| //===---- llvm/unittest/IR/PatternMatch.cpp - PatternMatch unit tests ----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/NoFolder.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/Type.h" |
| #include "gtest/gtest.h" |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| namespace { |
| |
| struct PatternMatchTest : ::testing::Test { |
| LLVMContext Ctx; |
| std::unique_ptr<Module> M; |
| Function *F; |
| BasicBlock *BB; |
| IRBuilder<NoFolder> IRB; |
| |
| PatternMatchTest() |
| : M(new Module("PatternMatchTestModule", Ctx)), |
| F(Function::Create( |
| FunctionType::get(Type::getVoidTy(Ctx), /* IsVarArg */ false), |
| Function::ExternalLinkage, "f", M.get())), |
| BB(BasicBlock::Create(Ctx, "entry", F)), IRB(BB) {} |
| }; |
| |
| TEST_F(PatternMatchTest, OneUse) { |
| // Build up a little tree of values: |
| // |
| // One = (1 + 2) + 42 |
| // Two = One + 42 |
| // Leaf = (Two + 8) + (Two + 13) |
| Value *One = IRB.CreateAdd(IRB.CreateAdd(IRB.getInt32(1), IRB.getInt32(2)), |
| IRB.getInt32(42)); |
| Value *Two = IRB.CreateAdd(One, IRB.getInt32(42)); |
| Value *Leaf = IRB.CreateAdd(IRB.CreateAdd(Two, IRB.getInt32(8)), |
| IRB.CreateAdd(Two, IRB.getInt32(13))); |
| Value *V; |
| |
| EXPECT_TRUE(m_OneUse(m_Value(V)).match(One)); |
| EXPECT_EQ(One, V); |
| |
| EXPECT_FALSE(m_OneUse(m_Value()).match(Two)); |
| EXPECT_FALSE(m_OneUse(m_Value()).match(Leaf)); |
| } |
| |
| TEST_F(PatternMatchTest, SpecificIntEQ) { |
| Type *IntTy = IRB.getInt32Ty(); |
| unsigned BitWidth = IntTy->getScalarSizeInBits(); |
| |
| Value *Zero = ConstantInt::get(IntTy, 0); |
| Value *One = ConstantInt::get(IntTy, 1); |
| Value *NegOne = ConstantInt::get(IntTy, -1); |
| |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, 0)) |
| .match(Zero)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, 0)) |
| .match(One)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, 0)) |
| .match(NegOne)); |
| |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, 1)) |
| .match(Zero)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, 1)) |
| .match(One)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, 1)) |
| .match(NegOne)); |
| |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, -1)) |
| .match(Zero)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, -1)) |
| .match(One)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ, APInt(BitWidth, -1)) |
| .match(NegOne)); |
| } |
| |
| TEST_F(PatternMatchTest, SpecificIntNE) { |
| Type *IntTy = IRB.getInt32Ty(); |
| unsigned BitWidth = IntTy->getScalarSizeInBits(); |
| |
| Value *Zero = ConstantInt::get(IntTy, 0); |
| Value *One = ConstantInt::get(IntTy, 1); |
| Value *NegOne = ConstantInt::get(IntTy, -1); |
| |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, 0)) |
| .match(Zero)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, 0)) |
| .match(One)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, 0)) |
| .match(NegOne)); |
| |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, 1)) |
| .match(Zero)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, 1)) |
| .match(One)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, 1)) |
| .match(NegOne)); |
| |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, -1)) |
| .match(Zero)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, -1)) |
| .match(One)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, APInt(BitWidth, -1)) |
| .match(NegOne)); |
| } |
| |
| TEST_F(PatternMatchTest, SpecificIntUGT) { |
| Type *IntTy = IRB.getInt32Ty(); |
| unsigned BitWidth = IntTy->getScalarSizeInBits(); |
| |
| Value *Zero = ConstantInt::get(IntTy, 0); |
| Value *One = ConstantInt::get(IntTy, 1); |
| Value *NegOne = ConstantInt::get(IntTy, -1); |
| |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, 0)) |
| .match(Zero)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, 0)) |
| .match(One)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, 0)) |
| .match(NegOne)); |
| |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, 1)) |
| .match(Zero)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, 1)) |
| .match(One)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, 1)) |
| .match(NegOne)); |
| |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, -1)) |
| .match(Zero)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, -1)) |
| .match(One)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGT, APInt(BitWidth, -1)) |
| .match(NegOne)); |
| } |
| |
| TEST_F(PatternMatchTest, SignbitZeroChecks) { |
| Type *IntTy = IRB.getInt32Ty(); |
| |
| Value *Zero = ConstantInt::get(IntTy, 0); |
| Value *One = ConstantInt::get(IntTy, 1); |
| Value *NegOne = ConstantInt::get(IntTy, -1); |
| |
| EXPECT_TRUE(m_Negative().match(NegOne)); |
| EXPECT_FALSE(m_NonNegative().match(NegOne)); |
| EXPECT_FALSE(m_StrictlyPositive().match(NegOne)); |
| EXPECT_TRUE(m_NonPositive().match(NegOne)); |
| |
| EXPECT_FALSE(m_Negative().match(Zero)); |
| EXPECT_TRUE(m_NonNegative().match(Zero)); |
| EXPECT_FALSE(m_StrictlyPositive().match(Zero)); |
| EXPECT_TRUE(m_NonPositive().match(Zero)); |
| |
| EXPECT_FALSE(m_Negative().match(One)); |
| EXPECT_TRUE(m_NonNegative().match(One)); |
| EXPECT_TRUE(m_StrictlyPositive().match(One)); |
| EXPECT_FALSE(m_NonPositive().match(One)); |
| } |
| |
| TEST_F(PatternMatchTest, SpecificIntUGE) { |
| Type *IntTy = IRB.getInt32Ty(); |
| unsigned BitWidth = IntTy->getScalarSizeInBits(); |
| |
| Value *Zero = ConstantInt::get(IntTy, 0); |
| Value *One = ConstantInt::get(IntTy, 1); |
| Value *NegOne = ConstantInt::get(IntTy, -1); |
| |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, 0)) |
| .match(Zero)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, 0)) |
| .match(One)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, 0)) |
| .match(NegOne)); |
| |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, 1)) |
| .match(Zero)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, 1)) |
| .match(One)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, 1)) |
| .match(NegOne)); |
| |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, -1)) |
| .match(Zero)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, -1)) |
| .match(One)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_UGE, APInt(BitWidth, -1)) |
| .match(NegOne)); |
| } |
| |
| TEST_F(PatternMatchTest, SpecificIntULT) { |
| Type *IntTy = IRB.getInt32Ty(); |
| unsigned BitWidth = IntTy->getScalarSizeInBits(); |
| |
| Value *Zero = ConstantInt::get(IntTy, 0); |
| Value *One = ConstantInt::get(IntTy, 1); |
| Value *NegOne = ConstantInt::get(IntTy, -1); |
| |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, 0)) |
| .match(Zero)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, 0)) |
| .match(One)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, 0)) |
| .match(NegOne)); |
| |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, 1)) |
| .match(Zero)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, 1)) |
| .match(One)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, 1)) |
| .match(NegOne)); |
| |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, -1)) |
| .match(Zero)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, -1)) |
| .match(One)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT, APInt(BitWidth, -1)) |
| .match(NegOne)); |
| } |
| |
| TEST_F(PatternMatchTest, SpecificIntULE) { |
| Type *IntTy = IRB.getInt32Ty(); |
| unsigned BitWidth = IntTy->getScalarSizeInBits(); |
| |
| Value *Zero = ConstantInt::get(IntTy, 0); |
| Value *One = ConstantInt::get(IntTy, 1); |
| Value *NegOne = ConstantInt::get(IntTy, -1); |
| |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, 0)) |
