| //===-- LLParser.cpp - Parser Class ---------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the parser class for .ll files. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/AsmParser/LLParser.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/ScopeExit.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/AsmParser/LLToken.h" |
| #include "llvm/AsmParser/SlotMapping.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/AutoUpgrade.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CallingConv.h" |
| #include "llvm/IR/Comdat.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/ConstantRangeList.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalIFunc.h" |
| #include "llvm/IR/GlobalObject.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/InstIterator.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueSymbolTable.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/ModRef.h" |
| #include "llvm/Support/SaveAndRestore.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstring> |
| #include <optional> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> AllowIncompleteIR( |
| "allow-incomplete-ir", cl::init(false), cl::Hidden, |
| cl::desc( |
| "Allow incomplete IR on a best effort basis (references to unknown " |
| "metadata will be dropped)")); |
| |
| extern llvm::cl::opt<bool> UseNewDbgInfoFormat; |
| extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat; |
| extern bool WriteNewDbgInfoFormatToBitcode; |
| extern cl::opt<bool> WriteNewDbgInfoFormat; |
| |
| static std::string getTypeString(Type *T) { |
| std::string Result; |
| raw_string_ostream Tmp(Result); |
| Tmp << *T; |
| return Tmp.str(); |
| } |
| |
| /// Run: module ::= toplevelentity* |
| bool LLParser::Run(bool UpgradeDebugInfo, |
| DataLayoutCallbackTy DataLayoutCallback) { |
| // Prime the lexer. |
| Lex.Lex(); |
| |
| if (Context.shouldDiscardValueNames()) |
| return error( |
| Lex.getLoc(), |
| "Can't read textual IR with a Context that discards named Values"); |
| |
| if (M) { |
| if (parseTargetDefinitions(DataLayoutCallback)) |
| return true; |
| } |
| |
| return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || |
| validateEndOfIndex(); |
| } |
| |
| bool LLParser::parseStandaloneConstantValue(Constant *&C, |
| const SlotMapping *Slots) { |
| restoreParsingState(Slots); |
| Lex.Lex(); |
| |
| Type *Ty = nullptr; |
| if (parseType(Ty) || parseConstantValue(Ty, C)) |
| return true; |
| if (Lex.getKind() != lltok::Eof) |
| return error(Lex.getLoc(), "expected end of string"); |
| return false; |
| } |
| |
| bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, |
| const SlotMapping *Slots) { |
| restoreParsingState(Slots); |
| Lex.Lex(); |
| |
| Read = 0; |
| SMLoc Start = Lex.getLoc(); |
| Ty = nullptr; |
| if (parseType(Ty)) |
| return true; |
| SMLoc End = Lex.getLoc(); |
| Read = End.getPointer() - Start.getPointer(); |
| |
| return false; |
| } |
| |
| bool LLParser::parseDIExpressionBodyAtBeginning(MDNode *&Result, unsigned &Read, |
| const SlotMapping *Slots) { |
| restoreParsingState(Slots); |
| Lex.Lex(); |
| |
| Read = 0; |
| SMLoc Start = Lex.getLoc(); |
| Result = nullptr; |
| bool Status = parseDIExpressionBody(Result, /*IsDistinct=*/false); |
| SMLoc End = Lex.getLoc(); |
| Read = End.getPointer() - Start.getPointer(); |
| |
| return Status; |
| } |
| |
| void LLParser::restoreParsingState(const SlotMapping *Slots) { |
| if (!Slots) |
| return; |
| NumberedVals = Slots->GlobalValues; |
| NumberedMetadata = Slots->MetadataNodes; |
| for (const auto &I : Slots->NamedTypes) |
| NamedTypes.insert( |
| std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); |
| for (const auto &I : Slots->Types) |
| NumberedTypes.insert( |
| std::make_pair(I.first, std::make_pair(I.second, LocTy()))); |
| } |
| |
| static void dropIntrinsicWithUnknownMetadataArgument(IntrinsicInst *II) { |
| // White-list intrinsics that are safe to drop. |
| if (!isa<DbgInfoIntrinsic>(II) && |
| II->getIntrinsicID() != Intrinsic::experimental_noalias_scope_decl) |
| return; |
| |
| SmallVector<MetadataAsValue *> MVs; |
| for (Value *V : II->args()) |
| if (auto *MV = dyn_cast<MetadataAsValue>(V)) |
| if (auto *MD = dyn_cast<MDNode>(MV->getMetadata())) |
| if (MD->isTemporary()) |
| MVs.push_back(MV); |
| |
| if (!MVs.empty()) { |
| assert(II->use_empty() && "Cannot have uses"); |
| II->eraseFromParent(); |
| |
| // Also remove no longer used MetadataAsValue wrappers. |
| for (MetadataAsValue *MV : MVs) |
| if (MV->use_empty()) |
| delete MV; |
| } |
| } |
| |
| void LLParser::dropUnknownMetadataReferences() { |
| auto Pred = [](unsigned MDKind, MDNode *Node) { return Node->isTemporary(); }; |
| for (Function &F : *M) { |
| F.eraseMetadataIf(Pred); |
| for (Instruction &I : make_early_inc_range(instructions(F))) { |
| I.eraseMetadataIf(Pred); |
| |
| if (auto *II = dyn_cast<IntrinsicInst>(&I)) |
| dropIntrinsicWithUnknownMetadataArgument(II); |
| } |
| } |
| |
| for (GlobalVariable &GV : M->globals()) |
| GV.eraseMetadataIf(Pred); |
| |
| for (const auto &[ID, Info] : make_early_inc_range(ForwardRefMDNodes)) { |
| // Check whether there is only a single use left, which would be in our |
| // own NumberedMetadata. |
| if (Info.first->getNumTemporaryUses() == 1) { |
| NumberedMetadata.erase(ID); |
| ForwardRefMDNodes.erase(ID); |
| } |
| } |
| } |
| |
| /// validateEndOfModule - Do final validity and basic correctness checks at the |
| /// end of the module. |
| bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { |
| if (!M) |
| return false; |
| |
| // We should have already returned an error if we observed both intrinsics and |
| // records in this IR. |
| assert(!(SeenNewDbgInfoFormat && SeenOldDbgInfoFormat) && |
| "Mixed debug intrinsics/records seen without a parsing error?"); |
| if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) { |
| UseNewDbgInfoFormat = SeenNewDbgInfoFormat; |
| WriteNewDbgInfoFormatToBitcode = SeenNewDbgInfoFormat; |
| WriteNewDbgInfoFormat = SeenNewDbgInfoFormat; |
| M->setNewDbgInfoFormatFlag(SeenNewDbgInfoFormat); |
| } |
| |
| // Handle any function attribute group forward references. |
| for (const auto &RAG : ForwardRefAttrGroups) { |
| Value *V = RAG.first; |
| const std::vector<unsigned> &Attrs = RAG.second; |
| AttrBuilder B(Context); |
| |
| for (const auto &Attr : Attrs) { |
| auto R = NumberedAttrBuilders.find(Attr); |
| if (R != NumberedAttrBuilders.end()) |
| B.merge(R->second); |
| } |
| |
| if (Function *Fn = dyn_cast<Function>(V)) { |
| AttributeList AS = Fn->getAttributes(); |
| AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); |
| AS = AS.removeFnAttributes(Context); |
| |
| FnAttrs.merge(B); |
| |
| // If the alignment was parsed as an attribute, move to the alignment |
| // field. |
| if (MaybeAlign A = FnAttrs.getAlignment()) { |
| Fn->setAlignment(*A); |
| FnAttrs.removeAttribute(Attribute::Alignment); |
| } |
| |
| AS = AS.addFnAttributes(Context, FnAttrs); |
| Fn->setAttributes(AS); |
| } else if (CallInst *CI = dyn_cast<CallInst>(V)) { |
| AttributeList AS = CI->getAttributes(); |
| AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); |
| AS = AS.removeFnAttributes(Context); |
| FnAttrs.merge(B); |
| AS = AS.addFnAttributes(Context, FnAttrs); |
| CI->setAttributes(AS); |
| } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { |
| AttributeList AS = II->getAttributes(); |
| AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); |
| AS = AS.removeFnAttributes(Context); |
| FnAttrs.merge(B); |
| AS = AS.addFnAttributes(Context, FnAttrs); |
| II->setAttributes(AS); |
| } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { |
| AttributeList AS = CBI->getAttributes(); |
| AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); |
| AS = AS.removeFnAttributes(Context); |
| FnAttrs.merge(B); |
| AS = AS.addFnAttributes(Context, FnAttrs); |
| CBI->setAttributes(AS); |
| } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { |
| AttrBuilder Attrs(M->getContext(), GV->getAttributes()); |
| Attrs.merge(B); |
| GV->setAttributes(AttributeSet::get(Context,Attrs)); |
| } else { |
| llvm_unreachable("invalid object with forward attribute group reference"); |
| } |
| } |
| |
| // If there are entries in ForwardRefBlockAddresses at this point, the |
| // function was never defined. |
| if (!ForwardRefBlockAddresses.empty()) |
| return error(ForwardRefBlockAddresses.begin()->first.Loc, |
| "expected function name in blockaddress"); |
| |
| auto ResolveForwardRefDSOLocalEquivalents = [&](const ValID &GVRef, |
| GlobalValue *FwdRef) { |
| GlobalValue *GV = nullptr; |
| if (GVRef.Kind == ValID::t_GlobalName) { |
| GV = M->getNamedValue(GVRef.StrVal); |
| } else { |
| GV = NumberedVals.get(GVRef.UIntVal); |
| } |
| |
| if (!GV) |
| return error(GVRef.Loc, "unknown function '" + GVRef.StrVal + |
| "' referenced by dso_local_equivalent"); |
| |
| if (!GV->getValueType()->isFunctionTy()) |
| return error(GVRef.Loc, |
| "expected a function, alias to function, or ifunc " |
| "in dso_local_equivalent"); |
| |
| auto *Equiv = DSOLocalEquivalent::get(GV); |
| FwdRef->replaceAllUsesWith(Equiv); |
| FwdRef->eraseFromParent(); |
| return false; |
| }; |
| |
| // If there are entries in ForwardRefDSOLocalEquivalentIDs/Names at this |
| // point, they are references after the function was defined. Resolve those |
| // now. |
| for (auto &Iter : ForwardRefDSOLocalEquivalentIDs) { |
| if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second)) |
| return true; |
| } |
| for (auto &Iter : ForwardRefDSOLocalEquivalentNames) { |
| if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second)) |
| return true; |
| } |
| ForwardRefDSOLocalEquivalentIDs.clear(); |
| ForwardRefDSOLocalEquivalentNames.clear(); |
| |
| for (const auto &NT : NumberedTypes) |
| if (NT.second.second.isValid()) |
| return error(NT.second.second, |
| "use of undefined type '%" + Twine(NT.first) + "'"); |
| |
| for (StringMap<std::pair<Type*, LocTy> >::iterator I = |
| NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) |
| if (I->second.second.isValid()) |
| return error(I->second.second, |
| "use of undefined type named '" + I->getKey() + "'"); |
| |
| if (!ForwardRefComdats.empty()) |
| return error(ForwardRefComdats.begin()->second, |
| "use of undefined comdat '$" + |
| ForwardRefComdats.begin()->first + "'"); |
| |
| for (const auto &[Name, Info] : make_early_inc_range(ForwardRefVals)) { |
| if (StringRef(Name).starts_with("llvm.")) { |
| Intrinsic::ID IID = Intrinsic::lookupIntrinsicID(Name); |
| if (IID == Intrinsic::not_intrinsic) |
| // Don't do anything for unknown intrinsics. |
| continue; |
| |
| // Automatically create declarations for intrinsics. Intrinsics can only |
| // be called directly, so the call function type directly determines the |
| // declaration function type. |
| // |
| // Additionally, automatically add the required mangling suffix to the |
| // intrinsic name. This means that we may replace a single forward |
| // declaration with multiple functions here. |
| for (Use &U : make_early_inc_range(Info.first->uses())) { |
| auto *CB = dyn_cast<CallBase>(U.getUser()); |
| if (!CB || !CB->isCallee(&U)) |
| return error(Info.second, "intrinsic can only be used as callee"); |
| |
| SmallVector<Type *> OverloadTys; |
| if (!Intrinsic::getIntrinsicSignature(IID, CB->getFunctionType(), |
| OverloadTys)) |
| return error(Info.second, "invalid intrinsic signature"); |
| |
| U.set(Intrinsic::getOrInsertDeclaration(M, IID, OverloadTys)); |
| } |
| |
| Info.first->eraseFromParent(); |
| ForwardRefVals.erase(Name); |
| continue; |
| } |
| |
| // If incomplete IR is allowed, also add declarations for |
| // non-intrinsics. |
| if (!AllowIncompleteIR) |
| continue; |
| |
| auto GetCommonFunctionType = [](Value *V) -> FunctionType * { |
| FunctionType *FTy = nullptr; |
| for (Use &U : V->uses()) { |
| auto *CB = dyn_cast<CallBase>(U.getUser()); |
| if (!CB || !CB->isCallee(&U) || (FTy && FTy != CB->getFunctionType())) |
| return nullptr; |
| FTy = CB->getFunctionType(); |
| } |
| return FTy; |
| }; |
| |
| // First check whether this global is only used in calls with the same |
| // type, in which case we'll insert a function. Otherwise, fall back to |
| // using a dummy i8 type. |
| Type *Ty = GetCommonFunctionType(Info.first); |
| if (!Ty) |
| Ty = Type::getInt8Ty(Context); |
| |
| GlobalValue *GV; |
| if (auto *FTy = dyn_cast<FunctionType>(Ty)) |
| GV = Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M); |
| else |
| GV = new GlobalVariable(*M, Ty, /*isConstant*/ false, |
| GlobalValue::ExternalLinkage, |
| /*Initializer*/ nullptr, Name); |
| Info.first->replaceAllUsesWith(GV); |
| Info.first->eraseFromParent(); |
| ForwardRefVals.erase(Name); |
| } |
| |
| if (!ForwardRefVals.empty()) |
| return error(ForwardRefVals.begin()->second.second, |
| "use of undefined value '@" + ForwardRefVals.begin()->first + |
| "'"); |
| |
| if (!ForwardRefValIDs.empty()) |
| return error(ForwardRefValIDs.begin()->second.second, |
| "use of undefined value '@" + |
| Twine(ForwardRefValIDs.begin()->first) + "'"); |
| |
| if (AllowIncompleteIR && !ForwardRefMDNodes.empty()) |
| dropUnknownMetadataReferences(); |
| |
| if (!ForwardRefMDNodes.empty()) |
| return error(ForwardRefMDNodes.begin()->second.second, |
| "use of undefined metadata '!" + |
| Twine(ForwardRefMDNodes.begin()->first) + "'"); |
| |
| // Resolve metadata cycles. |
| for (auto &N : NumberedMetadata) { |
| if (N.second && !N.second->isResolved()) |
| N.second->resolveCycles(); |
| } |
| |
| for (auto *Inst : InstsWithTBAATag) { |
| MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); |
| // With incomplete IR, the tbaa metadata may have been dropped. |
| if (!AllowIncompleteIR) |
| assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); |
| if (MD) { |
| auto *UpgradedMD = UpgradeTBAANode(*MD); |
| if (MD != UpgradedMD) |
| Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); |
| } |
| } |
| |
| // Look for intrinsic functions and CallInst that need to be upgraded. We use |
| // make_early_inc_range here because we may remove some functions. |
| for (Function &F : llvm::make_early_inc_range(*M)) |
| UpgradeCallsToIntrinsic(&F); |
| |
| if (UpgradeDebugInfo) |
| llvm::UpgradeDebugInfo(*M); |
| |
| UpgradeModuleFlags(*M); |
| UpgradeNVVMAnnotations(*M); |
| UpgradeSectionAttributes(*M); |
| |
| if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) |
| M->setIsNewDbgInfoFormat(UseNewDbgInfoFormat); |
| |
| if (!Slots) |
| return false; |
| // Initialize the slot mapping. |
| // Because by this point we've parsed and validated everything, we can "steal" |
| // the mapping from LLParser as it doesn't need it anymore. |
| Slots->GlobalValues = std::move(NumberedVals); |
| Slots->MetadataNodes = std::move(NumberedMetadata); |
| for (const auto &I : NamedTypes) |
| Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); |
| for (const auto &I : NumberedTypes) |
| Slots->Types.insert(std::make_pair(I.first, I.second.first)); |
| |
| return false; |
| } |
| |
| /// Do final validity and basic correctness checks at the end of the index. |
| bool LLParser::validateEndOfIndex() { |
| if (!Index) |
| return false; |
| |
| if (!ForwardRefValueInfos.empty()) |
| return error(ForwardRefValueInfos.begin()->second.front().second, |
| "use of undefined summary '^" + |
| Twine(ForwardRefValueInfos.begin()->first) + "'"); |
| |
| if (!ForwardRefAliasees.empty()) |
| return error(ForwardRefAliasees.begin()->second.front().second, |
| "use of undefined summary '^" + |
| Twine(ForwardRefAliasees.begin()->first) + "'"); |
| |
| if (!ForwardRefTypeIds.empty()) |
| return error(ForwardRefTypeIds.begin()->second.front().second, |
| "use of undefined type id summary '^" + |
| Twine(ForwardRefTypeIds.begin()->first) + "'"); |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top-Level Entities |
| //===----------------------------------------------------------------------===// |
| |
| bool LLParser::parseTargetDefinitions(DataLayoutCallbackTy DataLayoutCallback) { |
| // Delay parsing of the data layout string until the target triple is known. |
| // Then, pass both the the target triple and the tentative data layout string |
| // to DataLayoutCallback, allowing to override the DL string. |
| // This enables importing modules with invalid DL strings. |
| std::string TentativeDLStr = M->getDataLayoutStr(); |
| LocTy DLStrLoc; |
| |
| bool Done = false; |
| while (!Done) { |
| switch (Lex.getKind()) { |
| case lltok::kw_target: |
| if (parseTargetDefinition(TentativeDLStr, DLStrLoc)) |
| return true; |
| break; |
| case lltok::kw_source_filename: |
| if (parseSourceFileName()) |
| return true; |
| break; |
| default: |
| Done = true; |
| } |
| } |
| // Run the override callback to potentially change the data layout string, and |
| // parse the data layout string. |
| if (auto LayoutOverride = |
| DataLayoutCallback(M->getTargetTriple().str(), TentativeDLStr)) { |
| TentativeDLStr = *LayoutOverride; |
| DLStrLoc = {}; |
| } |
| Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDLStr); |
| if (!MaybeDL) |
| return error(DLStrLoc, toString(MaybeDL.takeError())); |
| M->setDataLayout(MaybeDL.get()); |
| return false; |
| } |
| |
| bool LLParser::parseTopLevelEntities() { |
| // If there is no Module, then parse just the summary index entries. |
| if (!M) { |
| while (true) { |
| switch (Lex.getKind()) { |
| case lltok::Eof: |
| return false; |
| case lltok::SummaryID: |
| if (parseSummaryEntry()) |
| return true; |
| break; |
| case lltok::kw_source_filename: |
| if (parseSourceFileName()) |
| return true; |
| break; |
| default: |
| // Skip everything else |
| Lex.Lex(); |
| } |
| } |
| } |
| while (true) { |
| switch (Lex.getKind()) { |
| default: |
| return tokError("expected top-level entity"); |
| case lltok::Eof: return false; |
| case lltok::kw_declare: |
| if (parseDeclare()) |
| return true; |
| break; |
| case lltok::kw_define: |
| if (parseDefine()) |
| return true; |
| break; |
| case lltok::kw_module: |
| if (parseModuleAsm()) |
| return true; |
| break; |
| case lltok::LocalVarID: |
| if (parseUnnamedType()) |
| return true; |
| break; |
| case lltok::LocalVar: |
| if (parseNamedType()) |
| return true; |
| break; |
| case lltok::GlobalID: |
| if (parseUnnamedGlobal()) |
| return true; |
| break; |
| case lltok::GlobalVar: |
| if (parseNamedGlobal()) |
| return true; |
| break; |
| case lltok::ComdatVar: if (parseComdat()) return true; break; |
| case lltok::exclaim: |
| if (parseStandaloneMetadata()) |
| return true; |
| break; |
| case lltok::SummaryID: |
| if (parseSummaryEntry()) |
| return true; |
| break; |
| case lltok::MetadataVar: |
| if (parseNamedMetadata()) |
| return true; |
| break; |
| case lltok::kw_attributes: |
| if (parseUnnamedAttrGrp()) |
| return true; |
| break; |
| case lltok::kw_uselistorder: |
| if (parseUseListOrder()) |
| return true; |
| break; |
| case lltok::kw_uselistorder_bb: |
| if (parseUseListOrderBB()) |
| return true; |
| break; |
| } |
| } |
| } |
| |
| /// toplevelentity |
| /// ::= 'module' 'asm' STRINGCONSTANT |
| bool LLParser::parseModuleAsm() { |
| assert(Lex.getKind() == lltok::kw_module); |
| Lex.Lex(); |
| |
| std::string AsmStr; |
| if (parseToken(lltok::kw_asm, "expected 'module asm'") || |
| parseStringConstant(AsmStr)) |
| return true; |
| |
| M->appendModuleInlineAsm(AsmStr); |
| return false; |
| } |
| |
| /// toplevelentity |
| /// ::= 'target' 'triple' '=' STRINGCONSTANT |
| /// ::= 'target' 'datalayout' '=' STRINGCONSTANT |
| bool LLParser::parseTargetDefinition(std::string &TentativeDLStr, |
| LocTy &DLStrLoc) { |
| assert(Lex.getKind() == lltok::kw_target); |
| std::string Str; |
| switch (Lex.Lex()) { |
| default: |
| return tokError("unknown target property"); |
| case lltok::kw_triple: |
| Lex.Lex(); |
| if (parseToken(lltok::equal, "expected '=' after target triple") || |
| parseStringConstant(Str)) |
| return true; |
| M->setTargetTriple(Triple(Str)); |
| return false; |
| case lltok::kw_datalayout: |
| Lex.Lex(); |
| if (parseToken(lltok::equal, "expected '=' after target datalayout")) |
| return true; |
| DLStrLoc = Lex.getLoc(); |
| if (parseStringConstant(TentativeDLStr)) |
| return true; |
| return false; |
| } |
| } |
| |
| /// toplevelentity |
| /// ::= 'source_filename' '=' STRINGCONSTANT |
| bool LLParser::parseSourceFileName() { |
| assert(Lex.getKind() == lltok::kw_source_filename); |
| Lex.Lex(); |
| if (parseToken(lltok::equal, "expected '=' after source_filename") || |
| parseStringConstant(SourceFileName)) |
| return true; |
| if (M) |
| M->setSourceFileName(SourceFileName); |
| return false; |
| } |
| |
| /// parseUnnamedType: |
| /// ::= LocalVarID '=' 'type' type |
| bool LLParser::parseUnnamedType() { |
| LocTy TypeLoc = Lex.getLoc(); |
| unsigned TypeID = Lex.getUIntVal(); |
| Lex.Lex(); // eat LocalVarID; |
| |
| if (parseToken(lltok::equal, "expected '=' after name") || |
| parseToken(lltok::kw_type, "expected 'type' after '='")) |
| return true; |
| |
| Type *Result = nullptr; |
| if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) |
| return true; |
| |
| if (!isa<StructType>(Result)) { |
| std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; |
| if (Entry.first) |
| return error(TypeLoc, "non-struct types may not be recursive"); |
| Entry.first = Result; |
| Entry.second = SMLoc(); |
| } |
| |
| return false; |
| } |
| |
| /// toplevelentity |
| /// ::= LocalVar '=' 'type' type |
| bool LLParser::parseNamedType() { |
| std::string Name = Lex.getStrVal(); |
| LocTy NameLoc = Lex.getLoc(); |
| Lex.Lex(); // eat LocalVar. |
| |
| if (parseToken(lltok::equal, "expected '=' after name") || |
| parseToken(lltok::kw_type, "expected 'type' after name")) |
| return true; |
| |
| Type *Result = nullptr; |
| if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) |
| return true; |
| |
| if (!isa<StructType>(Result)) { |
| std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; |
| if (Entry.first) |
| return error(NameLoc, "non-struct types may not be recursive"); |
| Entry.first = Result; |
| Entry.second = SMLoc(); |
| } |
| |
| return false; |
| } |
| |
| /// toplevelentity |
| /// ::= 'declare' FunctionHeader |
| bool LLParser::parseDeclare() { |
| assert(Lex.getKind() == lltok::kw_declare); |
| Lex.Lex(); |
| |
| std::vector<std::pair<unsigned, MDNode *>> MDs; |
| while (Lex.getKind() == lltok::MetadataVar) { |
| unsigned MDK; |
| MDNode *N; |
| if (parseMetadataAttachment(MDK, N)) |
| return true; |
| MDs.push_back({MDK, N}); |
| } |
| |
| Function *F; |
| unsigned FunctionNumber = -1; |
| SmallVector<unsigned> UnnamedArgNums; |
| if (parseFunctionHeader(F, false, FunctionNumber, UnnamedArgNums)) |
| return true; |
| for (auto &MD : MDs) |
| F->addMetadata(MD.first, *MD.second); |
| return false; |
| } |
| |
| /// toplevelentity |
| /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... |
| bool LLParser::parseDefine() { |
| assert(Lex.getKind() == lltok::kw_define); |
| Lex.Lex(); |
| |
| Function *F; |
| unsigned FunctionNumber = -1; |
| SmallVector<unsigned> UnnamedArgNums; |
| return parseFunctionHeader(F, true, FunctionNumber, UnnamedArgNums) || |
| parseOptionalFunctionMetadata(*F) || |
| parseFunctionBody(*F, FunctionNumber, UnnamedArgNums); |
| } |
| |
| /// parseGlobalType |
| /// ::= 'constant' |
| /// ::= 'global' |
| bool LLParser::parseGlobalType(bool &IsConstant) { |
| if (Lex.getKind() == lltok::kw_constant) |
| IsConstant = true; |
| else if (Lex.getKind() == lltok::kw_global) |
| IsConstant = false; |
| else { |
| IsConstant = false; |
| return tokError("expected 'global' or 'constant'"); |
| } |
| Lex.Lex(); |
| return false; |
| } |
| |
| bool LLParser::parseOptionalUnnamedAddr( |
| GlobalVariable::UnnamedAddr &UnnamedAddr) { |
| if (EatIfPresent(lltok::kw_unnamed_addr)) |
| UnnamedAddr = GlobalValue::UnnamedAddr::Global; |
| else if (EatIfPresent(lltok::kw_local_unnamed_addr)) |
| UnnamedAddr = GlobalValue::UnnamedAddr::Local; |
| else |
| UnnamedAddr = GlobalValue::UnnamedAddr::None; |
| return false; |
| } |
| |
| /// parseUnnamedGlobal: |
| /// OptionalVisibility (ALIAS | IFUNC) ... |
| /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility |
| /// OptionalDLLStorageClass |
| /// ... -> global variable |
| /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... |
| /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier |
| /// OptionalVisibility |
| /// OptionalDLLStorageClass |
| /// ... -> global variable |
| bool LLParser::parseUnnamedGlobal() { |
| unsigned VarID; |
| std::string Name; |
| LocTy NameLoc = Lex.getLoc(); |
| |
| // Handle the GlobalID form. |
| if (Lex.getKind() == lltok::GlobalID) { |
| VarID = Lex.getUIntVal(); |
| if (checkValueID(NameLoc, "global", "@", NumberedVals.getNext(), VarID)) |
| return true; |
| |
| Lex.Lex(); // eat GlobalID; |
| if (parseToken(lltok::equal, "expected '=' after name")) |
| return true; |
| } else { |
| VarID = NumberedVals.getNext(); |
| } |
| |
| bool HasLinkage; |
| unsigned Linkage, Visibility, DLLStorageClass; |
| bool DSOLocal; |
| GlobalVariable::ThreadLocalMode TLM; |
| GlobalVariable::UnnamedAddr UnnamedAddr; |
| if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, |
| DSOLocal) || |
| parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) |
| return true; |
| |
| switch (Lex.getKind()) { |
| default: |
| return parseGlobal(Name, VarID, NameLoc, Linkage, HasLinkage, Visibility, |
| DLLStorageClass, DSOLocal, TLM, UnnamedAddr); |
| case lltok::kw_alias: |
| case lltok::kw_ifunc: |
| return parseAliasOrIFunc(Name, VarID, NameLoc, Linkage, Visibility, |
| DLLStorageClass, DSOLocal, TLM, UnnamedAddr); |
| } |
| } |
| |
| /// parseNamedGlobal: |
| /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... |
| /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier |
| /// OptionalVisibility OptionalDLLStorageClass |
| /// ... -> global variable |
| bool LLParser::parseNamedGlobal() { |
| assert(Lex.getKind() == lltok::GlobalVar); |
| LocTy NameLoc = Lex.getLoc(); |
| std::string Name = Lex.getStrVal(); |
| Lex.Lex(); |
| |
| bool HasLinkage; |
| unsigned Linkage, Visibility, DLLStorageClass; |
| bool DSOLocal; |
| GlobalVariable::ThreadLocalMode TLM; |
| GlobalVariable::UnnamedAddr UnnamedAddr; |
| if (parseToken(lltok::equal, "expected '=' in global variable") || |
| parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, |
| DSOLocal) || |
| parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) |
| return true; |
| |
| switch (Lex.getKind()) { |
| default: |
| return parseGlobal(Name, -1, NameLoc, Linkage, HasLinkage, Visibility, |
| DLLStorageClass, DSOLocal, TLM, UnnamedAddr); |
| case lltok::kw_alias: |
| case lltok::kw_ifunc: |
| return parseAliasOrIFunc(Name, -1, NameLoc, Linkage, Visibility, |
| DLLStorageClass, DSOLocal, TLM, UnnamedAddr); |
| } |
| } |
| |
| bool LLParser::parseComdat() { |
| assert(Lex.getKind() == lltok::ComdatVar); |
| std::string Name = Lex.getStrVal(); |
| LocTy NameLoc = Lex.getLoc(); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::equal, "expected '=' here")) |
| return true; |
| |
| if (parseToken(lltok::kw_comdat, "expected comdat keyword")) |
| return tokError("expected comdat type"); |
| |
| Comdat::SelectionKind SK; |
| switch (Lex.getKind()) { |
| default: |
| return tokError("unknown selection kind"); |
| case lltok::kw_any: |
| SK = Comdat::Any; |
| break; |
| case lltok::kw_exactmatch: |
| SK = Comdat::ExactMatch; |
| break; |
| case lltok::kw_largest: |
| SK = Comdat::Largest; |
| break; |
| case lltok::kw_nodeduplicate: |
| SK = Comdat::NoDeduplicate; |
| break; |
| case lltok::kw_samesize: |
| SK = Comdat::SameSize; |
| break; |
| } |
| Lex.Lex(); |
| |
| // See if the comdat was forward referenced, if so, use the comdat. |
| Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); |
| Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); |
| if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) |
| return error(NameLoc, "redefinition of comdat '$" + Name + "'"); |
| |
| Comdat *C; |
| if (I != ComdatSymTab.end()) |
| C = &I->second; |
| else |
| C = M->getOrInsertComdat(Name); |
| C->setSelectionKind(SK); |
| |
| return false; |
| } |
| |
| // MDString: |
| // ::= '!' STRINGCONSTANT |
| bool LLParser::parseMDString(MDString *&Result) { |
