSigned(); |
| return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder); |
| } |
| } |
| |
| const APInt *LC, *RC; |
| if (match(LHS1, m_APInt(LC)) && match(RHS1, m_APInt(RC)) && |
| LHS0->getType() == RHS0->getType() && |
| LHS0->getType()->isIntOrIntVectorTy()) { |
| // Convert xor of signbit tests to signbit test of xor'd values: |
| // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0 |
| // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0 |
| // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1 |
| // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1 |
| bool TrueIfSignedL, TrueIfSignedR; |
| if ((LHS->hasOneUse() || RHS->hasOneUse()) && |
| isSignBitCheck(PredL, *LC, TrueIfSignedL) && |
| isSignBitCheck(PredR, *RC, TrueIfSignedR)) { |
| Value *XorLR = Builder.CreateXor(LHS0, RHS0); |
| return TrueIfSignedL == TrueIfSignedR ? Builder.CreateIsNeg(XorLR) : |
| Builder.CreateIsNotNeg(XorLR); |
| } |
| |
| // Fold (icmp pred1 X, C1) ^ (icmp pred2 X, C2) |
| // into a single comparison using range-based reasoning. |
| if (LHS0 == RHS0) { |
| ConstantRange CR1 = ConstantRange::makeExactICmpRegion(PredL, *LC); |
| ConstantRange CR2 = ConstantRange::makeExactICmpRegion(PredR, *RC); |
| auto CRUnion = CR1.exactUnionWith(CR2); |
| auto CRIntersect = CR1.exactIntersectWith(CR2); |
| if (CRUnion && CRIntersect) |
| if (auto CR = CRUnion->exactIntersectWith(CRIntersect->inverse())) { |
| if (CR->isFullSet()) |
| return ConstantInt::getTrue(I.getType()); |
| if (CR->isEmptySet()) |
| return ConstantInt::getFalse(I.getType()); |
| |
| CmpInst::Predicate NewPred; |
| APInt NewC, Offset; |
| CR->getEquivalentICmp(NewPred, NewC, Offset); |
| |
| if ((Offset.isZero() && (LHS->hasOneUse() || RHS->hasOneUse())) || |
| (LHS->hasOneUse() && RHS->hasOneUse())) { |
| Value *NewV = LHS0; |
| Type *Ty = LHS0->getType(); |
| if (!Offset.isZero()) |
| NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset)); |
| return Builder.CreateICmp(NewPred, NewV, |
| ConstantInt::get(Ty, NewC)); |
| } |
| } |
| } |
| |
| // Fold (icmp eq/ne (X & Pow2), 0) ^ (icmp eq/ne (Y & Pow2), 0) into |
| // (icmp eq/ne ((X ^ Y) & Pow2), 0) |
| Value *X, *Y, *Pow2; |
| if (ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && |
| LC->isZero() && RC->isZero() && LHS->hasOneUse() && RHS->hasOneUse() && |
| match(LHS0, m_And(m_Value(X), m_Value(Pow2))) && |
| match(RHS0, m_And(m_Value(Y), m_Specific(Pow2))) && |
| isKnownToBeAPowerOfTwo(Pow2, /*OrZero=*/true, /*Depth=*/0, &I)) { |
| Value *Xor = Builder.CreateXor(X, Y); |
| Value *And = Builder.CreateAnd(Xor, Pow2); |
| return Builder.CreateICmp(PredL == PredR ? ICmpInst::ICMP_NE |
| : ICmpInst::ICMP_EQ, |
| And, ConstantInt::getNullValue(Xor->getType())); |
| } |
| } |
| |
| // Instead of trying to imitate the folds for and/or, decompose this 'xor' |
| // into those logic ops. That is, try to turn this into an and-of-icmps |
| // because we have many folds for that pattern. |
| // |
| // This is based on a truth table definition of xor: |
| // X ^ Y --> (X | Y) & !(X & Y) |
| if (Value *OrICmp = simplifyBinOp(Instruction::Or, LHS, RHS, SQ)) { |
| // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y). |
| // TODO: If OrICmp is false, the whole thing is false (InstSimplify?). |
| if (Value *AndICmp = simplifyBinOp(Instruction::And, LHS, RHS, SQ)) { |
| // TODO: Independently handle cases where the 'and' side is a constant. |
| ICmpInst *X = nullptr, *Y = nullptr; |
| if (OrICmp == LHS && AndICmp == RHS) { |
| // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS --> X & !Y |
| X = LHS; |
| Y = RHS; |
| } |
| if (OrICmp == RHS && AndICmp == LHS) { |
| // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS --> !Y & X |
| X = RHS; |
| Y = LHS; |
| } |
| if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) { |
| // Invert the predicate of 'Y', thus inverting its output. |
| Y->setPredicate(Y->getInversePredicate()); |
| // So, are there other uses of Y? |
| if (!Y->hasOneUse()) { |
| // We need to adapt other uses of Y though. Get a value that matches |
| // the original value of Y before inversion. While this increases |
| // immediate instruction count, we have just ensured that all the |