| .match(Zero)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, 0)) |
| .match(One)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, 0)) |
| .match(NegOne)); |
| |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, 1)) |
| .match(Zero)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, 1)) |
| .match(One)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, 1)) |
| .match(NegOne)); |
| |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, -1)) |
| .match(Zero)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, -1)) |
| .match(One)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULE, APInt(BitWidth, -1)) |
| .match(NegOne)); |
| } |
| |
| TEST_F(PatternMatchTest, SpecificIntSGT) { |
| Type *IntTy = IRB.getInt32Ty(); |
| unsigned BitWidth = IntTy->getScalarSizeInBits(); |
| |
| Value *Zero = ConstantInt::get(IntTy, 0); |
| Value *One = ConstantInt::get(IntTy, 1); |
| Value *NegOne = ConstantInt::get(IntTy, -1); |
| |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, 0)) |
| .match(Zero)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, 0)) |
| .match(One)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, 0)) |
| .match(NegOne)); |
| |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, 1)) |
| .match(Zero)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, 1)) |
| .match(One)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, 1)) |
| .match(NegOne)); |
| |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, -1)) |
| .match(Zero)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, -1)) |
| .match(One)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGT, APInt(BitWidth, -1)) |
| .match(NegOne)); |
| } |
| |
| TEST_F(PatternMatchTest, SpecificIntSGE) { |
| Type *IntTy = IRB.getInt32Ty(); |
| unsigned BitWidth = IntTy->getScalarSizeInBits(); |
| |
| Value *Zero = ConstantInt::get(IntTy, 0); |
| Value *One = ConstantInt::get(IntTy, 1); |
| Value *NegOne = ConstantInt::get(IntTy, -1); |
| |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, 0)) |
| .match(Zero)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, 0)) |
| .match(One)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, 0)) |
| .match(NegOne)); |
| |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, 1)) |
| .match(Zero)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, 1)) |
| .match(One)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, 1)) |
| .match(NegOne)); |
| |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, -1)) |
| .match(Zero)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, -1)) |
| .match(One)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SGE, APInt(BitWidth, -1)) |
| .match(NegOne)); |
| } |
| |
| TEST_F(PatternMatchTest, SpecificIntSLT) { |
| Type *IntTy = IRB.getInt32Ty(); |
| unsigned BitWidth = IntTy->getScalarSizeInBits(); |
| |
| Value *Zero = ConstantInt::get(IntTy, 0); |
| Value *One = ConstantInt::get(IntTy, 1); |
| Value *NegOne = ConstantInt::get(IntTy, -1); |
| |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, 0)) |
| .match(Zero)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, 0)) |
| .match(One)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, 0)) |
| .match(NegOne)); |
| |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, 1)) |
| .match(Zero)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, 1)) |
| .match(One)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, 1)) |
| .match(NegOne)); |
| |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, -1)) |
| .match(Zero)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, -1)) |
| .match(One)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLT, APInt(BitWidth, -1)) |
| .match(NegOne)); |
| } |
| |
| TEST_F(PatternMatchTest, SpecificIntSLE) { |
| Type *IntTy = IRB.getInt32Ty(); |
| unsigned BitWidth = IntTy->getScalarSizeInBits(); |
| |
| Value *Zero = ConstantInt::get(IntTy, 0); |
| Value *One = ConstantInt::get(IntTy, 1); |
| Value *NegOne = ConstantInt::get(IntTy, -1); |
| |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, 0)) |
| .match(Zero)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, 0)) |
| .match(One)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, 0)) |
| .match(NegOne)); |
| |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, 1)) |
| .match(Zero)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, 1)) |
| .match(One)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, 1)) |
| .match(NegOne)); |
| |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, -1)) |
| .match(Zero)); |
| EXPECT_FALSE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, -1)) |
| .match(One)); |
| EXPECT_TRUE( |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_SLE, APInt(BitWidth, -1)) |
| .match(NegOne)); |
| } |
| |
| TEST_F(PatternMatchTest, Unless) { |
| Value *X = IRB.CreateAdd(IRB.getInt32(1), IRB.getInt32(0)); |
| |
| EXPECT_TRUE(m_Add(m_One(), m_Zero()).match(X)); |
| EXPECT_FALSE(m_Add(m_Zero(), m_One()).match(X)); |
| |
| EXPECT_FALSE(m_Unless(m_Add(m_One(), m_Zero())).match(X)); |
| EXPECT_TRUE(m_Unless(m_Add(m_Zero(), m_One())).match(X)); |
| |
| EXPECT_TRUE(m_c_Add(m_One(), m_Zero()).match(X)); |
| EXPECT_TRUE(m_c_Add(m_Zero(), m_One()).match(X)); |
| |
| EXPECT_FALSE(m_Unless(m_c_Add(m_One(), m_Zero())).match(X)); |
| EXPECT_FALSE(m_Unless(m_c_Add(m_Zero(), m_One())).match(X)); |
| } |
| |
| TEST_F(PatternMatchTest, ZExtSExtSelf) { |
| LLVMContext &Ctx = IRB.getContext(); |
| |
| Value *One32 = IRB.getInt32(1); |
| Value *One64Z = IRB.CreateZExt(One32, IntegerType::getInt64Ty(Ctx)); |
| Value *One64S = IRB.CreateSExt(One32, IntegerType::getInt64Ty(Ctx)); |
| |
| EXPECT_TRUE(m_One().match(One32)); |
| EXPECT_FALSE(m_One().match(One64Z)); |
| EXPECT_FALSE(m_One().match(One64S)); |
| |
| EXPECT_FALSE(m_ZExt(m_One()).match(One32)); |
| EXPECT_TRUE(m_ZExt(m_One()).match(One64Z)); |
| EXPECT_FALSE(m_ZExt(m_One()).match(One64S)); |
| |
| EXPECT_FALSE(m_SExt(m_One()).match(One32)); |
| EXPECT_FALSE(m_SExt(m_One()).match(One64Z)); |
| EXPECT_TRUE(m_SExt(m_One()).match(One64S)); |
| |
| EXPECT_TRUE(m_ZExtOrSelf(m_One()).match(One32)); |
| EXPECT_TRUE(m_ZExtOrSelf(m_One()).match(One64Z)); |
| EXPECT_FALSE(m_ZExtOrSelf(m_One()).match(One64S)); |
| |
| EXPECT_TRUE(m_SExtOrSelf(m_One()).match(One32)); |
| EXPECT_FALSE(m_SExtOrSelf(m_One()).match(One64Z)); |
| EXPECT_TRUE(m_SExtOrSelf(m_One()).match(One64S)); |
| |
| EXPECT_FALSE(m_ZExtOrSExt(m_One()).match(One32)); |
| EXPECT_TRUE(m_ZExtOrSExt(m_One()).match(One64Z)); |
| EXPECT_TRUE(m_ZExtOrSExt(m_One()).match(One64S)); |
| |
| EXPECT_TRUE(m_ZExtOrSExtOrSelf(m_One()).match(One32)); |
| EXPECT_TRUE(m_ZExtOrSExtOrSelf(m_One()).match(One64Z)); |
| EXPECT_TRUE(m_ZExtOrSExtOrSelf(m_One()).match(One64S)); |
| } |
| |
| TEST_F(PatternMatchTest, Power2) { |
| Value *C128 = IRB.getInt32(128); |
| Value *CNeg128 = ConstantExpr::getNeg(cast<Constant>(C128)); |
| |
| EXPECT_TRUE(m_Power2().match(C128)); |
| EXPECT_FALSE(m_Power2().match(CNeg128)); |
| |
| EXPECT_FALSE(m_NegatedPower2().match(C128)); |
| EXPECT_TRUE(m_NegatedPower2().match(CNeg128)); |
| |
| Value *CIntMin = IRB.getInt64(APSInt::getSignedMinValue(64).getSExtValue()); |
| Value *CNegIntMin = ConstantExpr::getNeg(cast<Constant>(CIntMin)); |
| |
| EXPECT_TRUE(m_Power2().match(CIntMin)); |
| EXPECT_TRUE(m_Power2().match(CNegIntMin)); |
| |
| EXPECT_TRUE(m_NegatedPower2().match(CIntMin)); |
| EXPECT_TRUE(m_NegatedPower2().match(CNegIntMin)); |
| } |
| |
| TEST_F(PatternMatchTest, CommutativeDeferredValue) { |
| Value *X = IRB.getInt32(1); |
| Value *Y = IRB.getInt32(2); |
| |
| { |