| std::string Str; |
| if (parseStringConstant(Str)) |
| return true; |
| Result = MDString::get(Context, Str); |
| return false; |
| } |
| |
| // MDNode: |
| // ::= '!' MDNodeNumber |
| bool LLParser::parseMDNodeID(MDNode *&Result) { |
| // !{ ..., !42, ... } |
| LocTy IDLoc = Lex.getLoc(); |
| unsigned MID = 0; |
| if (parseUInt32(MID)) |
| return true; |
| |
| // If not a forward reference, just return it now. |
| if (auto It = NumberedMetadata.find(MID); It != NumberedMetadata.end()) { |
| Result = It->second; |
| return false; |
| } |
| |
| // Otherwise, create MDNode forward reference. |
| auto &FwdRef = ForwardRefMDNodes[MID]; |
| FwdRef = std::make_pair(MDTuple::getTemporary(Context, {}), IDLoc); |
| |
| Result = FwdRef.first.get(); |
| NumberedMetadata[MID].reset(Result); |
| return false; |
| } |
| |
| /// parseNamedMetadata: |
| /// !foo = !{ !1, !2 } |
| bool LLParser::parseNamedMetadata() { |
| assert(Lex.getKind() == lltok::MetadataVar); |
| std::string Name = Lex.getStrVal(); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::equal, "expected '=' here") || |
| parseToken(lltok::exclaim, "Expected '!' here") || |
| parseToken(lltok::lbrace, "Expected '{' here")) |
| return true; |
| |
| NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); |
| if (Lex.getKind() != lltok::rbrace) |
| do { |
| MDNode *N = nullptr; |
| // parse DIExpressions inline as a special case. They are still MDNodes, |
| // so they can still appear in named metadata. Remove this logic if they |
| // become plain Metadata. |
| if (Lex.getKind() == lltok::MetadataVar && |
| Lex.getStrVal() == "DIExpression") { |
| if (parseDIExpression(N, /*IsDistinct=*/false)) |
| return true; |
| // DIArgLists should only appear inline in a function, as they may |
| // contain LocalAsMetadata arguments which require a function context. |
| } else if (Lex.getKind() == lltok::MetadataVar && |
| Lex.getStrVal() == "DIArgList") { |
| return tokError("found DIArgList outside of function"); |
| } else if (parseToken(lltok::exclaim, "Expected '!' here") || |
| parseMDNodeID(N)) { |
| return true; |
| } |
| NMD->addOperand(N); |
| } while (EatIfPresent(lltok::comma)); |
| |
| return parseToken(lltok::rbrace, "expected end of metadata node"); |
| } |
| |
| /// parseStandaloneMetadata: |
| /// !42 = !{...} |
| bool LLParser::parseStandaloneMetadata() { |
| assert(Lex.getKind() == lltok::exclaim); |
| Lex.Lex(); |
| unsigned MetadataID = 0; |
| |
| MDNode *Init; |
| if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) |
| return true; |
| |
| // Detect common error, from old metadata syntax. |
| if (Lex.getKind() == lltok::Type) |
| return tokError("unexpected type in metadata definition"); |
| |
| bool IsDistinct = EatIfPresent(lltok::kw_distinct); |
| if (Lex.getKind() == lltok::MetadataVar) { |
| if (parseSpecializedMDNode(Init, IsDistinct)) |
| return true; |
| } else if (parseToken(lltok::exclaim, "Expected '!' here") || |
| parseMDTuple(Init, IsDistinct)) |
| return true; |
| |
| // See if this was forward referenced, if so, handle it. |
| auto FI = ForwardRefMDNodes.find(MetadataID); |
| if (FI != ForwardRefMDNodes.end()) { |
| auto *ToReplace = FI->second.first.get(); |
| // DIAssignID has its own special forward-reference "replacement" for |
| // attachments (the temporary attachments are never actually attached). |
| if (isa<DIAssignID>(Init)) { |
| for (auto *Inst : TempDIAssignIDAttachments[ToReplace]) { |
| assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID) && |
| "Inst unexpectedly already has DIAssignID attachment"); |
| Inst->setMetadata(LLVMContext::MD_DIAssignID, Init); |
| } |
| } |
| |
| ToReplace->replaceAllUsesWith(Init); |
| ForwardRefMDNodes.erase(FI); |
| |
| assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); |
| } else { |
| auto [It, Inserted] = NumberedMetadata.try_emplace(MetadataID); |
| if (!Inserted) |
| return tokError("Metadata id is already used"); |
| It->second.reset(Init); |
| } |
| |
| return false; |
| } |
| |
| // Skips a single module summary entry. |
| bool LLParser::skipModuleSummaryEntry() { |
| // Each module summary entry consists of a tag for the entry |
| // type, followed by a colon, then the fields which may be surrounded by |
| // nested sets of parentheses. The "tag:" looks like a Label. Once parsing |
| // support is in place we will look for the tokens corresponding to the |
| // expected tags. |
| if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && |
| Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && |
| Lex.getKind() != lltok::kw_blockcount) |
| return tokError( |
| "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " |
| "start of summary entry"); |
| if (Lex.getKind() == lltok::kw_flags) |
| return parseSummaryIndexFlags(); |
| if (Lex.getKind() == lltok::kw_blockcount) |
| return parseBlockCount(); |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':' at start of summary entry") || |
| parseToken(lltok::lparen, "expected '(' at start of summary entry")) |
| return true; |
| // Now walk through the parenthesized entry, until the number of open |
| // parentheses goes back down to 0 (the first '(' was parsed above). |
| unsigned NumOpenParen = 1; |
| do { |
| switch (Lex.getKind()) { |
| case lltok::lparen: |
| NumOpenParen++; |
| break; |
| case lltok::rparen: |
| NumOpenParen--; |
| break; |
| case lltok::Eof: |
| return tokError("found end of file while parsing summary entry"); |
| default: |
| // Skip everything in between parentheses. |
| break; |
| } |
| Lex.Lex(); |
| } while (NumOpenParen > 0); |
| return false; |
| } |
| |
| /// SummaryEntry |
| /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry |
| bool LLParser::parseSummaryEntry() { |
| assert(Lex.getKind() == lltok::SummaryID); |
| unsigned SummaryID = Lex.getUIntVal(); |
| |
| // For summary entries, colons should be treated as distinct tokens, |
| // not an indication of the end of a label token. |
| Lex.setIgnoreColonInIdentifiers(true); |
| |
| Lex.Lex(); |
| if (parseToken(lltok::equal, "expected '=' here")) |
| return true; |
| |
| // If we don't have an index object, skip the summary entry. |
| if (!Index) |
| return skipModuleSummaryEntry(); |
| |
| bool result = false; |
| switch (Lex.getKind()) { |
| case lltok::kw_gv: |
| result = parseGVEntry(SummaryID); |
| break; |
| case lltok::kw_module: |
| result = parseModuleEntry(SummaryID); |
| break; |
| case lltok::kw_typeid: |
| result = parseTypeIdEntry(SummaryID); |
| break; |
| case lltok::kw_typeidCompatibleVTable: |
| result = parseTypeIdCompatibleVtableEntry(SummaryID); |
| break; |
| case lltok::kw_flags: |
| result = parseSummaryIndexFlags(); |
| break; |
| case lltok::kw_blockcount: |
| result = parseBlockCount(); |
| break; |
| default: |
| result = error(Lex.getLoc(), "unexpected summary kind"); |
| break; |
| } |
| Lex.setIgnoreColonInIdentifiers(false); |
| return result; |
| } |
| |
| static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { |
| return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || |
| (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; |
| } |
| static bool isValidDLLStorageClassForLinkage(unsigned S, unsigned L) { |
| return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || |
| (GlobalValue::DLLStorageClassTypes)S == GlobalValue::DefaultStorageClass; |
| } |
| |
| // If there was an explicit dso_local, update GV. In the absence of an explicit |
| // dso_local we keep the default value. |
| static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { |
| if (DSOLocal) |
| GV.setDSOLocal(true); |
| } |
| |
| /// parseAliasOrIFunc: |
| /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier |
| /// OptionalVisibility OptionalDLLStorageClass |
| /// OptionalThreadLocal OptionalUnnamedAddr |
| /// 'alias|ifunc' AliaseeOrResolver SymbolAttrs* |
| /// |
| /// AliaseeOrResolver |
| /// ::= TypeAndValue |
| /// |
| /// SymbolAttrs |
| /// ::= ',' 'partition' StringConstant |
| /// |
| /// Everything through OptionalUnnamedAddr has already been parsed. |
| /// |
| bool LLParser::parseAliasOrIFunc(const std::string &Name, unsigned NameID, |
| LocTy NameLoc, unsigned L, unsigned Visibility, |
| unsigned DLLStorageClass, bool DSOLocal, |
| GlobalVariable::ThreadLocalMode TLM, |
| GlobalVariable::UnnamedAddr UnnamedAddr) { |
| bool IsAlias; |
| if (Lex.getKind() == lltok::kw_alias) |
| IsAlias = true; |
| else if (Lex.getKind() == lltok::kw_ifunc) |
| IsAlias = false; |
| else |
| llvm_unreachable("Not an alias or ifunc!"); |
| Lex.Lex(); |
| |
| GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; |
| |
| if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) |
| return error(NameLoc, "invalid linkage type for alias"); |
| |
| if (!isValidVisibilityForLinkage(Visibility, L)) |
| return error(NameLoc, |
| "symbol with local linkage must have default visibility"); |
| |
| if (!isValidDLLStorageClassForLinkage(DLLStorageClass, L)) |
| return error(NameLoc, |
| "symbol with local linkage cannot have a DLL storage class"); |
| |
| Type *Ty; |
| LocTy ExplicitTypeLoc = Lex.getLoc(); |
| if (parseType(Ty) || |
| parseToken(lltok::comma, "expected comma after alias or ifunc's type")) |
| return true; |
| |
| Constant *Aliasee; |
| LocTy AliaseeLoc = Lex.getLoc(); |
| if (Lex.getKind() != lltok::kw_bitcast && |
| Lex.getKind() != lltok::kw_getelementptr && |
| Lex.getKind() != lltok::kw_addrspacecast && |
| Lex.getKind() != lltok::kw_inttoptr) { |
| if (parseGlobalTypeAndValue(Aliasee)) |
| return true; |
| } else { |
| // The bitcast dest type is not present, it is implied by the dest type. |
| ValID ID; |
| if (parseValID(ID, /*PFS=*/nullptr)) |
| return true; |
| if (ID.Kind != ValID::t_Constant) |
| return error(AliaseeLoc, "invalid aliasee"); |
| Aliasee = ID.ConstantVal; |
| } |
| |
| Type *AliaseeType = Aliasee->getType(); |
| auto *PTy = dyn_cast<PointerType>(AliaseeType); |
| if (!PTy) |
| return error(AliaseeLoc, "An alias or ifunc must have pointer type"); |
| unsigned AddrSpace = PTy->getAddressSpace(); |
| |
| GlobalValue *GVal = nullptr; |
| |
| // See if the alias was forward referenced, if so, prepare to replace the |
| // forward reference. |
| if (!Name.empty()) { |
| auto I = ForwardRefVals.find(Name); |
| if (I != ForwardRefVals.end()) { |
| GVal = I->second.first; |
| ForwardRefVals.erase(Name); |
| } else if (M->getNamedValue(Name)) { |
| return error(NameLoc, "redefinition of global '@" + Name + "'"); |
| } |
| } else { |
| auto I = ForwardRefValIDs.find(NameID); |
| if (I != ForwardRefValIDs.end()) { |
| GVal = I->second.first; |
| ForwardRefValIDs.erase(I); |
| } |
| } |
| |
| // Okay, create the alias/ifunc but do not insert it into the module yet. |
| std::unique_ptr<GlobalAlias> GA; |
| std::unique_ptr<GlobalIFunc> GI; |
| GlobalValue *GV; |
| if (IsAlias) { |
| GA.reset(GlobalAlias::create(Ty, AddrSpace, |
| (GlobalValue::LinkageTypes)Linkage, Name, |
| Aliasee, /*Parent*/ nullptr)); |
| GV = GA.get(); |
| } else { |
| GI.reset(GlobalIFunc::create(Ty, AddrSpace, |
| (GlobalValue::LinkageTypes)Linkage, Name, |
| Aliasee, /*Parent*/ nullptr)); |
| GV = GI.get(); |
| } |
| GV->setThreadLocalMode(TLM); |
| GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); |
| GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); |
| GV->setUnnamedAddr(UnnamedAddr); |
| maybeSetDSOLocal(DSOLocal, *GV); |
| |
| // At this point we've parsed everything except for the IndirectSymbolAttrs. |
| // Now parse them if there are any. |
| while (Lex.getKind() == lltok::comma) { |
| Lex.Lex(); |
| |
| if (Lex.getKind() == lltok::kw_partition) { |
| Lex.Lex(); |
| GV->setPartition(Lex.getStrVal()); |
| if (parseToken(lltok::StringConstant, "expected partition string")) |
| return true; |
| } else { |
| return tokError("unknown alias or ifunc property!"); |
| } |
| } |
| |
| if (Name.empty()) |
| NumberedVals.add(NameID, GV); |
| |
| if (GVal) { |
| // Verify that types agree. |
| if (GVal->getType() != GV->getType()) |
| return error( |
| ExplicitTypeLoc, |
| "forward reference and definition of alias have different types"); |
| |
| // If they agree, just RAUW the old value with the alias and remove the |
| // forward ref info. |
| GVal->replaceAllUsesWith(GV); |
| GVal->eraseFromParent(); |
| } |
| |
| // Insert into the module, we know its name won't collide now. |
| if (IsAlias) |
| M->insertAlias(GA.release()); |
| else |
| M->insertIFunc(GI.release()); |
| assert(GV->getName() == Name && "Should not be a name conflict!"); |
| |
| return false; |
| } |
| |
| static bool isSanitizer(lltok::Kind Kind) { |
| switch (Kind) { |
| case lltok::kw_no_sanitize_address: |
| case lltok::kw_no_sanitize_hwaddress: |
| case lltok::kw_sanitize_memtag: |
| case lltok::kw_sanitize_address_dyninit: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool LLParser::parseSanitizer(GlobalVariable *GV) { |
| using SanitizerMetadata = GlobalValue::SanitizerMetadata; |
| SanitizerMetadata Meta; |
| if (GV->hasSanitizerMetadata()) |
| Meta = GV->getSanitizerMetadata(); |
| |
| switch (Lex.getKind()) { |
| case lltok::kw_no_sanitize_address: |
| Meta.NoAddress = true; |
| break; |
| case lltok::kw_no_sanitize_hwaddress: |
| Meta.NoHWAddress = true; |
| break; |
| case lltok::kw_sanitize_memtag: |
| Meta.Memtag = true; |
| break; |
| case lltok::kw_sanitize_address_dyninit: |
| Meta.IsDynInit = true; |
| break; |
| default: |
| return tokError("non-sanitizer token passed to LLParser::parseSanitizer()"); |
| } |
| GV->setSanitizerMetadata(Meta); |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// parseGlobal |
| /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier |
| /// OptionalVisibility OptionalDLLStorageClass |
| /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace |
| /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs |
| /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility |
| /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr |
| /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type |
| /// Const OptionalAttrs |
| /// |
| /// Everything up to and including OptionalUnnamedAddr has been parsed |
| /// already. |
| /// |
| bool LLParser::parseGlobal(const std::string &Name, unsigned NameID, |
| LocTy NameLoc, unsigned Linkage, bool HasLinkage, |
| unsigned Visibility, unsigned DLLStorageClass, |
| bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, |
| GlobalVariable::UnnamedAddr UnnamedAddr) { |
| if (!isValidVisibilityForLinkage(Visibility, Linkage)) |
| return error(NameLoc, |
| "symbol with local linkage must have default visibility"); |
| |
| if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage)) |
| return error(NameLoc, |
| "symbol with local linkage cannot have a DLL storage class"); |
| |
| unsigned AddrSpace; |
| bool IsConstant, IsExternallyInitialized; |
| LocTy IsExternallyInitializedLoc; |
| LocTy TyLoc; |
| |
| Type *Ty = nullptr; |
| if (parseOptionalAddrSpace(AddrSpace) || |
| parseOptionalToken(lltok::kw_externally_initialized, |
| IsExternallyInitialized, |
| &IsExternallyInitializedLoc) || |
| parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) |
| return true; |
| |
| // If the linkage is specified and is external, then no initializer is |
| // present. |
| Constant *Init = nullptr; |
| if (!HasLinkage || |
| !GlobalValue::isValidDeclarationLinkage( |
| (GlobalValue::LinkageTypes)Linkage)) { |
| if (parseGlobalValue(Ty, Init)) |
| return true; |
| } |
| |
| if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) |
| return error(TyLoc, "invalid type for global variable"); |
| |
| GlobalValue *GVal = nullptr; |
| |
| // See if the global was forward referenced, if so, use the global. |
| if (!Name.empty()) { |
| auto I = ForwardRefVals.find(Name); |
| if (I != ForwardRefVals.end()) { |
| GVal = I->second.first; |
| ForwardRefVals.erase(I); |
| } else if (M->getNamedValue(Name)) { |
| return error(NameLoc, "redefinition of global '@" + Name + "'"); |
| } |
| } else { |
| // Handle @"", where a name is syntactically specified, but semantically |
| // missing. |
| if (NameID == (unsigned)-1) |
| NameID = NumberedVals.getNext(); |
| |
| auto I = ForwardRefValIDs.find(NameID); |
| if (I != ForwardRefValIDs.end()) { |
| GVal = I->second.first; |
| ForwardRefValIDs.erase(I); |
| } |
| } |
| |
| GlobalVariable *GV = new GlobalVariable( |
| *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr, |
| GlobalVariable::NotThreadLocal, AddrSpace); |
| |
| if (Name.empty()) |
| NumberedVals.add(NameID, GV); |
| |
| // Set the parsed properties on the global. |
| if (Init) |
| GV->setInitializer(Init); |
| GV->setConstant(IsConstant); |
| GV->setLinkage((GlobalValue::LinkageTypes)Linkage); |
| maybeSetDSOLocal(DSOLocal, *GV); |
| GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); |
| GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); |
| GV->setExternallyInitialized(IsExternallyInitialized); |
| GV->setThreadLocalMode(TLM); |
| GV->setUnnamedAddr(UnnamedAddr); |
| |
| if (GVal) { |
| if (GVal->getAddressSpace() != AddrSpace) |
| return error( |
| TyLoc, |
| "forward reference and definition of global have different types"); |
| |
| GVal->replaceAllUsesWith(GV); |
| GVal->eraseFromParent(); |
| } |
| |
| // parse attributes on the global. |
| while (Lex.getKind() == lltok::comma) { |
| Lex.Lex(); |
| |
| if (Lex.getKind() == lltok::kw_section) { |
| Lex.Lex(); |
| GV->setSection(Lex.getStrVal()); |
| if (parseToken(lltok::StringConstant, "expected global section string")) |
| return true; |
| } else if (Lex.getKind() == lltok::kw_partition) { |
| Lex.Lex(); |
| GV->setPartition(Lex.getStrVal()); |
| if (parseToken(lltok::StringConstant, "expected partition string")) |
| return true; |
| } else if (Lex.getKind() == lltok::kw_align) { |
| MaybeAlign Alignment; |
| if (parseOptionalAlignment(Alignment)) |
| return true; |
| if (Alignment) |
| GV->setAlignment(*Alignment); |
| } else if (Lex.getKind() == lltok::kw_code_model) { |
| CodeModel::Model CodeModel; |
| if (parseOptionalCodeModel(CodeModel)) |
| return true; |
| GV->setCodeModel(CodeModel); |
| } else if (Lex.getKind() == lltok::MetadataVar) { |
| if (parseGlobalObjectMetadataAttachment(*GV)) |
| return true; |
| } else if (isSanitizer(Lex.getKind())) { |
| if (parseSanitizer(GV)) |
| return true; |
| } else { |
| Comdat *C; |
| if (parseOptionalComdat(Name, C)) |
| return true; |
| if (C) |
| GV->setComdat(C); |
| else |
| return tokError("unknown global variable property!"); |
| } |
| } |
| |
| AttrBuilder Attrs(M->getContext()); |
| LocTy BuiltinLoc; |
| std::vector<unsigned> FwdRefAttrGrps; |
| if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) |
| return true; |
| if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { |
| GV->setAttributes(AttributeSet::get(Context, Attrs)); |
| ForwardRefAttrGroups[GV] = FwdRefAttrGrps; |
| } |
| |
| return false; |
| } |
| |
| /// parseUnnamedAttrGrp |
| /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' |
| bool LLParser::parseUnnamedAttrGrp() { |
| assert(Lex.getKind() == lltok::kw_attributes); |
| LocTy AttrGrpLoc = Lex.getLoc(); |
| Lex.Lex(); |
| |
| if (Lex.getKind() != lltok::AttrGrpID) |
| return tokError("expected attribute group id"); |
| |
| unsigned VarID = Lex.getUIntVal(); |
| std::vector<unsigned> unused; |
| LocTy BuiltinLoc; |
| Lex.Lex(); |
| |
| if (parseToken(lltok::equal, "expected '=' here") || |
| parseToken(lltok::lbrace, "expected '{' here")) |
| return true; |
| |
| auto R = NumberedAttrBuilders.find(VarID); |
| if (R == NumberedAttrBuilders.end()) |
| R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first; |
| |
| if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) || |
| parseToken(lltok::rbrace, "expected end of attribute group")) |
| return true; |
| |
| if (!R->second.hasAttributes()) |
| return error(AttrGrpLoc, "attribute group has no attributes"); |
| |
| return false; |
| } |
| |
| static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) { |
| switch (Kind) { |
| #define GET_ATTR_NAMES |
| #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ |
| case lltok::kw_##DISPLAY_NAME: \ |
| return Attribute::ENUM_NAME; |
| #include "llvm/IR/Attributes.inc" |
| default: |
| return Attribute::None; |
| } |
| } |
| |
| bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B, |
| bool InAttrGroup) { |
| if (Attribute::isTypeAttrKind(Attr)) |
| return parseRequiredTypeAttr(B, Lex.getKind(), Attr); |
| |
| switch (Attr) { |
| case Attribute::Alignment: { |
| MaybeAlign Alignment; |
| if (InAttrGroup) { |
| uint32_t Value = 0; |
| Lex.Lex(); |
| if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) |
| return true; |
| Alignment = Align(Value); |
| } else { |
| if (parseOptionalAlignment(Alignment, true)) |
| return true; |
| } |
| B.addAlignmentAttr(Alignment); |
| return false; |
| } |
| case Attribute::StackAlignment: { |
| unsigned Alignment; |
| if (InAttrGroup) { |
| Lex.Lex(); |
| if (parseToken(lltok::equal, "expected '=' here") || |
| parseUInt32(Alignment)) |
| return true; |
| } else { |
| if (parseOptionalStackAlignment(Alignment)) |
| return true; |
| } |
| B.addStackAlignmentAttr(Alignment); |
| return false; |
| } |
| case Attribute::AllocSize: { |
| unsigned ElemSizeArg; |
| std::optional<unsigned> NumElemsArg; |
| if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) |
| return true; |
| B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); |
| return false; |
| } |
| case Attribute::VScaleRange: { |
| unsigned MinValue, MaxValue; |
| if (parseVScaleRangeArguments(MinValue, MaxValue)) |
| return true; |
| B.addVScaleRangeAttr(MinValue, |
| MaxValue > 0 ? MaxValue : std::optional<unsigned>()); |
| return false; |
| } |
| case Attribute::Dereferenceable: { |
| uint64_t Bytes; |
| if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) |
| return true; |
| B.addDereferenceableAttr(Bytes); |
| return false; |
| } |
| case Attribute::DereferenceableOrNull: { |
| uint64_t Bytes; |
| if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) |
| return true; |
| B.addDereferenceableOrNullAttr(Bytes); |
| return false; |
| } |
| case Attribute::UWTable: { |
| UWTableKind Kind; |
| if (parseOptionalUWTableKind(Kind)) |
| return true; |
| B.addUWTableAttr(Kind); |
| return false; |
| } |
| case Attribute::AllocKind: { |
| AllocFnKind Kind = AllocFnKind::Unknown; |
| if (parseAllocKind(Kind)) |
| return true; |
| B.addAllocKindAttr(Kind); |
| return false; |
| } |
| case Attribute::Memory: { |
| std::optional<MemoryEffects> ME = parseMemoryAttr(); |
| if (!ME) |
| return true; |
| B.addMemoryAttr(*ME); |
| return false; |
| } |
| case Attribute::NoFPClass: { |
| if (FPClassTest NoFPClass = |
| static_cast<FPClassTest>(parseNoFPClassAttr())) { |
| B.addNoFPClassAttr(NoFPClass); |
| return false; |
| } |
| |
| return true; |
| } |
| case Attribute::Range: |
| return parseRangeAttr(B); |
| case Attribute::Initializes: |
| return parseInitializesAttr(B); |
| case Attribute::Captures: |
| return parseCapturesAttr(B); |
| default: |
| B.addAttribute(Attr); |
| Lex.Lex(); |
| return false; |
| } |
| } |
| |
| static bool upgradeMemoryAttr(MemoryEffects &ME, lltok::Kind Kind) { |
| switch (Kind) { |
| case lltok::kw_readnone: |
| ME &= MemoryEffects::none(); |
| return true; |
| case lltok::kw_readonly: |
| ME &= MemoryEffects::readOnly(); |
| return true; |
| case lltok::kw_writeonly: |
| ME &= MemoryEffects::writeOnly(); |
| return true; |
| case lltok::kw_argmemonly: |
| ME &= MemoryEffects::argMemOnly(); |
| return true; |
| case lltok::kw_inaccessiblememonly: |
| ME &= MemoryEffects::inaccessibleMemOnly(); |
| return true; |
| case lltok::kw_inaccessiblemem_or_argmemonly: |
| ME &= MemoryEffects::inaccessibleOrArgMemOnly(); |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /// parseFnAttributeValuePairs |
| /// ::= <attr> | <attr> '=' <value> |
| bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, |
| std::vector<unsigned> &FwdRefAttrGrps, |
| bool InAttrGrp, LocTy &BuiltinLoc) { |
| bool HaveError = false; |
| |
| B.clear(); |
| |
| MemoryEffects ME = MemoryEffects::unknown(); |
| while (true) { |
| lltok::Kind Token = Lex.getKind(); |
| if (Token == lltok::rbrace) |
| break; // Finished. |
| |
| if (Token == lltok::StringConstant) { |
| if (parseStringAttribute(B)) |
| return true; |
| continue; |
| } |
| |
| if (Token == lltok::AttrGrpID) { |
| // Allow a function to reference an attribute group: |
| // |
| // define void @foo() #1 { ... } |
| if (InAttrGrp) { |
| HaveError |= error( |
| Lex.getLoc(), |
| "cannot have an attribute group reference in an attribute group"); |
| } else { |
| // Save the reference to the attribute group. We'll fill it in later. |
| FwdRefAttrGrps.push_back(Lex.getUIntVal()); |
| } |
| Lex.Lex(); |
| continue; |
| } |
| |
| SMLoc Loc = Lex.getLoc(); |
| if (Token == lltok::kw_builtin) |
| BuiltinLoc = Loc; |
| |
| if (upgradeMemoryAttr(ME, Token)) { |
| Lex.Lex(); |
| continue; |
| } |
| |
| Attribute::AttrKind Attr = tokenToAttribute(Token); |
| if (Attr == Attribute::None) { |
| if (!InAttrGrp) |
| break; |
| return error(Lex.getLoc(), "unterminated attribute group"); |
| } |
| |
| if (parseEnumAttribute(Attr, B, InAttrGrp)) |
| return true; |
| |
| // As a hack, we allow function alignment to be initially parsed as an |
| // attribute on a function declaration/definition or added to an attribute |
| // group and later moved to the alignment field. |
| if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment) |
| HaveError |= error(Loc, "this attribute does not apply to functions"); |
| } |
| |
| if (ME != MemoryEffects::unknown()) |
| B.addMemoryAttr(ME); |
| return HaveError; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // GlobalValue Reference/Resolution Routines. |
| //===----------------------------------------------------------------------===// |
| |
| static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) { |
| // The used global type does not matter. We will later RAUW it with a |
| // global/function of the correct type. |
| return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false, |
| GlobalValue::ExternalWeakLinkage, nullptr, "", |
| nullptr, GlobalVariable::NotThreadLocal, |
| PTy->getAddressSpace()); |
| } |
| |
| Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, |
| Value *Val) { |
| Type *ValTy = Val->getType(); |
| if (ValTy == Ty) |
| return Val; |
| if (Ty->isLabelTy()) |
| error(Loc, "'" + Name + "' is not a basic block"); |
| else |
| error(Loc, "'" + Name + "' defined with type '" + |
| getTypeString(Val->getType()) + "' but expected '" + |
| getTypeString(Ty) + "'"); |
| return nullptr; |
| } |
| |
| /// getGlobalVal - Get a value with the specified name or ID, creating a |
| /// forward reference record if needed. This can return null if the value |
| /// exists but does not have the right type. |
| GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, |
| LocTy Loc) { |
| PointerType *PTy = dyn_cast<PointerType>(Ty); |
| if (!PTy) { |
| error(Loc, "global variable reference must have pointer type"); |
| return nullptr; |
| } |
| |
| // Look this name up in the normal function symbol table. |
| GlobalValue *Val = |
| cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); |
| |
| // If this is a forward reference for the value, see if we already created a |
| // forward ref record. |
| if (!Val) { |
| auto I = ForwardRefVals.find(Name); |
| if (I != ForwardRefVals.end()) |
| Val = I->second.first; |
| } |
| |
| // If we have the value in the symbol table or fwd-ref table, return it. |
| if (Val) |
| return cast_or_null<GlobalValue>( |
| checkValidVariableType(Loc, "@" + Name, Ty, Val)); |
| |
| // Otherwise, create a new forward reference for this value and remember it. |
| GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); |
| ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); |
| return FwdVal; |
| } |
| |
| GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { |
| PointerType *PTy = dyn_cast<PointerType>(Ty); |
| if (!PTy) { |
| error(Loc, "global variable reference must have pointer type"); |
| return nullptr; |
| } |
| |
| GlobalValue *Val = NumberedVals.get(ID); |
| |
| // If this is a forward reference for the value, see if we already created a |
| // forward ref record. |
| if (!Val) { |