| // users are freely-invertible, so that 'not' *will* get folded away. |
| BuilderTy::InsertPointGuard Guard(Builder); |
| // Set insertion point to right after the Y. |
| Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator())); |
| Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); |
| // Replace all uses of Y (excluding the one in NotY!) with NotY. |
| Worklist.pushUsersToWorkList(*Y); |
| Y->replaceUsesWithIf(NotY, |
| [NotY](Use &U) { return U.getUser() != NotY; }); |
| } |
| // All done. |
| return Builder.CreateAnd(LHS, RHS); |
| } |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// If we have a masked merge, in the canonical form of: |
| /// (assuming that A only has one use.) |
| /// | A | |B| |
| /// ((x ^ y) & M) ^ y |
| /// | D | |
| /// * If M is inverted: |
| /// | D | |
| /// ((x ^ y) & ~M) ^ y |
| /// We can canonicalize by swapping the final xor operand |
| /// to eliminate the 'not' of the mask. |
| /// ((x ^ y) & M) ^ x |
| /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops |
| /// because that shortens the dependency chain and improves analysis: |
| /// (x & M) | (y & ~M) |
| static Instruction *visitMaskedMerge(BinaryOperator &I, |
| InstCombiner::BuilderTy &Builder) { |
| Value *B, *X, *D; |
| Value *M; |
| if (!match(&I, m_c_Xor(m_Value(B), |
| m_OneUse(m_c_And( |
| m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)), |
| m_Value(D)), |
| m_Value(M)))))) |
| return nullptr; |
| |
| Value *NotM; |
| if (match(M, m_Not(m_Value(NotM)))) { |
| // De-invert the mask and swap the value in B part. |
| Value *NewA = Builder.CreateAnd(D, NotM); |
| return BinaryOperator::CreateXor(NewA, X); |
| } |
| |
| Constant *C; |
| if (D->hasOneUse() && match(M, m_Constant(C))) { |
| // Propagating undef is unsafe. Clamp undef elements to -1. |
| Type *EltTy = C->getType()->getScalarType(); |
| C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy)); |
| // Unfold. |
| Value *LHS = Builder.CreateAnd(X, C); |
| Value *NotC = Builder.CreateNot(C); |
| Value *RHS = Builder.CreateAnd(B, NotC); |
| return BinaryOperator::CreateOr(LHS, RHS); |
| } |
| |
| return nullptr; |
| } |
| |
| static Instruction *foldNotXor(BinaryOperator &I, |
| InstCombiner::BuilderTy &Builder) { |
| Value *X, *Y; |
| // FIXME: one-use check is not needed in general, but currently we are unable |
| // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182) |
| if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y)))))) |
| return nullptr; |
| |
| auto hasCommonOperand = [](Value *A, Value *B, Value *C, Value *D) { |
| return A == C || A == D || B == C || B == D; |
| }; |
| |
| Value *A, *B, *C, *D; |
| // Canonicalize ~((A & B) ^ (A | ?)) -> (A & B) | ~(A | ?) |
| // 4 commuted variants |
| if (match(X, m_And(m_Value(A), m_Value(B))) && |
| match(Y, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) { |
| Value *NotY = Builder.CreateNot(Y); |
| return BinaryOperator::CreateOr(X, NotY); |
| }; |
| |
| // Canonicalize ~((A | ?) ^ (A & B)) -> (A & B) | ~(A | ?) |
| // 4 commuted variants |
| if (match(Y, m_And(m_Value(A), m_Value(B))) && |
| match(X, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) { |
| Value *NotX = Builder.CreateNot(X); |
| return BinaryOperator::CreateOr(Y, NotX); |
| }; |
| |
| return nullptr; |
| } |
| |
| /// Canonicalize a shifty way to code absolute value to the more common pattern |
| /// that uses negation and select. |
| static Instruction *canonicalizeAbs(BinaryOperator &Xor, |
| InstCombiner::BuilderTy &Builder) { |
| assert(Xor.getOpcode() == Instruction::Xor && "Expected an xor instruction."); |
| |
| // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1. |
| // We're relying on the fact that we only do this transform when the shift has |
| // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase |
| // instructions). |
| Value *Op0 = Xor.getOperand(0), *Op1 = Xor.getOperand(1); |
| if (Op0->hasNUses(2)) |
| std::swap(Op0, Op1); |
| |
| Type *Ty = Xor.getType(); |
| Value *A; |
| const APInt *ShAmt; |
| if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && |
| Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && |
| match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) { |
| // Op1 = ashr i32 A, 31 ; smear the sign bit |
| // xor (add A, Op1), Op1 ; add -1 and flip bits if negative |
| // --> (A < 0) ? -A : A |
| Value *IsNeg = Builder.CreateIsNeg(A); |
| // Copy the nsw flags from the add to the negate. |
| auto *Add = cast<BinaryOperator>(Op0); |
| Value *NegA = Add->hasNoUnsignedWrap() |
| ? Constant::getNullValue(A->getType()) |
| : Builder.CreateNeg(A, "", Add->hasNoSignedWrap()); |
| return SelectInst::Create(IsNeg, NegA, A); |
| } |
| return nullptr; |
| } |
| |
| static bool canFreelyInvert(InstCombiner &IC, Value *Op, |
| Instruction *IgnoredUser) { |
| auto *I = dyn_cast<Instruction>(Op); |
| return I && IC.isFreeToInvert(I, /*WillInvertAllUses=*/true) && |
| IC.canFreelyInvertAllUsersOf(I, IgnoredUser); |
| } |
| |
| static Value *freelyInvert(InstCombinerImpl &IC, Value *Op, |
| Instruction *IgnoredUser) { |
| auto *I = cast<Instruction>(Op); |
| IC.Builder.SetInsertPoint(*I->getInsertionPointAfterDef()); |
| Value *NotOp = IC.Builder.CreateNot(Op, Op->getName() + ".not"); |
| Op->replaceUsesWithIf(NotOp, |
| [NotOp](Use &U) { return U.getUser() != NotOp; }); |
| IC.freelyInvertAllUsersOf(NotOp, IgnoredUser); |
| return NotOp; |
| } |
| |
| // Transform |
| // z = ~(x &/| y) |
| // into: |
| // z = ((~x) |/& (~y)) |
| // iff both x and y are free to invert and all uses of z can be freely updated. |
| bool InstCombinerImpl::sinkNotIntoLogicalOp(Instruction &I) { |
| Value *Op0, *Op1; |
| if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1)))) |
| return false; |
| |
| // If this logic op has not been simplified yet, just bail out and let that |
| // happen first. Otherwise, the code below may wrongly invert. |
| if (Op0 == Op1) |
| return false; |
| |
| Instruction::BinaryOps NewOpc = |
| match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And; |
| bool IsBinaryOp = isa<BinaryOperator>(I); |
| |
| // Can our users be adapted? |
| if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) |
| return false; |
| |
| // And can the operands be adapted? |
| if (!canFreelyInvert(*this, Op0, &I) || !canFreelyInvert(*this, Op1, &I)) |
| return false; |
| |
| Op0 = freelyInvert(*this, Op0, &I); |
| Op1 = freelyInvert(*this, Op1, &I); |
| |
| Builder.SetInsertPoint(*I.getInsertionPointAfterDef()); |
| Value *NewLogicOp; |
| if (IsBinaryOp) |
| NewLogicOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not"); |
| else |
| NewLogicOp = |
| Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not"); |
| |
| replaceInstUsesWith(I, NewLogicOp); |
| // We can not just create an outer `not`, it will most likely be immediately |
| // folded back, reconstructing our initial pattern, and causing an |
| // infinite combine loop, so immediately manually fold it away. |
| freelyInvertAllUsersOf(NewLogicOp); |
| return true; |
| } |
| |
| // Transform |
| // z = (~x) &/| y |
| // into: |
| // z = ~(x |/& (~y)) |
| // iff y is free to invert and all uses of z can be freely updated. |
| bool InstCombinerImpl::sinkNotIntoOtherHandOfLogicalOp(Instruction &I) { |
| Value *Op0, *Op1; |
| if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1)))) |
| return false; |
| Instruction::BinaryOps NewOpc = |
| match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And; |
| bool IsBinaryOp = isa<BinaryOperator>(I); |
| |
| Value *NotOp0 = nullptr; |
| Value *NotOp1 = nullptr; |
| Value **OpToInvert = nullptr; |
| if (match(Op0, m_Not(m_Value(NotOp0))) && canFreelyInvert(*this, Op1, &I)) { |
| Op0 = NotOp0; |
| OpToInvert = &Op1; |
| } else if (match(Op1, m_Not(m_Value(NotOp1))) && |
| canFreelyInvert(*this, Op0, &I)) { |
| Op1 = NotOp1; |
| OpToInvert = &Op0; |
| } else |
| return false; |
| |
| // And can our users be adapted? |
| if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) |
| return false; |
| |
| *OpToInvert = freelyInvert(*this, *OpToInvert, &I); |
| |
| Builder.SetInsertPoint(*I.getInsertionPointAfterDef()); |
| Value *NewBinOp; |
| if (IsBinaryOp) |
| NewBinOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not"); |
| else |
| NewBinOp = Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not"); |