| Value *tX = X; |
| EXPECT_TRUE(match(X, m_Deferred(tX))); |
| EXPECT_FALSE(match(Y, m_Deferred(tX))); |
| } |
| { |
| const Value *tX = X; |
| EXPECT_TRUE(match(X, m_Deferred(tX))); |
| EXPECT_FALSE(match(Y, m_Deferred(tX))); |
| } |
| { |
| Value *const tX = X; |
| EXPECT_TRUE(match(X, m_Deferred(tX))); |
| EXPECT_FALSE(match(Y, m_Deferred(tX))); |
| } |
| { |
| const Value *const tX = X; |
| EXPECT_TRUE(match(X, m_Deferred(tX))); |
| EXPECT_FALSE(match(Y, m_Deferred(tX))); |
| } |
| |
| { |
| Value *tX = nullptr; |
| EXPECT_TRUE(match(IRB.CreateAnd(X, X), m_And(m_Value(tX), m_Deferred(tX)))); |
| EXPECT_EQ(tX, X); |
| } |
| { |
| Value *tX = nullptr; |
| EXPECT_FALSE( |
| match(IRB.CreateAnd(X, Y), m_c_And(m_Value(tX), m_Deferred(tX)))); |
| } |
| |
| auto checkMatch = [X, Y](Value *Pattern) { |
| Value *tX = nullptr, *tY = nullptr; |
| EXPECT_TRUE(match( |
| Pattern, m_c_And(m_Value(tX), m_c_And(m_Deferred(tX), m_Value(tY))))); |
| EXPECT_EQ(tX, X); |
| EXPECT_EQ(tY, Y); |
| }; |
| |
| checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(X, Y))); |
| checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(Y, X))); |
| checkMatch(IRB.CreateAnd(IRB.CreateAnd(X, Y), X)); |
| checkMatch(IRB.CreateAnd(IRB.CreateAnd(Y, X), X)); |
| } |
| |
| TEST_F(PatternMatchTest, FloatingPointOrderedMin) { |
| Type *FltTy = IRB.getFloatTy(); |
| Value *L = ConstantFP::get(FltTy, 1.0); |
| Value *R = ConstantFP::get(FltTy, 2.0); |
| Value *MatchL, *MatchR; |
| |
| // Test OLT. |
| EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // Test OLE. |
| EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // Test no match on OGE. |
| EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R))); |
| |
| // Test no match on OGT. |
| EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R))); |
| |
| // Test inverted selects. Note, that this "inverts" the ordering, e.g.: |
| // %cmp = fcmp oge L, R |
| // %min = select %cmp R, L |
| // Given L == NaN |
| // the above is expanded to %cmp == false ==> %min = L |
| // which is true for UnordFMin, not OrdFMin, so test that: |
| |
| // [OU]GE with inverted select. |
| EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L))); |
| EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // [OU]GT with inverted select. |
| EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L))); |
| EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| } |
| |
| TEST_F(PatternMatchTest, FloatingPointOrderedMax) { |
| Type *FltTy = IRB.getFloatTy(); |
| Value *L = ConstantFP::get(FltTy, 1.0); |
| Value *R = ConstantFP::get(FltTy, 2.0); |
| Value *MatchL, *MatchR; |
| |
| // Test OGT. |
| EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // Test OGE. |
| EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // Test no match on OLE. |
| EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R))); |
| |
| // Test no match on OLT. |
| EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R))); |
| |
| |
| // Test inverted selects. Note, that this "inverts" the ordering, e.g.: |
| // %cmp = fcmp ole L, R |
| // %max = select %cmp, R, L |
| // Given L == NaN, |
| // the above is expanded to %cmp == false ==> %max == L |
| // which is true for UnordFMax, not OrdFMax, so test that: |
| |
| // [OU]LE with inverted select. |
| EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L))); |
| EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // [OUT]LT with inverted select. |
| EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L))); |
| EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| } |
| |
| TEST_F(PatternMatchTest, FloatingPointUnorderedMin) { |
| Type *FltTy = IRB.getFloatTy(); |
| Value *L = ConstantFP::get(FltTy, 1.0); |
| Value *R = ConstantFP::get(FltTy, 2.0); |
| Value *MatchL, *MatchR; |
| |
| // Test ULT. |
| EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // Test ULE. |
| EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // Test no match on UGE. |
| EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R))); |
| |
| // Test no match on UGT. |
| EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R))); |
| |
| // Test inverted selects. Note, that this "inverts" the ordering, e.g.: |
| // %cmp = fcmp uge L, R |
| // %min = select %cmp R, L |
| // Given L == NaN |
| // the above is expanded to %cmp == true ==> %min = R |
| // which is true for OrdFMin, not UnordFMin, so test that: |
| |
| // [UO]GE with inverted select. |
| EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L))); |
| EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // [UO]GT with inverted select. |
| EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L))); |
| EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| } |
| |
| TEST_F(PatternMatchTest, FloatingPointUnorderedMax) { |
| Type *FltTy = IRB.getFloatTy(); |
| Value *L = ConstantFP::get(FltTy, 1.0); |
| Value *R = ConstantFP::get(FltTy, 2.0); |
| Value *MatchL, *MatchR; |
| |
| // Test UGT. |
| EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // Test UGE. |
| EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // Test no match on ULE. |
| EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R))); |
| |
| // Test no match on ULT. |
| EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R))); |
| |
| // Test inverted selects. Note, that this "inverts" the ordering, e.g.: |
| // %cmp = fcmp ule L, R |
| // %max = select %cmp R, L |
| // Given L == NaN |
| // the above is expanded to %cmp == true ==> %max = R |
| // which is true for OrdFMax, not UnordFMax, so test that: |
| |
| // [UO]LE with inverted select. |
| EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L))); |
| EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // [UO]LT with inverted select. |
| EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L))); |
| EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| } |
| |
| TEST_F(PatternMatchTest, OverflowingBinOps) { |
| Value *L = IRB.getInt32(1); |
| Value *R = IRB.getInt32(2); |
| Value *MatchL, *MatchR; |
| |
| EXPECT_TRUE( |
| m_NSWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWAdd(L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| MatchL = MatchR = nullptr; |
| EXPECT_TRUE( |
| m_NSWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWSub(L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| MatchL = MatchR = nullptr; |
| EXPECT_TRUE( |
| m_NSWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWMul(L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| MatchL = MatchR = nullptr; |
| EXPECT_TRUE(m_NSWShl(m_Value(MatchL), m_Value(MatchR)).match( |
| IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| EXPECT_TRUE( |
| m_NUWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWAdd(L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| MatchL = MatchR = nullptr; |
| EXPECT_TRUE( |
| m_NUWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWSub(L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| MatchL = MatchR = nullptr; |
| EXPECT_TRUE( |
| m_NUWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWMul(L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| MatchL = MatchR = nullptr; |
| EXPECT_TRUE(m_NUWShl(m_Value(MatchL), m_Value(MatchR)).match( |
| IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R))); |
| EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); |
| EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R))); |
| EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R))); |
| EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R))); |
| EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); |
| EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R))); |
| EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNUWMul(L, R))); |
| EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); |
| EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R))); |
| EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match( |
| IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false))); |
| EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); |
| |
| EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R))); |
| EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R))); |
| EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R))); |
| EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R))); |
| EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R))); |
| EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); |
| EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R))); |
| EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNSWMul(L, R))); |
| EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); |
| EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R))); |
| EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match( |
| IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true))); |
| EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R))); |
| } |
| |
| TEST_F(PatternMatchTest, LoadStoreOps) { |
| // Create this load/store sequence: |
| // |
| // %p = alloca i32* |
| // %0 = load i32*, i32** %p |
| // store i32 42, i32* %0 |
| |
| Value *Alloca = IRB.CreateAlloca(IRB.getInt32Ty()); |
| Value *LoadInst = IRB.CreateLoad(IRB.getInt32Ty(), Alloca); |
| Value *FourtyTwo = IRB.getInt32(42); |
| Value *StoreInst = IRB.CreateStore(FourtyTwo, Alloca); |
| Value *MatchLoad, *MatchStoreVal, *MatchStorePointer; |
| |
| EXPECT_TRUE(m_Load(m_Value(MatchLoad)).match(LoadInst)); |
| EXPECT_EQ(Alloca, MatchLoad); |
| |
| EXPECT_TRUE(m_Load(m_Specific(Alloca)).match(LoadInst)); |
| |
| EXPECT_FALSE(m_Load(m_Value(MatchLoad)).match(Alloca)); |
| |
| EXPECT_TRUE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer)) |
| .match(StoreInst)); |
| EXPECT_EQ(FourtyTwo, MatchStoreVal); |
| EXPECT_EQ(Alloca, MatchStorePointer); |
| |
| EXPECT_FALSE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer)) |
| .match(Alloca)); |
| |
| EXPECT_TRUE(m_Store(m_SpecificInt(42), m_Specific(Alloca)) |
| .match(StoreInst)); |
| EXPECT_FALSE(m_Store(m_SpecificInt(42), m_Specific(FourtyTwo)) |
| .match(StoreInst)); |
| EXPECT_FALSE(m_Store(m_SpecificInt(43), m_Specific(Alloca)) |
| .match(StoreInst)); |
| } |
| |
| TEST_F(PatternMatchTest, VectorOps) { |
| // Build up small tree of vector operations |
| // |
| // Val = 0 + 1 |
| // Val2 = Val + 3 |
| // VI1 = insertelement <2 x i8> undef, i8 1, i32 0 = <1, undef> |
| // VI2 = insertelement <2 x i8> %VI1, i8 %Val2, i8 %Val = <1, 4> |
| // VI3 = insertelement <2 x i8> %VI1, i8 %Val2, i32 1 = <1, 4> |
| // VI4 = insertelement <2 x i8> %VI1, i8 2, i8 %Val = <1, 2> |
| // |
| // SI1 = shufflevector <2 x i8> %VI1, <2 x i8> undef, zeroinitializer |
| // SI2 = shufflevector <2 x i8> %VI3, <2 x i8> %VI4, <2 x i8> <i8 0, i8 2> |
| // SI3 = shufflevector <2 x i8> %VI3, <2 x i8> undef, zeroinitializer |
| // SI4 = shufflevector <2 x i8> %VI4, <2 x i8> undef, zeroinitializer |
| // |
| // SP1 = VectorSplat(2, i8 2) |
| // SP2 = VectorSplat(2, i8 %Val) |
| Type *VecTy = FixedVectorType::get(IRB.getInt8Ty(), 2); |
| Type *i32 = IRB.getInt32Ty(); |
| Type *i32VecTy = FixedVectorType::get(i32, 2); |
| |
| Value *Val = IRB.CreateAdd(IRB.getInt8(0), IRB.getInt8(1)); |
| Value *Val2 = IRB.CreateAdd(Val, IRB.getInt8(3)); |
| |
| SmallVector<Constant *, 2> VecElemIdxs; |
| VecElemIdxs.push_back(ConstantInt::get(i32, 0)); |
| VecElemIdxs.push_back(ConstantInt::get(i32, 2)); |
| auto *IdxVec = ConstantVector::get(VecElemIdxs); |
| |
| Value *VI1 = IRB.CreateInsertElement(VecTy, IRB.getInt8(1), (uint64_t)0); |
| Value *VI2 = IRB.CreateInsertElement(VI1, Val2, Val); |
| Value *VI3 = IRB.CreateInsertElement(VI1, Val2, (uint64_t)1); |
| Value *VI4 = IRB.CreateInsertElement(VI1, IRB.getInt8(2), Val); |
| |
| Value *EX1 = IRB.CreateExtractElement(VI4, Val); |
| Value *EX2 = IRB.CreateExtractElement(VI4, (uint64_t)0); |
| Value *EX3 = IRB.CreateExtractElement(IdxVec, (uint64_t)1); |
| |
| Constant *Zero = ConstantAggregateZero::get(i32VecTy); |
| SmallVector<int, 16> ZeroMask; |
| ShuffleVectorInst::getShuffleMask(Zero, ZeroMask); |
| |
| Value *SI1 = IRB.CreateShuffleVector(VI1, ZeroMask); |
| Value *SI2 = IRB.CreateShuffleVector(VI3, VI4, IdxVec); |
| Value *SI3 = IRB.CreateShuffleVector(VI3, ZeroMask); |
| Value *SI4 = IRB.CreateShuffleVector(VI4, ZeroMask); |
| |
| Value *SP1 = IRB.CreateVectorSplat(2, IRB.getInt8(2)); |
| Value *SP2 = IRB.CreateVectorSplat(2, Val); |
| |
| Value *A = nullptr, *B = nullptr, *C = nullptr; |
| |
| // Test matching insertelement |
| EXPECT_TRUE(match(VI1, m_InsertElt(m_Value(), m_Value(), m_Value()))); |
| EXPECT_TRUE( |
| match(VI1, m_InsertElt(m_Undef(), m_ConstantInt(), m_ConstantInt()))); |
| EXPECT_TRUE( |
| match(VI1, m_InsertElt(m_Undef(), m_ConstantInt(), m_Zero()))); |
| EXPECT_TRUE( |
| match(VI1, m_InsertElt(m_Undef(), m_SpecificInt(1), m_Zero()))); |
| EXPECT_TRUE(match(VI2, m_InsertElt(m_Value(), m_Value(), m_Value()))); |
| EXPECT_FALSE( |
| match(VI2, m_InsertElt(m_Value(), m_Value(), m_ConstantInt()))); |
| EXPECT_FALSE( |
| match(VI2, m_InsertElt(m_Value(), m_ConstantInt(), m_Value()))); |
| EXPECT_FALSE(match(VI2, m_InsertElt(m_Constant(), m_Value(), m_Value()))); |
| EXPECT_TRUE(match(VI3, m_InsertElt(m_Value(A), m_Value(B), m_Value(C)))); |
| EXPECT_TRUE(A == VI1); |
| EXPECT_TRUE(B == Val2); |
| EXPECT_TRUE(isa<ConstantInt>(C)); |
| A = B = C = nullptr; // reset |
| |
| // Test matching extractelement |
| EXPECT_TRUE(match(EX1, m_ExtractElt(m_Value(A), m_Value(B)))); |
| EXPECT_TRUE(A == VI4); |
| EXPECT_TRUE(B == Val); |
| A = B = C = nullptr; // reset |
| EXPECT_FALSE(match(EX1, m_ExtractElt(m_Value(), m_ConstantInt()))); |
| EXPECT_TRUE(match(EX2, m_ExtractElt(m_Value(), m_ConstantInt()))); |
| EXPECT_TRUE(match(EX3, m_ExtractElt(m_Constant(), m_ConstantInt()))); |
| |
| // Test matching shufflevector |
| ArrayRef<int> Mask; |
| EXPECT_TRUE(match(SI1, m_Shuffle(m_Value(), m_Undef(), m_ZeroMask()))); |
| EXPECT_TRUE(match(SI2, m_Shuffle(m_Value(A), m_Value(B), m_Mask(Mask)))); |
| EXPECT_TRUE(A == VI3); |
| EXPECT_TRUE(B == VI4); |
| A = B = C = nullptr; // reset |
| |
| // Test matching the vector splat pattern |
| EXPECT_TRUE(match( |
| SI1, |
| m_Shuffle(m_InsertElt(m_Undef(), m_SpecificInt(1), m_Zero()), |
| m_Undef(), m_ZeroMask()))); |
| EXPECT_FALSE(match( |
| SI3, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_Zero()), |
| m_Undef(), m_ZeroMask()))); |
| EXPECT_FALSE(match( |
| SI4, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_Zero()), |
| m_Undef(), m_ZeroMask()))); |
| EXPECT_TRUE(match( |
| SP1, |
| m_Shuffle(m_InsertElt(m_Undef(), m_SpecificInt(2), m_Zero()), |
| m_Undef(), m_ZeroMask()))); |
| EXPECT_TRUE(match( |
| SP2, m_Shuffle(m_InsertElt(m_Undef(), m_Value(A), m_Zero()), |
| m_Undef(), m_ZeroMask()))); |
| EXPECT_TRUE(A == Val); |
| } |
| |
| TEST_F(PatternMatchTest, UndefPoisonMix) { |
| Type *ScalarTy = IRB.getInt8Ty(); |
| ArrayType *ArrTy = ArrayType::get(ScalarTy, 2); |
| StructType *StTy = StructType::get(ScalarTy, ScalarTy); |
| StructType *StTy2 = StructType::get(ScalarTy, StTy); |
| StructType *StTy3 = StructType::get(StTy, ScalarTy); |
| Constant *Zero = ConstantInt::getNullValue(ScalarTy); |
| UndefValue *U = UndefValue::get(ScalarTy); |
| UndefValue *P = PoisonValue::get(ScalarTy); |
