blob: 5062ee97a665d6eb193efea88ee9d110a6372bf6 [file] [log] [blame]
//===- SpillUtils.cpp - Utilities for checking for spills ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Coroutines/SpillUtils.h"
#include "CoroInternal.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/PtrUseVisitor.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
namespace llvm {
namespace coro {
namespace {
typedef SmallPtrSet<BasicBlock *, 8> VisitedBlocksSet;
// Check for structural coroutine intrinsics that should not be spilled into
// the coroutine frame.
static bool isCoroutineStructureIntrinsic(Instruction &I) {
return isa<CoroIdInst>(&I) || isa<CoroSaveInst>(&I) ||
isa<CoroSuspendInst>(&I);
}
/// Does control flow starting at the given block ever reach a suspend
/// instruction before reaching a block in VisitedOrFreeBBs?
static bool isSuspendReachableFrom(BasicBlock *From,
VisitedBlocksSet &VisitedOrFreeBBs) {
// Eagerly try to add this block to the visited set. If it's already
// there, stop recursing; this path doesn't reach a suspend before
// either looping or reaching a freeing block.
if (!VisitedOrFreeBBs.insert(From).second)
return false;
// We assume that we'll already have split suspends into their own blocks.
if (coro::isSuspendBlock(From))
return true;
// Recurse on the successors.
for (auto *Succ : successors(From)) {
if (isSuspendReachableFrom(Succ, VisitedOrFreeBBs))
return true;
}
return false;
}
/// Is the given alloca "local", i.e. bounded in lifetime to not cross a
/// suspend point?
static bool isLocalAlloca(CoroAllocaAllocInst *AI) {
// Seed the visited set with all the basic blocks containing a free
// so that we won't pass them up.
VisitedBlocksSet VisitedOrFreeBBs;
for (auto *User : AI->users()) {
if (auto FI = dyn_cast<CoroAllocaFreeInst>(User))
VisitedOrFreeBBs.insert(FI->getParent());
}
return !isSuspendReachableFrom(AI->getParent(), VisitedOrFreeBBs);
}
/// Turn the given coro.alloca.alloc call into a dynamic allocation.
/// This happens during the all-instructions iteration, so it must not
/// delete the call.
static Instruction *
lowerNonLocalAlloca(CoroAllocaAllocInst *AI, const coro::Shape &Shape,
SmallVectorImpl<Instruction *> &DeadInsts) {
IRBuilder<> Builder(AI);
auto Alloc = Shape.emitAlloc(Builder, AI->getSize(), nullptr);
for (User *U : AI->users()) {
if (isa<CoroAllocaGetInst>(U)) {
U->replaceAllUsesWith(Alloc);
} else {
auto FI = cast<CoroAllocaFreeInst>(U);
Builder.SetInsertPoint(FI);
Shape.emitDealloc(Builder, Alloc, nullptr);
}
DeadInsts.push_back(cast<Instruction>(U));
}
// Push this on last so that it gets deleted after all the others.
DeadInsts.push_back(AI);
// Return the new allocation value so that we can check for needed spills.
return cast<Instruction>(Alloc);
}
// We need to make room to insert a spill after initial PHIs, but before
// catchswitch instruction. Placing it before violates the requirement that
// catchswitch, like all other EHPads must be the first nonPHI in a block.
//
// Split away catchswitch into a separate block and insert in its place:
//
// cleanuppad <InsertPt> cleanupret.
//
// cleanupret instruction will act as an insert point for the spill.
static Instruction *splitBeforeCatchSwitch(CatchSwitchInst *CatchSwitch) {
BasicBlock *CurrentBlock = CatchSwitch->getParent();
BasicBlock *NewBlock = CurrentBlock->splitBasicBlock(CatchSwitch);
CurrentBlock->getTerminator()->eraseFromParent();
auto *CleanupPad =
CleanupPadInst::Create(CatchSwitch->getParentPad(), {}, "", CurrentBlock);
auto *CleanupRet =
CleanupReturnInst::Create(CleanupPad, NewBlock, CurrentBlock);
return CleanupRet;
}
// We use a pointer use visitor to track how an alloca is being used.