| auto I = ForwardRefValIDs.find(ID); |
| if (I != ForwardRefValIDs.end()) |
| Val = I->second.first; |
| } |
| |
| // If we have the value in the symbol table or fwd-ref table, return it. |
| if (Val) |
| return cast_or_null<GlobalValue>( |
| checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val)); |
| |
| // Otherwise, create a new forward reference for this value and remember it. |
| GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); |
| ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); |
| return FwdVal; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Comdat Reference/Resolution Routines. |
| //===----------------------------------------------------------------------===// |
| |
| Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { |
| // Look this name up in the comdat symbol table. |
| Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); |
| Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); |
| if (I != ComdatSymTab.end()) |
| return &I->second; |
| |
| // Otherwise, create a new forward reference for this value and remember it. |
| Comdat *C = M->getOrInsertComdat(Name); |
| ForwardRefComdats[Name] = Loc; |
| return C; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper Routines. |
| //===----------------------------------------------------------------------===// |
| |
| /// parseToken - If the current token has the specified kind, eat it and return |
| /// success. Otherwise, emit the specified error and return failure. |
| bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { |
| if (Lex.getKind() != T) |
| return tokError(ErrMsg); |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// parseStringConstant |
| /// ::= StringConstant |
| bool LLParser::parseStringConstant(std::string &Result) { |
| if (Lex.getKind() != lltok::StringConstant) |
| return tokError("expected string constant"); |
| Result = Lex.getStrVal(); |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// parseUInt32 |
| /// ::= uint32 |
| bool LLParser::parseUInt32(uint32_t &Val) { |
| if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) |
| return tokError("expected integer"); |
| uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); |
| if (Val64 != unsigned(Val64)) |
| return tokError("expected 32-bit integer (too large)"); |
| Val = Val64; |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// parseUInt64 |
| /// ::= uint64 |
| bool LLParser::parseUInt64(uint64_t &Val) { |
| if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) |
| return tokError("expected integer"); |
| Val = Lex.getAPSIntVal().getLimitedValue(); |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// parseTLSModel |
| /// := 'localdynamic' |
| /// := 'initialexec' |
| /// := 'localexec' |
| bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { |
| switch (Lex.getKind()) { |
| default: |
| return tokError("expected localdynamic, initialexec or localexec"); |
| case lltok::kw_localdynamic: |
| TLM = GlobalVariable::LocalDynamicTLSModel; |
| break; |
| case lltok::kw_initialexec: |
| TLM = GlobalVariable::InitialExecTLSModel; |
| break; |
| case lltok::kw_localexec: |
| TLM = GlobalVariable::LocalExecTLSModel; |
| break; |
| } |
| |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// parseOptionalThreadLocal |
| /// := /*empty*/ |
| /// := 'thread_local' |
| /// := 'thread_local' '(' tlsmodel ')' |
| bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { |
| TLM = GlobalVariable::NotThreadLocal; |
| if (!EatIfPresent(lltok::kw_thread_local)) |
| return false; |
| |
| TLM = GlobalVariable::GeneralDynamicTLSModel; |
| if (Lex.getKind() == lltok::lparen) { |
| Lex.Lex(); |
| return parseTLSModel(TLM) || |
| parseToken(lltok::rparen, "expected ')' after thread local model"); |
| } |
| return false; |
| } |
| |
| /// parseOptionalAddrSpace |
| /// := /*empty*/ |
| /// := 'addrspace' '(' uint32 ')' |
| bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { |
| AddrSpace = DefaultAS; |
| if (!EatIfPresent(lltok::kw_addrspace)) |
| return false; |
| |
| auto ParseAddrspaceValue = [&](unsigned &AddrSpace) -> bool { |
| if (Lex.getKind() == lltok::StringConstant) { |
| auto AddrSpaceStr = Lex.getStrVal(); |
| if (AddrSpaceStr == "A") { |
| AddrSpace = M->getDataLayout().getAllocaAddrSpace(); |
| } else if (AddrSpaceStr == "G") { |
| AddrSpace = M->getDataLayout().getDefaultGlobalsAddressSpace(); |
| } else if (AddrSpaceStr == "P") { |
| AddrSpace = M->getDataLayout().getProgramAddressSpace(); |
| } else { |
| return tokError("invalid symbolic addrspace '" + AddrSpaceStr + "'"); |
| } |
| Lex.Lex(); |
| return false; |
| } |
| if (Lex.getKind() != lltok::APSInt) |
| return tokError("expected integer or string constant"); |
| SMLoc Loc = Lex.getLoc(); |
| if (parseUInt32(AddrSpace)) |
| return true; |
| if (!isUInt<24>(AddrSpace)) |
| return error(Loc, "invalid address space, must be a 24-bit integer"); |
| return false; |
| }; |
| |
| return parseToken(lltok::lparen, "expected '(' in address space") || |
| ParseAddrspaceValue(AddrSpace) || |
| parseToken(lltok::rparen, "expected ')' in address space"); |
| } |
| |
| /// parseStringAttribute |
| /// := StringConstant |
| /// := StringConstant '=' StringConstant |
| bool LLParser::parseStringAttribute(AttrBuilder &B) { |
| std::string Attr = Lex.getStrVal(); |
| Lex.Lex(); |
| std::string Val; |
| if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) |
| return true; |
| B.addAttribute(Attr, Val); |
| return false; |
| } |
| |
| /// Parse a potentially empty list of parameter or return attributes. |
| bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) { |
| bool HaveError = false; |
| |
| B.clear(); |
| |
| while (true) { |
| lltok::Kind Token = Lex.getKind(); |
| if (Token == lltok::StringConstant) { |
| if (parseStringAttribute(B)) |
| return true; |
| continue; |
| } |
| |
| if (Token == lltok::kw_nocapture) { |
| Lex.Lex(); |
| B.addCapturesAttr(CaptureInfo::none()); |
| continue; |
| } |
| |
| SMLoc Loc = Lex.getLoc(); |
| Attribute::AttrKind Attr = tokenToAttribute(Token); |
| if (Attr == Attribute::None) |
| return HaveError; |
| |
| if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false)) |
| return true; |
| |
| if (IsParam && !Attribute::canUseAsParamAttr(Attr)) |
| HaveError |= error(Loc, "this attribute does not apply to parameters"); |
| if (!IsParam && !Attribute::canUseAsRetAttr(Attr)) |
| HaveError |= error(Loc, "this attribute does not apply to return values"); |
| } |
| } |
| |
| static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { |
| HasLinkage = true; |
| switch (Kind) { |
| default: |
| HasLinkage = false; |
| return GlobalValue::ExternalLinkage; |
| case lltok::kw_private: |
| return GlobalValue::PrivateLinkage; |
| case lltok::kw_internal: |
| return GlobalValue::InternalLinkage; |
| case lltok::kw_weak: |
| return GlobalValue::WeakAnyLinkage; |
| case lltok::kw_weak_odr: |
| return GlobalValue::WeakODRLinkage; |
| case lltok::kw_linkonce: |
| return GlobalValue::LinkOnceAnyLinkage; |
| case lltok::kw_linkonce_odr: |
| return GlobalValue::LinkOnceODRLinkage; |
| case lltok::kw_available_externally: |
| return GlobalValue::AvailableExternallyLinkage; |
| case lltok::kw_appending: |
| return GlobalValue::AppendingLinkage; |
| case lltok::kw_common: |
| return GlobalValue::CommonLinkage; |
| case lltok::kw_extern_weak: |
| return GlobalValue::ExternalWeakLinkage; |
| case lltok::kw_external: |
| return GlobalValue::ExternalLinkage; |
| } |
| } |
| |
| /// parseOptionalLinkage |
| /// ::= /*empty*/ |
| /// ::= 'private' |
| /// ::= 'internal' |
| /// ::= 'weak' |
| /// ::= 'weak_odr' |
| /// ::= 'linkonce' |
| /// ::= 'linkonce_odr' |
| /// ::= 'available_externally' |
| /// ::= 'appending' |
| /// ::= 'common' |
| /// ::= 'extern_weak' |
| /// ::= 'external' |
| bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, |
| unsigned &Visibility, |
| unsigned &DLLStorageClass, bool &DSOLocal) { |
| Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); |
| if (HasLinkage) |
| Lex.Lex(); |
| parseOptionalDSOLocal(DSOLocal); |
| parseOptionalVisibility(Visibility); |
| parseOptionalDLLStorageClass(DLLStorageClass); |
| |
| if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { |
| return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); |
| } |
| |
| return false; |
| } |
| |
| void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { |
| switch (Lex.getKind()) { |
| default: |
| DSOLocal = false; |
| break; |
| case lltok::kw_dso_local: |
| DSOLocal = true; |
| Lex.Lex(); |
| break; |
| case lltok::kw_dso_preemptable: |
| DSOLocal = false; |
| Lex.Lex(); |
| break; |
| } |
| } |
| |
| /// parseOptionalVisibility |
| /// ::= /*empty*/ |
| /// ::= 'default' |
| /// ::= 'hidden' |
| /// ::= 'protected' |
| /// |
| void LLParser::parseOptionalVisibility(unsigned &Res) { |
| switch (Lex.getKind()) { |
| default: |
| Res = GlobalValue::DefaultVisibility; |
| return; |
| case lltok::kw_default: |
| Res = GlobalValue::DefaultVisibility; |
| break; |
| case lltok::kw_hidden: |
| Res = GlobalValue::HiddenVisibility; |
| break; |
| case lltok::kw_protected: |
| Res = GlobalValue::ProtectedVisibility; |
| break; |
| } |
| Lex.Lex(); |
| } |
| |
| bool LLParser::parseOptionalImportType(lltok::Kind Kind, |
| GlobalValueSummary::ImportKind &Res) { |
| switch (Kind) { |
| default: |
| return tokError("unknown import kind. Expect definition or declaration."); |
| case lltok::kw_definition: |
| Res = GlobalValueSummary::Definition; |
| return false; |
| case lltok::kw_declaration: |
| Res = GlobalValueSummary::Declaration; |
| return false; |
| } |
| } |
| |
| /// parseOptionalDLLStorageClass |
| /// ::= /*empty*/ |
| /// ::= 'dllimport' |
| /// ::= 'dllexport' |
| /// |
| void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { |
| switch (Lex.getKind()) { |
| default: |
| Res = GlobalValue::DefaultStorageClass; |
| return; |
| case lltok::kw_dllimport: |
| Res = GlobalValue::DLLImportStorageClass; |
| break; |
| case lltok::kw_dllexport: |
| Res = GlobalValue::DLLExportStorageClass; |
| break; |
| } |
| Lex.Lex(); |
| } |
| |
| /// parseOptionalCallingConv |
| /// ::= /*empty*/ |
| /// ::= 'ccc' |
| /// ::= 'fastcc' |
| /// ::= 'intel_ocl_bicc' |
| /// ::= 'coldcc' |
| /// ::= 'cfguard_checkcc' |
| /// ::= 'x86_stdcallcc' |
| /// ::= 'x86_fastcallcc' |
| /// ::= 'x86_thiscallcc' |
| /// ::= 'x86_vectorcallcc' |
| /// ::= 'arm_apcscc' |
| /// ::= 'arm_aapcscc' |
| /// ::= 'arm_aapcs_vfpcc' |
| /// ::= 'aarch64_vector_pcs' |
| /// ::= 'aarch64_sve_vector_pcs' |
| /// ::= 'aarch64_sme_preservemost_from_x0' |
| /// ::= 'aarch64_sme_preservemost_from_x1' |
| /// ::= 'aarch64_sme_preservemost_from_x2' |
| /// ::= 'msp430_intrcc' |
| /// ::= 'avr_intrcc' |
| /// ::= 'avr_signalcc' |
| /// ::= 'ptx_kernel' |
| /// ::= 'ptx_device' |
| /// ::= 'spir_func' |
| /// ::= 'spir_kernel' |
| /// ::= 'x86_64_sysvcc' |
| /// ::= 'win64cc' |
| /// ::= 'anyregcc' |
| /// ::= 'preserve_mostcc' |
| /// ::= 'preserve_allcc' |
| /// ::= 'preserve_nonecc' |
| /// ::= 'ghccc' |
| /// ::= 'swiftcc' |
| /// ::= 'swifttailcc' |
| /// ::= 'x86_intrcc' |
| /// ::= 'hhvmcc' |
| /// ::= 'hhvm_ccc' |
| /// ::= 'cxx_fast_tlscc' |
| /// ::= 'amdgpu_vs' |
| /// ::= 'amdgpu_ls' |
| /// ::= 'amdgpu_hs' |
| /// ::= 'amdgpu_es' |
| /// ::= 'amdgpu_gs' |
| /// ::= 'amdgpu_ps' |
| /// ::= 'amdgpu_cs' |
| /// ::= 'amdgpu_cs_chain' |
| /// ::= 'amdgpu_cs_chain_preserve' |
| /// ::= 'amdgpu_kernel' |
| /// ::= 'tailcc' |
| /// ::= 'm68k_rtdcc' |
| /// ::= 'graalcc' |
| /// ::= 'riscv_vector_cc' |
| /// ::= 'riscv_vls_cc' |
| /// ::= 'cc' UINT |
| /// |
| bool LLParser::parseOptionalCallingConv(unsigned &CC) { |
| switch (Lex.getKind()) { |
| default: CC = CallingConv::C; return false; |
| case lltok::kw_ccc: CC = CallingConv::C; break; |
| case lltok::kw_fastcc: CC = CallingConv::Fast; break; |
| case lltok::kw_coldcc: CC = CallingConv::Cold; break; |
| case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; |
| case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; |
| case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; |
| case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; |
| case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; |
| case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; |
| case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; |
| case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; |
| case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; |
| case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; |
| case lltok::kw_aarch64_sve_vector_pcs: |
| CC = CallingConv::AArch64_SVE_VectorCall; |
| break; |
| case lltok::kw_aarch64_sme_preservemost_from_x0: |
| CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0; |
| break; |
| case lltok::kw_aarch64_sme_preservemost_from_x1: |
| CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1; |
| break; |
| case lltok::kw_aarch64_sme_preservemost_from_x2: |
| CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2; |
| break; |
| case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; |
| case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; |
| case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; |
| case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; |
| case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; |
| case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; |
| case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; |
| case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; |
| case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; |
| case lltok::kw_win64cc: CC = CallingConv::Win64; break; |
| case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; |
| case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; |
| case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; |
| case lltok::kw_preserve_nonecc:CC = CallingConv::PreserveNone; break; |
| case lltok::kw_ghccc: CC = CallingConv::GHC; break; |
| case lltok::kw_swiftcc: CC = CallingConv::Swift; break; |
| case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; |
| case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; |
| case lltok::kw_hhvmcc: |
| CC = CallingConv::DUMMY_HHVM; |
| break; |
| case lltok::kw_hhvm_ccc: |
| CC = CallingConv::DUMMY_HHVM_C; |
| break; |
| case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; |
| case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; |
| case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; |
| case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; |
| case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; |
| case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; |
| case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; |
| case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; |
| case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; |
| case lltok::kw_amdgpu_cs_chain: |
| CC = CallingConv::AMDGPU_CS_Chain; |
| break; |
| case lltok::kw_amdgpu_cs_chain_preserve: |
| CC = CallingConv::AMDGPU_CS_ChainPreserve; |
| break; |
| case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; |
| case lltok::kw_tailcc: CC = CallingConv::Tail; break; |
| case lltok::kw_m68k_rtdcc: CC = CallingConv::M68k_RTD; break; |
| case lltok::kw_graalcc: CC = CallingConv::GRAAL; break; |
| case lltok::kw_riscv_vector_cc: |
| CC = CallingConv::RISCV_VectorCall; |
| break; |
| case lltok::kw_riscv_vls_cc: |
| // Default ABI_VLEN |
| CC = CallingConv::RISCV_VLSCall_128; |
| Lex.Lex(); |
| if (!EatIfPresent(lltok::lparen)) |
| break; |
| uint32_t ABIVlen; |
| if (parseUInt32(ABIVlen) || !EatIfPresent(lltok::rparen)) |
| return true; |
| switch (ABIVlen) { |
| default: |
| return tokError("unknown RISC-V ABI VLEN"); |
| #define CC_VLS_CASE(ABIVlen) \ |
| case ABIVlen: \ |
| CC = CallingConv::RISCV_VLSCall_##ABIVlen; \ |
| break; |
| CC_VLS_CASE(32) |
| CC_VLS_CASE(64) |
| CC_VLS_CASE(128) |
| CC_VLS_CASE(256) |
| CC_VLS_CASE(512) |
| CC_VLS_CASE(1024) |
| CC_VLS_CASE(2048) |
| CC_VLS_CASE(4096) |
| CC_VLS_CASE(8192) |
| CC_VLS_CASE(16384) |
| CC_VLS_CASE(32768) |
| CC_VLS_CASE(65536) |
| #undef CC_VLS_CASE |
| } |
| return false; |
| case lltok::kw_cc: { |
| Lex.Lex(); |
| return parseUInt32(CC); |
| } |
| } |
| |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// parseMetadataAttachment |
| /// ::= !dbg !42 |
| bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { |
| assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); |
| |
| std::string Name = Lex.getStrVal(); |
| Kind = M->getMDKindID(Name); |
| Lex.Lex(); |
| |
| return parseMDNode(MD); |
| } |
| |
| /// parseInstructionMetadata |
| /// ::= !dbg !42 (',' !dbg !57)* |
| bool LLParser::parseInstructionMetadata(Instruction &Inst) { |
| do { |
| if (Lex.getKind() != lltok::MetadataVar) |
| return tokError("expected metadata after comma"); |
| |
| unsigned MDK; |
| MDNode *N; |
| if (parseMetadataAttachment(MDK, N)) |
| return true; |
| |
| if (MDK == LLVMContext::MD_DIAssignID) |
| TempDIAssignIDAttachments[N].push_back(&Inst); |
| else |
| Inst.setMetadata(MDK, N); |
| |
| if (MDK == LLVMContext::MD_tbaa) |
| InstsWithTBAATag.push_back(&Inst); |
| |
| // If this is the end of the list, we're done. |
| } while (EatIfPresent(lltok::comma)); |
| return false; |
| } |
| |
| /// parseGlobalObjectMetadataAttachment |
| /// ::= !dbg !57 |
| bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { |
| unsigned MDK; |
| MDNode *N; |
| if (parseMetadataAttachment(MDK, N)) |
| return true; |
| |
| GO.addMetadata(MDK, *N); |
| return false; |
| } |
| |
| /// parseOptionalFunctionMetadata |
| /// ::= (!dbg !57)* |
| bool LLParser::parseOptionalFunctionMetadata(Function &F) { |
| while (Lex.getKind() == lltok::MetadataVar) |
| if (parseGlobalObjectMetadataAttachment(F)) |
| return true; |
| return false; |
| } |
| |
| /// parseOptionalAlignment |
| /// ::= /* empty */ |
| /// ::= 'align' 4 |
| bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { |
| Alignment = std::nullopt; |
| if (!EatIfPresent(lltok::kw_align)) |
| return false; |
| LocTy AlignLoc = Lex.getLoc(); |
| uint64_t Value = 0; |
| |
| LocTy ParenLoc = Lex.getLoc(); |
| bool HaveParens = false; |
| if (AllowParens) { |
| if (EatIfPresent(lltok::lparen)) |
| HaveParens = true; |
| } |
| |
| if (parseUInt64(Value)) |
| return true; |
| |
| if (HaveParens && !EatIfPresent(lltok::rparen)) |
| return error(ParenLoc, "expected ')'"); |
| |
| if (!isPowerOf2_64(Value)) |
| return error(AlignLoc, "alignment is not a power of two"); |
| if (Value > Value::MaximumAlignment) |
| return error(AlignLoc, "huge alignments are not supported yet"); |
| Alignment = Align(Value); |
| return false; |
| } |
| |
| /// parseOptionalCodeModel |
| /// ::= /* empty */ |
| /// ::= 'code_model' "large" |
| bool LLParser::parseOptionalCodeModel(CodeModel::Model &model) { |
| Lex.Lex(); |
| auto StrVal = Lex.getStrVal(); |
| auto ErrMsg = "expected global code model string"; |
| if (StrVal == "tiny") |
| model = CodeModel::Tiny; |
| else if (StrVal == "small") |
| model = CodeModel::Small; |
| else if (StrVal == "kernel") |
| model = CodeModel::Kernel; |
| else if (StrVal == "medium") |
| model = CodeModel::Medium; |
| else if (StrVal == "large") |
| model = CodeModel::Large; |
| else |
| return tokError(ErrMsg); |
| if (parseToken(lltok::StringConstant, ErrMsg)) |
| return true; |
| return false; |
| } |
| |
| /// parseOptionalDerefAttrBytes |
| /// ::= /* empty */ |
| /// ::= AttrKind '(' 4 ')' |
| /// |
| /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. |
| bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, |
| uint64_t &Bytes) { |
| assert((AttrKind == lltok::kw_dereferenceable || |
| AttrKind == lltok::kw_dereferenceable_or_null) && |
| "contract!"); |
| |
| Bytes = 0; |
| if (!EatIfPresent(AttrKind)) |
| return false; |
| LocTy ParenLoc = Lex.getLoc(); |
| if (!EatIfPresent(lltok::lparen)) |
| return error(ParenLoc, "expected '('"); |
| LocTy DerefLoc = Lex.getLoc(); |
| if (parseUInt64(Bytes)) |
| return true; |
| ParenLoc = Lex.getLoc(); |
| if (!EatIfPresent(lltok::rparen)) |
| return error(ParenLoc, "expected ')'"); |
| if (!Bytes) |
| return error(DerefLoc, "dereferenceable bytes must be non-zero"); |
| return false; |
| } |
| |
| bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) { |
| Lex.Lex(); |
| Kind = UWTableKind::Default; |
| if (!EatIfPresent(lltok::lparen)) |
| return false; |
| LocTy KindLoc = Lex.getLoc(); |
| if (Lex.getKind() == lltok::kw_sync) |
| Kind = UWTableKind::Sync; |
| else if (Lex.getKind() == lltok::kw_async) |
| Kind = UWTableKind::Async; |
| else |
| return error(KindLoc, "expected unwind table kind"); |
| Lex.Lex(); |
| return parseToken(lltok::rparen, "expected ')'"); |
| } |
| |
| bool LLParser::parseAllocKind(AllocFnKind &Kind) { |
| Lex.Lex(); |
| LocTy ParenLoc = Lex.getLoc(); |
| if (!EatIfPresent(lltok::lparen)) |
| return error(ParenLoc, "expected '('"); |
| LocTy KindLoc = Lex.getLoc(); |
| std::string Arg; |
| if (parseStringConstant(Arg)) |
| return error(KindLoc, "expected allockind value"); |
| for (StringRef A : llvm::split(Arg, ",")) { |
| if (A == "alloc") { |
| Kind |= AllocFnKind::Alloc; |
| } else if (A == "realloc") { |
| Kind |= AllocFnKind::Realloc; |
| } else if (A == "free") { |
| Kind |= AllocFnKind::Free; |
| } else if (A == "uninitialized") { |
| Kind |= AllocFnKind::Uninitialized; |
| } else if (A == "zeroed") { |
| Kind |= AllocFnKind::Zeroed; |
| } else if (A == "aligned") { |
| Kind |= AllocFnKind::Aligned; |
| } else { |
| return error(KindLoc, Twine("unknown allockind ") + A); |
| } |
| } |
| ParenLoc = Lex.getLoc(); |
| if (!EatIfPresent(lltok::rparen)) |
| return error(ParenLoc, "expected ')'"); |
| if (Kind == AllocFnKind::Unknown) |
| return error(KindLoc, "expected allockind value"); |
| return false; |
| } |
| |
| static std::optional<MemoryEffects::Location> keywordToLoc(lltok::Kind Tok) { |
| switch (Tok) { |
| case lltok::kw_argmem: |
| return IRMemLocation::ArgMem; |
| case lltok::kw_inaccessiblemem: |
| return IRMemLocation::InaccessibleMem; |
| case lltok::kw_errnomem: |
| return IRMemLocation::ErrnoMem; |
| default: |
| return std::nullopt; |
| } |
| } |
| |
| static std::optional<ModRefInfo> keywordToModRef(lltok::Kind Tok) { |
| switch (Tok) { |
| case lltok::kw_none: |
| return ModRefInfo::NoModRef; |
| case lltok::kw_read: |
| return ModRefInfo::Ref; |
| case lltok::kw_write: |
| return ModRefInfo::Mod; |
| case lltok::kw_readwrite: |
| return ModRefInfo::ModRef; |
| default: |
| return std::nullopt; |
| } |
| } |
| |
| std::optional<MemoryEffects> LLParser::parseMemoryAttr() { |
| MemoryEffects ME = MemoryEffects::none(); |
| |
| // We use syntax like memory(argmem: read), so the colon should not be |
| // interpreted as a label terminator. |
| Lex.setIgnoreColonInIdentifiers(true); |
| auto _ = make_scope_exit([&] { Lex.setIgnoreColonInIdentifiers(false); }); |
| |
| Lex.Lex(); |
| if (!EatIfPresent(lltok::lparen)) { |
| tokError("expected '('"); |
| return std::nullopt; |
| } |
| |
| bool SeenLoc = false; |
| do { |
| std::optional<IRMemLocation> Loc = keywordToLoc(Lex.getKind()); |
| if (Loc) { |
| Lex.Lex(); |
| if (!EatIfPresent(lltok::colon)) { |
| tokError("expected ':' after location"); |
| return std::nullopt; |
| } |
| } |
| |
| std::optional<ModRefInfo> MR = keywordToModRef(Lex.getKind()); |
| if (!MR) { |
| if (!Loc) |
| tokError("expected memory location (argmem, inaccessiblemem, errnomem) " |
| "or access kind (none, read, write, readwrite)"); |
| else |
| tokError("expected access kind (none, read, write, readwrite)"); |
| return std::nullopt; |
| } |
| |
| Lex.Lex(); |
| if (Loc) { |
| SeenLoc = true; |
| ME = ME.getWithModRef(*Loc, *MR); |
| } else { |
| if (SeenLoc) { |
| tokError("default access kind must be specified first"); |
| return std::nullopt; |
| } |
| ME = MemoryEffects(*MR); |
| } |
| |
| if (EatIfPresent(lltok::rparen)) |
| return ME; |
| } while (EatIfPresent(lltok::comma)); |
| |
| tokError("unterminated memory attribute"); |
| return std::nullopt; |
| } |
| |
| static unsigned keywordToFPClassTest(lltok::Kind Tok) { |
| switch (Tok) { |
| case lltok::kw_all: |
| return fcAllFlags; |
| case lltok::kw_nan: |
| return fcNan; |
| case lltok::kw_snan: |
| return fcSNan; |
| case lltok::kw_qnan: |
| return fcQNan; |
| case lltok::kw_inf: |
| return fcInf; |
| case lltok::kw_ninf: |
| return fcNegInf; |
| case lltok::kw_pinf: |
| return fcPosInf; |
| case lltok::kw_norm: |
| return fcNormal; |
| case lltok::kw_nnorm: |
| return fcNegNormal; |
| case lltok::kw_pnorm: |
| return fcPosNormal; |
| case lltok::kw_sub: |
| return fcSubnormal; |
| case lltok::kw_nsub: |
| return fcNegSubnormal; |
| case lltok::kw_psub: |
| return fcPosSubnormal; |
| case lltok::kw_zero: |
| return fcZero; |
| case lltok::kw_nzero: |
| return fcNegZero; |
| case lltok::kw_pzero: |
| return fcPosZero; |
| default: |
| return 0; |
| } |
| } |
| |
| unsigned LLParser::parseNoFPClassAttr() { |
| unsigned Mask = fcNone; |
| |
| Lex.Lex(); |
| if (!EatIfPresent(lltok::lparen)) { |
| tokError("expected '('"); |
| return 0; |
| } |
| |
| do { |
| uint64_t Value = 0; |
| unsigned TestMask = keywordToFPClassTest(Lex.getKind()); |
| if (TestMask != 0) { |
| Mask |= TestMask; |
| // TODO: Disallow overlapping masks to avoid copy paste errors |
| } else if (Mask == 0 && Lex.getKind() == lltok::APSInt && |
| !parseUInt64(Value)) { |
| if (Value == 0 || (Value & ~static_cast<unsigned>(fcAllFlags)) != 0) { |
| error(Lex.getLoc(), "invalid mask value for 'nofpclass'"); |
| return 0; |
| } |
| |
| if (!EatIfPresent(lltok::rparen)) { |
| error(Lex.getLoc(), "expected ')'"); |
| return 0; |
| } |
| |
| return Value; |
| } else { |
| error(Lex.getLoc(), "expected nofpclass test mask"); |
| return 0; |
| } |
| |
| Lex.Lex(); |
| if (EatIfPresent(lltok::rparen)) |
| return Mask; |
| } while (1); |
| |
| llvm_unreachable("unterminated nofpclass attribute"); |
| } |
| |
| /// parseOptionalCommaAlign |
| /// ::= |
| /// ::= ',' align 4 |
| /// |
| /// This returns with AteExtraComma set to true if it ate an excess comma at the |
| /// end. |
| bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, |
| bool &AteExtraComma) { |
| AteExtraComma = false; |
| while (EatIfPresent(lltok::comma)) { |
| // Metadata at the end is an early exit. |
| if (Lex.getKind() == lltok::MetadataVar) { |
| AteExtraComma = true; |
| return false; |
| } |
| |
| if (Lex.getKind() != lltok::kw_align) |
| return error(Lex.getLoc(), "expected metadata or 'align'"); |
| |
| if (parseOptionalAlignment(Alignment)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// parseOptionalCommaAddrSpace |
| /// ::= |
| /// ::= ',' addrspace(1) |
| /// |
| /// This returns with AteExtraComma set to true if it ate an excess comma at the |
| /// end. |
| bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, |
| bool &AteExtraComma) { |
| AteExtraComma = false; |
| while (EatIfPresent(lltok::comma)) { |
| // Metadata at the end is an early exit. |
| if (Lex.getKind() == lltok::MetadataVar) { |
| AteExtraComma = true; |
| return false; |
| } |
| |
| Loc = Lex.getLoc(); |
| if (Lex.getKind() != lltok::kw_addrspace) |
| return error(Lex.getLoc(), "expected metadata or 'addrspace'"); |
| |
| if (parseOptionalAddrSpace(AddrSpace)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, |
| std::optional<unsigned> &HowManyArg) { |
| Lex.Lex(); |
| |
| auto StartParen = Lex.getLoc(); |
| if (!EatIfPresent(lltok::lparen)) |
| return error(StartParen, "expected '('"); |
| |
| if (parseUInt32(BaseSizeArg)) |
| return true; |
| |
| if (EatIfPresent(lltok::comma)) { |
| auto HowManyAt = Lex.getLoc(); |
| unsigned HowMany; |
| if (parseUInt32(HowMany)) |
| return true; |
| if (HowMany == BaseSizeArg) |
| return error(HowManyAt, |
| "'allocsize' indices can't refer to the same parameter"); |
| HowManyArg = HowMany; |
| } else |
| HowManyArg = std::nullopt; |
| |
| auto EndParen = Lex.getLoc(); |
| if (!EatIfPresent(lltok::rparen)) |
| return error(EndParen, "expected ')'"); |
| return false; |
| } |
| |
| bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, |
| unsigned &MaxValue) { |
| Lex.Lex(); |
| |
| auto StartParen = Lex.getLoc(); |
| if (!EatIfPresent(lltok::lparen)) |
| return error(StartParen, "expected '('"); |
| |