| |
| EXPECT_TRUE(match(ConstantVector::get({U, P}), m_Undef())); |
| EXPECT_TRUE(match(ConstantVector::get({P, U}), m_Undef())); |
| |
| EXPECT_TRUE(match(ConstantArray::get(ArrTy, {U, P}), m_Undef())); |
| EXPECT_TRUE(match(ConstantArray::get(ArrTy, {P, U}), m_Undef())); |
| |
| auto *UP = ConstantStruct::get(StTy, {U, P}); |
| EXPECT_TRUE(match(ConstantStruct::get(StTy2, {U, UP}), m_Undef())); |
| EXPECT_TRUE(match(ConstantStruct::get(StTy2, {P, UP}), m_Undef())); |
| EXPECT_TRUE(match(ConstantStruct::get(StTy3, {UP, U}), m_Undef())); |
| EXPECT_TRUE(match(ConstantStruct::get(StTy3, {UP, P}), m_Undef())); |
| |
| EXPECT_FALSE(match(ConstantStruct::get(StTy, {U, Zero}), m_Undef())); |
| EXPECT_FALSE(match(ConstantStruct::get(StTy, {Zero, U}), m_Undef())); |
| EXPECT_FALSE(match(ConstantStruct::get(StTy, {P, Zero}), m_Undef())); |
| EXPECT_FALSE(match(ConstantStruct::get(StTy, {Zero, P}), m_Undef())); |
| |
| EXPECT_FALSE(match(ConstantStruct::get(StTy2, {Zero, UP}), m_Undef())); |
| EXPECT_FALSE(match(ConstantStruct::get(StTy3, {UP, Zero}), m_Undef())); |
| } |
| |
| TEST_F(PatternMatchTest, VectorUndefInt) { |
| Type *ScalarTy = IRB.getInt8Ty(); |
| Type *VectorTy = FixedVectorType::get(ScalarTy, 4); |
| Constant *ScalarUndef = UndefValue::get(ScalarTy); |
| Constant *VectorUndef = UndefValue::get(VectorTy); |
| Constant *ScalarZero = Constant::getNullValue(ScalarTy); |
| Constant *VectorZero = Constant::getNullValue(VectorTy); |
| |
| SmallVector<Constant *, 4> Elems; |
| Elems.push_back(ScalarUndef); |
| Elems.push_back(ScalarZero); |
| Elems.push_back(ScalarUndef); |
| Elems.push_back(ScalarZero); |
| Constant *VectorZeroUndef = ConstantVector::get(Elems); |
| |
| EXPECT_TRUE(match(ScalarUndef, m_Undef())); |
| EXPECT_TRUE(match(VectorUndef, m_Undef())); |
| EXPECT_FALSE(match(ScalarZero, m_Undef())); |
| EXPECT_FALSE(match(VectorZero, m_Undef())); |
| EXPECT_FALSE(match(VectorZeroUndef, m_Undef())); |
| |
| EXPECT_FALSE(match(ScalarUndef, m_Zero())); |
| EXPECT_FALSE(match(VectorUndef, m_Zero())); |
| EXPECT_TRUE(match(ScalarZero, m_Zero())); |
| EXPECT_TRUE(match(VectorZero, m_Zero())); |
| EXPECT_TRUE(match(VectorZeroUndef, m_Zero())); |
| |
| const APInt *C; |
| // Regardless of whether undefs are allowed, |
| // a fully undef constant does not match. |
| EXPECT_FALSE(match(ScalarUndef, m_APInt(C))); |
| EXPECT_FALSE(match(ScalarUndef, m_APIntForbidUndef(C))); |
| EXPECT_FALSE(match(ScalarUndef, m_APIntAllowUndef(C))); |
| EXPECT_FALSE(match(VectorUndef, m_APInt(C))); |
| EXPECT_FALSE(match(VectorUndef, m_APIntForbidUndef(C))); |
| EXPECT_FALSE(match(VectorUndef, m_APIntAllowUndef(C))); |
| |
| // We can always match simple constants and simple splats. |
| C = nullptr; |
| EXPECT_TRUE(match(ScalarZero, m_APInt(C))); |
| EXPECT_TRUE(C->isZero()); |
| C = nullptr; |
| EXPECT_TRUE(match(ScalarZero, m_APIntForbidUndef(C))); |
| EXPECT_TRUE(C->isZero()); |
| C = nullptr; |
| EXPECT_TRUE(match(ScalarZero, m_APIntAllowUndef(C))); |
| EXPECT_TRUE(C->isZero()); |
| C = nullptr; |
| EXPECT_TRUE(match(VectorZero, m_APInt(C))); |
| EXPECT_TRUE(C->isZero()); |
| C = nullptr; |
| EXPECT_TRUE(match(VectorZero, m_APIntForbidUndef(C))); |
| EXPECT_TRUE(C->isZero()); |
| C = nullptr; |
| EXPECT_TRUE(match(VectorZero, m_APIntAllowUndef(C))); |
| EXPECT_TRUE(C->isZero()); |
| |
| // Whether splats with undef can be matched depends on the matcher. |
| EXPECT_FALSE(match(VectorZeroUndef, m_APInt(C))); |
| EXPECT_FALSE(match(VectorZeroUndef, m_APIntForbidUndef(C))); |
| C = nullptr; |
| EXPECT_TRUE(match(VectorZeroUndef, m_APIntAllowUndef(C))); |
| EXPECT_TRUE(C->isZero()); |
| } |
| |
| TEST_F(PatternMatchTest, VectorUndefFloat) { |
| Type *ScalarTy = IRB.getFloatTy(); |
| Type *VectorTy = FixedVectorType::get(ScalarTy, 4); |
| Constant *ScalarUndef = UndefValue::get(ScalarTy); |
| Constant *VectorUndef = UndefValue::get(VectorTy); |
| Constant *ScalarZero = Constant::getNullValue(ScalarTy); |
| Constant *VectorZero = Constant::getNullValue(VectorTy); |
| Constant *ScalarPosInf = ConstantFP::getInfinity(ScalarTy, false); |
| Constant *ScalarNegInf = ConstantFP::getInfinity(ScalarTy, true); |
| Constant *ScalarNaN = ConstantFP::getNaN(ScalarTy, true); |
| |
| Constant *VectorZeroUndef = |
| ConstantVector::get({ScalarUndef, ScalarZero, ScalarUndef, ScalarZero}); |
| |
| Constant *VectorInfUndef = ConstantVector::get( |
| {ScalarPosInf, ScalarNegInf, ScalarUndef, ScalarPosInf}); |
| |
| Constant *VectorNaNUndef = |
| ConstantVector::get({ScalarUndef, ScalarNaN, ScalarNaN, ScalarNaN}); |
| |
| EXPECT_TRUE(match(ScalarUndef, m_Undef())); |
| EXPECT_TRUE(match(VectorUndef, m_Undef())); |
| EXPECT_FALSE(match(ScalarZero, m_Undef())); |
| EXPECT_FALSE(match(VectorZero, m_Undef())); |
| EXPECT_FALSE(match(VectorZeroUndef, m_Undef())); |
| EXPECT_FALSE(match(VectorInfUndef, m_Undef())); |
| EXPECT_FALSE(match(VectorNaNUndef, m_Undef())); |
| |
| EXPECT_FALSE(match(ScalarUndef, m_AnyZeroFP())); |
| EXPECT_FALSE(match(VectorUndef, m_AnyZeroFP())); |
| EXPECT_TRUE(match(ScalarZero, m_AnyZeroFP())); |
| EXPECT_TRUE(match(VectorZero, m_AnyZeroFP())); |
| EXPECT_TRUE(match(VectorZeroUndef, m_AnyZeroFP())); |
| EXPECT_FALSE(match(VectorInfUndef, m_AnyZeroFP())); |
| EXPECT_FALSE(match(VectorNaNUndef, m_AnyZeroFP())); |
| |
| EXPECT_FALSE(match(ScalarUndef, m_NaN())); |
| EXPECT_FALSE(match(VectorUndef, m_NaN())); |
| EXPECT_FALSE(match(VectorZeroUndef, m_NaN())); |
| EXPECT_FALSE(match(ScalarPosInf, m_NaN())); |
| EXPECT_FALSE(match(ScalarNegInf, m_NaN())); |
| EXPECT_TRUE(match(ScalarNaN, m_NaN())); |
| EXPECT_FALSE(match(VectorInfUndef, m_NaN())); |
| EXPECT_TRUE(match(VectorNaNUndef, m_NaN())); |
| |
| EXPECT_FALSE(match(ScalarUndef, m_NonNaN())); |
| EXPECT_FALSE(match(VectorUndef, m_NonNaN())); |
| EXPECT_TRUE(match(VectorZeroUndef, m_NonNaN())); |
| EXPECT_TRUE(match(ScalarPosInf, m_NonNaN())); |
| EXPECT_TRUE(match(ScalarNegInf, m_NonNaN())); |
| EXPECT_FALSE(match(ScalarNaN, m_NonNaN())); |
| EXPECT_TRUE(match(VectorInfUndef, m_NonNaN())); |
| EXPECT_FALSE(match(VectorNaNUndef, m_NonNaN())); |
| |
| EXPECT_FALSE(match(ScalarUndef, m_Inf())); |
| EXPECT_FALSE(match(VectorUndef, m_Inf())); |
| EXPECT_FALSE(match(VectorZeroUndef, m_Inf())); |
| EXPECT_TRUE(match(ScalarPosInf, m_Inf())); |
| EXPECT_TRUE(match(ScalarNegInf, m_Inf())); |
| EXPECT_FALSE(match(ScalarNaN, m_Inf())); |
| EXPECT_TRUE(match(VectorInfUndef, m_Inf())); |
| EXPECT_FALSE(match(VectorNaNUndef, m_Inf())); |
| |
| EXPECT_FALSE(match(ScalarUndef, m_NonInf())); |
| EXPECT_FALSE(match(VectorUndef, m_NonInf())); |
| EXPECT_TRUE(match(VectorZeroUndef, m_NonInf())); |
| EXPECT_FALSE(match(ScalarPosInf, m_NonInf())); |
| EXPECT_FALSE(match(ScalarNegInf, m_NonInf())); |
| EXPECT_TRUE(match(ScalarNaN, m_NonInf())); |
| EXPECT_FALSE(match(VectorInfUndef, m_NonInf())); |
| EXPECT_TRUE(match(VectorNaNUndef, m_NonInf())); |
| |
| EXPECT_FALSE(match(ScalarUndef, m_Finite())); |
| EXPECT_FALSE(match(VectorUndef, m_Finite())); |
| EXPECT_TRUE(match(VectorZeroUndef, m_Finite())); |
| EXPECT_FALSE(match(ScalarPosInf, m_Finite())); |
| EXPECT_FALSE(match(ScalarNegInf, m_Finite())); |
| EXPECT_FALSE(match(ScalarNaN, m_Finite())); |
| EXPECT_FALSE(match(VectorInfUndef, m_Finite())); |
| EXPECT_FALSE(match(VectorNaNUndef, m_Finite())); |
| |
| const APFloat *C; |
| // Regardless of whether undefs are allowed, |
| // a fully undef constant does not match. |
| EXPECT_FALSE(match(ScalarUndef, m_APFloat(C))); |
| EXPECT_FALSE(match(ScalarUndef, m_APFloatForbidUndef(C))); |
| EXPECT_FALSE(match(ScalarUndef, m_APFloatAllowUndef(C))); |