// The goal is to be able to answer the following three questions:
// 1. Should this alloca be allocated on the frame instead.
// 2. Could the content of the alloca be modified prior to CoroBegin, which
// would require copying the data from the alloca to the frame after
// CoroBegin.
// 3. Are there any aliases created for this alloca prior to CoroBegin, but
// used after CoroBegin. In that case, we will need to recreate the alias
// after CoroBegin based off the frame.
//
// To answer question 1, we track two things:
// A. List of all BasicBlocks that use this alloca or any of the aliases of
// the alloca. In the end, we check if there exists any two basic blocks that
// cross suspension points. If so, this alloca must be put on the frame.
// B. Whether the alloca or any alias of the alloca is escaped at some point,
// either by storing the address somewhere, or the address is used in a
// function call that might capture. If it's ever escaped, this alloca must be
// put on the frame conservatively.
//
// To answer quetion 2, we track through the variable MayWriteBeforeCoroBegin.
// Whenever a potential write happens, either through a store instruction, a
// function call or any of the memory intrinsics, we check whether this
// instruction is prior to CoroBegin.
//
// To answer question 3, we track the offsets of all aliases created for the
// alloca prior to CoroBegin but used after CoroBegin. std::optional is used to
// be able to represent the case when the offset is unknown (e.g. when you have
// a PHINode that takes in different offset values). We cannot handle unknown
// offsets and will assert. This is the potential issue left out. An ideal
// solution would likely require a significant redesign.
namespace {
struct AllocaUseVisitor : PtrUseVisitor<AllocaUseVisitor> {
using Base = PtrUseVisitor<AllocaUseVisitor>;
AllocaUseVisitor(const DataLayout &DL, const DominatorTree &DT,
const coro::Shape &CoroShape,
const SuspendCrossingInfo &Checker,
bool ShouldUseLifetimeStartInfo)
: PtrUseVisitor(DL), DT(DT), CoroShape(CoroShape), Checker(Checker),
ShouldUseLifetimeStartInfo(ShouldUseLifetimeStartInfo) {
for (AnyCoroSuspendInst *SuspendInst : CoroShape.CoroSuspends)
CoroSuspendBBs.insert(SuspendInst->getParent());
}
void visit(Instruction &I) {
Users.insert(&I);
Base::visit(I);
// If the pointer is escaped prior to CoroBegin, we have to assume it would
// be written into before CoroBegin as well.
if (PI.isEscaped() &&
!DT.dominates(CoroShape.CoroBegin, PI.getEscapingInst())) {
MayWriteBeforeCoroBegin = true;
}
}
// We need to provide this overload as PtrUseVisitor uses a pointer based
// visiting function.
void visit(Instruction *I) { return visit(*I); }
void visitPHINode(PHINode &I) {
enqueueUsers(I);
handleAlias(I);
}
void visitSelectInst(SelectInst &I) {
enqueueUsers(I);
handleAlias(I);
}
void visitStoreInst(StoreInst &SI) {
// Regardless whether the alias of the alloca is the value operand or the
// pointer operand, we need to assume the alloca is been written.
handleMayWrite(SI);
if (SI.getValueOperand() != U->get())
return;
// We are storing the pointer into a memory location, potentially escaping.
// As an optimization, we try to detect simple cases where it doesn't
// actually escape, for example:
// %ptr = alloca ..
// %addr = alloca ..
// store %ptr, %addr
// %x = load %addr
// ..
// If %addr is only used by loading from it, we could simply treat %x as
// another alias of %ptr, and not considering %ptr being escaped.
auto IsSimpleStoreThenLoad = [&]() {
auto *AI = dyn_cast<AllocaInst>(SI.getPointerOperand());
// If the memory location we are storing to is not an alloca, it
// could be an alias of some other memory locations, which is difficult
// to analyze.
if (!AI)
return false;
// StoreAliases contains aliases of the memory location stored into.