| if (parseUInt32(MinValue)) |
| return true; |
| |
| if (EatIfPresent(lltok::comma)) { |
| if (parseUInt32(MaxValue)) |
| return true; |
| } else |
| MaxValue = MinValue; |
| |
| auto EndParen = Lex.getLoc(); |
| if (!EatIfPresent(lltok::rparen)) |
| return error(EndParen, "expected ')'"); |
| return false; |
| } |
| |
| /// parseScopeAndOrdering |
| /// if isAtomic: ::= SyncScope? AtomicOrdering |
| /// else: ::= |
| /// |
| /// This sets Scope and Ordering to the parsed values. |
| bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, |
| AtomicOrdering &Ordering) { |
| if (!IsAtomic) |
| return false; |
| |
| return parseScope(SSID) || parseOrdering(Ordering); |
| } |
| |
| /// parseScope |
| /// ::= syncscope("singlethread" | "<target scope>")? |
| /// |
| /// This sets synchronization scope ID to the ID of the parsed value. |
| bool LLParser::parseScope(SyncScope::ID &SSID) { |
| SSID = SyncScope::System; |
| if (EatIfPresent(lltok::kw_syncscope)) { |
| auto StartParenAt = Lex.getLoc(); |
| if (!EatIfPresent(lltok::lparen)) |
| return error(StartParenAt, "Expected '(' in syncscope"); |
| |
| std::string SSN; |
| auto SSNAt = Lex.getLoc(); |
| if (parseStringConstant(SSN)) |
| return error(SSNAt, "Expected synchronization scope name"); |
| |
| auto EndParenAt = Lex.getLoc(); |
| if (!EatIfPresent(lltok::rparen)) |
| return error(EndParenAt, "Expected ')' in syncscope"); |
| |
| SSID = Context.getOrInsertSyncScopeID(SSN); |
| } |
| |
| return false; |
| } |
| |
| /// parseOrdering |
| /// ::= AtomicOrdering |
| /// |
| /// This sets Ordering to the parsed value. |
| bool LLParser::parseOrdering(AtomicOrdering &Ordering) { |
| switch (Lex.getKind()) { |
| default: |
| return tokError("Expected ordering on atomic instruction"); |
| case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; |
| case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; |
| // Not specified yet: |
| // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; |
| case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; |
| case lltok::kw_release: Ordering = AtomicOrdering::Release; break; |
| case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; |
| case lltok::kw_seq_cst: |
| Ordering = AtomicOrdering::SequentiallyConsistent; |
| break; |
| } |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// parseOptionalStackAlignment |
| /// ::= /* empty */ |
| /// ::= 'alignstack' '(' 4 ')' |
| bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { |
| Alignment = 0; |
| if (!EatIfPresent(lltok::kw_alignstack)) |
| return false; |
| LocTy ParenLoc = Lex.getLoc(); |
| if (!EatIfPresent(lltok::lparen)) |
| return error(ParenLoc, "expected '('"); |
| LocTy AlignLoc = Lex.getLoc(); |
| if (parseUInt32(Alignment)) |
| return true; |
| ParenLoc = Lex.getLoc(); |
| if (!EatIfPresent(lltok::rparen)) |
| return error(ParenLoc, "expected ')'"); |
| if (!isPowerOf2_32(Alignment)) |
| return error(AlignLoc, "stack alignment is not a power of two"); |
| return false; |
| } |
| |
| /// parseIndexList - This parses the index list for an insert/extractvalue |
| /// instruction. This sets AteExtraComma in the case where we eat an extra |
| /// comma at the end of the line and find that it is followed by metadata. |
| /// Clients that don't allow metadata can call the version of this function that |
| /// only takes one argument. |
| /// |
| /// parseIndexList |
| /// ::= (',' uint32)+ |
| /// |
| bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, |
| bool &AteExtraComma) { |
| AteExtraComma = false; |
| |
| if (Lex.getKind() != lltok::comma) |
| return tokError("expected ',' as start of index list"); |
| |
| while (EatIfPresent(lltok::comma)) { |
| if (Lex.getKind() == lltok::MetadataVar) { |
| if (Indices.empty()) |
| return tokError("expected index"); |
| AteExtraComma = true; |
| return false; |
| } |
| unsigned Idx = 0; |
| if (parseUInt32(Idx)) |
| return true; |
| Indices.push_back(Idx); |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type Parsing. |
| //===----------------------------------------------------------------------===// |
| |
| /// parseType - parse a type. |
| bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { |
| SMLoc TypeLoc = Lex.getLoc(); |
| switch (Lex.getKind()) { |
| default: |
| return tokError(Msg); |
| case lltok::Type: |
| // Type ::= 'float' | 'void' (etc) |
| Result = Lex.getTyVal(); |
| Lex.Lex(); |
| |
| // Handle "ptr" opaque pointer type. |
| // |
| // Type ::= ptr ('addrspace' '(' uint32 ')')? |
| if (Result->isPointerTy()) { |
| unsigned AddrSpace; |
| if (parseOptionalAddrSpace(AddrSpace)) |
| return true; |
| Result = PointerType::get(getContext(), AddrSpace); |
| |
| // Give a nice error for 'ptr*'. |
| if (Lex.getKind() == lltok::star) |
| return tokError("ptr* is invalid - use ptr instead"); |
| |
| // Fall through to parsing the type suffixes only if this 'ptr' is a |
| // function return. Otherwise, return success, implicitly rejecting other |
| // suffixes. |
| if (Lex.getKind() != lltok::lparen) |
| return false; |
| } |
| break; |
| case lltok::kw_target: { |
| // Type ::= TargetExtType |
| if (parseTargetExtType(Result)) |
| return true; |
| break; |
| } |
| case lltok::lbrace: |
| // Type ::= StructType |
| if (parseAnonStructType(Result, false)) |
| return true; |
| break; |
| case lltok::lsquare: |
| // Type ::= '[' ... ']' |
| Lex.Lex(); // eat the lsquare. |
| if (parseArrayVectorType(Result, false)) |
| return true; |
| break; |
| case lltok::less: // Either vector or packed struct. |
| // Type ::= '<' ... '>' |
| Lex.Lex(); |
| if (Lex.getKind() == lltok::lbrace) { |
| if (parseAnonStructType(Result, true) || |
| parseToken(lltok::greater, "expected '>' at end of packed struct")) |
| return true; |
| } else if (parseArrayVectorType(Result, true)) |
| return true; |
| break; |
| case lltok::LocalVar: { |
| // Type ::= %foo |
| std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; |
| |
| // If the type hasn't been defined yet, create a forward definition and |
| // remember where that forward def'n was seen (in case it never is defined). |
| if (!Entry.first) { |
| Entry.first = StructType::create(Context, Lex.getStrVal()); |
| Entry.second = Lex.getLoc(); |
| } |
| Result = Entry.first; |
| Lex.Lex(); |
| break; |
| } |
| |
| case lltok::LocalVarID: { |
| // Type ::= %4 |
| std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; |
| |
| // If the type hasn't been defined yet, create a forward definition and |
| // remember where that forward def'n was seen (in case it never is defined). |
| if (!Entry.first) { |
| Entry.first = StructType::create(Context); |
| Entry.second = Lex.getLoc(); |
| } |
| Result = Entry.first; |
| Lex.Lex(); |
| break; |
| } |
| } |
| |
| // parse the type suffixes. |
| while (true) { |
| switch (Lex.getKind()) { |
| // End of type. |
| default: |
| if (!AllowVoid && Result->isVoidTy()) |
| return error(TypeLoc, "void type only allowed for function results"); |
| return false; |
| |
| // Type ::= Type '*' |
| case lltok::star: |
| if (Result->isLabelTy()) |
| return tokError("basic block pointers are invalid"); |
| if (Result->isVoidTy()) |
| return tokError("pointers to void are invalid - use i8* instead"); |
| if (!PointerType::isValidElementType(Result)) |
| return tokError("pointer to this type is invalid"); |
| Result = PointerType::getUnqual(Context); |
| Lex.Lex(); |
| break; |
| |
| // Type ::= Type 'addrspace' '(' uint32 ')' '*' |
| case lltok::kw_addrspace: { |
| if (Result->isLabelTy()) |
| return tokError("basic block pointers are invalid"); |
| if (Result->isVoidTy()) |
| return tokError("pointers to void are invalid; use i8* instead"); |
| if (!PointerType::isValidElementType(Result)) |
| return tokError("pointer to this type is invalid"); |
| unsigned AddrSpace; |
| if (parseOptionalAddrSpace(AddrSpace) || |
| parseToken(lltok::star, "expected '*' in address space")) |
| return true; |
| |
| Result = PointerType::get(Context, AddrSpace); |
| break; |
| } |
| |
| /// Types '(' ArgTypeListI ')' OptFuncAttrs |
| case lltok::lparen: |
| if (parseFunctionType(Result)) |
| return true; |
| break; |
| } |
| } |
| } |
| |
| /// parseParameterList |
| /// ::= '(' ')' |
| /// ::= '(' Arg (',' Arg)* ')' |
| /// Arg |
| /// ::= Type OptionalAttributes Value OptionalAttributes |
| bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, |
| PerFunctionState &PFS, bool IsMustTailCall, |
| bool InVarArgsFunc) { |
| if (parseToken(lltok::lparen, "expected '(' in call")) |
| return true; |
| |
| while (Lex.getKind() != lltok::rparen) { |
| // If this isn't the first argument, we need a comma. |
| if (!ArgList.empty() && |
| parseToken(lltok::comma, "expected ',' in argument list")) |
| return true; |
| |
| // parse an ellipsis if this is a musttail call in a variadic function. |
| if (Lex.getKind() == lltok::dotdotdot) { |
| const char *Msg = "unexpected ellipsis in argument list for "; |
| if (!IsMustTailCall) |
| return tokError(Twine(Msg) + "non-musttail call"); |
| if (!InVarArgsFunc) |
| return tokError(Twine(Msg) + "musttail call in non-varargs function"); |
| Lex.Lex(); // Lex the '...', it is purely for readability. |
| return parseToken(lltok::rparen, "expected ')' at end of argument list"); |
| } |
| |
| // parse the argument. |
| LocTy ArgLoc; |
| Type *ArgTy = nullptr; |
| Value *V; |
| if (parseType(ArgTy, ArgLoc)) |
| return true; |
| |
| AttrBuilder ArgAttrs(M->getContext()); |
| |
| if (ArgTy->isMetadataTy()) { |
| if (parseMetadataAsValue(V, PFS)) |
| return true; |
| } else { |
| // Otherwise, handle normal operands. |
| if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) |
| return true; |
| } |
| ArgList.push_back(ParamInfo( |
| ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); |
| } |
| |
| if (IsMustTailCall && InVarArgsFunc) |
| return tokError("expected '...' at end of argument list for musttail call " |
| "in varargs function"); |
| |
| Lex.Lex(); // Lex the ')'. |
| return false; |
| } |
| |
| /// parseRequiredTypeAttr |
| /// ::= attrname(<ty>) |
| bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken, |
| Attribute::AttrKind AttrKind) { |
| Type *Ty = nullptr; |
| if (!EatIfPresent(AttrToken)) |
| return true; |
| if (!EatIfPresent(lltok::lparen)) |
| return error(Lex.getLoc(), "expected '('"); |
| if (parseType(Ty)) |
| return true; |
| if (!EatIfPresent(lltok::rparen)) |
| return error(Lex.getLoc(), "expected ')'"); |
| |
| B.addTypeAttr(AttrKind, Ty); |
| return false; |
| } |
| |
| /// parseRangeAttr |
| /// ::= range(<ty> <n>,<n>) |
| bool LLParser::parseRangeAttr(AttrBuilder &B) { |
| Lex.Lex(); |
| |
| APInt Lower; |
| APInt Upper; |
| Type *Ty = nullptr; |
| LocTy TyLoc; |
| |
| auto ParseAPSInt = [&](unsigned BitWidth, APInt &Val) { |
| if (Lex.getKind() != lltok::APSInt) |
| return tokError("expected integer"); |
| if (Lex.getAPSIntVal().getBitWidth() > BitWidth) |
| return tokError( |
| "integer is too large for the bit width of specified type"); |
| Val = Lex.getAPSIntVal().extend(BitWidth); |
| Lex.Lex(); |
| return false; |
| }; |
| |
| if (parseToken(lltok::lparen, "expected '('") || parseType(Ty, TyLoc)) |
| return true; |
| if (!Ty->isIntegerTy()) |
| return error(TyLoc, "the range must have integer type!"); |
| |
| unsigned BitWidth = Ty->getPrimitiveSizeInBits(); |
| |
| if (ParseAPSInt(BitWidth, Lower) || |
| parseToken(lltok::comma, "expected ','") || ParseAPSInt(BitWidth, Upper)) |
| return true; |
| if (Lower == Upper && !Lower.isZero()) |
| return tokError("the range represent the empty set but limits aren't 0!"); |
| |
| if (parseToken(lltok::rparen, "expected ')'")) |
| return true; |
| |
| B.addRangeAttr(ConstantRange(Lower, Upper)); |
| return false; |
| } |
| |
| /// parseInitializesAttr |
| /// ::= initializes((Lo1,Hi1),(Lo2,Hi2),...) |
| bool LLParser::parseInitializesAttr(AttrBuilder &B) { |
| Lex.Lex(); |
| |
| auto ParseAPSInt = [&](APInt &Val) { |
| if (Lex.getKind() != lltok::APSInt) |
| return tokError("expected integer"); |
| Val = Lex.getAPSIntVal().extend(64); |
| Lex.Lex(); |
| return false; |
| }; |
| |
| if (parseToken(lltok::lparen, "expected '('")) |
| return true; |
| |
| SmallVector<ConstantRange, 2> RangeList; |
| // Parse each constant range. |
| do { |
| APInt Lower, Upper; |
| if (parseToken(lltok::lparen, "expected '('")) |
| return true; |
| |
| if (ParseAPSInt(Lower) || parseToken(lltok::comma, "expected ','") || |
| ParseAPSInt(Upper)) |
| return true; |
| |
| if (Lower == Upper) |
| return tokError("the range should not represent the full or empty set!"); |
| |
| if (parseToken(lltok::rparen, "expected ')'")) |
| return true; |
| |
| RangeList.push_back(ConstantRange(Lower, Upper)); |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')'")) |
| return true; |
| |
| auto CRLOrNull = ConstantRangeList::getConstantRangeList(RangeList); |
| if (!CRLOrNull.has_value()) |
| return tokError("Invalid (unordered or overlapping) range list"); |
| B.addInitializesAttr(*CRLOrNull); |
| return false; |
| } |
| |
| bool LLParser::parseCapturesAttr(AttrBuilder &B) { |
| CaptureComponents Other = CaptureComponents::None; |
| std::optional<CaptureComponents> Ret; |
| |
| // We use syntax like captures(ret: address, provenance), so the colon |
| // should not be interpreted as a label terminator. |
| Lex.setIgnoreColonInIdentifiers(true); |
| auto _ = make_scope_exit([&] { Lex.setIgnoreColonInIdentifiers(false); }); |
| |
| Lex.Lex(); |
| if (parseToken(lltok::lparen, "expected '('")) |
| return true; |
| |
| CaptureComponents *Current = &Other; |
| bool SeenComponent = false; |
| while (true) { |
| if (EatIfPresent(lltok::kw_ret)) { |
| if (parseToken(lltok::colon, "expected ':'")) |
| return true; |
| if (Ret) |
| return tokError("duplicate 'ret' location"); |
| Ret = CaptureComponents::None; |
| Current = &*Ret; |
| SeenComponent = false; |
| } |
| |
| if (EatIfPresent(lltok::kw_none)) { |
| if (SeenComponent) |
| return tokError("cannot use 'none' with other component"); |
| *Current = CaptureComponents::None; |
| } else { |
| if (SeenComponent && capturesNothing(*Current)) |
| return tokError("cannot use 'none' with other component"); |
| |
| if (EatIfPresent(lltok::kw_address_is_null)) |
| *Current |= CaptureComponents::AddressIsNull; |
| else if (EatIfPresent(lltok::kw_address)) |
| *Current |= CaptureComponents::Address; |
| else if (EatIfPresent(lltok::kw_provenance)) |
| *Current |= CaptureComponents::Provenance; |
| else if (EatIfPresent(lltok::kw_read_provenance)) |
| *Current |= CaptureComponents::ReadProvenance; |
| else |
| return tokError("expected one of 'none', 'address', 'address_is_null', " |
| "'provenance' or 'read_provenance'"); |
| } |
| |
| SeenComponent = true; |
| if (EatIfPresent(lltok::rparen)) |
| break; |
| |
| if (parseToken(lltok::comma, "expected ',' or ')'")) |
| return true; |
| } |
| |
| B.addCapturesAttr(CaptureInfo(Other, Ret.value_or(Other))); |
| return false; |
| } |
| |
| /// parseOptionalOperandBundles |
| /// ::= /*empty*/ |
| /// ::= '[' OperandBundle [, OperandBundle ]* ']' |
| /// |
| /// OperandBundle |
| /// ::= bundle-tag '(' ')' |
| /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' |
| /// |
| /// bundle-tag ::= String Constant |
| bool LLParser::parseOptionalOperandBundles( |
| SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { |
| LocTy BeginLoc = Lex.getLoc(); |
| if (!EatIfPresent(lltok::lsquare)) |
| return false; |
| |
| while (Lex.getKind() != lltok::rsquare) { |
| // If this isn't the first operand bundle, we need a comma. |
| if (!BundleList.empty() && |
| parseToken(lltok::comma, "expected ',' in input list")) |
| return true; |
| |
| std::string Tag; |
| if (parseStringConstant(Tag)) |
| return true; |
| |
| if (parseToken(lltok::lparen, "expected '(' in operand bundle")) |
| return true; |
| |
| std::vector<Value *> Inputs; |
| while (Lex.getKind() != lltok::rparen) { |
| // If this isn't the first input, we need a comma. |
| if (!Inputs.empty() && |
| parseToken(lltok::comma, "expected ',' in input list")) |
| return true; |
| |
| Type *Ty = nullptr; |
| Value *Input = nullptr; |
| if (parseType(Ty)) |
| return true; |
| if (Ty->isMetadataTy()) { |
| if (parseMetadataAsValue(Input, PFS)) |
| return true; |
| } else if (parseValue(Ty, Input, PFS)) { |
| return true; |
| } |
| Inputs.push_back(Input); |
| } |
| |
| BundleList.emplace_back(std::move(Tag), std::move(Inputs)); |
| |
| Lex.Lex(); // Lex the ')'. |
| } |
| |
| if (BundleList.empty()) |
| return error(BeginLoc, "operand bundle set must not be empty"); |
| |
| Lex.Lex(); // Lex the ']'. |
| return false; |
| } |
| |
| bool LLParser::checkValueID(LocTy Loc, StringRef Kind, StringRef Prefix, |
| unsigned NextID, unsigned ID) { |
| if (ID < NextID) |
| return error(Loc, Kind + " expected to be numbered '" + Prefix + |
| Twine(NextID) + "' or greater"); |
| |
| return false; |
| } |
| |
| /// parseArgumentList - parse the argument list for a function type or function |
| /// prototype. |
| /// ::= '(' ArgTypeListI ')' |
| /// ArgTypeListI |
| /// ::= /*empty*/ |
| /// ::= '...' |
| /// ::= ArgTypeList ',' '...' |
| /// ::= ArgType (',' ArgType)* |
| /// |
| bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, |
| SmallVectorImpl<unsigned> &UnnamedArgNums, |
| bool &IsVarArg) { |
| unsigned CurValID = 0; |
| IsVarArg = false; |
| assert(Lex.getKind() == lltok::lparen); |
| Lex.Lex(); // eat the (. |
| |
| if (Lex.getKind() != lltok::rparen) { |
| do { |
| // Handle ... at end of arg list. |
| if (EatIfPresent(lltok::dotdotdot)) { |
| IsVarArg = true; |
| break; |
| } |
| |
| // Otherwise must be an argument type. |
| LocTy TypeLoc = Lex.getLoc(); |
| Type *ArgTy = nullptr; |
| AttrBuilder Attrs(M->getContext()); |
| if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) |
| return true; |
| |
| if (ArgTy->isVoidTy()) |
| return error(TypeLoc, "argument can not have void type"); |
| |
| std::string Name; |
| if (Lex.getKind() == lltok::LocalVar) { |
| Name = Lex.getStrVal(); |
| Lex.Lex(); |
| } else { |
| unsigned ArgID; |
| if (Lex.getKind() == lltok::LocalVarID) { |
| ArgID = Lex.getUIntVal(); |
| if (checkValueID(TypeLoc, "argument", "%", CurValID, ArgID)) |
| return true; |
| Lex.Lex(); |
| } else { |
| ArgID = CurValID; |
| } |
| UnnamedArgNums.push_back(ArgID); |
| CurValID = ArgID + 1; |
| } |
| |
| if (!ArgTy->isFirstClassType()) |
| return error(TypeLoc, "invalid type for function argument"); |
| |
| ArgList.emplace_back(TypeLoc, ArgTy, |
| AttributeSet::get(ArgTy->getContext(), Attrs), |
| std::move(Name)); |
| } while (EatIfPresent(lltok::comma)); |
| } |
| |
| return parseToken(lltok::rparen, "expected ')' at end of argument list"); |
| } |
| |
| /// parseFunctionType |
| /// ::= Type ArgumentList OptionalAttrs |
| bool LLParser::parseFunctionType(Type *&Result) { |
| assert(Lex.getKind() == lltok::lparen); |
| |
| if (!FunctionType::isValidReturnType(Result)) |
| return tokError("invalid function return type"); |
| |
| SmallVector<ArgInfo, 8> ArgList; |
| bool IsVarArg; |
| SmallVector<unsigned> UnnamedArgNums; |
| if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg)) |
| return true; |
| |
| // Reject names on the arguments lists. |
| for (const ArgInfo &Arg : ArgList) { |
| if (!Arg.Name.empty()) |
| return error(Arg.Loc, "argument name invalid in function type"); |
| if (Arg.Attrs.hasAttributes()) |
| return error(Arg.Loc, "argument attributes invalid in function type"); |
| } |
| |
| SmallVector<Type*, 16> ArgListTy; |
| for (const ArgInfo &Arg : ArgList) |
| ArgListTy.push_back(Arg.Ty); |
| |
| Result = FunctionType::get(Result, ArgListTy, IsVarArg); |
| return false; |
| } |
| |
| /// parseAnonStructType - parse an anonymous struct type, which is inlined into |
| /// other structs. |
| bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { |
| SmallVector<Type*, 8> Elts; |
| if (parseStructBody(Elts)) |
| return true; |
| |
| Result = StructType::get(Context, Elts, Packed); |
| return false; |
| } |
| |
| /// parseStructDefinition - parse a struct in a 'type' definition. |
| bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, |
| std::pair<Type *, LocTy> &Entry, |
| Type *&ResultTy) { |
| // If the type was already defined, diagnose the redefinition. |
| if (Entry.first && !Entry.second.isValid()) |
| return error(TypeLoc, "redefinition of type"); |
| |
| // If we have opaque, just return without filling in the definition for the |
| // struct. This counts as a definition as far as the .ll file goes. |
| if (EatIfPresent(lltok::kw_opaque)) { |
| // This type is being defined, so clear the location to indicate this. |
| Entry.second = SMLoc(); |
| |
| // If this type number has never been uttered, create it. |
| if (!Entry.first) |
| Entry.first = StructType::create(Context, Name); |
| ResultTy = Entry.first; |
| return false; |
| } |
| |
| // If the type starts with '<', then it is either a packed struct or a vector. |
| bool isPacked = EatIfPresent(lltok::less); |
| |
| // If we don't have a struct, then we have a random type alias, which we |
| // accept for compatibility with old files. These types are not allowed to be |
| // forward referenced and not allowed to be recursive. |
| if (Lex.getKind() != lltok::lbrace) { |
| if (Entry.first) |
| return error(TypeLoc, "forward references to non-struct type"); |
| |
| ResultTy = nullptr; |
| if (isPacked) |
| return parseArrayVectorType(ResultTy, true); |
| return parseType(ResultTy); |
| } |
| |
| // This type is being defined, so clear the location to indicate this. |
| Entry.second = SMLoc(); |
| |
| // If this type number has never been uttered, create it. |
| if (!Entry.first) |
| Entry.first = StructType::create(Context, Name); |
| |
| StructType *STy = cast<StructType>(Entry.first); |
| |
| SmallVector<Type*, 8> Body; |
| if (parseStructBody(Body) || |
| (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) |
| return true; |
| |
| if (auto E = STy->setBodyOrError(Body, isPacked)) |
| return tokError(toString(std::move(E))); |
| |
| ResultTy = STy; |
| return false; |
| } |
| |
| /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. |
| /// StructType |
| /// ::= '{' '}' |
| /// ::= '{' Type (',' Type)* '}' |
| /// ::= '<' '{' '}' '>' |
| /// ::= '<' '{' Type (',' Type)* '}' '>' |
| bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { |
| assert(Lex.getKind() == lltok::lbrace); |
| Lex.Lex(); // Consume the '{' |
| |
| // Handle the empty struct. |
| if (EatIfPresent(lltok::rbrace)) |
| return false; |
| |
| LocTy EltTyLoc = Lex.getLoc(); |
| Type *Ty = nullptr; |
| if (parseType(Ty)) |
| return true; |
| Body.push_back(Ty); |
| |
| if (!StructType::isValidElementType(Ty)) |
| return error(EltTyLoc, "invalid element type for struct"); |
| |
| while (EatIfPresent(lltok::comma)) { |
| EltTyLoc = Lex.getLoc(); |
| if (parseType(Ty)) |
| return true; |
| |
| if (!StructType::isValidElementType(Ty)) |
| return error(EltTyLoc, "invalid element type for struct"); |
| |
| Body.push_back(Ty); |
| } |
| |
| return parseToken(lltok::rbrace, "expected '}' at end of struct"); |
| } |
| |
| /// parseArrayVectorType - parse an array or vector type, assuming the first |
| /// token has already been consumed. |
| /// Type |
| /// ::= '[' APSINTVAL 'x' Types ']' |
| /// ::= '<' APSINTVAL 'x' Types '>' |
| /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' |
| bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { |
| bool Scalable = false; |
| |
| if (IsVector && Lex.getKind() == lltok::kw_vscale) { |
| Lex.Lex(); // consume the 'vscale' |
| if (parseToken(lltok::kw_x, "expected 'x' after vscale")) |
| return true; |
| |
| Scalable = true; |
| } |
| |
| if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || |
| Lex.getAPSIntVal().getBitWidth() > 64) |
| return tokError("expected number in address space"); |
| |
| LocTy SizeLoc = Lex.getLoc(); |
| uint64_t Size = Lex.getAPSIntVal().getZExtValue(); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::kw_x, "expected 'x' after element count")) |
| return true; |
| |
| LocTy TypeLoc = Lex.getLoc(); |
| Type *EltTy = nullptr; |
| if (parseType(EltTy)) |
| return true; |
| |
| if (parseToken(IsVector ? lltok::greater : lltok::rsquare, |
| "expected end of sequential type")) |
| return true; |
| |
| if (IsVector) { |
| if (Size == 0) |
| return error(SizeLoc, "zero element vector is illegal"); |
| if ((unsigned)Size != Size) |
| return error(SizeLoc, "size too large for vector"); |
| if (!VectorType::isValidElementType(EltTy)) |
| return error(TypeLoc, "invalid vector element type"); |
| Result = VectorType::get(EltTy, unsigned(Size), Scalable); |
| } else { |
| if (!ArrayType::isValidElementType(EltTy)) |
| return error(TypeLoc, "invalid array element type"); |
| Result = ArrayType::get(EltTy, Size); |
| } |
| return false; |
| } |
| |
| /// parseTargetExtType - handle target extension type syntax |
| /// TargetExtType |
| /// ::= 'target' '(' STRINGCONSTANT TargetExtTypeParams TargetExtIntParams ')' |
| /// |
| /// TargetExtTypeParams |
| /// ::= /*empty*/ |
| /// ::= ',' Type TargetExtTypeParams |
| /// |
| /// TargetExtIntParams |
| /// ::= /*empty*/ |
| /// ::= ',' uint32 TargetExtIntParams |
| bool LLParser::parseTargetExtType(Type *&Result) { |
| Lex.Lex(); // Eat the 'target' keyword. |
| |
| // Get the mandatory type name. |
| std::string TypeName; |
| if (parseToken(lltok::lparen, "expected '(' in target extension type") || |
| parseStringConstant(TypeName)) |
| return true; |
| |
| // Parse all of the integer and type parameters at the same time; the use of |
| // SeenInt will allow us to catch cases where type parameters follow integer |
| // parameters. |
| SmallVector<Type *> TypeParams; |
| SmallVector<unsigned> IntParams; |
| bool SeenInt = false; |
| while (Lex.getKind() == lltok::comma) { |
| Lex.Lex(); // Eat the comma. |
| |
| if (Lex.getKind() == lltok::APSInt) { |
| SeenInt = true; |
| unsigned IntVal; |
| if (parseUInt32(IntVal)) |
| return true; |
| IntParams.push_back(IntVal); |
| } else if (SeenInt) { |
| // The only other kind of parameter we support is type parameters, which |
| // must precede the integer parameters. This is therefore an error. |
| return tokError("expected uint32 param"); |
| } else { |
| Type *TypeParam; |
| if (parseType(TypeParam, /*AllowVoid=*/true)) |
| return true; |
| TypeParams.push_back(TypeParam); |
| } |
| } |
| |
| if (parseToken(lltok::rparen, "expected ')' in target extension type")) |
| return true; |
| |
| auto TTy = |
| TargetExtType::getOrError(Context, TypeName, TypeParams, IntParams); |
| if (auto E = TTy.takeError()) |
| return tokError(toString(std::move(E))); |
| |
| Result = *TTy; |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Function Semantic Analysis. |
| //===----------------------------------------------------------------------===// |
| |
| LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, |
| int functionNumber, |
| ArrayRef<unsigned> UnnamedArgNums) |
| : P(p), F(f), FunctionNumber(functionNumber) { |
| |
| // Insert unnamed arguments into the NumberedVals list. |
| auto It = UnnamedArgNums.begin(); |
| for (Argument &A : F.args()) { |
| if (!A.hasName()) { |
| unsigned ArgNum = *It++; |
| NumberedVals.add(ArgNum, &A); |
| } |
| } |
| } |
| |
| LLParser::PerFunctionState::~PerFunctionState() { |
| // If there were any forward referenced non-basicblock values, delete them. |
| |
| for (const auto &P : ForwardRefVals) { |
| if (isa<BasicBlock>(P.second.first)) |
| continue; |
| P.second.first->replaceAllUsesWith( |
| PoisonValue::get(P.second.first->getType())); |
| P.second.first->deleteValue(); |
| } |
| |
| for (const auto &P : ForwardRefValIDs) { |
| if (isa<BasicBlock>(P.second.first)) |
| continue; |
| P.second.first->replaceAllUsesWith( |
| PoisonValue::get(P.second.first->getType())); |
| P.second.first->deleteValue(); |
| } |
| } |
| |
| bool LLParser::PerFunctionState::finishFunction() { |
| if (!ForwardRefVals.empty()) |
| return P.error(ForwardRefVals.begin()->second.second, |
| "use of undefined value '%" + ForwardRefVals.begin()->first + |
| "'"); |
| if (!ForwardRefValIDs.empty()) |
| return P.error(ForwardRefValIDs.begin()->second.second, |
| "use of undefined value '%" + |
| Twine(ForwardRefValIDs.begin()->first) + "'"); |
| return false; |
| } |
| |