| EXPECT_FALSE(match(VectorUndef, m_APFloat(C))); |
| EXPECT_FALSE(match(VectorUndef, m_APFloatForbidUndef(C))); |
| EXPECT_FALSE(match(VectorUndef, m_APFloatAllowUndef(C))); |
| |
| // We can always match simple constants and simple splats. |
| C = nullptr; |
| EXPECT_TRUE(match(ScalarZero, m_APFloat(C))); |
| EXPECT_TRUE(C->isZero()); |
| C = nullptr; |
| EXPECT_TRUE(match(ScalarZero, m_APFloatForbidUndef(C))); |
| EXPECT_TRUE(C->isZero()); |
| C = nullptr; |
| EXPECT_TRUE(match(ScalarZero, m_APFloatAllowUndef(C))); |
| EXPECT_TRUE(C->isZero()); |
| C = nullptr; |
| EXPECT_TRUE(match(VectorZero, m_APFloat(C))); |
| EXPECT_TRUE(C->isZero()); |
| C = nullptr; |
| EXPECT_TRUE(match(VectorZero, m_APFloatForbidUndef(C))); |
| EXPECT_TRUE(C->isZero()); |
| C = nullptr; |
| EXPECT_TRUE(match(VectorZero, m_APFloatAllowUndef(C))); |
| EXPECT_TRUE(C->isZero()); |
| |
| // Whether splats with undef can be matched depends on the matcher. |
| EXPECT_FALSE(match(VectorZeroUndef, m_APFloat(C))); |
| EXPECT_FALSE(match(VectorZeroUndef, m_APFloatForbidUndef(C))); |
| C = nullptr; |
| EXPECT_TRUE(match(VectorZeroUndef, m_APFloatAllowUndef(C))); |
| EXPECT_TRUE(C->isZero()); |
| C = nullptr; |
| EXPECT_TRUE(match(VectorZeroUndef, m_Finite(C))); |
| EXPECT_TRUE(C->isZero()); |
| } |
| |
| TEST_F(PatternMatchTest, FloatingPointFNeg) { |
| Type *FltTy = IRB.getFloatTy(); |
| Value *One = ConstantFP::get(FltTy, 1.0); |
| Value *Z = ConstantFP::get(FltTy, 0.0); |
| Value *NZ = ConstantFP::get(FltTy, -0.0); |
| Value *V = IRB.CreateFNeg(One); |
| Value *V1 = IRB.CreateFSub(NZ, One); |
| Value *V2 = IRB.CreateFSub(Z, One); |
| Value *V3 = IRB.CreateFAdd(NZ, One); |
| Value *Match; |
| |
| // Test FNeg(1.0) |
| EXPECT_TRUE(match(V, m_FNeg(m_Value(Match)))); |
| EXPECT_EQ(One, Match); |
| |
| // Test FSub(-0.0, 1.0) |
| EXPECT_TRUE(match(V1, m_FNeg(m_Value(Match)))); |
| EXPECT_EQ(One, Match); |
| |
| // Test FSub(0.0, 1.0) |
| EXPECT_FALSE(match(V2, m_FNeg(m_Value(Match)))); |
| cast<Instruction>(V2)->setHasNoSignedZeros(true); |
| EXPECT_TRUE(match(V2, m_FNeg(m_Value(Match)))); |
| EXPECT_EQ(One, Match); |
| |
| // Test FAdd(-0.0, 1.0) |
| EXPECT_FALSE(match(V3, m_FNeg(m_Value(Match)))); |
| } |
| |
| TEST_F(PatternMatchTest, CondBranchTest) { |
| BasicBlock *TrueBB = BasicBlock::Create(Ctx, "TrueBB", F); |
| BasicBlock *FalseBB = BasicBlock::Create(Ctx, "FalseBB", F); |
| Value *Br1 = IRB.CreateCondBr(IRB.getTrue(), TrueBB, FalseBB); |
| |
| EXPECT_TRUE(match(Br1, m_Br(m_Value(), m_BasicBlock(), m_BasicBlock()))); |
| |
| BasicBlock *A, *B; |
| EXPECT_TRUE(match(Br1, m_Br(m_Value(), m_BasicBlock(A), m_BasicBlock(B)))); |
| EXPECT_EQ(TrueBB, A); |
| EXPECT_EQ(FalseBB, B); |
| |
| EXPECT_FALSE( |
| match(Br1, m_Br(m_Value(), m_SpecificBB(FalseBB), m_BasicBlock()))); |
| EXPECT_FALSE( |
| match(Br1, m_Br(m_Value(), m_BasicBlock(), m_SpecificBB(TrueBB)))); |
| EXPECT_FALSE( |
| match(Br1, m_Br(m_Value(), m_SpecificBB(FalseBB), m_BasicBlock(TrueBB)))); |
| EXPECT_TRUE( |
| match(Br1, m_Br(m_Value(), m_SpecificBB(TrueBB), m_BasicBlock(FalseBB)))); |
| |
| // Check we can use m_Deferred with branches. |
| EXPECT_FALSE(match(Br1, m_Br(m_Value(), m_BasicBlock(A), m_Deferred(A)))); |
| Value *Br2 = IRB.CreateCondBr(IRB.getTrue(), TrueBB, TrueBB); |
| A = nullptr; |
| EXPECT_TRUE(match(Br2, m_Br(m_Value(), m_BasicBlock(A), m_Deferred(A)))); |
| } |
| |
| TEST_F(PatternMatchTest, WithOverflowInst) { |
| Value *Add = IRB.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow, |
| IRB.getInt32(0), IRB.getInt32(0)); |
| Value *Add0 = IRB.CreateExtractValue(Add, 0); |
| Value *Add1 = IRB.CreateExtractValue(Add, 1); |
| |
| EXPECT_TRUE(match(Add0, m_ExtractValue<0>(m_Value()))); |
| EXPECT_FALSE(match(Add0, m_ExtractValue<1>(m_Value()))); |
| EXPECT_FALSE(match(Add1, m_ExtractValue<0>(m_Value()))); |
| EXPECT_TRUE(match(Add1, m_ExtractValue<1>(m_Value()))); |
| EXPECT_FALSE(match(Add, m_ExtractValue<1>(m_Value()))); |
| EXPECT_FALSE(match(Add, m_ExtractValue<1>(m_Value()))); |
| |
| WithOverflowInst *WOI; |
| EXPECT_FALSE(match(Add0, m_WithOverflowInst(WOI))); |
| EXPECT_FALSE(match(Add1, m_WithOverflowInst(WOI))); |
| EXPECT_TRUE(match(Add, m_WithOverflowInst(WOI))); |
| |
| EXPECT_TRUE(match(Add0, m_ExtractValue<0>(m_WithOverflowInst(WOI)))); |
| EXPECT_EQ(Add, WOI); |
| EXPECT_TRUE(match(Add1, m_ExtractValue<1>(m_WithOverflowInst(WOI)))); |
| EXPECT_EQ(Add, WOI); |
| } |
| |
| TEST_F(PatternMatchTest, MinMaxIntrinsics) { |
| Type *Ty = IRB.getInt32Ty(); |
| Value *L = ConstantInt::get(Ty, 1); |
| Value *R = ConstantInt::get(Ty, 2); |
| Value *MatchL, *MatchR; |
| |
| // Check for intrinsic ID match and capture of operands. |
| EXPECT_TRUE(m_SMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateBinaryIntrinsic(Intrinsic::smax, L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| EXPECT_TRUE(m_SMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateBinaryIntrinsic(Intrinsic::smin, L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| EXPECT_TRUE(m_UMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateBinaryIntrinsic(Intrinsic::umax, L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| EXPECT_TRUE(m_UMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateBinaryIntrinsic(Intrinsic::umin, L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| |
| // Check for intrinsic ID mismatch. |
| EXPECT_FALSE(m_SMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateBinaryIntrinsic(Intrinsic::smin, L, R))); |
| EXPECT_FALSE(m_SMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateBinaryIntrinsic(Intrinsic::umax, L, R))); |
| EXPECT_FALSE(m_UMax(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateBinaryIntrinsic(Intrinsic::umin, L, R))); |
| EXPECT_FALSE(m_UMin(m_Value(MatchL), m_Value(MatchR)) |
| .match(IRB.CreateBinaryIntrinsic(Intrinsic::smax, L, R))); |
| } |
| |
| TEST_F(PatternMatchTest, IntrinsicMatcher) { |
| Value *Name = IRB.CreateAlloca(IRB.getInt8Ty()); |
| Value *Hash = IRB.getInt64(0); |
| Value *Num = IRB.getInt32(1); |
| Value *Index = IRB.getInt32(2); |
| Value *Step = IRB.getInt64(3); |
| |
| Value *Ops[] = {Name, Hash, Num, Index, Step}; |
| Module *M = BB->getParent()->getParent(); |
| Function *TheFn = |
| Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment_step); |
| |
| Value *Intrinsic5 = CallInst::Create(TheFn, Ops, "", BB); |
| |
| // Match without capturing. |
| EXPECT_TRUE(match( |
| Intrinsic5, m_Intrinsic<Intrinsic::instrprof_increment_step>( |
| m_Value(), m_Value(), m_Value(), m_Value(), m_Value()))); |
| EXPECT_FALSE(match( |
| Intrinsic5, m_Intrinsic<Intrinsic::memmove>( |
| m_Value(), m_Value(), m_Value(), m_Value(), m_Value()))); |
| |
| // Match with capturing. |
| Value *Arg1 = nullptr; |
| Value *Arg2 = nullptr; |
| Value *Arg3 = nullptr; |
| Value *Arg4 = nullptr; |
| Value *Arg5 = nullptr; |
| EXPECT_TRUE( |
| match(Intrinsic5, m_Intrinsic<Intrinsic::instrprof_increment_step>( |
| m_Value(Arg1), m_Value(Arg2), m_Value(Arg3), |
| m_Value(Arg4), m_Value(Arg5)))); |
| EXPECT_EQ(Arg1, Name); |
| EXPECT_EQ(Arg2, Hash); |
| EXPECT_EQ(Arg3, Num); |
| EXPECT_EQ(Arg4, Index); |
| EXPECT_EQ(Arg5, Step); |
| |
| // Match specific second argument. |
| EXPECT_TRUE( |
| match(Intrinsic5, |
| m_Intrinsic<Intrinsic::instrprof_increment_step>( |
| m_Value(), m_SpecificInt(0), m_Value(), m_Value(), m_Value()))); |
| EXPECT_FALSE( |
| match(Intrinsic5, m_Intrinsic<Intrinsic::instrprof_increment_step>( |
| m_Value(), m_SpecificInt(10), m_Value(), m_Value(), |
| m_Value()))); |
| |
| // Match specific third argument. |
| EXPECT_TRUE( |
| match(Intrinsic5, |