SmallVector<Instruction *, 4> StoreAliases = {AI};
while (!StoreAliases.empty()) {
Instruction *I = StoreAliases.pop_back_val();
for (User *U : I->users()) {
// If we are loading from the memory location, we are creating an
// alias of the original pointer.
if (auto *LI = dyn_cast<LoadInst>(U)) {
enqueueUsers(*LI);
handleAlias(*LI);
continue;
}
// If we are overriding the memory location, the pointer certainly
// won't escape.
if (auto *S = dyn_cast<StoreInst>(U))
if (S->getPointerOperand() == I)
continue;
if (isa<LifetimeIntrinsic>(U))
continue;
// BitCastInst creats aliases of the memory location being stored
// into.
if (auto *BI = dyn_cast<BitCastInst>(U)) {
StoreAliases.push_back(BI);
continue;
}
return false;
}
}
return true;
};
if (!IsSimpleStoreThenLoad())
PI.setEscaped(&SI);
}
// All mem intrinsics modify the data.
void visitMemIntrinsic(MemIntrinsic &MI) { handleMayWrite(MI); }
void visitBitCastInst(BitCastInst &BC) {
Base::visitBitCastInst(BC);
handleAlias(BC);
}
void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
Base::visitAddrSpaceCastInst(ASC);
handleAlias(ASC);
}
void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
// The base visitor will adjust Offset accordingly.
Base::visitGetElementPtrInst(GEPI);
handleAlias(GEPI);
}
void visitIntrinsicInst(IntrinsicInst &II) {
// When we found the lifetime markers refers to a
// subrange of the original alloca, ignore the lifetime
// markers to avoid misleading the analysis.
if (!IsOffsetKnown || !Offset.isZero())
return Base::visitIntrinsicInst(II);
switch (II.getIntrinsicID()) {
default:
return Base::visitIntrinsicInst(II);
case Intrinsic::lifetime_start:
LifetimeStarts.insert(&II);
LifetimeStartBBs.push_back(II.getParent());
break;
case Intrinsic::lifetime_end:
LifetimeEndBBs.insert(II.getParent());
break;
}
}
void visitCallBase(CallBase &CB) {
for (unsigned Op = 0, OpCount = CB.arg_size(); Op < OpCount; ++Op)
if (U->get() == CB.getArgOperand(Op) && !CB.doesNotCapture(Op))
PI.setEscaped(&CB);
handleMayWrite(CB);
}
bool getShouldLiveOnFrame() const {
if (!ShouldLiveOnFrame)
ShouldLiveOnFrame = computeShouldLiveOnFrame();
return *ShouldLiveOnFrame;
}
bool getMayWriteBeforeCoroBegin() const { return MayWriteBeforeCoroBegin; }
DenseMap<Instruction *, std::optional<APInt>> getAliasesCopy() const {
assert(getShouldLiveOnFrame() && "This method should only be called if the "
"alloca needs to live on the frame.");
for (const auto &P : AliasOffetMap)
if (!P.second)
report_fatal_error("Unable to handle an alias with unknown offset "
"created before CoroBegin.");
return AliasOffetMap;
}
private:
const DominatorTree &DT;
const coro::Shape &CoroShape;
const SuspendCrossingInfo &Checker;
// All alias to the original AllocaInst, created before CoroBegin and used
// after CoroBegin. Each entry contains the instruction and the offset in the
// original Alloca. They need to be recreated after CoroBegin off the frame.