| /// getVal - Get a value with the specified name or ID, creating a |
| /// forward reference record if needed. This can return null if the value |
| /// exists but does not have the right type. |
| Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, |
| LocTy Loc) { |
| // Look this name up in the normal function symbol table. |
| Value *Val = F.getValueSymbolTable()->lookup(Name); |
| |
| // If this is a forward reference for the value, see if we already created a |
| // forward ref record. |
| if (!Val) { |
| auto I = ForwardRefVals.find(Name); |
| if (I != ForwardRefVals.end()) |
| Val = I->second.first; |
| } |
| |
| // If we have the value in the symbol table or fwd-ref table, return it. |
| if (Val) |
| return P.checkValidVariableType(Loc, "%" + Name, Ty, Val); |
| |
| // Don't make placeholders with invalid type. |
| if (!Ty->isFirstClassType()) { |
| P.error(Loc, "invalid use of a non-first-class type"); |
| return nullptr; |
| } |
| |
| // Otherwise, create a new forward reference for this value and remember it. |
| Value *FwdVal; |
| if (Ty->isLabelTy()) { |
| FwdVal = BasicBlock::Create(F.getContext(), Name, &F); |
| } else { |
| FwdVal = new Argument(Ty, Name); |
| } |
| if (FwdVal->getName() != Name) { |
| P.error(Loc, "name is too long which can result in name collisions, " |
| "consider making the name shorter or " |
| "increasing -non-global-value-max-name-size"); |
| return nullptr; |
| } |
| |
| ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); |
| return FwdVal; |
| } |
| |
| Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) { |
| // Look this name up in the normal function symbol table. |
| Value *Val = NumberedVals.get(ID); |
| |
| // If this is a forward reference for the value, see if we already created a |
| // forward ref record. |
| if (!Val) { |
| auto I = ForwardRefValIDs.find(ID); |
| if (I != ForwardRefValIDs.end()) |
| Val = I->second.first; |
| } |
| |
| // If we have the value in the symbol table or fwd-ref table, return it. |
| if (Val) |
| return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val); |
| |
| if (!Ty->isFirstClassType()) { |
| P.error(Loc, "invalid use of a non-first-class type"); |
| return nullptr; |
| } |
| |
| // Otherwise, create a new forward reference for this value and remember it. |
| Value *FwdVal; |
| if (Ty->isLabelTy()) { |
| FwdVal = BasicBlock::Create(F.getContext(), "", &F); |
| } else { |
| FwdVal = new Argument(Ty); |
| } |
| |
| ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); |
| return FwdVal; |
| } |
| |
| /// setInstName - After an instruction is parsed and inserted into its |
| /// basic block, this installs its name. |
| bool LLParser::PerFunctionState::setInstName(int NameID, |
| const std::string &NameStr, |
| LocTy NameLoc, Instruction *Inst) { |
| // If this instruction has void type, it cannot have a name or ID specified. |
| if (Inst->getType()->isVoidTy()) { |
| if (NameID != -1 || !NameStr.empty()) |
| return P.error(NameLoc, "instructions returning void cannot have a name"); |
| return false; |
| } |
| |
| // If this was a numbered instruction, verify that the instruction is the |
| // expected value and resolve any forward references. |
| if (NameStr.empty()) { |
| // If neither a name nor an ID was specified, just use the next ID. |
| if (NameID == -1) |
| NameID = NumberedVals.getNext(); |
| |
| if (P.checkValueID(NameLoc, "instruction", "%", NumberedVals.getNext(), |
| NameID)) |
| return true; |
| |
| auto FI = ForwardRefValIDs.find(NameID); |
| if (FI != ForwardRefValIDs.end()) { |
| Value *Sentinel = FI->second.first; |
| if (Sentinel->getType() != Inst->getType()) |
| return P.error(NameLoc, "instruction forward referenced with type '" + |
| getTypeString(FI->second.first->getType()) + |
| "'"); |
| |
| Sentinel->replaceAllUsesWith(Inst); |
| Sentinel->deleteValue(); |
| ForwardRefValIDs.erase(FI); |
| } |
| |
| NumberedVals.add(NameID, Inst); |
| return false; |
| } |
| |
| // Otherwise, the instruction had a name. Resolve forward refs and set it. |
| auto FI = ForwardRefVals.find(NameStr); |
| if (FI != ForwardRefVals.end()) { |
| Value *Sentinel = FI->second.first; |
| if (Sentinel->getType() != Inst->getType()) |
| return P.error(NameLoc, "instruction forward referenced with type '" + |
| getTypeString(FI->second.first->getType()) + |
| "'"); |
| |
| Sentinel->replaceAllUsesWith(Inst); |
| Sentinel->deleteValue(); |
| ForwardRefVals.erase(FI); |
| } |
| |
| // Set the name on the instruction. |
| Inst->setName(NameStr); |
| |
| if (Inst->getName() != NameStr) |
| return P.error(NameLoc, "multiple definition of local value named '" + |
| NameStr + "'"); |
| return false; |
| } |
| |
| /// getBB - Get a basic block with the specified name or ID, creating a |
| /// forward reference record if needed. |
| BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, |
| LocTy Loc) { |
| return dyn_cast_or_null<BasicBlock>( |
| getVal(Name, Type::getLabelTy(F.getContext()), Loc)); |
| } |
| |
| BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { |
| return dyn_cast_or_null<BasicBlock>( |
| getVal(ID, Type::getLabelTy(F.getContext()), Loc)); |
| } |
| |
| /// defineBB - Define the specified basic block, which is either named or |
| /// unnamed. If there is an error, this returns null otherwise it returns |
| /// the block being defined. |
| BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, |
| int NameID, LocTy Loc) { |
| BasicBlock *BB; |
| if (Name.empty()) { |
| if (NameID != -1) { |
| if (P.checkValueID(Loc, "label", "", NumberedVals.getNext(), NameID)) |
| return nullptr; |
| } else { |
| NameID = NumberedVals.getNext(); |
| } |
| BB = getBB(NameID, Loc); |
| if (!BB) { |
| P.error(Loc, "unable to create block numbered '" + Twine(NameID) + "'"); |
| return nullptr; |
| } |
| } else { |
| BB = getBB(Name, Loc); |
| if (!BB) { |
| P.error(Loc, "unable to create block named '" + Name + "'"); |
| return nullptr; |
| } |
| } |
| |
| // Move the block to the end of the function. Forward ref'd blocks are |
| // inserted wherever they happen to be referenced. |
| F.splice(F.end(), &F, BB->getIterator()); |
| |
| // Remove the block from forward ref sets. |
| if (Name.empty()) { |
| ForwardRefValIDs.erase(NameID); |
| NumberedVals.add(NameID, BB); |
| } else { |
| // BB forward references are already in the function symbol table. |
| ForwardRefVals.erase(Name); |
| } |
| |
| return BB; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Constants. |
| //===----------------------------------------------------------------------===// |
| |
| /// parseValID - parse an abstract value that doesn't necessarily have a |
| /// type implied. For example, if we parse "4" we don't know what integer type |
| /// it has. The value will later be combined with its type and checked for |
| /// basic correctness. PFS is used to convert function-local operands of |
| /// metadata (since metadata operands are not just parsed here but also |
| /// converted to values). PFS can be null when we are not parsing metadata |
| /// values inside a function. |
| bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) { |
| ID.Loc = Lex.getLoc(); |
| switch (Lex.getKind()) { |
| default: |
| return tokError("expected value token"); |
| case lltok::GlobalID: // @42 |
| ID.UIntVal = Lex.getUIntVal(); |
| ID.Kind = ValID::t_GlobalID; |
| break; |
| case lltok::GlobalVar: // @foo |
| ID.StrVal = Lex.getStrVal(); |
| ID.Kind = ValID::t_GlobalName; |
| break; |
| case lltok::LocalVarID: // %42 |
| ID.UIntVal = Lex.getUIntVal(); |
| ID.Kind = ValID::t_LocalID; |
| break; |
| case lltok::LocalVar: // %foo |
| ID.StrVal = Lex.getStrVal(); |
| ID.Kind = ValID::t_LocalName; |
| break; |
| case lltok::APSInt: |
| ID.APSIntVal = Lex.getAPSIntVal(); |
| ID.Kind = ValID::t_APSInt; |
| break; |
| case lltok::APFloat: |
| ID.APFloatVal = Lex.getAPFloatVal(); |
| ID.Kind = ValID::t_APFloat; |
| break; |
| case lltok::kw_true: |
| ID.ConstantVal = ConstantInt::getTrue(Context); |
| ID.Kind = ValID::t_Constant; |
| break; |
| case lltok::kw_false: |
| ID.ConstantVal = ConstantInt::getFalse(Context); |
| ID.Kind = ValID::t_Constant; |
| break; |
| case lltok::kw_null: ID.Kind = ValID::t_Null; break; |
| case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; |
| case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; |
| case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; |
| case lltok::kw_none: ID.Kind = ValID::t_None; break; |
| |
| case lltok::lbrace: { |
| // ValID ::= '{' ConstVector '}' |
| Lex.Lex(); |
| SmallVector<Constant*, 16> Elts; |
| if (parseGlobalValueVector(Elts) || |
| parseToken(lltok::rbrace, "expected end of struct constant")) |
| return true; |
| |
| ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); |
| ID.UIntVal = Elts.size(); |
| memcpy(ID.ConstantStructElts.get(), Elts.data(), |
| Elts.size() * sizeof(Elts[0])); |
| ID.Kind = ValID::t_ConstantStruct; |
| return false; |
| } |
| case lltok::less: { |
| // ValID ::= '<' ConstVector '>' --> Vector. |
| // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. |
| Lex.Lex(); |
| bool isPackedStruct = EatIfPresent(lltok::lbrace); |
| |
| SmallVector<Constant*, 16> Elts; |
| LocTy FirstEltLoc = Lex.getLoc(); |
| if (parseGlobalValueVector(Elts) || |
| (isPackedStruct && |
| parseToken(lltok::rbrace, "expected end of packed struct")) || |
| parseToken(lltok::greater, "expected end of constant")) |
| return true; |
| |
| if (isPackedStruct) { |
| ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); |
| memcpy(ID.ConstantStructElts.get(), Elts.data(), |
| Elts.size() * sizeof(Elts[0])); |
| ID.UIntVal = Elts.size(); |
| ID.Kind = ValID::t_PackedConstantStruct; |
| return false; |
| } |
| |
| if (Elts.empty()) |
| return error(ID.Loc, "constant vector must not be empty"); |
| |
| if (!Elts[0]->getType()->isIntegerTy() && |
| !Elts[0]->getType()->isFloatingPointTy() && |
| !Elts[0]->getType()->isPointerTy()) |
| return error( |
| FirstEltLoc, |
| "vector elements must have integer, pointer or floating point type"); |
| |
| // Verify that all the vector elements have the same type. |
| for (unsigned i = 1, e = Elts.size(); i != e; ++i) |
| if (Elts[i]->getType() != Elts[0]->getType()) |
| return error(FirstEltLoc, "vector element #" + Twine(i) + |
| " is not of type '" + |
| getTypeString(Elts[0]->getType())); |
| |
| ID.ConstantVal = ConstantVector::get(Elts); |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| case lltok::lsquare: { // Array Constant |
| Lex.Lex(); |
| SmallVector<Constant*, 16> Elts; |
| LocTy FirstEltLoc = Lex.getLoc(); |
| if (parseGlobalValueVector(Elts) || |
| parseToken(lltok::rsquare, "expected end of array constant")) |
| return true; |
| |
| // Handle empty element. |
| if (Elts.empty()) { |
| // Use undef instead of an array because it's inconvenient to determine |
| // the element type at this point, there being no elements to examine. |
| ID.Kind = ValID::t_EmptyArray; |
| return false; |
| } |
| |
| if (!Elts[0]->getType()->isFirstClassType()) |
| return error(FirstEltLoc, "invalid array element type: " + |
| getTypeString(Elts[0]->getType())); |
| |
| ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); |
| |
| // Verify all elements are correct type! |
| for (unsigned i = 0, e = Elts.size(); i != e; ++i) { |
| if (Elts[i]->getType() != Elts[0]->getType()) |
| return error(FirstEltLoc, "array element #" + Twine(i) + |
| " is not of type '" + |
| getTypeString(Elts[0]->getType())); |
| } |
| |
| ID.ConstantVal = ConstantArray::get(ATy, Elts); |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| case lltok::kw_c: // c "foo" |
| Lex.Lex(); |
| ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), |
| false); |
| if (parseToken(lltok::StringConstant, "expected string")) |
| return true; |
| ID.Kind = ValID::t_Constant; |
| return false; |
| |
| case lltok::kw_asm: { |
| // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' |
| // STRINGCONSTANT |
| bool HasSideEffect, AlignStack, AsmDialect, CanThrow; |
| Lex.Lex(); |
| if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || |
| parseOptionalToken(lltok::kw_alignstack, AlignStack) || |
| parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || |
| parseOptionalToken(lltok::kw_unwind, CanThrow) || |
| parseStringConstant(ID.StrVal) || |
| parseToken(lltok::comma, "expected comma in inline asm expression") || |
| parseToken(lltok::StringConstant, "expected constraint string")) |
| return true; |
| ID.StrVal2 = Lex.getStrVal(); |
| ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | |
| (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); |
| ID.Kind = ValID::t_InlineAsm; |
| return false; |
| } |
| |
| case lltok::kw_blockaddress: { |
| // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' |
| Lex.Lex(); |
| |
| ValID Fn, Label; |
| |
| if (parseToken(lltok::lparen, "expected '(' in block address expression") || |
| parseValID(Fn, PFS) || |
| parseToken(lltok::comma, |
| "expected comma in block address expression") || |
| parseValID(Label, PFS) || |
| parseToken(lltok::rparen, "expected ')' in block address expression")) |
| return true; |
| |
| if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) |
| return error(Fn.Loc, "expected function name in blockaddress"); |
| if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) |
| return error(Label.Loc, "expected basic block name in blockaddress"); |
| |
| // Try to find the function (but skip it if it's forward-referenced). |
| GlobalValue *GV = nullptr; |
| if (Fn.Kind == ValID::t_GlobalID) { |
| GV = NumberedVals.get(Fn.UIntVal); |
| } else if (!ForwardRefVals.count(Fn.StrVal)) { |
| GV = M->getNamedValue(Fn.StrVal); |
| } |
| Function *F = nullptr; |
| if (GV) { |
| // Confirm that it's actually a function with a definition. |
| if (!isa<Function>(GV)) |
| return error(Fn.Loc, "expected function name in blockaddress"); |
| F = cast<Function>(GV); |
| if (F->isDeclaration()) |
| return error(Fn.Loc, "cannot take blockaddress inside a declaration"); |
| } |
| |
| if (!F) { |
| // Make a global variable as a placeholder for this reference. |
| GlobalValue *&FwdRef = |
| ForwardRefBlockAddresses[std::move(Fn)][std::move(Label)]; |
| if (!FwdRef) { |
| unsigned FwdDeclAS; |
| if (ExpectedTy) { |
| // If we know the type that the blockaddress is being assigned to, |
| // we can use the address space of that type. |
| if (!ExpectedTy->isPointerTy()) |
| return error(ID.Loc, |
| "type of blockaddress must be a pointer and not '" + |
| getTypeString(ExpectedTy) + "'"); |
| FwdDeclAS = ExpectedTy->getPointerAddressSpace(); |
| } else if (PFS) { |
| // Otherwise, we default the address space of the current function. |
| FwdDeclAS = PFS->getFunction().getAddressSpace(); |
| } else { |
| llvm_unreachable("Unknown address space for blockaddress"); |
| } |
| FwdRef = new GlobalVariable( |
| *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, |
| nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS); |
| } |
| |
| ID.ConstantVal = FwdRef; |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| |
| // We found the function; now find the basic block. Don't use PFS, since we |
| // might be inside a constant expression. |
| BasicBlock *BB; |
| if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { |
| if (Label.Kind == ValID::t_LocalID) |
| BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); |
| else |
| BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); |
| if (!BB) |
| return error(Label.Loc, "referenced value is not a basic block"); |
| } else { |
| if (Label.Kind == ValID::t_LocalID) |
| return error(Label.Loc, "cannot take address of numeric label after " |
| "the function is defined"); |
| BB = dyn_cast_or_null<BasicBlock>( |
| F->getValueSymbolTable()->lookup(Label.StrVal)); |
| if (!BB) |
| return error(Label.Loc, "referenced value is not a basic block"); |
| } |
| |
| ID.ConstantVal = BlockAddress::get(F, BB); |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| |
| case lltok::kw_dso_local_equivalent: { |
| // ValID ::= 'dso_local_equivalent' @foo |
| Lex.Lex(); |
| |
| ValID Fn; |
| |
| if (parseValID(Fn, PFS)) |
| return true; |
| |
| if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) |
| return error(Fn.Loc, |
| "expected global value name in dso_local_equivalent"); |
| |
| // Try to find the function (but skip it if it's forward-referenced). |
| GlobalValue *GV = nullptr; |
| if (Fn.Kind == ValID::t_GlobalID) { |
| GV = NumberedVals.get(Fn.UIntVal); |
| } else if (!ForwardRefVals.count(Fn.StrVal)) { |
| GV = M->getNamedValue(Fn.StrVal); |
| } |
| |
| if (!GV) { |
| // Make a placeholder global variable as a placeholder for this reference. |
| auto &FwdRefMap = (Fn.Kind == ValID::t_GlobalID) |
| ? ForwardRefDSOLocalEquivalentIDs |
| : ForwardRefDSOLocalEquivalentNames; |
| GlobalValue *&FwdRef = FwdRefMap[Fn]; |
| if (!FwdRef) { |
| FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, |
| GlobalValue::InternalLinkage, nullptr, "", |
| nullptr, GlobalValue::NotThreadLocal); |
| } |
| |
| ID.ConstantVal = FwdRef; |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| |
| if (!GV->getValueType()->isFunctionTy()) |
| return error(Fn.Loc, "expected a function, alias to function, or ifunc " |
| "in dso_local_equivalent"); |
| |
| ID.ConstantVal = DSOLocalEquivalent::get(GV); |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| |
| case lltok::kw_no_cfi: { |
| // ValID ::= 'no_cfi' @foo |
| Lex.Lex(); |
| |
| if (parseValID(ID, PFS)) |
| return true; |
| |
| if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName) |
| return error(ID.Loc, "expected global value name in no_cfi"); |
| |
| ID.NoCFI = true; |
| return false; |
| } |
| case lltok::kw_ptrauth: { |
| // ValID ::= 'ptrauth' '(' ptr @foo ',' i32 <key> |
| // (',' i64 <disc> (',' ptr addrdisc)? )? ')' |
| Lex.Lex(); |
| |
| Constant *Ptr, *Key; |
| Constant *Disc = nullptr, *AddrDisc = nullptr; |
| |
| if (parseToken(lltok::lparen, |
| "expected '(' in constant ptrauth expression") || |
| parseGlobalTypeAndValue(Ptr) || |
| parseToken(lltok::comma, |
| "expected comma in constant ptrauth expression") || |
| parseGlobalTypeAndValue(Key)) |
| return true; |
| // If present, parse the optional disc/addrdisc. |
| if (EatIfPresent(lltok::comma)) |
| if (parseGlobalTypeAndValue(Disc) || |
| (EatIfPresent(lltok::comma) && parseGlobalTypeAndValue(AddrDisc))) |
| return true; |
| if (parseToken(lltok::rparen, |
| "expected ')' in constant ptrauth expression")) |
| return true; |
| |
| if (!Ptr->getType()->isPointerTy()) |
| return error(ID.Loc, "constant ptrauth base pointer must be a pointer"); |
| |
| auto *KeyC = dyn_cast<ConstantInt>(Key); |
| if (!KeyC || KeyC->getBitWidth() != 32) |
| return error(ID.Loc, "constant ptrauth key must be i32 constant"); |
| |
| ConstantInt *DiscC = nullptr; |
| if (Disc) { |
| DiscC = dyn_cast<ConstantInt>(Disc); |
| if (!DiscC || DiscC->getBitWidth() != 64) |
| return error( |
| ID.Loc, |
| "constant ptrauth integer discriminator must be i64 constant"); |
| } else { |
| DiscC = ConstantInt::get(Type::getInt64Ty(Context), 0); |
| } |
| |
| if (AddrDisc) { |
| if (!AddrDisc->getType()->isPointerTy()) |
| return error( |
| ID.Loc, "constant ptrauth address discriminator must be a pointer"); |
| } else { |
| AddrDisc = ConstantPointerNull::get(PointerType::get(Context, 0)); |
| } |
| |
| ID.ConstantVal = ConstantPtrAuth::get(Ptr, KeyC, DiscC, AddrDisc); |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| |
| case lltok::kw_trunc: |
| case lltok::kw_bitcast: |
| case lltok::kw_addrspacecast: |
| case lltok::kw_inttoptr: |
| case lltok::kw_ptrtoint: { |
| unsigned Opc = Lex.getUIntVal(); |
| Type *DestTy = nullptr; |
| Constant *SrcVal; |
| Lex.Lex(); |
| if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || |
| parseGlobalTypeAndValue(SrcVal) || |
| parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || |
| parseType(DestTy) || |
| parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) |
| return true; |
| if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) |
| return error(ID.Loc, "invalid cast opcode for cast from '" + |
| getTypeString(SrcVal->getType()) + "' to '" + |
| getTypeString(DestTy) + "'"); |
| ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, |
| SrcVal, DestTy); |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| case lltok::kw_extractvalue: |
| return error(ID.Loc, "extractvalue constexprs are no longer supported"); |
| case lltok::kw_insertvalue: |
| return error(ID.Loc, "insertvalue constexprs are no longer supported"); |
| case lltok::kw_udiv: |
| return error(ID.Loc, "udiv constexprs are no longer supported"); |
| case lltok::kw_sdiv: |
| return error(ID.Loc, "sdiv constexprs are no longer supported"); |
| case lltok::kw_urem: |
| return error(ID.Loc, "urem constexprs are no longer supported"); |
| case lltok::kw_srem: |
| return error(ID.Loc, "srem constexprs are no longer supported"); |
| case lltok::kw_fadd: |
| return error(ID.Loc, "fadd constexprs are no longer supported"); |
| case lltok::kw_fsub: |
| return error(ID.Loc, "fsub constexprs are no longer supported"); |
| case lltok::kw_fmul: |
| return error(ID.Loc, "fmul constexprs are no longer supported"); |
| case lltok::kw_fdiv: |
| return error(ID.Loc, "fdiv constexprs are no longer supported"); |
| case lltok::kw_frem: |
| return error(ID.Loc, "frem constexprs are no longer supported"); |
| case lltok::kw_and: |
| return error(ID.Loc, "and constexprs are no longer supported"); |
| case lltok::kw_or: |
| return error(ID.Loc, "or constexprs are no longer supported"); |
| case lltok::kw_lshr: |
| return error(ID.Loc, "lshr constexprs are no longer supported"); |
| case lltok::kw_ashr: |
| return error(ID.Loc, "ashr constexprs are no longer supported"); |
| case lltok::kw_shl: |
| return error(ID.Loc, "shl constexprs are no longer supported"); |
| case lltok::kw_mul: |
| return error(ID.Loc, "mul constexprs are no longer supported"); |
| case lltok::kw_fneg: |
| return error(ID.Loc, "fneg constexprs are no longer supported"); |
| case lltok::kw_select: |
| return error(ID.Loc, "select constexprs are no longer supported"); |
| case lltok::kw_zext: |
| return error(ID.Loc, "zext constexprs are no longer supported"); |
| case lltok::kw_sext: |
| return error(ID.Loc, "sext constexprs are no longer supported"); |
| case lltok::kw_fptrunc: |
| return error(ID.Loc, "fptrunc constexprs are no longer supported"); |
| case lltok::kw_fpext: |
| return error(ID.Loc, "fpext constexprs are no longer supported"); |
| case lltok::kw_uitofp: |
| return error(ID.Loc, "uitofp constexprs are no longer supported"); |
| case lltok::kw_sitofp: |
| return error(ID.Loc, "sitofp constexprs are no longer supported"); |
| case lltok::kw_fptoui: |
| return error(ID.Loc, "fptoui constexprs are no longer supported"); |
| case lltok::kw_fptosi: |
| return error(ID.Loc, "fptosi constexprs are no longer supported"); |
| case lltok::kw_icmp: |
| return error(ID.Loc, "icmp constexprs are no longer supported"); |
| case lltok::kw_fcmp: |
| return error(ID.Loc, "fcmp constexprs are no longer supported"); |
| |
| // Binary Operators. |
| case lltok::kw_add: |
| case lltok::kw_sub: |
| case lltok::kw_xor: { |
| bool NUW = false; |
| bool NSW = false; |
| unsigned Opc = Lex.getUIntVal(); |
| Constant *Val0, *Val1; |
| Lex.Lex(); |
| if (Opc == Instruction::Add || Opc == Instruction::Sub || |
| Opc == Instruction::Mul) { |
| if (EatIfPresent(lltok::kw_nuw)) |
| NUW = true; |
| if (EatIfPresent(lltok::kw_nsw)) { |
| NSW = true; |
| if (EatIfPresent(lltok::kw_nuw)) |
| NUW = true; |
| } |
| } |
| if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || |
| parseGlobalTypeAndValue(Val0) || |
| parseToken(lltok::comma, "expected comma in binary constantexpr") || |
| parseGlobalTypeAndValue(Val1) || |
| parseToken(lltok::rparen, "expected ')' in binary constantexpr")) |
| return true; |
| if (Val0->getType() != Val1->getType()) |
| return error(ID.Loc, "operands of constexpr must have same type"); |
| // Check that the type is valid for the operator. |
| if (!Val0->getType()->isIntOrIntVectorTy()) |
| return error(ID.Loc, |
| "constexpr requires integer or integer vector operands"); |
| unsigned Flags = 0; |
| if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; |
| if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; |
| ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1, Flags); |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| |
| case lltok::kw_splat: { |
| Lex.Lex(); |
| if (parseToken(lltok::lparen, "expected '(' after vector splat")) |
| return true; |
| Constant *C; |
| if (parseGlobalTypeAndValue(C)) |
| return true; |
| if (parseToken(lltok::rparen, "expected ')' at end of vector splat")) |
| return true; |
| |
| ID.ConstantVal = C; |
| ID.Kind = ValID::t_ConstantSplat; |
| return false; |
| } |
| |
| case lltok::kw_getelementptr: |
| case lltok::kw_shufflevector: |
| case lltok::kw_insertelement: |
| case lltok::kw_extractelement: { |
| unsigned Opc = Lex.getUIntVal(); |
| SmallVector<Constant*, 16> Elts; |
| GEPNoWrapFlags NW; |
| bool HasInRange = false; |
| APSInt InRangeStart; |
| APSInt InRangeEnd; |
| Type *Ty; |
| Lex.Lex(); |
| |
| if (Opc == Instruction::GetElementPtr) { |
| while (true) { |
| if (EatIfPresent(lltok::kw_inbounds)) |
| NW |= GEPNoWrapFlags::inBounds(); |
| else if (EatIfPresent(lltok::kw_nusw)) |
| NW |= GEPNoWrapFlags::noUnsignedSignedWrap(); |
| else if (EatIfPresent(lltok::kw_nuw)) |
| NW |= GEPNoWrapFlags::noUnsignedWrap(); |
| else |
| break; |
| } |
| |
| if (EatIfPresent(lltok::kw_inrange)) { |
| if (parseToken(lltok::lparen, "expected '('")) |
| return true; |
| if (Lex.getKind() != lltok::APSInt) |
| return tokError("expected integer"); |
| InRangeStart = Lex.getAPSIntVal(); |
| Lex.Lex(); |
| if (parseToken(lltok::comma, "expected ','")) |
| return true; |
| if (Lex.getKind() != lltok::APSInt) |
| return tokError("expected integer"); |
| InRangeEnd = Lex.getAPSIntVal(); |
| Lex.Lex(); |
| if (parseToken(lltok::rparen, "expected ')'")) |
| return true; |
| HasInRange = true; |
| } |
| } |
| |
| if (parseToken(lltok::lparen, "expected '(' in constantexpr")) |
| return true; |
| |
| if (Opc == Instruction::GetElementPtr) { |
| if (parseType(Ty) || |
| parseToken(lltok::comma, "expected comma after getelementptr's type")) |
| return true; |
| } |
| |
| if (parseGlobalValueVector(Elts) || |
| parseToken(lltok::rparen, "expected ')' in constantexpr")) |
| return true; |
| |
| if (Opc == Instruction::GetElementPtr) { |
| if (Elts.size() == 0 || |
| !Elts[0]->getType()->isPtrOrPtrVectorTy()) |
| return error(ID.Loc, "base of getelementptr must be a pointer"); |
| |
| Type *BaseType = Elts[0]->getType(); |
| std::optional<ConstantRange> InRange; |
| if (HasInRange) { |
| unsigned IndexWidth = |
| M->getDataLayout().getIndexTypeSizeInBits(BaseType); |
| InRangeStart = InRangeStart.extOrTrunc(IndexWidth); |
| InRangeEnd = InRangeEnd.extOrTrunc(IndexWidth); |
| if (InRangeStart.sge(InRangeEnd)) |
| return error(ID.Loc, "expected end to be larger than start"); |
| InRange = ConstantRange::getNonEmpty(InRangeStart, InRangeEnd); |
| } |
| |
| unsigned GEPWidth = |
| BaseType->isVectorTy() |
| ? cast<FixedVectorType>(BaseType)->getNumElements() |
| : 0; |
| |
| ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); |
| for (Constant *Val : Indices) { |
| Type *ValTy = Val->getType(); |
| if (!ValTy->isIntOrIntVectorTy()) |
| return error(ID.Loc, "getelementptr index must be an integer"); |
| if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { |
| unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); |
| if (GEPWidth && (ValNumEl != GEPWidth)) |
| return error( |
| ID.Loc, |
| "getelementptr vector index has a wrong number of elements"); |
| // GEPWidth may have been unknown because the base is a scalar, |
| // but it is known now. |
| GEPWidth = ValNumEl; |
| } |
| } |
| |
| SmallPtrSet<Type*, 4> Visited; |
| if (!Indices.empty() && !Ty->isSized(&Visited)) |
| return error(ID.Loc, "base element of getelementptr must be sized"); |
| |
| if (!GetElementPtrInst::getIndexedType(Ty, Indices)) |
| return error(ID.Loc, "invalid getelementptr indices"); |
| |
| ID.ConstantVal = |
| ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, NW, InRange); |