| m_Intrinsic<Intrinsic::instrprof_increment_step>( |
| m_Value(), m_Value(), m_SpecificInt(1), m_Value(), m_Value()))); |
| EXPECT_FALSE( |
| match(Intrinsic5, m_Intrinsic<Intrinsic::instrprof_increment_step>( |
| m_Value(), m_Value(), m_SpecificInt(10), m_Value(), |
| m_Value()))); |
| |
| // Match specific fourth argument. |
| EXPECT_TRUE( |
| match(Intrinsic5, |
| m_Intrinsic<Intrinsic::instrprof_increment_step>( |
| m_Value(), m_Value(), m_Value(), m_SpecificInt(2), m_Value()))); |
| EXPECT_FALSE( |
| match(Intrinsic5, m_Intrinsic<Intrinsic::instrprof_increment_step>( |
| m_Value(), m_Value(), m_Value(), m_SpecificInt(10), |
| m_Value()))); |
| |
| // Match specific fifth argument. |
| EXPECT_TRUE( |
| match(Intrinsic5, |
| m_Intrinsic<Intrinsic::instrprof_increment_step>( |
| m_Value(), m_Value(), m_Value(), m_Value(), m_SpecificInt(3)))); |
| EXPECT_FALSE( |
| match(Intrinsic5, m_Intrinsic<Intrinsic::instrprof_increment_step>( |
| m_Value(), m_Value(), m_Value(), m_Value(), |
| m_SpecificInt(10)))); |
| } |
| |
| namespace { |
| |
| struct is_unsigned_zero_pred { |
| bool isValue(const APInt &C) { return C.isZero(); } |
| }; |
| |
| struct is_float_zero_pred { |
| bool isValue(const APFloat &C) { return C.isZero(); } |
| }; |
| |
| template <typename T> struct always_true_pred { |
| bool isValue(const T &) { return true; } |
| }; |
| |
| template <typename T> struct always_false_pred { |
| bool isValue(const T &) { return false; } |
| }; |
| |
| struct is_unsigned_max_pred { |
| bool isValue(const APInt &C) { return C.isMaxValue(); } |
| }; |
| |
| struct is_float_nan_pred { |
| bool isValue(const APFloat &C) { return C.isNaN(); } |
| }; |
| |
| } // namespace |
| |
| TEST_F(PatternMatchTest, ConstantPredicateType) { |
| |
| // Scalar integer |
| APInt U32Max = APInt::getAllOnes(32); |
| APInt U32Zero = APInt::getZero(32); |
| APInt U32DeadBeef(32, 0xDEADBEEF); |
| |
| Type *U32Ty = Type::getInt32Ty(Ctx); |
| |
| Constant *CU32Max = Constant::getIntegerValue(U32Ty, U32Max); |
| Constant *CU32Zero = Constant::getIntegerValue(U32Ty, U32Zero); |
| Constant *CU32DeadBeef = Constant::getIntegerValue(U32Ty, U32DeadBeef); |
| |
| EXPECT_TRUE(match(CU32Max, cst_pred_ty<is_unsigned_max_pred>())); |
| EXPECT_FALSE(match(CU32Max, cst_pred_ty<is_unsigned_zero_pred>())); |
| EXPECT_TRUE(match(CU32Max, cst_pred_ty<always_true_pred<APInt>>())); |
| EXPECT_FALSE(match(CU32Max, cst_pred_ty<always_false_pred<APInt>>())); |
| |
| EXPECT_FALSE(match(CU32Zero, cst_pred_ty<is_unsigned_max_pred>())); |
| EXPECT_TRUE(match(CU32Zero, cst_pred_ty<is_unsigned_zero_pred>())); |
| EXPECT_TRUE(match(CU32Zero, cst_pred_ty<always_true_pred<APInt>>())); |
| EXPECT_FALSE(match(CU32Zero, cst_pred_ty<always_false_pred<APInt>>())); |
| |
| EXPECT_FALSE(match(CU32DeadBeef, cst_pred_ty<is_unsigned_max_pred>())); |
| EXPECT_FALSE(match(CU32DeadBeef, cst_pred_ty<is_unsigned_zero_pred>())); |
| EXPECT_TRUE(match(CU32DeadBeef, cst_pred_ty<always_true_pred<APInt>>())); |
| EXPECT_FALSE(match(CU32DeadBeef, cst_pred_ty<always_false_pred<APInt>>())); |
| |
| // Scalar float |
| APFloat F32NaN = APFloat::getNaN(APFloat::IEEEsingle()); |
| APFloat F32Zero = APFloat::getZero(APFloat::IEEEsingle()); |
| APFloat F32Pi(3.14f); |
| |
| Type *F32Ty = Type::getFloatTy(Ctx); |
| |
| Constant *CF32NaN = ConstantFP::get(F32Ty, F32NaN); |
| Constant *CF32Zero = ConstantFP::get(F32Ty, F32Zero); |
| Constant *CF32Pi = ConstantFP::get(F32Ty, F32Pi); |
| |
| EXPECT_TRUE(match(CF32NaN, cstfp_pred_ty<is_float_nan_pred>())); |
| EXPECT_FALSE(match(CF32NaN, cstfp_pred_ty<is_float_zero_pred>())); |
| EXPECT_TRUE(match(CF32NaN, cstfp_pred_ty<always_true_pred<APFloat>>())); |
| EXPECT_FALSE(match(CF32NaN, cstfp_pred_ty<always_false_pred<APFloat>>())); |
| |
| EXPECT_FALSE(match(CF32Zero, cstfp_pred_ty<is_float_nan_pred>())); |
| EXPECT_TRUE(match(CF32Zero, cstfp_pred_ty<is_float_zero_pred>())); |
| EXPECT_TRUE(match(CF32Zero, cstfp_pred_ty<always_true_pred<APFloat>>())); |
| EXPECT_FALSE(match(CF32Zero, cstfp_pred_ty<always_false_pred<APFloat>>())); |
| |
| EXPECT_FALSE(match(CF32Pi, cstfp_pred_ty<is_float_nan_pred>())); |
| EXPECT_FALSE(match(CF32Pi, cstfp_pred_ty<is_float_zero_pred>())); |
| EXPECT_TRUE(match(CF32Pi, cstfp_pred_ty<always_true_pred<APFloat>>())); |
| EXPECT_FALSE(match(CF32Pi, cstfp_pred_ty<always_false_pred<APFloat>>())); |
| |
| auto FixedEC = ElementCount::getFixed(4); |
| auto ScalableEC = ElementCount::getScalable(4); |
| |
| // Vector splat |
| |
| for (auto EC : {FixedEC, ScalableEC}) { |
| // integer |
| |
| Constant *CSplatU32Max = ConstantVector::getSplat(EC, CU32Max); |
| Constant *CSplatU32Zero = ConstantVector::getSplat(EC, CU32Zero); |
| Constant *CSplatU32DeadBeef = ConstantVector::getSplat(EC, CU32DeadBeef); |
| |
| EXPECT_TRUE(match(CSplatU32Max, cst_pred_ty<is_unsigned_max_pred>())); |
| EXPECT_FALSE(match(CSplatU32Max, cst_pred_ty<is_unsigned_zero_pred>())); |
| EXPECT_TRUE(match(CSplatU32Max, cst_pred_ty<always_true_pred<APInt>>())); |
| EXPECT_FALSE(match(CSplatU32Max, cst_pred_ty<always_false_pred<APInt>>())); |
| |
| EXPECT_FALSE(match(CSplatU32Zero, cst_pred_ty<is_unsigned_max_pred>())); |
| EXPECT_TRUE(match(CSplatU32Zero, cst_pred_ty<is_unsigned_zero_pred>())); |
| EXPECT_TRUE(match(CSplatU32Zero, cst_pred_ty<always_true_pred<APInt>>())); |
| EXPECT_FALSE(match(CSplatU32Zero, cst_pred_ty<always_false_pred<APInt>>())); |
| |
| EXPECT_FALSE(match(CSplatU32DeadBeef, cst_pred_ty<is_unsigned_max_pred>())); |
| EXPECT_FALSE( |
| match(CSplatU32DeadBeef, cst_pred_ty<is_unsigned_zero_pred>())); |
| EXPECT_TRUE( |
| match(CSplatU32DeadBeef, cst_pred_ty<always_true_pred<APInt>>())); |
| EXPECT_FALSE( |
| match(CSplatU32DeadBeef, cst_pred_ty<always_false_pred<APInt>>())); |
| |
| // float |
| |
| Constant *CSplatF32NaN = ConstantVector::getSplat(EC, CF32NaN); |
| Constant *CSplatF32Zero = ConstantVector::getSplat(EC, CF32Zero); |
| Constant *CSplatF32Pi = ConstantVector::getSplat(EC, CF32Pi); |
| |
| EXPECT_TRUE(match(CSplatF32NaN, cstfp_pred_ty<is_float_nan_pred>())); |
| EXPECT_FALSE(match(CSplatF32NaN, cstfp_pred_ty<is_float_zero_pred>())); |
| EXPECT_TRUE( |
| match(CSplatF32NaN, cstfp_pred_ty<always_true_pred<APFloat>>())); |
| EXPECT_FALSE( |
| match(CSplatF32NaN, cstfp_pred_ty<always_false_pred<APFloat>>())); |
| |
| EXPECT_FALSE(match(CSplatF32Zero, cstfp_pred_ty<is_float_nan_pred>())); |
| EXPECT_TRUE(match(CSplatF32Zero, cstfp_pred_ty<is_float_zero_pred>())); |
| EXPECT_TRUE( |
| match(CSplatF32Zero, cstfp_pred_ty<always_true_pred<APFloat>>())); |
| EXPECT_FALSE( |
| match(CSplatF32Zero, cstfp_pred_ty<always_false_pred<APFloat>>())); |
| |
| EXPECT_FALSE(match(CSplatF32Pi, cstfp_pred_ty<is_float_nan_pred>())); |
| EXPECT_FALSE(match(CSplatF32Pi, cstfp_pred_ty<is_float_zero_pred>())); |
| EXPECT_TRUE(match(CSplatF32Pi, cstfp_pred_ty<always_true_pred<APFloat>>())); |
| EXPECT_FALSE( |
| match(CSplatF32Pi, cstfp_pred_ty<always_false_pred<APFloat>>())); |
| } |
| |
| // Int arbitrary vector |
| |
| Constant *CMixedU32 = ConstantVector::get({CU32Max, CU32Zero, CU32DeadBeef}); |
| Constant *CU32Undef = UndefValue::get(U32Ty); |
| Constant *CU32MaxWithUndef = |
| ConstantVector::get({CU32Undef, CU32Max, CU32Undef}); |
| |
| EXPECT_FALSE(match(CMixedU32, cst_pred_ty<is_unsigned_max_pred>())); |
| EXPECT_FALSE(match(CMixedU32, cst_pred_ty<is_unsigned_zero_pred>())); |
| EXPECT_TRUE(match(CMixedU32, cst_pred_ty<always_true_pred<APInt>>())); |
| EXPECT_FALSE(match(CMixedU32, cst_pred_ty<always_false_pred<APInt>>())); |
| |
| EXPECT_TRUE(match(CU32MaxWithUndef, cst_pred_ty<is_unsigned_max_pred>())); |