DenseMap<Instruction *, std::optional<APInt>> AliasOffetMap{};
SmallPtrSet<Instruction *, 4> Users{};
SmallPtrSet<IntrinsicInst *, 2> LifetimeStarts{};
SmallVector<BasicBlock *> LifetimeStartBBs{};
SmallPtrSet<BasicBlock *, 2> LifetimeEndBBs{};
SmallPtrSet<const BasicBlock *, 2> CoroSuspendBBs{};
bool MayWriteBeforeCoroBegin{false};
bool ShouldUseLifetimeStartInfo{true};
mutable std::optional<bool> ShouldLiveOnFrame{};
bool computeShouldLiveOnFrame() const {
// If lifetime information is available, we check it first since it's
// more precise. We look at every pair of lifetime.start intrinsic and
// every basic block that uses the pointer to see if they cross suspension
// points. The uses cover both direct uses as well as indirect uses.
if (ShouldUseLifetimeStartInfo && !LifetimeStarts.empty()) {
// If there is no explicit lifetime.end, then assume the address can
// cross suspension points.
if (LifetimeEndBBs.empty())
return true;
// If there is a path from a lifetime.start to a suspend without a
// corresponding lifetime.end, then the alloca's lifetime persists
// beyond that suspension point and the alloca must go on the frame.
llvm::SmallVector<BasicBlock *> Worklist(LifetimeStartBBs);
if (isManyPotentiallyReachableFromMany(Worklist, CoroSuspendBBs,
&LifetimeEndBBs, &DT))
return true;
// Addresses are guaranteed to be identical after every lifetime.start so
// we cannot use the local stack if the address escaped and there is a
// suspend point between lifetime markers. This should also cover the
// case of a single lifetime.start intrinsic in a loop with suspend point.
if (PI.isEscaped()) {
for (auto *A : LifetimeStarts) {
for (auto *B : LifetimeStarts) {
if (Checker.hasPathOrLoopCrossingSuspendPoint(A->getParent(),
B->getParent()))
return true;
}
}
}
return false;
}
// FIXME: Ideally the isEscaped check should come at the beginning.
// However there are a few loose ends that need to be fixed first before
// we can do that. We need to make sure we are not over-conservative, so
// that the data accessed in-between await_suspend and symmetric transfer
// is always put on the stack, and also data accessed after coro.end is
// always put on the stack (esp the return object). To fix that, we need
// to:
// 1) Potentially treat sret as nocapture in calls
// 2) Special handle the return object and put it on the stack
// 3) Utilize lifetime.end intrinsic
if (PI.isEscaped())
return true;
for (auto *U1 : Users)
for (auto *U2 : Users)
if (Checker.isDefinitionAcrossSuspend(*U1, U2))
return true;
return false;
}
void handleMayWrite(const Instruction &I) {
if (!DT.dominates(CoroShape.CoroBegin, &I))
MayWriteBeforeCoroBegin = true;
}
bool usedAfterCoroBegin(Instruction &I) {
for (auto &U : I.uses())
if (DT.dominates(CoroShape.CoroBegin, U))
return true;
return false;
}
void handleAlias(Instruction &I) {
// We track all aliases created prior to CoroBegin but used after.
// These aliases may need to be recreated after CoroBegin if the alloca
// need to live on the frame.
if (DT.dominates(CoroShape.CoroBegin, &I) || !usedAfterCoroBegin(I))
return;
if (!IsOffsetKnown) {
AliasOffetMap[&I].reset();
} else {
auto [Itr, Inserted] = AliasOffetMap.try_emplace(&I, Offset);
if (!Inserted && Itr->second && *Itr->second != Offset) {
// If we have seen two different possible values for this alias, we set
// it to empty.
Itr->second.reset();
}
}
}
};
} // namespace
static void collectFrameAlloca(AllocaInst *AI, const coro::Shape &Shape,
const SuspendCrossingInfo &Checker,
SmallVectorImpl<AllocaInfo> &Allocas,
const DominatorTree &DT) {
if (Shape.CoroSuspends.empty())
return;
// The PromiseAlloca will be specially handled since it needs to be in a
// fixed position in the frame.
if (AI == Shape.SwitchLowering.PromiseAlloca)
return;
// The __coro_gro alloca should outlive the promise, make sure we
// keep it outside the frame.
if (AI->hasMetadata(LLVMContext::MD_coro_outside_frame))
return;
// The code that uses lifetime.start intrinsic does not work for functions
// with loops without exit. Disable it on ABIs we know to generate such
// code.