| replaceInstUsesWith(I, NewBinOp); |
| // We can not just create an outer `not`, it will most likely be immediately |
| // folded back, reconstructing our initial pattern, and causing an |
| // infinite combine loop, so immediately manually fold it away. |
| freelyInvertAllUsersOf(NewBinOp); |
| return true; |
| } |
| |
| Instruction *InstCombinerImpl::foldNot(BinaryOperator &I) { |
| Value *NotOp; |
| if (!match(&I, m_Not(m_Value(NotOp)))) |
| return nullptr; |
| |
| // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand. |
| // We must eliminate the and/or (one-use) for these transforms to not increase |
| // the instruction count. |
| // |
| // ~(~X & Y) --> (X | ~Y) |
| // ~(Y & ~X) --> (X | ~Y) |
| // |
| // Note: The logical matches do not check for the commuted patterns because |
| // those are handled via SimplifySelectsFeedingBinaryOp(). |
| Type *Ty = I.getType(); |
| Value *X, *Y; |
| if (match(NotOp, m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y))))) { |
| Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); |
| return BinaryOperator::CreateOr(X, NotY); |
| } |
| if (match(NotOp, m_OneUse(m_LogicalAnd(m_Not(m_Value(X)), m_Value(Y))))) { |
| Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); |
| return SelectInst::Create(X, ConstantInt::getTrue(Ty), NotY); |
| } |
| |
| // ~(~X | Y) --> (X & ~Y) |
| // ~(Y | ~X) --> (X & ~Y) |
| if (match(NotOp, m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y))))) { |
| Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); |
| return BinaryOperator::CreateAnd(X, NotY); |
| } |
| if (match(NotOp, m_OneUse(m_LogicalOr(m_Not(m_Value(X)), m_Value(Y))))) { |
| Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); |
| return SelectInst::Create(X, NotY, ConstantInt::getFalse(Ty)); |
| } |
| |
| // Is this a 'not' (~) fed by a binary operator? |
| BinaryOperator *NotVal; |
| if (match(NotOp, m_BinOp(NotVal))) { |
| // ~((-X) | Y) --> (X - 1) & (~Y) |
| if (match(NotVal, |
| m_OneUse(m_c_Or(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))) { |
| Value *DecX = Builder.CreateAdd(X, ConstantInt::getAllOnesValue(Ty)); |
| Value *NotY = Builder.CreateNot(Y); |
| return BinaryOperator::CreateAnd(DecX, NotY); |
| } |
| |
| // ~(~X >>s Y) --> (X >>s Y) |
| if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y)))) |
| return BinaryOperator::CreateAShr(X, Y); |
| |
| // Treat lshr with non-negative operand as ashr. |
| // ~(~X >>u Y) --> (X >>s Y) iff X is known negative |
| if (match(NotVal, m_LShr(m_Not(m_Value(X)), m_Value(Y))) && |
| isKnownNegative(X, SQ.getWithInstruction(NotVal))) |
| return BinaryOperator::CreateAShr(X, Y); |
| |
| // Bit-hack form of a signbit test for iN type: |
| // ~(X >>s (N - 1)) --> sext i1 (X > -1) to iN |
| unsigned FullShift = Ty->getScalarSizeInBits() - 1; |
| if (match(NotVal, m_OneUse(m_AShr(m_Value(X), m_SpecificInt(FullShift))))) { |
| Value *IsNotNeg = Builder.CreateIsNotNeg(X, "isnotneg"); |
| return new SExtInst(IsNotNeg, Ty); |
| } |
| |
| // If we are inverting a right-shifted constant, we may be able to eliminate |
| // the 'not' by inverting the constant and using the opposite shift type. |
| // Canonicalization rules ensure that only a negative constant uses 'ashr', |
| // but we must check that in case that transform has not fired yet. |
| |
| // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits) |
| Constant *C; |
| if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) && |
| match(C, m_Negative())) |
| return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y); |
| |
| // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits) |
| if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) && |
| match(C, m_NonNegative())) |
| return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y); |
| |
| // ~(X + C) --> ~C - X |
| if (match(NotVal, m_Add(m_Value(X), m_ImmConstant(C)))) |
| return BinaryOperator::CreateSub(ConstantExpr::getNot(C), X); |
| |
| // ~(X - Y) --> ~X + Y |
| // FIXME: is it really beneficial to sink the `not` here? |
| if (match(NotVal, m_Sub(m_Value(X), m_Value(Y)))) |
| if (isa<Constant>(X) || NotVal->hasOneUse()) |
| return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y); |