| } else if (Opc == Instruction::ShuffleVector) { |
| if (Elts.size() != 3) |
| return error(ID.Loc, "expected three operands to shufflevector"); |
| if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) |
| return error(ID.Loc, "invalid operands to shufflevector"); |
| SmallVector<int, 16> Mask; |
| ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); |
| ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); |
| } else if (Opc == Instruction::ExtractElement) { |
| if (Elts.size() != 2) |
| return error(ID.Loc, "expected two operands to extractelement"); |
| if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) |
| return error(ID.Loc, "invalid extractelement operands"); |
| ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); |
| } else { |
| assert(Opc == Instruction::InsertElement && "Unknown opcode"); |
| if (Elts.size() != 3) |
| return error(ID.Loc, "expected three operands to insertelement"); |
| if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) |
| return error(ID.Loc, "invalid insertelement operands"); |
| ID.ConstantVal = |
| ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); |
| } |
| |
| ID.Kind = ValID::t_Constant; |
| return false; |
| } |
| } |
| |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// parseGlobalValue - parse a global value with the specified type. |
| bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { |
| C = nullptr; |
| ValID ID; |
| Value *V = nullptr; |
| bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) || |
| convertValIDToValue(Ty, ID, V, nullptr); |
| if (V && !(C = dyn_cast<Constant>(V))) |
| return error(ID.Loc, "global values must be constants"); |
| return Parsed; |
| } |
| |
| bool LLParser::parseGlobalTypeAndValue(Constant *&V) { |
| Type *Ty = nullptr; |
| return parseType(Ty) || parseGlobalValue(Ty, V); |
| } |
| |
| bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { |
| C = nullptr; |
| |
| LocTy KwLoc = Lex.getLoc(); |
| if (!EatIfPresent(lltok::kw_comdat)) |
| return false; |
| |
| if (EatIfPresent(lltok::lparen)) { |
| if (Lex.getKind() != lltok::ComdatVar) |
| return tokError("expected comdat variable"); |
| C = getComdat(Lex.getStrVal(), Lex.getLoc()); |
| Lex.Lex(); |
| if (parseToken(lltok::rparen, "expected ')' after comdat var")) |
| return true; |
| } else { |
| if (GlobalName.empty()) |
| return tokError("comdat cannot be unnamed"); |
| C = getComdat(std::string(GlobalName), KwLoc); |
| } |
| |
| return false; |
| } |
| |
| /// parseGlobalValueVector |
| /// ::= /*empty*/ |
| /// ::= TypeAndValue (',' TypeAndValue)* |
| bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) { |
| // Empty list. |
| if (Lex.getKind() == lltok::rbrace || |
| Lex.getKind() == lltok::rsquare || |
| Lex.getKind() == lltok::greater || |
| Lex.getKind() == lltok::rparen) |
| return false; |
| |
| do { |
| // Let the caller deal with inrange. |
| if (Lex.getKind() == lltok::kw_inrange) |
| return false; |
| |
| Constant *C; |
| if (parseGlobalTypeAndValue(C)) |
| return true; |
| Elts.push_back(C); |
| } while (EatIfPresent(lltok::comma)); |
| |
| return false; |
| } |
| |
| bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { |
| SmallVector<Metadata *, 16> Elts; |
| if (parseMDNodeVector(Elts)) |
| return true; |
| |
| MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); |
| return false; |
| } |
| |
| /// MDNode: |
| /// ::= !{ ... } |
| /// ::= !7 |
| /// ::= !DILocation(...) |
| bool LLParser::parseMDNode(MDNode *&N) { |
| if (Lex.getKind() == lltok::MetadataVar) |
| return parseSpecializedMDNode(N); |
| |
| return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); |
| } |
| |
| bool LLParser::parseMDNodeTail(MDNode *&N) { |
| // !{ ... } |
| if (Lex.getKind() == lltok::lbrace) |
| return parseMDTuple(N); |
| |
| // !42 |
| return parseMDNodeID(N); |
| } |
| |
| namespace { |
| |
| /// Structure to represent an optional metadata field. |
| template <class FieldTy> struct MDFieldImpl { |
| typedef MDFieldImpl ImplTy; |
| FieldTy Val; |
| bool Seen; |
| |
| void assign(FieldTy Val) { |
| Seen = true; |
| this->Val = std::move(Val); |
| } |
| |
| explicit MDFieldImpl(FieldTy Default) |
| : Val(std::move(Default)), Seen(false) {} |
| }; |
| |
| /// Structure to represent an optional metadata field that |
| /// can be of either type (A or B) and encapsulates the |
| /// MD<typeofA>Field and MD<typeofB>Field structs, so not |
| /// to reimplement the specifics for representing each Field. |
| template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { |
| typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; |
| FieldTypeA A; |
| FieldTypeB B; |
| bool Seen; |
| |
| enum { |
| IsInvalid = 0, |
| IsTypeA = 1, |
| IsTypeB = 2 |
| } WhatIs; |
| |
| void assign(FieldTypeA A) { |
| Seen = true; |
| this->A = std::move(A); |
| WhatIs = IsTypeA; |
| } |
| |
| void assign(FieldTypeB B) { |
| Seen = true; |
| this->B = std::move(B); |
| WhatIs = IsTypeB; |
| } |
| |
| explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) |
| : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), |
| WhatIs(IsInvalid) {} |
| }; |
| |
| struct MDUnsignedField : public MDFieldImpl<uint64_t> { |
| uint64_t Max; |
| |
| MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) |
| : ImplTy(Default), Max(Max) {} |
| }; |
| |
| struct LineField : public MDUnsignedField { |
| LineField() : MDUnsignedField(0, UINT32_MAX) {} |
| }; |
| |
| struct ColumnField : public MDUnsignedField { |
| ColumnField() : MDUnsignedField(0, UINT16_MAX) {} |
| }; |
| |
| struct DwarfTagField : public MDUnsignedField { |
| DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} |
| DwarfTagField(dwarf::Tag DefaultTag) |
| : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} |
| }; |
| |
| struct DwarfMacinfoTypeField : public MDUnsignedField { |
| DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} |
| DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) |
| : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} |
| }; |
| |
| struct DwarfAttEncodingField : public MDUnsignedField { |
| DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} |
| }; |
| |
| struct DwarfVirtualityField : public MDUnsignedField { |
| DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} |
| }; |
| |
| struct DwarfLangField : public MDUnsignedField { |
| DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} |
| }; |
| |
| struct DwarfCCField : public MDUnsignedField { |
| DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} |
| }; |
| |
| struct DwarfEnumKindField : public MDUnsignedField { |
| DwarfEnumKindField() |
| : MDUnsignedField(dwarf::DW_APPLE_ENUM_KIND_invalid, |
| dwarf::DW_APPLE_ENUM_KIND_max) {} |
| }; |
| |
| struct EmissionKindField : public MDUnsignedField { |
| EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} |
| }; |
| |
| struct NameTableKindField : public MDUnsignedField { |
| NameTableKindField() |
| : MDUnsignedField( |
| 0, (unsigned) |
| DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} |
| }; |
| |
| struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { |
| DIFlagField() : MDFieldImpl(DINode::FlagZero) {} |
| }; |
| |
| struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { |
| DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} |
| }; |
| |
| struct MDAPSIntField : public MDFieldImpl<APSInt> { |
| MDAPSIntField() : ImplTy(APSInt()) {} |
| }; |
| |
| struct MDSignedField : public MDFieldImpl<int64_t> { |
| int64_t Min = INT64_MIN; |
| int64_t Max = INT64_MAX; |
| |
| MDSignedField(int64_t Default = 0) |
| : ImplTy(Default) {} |
| MDSignedField(int64_t Default, int64_t Min, int64_t Max) |
| : ImplTy(Default), Min(Min), Max(Max) {} |
| }; |
| |
| struct MDBoolField : public MDFieldImpl<bool> { |
| MDBoolField(bool Default = false) : ImplTy(Default) {} |
| }; |
| |
| struct MDField : public MDFieldImpl<Metadata *> { |
| bool AllowNull; |
| |
| MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} |
| }; |
| |
| struct MDStringField : public MDFieldImpl<MDString *> { |
| bool AllowEmpty; |
| MDStringField(bool AllowEmpty = true) |
| : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} |
| }; |
| |
| struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { |
| MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} |
| }; |
| |
| struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { |
| ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} |
| }; |
| |
| struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { |
| MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) |
| : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} |
| |
| MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, |
| bool AllowNull = true) |
| : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} |
| |
| bool isMDSignedField() const { return WhatIs == IsTypeA; } |
| bool isMDField() const { return WhatIs == IsTypeB; } |
| int64_t getMDSignedValue() const { |
| assert(isMDSignedField() && "Wrong field type"); |
| return A.Val; |
| } |
| Metadata *getMDFieldValue() const { |
| assert(isMDField() && "Wrong field type"); |
| return B.Val; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| namespace llvm { |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { |
| if (Lex.getKind() != lltok::APSInt) |
| return tokError("expected integer"); |
| |
| Result.assign(Lex.getAPSIntVal()); |
| Lex.Lex(); |
| return false; |
| } |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, |
| MDUnsignedField &Result) { |
| if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) |
| return tokError("expected unsigned integer"); |
| |
| auto &U = Lex.getAPSIntVal(); |
| if (U.ugt(Result.Max)) |
| return tokError("value for '" + Name + "' too large, limit is " + |
| Twine(Result.Max)); |
| Result.assign(U.getZExtValue()); |
| assert(Result.Val <= Result.Max && "Expected value in range"); |
| Lex.Lex(); |
| return false; |
| } |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { |
| return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); |
| } |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { |
| return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); |
| } |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { |
| if (Lex.getKind() == lltok::APSInt) |
| return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); |
| |
| if (Lex.getKind() != lltok::DwarfTag) |
| return tokError("expected DWARF tag"); |
| |
| unsigned Tag = dwarf::getTag(Lex.getStrVal()); |
| if (Tag == dwarf::DW_TAG_invalid) |
| return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); |
| assert(Tag <= Result.Max && "Expected valid DWARF tag"); |
| |
| Result.assign(Tag); |
| Lex.Lex(); |
| return false; |
| } |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, |
| DwarfMacinfoTypeField &Result) { |
| if (Lex.getKind() == lltok::APSInt) |
| return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); |
| |
| if (Lex.getKind() != lltok::DwarfMacinfo) |
| return tokError("expected DWARF macinfo type"); |
| |
| unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); |
| if (Macinfo == dwarf::DW_MACINFO_invalid) |
| return tokError("invalid DWARF macinfo type" + Twine(" '") + |
| Lex.getStrVal() + "'"); |
| assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); |
| |
| Result.assign(Macinfo); |
| Lex.Lex(); |
| return false; |
| } |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, |
| DwarfVirtualityField &Result) { |
| if (Lex.getKind() == lltok::APSInt) |
| return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); |
| |
| if (Lex.getKind() != lltok::DwarfVirtuality) |
| return tokError("expected DWARF virtuality code"); |
| |
| unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); |
| if (Virtuality == dwarf::DW_VIRTUALITY_invalid) |
| return tokError("invalid DWARF virtuality code" + Twine(" '") + |
| Lex.getStrVal() + "'"); |
| assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); |
| Result.assign(Virtuality); |
| Lex.Lex(); |
| return false; |
| } |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, |
| DwarfEnumKindField &Result) { |
| if (Lex.getKind() == lltok::APSInt) |
| return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); |
| |
| if (Lex.getKind() != lltok::DwarfEnumKind) |
| return tokError("expected DWARF enum kind code"); |
| |
| unsigned EnumKind = dwarf::getEnumKind(Lex.getStrVal()); |
| if (EnumKind == dwarf::DW_APPLE_ENUM_KIND_invalid) |
| return tokError("invalid DWARF enum kind code" + Twine(" '") + |
| Lex.getStrVal() + "'"); |
| assert(EnumKind <= Result.Max && "Expected valid DWARF enum kind code"); |
| Result.assign(EnumKind); |
| Lex.Lex(); |
| return false; |
| } |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { |
| if (Lex.getKind() == lltok::APSInt) |
| return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); |
| |
| if (Lex.getKind() != lltok::DwarfLang) |
| return tokError("expected DWARF language"); |
| |
| unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); |
| if (!Lang) |
| return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + |
| "'"); |
| assert(Lang <= Result.Max && "Expected valid DWARF language"); |
| Result.assign(Lang); |
| Lex.Lex(); |
| return false; |
| } |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { |
| if (Lex.getKind() == lltok::APSInt) |
| return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); |
| |
| if (Lex.getKind() != lltok::DwarfCC) |
| return tokError("expected DWARF calling convention"); |
| |
| unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); |
| if (!CC) |
| return tokError("invalid DWARF calling convention" + Twine(" '") + |
| Lex.getStrVal() + "'"); |
| assert(CC <= Result.Max && "Expected valid DWARF calling convention"); |
| Result.assign(CC); |
| Lex.Lex(); |
| return false; |
| } |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, |
| EmissionKindField &Result) { |
| if (Lex.getKind() == lltok::APSInt) |
| return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); |
| |
| if (Lex.getKind() != lltok::EmissionKind) |
| return tokError("expected emission kind"); |
| |
| auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); |
| if (!Kind) |
| return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + |
| "'"); |
| assert(*Kind <= Result.Max && "Expected valid emission kind"); |
| Result.assign(*Kind); |
| Lex.Lex(); |
| return false; |
| } |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, |
| NameTableKindField &Result) { |
| if (Lex.getKind() == lltok::APSInt) |
| return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); |
| |
| if (Lex.getKind() != lltok::NameTableKind) |
| return tokError("expected nameTable kind"); |
| |
| auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); |
| if (!Kind) |
| return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + |
| "'"); |
| assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); |
| Result.assign((unsigned)*Kind); |
| Lex.Lex(); |
| return false; |
| } |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, |
| DwarfAttEncodingField &Result) { |
| if (Lex.getKind() == lltok::APSInt) |
| return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); |
| |
| if (Lex.getKind() != lltok::DwarfAttEncoding) |
| return tokError("expected DWARF type attribute encoding"); |
| |
| unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); |
| if (!Encoding) |
| return tokError("invalid DWARF type attribute encoding" + Twine(" '") + |
| Lex.getStrVal() + "'"); |
| assert(Encoding <= Result.Max && "Expected valid DWARF language"); |
| Result.assign(Encoding); |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// DIFlagField |
| /// ::= uint32 |
| /// ::= DIFlagVector |
| /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { |
| |
| // parser for a single flag. |
| auto parseFlag = [&](DINode::DIFlags &Val) { |
| if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { |
| uint32_t TempVal = static_cast<uint32_t>(Val); |
| bool Res = parseUInt32(TempVal); |
| Val = static_cast<DINode::DIFlags>(TempVal); |
| return Res; |
| } |
| |
| if (Lex.getKind() != lltok::DIFlag) |
| return tokError("expected debug info flag"); |
| |
| Val = DINode::getFlag(Lex.getStrVal()); |
| if (!Val) |
| return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() + |
| "'"); |
| Lex.Lex(); |
| return false; |
| }; |
| |
| // parse the flags and combine them together. |
| DINode::DIFlags Combined = DINode::FlagZero; |
| do { |
| DINode::DIFlags Val; |
| if (parseFlag(Val)) |
| return true; |
| Combined |= Val; |
| } while (EatIfPresent(lltok::bar)); |
| |
| Result.assign(Combined); |
| return false; |
| } |
| |
| /// DISPFlagField |
| /// ::= uint32 |
| /// ::= DISPFlagVector |
| /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { |
| |
| // parser for a single flag. |
| auto parseFlag = [&](DISubprogram::DISPFlags &Val) { |
| if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { |
| uint32_t TempVal = static_cast<uint32_t>(Val); |
| bool Res = parseUInt32(TempVal); |
| Val = static_cast<DISubprogram::DISPFlags>(TempVal); |
| return Res; |
| } |
| |
| if (Lex.getKind() != lltok::DISPFlag) |
| return tokError("expected debug info flag"); |
| |
| Val = DISubprogram::getFlag(Lex.getStrVal()); |
| if (!Val) |
| return tokError(Twine("invalid subprogram debug info flag '") + |
| Lex.getStrVal() + "'"); |
| Lex.Lex(); |
| return false; |
| }; |
| |
| // parse the flags and combine them together. |
| DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; |
| do { |
| DISubprogram::DISPFlags Val; |
| if (parseFlag(Val)) |
| return true; |
| Combined |= Val; |
| } while (EatIfPresent(lltok::bar)); |
| |
| Result.assign(Combined); |
| return false; |
| } |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { |
| if (Lex.getKind() != lltok::APSInt) |
| return tokError("expected signed integer"); |
| |
| auto &S = Lex.getAPSIntVal(); |
| if (S < Result.Min) |
| return tokError("value for '" + Name + "' too small, limit is " + |
| Twine(Result.Min)); |
| if (S > Result.Max) |
| return tokError("value for '" + Name + "' too large, limit is " + |
| Twine(Result.Max)); |
| Result.assign(S.getExtValue()); |
| assert(Result.Val >= Result.Min && "Expected value in range"); |
| assert(Result.Val <= Result.Max && "Expected value in range"); |
| Lex.Lex(); |
| return false; |
| } |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { |
| switch (Lex.getKind()) { |
| default: |
| return tokError("expected 'true' or 'false'"); |
| case lltok::kw_true: |
| Result.assign(true); |
| break; |
| case lltok::kw_false: |
| Result.assign(false); |
| break; |
| } |
| Lex.Lex(); |
| return false; |
| } |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { |
| if (Lex.getKind() == lltok::kw_null) { |
| if (!Result.AllowNull) |
| return tokError("'" + Name + "' cannot be null"); |
| Lex.Lex(); |
| Result.assign(nullptr); |
| return false; |
| } |
| |
| Metadata *MD; |
| if (parseMetadata(MD, nullptr)) |
| return true; |
| |
| Result.assign(MD); |
| return false; |
| } |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, |
| MDSignedOrMDField &Result) { |
| // Try to parse a signed int. |
| if (Lex.getKind() == lltok::APSInt) { |
| MDSignedField Res = Result.A; |
| if (!parseMDField(Loc, Name, Res)) { |
| Result.assign(Res); |
| return false; |
| } |
| return true; |
| } |
| |
| // Otherwise, try to parse as an MDField. |
| MDField Res = Result.B; |
| if (!parseMDField(Loc, Name, Res)) { |
| Result.assign(Res); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { |
| LocTy ValueLoc = Lex.getLoc(); |
| std::string S; |
| if (parseStringConstant(S)) |
| return true; |
| |
| if (!Result.AllowEmpty && S.empty()) |
| return error(ValueLoc, "'" + Name + "' cannot be empty"); |
| |
| Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); |
| return false; |
| } |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { |
| SmallVector<Metadata *, 4> MDs; |
| if (parseMDNodeVector(MDs)) |
| return true; |
| |
| Result.assign(std::move(MDs)); |
| return false; |
| } |
| |
| template <> |
| bool LLParser::parseMDField(LocTy Loc, StringRef Name, |
| ChecksumKindField &Result) { |
| std::optional<DIFile::ChecksumKind> CSKind = |
| DIFile::getChecksumKind(Lex.getStrVal()); |
| |
| if (Lex.getKind() != lltok::ChecksumKind || !CSKind) |
| return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + |
| "'"); |
| |
| Result.assign(*CSKind); |
| Lex.Lex(); |
| return false; |
| } |
| |
| } // end namespace llvm |
| |
| template <class ParserTy> |
| bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { |
| do { |
| if (Lex.getKind() != lltok::LabelStr) |
| return tokError("expected field label here"); |
| |
| if (ParseField()) |
| return true; |
| } while (EatIfPresent(lltok::comma)); |
| |
| return false; |
| } |
| |
| template <class ParserTy> |
| bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { |
| assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::lparen, "expected '(' here")) |
| return true; |
| if (Lex.getKind() != lltok::rparen) |
| if (parseMDFieldsImplBody(ParseField)) |
| return true; |
| |
| ClosingLoc = Lex.getLoc(); |
| return parseToken(lltok::rparen, "expected ')' here"); |
| } |
| |
| template <class FieldTy> |
| bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { |
| if (Result.Seen) |
| return tokError("field '" + Name + "' cannot be specified more than once"); |
| |
| LocTy Loc = Lex.getLoc(); |
| Lex.Lex(); |
| return parseMDField(Loc, Name, Result); |
| } |
| |
| bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { |
| assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); |
| |
| #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ |
| if (Lex.getStrVal() == #CLASS) \ |
| return parse##CLASS(N, IsDistinct); |
| #include "llvm/IR/Metadata.def" |
| |
| return tokError("expected metadata type"); |
| } |
| |
| #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT |
| #define NOP_FIELD(NAME, TYPE, INIT) |
| #define REQUIRE_FIELD(NAME, TYPE, INIT) \ |
| if (!NAME.Seen) \ |
| return error(ClosingLoc, "missing required field '" #NAME "'"); |
| #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ |
| if (Lex.getStrVal() == #NAME) \ |
| return parseMDField(#NAME, NAME); |
| #define PARSE_MD_FIELDS() \ |
| VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ |
| do { \ |
| LocTy ClosingLoc; \ |
| if (parseMDFieldsImpl( \ |
| [&]() -> bool { \ |
| VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ |
| return tokError(Twine("invalid field '") + Lex.getStrVal() + \ |
| "'"); \ |
| }, \ |
| ClosingLoc)) \ |
| return true; \ |
| VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ |
| } while (false) |
| #define GET_OR_DISTINCT(CLASS, ARGS) \ |
| (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) |
| |
| /// parseDILocationFields: |
| /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, |
| /// isImplicitCode: true) |
| bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| OPTIONAL(line, LineField, ); \ |
| OPTIONAL(column, ColumnField, ); \ |
| REQUIRED(scope, MDField, (/* AllowNull */ false)); \ |
| OPTIONAL(inlinedAt, MDField, ); \ |
| OPTIONAL(isImplicitCode, MDBoolField, (false)); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = |
| GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, |
| inlinedAt.Val, isImplicitCode.Val)); |
| return false; |
| } |
| |
| /// parseDIAssignID: |
| /// ::= distinct !DIAssignID() |
| bool LLParser::parseDIAssignID(MDNode *&Result, bool IsDistinct) { |
| if (!IsDistinct) |
| return tokError("missing 'distinct', required for !DIAssignID()"); |
| |
| Lex.Lex(); |
| |
| // Now eat the parens. |
| if (parseToken(lltok::lparen, "expected '(' here")) |
| return true; |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| Result = DIAssignID::getDistinct(Context); |
| return false; |
| } |
| |
| /// parseGenericDINode: |
| /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) |
| bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| REQUIRED(tag, DwarfTagField, ); \ |
| OPTIONAL(header, MDStringField, ); \ |
| OPTIONAL(operands, MDFieldList, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = GET_OR_DISTINCT(GenericDINode, |
| (Context, tag.Val, header.Val, operands.Val)); |
| return false; |
| } |
| |
| /// parseDISubrangeType: |
| /// ::= !DISubrangeType(name: "whatever", file: !0, |
| /// line: 7, scope: !1, baseType: !2, size: 32, |
| /// align: 32, flags: 0, lowerBound: !3 |
| /// upperBound: !4, stride: !5, bias: !6) |
| bool LLParser::parseDISubrangeType(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| OPTIONAL(name, MDStringField, ); \ |
| OPTIONAL(file, MDField, ); \ |
| OPTIONAL(line, LineField, ); \ |
| OPTIONAL(scope, MDField, ); \ |
| OPTIONAL(baseType, MDField, ); \ |
| OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ |
| OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ |
| OPTIONAL(flags, DIFlagField, ); \ |
| OPTIONAL(lowerBound, MDSignedOrMDField, ); \ |
| OPTIONAL(upperBound, MDSignedOrMDField, ); \ |
| OPTIONAL(stride, MDSignedOrMDField, ); \ |
| OPTIONAL(bias, MDSignedOrMDField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { |
| if (Bound.isMDSignedField()) |
| return ConstantAsMetadata::get(ConstantInt::getSigned( |
| Type::getInt64Ty(Context), Bound.getMDSignedValue())); |
| if (Bound.isMDField()) |
| return Bound.getMDFieldValue(); |
| return nullptr; |
| }; |
| |
| Metadata *LowerBound = convToMetadata(lowerBound); |
| Metadata *UpperBound = convToMetadata(upperBound); |
| Metadata *Stride = convToMetadata(stride); |
| Metadata *Bias = convToMetadata(bias); |
| |
| Result = GET_OR_DISTINCT(DISubrangeType, |
| (Context, name.Val, file.Val, line.Val, scope.Val, |
| size.Val, align.Val, flags.Val, baseType.Val, |
| LowerBound, UpperBound, Stride, Bias)); |
| |
| return false; |
| } |
| |
| /// parseDISubrange: |
| /// ::= !DISubrange(count: 30, lowerBound: 2) |
| /// ::= !DISubrange(count: !node, lowerBound: 2) |
| /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) |
| bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ |
| OPTIONAL(lowerBound, MDSignedOrMDField, ); \ |
| OPTIONAL(upperBound, MDSignedOrMDField, ); \ |
| OPTIONAL(stride, MDSignedOrMDField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Metadata *Count = nullptr; |
| Metadata *LowerBound = nullptr; |
| Metadata *UpperBound = nullptr; |
| Metadata *Stride = nullptr; |
| |
| auto convToMetadata = [&](const MDSignedOrMDField &Bound) -> Metadata * { |
| if (Bound.isMDSignedField()) |
| return ConstantAsMetadata::get(ConstantInt::getSigned( |
| Type::getInt64Ty(Context), Bound.getMDSignedValue())); |
| if (Bound.isMDField()) |
| return Bound.getMDFieldValue(); |
| return nullptr; |
| }; |
| |
| Count = convToMetadata(count); |
| LowerBound = convToMetadata(lowerBound); |
| UpperBound = convToMetadata(upperBound); |
| Stride = convToMetadata(stride); |
| |
| Result = GET_OR_DISTINCT(DISubrange, |
| (Context, Count, LowerBound, UpperBound, Stride)); |
| |
| return false; |
| } |
| |
| /// parseDIGenericSubrange: |
| /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: |
| /// !node3) |
| bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| OPTIONAL(count, MDSignedOrMDField, ); \ |
| OPTIONAL(lowerBound, MDSignedOrMDField, ); \ |
| OPTIONAL(upperBound, MDSignedOrMDField, ); \ |
| OPTIONAL(stride, MDSignedOrMDField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| auto ConvToMetadata = [&](const MDSignedOrMDField &Bound) -> Metadata * { |
| if (Bound.isMDSignedField()) |
| return DIExpression::get( |
| Context, {dwarf::DW_OP_consts, |
| static_cast<uint64_t>(Bound.getMDSignedValue())}); |
| if (Bound.isMDField()) |
| return Bound.getMDFieldValue(); |
| return nullptr; |
| }; |
| |
| Metadata *Count = ConvToMetadata(count); |
| Metadata *LowerBound = ConvToMetadata(lowerBound); |
| Metadata *UpperBound = ConvToMetadata(upperBound); |
| Metadata *Stride = ConvToMetadata(stride); |
| |
| Result = GET_OR_DISTINCT(DIGenericSubrange, |
| (Context, Count, LowerBound, UpperBound, Stride)); |
| |
| return false; |
| } |
| |
| /// parseDIEnumerator: |
| /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") |
| bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| REQUIRED(name, MDStringField, ); \ |
| REQUIRED(value, MDAPSIntField, ); \ |