bool ShouldUseLifetimeStartInfo =
(Shape.ABI != coro::ABI::Async && Shape.ABI != coro::ABI::Retcon &&
Shape.ABI != coro::ABI::RetconOnce);
AllocaUseVisitor Visitor{AI->getDataLayout(), DT, Shape, Checker,
ShouldUseLifetimeStartInfo};
Visitor.visitPtr(*AI);
if (!Visitor.getShouldLiveOnFrame())
return;
Allocas.emplace_back(AI, Visitor.getAliasesCopy(),
Visitor.getMayWriteBeforeCoroBegin());
}
} // namespace
void collectSpillsFromArgs(SpillInfo &Spills, Function &F,
const SuspendCrossingInfo &Checker) {
// Collect the spills for arguments and other not-materializable values.
for (Argument &A : F.args())
for (User *U : A.users())
if (Checker.isDefinitionAcrossSuspend(A, U))
Spills[&A].push_back(cast<Instruction>(U));
}
void collectSpillsAndAllocasFromInsts(
SpillInfo &Spills, SmallVector<AllocaInfo, 8> &Allocas,
SmallVector<Instruction *, 4> &DeadInstructions,
SmallVector<CoroAllocaAllocInst *, 4> &LocalAllocas, Function &F,
const SuspendCrossingInfo &Checker, const DominatorTree &DT,
const coro::Shape &Shape) {
for (Instruction &I : instructions(F)) {
// Values returned from coroutine structure intrinsics should not be part
// of the Coroutine Frame.
if (isCoroutineStructureIntrinsic(I) || &I == Shape.CoroBegin)
continue;
// Handle alloca.alloc specially here.
if (auto AI = dyn_cast<CoroAllocaAllocInst>(&I)) {
// Check whether the alloca's lifetime is bounded by suspend points.
if (isLocalAlloca(AI)) {
LocalAllocas.push_back(AI);
continue;
}
// If not, do a quick rewrite of the alloca and then add spills of
// the rewritten value. The rewrite doesn't invalidate anything in
// Spills because the other alloca intrinsics have no other operands
// besides AI, and it doesn't invalidate the iteration because we delay
// erasing AI.
auto Alloc = lowerNonLocalAlloca(AI, Shape, DeadInstructions);
for (User *U : Alloc->users()) {
if (Checker.isDefinitionAcrossSuspend(*Alloc, U))
Spills[Alloc].push_back(cast<Instruction>(U));
}
continue;
}
// Ignore alloca.get; we process this as part of coro.alloca.alloc.
if (isa<CoroAllocaGetInst>(I))
continue;
if (auto *AI = dyn_cast<AllocaInst>(&I)) {
collectFrameAlloca(AI, Shape, Checker, Allocas, DT);
continue;
}
for (User *U : I.users())
if (Checker.isDefinitionAcrossSuspend(I, U)) {
// We cannot spill a token.
if (I.getType()->isTokenTy())
report_fatal_error(
"token definition is separated from the use by a suspend point");
Spills[&I].push_back(cast<Instruction>(U));
}
}
}
void collectSpillsFromDbgInfo(SpillInfo &Spills, Function &F,
const SuspendCrossingInfo &Checker) {
// We don't want the layout of coroutine frame to be affected
// by debug information. So we only choose to salvage DbgValueInst for
// whose value is already in the frame.
// We would handle the dbg.values for allocas specially
for (auto &Iter : Spills) {
auto *V = Iter.first;
SmallVector<DbgValueInst *, 16> DVIs;
SmallVector<DbgVariableRecord *, 16> DVRs;
findDbgValues(DVIs, V, &DVRs);
for (DbgValueInst *DVI : DVIs)
if (Checker.isDefinitionAcrossSuspend(*V, DVI))
Spills[V].push_back(DVI);
// Add the instructions which carry debug info that is in the frame.
for (DbgVariableRecord *DVR : DVRs)
if (Checker.isDefinitionAcrossSuspend(*V, DVR->Marker->MarkedInstr))
Spills[V].push_back(DVR->Marker->MarkedInstr);
}
}
/// Async and Retcon{Once} conventions assume that all spill uses can be sunk
/// after the coro.begin intrinsic.