| |
| // ~(~X + Y) --> X - Y |
| if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y)))) |
| return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y, |
| NotVal); |
| } |
| |
| // not (cmp A, B) = !cmp A, B |
| CmpPredicate Pred; |
| if (match(NotOp, m_Cmp(Pred, m_Value(), m_Value())) && |
| (NotOp->hasOneUse() || |
| InstCombiner::canFreelyInvertAllUsersOf(cast<Instruction>(NotOp), |
| /*IgnoredUser=*/nullptr))) { |
| cast<CmpInst>(NotOp)->setPredicate(CmpInst::getInversePredicate(Pred)); |
| freelyInvertAllUsersOf(NotOp); |
| return &I; |
| } |
| |
| // Move a 'not' ahead of casts of a bool to enable logic reduction: |
| // not (bitcast (sext i1 X)) --> bitcast (sext (not i1 X)) |
| if (match(NotOp, m_OneUse(m_BitCast(m_OneUse(m_SExt(m_Value(X)))))) && X->getType()->isIntOrIntVectorTy(1)) { |
| Type *SextTy = cast<BitCastOperator>(NotOp)->getSrcTy(); |
| Value *NotX = Builder.CreateNot(X); |
| Value *Sext = Builder.CreateSExt(NotX, SextTy); |
| return new BitCastInst(Sext, Ty); |
| } |
| |
| if (auto *NotOpI = dyn_cast<Instruction>(NotOp)) |
| if (sinkNotIntoLogicalOp(*NotOpI)) |
| return &I; |
| |
| // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max: |
| // ~min(~X, ~Y) --> max(X, Y) |
| // ~max(~X, Y) --> min(X, ~Y) |
| auto *II = dyn_cast<IntrinsicInst>(NotOp); |
| if (II && II->hasOneUse()) { |
| if (match(NotOp, m_c_MaxOrMin(m_Not(m_Value(X)), m_Value(Y)))) { |
| Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID()); |
| Value *NotY = Builder.CreateNot(Y); |
| Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotY); |
| return replaceInstUsesWith(I, InvMaxMin); |
| } |
| |
| if (II->getIntrinsicID() == Intrinsic::is_fpclass) { |
| ConstantInt *ClassMask = cast<ConstantInt>(II->getArgOperand(1)); |
| II->setArgOperand( |
| 1, ConstantInt::get(ClassMask->getType(), |
| ~ClassMask->getZExtValue() & fcAllFlags)); |
| return replaceInstUsesWith(I, II); |
| } |
| } |
| |
| if (NotOp->hasOneUse()) { |
| // Pull 'not' into operands of select if both operands are one-use compares |
| // or one is one-use compare and the other one is a constant. |
| // Inverting the predicates eliminates the 'not' operation. |
| // Example: |
| // not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) --> |
| // select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?) |
| // not (select ?, (cmp TPred, ?, ?), true --> |
| // select ?, (cmp InvTPred, ?, ?), false |
| if (auto *Sel = dyn_cast<SelectInst>(NotOp)) { |
| Value *TV = Sel->getTrueValue(); |
| Value *FV = Sel->getFalseValue(); |
| auto *CmpT = dyn_cast<CmpInst>(TV); |
| auto *CmpF = dyn_cast<CmpInst>(FV); |
| bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(TV); |
| bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(FV); |
| if (InvertibleT && InvertibleF) { |
| if (CmpT) |
| CmpT->setPredicate(CmpT->getInversePredicate()); |
| else |
| Sel->setTrueValue(ConstantExpr::getNot(cast<Constant>(TV))); |
| if (CmpF) |
| CmpF->setPredicate(CmpF->getInversePredicate()); |
| else |
| Sel->setFalseValue(ConstantExpr::getNot(cast<Constant>(FV))); |
| return replaceInstUsesWith(I, Sel); |
| } |
| } |
| } |
| |
| if (Instruction *NewXor = foldNotXor(I, Builder)) |
| return NewXor; |
| |
| // TODO: Could handle multi-use better by checking if all uses of NotOp (other |
| // than I) can be inverted. |
| if (Value *R = getFreelyInverted(NotOp, NotOp->hasOneUse(), &Builder)) |
| return replaceInstUsesWith(I, R); |
| |
| return nullptr; |
| } |
| |
| // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches |
| // here. We should standardize that construct where it is needed or choose some |
| // other way to ensure that commutated variants of patterns are not missed. |
| Instruction *InstCombinerImpl::visitXor(BinaryOperator &I) { |
| if (Value *V = simplifyXorInst(I.getOperand(0), I.getOperand(1), |
| SQ.getWithInstruction(&I))) |
| return replaceInstUsesWith(I, V); |
| |
| if (SimplifyAssociativeOrCommutative(I)) |
| return &I; |
| |
| if (Instruction *X = foldVectorBinop(I)) |
| return X; |
| |
| if (Instruction *Phi = foldBinopWithPhiOperands(I)) |
| return Phi; |
| |
| if (Instruction *NewXor = foldXorToXor(I, Builder)) |
| return NewXor; |