| EXPECT_FALSE(match(CU32MaxWithUndef, cst_pred_ty<is_unsigned_zero_pred>())); |
| EXPECT_TRUE(match(CU32MaxWithUndef, cst_pred_ty<always_true_pred<APInt>>())); |
| EXPECT_FALSE( |
| match(CU32MaxWithUndef, cst_pred_ty<always_false_pred<APInt>>())); |
| |
| // Float arbitrary vector |
| |
| Constant *CMixedF32 = ConstantVector::get({CF32NaN, CF32Zero, CF32Pi}); |
| Constant *CF32Undef = UndefValue::get(F32Ty); |
| Constant *CF32NaNWithUndef = |
| ConstantVector::get({CF32Undef, CF32NaN, CF32Undef}); |
| |
| EXPECT_FALSE(match(CMixedF32, cstfp_pred_ty<is_float_nan_pred>())); |
| EXPECT_FALSE(match(CMixedF32, cstfp_pred_ty<is_float_zero_pred>())); |
| EXPECT_TRUE(match(CMixedF32, cstfp_pred_ty<always_true_pred<APFloat>>())); |
| EXPECT_FALSE(match(CMixedF32, cstfp_pred_ty<always_false_pred<APFloat>>())); |
| |
| EXPECT_TRUE(match(CF32NaNWithUndef, cstfp_pred_ty<is_float_nan_pred>())); |
| EXPECT_FALSE(match(CF32NaNWithUndef, cstfp_pred_ty<is_float_zero_pred>())); |
| EXPECT_TRUE( |
| match(CF32NaNWithUndef, cstfp_pred_ty<always_true_pred<APFloat>>())); |
| EXPECT_FALSE( |
| match(CF32NaNWithUndef, cstfp_pred_ty<always_false_pred<APFloat>>())); |
| } |
| |
| TEST_F(PatternMatchTest, InsertValue) { |
| Type *StructTy = StructType::create(IRB.getContext(), |
| {IRB.getInt32Ty(), IRB.getInt64Ty()}); |
| Value *Ins0 = |
| IRB.CreateInsertValue(UndefValue::get(StructTy), IRB.getInt32(20), 0); |
| Value *Ins1 = IRB.CreateInsertValue(Ins0, IRB.getInt64(90), 1); |
| |
| EXPECT_TRUE(match(Ins0, m_InsertValue<0>(m_Value(), m_Value()))); |
| EXPECT_FALSE(match(Ins0, m_InsertValue<1>(m_Value(), m_Value()))); |
| EXPECT_FALSE(match(Ins1, m_InsertValue<0>(m_Value(), m_Value()))); |
| EXPECT_TRUE(match(Ins1, m_InsertValue<1>(m_Value(), m_Value()))); |
| |
| EXPECT_TRUE(match(Ins0, m_InsertValue<0>(m_Undef(), m_SpecificInt(20)))); |
| EXPECT_FALSE(match(Ins0, m_InsertValue<0>(m_Undef(), m_SpecificInt(0)))); |
| |
| EXPECT_TRUE( |
| match(Ins1, m_InsertValue<1>(m_InsertValue<0>(m_Value(), m_Value()), |
| m_SpecificInt(90)))); |
| EXPECT_FALSE(match(IRB.getInt64(99), m_InsertValue<0>(m_Value(), m_Value()))); |
| } |
| |
| TEST_F(PatternMatchTest, LogicalSelects) { |
| Value *Alloca = IRB.CreateAlloca(IRB.getInt1Ty()); |
| Value *X = IRB.CreateLoad(IRB.getInt1Ty(), Alloca); |
| Value *Y = IRB.CreateLoad(IRB.getInt1Ty(), Alloca); |
| Constant *T = IRB.getInt1(true); |
| Constant *F = IRB.getInt1(false); |
| Value *And = IRB.CreateSelect(X, Y, F); |
| Value *Or = IRB.CreateSelect(X, T, Y); |
| |
| // Logical and: |
| // Check basic no-capture logic - opcode and constant must match. |
| EXPECT_TRUE(match(And, m_LogicalAnd(m_Value(), m_Value()))); |
| EXPECT_TRUE(match(And, m_c_LogicalAnd(m_Value(), m_Value()))); |
| EXPECT_FALSE(match(And, m_LogicalOr(m_Value(), m_Value()))); |
| EXPECT_FALSE(match(And, m_c_LogicalOr(m_Value(), m_Value()))); |
| |
| // Check with captures. |
| EXPECT_TRUE(match(And, m_LogicalAnd(m_Specific(X), m_Value()))); |
| EXPECT_TRUE(match(And, m_LogicalAnd(m_Value(), m_Specific(Y)))); |
| EXPECT_TRUE(match(And, m_LogicalAnd(m_Specific(X), m_Specific(Y)))); |
| |
| EXPECT_FALSE(match(And, m_LogicalAnd(m_Specific(Y), m_Value()))); |
| EXPECT_FALSE(match(And, m_LogicalAnd(m_Value(), m_Specific(X)))); |
| EXPECT_FALSE(match(And, m_LogicalAnd(m_Specific(Y), m_Specific(X)))); |
| |
| EXPECT_FALSE(match(And, m_LogicalAnd(m_Specific(X), m_Specific(X)))); |
| EXPECT_FALSE(match(And, m_LogicalAnd(m_Specific(Y), m_Specific(Y)))); |
| |
| // Check captures for commutative match. |
| EXPECT_TRUE(match(And, m_c_LogicalAnd(m_Specific(X), m_Value()))); |
| EXPECT_TRUE(match(And, m_c_LogicalAnd(m_Value(), m_Specific(Y)))); |
| EXPECT_TRUE(match(And, m_c_LogicalAnd(m_Specific(X), m_Specific(Y)))); |
| |
| EXPECT_TRUE(match(And, m_c_LogicalAnd(m_Specific(Y), m_Value()))); |
| EXPECT_TRUE(match(And, m_c_LogicalAnd(m_Value(), m_Specific(X)))); |
| EXPECT_TRUE(match(And, m_c_LogicalAnd(m_Specific(Y), m_Specific(X)))); |
| |
| EXPECT_FALSE(match(And, m_c_LogicalAnd(m_Specific(X), m_Specific(X)))); |
| EXPECT_FALSE(match(And, m_c_LogicalAnd(m_Specific(Y), m_Specific(Y)))); |
| |
| // Logical or: |
| // Check basic no-capture logic - opcode and constant must match. |
| EXPECT_TRUE(match(Or, m_LogicalOr(m_Value(), m_Value()))); |
| EXPECT_TRUE(match(Or, m_c_LogicalOr(m_Value(), m_Value()))); |
| EXPECT_FALSE(match(Or, m_LogicalAnd(m_Value(), m_Value()))); |
| EXPECT_FALSE(match(Or, m_c_LogicalAnd(m_Value(), m_Value()))); |
| |
| // Check with captures. |
| EXPECT_TRUE(match(Or, m_LogicalOr(m_Specific(X), m_Value()))); |
| EXPECT_TRUE(match(Or, m_LogicalOr(m_Value(), m_Specific(Y)))); |
| EXPECT_TRUE(match(Or, m_LogicalOr(m_Specific(X), m_Specific(Y)))); |
| |
| EXPECT_FALSE(match(Or, m_LogicalOr(m_Specific(Y), m_Value()))); |
| EXPECT_FALSE(match(Or, m_LogicalOr(m_Value(), m_Specific(X)))); |
| EXPECT_FALSE(match(Or, m_LogicalOr(m_Specific(Y), m_Specific(X)))); |
| |
| EXPECT_FALSE(match(Or, m_LogicalOr(m_Specific(X), m_Specific(X)))); |
| EXPECT_FALSE(match(Or, m_LogicalOr(m_Specific(Y), m_Specific(Y)))); |
| |
| // Check captures for commutative match. |
| EXPECT_TRUE(match(Or, m_c_LogicalOr(m_Specific(X), m_Value()))); |
| EXPECT_TRUE(match(Or, m_c_LogicalOr(m_Value(), m_Specific(Y)))); |
| EXPECT_TRUE(match(Or, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))); |
| |
| EXPECT_TRUE(match(Or, m_c_LogicalOr(m_Specific(Y), m_Value()))); |
| EXPECT_TRUE(match(Or, m_c_LogicalOr(m_Value(), m_Specific(X)))); |
| EXPECT_TRUE(match(Or, m_c_LogicalOr(m_Specific(Y), m_Specific(X)))); |
| |
| EXPECT_FALSE(match(Or, m_c_LogicalOr(m_Specific(X), m_Specific(X)))); |
| EXPECT_FALSE(match(Or, m_c_LogicalOr(m_Specific(Y), m_Specific(Y)))); |
| } |
| |
| TEST_F(PatternMatchTest, VScale) { |
| DataLayout DL = M->getDataLayout(); |
| |
| Type *VecTy = ScalableVectorType::get(IRB.getInt8Ty(), 1); |
| Type *VecPtrTy = VecTy->getPointerTo(); |
| Value *NullPtrVec = Constant::getNullValue(VecPtrTy); |
| Value *GEP = IRB.CreateGEP(VecTy, NullPtrVec, IRB.getInt64(1)); |
| Value *PtrToInt = IRB.CreatePtrToInt(GEP, DL.getIntPtrType(GEP->getType())); |
| EXPECT_TRUE(match(PtrToInt, m_VScale(DL))); |
| |
| // Prior to this patch, this case would cause assertion failures when attempting to match m_VScale |
| Type *VecTy2 = ScalableVectorType::get(IRB.getInt8Ty(), 2); |
| Value *NullPtrVec2 = Constant::getNullValue(VecTy2->getPointerTo()); |
| Value *BitCast = IRB.CreateBitCast(NullPtrVec2, VecPtrTy); |
| Value *GEP2 = IRB.CreateGEP(VecTy, BitCast, IRB.getInt64(1)); |
| Value *PtrToInt2 = |
| IRB.CreatePtrToInt(GEP2, DL.getIntPtrType(GEP2->getType())); |
| EXPECT_FALSE(match(PtrToInt2, m_VScale(DL))); |
| } |
| |
| template <typename T> struct MutableConstTest : PatternMatchTest { }; |
| |
| typedef ::testing::Types<std::tuple<Value*, Instruction*>, |
| std::tuple<const Value*, const Instruction *>> |
| MutableConstTestTypes; |
| TYPED_TEST_SUITE(MutableConstTest, MutableConstTestTypes, ); |
| |
| TYPED_TEST(MutableConstTest, ICmp) { |
| auto &IRB = PatternMatchTest::IRB; |
| |
| typedef std::tuple_element_t<0, TypeParam> ValueType; |
| typedef std::tuple_element_t<1, TypeParam> InstructionType; |
| |
| Value *L = IRB.getInt32(1); |
| Value *R = IRB.getInt32(2); |
| ICmpInst::Predicate Pred = ICmpInst::ICMP_UGT; |
| |
| ValueType MatchL; |
| ValueType MatchR; |
| ICmpInst::Predicate MatchPred; |
| |
| EXPECT_TRUE(m_ICmp(MatchPred, m_Value(MatchL), m_Value(MatchR)) |
| .match((InstructionType)IRB.CreateICmp(Pred, L, R))); |
| EXPECT_EQ(L, MatchL); |
| EXPECT_EQ(R, MatchR); |
| } |
| |
| } // anonymous namespace. |