void sinkSpillUsesAfterCoroBegin(const DominatorTree &Dom,
CoroBeginInst *CoroBegin,
coro::SpillInfo &Spills,
SmallVectorImpl<coro::AllocaInfo> &Allocas) {
SmallSetVector<Instruction *, 32> ToMove;
SmallVector<Instruction *, 32> Worklist;
// Collect all users that precede coro.begin.
auto collectUsers = [&](Value *Def) {
for (User *U : Def->users()) {
auto Inst = cast<Instruction>(U);
if (Inst->getParent() != CoroBegin->getParent() ||
Dom.dominates(CoroBegin, Inst))
continue;
if (ToMove.insert(Inst))
Worklist.push_back(Inst);
}
};
std::for_each(Spills.begin(), Spills.end(),
[&](auto &I) { collectUsers(I.first); });
std::for_each(Allocas.begin(), Allocas.end(),
[&](auto &I) { collectUsers(I.Alloca); });
// Recursively collect users before coro.begin.
while (!Worklist.empty()) {
auto *Def = Worklist.pop_back_val();
for (User *U : Def->users()) {
auto Inst = cast<Instruction>(U);
if (Dom.dominates(CoroBegin, Inst))
continue;
if (ToMove.insert(Inst))
Worklist.push_back(Inst);
}
}
// Sort by dominance.
SmallVector<Instruction *, 64> InsertionList(ToMove.begin(), ToMove.end());
llvm::sort(InsertionList, [&Dom](Instruction *A, Instruction *B) -> bool {
// If a dominates b it should precede (<) b.
return Dom.dominates(A, B);
});
Instruction *InsertPt = CoroBegin->getNextNode();
for (Instruction *Inst : InsertionList)
Inst->moveBefore(InsertPt->getIterator());
}
BasicBlock::iterator getSpillInsertionPt(const coro::Shape &Shape, Value *Def,
const DominatorTree &DT) {
BasicBlock::iterator InsertPt;
if (auto *Arg = dyn_cast<Argument>(Def)) {
// For arguments, we will place the store instruction right after
// the coroutine frame pointer instruction, i.e. coro.begin.
InsertPt = Shape.getInsertPtAfterFramePtr();
// If we're spilling an Argument, make sure we clear 'captures'
// from the coroutine function.
Arg->getParent()->removeParamAttr(Arg->getArgNo(), Attribute::Captures);
} else if (auto *CSI = dyn_cast<AnyCoroSuspendInst>(Def)) {
// Don't spill immediately after a suspend; splitting assumes
// that the suspend will be followed by a branch.
InsertPt = CSI->getParent()->getSingleSuccessor()->getFirstNonPHIIt();
} else {
auto *I = cast<Instruction>(Def);
if (!DT.dominates(Shape.CoroBegin, I)) {
// If it is not dominated by CoroBegin, then spill should be
// inserted immediately after CoroFrame is computed.
InsertPt = Shape.getInsertPtAfterFramePtr();
} else if (auto *II = dyn_cast<InvokeInst>(I)) {
// If we are spilling the result of the invoke instruction, split
// the normal edge and insert the spill in the new block.
auto *NewBB = SplitEdge(II->getParent(), II->getNormalDest());
InsertPt = NewBB->getTerminator()->getIterator();
} else if (isa<PHINode>(I)) {
// Skip the PHINodes and EH pads instructions.
BasicBlock *DefBlock = I->getParent();
if (auto *CSI = dyn_cast<CatchSwitchInst>(DefBlock->getTerminator()))
InsertPt = splitBeforeCatchSwitch(CSI)->getIterator();
else
InsertPt = DefBlock->getFirstInsertionPt();
} else {
assert(!I->isTerminator() && "unexpected terminator");
// For all other values, the spill is placed immediately after
// the definition.
InsertPt = I->getNextNode()->getIterator();
}
}
return InsertPt;
}
} // End namespace coro.
} // End namespace llvm.