| |
| // (A&B)^(A&C) -> A&(B^C) etc |
| if (Value *V = foldUsingDistributiveLaws(I)) |
| return replaceInstUsesWith(I, V); |
| |
| // See if we can simplify any instructions used by the instruction whose sole |
| // purpose is to compute bits we don't care about. |
| if (SimplifyDemandedInstructionBits(I)) |
| return &I; |
| |
| if (Instruction *R = foldNot(I)) |
| return R; |
| |
| if (Instruction *R = foldBinOpShiftWithShift(I)) |
| return R; |
| |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| Value *X, *Y, *M; |
| |
| // (X | Y) ^ M -> (X ^ M) ^ Y |
| // (X | Y) ^ M -> (Y ^ M) ^ X |
| if (match(&I, m_c_Xor(m_OneUse(m_DisjointOr(m_Value(X), m_Value(Y))), |
| m_Value(M)))) { |
| if (Value *XorAC = simplifyXorInst(X, M, SQ.getWithInstruction(&I))) |
| return BinaryOperator::CreateXor(XorAC, Y); |
| |
| if (Value *XorBC = simplifyXorInst(Y, M, SQ.getWithInstruction(&I))) |
| return BinaryOperator::CreateXor(XorBC, X); |
| } |
| |
| // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M) |
| // This it a special case in haveNoCommonBitsSet, but the computeKnownBits |
| // calls in there are unnecessary as SimplifyDemandedInstructionBits should |
| // have already taken care of those cases. |
| if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()), |
| m_c_And(m_Deferred(M), m_Value())))) { |
| if (isGuaranteedNotToBeUndef(M)) |
| return BinaryOperator::CreateDisjointOr(Op0, Op1); |
| else |
| return BinaryOperator::CreateOr(Op0, Op1); |
| } |
| |
| if (Instruction *Xor = visitMaskedMerge(I, Builder)) |
| return Xor; |
| |
| Constant *C1; |
| if (match(Op1, m_Constant(C1))) { |
| Constant *C2; |
| |
| if (match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C2)))) && |
| match(C1, m_ImmConstant())) { |
| // (X | C2) ^ C1 --> (X & ~C2) ^ (C1^C2) |
| C2 = Constant::replaceUndefsWith( |
| C2, Constant::getAllOnesValue(C2->getType()->getScalarType())); |
| Value *And = Builder.CreateAnd( |
| X, Constant::mergeUndefsWith(ConstantExpr::getNot(C2), C1)); |
| return BinaryOperator::CreateXor( |
| And, Constant::mergeUndefsWith(ConstantExpr::getXor(C1, C2), C1)); |
| } |
| |
| // Use DeMorgan and reassociation to eliminate a 'not' op. |
| if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) { |
| // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1 |
| Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2)); |
| return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1)); |
| } |
| if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) { |
| // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1 |
| Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2)); |
| return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1)); |
| } |
| |
| // Convert xor ([trunc] (ashr X, BW-1)), C => |
| // select(X >s -1, C, ~C) |
| // The ashr creates "AllZeroOrAllOne's", which then optionally inverses the |
| // constant depending on whether this input is less than 0. |
| const APInt *CA; |
| if (match(Op0, m_OneUse(m_TruncOrSelf( |
| m_AShr(m_Value(X), m_APIntAllowPoison(CA))))) && |
| *CA == X->getType()->getScalarSizeInBits() - 1 && |
| !match(C1, m_AllOnes())) { |
| assert(!C1->isZeroValue() && "Unexpected xor with 0"); |
| Value *IsNotNeg = Builder.CreateIsNotNeg(X); |
| return SelectInst::Create(IsNotNeg, Op1, Builder.CreateNot(Op1)); |
| } |
| } |
| |
| Type *Ty = I.getType(); |
| { |
| const APInt *RHSC; |
| if (match(Op1, m_APInt(RHSC))) { |
| Value *X; |
| const APInt *C; |
| // (C - X) ^ signmaskC --> (C + signmaskC) - X |
| if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X)))) |
| return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X); |
| |
| // (X + C) ^ signmaskC --> X + (C + signmaskC) |
| if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C)))) |
| return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC)); |
| |
| // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0 |
| if (match(Op0, m_Or(m_Value(X), m_APInt(C))) && |
| MaskedValueIsZero(X, *C, 0, &I)) |
| return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC)); |
| |
| // When X is a power-of-two or zero and zero input is poison: |
| // ctlz(i32 X) ^ 31 --> cttz(X) |
| // cttz(i32 X) ^ 31 --> ctlz(X) |