| OPTIONAL(isUnsigned, MDBoolField, (false)); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| if (isUnsigned.Val && value.Val.isNegative()) |
| return tokError("unsigned enumerator with negative value"); |
| |
| APSInt Value(value.Val); |
| // Add a leading zero so that unsigned values with the msb set are not |
| // mistaken for negative values when used for signed enumerators. |
| if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) |
| Value = Value.zext(Value.getBitWidth() + 1); |
| |
| Result = |
| GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); |
| |
| return false; |
| } |
| |
| /// parseDIBasicType: |
| /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, |
| /// encoding: DW_ATE_encoding, flags: 0) |
| bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ |
| OPTIONAL(name, MDStringField, ); \ |
| OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ |
| OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ |
| OPTIONAL(encoding, DwarfAttEncodingField, ); \ |
| OPTIONAL(num_extra_inhabitants, MDUnsignedField, (0, UINT32_MAX)); \ |
| OPTIONAL(flags, DIFlagField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, |
| align.Val, encoding.Val, |
| num_extra_inhabitants.Val, flags.Val)); |
| return false; |
| } |
| |
| /// parseDIStringType: |
| /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) |
| bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ |
| OPTIONAL(name, MDStringField, ); \ |
| OPTIONAL(stringLength, MDField, ); \ |
| OPTIONAL(stringLengthExpression, MDField, ); \ |
| OPTIONAL(stringLocationExpression, MDField, ); \ |
| OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ |
| OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ |
| OPTIONAL(encoding, DwarfAttEncodingField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = GET_OR_DISTINCT( |
| DIStringType, |
| (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val, |
| stringLocationExpression.Val, size.Val, align.Val, encoding.Val)); |
| return false; |
| } |
| |
| /// parseDIDerivedType: |
| /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, |
| /// line: 7, scope: !1, baseType: !2, size: 32, |
| /// align: 32, offset: 0, flags: 0, extraData: !3, |
| /// dwarfAddressSpace: 3, ptrAuthKey: 1, |
| /// ptrAuthIsAddressDiscriminated: true, |
| /// ptrAuthExtraDiscriminator: 0x1234, |
| /// ptrAuthIsaPointer: 1, ptrAuthAuthenticatesNullValues:1 |
| /// ) |
| bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| REQUIRED(tag, DwarfTagField, ); \ |
| OPTIONAL(name, MDStringField, ); \ |
| OPTIONAL(file, MDField, ); \ |
| OPTIONAL(line, LineField, ); \ |
| OPTIONAL(scope, MDField, ); \ |
| REQUIRED(baseType, MDField, ); \ |
| OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ |
| OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ |
| OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ |
| OPTIONAL(flags, DIFlagField, ); \ |
| OPTIONAL(extraData, MDField, ); \ |
| OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); \ |
| OPTIONAL(annotations, MDField, ); \ |
| OPTIONAL(ptrAuthKey, MDUnsignedField, (0, 7)); \ |
| OPTIONAL(ptrAuthIsAddressDiscriminated, MDBoolField, ); \ |
| OPTIONAL(ptrAuthExtraDiscriminator, MDUnsignedField, (0, 0xffff)); \ |
| OPTIONAL(ptrAuthIsaPointer, MDBoolField, ); \ |
| OPTIONAL(ptrAuthAuthenticatesNullValues, MDBoolField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| std::optional<unsigned> DWARFAddressSpace; |
| if (dwarfAddressSpace.Val != UINT32_MAX) |
| DWARFAddressSpace = dwarfAddressSpace.Val; |
| std::optional<DIDerivedType::PtrAuthData> PtrAuthData; |
| if (ptrAuthKey.Val) |
| PtrAuthData.emplace( |
| (unsigned)ptrAuthKey.Val, ptrAuthIsAddressDiscriminated.Val, |
| (unsigned)ptrAuthExtraDiscriminator.Val, ptrAuthIsaPointer.Val, |
| ptrAuthAuthenticatesNullValues.Val); |
| |
| Result = GET_OR_DISTINCT(DIDerivedType, |
| (Context, tag.Val, name.Val, file.Val, line.Val, |
| scope.Val, baseType.Val, size.Val, align.Val, |
| offset.Val, DWARFAddressSpace, PtrAuthData, |
| flags.Val, extraData.Val, annotations.Val)); |
| return false; |
| } |
| |
| bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| REQUIRED(tag, DwarfTagField, ); \ |
| OPTIONAL(name, MDStringField, ); \ |
| OPTIONAL(file, MDField, ); \ |
| OPTIONAL(line, LineField, ); \ |
| OPTIONAL(scope, MDField, ); \ |
| OPTIONAL(baseType, MDField, ); \ |
| OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ |
| OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ |
| OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ |
| OPTIONAL(flags, DIFlagField, ); \ |
| OPTIONAL(elements, MDField, ); \ |
| OPTIONAL(runtimeLang, DwarfLangField, ); \ |
| OPTIONAL(enumKind, DwarfEnumKindField, ); \ |
| OPTIONAL(vtableHolder, MDField, ); \ |
| OPTIONAL(templateParams, MDField, ); \ |
| OPTIONAL(identifier, MDStringField, ); \ |
| OPTIONAL(discriminator, MDField, ); \ |
| OPTIONAL(dataLocation, MDField, ); \ |
| OPTIONAL(associated, MDField, ); \ |
| OPTIONAL(allocated, MDField, ); \ |
| OPTIONAL(rank, MDSignedOrMDField, ); \ |
| OPTIONAL(annotations, MDField, ); \ |
| OPTIONAL(num_extra_inhabitants, MDUnsignedField, (0, UINT32_MAX)); \ |
| OPTIONAL(specification, MDField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Metadata *Rank = nullptr; |
| if (rank.isMDSignedField()) |
| Rank = ConstantAsMetadata::get(ConstantInt::getSigned( |
| Type::getInt64Ty(Context), rank.getMDSignedValue())); |
| else if (rank.isMDField()) |
| Rank = rank.getMDFieldValue(); |
| |
| std::optional<unsigned> EnumKind; |
| if (enumKind.Val != dwarf::DW_APPLE_ENUM_KIND_invalid) |
| EnumKind = enumKind.Val; |
| |
| // If this has an identifier try to build an ODR type. |
| if (identifier.Val) |
| if (auto *CT = DICompositeType::buildODRType( |
| Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, |
| scope.Val, baseType.Val, size.Val, align.Val, offset.Val, |
| specification.Val, num_extra_inhabitants.Val, flags.Val, |
| elements.Val, runtimeLang.Val, EnumKind, vtableHolder.Val, |
| templateParams.Val, discriminator.Val, dataLocation.Val, |
| associated.Val, allocated.Val, Rank, annotations.Val)) { |
| Result = CT; |
| return false; |
| } |
| |
| // Create a new node, and save it in the context if it belongs in the type |
| // map. |
| Result = GET_OR_DISTINCT( |
| DICompositeType, |
| (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, |
| size.Val, align.Val, offset.Val, flags.Val, elements.Val, |
| runtimeLang.Val, EnumKind, vtableHolder.Val, templateParams.Val, |
| identifier.Val, discriminator.Val, dataLocation.Val, associated.Val, |
| allocated.Val, Rank, annotations.Val, specification.Val, |
| num_extra_inhabitants.Val)); |
| return false; |
| } |
| |
| bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| OPTIONAL(flags, DIFlagField, ); \ |
| OPTIONAL(cc, DwarfCCField, ); \ |
| REQUIRED(types, MDField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = GET_OR_DISTINCT(DISubroutineType, |
| (Context, flags.Val, cc.Val, types.Val)); |
| return false; |
| } |
| |
| /// parseDIFileType: |
| /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", |
| /// checksumkind: CSK_MD5, |
| /// checksum: "000102030405060708090a0b0c0d0e0f", |
| /// source: "source file contents") |
| bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { |
| // The default constructed value for checksumkind is required, but will never |
| // be used, as the parser checks if the field was actually Seen before using |
| // the Val. |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| REQUIRED(filename, MDStringField, ); \ |
| REQUIRED(directory, MDStringField, ); \ |
| OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ |
| OPTIONAL(checksum, MDStringField, ); \ |
| OPTIONAL(source, MDStringField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| std::optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; |
| if (checksumkind.Seen && checksum.Seen) |
| OptChecksum.emplace(checksumkind.Val, checksum.Val); |
| else if (checksumkind.Seen || checksum.Seen) |
| return tokError("'checksumkind' and 'checksum' must be provided together"); |
| |
| MDString *Source = nullptr; |
| if (source.Seen) |
| Source = source.Val; |
| Result = GET_OR_DISTINCT( |
| DIFile, (Context, filename.Val, directory.Val, OptChecksum, Source)); |
| return false; |
| } |
| |
| /// parseDICompileUnit: |
| /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", |
| /// isOptimized: true, flags: "-O2", runtimeVersion: 1, |
| /// splitDebugFilename: "abc.debug", |
| /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, |
| /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, |
| /// sysroot: "/", sdk: "MacOSX.sdk") |
| bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { |
| if (!IsDistinct) |
| return tokError("missing 'distinct', required for !DICompileUnit"); |
| |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| REQUIRED(language, DwarfLangField, ); \ |
| REQUIRED(file, MDField, (/* AllowNull */ false)); \ |
| OPTIONAL(producer, MDStringField, ); \ |
| OPTIONAL(isOptimized, MDBoolField, ); \ |
| OPTIONAL(flags, MDStringField, ); \ |
| OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ |
| OPTIONAL(splitDebugFilename, MDStringField, ); \ |
| OPTIONAL(emissionKind, EmissionKindField, ); \ |
| OPTIONAL(enums, MDField, ); \ |
| OPTIONAL(retainedTypes, MDField, ); \ |
| OPTIONAL(globals, MDField, ); \ |
| OPTIONAL(imports, MDField, ); \ |
| OPTIONAL(macros, MDField, ); \ |
| OPTIONAL(dwoId, MDUnsignedField, ); \ |
| OPTIONAL(splitDebugInlining, MDBoolField, = true); \ |
| OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ |
| OPTIONAL(nameTableKind, NameTableKindField, ); \ |
| OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ |
| OPTIONAL(sysroot, MDStringField, ); \ |
| OPTIONAL(sdk, MDStringField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = DICompileUnit::getDistinct( |
| Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, |
| runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, |
| retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, |
| splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, |
| rangesBaseAddress.Val, sysroot.Val, sdk.Val); |
| return false; |
| } |
| |
| /// parseDISubprogram: |
| /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", |
| /// file: !1, line: 7, type: !2, isLocal: false, |
| /// isDefinition: true, scopeLine: 8, containingType: !3, |
| /// virtuality: DW_VIRTUALTIY_pure_virtual, |
| /// virtualIndex: 10, thisAdjustment: 4, flags: 11, |
| /// spFlags: 10, isOptimized: false, templateParams: !4, |
| /// declaration: !5, retainedNodes: !6, thrownTypes: !7, |
| /// annotations: !8) |
| bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { |
| auto Loc = Lex.getLoc(); |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| OPTIONAL(scope, MDField, ); \ |
| OPTIONAL(name, MDStringField, ); \ |
| OPTIONAL(linkageName, MDStringField, ); \ |
| OPTIONAL(file, MDField, ); \ |
| OPTIONAL(line, LineField, ); \ |
| OPTIONAL(type, MDField, ); \ |
| OPTIONAL(isLocal, MDBoolField, ); \ |
| OPTIONAL(isDefinition, MDBoolField, (true)); \ |
| OPTIONAL(scopeLine, LineField, ); \ |
| OPTIONAL(containingType, MDField, ); \ |
| OPTIONAL(virtuality, DwarfVirtualityField, ); \ |
| OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ |
| OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ |
| OPTIONAL(flags, DIFlagField, ); \ |
| OPTIONAL(spFlags, DISPFlagField, ); \ |
| OPTIONAL(isOptimized, MDBoolField, ); \ |
| OPTIONAL(unit, MDField, ); \ |
| OPTIONAL(templateParams, MDField, ); \ |
| OPTIONAL(declaration, MDField, ); \ |
| OPTIONAL(retainedNodes, MDField, ); \ |
| OPTIONAL(thrownTypes, MDField, ); \ |
| OPTIONAL(annotations, MDField, ); \ |
| OPTIONAL(targetFuncName, MDStringField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| // An explicit spFlags field takes precedence over individual fields in |
| // older IR versions. |
| DISubprogram::DISPFlags SPFlags = |
| spFlags.Seen ? spFlags.Val |
| : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, |
| isOptimized.Val, virtuality.Val); |
| if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) |
| return error( |
| Loc, |
| "missing 'distinct', required for !DISubprogram that is a Definition"); |
| Result = GET_OR_DISTINCT( |
| DISubprogram, |
| (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, |
| type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, |
| thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, |
| declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val, |
| targetFuncName.Val)); |
| return false; |
| } |
| |
| /// parseDILexicalBlock: |
| /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) |
| bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| REQUIRED(scope, MDField, (/* AllowNull */ false)); \ |
| OPTIONAL(file, MDField, ); \ |
| OPTIONAL(line, LineField, ); \ |
| OPTIONAL(column, ColumnField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = GET_OR_DISTINCT( |
| DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); |
| return false; |
| } |
| |
| /// parseDILexicalBlockFile: |
| /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) |
| bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| REQUIRED(scope, MDField, (/* AllowNull */ false)); \ |
| OPTIONAL(file, MDField, ); \ |
| REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = GET_OR_DISTINCT(DILexicalBlockFile, |
| (Context, scope.Val, file.Val, discriminator.Val)); |
| return false; |
| } |
| |
| /// parseDICommonBlock: |
| /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) |
| bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| REQUIRED(scope, MDField, ); \ |
| OPTIONAL(declaration, MDField, ); \ |
| OPTIONAL(name, MDStringField, ); \ |
| OPTIONAL(file, MDField, ); \ |
| OPTIONAL(line, LineField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = GET_OR_DISTINCT(DICommonBlock, |
| (Context, scope.Val, declaration.Val, name.Val, |
| file.Val, line.Val)); |
| return false; |
| } |
| |
| /// parseDINamespace: |
| /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) |
| bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| REQUIRED(scope, MDField, ); \ |
| OPTIONAL(name, MDStringField, ); \ |
| OPTIONAL(exportSymbols, MDBoolField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = GET_OR_DISTINCT(DINamespace, |
| (Context, scope.Val, name.Val, exportSymbols.Val)); |
| return false; |
| } |
| |
| /// parseDIMacro: |
| /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: |
| /// "SomeValue") |
| bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| REQUIRED(type, DwarfMacinfoTypeField, ); \ |
| OPTIONAL(line, LineField, ); \ |
| REQUIRED(name, MDStringField, ); \ |
| OPTIONAL(value, MDStringField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = GET_OR_DISTINCT(DIMacro, |
| (Context, type.Val, line.Val, name.Val, value.Val)); |
| return false; |
| } |
| |
| /// parseDIMacroFile: |
| /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) |
| bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ |
| OPTIONAL(line, LineField, ); \ |
| REQUIRED(file, MDField, ); \ |
| OPTIONAL(nodes, MDField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = GET_OR_DISTINCT(DIMacroFile, |
| (Context, type.Val, line.Val, file.Val, nodes.Val)); |
| return false; |
| } |
| |
| /// parseDIModule: |
| /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: |
| /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", |
| /// file: !1, line: 4, isDecl: false) |
| bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| REQUIRED(scope, MDField, ); \ |
| REQUIRED(name, MDStringField, ); \ |
| OPTIONAL(configMacros, MDStringField, ); \ |
| OPTIONAL(includePath, MDStringField, ); \ |
| OPTIONAL(apinotes, MDStringField, ); \ |
| OPTIONAL(file, MDField, ); \ |
| OPTIONAL(line, LineField, ); \ |
| OPTIONAL(isDecl, MDBoolField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, |
| configMacros.Val, includePath.Val, |
| apinotes.Val, line.Val, isDecl.Val)); |
| return false; |
| } |
| |
| /// parseDITemplateTypeParameter: |
| /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) |
| bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| OPTIONAL(name, MDStringField, ); \ |
| REQUIRED(type, MDField, ); \ |
| OPTIONAL(defaulted, MDBoolField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = GET_OR_DISTINCT(DITemplateTypeParameter, |
| (Context, name.Val, type.Val, defaulted.Val)); |
| return false; |
| } |
| |
| /// parseDITemplateValueParameter: |
| /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, |
| /// name: "V", type: !1, defaulted: false, |
| /// value: i32 7) |
| bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ |
| OPTIONAL(name, MDStringField, ); \ |
| OPTIONAL(type, MDField, ); \ |
| OPTIONAL(defaulted, MDBoolField, ); \ |
| REQUIRED(value, MDField, ); |
| |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = GET_OR_DISTINCT( |
| DITemplateValueParameter, |
| (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); |
| return false; |
| } |
| |
| /// parseDIGlobalVariable: |
| /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", |
| /// file: !1, line: 7, type: !2, isLocal: false, |
| /// isDefinition: true, templateParams: !3, |
| /// declaration: !4, align: 8) |
| bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| OPTIONAL(name, MDStringField, (/* AllowEmpty */ false)); \ |
| OPTIONAL(scope, MDField, ); \ |
| OPTIONAL(linkageName, MDStringField, ); \ |
| OPTIONAL(file, MDField, ); \ |
| OPTIONAL(line, LineField, ); \ |
| OPTIONAL(type, MDField, ); \ |
| OPTIONAL(isLocal, MDBoolField, ); \ |
| OPTIONAL(isDefinition, MDBoolField, (true)); \ |
| OPTIONAL(templateParams, MDField, ); \ |
| OPTIONAL(declaration, MDField, ); \ |
| OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ |
| OPTIONAL(annotations, MDField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = |
| GET_OR_DISTINCT(DIGlobalVariable, |
| (Context, scope.Val, name.Val, linkageName.Val, file.Val, |
| line.Val, type.Val, isLocal.Val, isDefinition.Val, |
| declaration.Val, templateParams.Val, align.Val, |
| annotations.Val)); |
| return false; |
| } |
| |
| /// parseDILocalVariable: |
| /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", |
| /// file: !1, line: 7, type: !2, arg: 2, flags: 7, |
| /// align: 8) |
| /// ::= !DILocalVariable(scope: !0, name: "foo", |
| /// file: !1, line: 7, type: !2, arg: 2, flags: 7, |
| /// align: 8) |
| bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| REQUIRED(scope, MDField, (/* AllowNull */ false)); \ |
| OPTIONAL(name, MDStringField, ); \ |
| OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ |
| OPTIONAL(file, MDField, ); \ |
| OPTIONAL(line, LineField, ); \ |
| OPTIONAL(type, MDField, ); \ |
| OPTIONAL(flags, DIFlagField, ); \ |
| OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ |
| OPTIONAL(annotations, MDField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = GET_OR_DISTINCT(DILocalVariable, |
| (Context, scope.Val, name.Val, file.Val, line.Val, |
| type.Val, arg.Val, flags.Val, align.Val, |
| annotations.Val)); |
| return false; |
| } |
| |
| /// parseDILabel: |
| /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) |
| bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| REQUIRED(scope, MDField, (/* AllowNull */ false)); \ |
| REQUIRED(name, MDStringField, ); \ |
| REQUIRED(file, MDField, ); \ |
| REQUIRED(line, LineField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = GET_OR_DISTINCT(DILabel, |
| (Context, scope.Val, name.Val, file.Val, line.Val)); |
| return false; |
| } |
| |
| /// parseDIExpressionBody: |
| /// ::= (0, 7, -1) |
| bool LLParser::parseDIExpressionBody(MDNode *&Result, bool IsDistinct) { |
| if (parseToken(lltok::lparen, "expected '(' here")) |
| return true; |
| |
| SmallVector<uint64_t, 8> Elements; |
| if (Lex.getKind() != lltok::rparen) |
| do { |
| if (Lex.getKind() == lltok::DwarfOp) { |
| if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { |
| Lex.Lex(); |
| Elements.push_back(Op); |
| continue; |
| } |
| return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); |
| } |
| |
| if (Lex.getKind() == lltok::DwarfAttEncoding) { |
| if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { |
| Lex.Lex(); |
| Elements.push_back(Op); |
| continue; |
| } |
| return tokError(Twine("invalid DWARF attribute encoding '") + |
| Lex.getStrVal() + "'"); |
| } |
| |
| if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) |
| return tokError("expected unsigned integer"); |
| |
| auto &U = Lex.getAPSIntVal(); |
| if (U.ugt(UINT64_MAX)) |
| return tokError("element too large, limit is " + Twine(UINT64_MAX)); |
| Elements.push_back(U.getZExtValue()); |
| Lex.Lex(); |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); |
| return false; |
| } |
| |
| /// parseDIExpression: |
| /// ::= !DIExpression(0, 7, -1) |
| bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { |
| assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); |
| assert(Lex.getStrVal() == "DIExpression" && "Expected '!DIExpression'"); |
| Lex.Lex(); |
| |
| return parseDIExpressionBody(Result, IsDistinct); |
| } |
| |
| /// ParseDIArgList: |
| /// ::= !DIArgList(i32 7, i64 %0) |
| bool LLParser::parseDIArgList(Metadata *&MD, PerFunctionState *PFS) { |
| assert(PFS && "Expected valid function state"); |
| assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::lparen, "expected '(' here")) |
| return true; |
| |
| SmallVector<ValueAsMetadata *, 4> Args; |
| if (Lex.getKind() != lltok::rparen) |
| do { |
| Metadata *MD; |
| if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) |
| return true; |
| Args.push_back(dyn_cast<ValueAsMetadata>(MD)); |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| MD = DIArgList::get(Context, Args); |
| return false; |
| } |
| |
| /// parseDIGlobalVariableExpression: |
| /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) |
| bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, |
| bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| REQUIRED(var, MDField, ); \ |
| REQUIRED(expr, MDField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = |
| GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); |
| return false; |
| } |
| |
| /// parseDIObjCProperty: |
| /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", |
| /// getter: "getFoo", attributes: 7, type: !2) |
| bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| OPTIONAL(name, MDStringField, ); \ |
| OPTIONAL(file, MDField, ); \ |
| OPTIONAL(line, LineField, ); \ |
| OPTIONAL(setter, MDStringField, ); \ |
| OPTIONAL(getter, MDStringField, ); \ |
| OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ |
| OPTIONAL(type, MDField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = GET_OR_DISTINCT(DIObjCProperty, |
| (Context, name.Val, file.Val, line.Val, setter.Val, |
| getter.Val, attributes.Val, type.Val)); |
| return false; |
| } |
| |
| /// parseDIImportedEntity: |
| /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, |
| /// line: 7, name: "foo", elements: !2) |
| bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { |
| #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ |
| REQUIRED(tag, DwarfTagField, ); \ |
| REQUIRED(scope, MDField, ); \ |
| OPTIONAL(entity, MDField, ); \ |
| OPTIONAL(file, MDField, ); \ |
| OPTIONAL(line, LineField, ); \ |
| OPTIONAL(name, MDStringField, ); \ |
| OPTIONAL(elements, MDField, ); |
| PARSE_MD_FIELDS(); |
| #undef VISIT_MD_FIELDS |
| |
| Result = GET_OR_DISTINCT(DIImportedEntity, |
| (Context, tag.Val, scope.Val, entity.Val, file.Val, |
| line.Val, name.Val, elements.Val)); |
| return false; |
| } |
| |
| #undef PARSE_MD_FIELD |
| #undef NOP_FIELD |
| #undef REQUIRE_FIELD |
| #undef DECLARE_FIELD |
| |
| /// parseMetadataAsValue |
| /// ::= metadata i32 %local |
| /// ::= metadata i32 @global |
| /// ::= metadata i32 7 |
| /// ::= metadata !0 |
| /// ::= metadata !{...} |
| /// ::= metadata !"string" |
| bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { |
| // Note: the type 'metadata' has already been parsed. |
| Metadata *MD; |
| if (parseMetadata(MD, &PFS)) |
| return true; |
| |
| V = MetadataAsValue::get(Context, MD); |
| return false; |
| } |
| |
| /// parseValueAsMetadata |
| /// ::= i32 %local |
| /// ::= i32 @global |
| /// ::= i32 7 |
| bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, |
| PerFunctionState *PFS) { |
| Type *Ty; |
| LocTy Loc; |
| if (parseType(Ty, TypeMsg, Loc)) |
| return true; |
| if (Ty->isMetadataTy()) |
| return error(Loc, "invalid metadata-value-metadata roundtrip"); |
| |
| Value *V; |
| if (parseValue(Ty, V, PFS)) |
| return true; |
| |
| MD = ValueAsMetadata::get(V); |
| return false; |
| } |
| |
| /// parseMetadata |
| /// ::= i32 %local |
| /// ::= i32 @global |
| /// ::= i32 7 |
| /// ::= !42 |
| /// ::= !{...} |
| /// ::= !"string" |
| /// ::= !DILocation(...) |
| bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { |
| if (Lex.getKind() == lltok::MetadataVar) { |
| // DIArgLists are a special case, as they are a list of ValueAsMetadata and |
| // so parsing this requires a Function State. |
| if (Lex.getStrVal() == "DIArgList") { |
| Metadata *AL; |
| if (parseDIArgList(AL, PFS)) |
| return true; |
| MD = AL; |
| return false; |
| } |
| MDNode *N; |
| if (parseSpecializedMDNode(N)) { |
| return true; |
| } |
| MD = N; |
| return false; |
| } |
| |
| // ValueAsMetadata: |
| // <type> <value> |
| if (Lex.getKind() != lltok::exclaim) |
| return parseValueAsMetadata(MD, "expected metadata operand", PFS); |
| |
| // '!'. |
| assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); |
| Lex.Lex(); |
| |
| // MDString: |
| // ::= '!' STRINGCONSTANT |
| if (Lex.getKind() == lltok::StringConstant) { |
| MDString *S; |
| if (parseMDString(S)) |
| return true; |
| MD = S; |
| return false; |
| } |
| |
| // MDNode: |
| // !{ ... } |
| // !7 |
| MDNode *N; |
| if (parseMDNodeTail(N)) |
| return true; |
| MD = N; |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Function Parsing. |
| //===----------------------------------------------------------------------===// |
| |
| bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, |
| PerFunctionState *PFS) { |
| if (Ty->isFunctionTy()) |
| return error(ID.Loc, "functions are not values, refer to them as pointers"); |
| |
| switch (ID.Kind) { |
| case ValID::t_LocalID: |
| if (!PFS) |
| return error(ID.Loc, "invalid use of function-local name"); |
| V = PFS->getVal(ID.UIntVal, Ty, ID.Loc); |
| return V == nullptr; |
| case ValID::t_LocalName: |
| if (!PFS) |
| return error(ID.Loc, "invalid use of function-local name"); |
| V = PFS->getVal(ID.StrVal, Ty, ID.Loc); |
| return V == nullptr; |
| case ValID::t_InlineAsm: { |
| if (!ID.FTy) |
| return error(ID.Loc, "invalid type for inline asm constraint string"); |
| if (Error Err = InlineAsm::verify(ID.FTy, ID.StrVal2)) |
| return error(ID.Loc, toString(std::move(Err))); |
| V = InlineAsm::get( |
| ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, |
| InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); |
| return false; |
| } |
| case ValID::t_GlobalName: |
| V = getGlobalVal(ID.StrVal, Ty, ID.Loc); |
| if (V && ID.NoCFI) |
| V = NoCFIValue::get(cast<GlobalValue>(V)); |
| return V == nullptr; |
| case ValID::t_GlobalID: |
| V = getGlobalVal(ID.UIntVal, Ty, ID.Loc); |
| if (V && ID.NoCFI) |
| V = NoCFIValue::get(cast<GlobalValue>(V)); |
| return V == nullptr; |
| case ValID::t_APSInt: |
| if (!Ty->isIntegerTy()) |
| return error(ID.Loc, "integer constant must have integer type"); |
| ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); |
| V = ConstantInt::get(Context, ID.APSIntVal); |
| return false; |
| case ValID::t_APFloat: |
| if (!Ty->isFloatingPointTy() || |
| !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) |
| return error(ID.Loc, "floating point constant invalid for type"); |
| |
| // The lexer has no type info, so builds all half, bfloat, float, and double |
| // FP constants as double. Fix this here. Long double does not need this. |
| if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { |
| // Check for signaling before potentially converting and losing that info. |
| bool IsSNAN = ID.APFloatVal.isSignaling(); |
| bool Ignored; |
| if (Ty->isHalfTy()) |
| ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, |
| &Ignored); |
| else if (Ty->isBFloatTy()) |
| ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, |