| auto *II = dyn_cast<IntrinsicInst>(Op0); |
| if (II && II->hasOneUse() && *RHSC == Ty->getScalarSizeInBits() - 1) { |
| Intrinsic::ID IID = II->getIntrinsicID(); |
| if ((IID == Intrinsic::ctlz || IID == Intrinsic::cttz) && |
| match(II->getArgOperand(1), m_One()) && |
| isKnownToBeAPowerOfTwo(II->getArgOperand(0), /*OrZero */ true)) { |
| IID = (IID == Intrinsic::ctlz) ? Intrinsic::cttz : Intrinsic::ctlz; |
| Function *F = |
| Intrinsic::getOrInsertDeclaration(II->getModule(), IID, Ty); |
| return CallInst::Create(F, {II->getArgOperand(0), Builder.getTrue()}); |
| } |
| } |
| |
| // If RHSC is inverting the remaining bits of shifted X, |
| // canonicalize to a 'not' before the shift to help SCEV and codegen: |
| // (X << C) ^ RHSC --> ~X << C |
| if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) && |
| *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).shl(*C)) { |
| Value *NotX = Builder.CreateNot(X); |
| return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C)); |
| } |
| // (X >>u C) ^ RHSC --> ~X >>u C |
| if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) && |
| *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).lshr(*C)) { |
| Value *NotX = Builder.CreateNot(X); |
| return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C)); |
| } |
| // TODO: We could handle 'ashr' here as well. That would be matching |
| // a 'not' op and moving it before the shift. Doing that requires |
| // preventing the inverse fold in canShiftBinOpWithConstantRHS(). |
| } |
| |
| // If we are XORing the sign bit of a floating-point value, convert |
| // this to fneg, then cast back to integer. |
| // |
| // This is generous interpretation of noimplicitfloat, this is not a true |
| // floating-point operation. |
| // |
| // Assumes any IEEE-represented type has the sign bit in the high bit. |
| // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt |
| Value *CastOp; |
| if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) && |
| match(Op1, m_SignMask()) && |
| !Builder.GetInsertBlock()->getParent()->hasFnAttribute( |
| Attribute::NoImplicitFloat)) { |
| Type *EltTy = CastOp->getType()->getScalarType(); |
| if (EltTy->isFloatingPointTy() && EltTy->isIEEE()) { |
| Value *FNeg = Builder.CreateFNeg(CastOp); |
| return new BitCastInst(FNeg, I.getType()); |
| } |
| } |
| } |
| |
| // FIXME: This should not be limited to scalar (pull into APInt match above). |
| { |
| Value *X; |
| ConstantInt *C1, *C2, *C3; |
| // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3) |
| if (match(Op1, m_ConstantInt(C3)) && |
| match(Op0, m_LShr(m_Xor(m_Value(X), m_ConstantInt(C1)), |
| m_ConstantInt(C2))) && |
| Op0->hasOneUse()) { |
| // fold (C1 >> C2) ^ C3 |
| APInt FoldConst = C1->getValue().lshr(C2->getValue()); |
| FoldConst ^= C3->getValue(); |
| // Prepare the two operands. |
| auto *Opnd0 = Builder.CreateLShr(X, C2); |
| Opnd0->takeName(Op0); |
| return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst)); |
| } |
| } |
| |
| if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) |
| return FoldedLogic; |
| |
| // Y ^ (X | Y) --> X & ~Y |
| // Y ^ (Y | X) --> X & ~Y |
| if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0))))) |
| return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0)); |
| // (X | Y) ^ Y --> X & ~Y |
| // (Y | X) ^ Y --> X & ~Y |
| if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1))))) |
| return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1)); |
| |
| // Y ^ (X & Y) --> ~X & Y |
| // Y ^ (Y & X) --> ~X & Y |
| if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0))))) |
| return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X)); |
| // (X & Y) ^ Y --> ~X & Y |
| // (Y & X) ^ Y --> ~X & Y |
| // Canonical form is (X & C) ^ C; don't touch that. |
| // TODO: A 'not' op is better for analysis and codegen, but demanded bits must |
| // be fixed to prefer that (otherwise we get infinite looping). |
| if (!match(Op1, m_Constant()) && |
| match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1))))) |
| return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X)); |
| |
| Value *A, *B, *C; |
| // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants. |
| if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))), |
| m_OneUse(m_c_Or(m_Deferred(A), m_Value(C)))))) |
| return BinaryOperator::CreateXor( |
| Builder.CreateAnd(Builder.CreateNot(A), C), B); |
| |
| // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants. |
| if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))), |
| m_OneUse(m_c_Or(m_Deferred(B), m_Value(C)))))) |
| return BinaryOperator::CreateXor( |
| Builder.CreateAnd(Builder.CreateNot(B), C), A); |
| |
| // (A & B) ^ (A ^ B) -> (A | B) |
| if (match(Op0, m_And(m_Value(A), m_Value(B))) && |
| match(Op1, m_c_Xor(m_Specific(A), m_Specific(B)))) |
| return BinaryOperator::CreateOr(A, B); |
| // (A ^ B) ^ (A & B) -> (A | B) |
| if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && |
| match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) |
| return BinaryOperator::CreateOr(A, B); |
| |
| // (A & ~B) ^ ~A -> ~(A & B) |
| // (~B & A) ^ ~A -> ~(A & B) |
| if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) && |
| match(Op1, m_Not(m_Specific(A)))) |
| return BinaryOperator::CreateNot(Builder.CreateAnd(A, B)); |
| |
| // (~A & B) ^ A --> A | B -- There are 4 commuted variants. |
| if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(A)), m_Value(B)), m_Deferred(A)))) |
| return BinaryOperator::CreateOr(A, B); |
| |
| // (~A | B) ^ A --> ~(A & B) |
| if (match(Op0, m_OneUse(m_c_Or(m_Not(m_Specific(Op1)), m_Value(B))))) |
| return BinaryOperator::CreateNot(Builder.CreateAnd(Op1, B)); |
| |
| // A ^ (~A | B) --> ~(A & B) |
| if (match(Op1, m_OneUse(m_c_Or(m_Not(m_Specific(Op0)), m_Value(B))))) |
| return BinaryOperator::CreateNot(Builder.CreateAnd(Op0, B)); |
| |
| // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants. |
| // TODO: Loosen one-use restriction if common operand is a constant. |
| Value *D; |
| if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) && |
| match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) { |
| if (B == C || B == D) |
| std::swap(A, B); |
| if (A == C) |
| std::swap(C, D); |
| if (A == D) { |
| Value *NotA = Builder.CreateNot(A); |
| return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA); |
| } |
| } |
| |
| // (A & B) ^ (A | C) --> A ? ~B : C -- There are 4 commuted variants. |
| if (I.getType()->isIntOrIntVectorTy(1) && |
| match(&I, m_c_Xor(m_OneUse(m_LogicalAnd(m_Value(A), m_Value(B))), |
| m_OneUse(m_LogicalOr(m_Value(C), m_Value(D)))))) { |
| bool NeedFreeze = isa<SelectInst>(Op0) && isa<SelectInst>(Op1) && B == D; |
| if (B == C || B == D) |
| std::swap(A, B); |
| if (A == C) |
| std::swap(C, D); |
| if (A == D) { |
| if (NeedFreeze) |
| A = Builder.CreateFreeze(A); |
| Value *NotB = Builder.CreateNot(B); |
| return SelectInst::Create(A, NotB, C); |
| } |
| } |
| |
| if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0))) |
| if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) |
| if (Value *V = foldXorOfICmps(LHS, RHS, I)) |
| return replaceInstUsesWith(I, V); |
| |
| if (Instruction *CastedXor = foldCastedBitwiseLogic(I)) |
| return CastedXor; |
| |
| if (Instruction *Abs = canonicalizeAbs(I, Builder)) |
| return Abs; |
| |
| // Otherwise, if all else failed, try to hoist the xor-by-constant: |
| // (X ^ C) ^ Y --> (X ^ Y) ^ C |
| // Just like we do in other places, we completely avoid the fold |
| // for constantexprs, at least to avoid endless combine loop. |
| if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_CombineAnd(m_Value(X), |
| m_Unless(m_ConstantExpr())), |
| m_ImmConstant(C1))), |
| m_Value(Y)))) |
| return BinaryOperator::CreateXor(Builder.CreateXor(X, Y), C1); |
| |
| if (Instruction *R = reassociateForUses(I, Builder)) |
| return R; |
| |
| if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder)) |
| return Canonicalized; |
| |
| if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1)) |
| return Folded; |
| |
| if (Instruction *Folded = canonicalizeConditionalNegationViaMathToSelect(I)) |
| return Folded; |
| |
| if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) |
| return Res; |
| |
| if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder)) |
| return Res; |
| |
| return nullptr; |
| } |