| &Ignored); |
| else if (Ty->isFloatTy()) |
| ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, |
| &Ignored); |
| if (IsSNAN) { |
| // The convert call above may quiet an SNaN, so manufacture another |
| // SNaN. The bitcast works because the payload (significand) parameter |
| // is truncated to fit. |
| APInt Payload = ID.APFloatVal.bitcastToAPInt(); |
| ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), |
| ID.APFloatVal.isNegative(), &Payload); |
| } |
| } |
| V = ConstantFP::get(Context, ID.APFloatVal); |
| |
| if (V->getType() != Ty) |
| return error(ID.Loc, "floating point constant does not have type '" + |
| getTypeString(Ty) + "'"); |
| |
| return false; |
| case ValID::t_Null: |
| if (!Ty->isPointerTy()) |
| return error(ID.Loc, "null must be a pointer type"); |
| V = ConstantPointerNull::get(cast<PointerType>(Ty)); |
| return false; |
| case ValID::t_Undef: |
| // FIXME: LabelTy should not be a first-class type. |
| if (!Ty->isFirstClassType() || Ty->isLabelTy()) |
| return error(ID.Loc, "invalid type for undef constant"); |
| V = UndefValue::get(Ty); |
| return false; |
| case ValID::t_EmptyArray: |
| if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) |
| return error(ID.Loc, "invalid empty array initializer"); |
| V = PoisonValue::get(Ty); |
| return false; |
| case ValID::t_Zero: |
| // FIXME: LabelTy should not be a first-class type. |
| if (!Ty->isFirstClassType() || Ty->isLabelTy()) |
| return error(ID.Loc, "invalid type for null constant"); |
| if (auto *TETy = dyn_cast<TargetExtType>(Ty)) |
| if (!TETy->hasProperty(TargetExtType::HasZeroInit)) |
| return error(ID.Loc, "invalid type for null constant"); |
| V = Constant::getNullValue(Ty); |
| return false; |
| case ValID::t_None: |
| if (!Ty->isTokenTy()) |
| return error(ID.Loc, "invalid type for none constant"); |
| V = Constant::getNullValue(Ty); |
| return false; |
| case ValID::t_Poison: |
| // FIXME: LabelTy should not be a first-class type. |
| if (!Ty->isFirstClassType() || Ty->isLabelTy()) |
| return error(ID.Loc, "invalid type for poison constant"); |
| V = PoisonValue::get(Ty); |
| return false; |
| case ValID::t_Constant: |
| if (ID.ConstantVal->getType() != Ty) |
| return error(ID.Loc, "constant expression type mismatch: got type '" + |
| getTypeString(ID.ConstantVal->getType()) + |
| "' but expected '" + getTypeString(Ty) + "'"); |
| V = ID.ConstantVal; |
| return false; |
| case ValID::t_ConstantSplat: |
| if (!Ty->isVectorTy()) |
| return error(ID.Loc, "vector constant must have vector type"); |
| if (ID.ConstantVal->getType() != Ty->getScalarType()) |
| return error(ID.Loc, "constant expression type mismatch: got type '" + |
| getTypeString(ID.ConstantVal->getType()) + |
| "' but expected '" + |
| getTypeString(Ty->getScalarType()) + "'"); |
| V = ConstantVector::getSplat(cast<VectorType>(Ty)->getElementCount(), |
| ID.ConstantVal); |
| return false; |
| case ValID::t_ConstantStruct: |
| case ValID::t_PackedConstantStruct: |
| if (StructType *ST = dyn_cast<StructType>(Ty)) { |
| if (ST->getNumElements() != ID.UIntVal) |
| return error(ID.Loc, |
| "initializer with struct type has wrong # elements"); |
| if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) |
| return error(ID.Loc, "packed'ness of initializer and type don't match"); |
| |
| // Verify that the elements are compatible with the structtype. |
| for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) |
| if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) |
| return error( |
| ID.Loc, |
| "element " + Twine(i) + |
| " of struct initializer doesn't match struct element type"); |
| |
| V = ConstantStruct::get( |
| ST, ArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); |
| } else |
| return error(ID.Loc, "constant expression type mismatch"); |
| return false; |
| } |
| llvm_unreachable("Invalid ValID"); |
| } |
| |
| bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { |
| C = nullptr; |
| ValID ID; |
| auto Loc = Lex.getLoc(); |
| if (parseValID(ID, /*PFS=*/nullptr)) |
| return true; |
| switch (ID.Kind) { |
| case ValID::t_APSInt: |
| case ValID::t_APFloat: |
| case ValID::t_Undef: |
| case ValID::t_Poison: |
| case ValID::t_Zero: |
| case ValID::t_Constant: |
| case ValID::t_ConstantSplat: |
| case ValID::t_ConstantStruct: |
| case ValID::t_PackedConstantStruct: { |
| Value *V; |
| if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) |
| return true; |
| assert(isa<Constant>(V) && "Expected a constant value"); |
| C = cast<Constant>(V); |
| return false; |
| } |
| case ValID::t_Null: |
| C = Constant::getNullValue(Ty); |
| return false; |
| default: |
| return error(Loc, "expected a constant value"); |
| } |
| } |
| |
| bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { |
| V = nullptr; |
| ValID ID; |
| return parseValID(ID, PFS, Ty) || |
| convertValIDToValue(Ty, ID, V, PFS); |
| } |
| |
| bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { |
| Type *Ty = nullptr; |
| return parseType(Ty) || parseValue(Ty, V, PFS); |
| } |
| |
| bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, |
| PerFunctionState &PFS) { |
| Value *V; |
| Loc = Lex.getLoc(); |
| if (parseTypeAndValue(V, PFS)) |
| return true; |
| if (!isa<BasicBlock>(V)) |
| return error(Loc, "expected a basic block"); |
| BB = cast<BasicBlock>(V); |
| return false; |
| } |
| |
| bool isOldDbgFormatIntrinsic(StringRef Name) { |
| // Exit early for the common (non-debug-intrinsic) case. |
| // We can make this the only check when we begin supporting all "llvm.dbg" |
| // intrinsics in the new debug info format. |
| if (!Name.starts_with("llvm.dbg.")) |
| return false; |
| Intrinsic::ID FnID = Intrinsic::lookupIntrinsicID(Name); |
| return FnID == Intrinsic::dbg_declare || FnID == Intrinsic::dbg_value || |
| FnID == Intrinsic::dbg_assign; |
| } |
| |
| /// FunctionHeader |
| /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility |
| /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName |
| /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign |
| /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn |
| bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine, |
| unsigned &FunctionNumber, |
| SmallVectorImpl<unsigned> &UnnamedArgNums) { |
| // parse the linkage. |
| LocTy LinkageLoc = Lex.getLoc(); |
| unsigned Linkage; |
| unsigned Visibility; |
| unsigned DLLStorageClass; |
| bool DSOLocal; |
| AttrBuilder RetAttrs(M->getContext()); |
| unsigned CC; |
| bool HasLinkage; |
| Type *RetType = nullptr; |
| LocTy RetTypeLoc = Lex.getLoc(); |
| if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, |
| DSOLocal) || |
| parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || |
| parseType(RetType, RetTypeLoc, true /*void allowed*/)) |
| return true; |
| |
| // Verify that the linkage is ok. |
| switch ((GlobalValue::LinkageTypes)Linkage) { |
| case GlobalValue::ExternalLinkage: |
| break; // always ok. |
| case GlobalValue::ExternalWeakLinkage: |
| if (IsDefine) |
| return error(LinkageLoc, "invalid linkage for function definition"); |
| break; |
| case GlobalValue::PrivateLinkage: |
| case GlobalValue::InternalLinkage: |
| case GlobalValue::AvailableExternallyLinkage: |
| case GlobalValue::LinkOnceAnyLinkage: |
| case GlobalValue::LinkOnceODRLinkage: |
| case GlobalValue::WeakAnyLinkage: |
| case GlobalValue::WeakODRLinkage: |
| if (!IsDefine) |
| return error(LinkageLoc, "invalid linkage for function declaration"); |
| break; |
| case GlobalValue::AppendingLinkage: |
| case GlobalValue::CommonLinkage: |
| return error(LinkageLoc, "invalid function linkage type"); |
| } |
| |
| if (!isValidVisibilityForLinkage(Visibility, Linkage)) |
| return error(LinkageLoc, |
| "symbol with local linkage must have default visibility"); |
| |
| if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage)) |
| return error(LinkageLoc, |
| "symbol with local linkage cannot have a DLL storage class"); |
| |
| if (!FunctionType::isValidReturnType(RetType)) |
| return error(RetTypeLoc, "invalid function return type"); |
| |
| LocTy NameLoc = Lex.getLoc(); |
| |
| std::string FunctionName; |
| if (Lex.getKind() == lltok::GlobalVar) { |
| FunctionName = Lex.getStrVal(); |
| } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. |
| FunctionNumber = Lex.getUIntVal(); |
| if (checkValueID(NameLoc, "function", "@", NumberedVals.getNext(), |
| FunctionNumber)) |
| return true; |
| } else { |
| return tokError("expected function name"); |
| } |
| |
| Lex.Lex(); |
| |
| if (Lex.getKind() != lltok::lparen) |
| return tokError("expected '(' in function argument list"); |
| |
| SmallVector<ArgInfo, 8> ArgList; |
| bool IsVarArg; |
| AttrBuilder FuncAttrs(M->getContext()); |
| std::vector<unsigned> FwdRefAttrGrps; |
| LocTy BuiltinLoc; |
| std::string Section; |
| std::string Partition; |
| MaybeAlign Alignment; |
| std::string GC; |
| GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; |
| unsigned AddrSpace = 0; |
| Constant *Prefix = nullptr; |
| Constant *Prologue = nullptr; |
| Constant *PersonalityFn = nullptr; |
| Comdat *C; |
| |
| if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg) || |
| parseOptionalUnnamedAddr(UnnamedAddr) || |
| parseOptionalProgramAddrSpace(AddrSpace) || |
| parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, |
| BuiltinLoc) || |
| (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || |
| (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || |
| parseOptionalComdat(FunctionName, C) || |
| parseOptionalAlignment(Alignment) || |
| (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || |
| (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || |
| (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || |
| (EatIfPresent(lltok::kw_personality) && |
| parseGlobalTypeAndValue(PersonalityFn))) |
| return true; |
| |
| if (FuncAttrs.contains(Attribute::Builtin)) |
| return error(BuiltinLoc, "'builtin' attribute not valid on function"); |
| |
| // If the alignment was parsed as an attribute, move to the alignment field. |
| if (MaybeAlign A = FuncAttrs.getAlignment()) { |
| Alignment = A; |
| FuncAttrs.removeAttribute(Attribute::Alignment); |
| } |
| |
| // Okay, if we got here, the function is syntactically valid. Convert types |
| // and do semantic checks. |
| std::vector<Type*> ParamTypeList; |
| SmallVector<AttributeSet, 8> Attrs; |
| |
| for (const ArgInfo &Arg : ArgList) { |
| ParamTypeList.push_back(Arg.Ty); |
| Attrs.push_back(Arg.Attrs); |
| } |
| |
| AttributeList PAL = |
| AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), |
| AttributeSet::get(Context, RetAttrs), Attrs); |
| |
| if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy()) |
| return error(RetTypeLoc, "functions with 'sret' argument must return void"); |
| |
| FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); |
| PointerType *PFT = PointerType::get(Context, AddrSpace); |
| |
| Fn = nullptr; |
| GlobalValue *FwdFn = nullptr; |
| if (!FunctionName.empty()) { |
| // If this was a definition of a forward reference, remove the definition |
| // from the forward reference table and fill in the forward ref. |
| auto FRVI = ForwardRefVals.find(FunctionName); |
| if (FRVI != ForwardRefVals.end()) { |
| FwdFn = FRVI->second.first; |
| if (FwdFn->getType() != PFT) |
| return error(FRVI->second.second, |
| "invalid forward reference to " |
| "function '" + |
| FunctionName + |
| "' with wrong type: " |
| "expected '" + |
| getTypeString(PFT) + "' but was '" + |
| getTypeString(FwdFn->getType()) + "'"); |
| ForwardRefVals.erase(FRVI); |
| } else if ((Fn = M->getFunction(FunctionName))) { |
| // Reject redefinitions. |
| return error(NameLoc, |
| "invalid redefinition of function '" + FunctionName + "'"); |
| } else if (M->getNamedValue(FunctionName)) { |
| return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); |
| } |
| |
| } else { |
| // Handle @"", where a name is syntactically specified, but semantically |
| // missing. |
| if (FunctionNumber == (unsigned)-1) |
| FunctionNumber = NumberedVals.getNext(); |
| |
| // If this is a definition of a forward referenced function, make sure the |
| // types agree. |
| auto I = ForwardRefValIDs.find(FunctionNumber); |
| if (I != ForwardRefValIDs.end()) { |
| FwdFn = I->second.first; |
| if (FwdFn->getType() != PFT) |
| return error(NameLoc, "type of definition and forward reference of '@" + |
| Twine(FunctionNumber) + |
| "' disagree: " |
| "expected '" + |
| getTypeString(PFT) + "' but was '" + |
| getTypeString(FwdFn->getType()) + "'"); |
| ForwardRefValIDs.erase(I); |
| } |
| } |
| |
| Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, |
| FunctionName, M); |
| |
| assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); |
| |
| if (FunctionName.empty()) |
| NumberedVals.add(FunctionNumber, Fn); |
| |
| Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); |
| maybeSetDSOLocal(DSOLocal, *Fn); |
| Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); |
| Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); |
| Fn->setCallingConv(CC); |
| Fn->setAttributes(PAL); |
| Fn->setUnnamedAddr(UnnamedAddr); |
| if (Alignment) |
| Fn->setAlignment(*Alignment); |
| Fn->setSection(Section); |
| Fn->setPartition(Partition); |
| Fn->setComdat(C); |
| Fn->setPersonalityFn(PersonalityFn); |
| if (!GC.empty()) Fn->setGC(GC); |
| Fn->setPrefixData(Prefix); |
| Fn->setPrologueData(Prologue); |
| ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; |
| |
| // Add all of the arguments we parsed to the function. |
| Function::arg_iterator ArgIt = Fn->arg_begin(); |
| for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { |
| // If the argument has a name, insert it into the argument symbol table. |
| if (ArgList[i].Name.empty()) continue; |
| |
| // Set the name, if it conflicted, it will be auto-renamed. |
| ArgIt->setName(ArgList[i].Name); |
| |
| if (ArgIt->getName() != ArgList[i].Name) |
| return error(ArgList[i].Loc, |
| "redefinition of argument '%" + ArgList[i].Name + "'"); |
| } |
| |
| if (FwdFn) { |
| FwdFn->replaceAllUsesWith(Fn); |
| FwdFn->eraseFromParent(); |
| } |
| |
| if (IsDefine) |
| return false; |
| |
| // Check the declaration has no block address forward references. |
| ValID ID; |
| if (FunctionName.empty()) { |
| ID.Kind = ValID::t_GlobalID; |
| ID.UIntVal = FunctionNumber; |
| } else { |
| ID.Kind = ValID::t_GlobalName; |
| ID.StrVal = FunctionName; |
| } |
| auto Blocks = ForwardRefBlockAddresses.find(ID); |
| if (Blocks != ForwardRefBlockAddresses.end()) |
| return error(Blocks->first.Loc, |
| "cannot take blockaddress inside a declaration"); |
| return false; |
| } |
| |
| bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { |
| ValID ID; |
| if (FunctionNumber == -1) { |
| ID.Kind = ValID::t_GlobalName; |
| ID.StrVal = std::string(F.getName()); |
| } else { |
| ID.Kind = ValID::t_GlobalID; |
| ID.UIntVal = FunctionNumber; |
| } |
| |
| auto Blocks = P.ForwardRefBlockAddresses.find(ID); |
| if (Blocks == P.ForwardRefBlockAddresses.end()) |
| return false; |
| |
| for (const auto &I : Blocks->second) { |
| const ValID &BBID = I.first; |
| GlobalValue *GV = I.second; |
| |
| assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && |
| "Expected local id or name"); |
| BasicBlock *BB; |
| if (BBID.Kind == ValID::t_LocalName) |
| BB = getBB(BBID.StrVal, BBID.Loc); |
| else |
| BB = getBB(BBID.UIntVal, BBID.Loc); |
| if (!BB) |
| return P.error(BBID.Loc, "referenced value is not a basic block"); |
| |
| Value *ResolvedVal = BlockAddress::get(&F, BB); |
| ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(), |
| ResolvedVal); |
| if (!ResolvedVal) |
| return true; |
| GV->replaceAllUsesWith(ResolvedVal); |
| GV->eraseFromParent(); |
| } |
| |
| P.ForwardRefBlockAddresses.erase(Blocks); |
| return false; |
| } |
| |
| /// parseFunctionBody |
| /// ::= '{' BasicBlock+ UseListOrderDirective* '}' |
| bool LLParser::parseFunctionBody(Function &Fn, unsigned FunctionNumber, |
| ArrayRef<unsigned> UnnamedArgNums) { |
| if (Lex.getKind() != lltok::lbrace) |
| return tokError("expected '{' in function body"); |
| Lex.Lex(); // eat the {. |
| |
| PerFunctionState PFS(*this, Fn, FunctionNumber, UnnamedArgNums); |
| |
| // Resolve block addresses and allow basic blocks to be forward-declared |
| // within this function. |
| if (PFS.resolveForwardRefBlockAddresses()) |
| return true; |
| SaveAndRestore ScopeExit(BlockAddressPFS, &PFS); |
| |
| // We need at least one basic block. |
| if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) |
| return tokError("function body requires at least one basic block"); |
| |
| while (Lex.getKind() != lltok::rbrace && |
| Lex.getKind() != lltok::kw_uselistorder) |
| if (parseBasicBlock(PFS)) |
| return true; |
| |
| while (Lex.getKind() != lltok::rbrace) |
| if (parseUseListOrder(&PFS)) |
| return true; |
| |
| // Eat the }. |
| Lex.Lex(); |
| |
| // Verify function is ok. |
| return PFS.finishFunction(); |
| } |
| |
| /// parseBasicBlock |
| /// ::= (LabelStr|LabelID)? Instruction* |
| bool LLParser::parseBasicBlock(PerFunctionState &PFS) { |
| // If this basic block starts out with a name, remember it. |
| std::string Name; |
| int NameID = -1; |
| LocTy NameLoc = Lex.getLoc(); |
| if (Lex.getKind() == lltok::LabelStr) { |
| Name = Lex.getStrVal(); |
| Lex.Lex(); |
| } else if (Lex.getKind() == lltok::LabelID) { |
| NameID = Lex.getUIntVal(); |
| Lex.Lex(); |
| } |
| |
| BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); |
| if (!BB) |
| return true; |
| |
| std::string NameStr; |
| |
| // Parse the instructions and debug values in this block until we get a |
| // terminator. |
| Instruction *Inst; |
| auto DeleteDbgRecord = [](DbgRecord *DR) { DR->deleteRecord(); }; |
| using DbgRecordPtr = std::unique_ptr<DbgRecord, decltype(DeleteDbgRecord)>; |
| SmallVector<DbgRecordPtr> TrailingDbgRecord; |
| do { |
| // Handle debug records first - there should always be an instruction |
| // following the debug records, i.e. they cannot appear after the block |
| // terminator. |
| while (Lex.getKind() == lltok::hash) { |
| if (SeenOldDbgInfoFormat) |
| return error(Lex.getLoc(), "debug record should not appear in a module " |
| "containing debug info intrinsics"); |
| if (!SeenNewDbgInfoFormat) |
| M->setNewDbgInfoFormatFlag(true); |
| SeenNewDbgInfoFormat = true; |
| Lex.Lex(); |
| |
| DbgRecord *DR; |
| if (parseDebugRecord(DR, PFS)) |
| return true; |
| TrailingDbgRecord.emplace_back(DR, DeleteDbgRecord); |
| } |
| |
| // This instruction may have three possibilities for a name: a) none |
| // specified, b) name specified "%foo =", c) number specified: "%4 =". |
| LocTy NameLoc = Lex.getLoc(); |
| int NameID = -1; |
| NameStr = ""; |
| |
| if (Lex.getKind() == lltok::LocalVarID) { |
| NameID = Lex.getUIntVal(); |
| Lex.Lex(); |
| if (parseToken(lltok::equal, "expected '=' after instruction id")) |
| return true; |
| } else if (Lex.getKind() == lltok::LocalVar) { |
| NameStr = Lex.getStrVal(); |
| Lex.Lex(); |
| if (parseToken(lltok::equal, "expected '=' after instruction name")) |
| return true; |
| } |
| |
| switch (parseInstruction(Inst, BB, PFS)) { |
| default: |
| llvm_unreachable("Unknown parseInstruction result!"); |
| case InstError: return true; |
| case InstNormal: |
| Inst->insertInto(BB, BB->end()); |
| |
| // With a normal result, we check to see if the instruction is followed by |
| // a comma and metadata. |
| if (EatIfPresent(lltok::comma)) |
| if (parseInstructionMetadata(*Inst)) |
| return true; |
| break; |
| case InstExtraComma: |
| Inst->insertInto(BB, BB->end()); |
| |
| // If the instruction parser ate an extra comma at the end of it, it |
| // *must* be followed by metadata. |
| if (parseInstructionMetadata(*Inst)) |
| return true; |
| break; |
| } |
| |
| // Set the name on the instruction. |
| if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) |
| return true; |
| |
| // Attach any preceding debug values to this instruction. |
| for (DbgRecordPtr &DR : TrailingDbgRecord) |
| BB->insertDbgRecordBefore(DR.release(), Inst->getIterator()); |
| TrailingDbgRecord.clear(); |
| } while (!Inst->isTerminator()); |
| |
| assert(TrailingDbgRecord.empty() && |
| "All debug values should have been attached to an instruction."); |
| |
| return false; |
| } |
| |
| /// parseDebugRecord |
| /// ::= #dbg_label '(' MDNode ')' |
| /// ::= #dbg_type '(' Metadata ',' MDNode ',' Metadata ',' |
| /// (MDNode ',' Metadata ',' Metadata ',')? MDNode ')' |
| bool LLParser::parseDebugRecord(DbgRecord *&DR, PerFunctionState &PFS) { |
| using RecordKind = DbgRecord::Kind; |
| using LocType = DbgVariableRecord::LocationType; |
| LocTy DVRLoc = Lex.getLoc(); |
| if (Lex.getKind() != lltok::DbgRecordType) |
| return error(DVRLoc, "expected debug record type here"); |
| RecordKind RecordType = StringSwitch<RecordKind>(Lex.getStrVal()) |
| .Case("declare", RecordKind::ValueKind) |
| .Case("value", RecordKind::ValueKind) |
| .Case("assign", RecordKind::ValueKind) |
| .Case("label", RecordKind::LabelKind); |
| |
| // Parsing labels is trivial; parse here and early exit, otherwise go into the |
| // full DbgVariableRecord processing stage. |
| if (RecordType == RecordKind::LabelKind) { |
| Lex.Lex(); |
| if (parseToken(lltok::lparen, "Expected '(' here")) |
| return true; |
| MDNode *Label; |
| if (parseMDNode(Label)) |
| return true; |
| if (parseToken(lltok::comma, "Expected ',' here")) |
| return true; |
| MDNode *DbgLoc; |
| if (parseMDNode(DbgLoc)) |
| return true; |
| if (parseToken(lltok::rparen, "Expected ')' here")) |
| return true; |
| DR = DbgLabelRecord::createUnresolvedDbgLabelRecord(Label, DbgLoc); |
| return false; |
| } |
| |
| LocType ValueType = StringSwitch<LocType>(Lex.getStrVal()) |
| .Case("declare", LocType::Declare) |
| .Case("value", LocType::Value) |
| .Case("assign", LocType::Assign); |
| |
| Lex.Lex(); |
| if (parseToken(lltok::lparen, "Expected '(' here")) |
| return true; |
| |
| // Parse Value field. |
| Metadata *ValLocMD; |
| if (parseMetadata(ValLocMD, &PFS)) |
| return true; |
| if (parseToken(lltok::comma, "Expected ',' here")) |
| return true; |
| |
| // Parse Variable field. |
| MDNode *Variable; |
| if (parseMDNode(Variable)) |
| return true; |
| if (parseToken(lltok::comma, "Expected ',' here")) |
| return true; |
| |
| // Parse Expression field. |
| MDNode *Expression; |
| if (parseMDNode(Expression)) |
| return true; |
| if (parseToken(lltok::comma, "Expected ',' here")) |
| return true; |
| |
| // Parse additional fields for #dbg_assign. |
| MDNode *AssignID = nullptr; |
| Metadata *AddressLocation = nullptr; |
| MDNode *AddressExpression = nullptr; |
| if (ValueType == LocType::Assign) { |
| // Parse DIAssignID. |
| if (parseMDNode(AssignID)) |
| return true; |
| if (parseToken(lltok::comma, "Expected ',' here")) |
| return true; |
| |
| // Parse address ValueAsMetadata. |
| if (parseMetadata(AddressLocation, &PFS)) |
| return true; |
| if (parseToken(lltok::comma, "Expected ',' here")) |
| return true; |
| |
| // Parse address DIExpression. |
| if (parseMDNode(AddressExpression)) |
| return true; |
| if (parseToken(lltok::comma, "Expected ',' here")) |
| return true; |
| } |
| |
| /// Parse DILocation. |
| MDNode *DebugLoc; |
| if (parseMDNode(DebugLoc)) |
| return true; |
| |
| if (parseToken(lltok::rparen, "Expected ')' here")) |
| return true; |
| DR = DbgVariableRecord::createUnresolvedDbgVariableRecord( |
| ValueType, ValLocMD, Variable, Expression, AssignID, AddressLocation, |
| AddressExpression, DebugLoc); |
| return false; |
| } |
| //===----------------------------------------------------------------------===// |
| // Instruction Parsing. |
| //===----------------------------------------------------------------------===// |
| |
| /// parseInstruction - parse one of the many different instructions. |
| /// |
| int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, |
| PerFunctionState &PFS) { |
| lltok::Kind Token = Lex.getKind(); |
| if (Token == lltok::Eof) |
| return tokError("found end of file when expecting more instructions"); |
| LocTy Loc = Lex.getLoc(); |
| unsigned KeywordVal = Lex.getUIntVal(); |
| Lex.Lex(); // Eat the keyword. |
| |
| switch (Token) { |
| default: |
| return error(Loc, "expected instruction opcode"); |
| // Terminator Instructions. |
| case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; |
| case lltok::kw_ret: |
| return parseRet(Inst, BB, PFS); |
| case lltok::kw_br: |
| return parseBr(Inst, PFS); |
| case lltok::kw_switch: |
| return parseSwitch(Inst, PFS); |
| case lltok::kw_indirectbr: |
| return parseIndirectBr(Inst, PFS); |
| case lltok::kw_invoke: |
| return parseInvoke(Inst, PFS); |
| case lltok::kw_resume: |
| return parseResume(Inst, PFS); |
| case lltok::kw_cleanupret: |
| return parseCleanupRet(Inst, PFS); |
| case lltok::kw_catchret: |
| return parseCatchRet(Inst, PFS); |
| case lltok::kw_catchswitch: |
| return parseCatchSwitch(Inst, PFS); |
| case lltok::kw_catchpad: |
| return parseCatchPad(Inst, PFS); |
| case lltok::kw_cleanuppad: |
| return parseCleanupPad(Inst, PFS); |
| case lltok::kw_callbr: |
| return parseCallBr(Inst, PFS); |
| // Unary Operators. |
| case lltok::kw_fneg: { |
| FastMathFlags FMF = EatFastMathFlagsIfPresent(); |
| int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); |
| if (Res != 0) |
| return Res; |
| if (FMF.any()) |
| Inst->setFastMathFlags(FMF); |
| return false; |
| } |
| // Binary Operators. |
| case lltok::kw_add: |
| case lltok::kw_sub: |
| case lltok::kw_mul: |
| case lltok::kw_shl: { |
| bool NUW = EatIfPresent(lltok::kw_nuw); |
| bool NSW = EatIfPresent(lltok::kw_nsw); |
| if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); |
| |
| if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) |
| return true; |
| |
| if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); |
| if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); |
| return false; |
| } |
| case lltok::kw_fadd: |
| case lltok::kw_fsub: |
| case lltok::kw_fmul: |
| case lltok::kw_fdiv: |
| case lltok::kw_frem: { |
| FastMathFlags FMF = EatFastMathFlagsIfPresent(); |
| int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); |
| if (Res != 0) |
| return Res; |
| if (FMF.any()) |
| Inst->setFastMathFlags(FMF); |
| return 0; |
| } |
| |
| case lltok::kw_sdiv: |
| case lltok::kw_udiv: |
| case lltok::kw_lshr: |
| case lltok::kw_ashr: { |
| bool Exact = EatIfPresent(lltok::kw_exact); |
| |
| if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) |
| return true; |
| if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); |
| return false; |
| } |
| |
| case lltok::kw_urem: |
| case lltok::kw_srem: |
| return parseArithmetic(Inst, PFS, KeywordVal, |
| /*IsFP*/ false); |
| case lltok::kw_or: { |
| bool Disjoint = EatIfPresent(lltok::kw_disjoint); |
| if (parseLogical(Inst, PFS, KeywordVal)) |
| return true; |
| if (Disjoint) |
| cast<PossiblyDisjointInst>(Inst)->setIsDisjoint(true); |
| return false; |
| } |
| case lltok::kw_and: |
| case lltok::kw_xor: |
| return parseLogical(Inst, PFS, KeywordVal); |
| case lltok::kw_icmp: { |
| bool SameSign = EatIfPresent(lltok::kw_samesign); |
| if (parseCompare(Inst, PFS, KeywordVal)) |
| return true; |
| if (SameSign) |
| cast<ICmpInst>(Inst)->setSameSign(); |
| return false; |
| } |
| case lltok::kw_fcmp: { |
| FastMathFlags FMF = EatFastMathFlagsIfPresent(); |
| int Res = parseCompare(Inst, PFS, KeywordVal); |
| if (Res != 0) |
| return Res; |
| if (FMF.any()) |
| Inst->setFastMathFlags(FMF); |
| return 0; |
| } |
| |
| // Casts. |
| case lltok::kw_uitofp: |
| case lltok::kw_zext: { |
| bool NonNeg = EatIfPresent(lltok::kw_nneg); |
| bool Res = parseCast(Inst, PFS, KeywordVal); |
| if (Res != 0) |
| return Res; |
| if (NonNeg) |
| Inst->setNonNeg(); |
| return 0; |
| } |
| case lltok::kw_trunc: { |
| bool NUW = EatIfPresent(lltok::kw_nuw); |
| bool NSW = EatIfPresent(lltok::kw_nsw); |
| if (!NUW) |
| NUW = EatIfPresent(lltok::kw_nuw); |
| if (parseCast(Inst, PFS, KeywordVal)) |
| return true; |
| if (NUW) |
| cast<TruncInst>(Inst)->setHasNoUnsignedWrap(true); |
| if (NSW) |
| cast<TruncInst>(Inst)->setHasNoSignedWrap(true); |
| return false; |
| } |
| case lltok::kw_sext: |
| case lltok::kw_bitcast: |
| case lltok::kw_addrspacecast: |
| case lltok::kw_sitofp: |
| case lltok::kw_fptoui: |
| case lltok::kw_fptosi: |
| case lltok::kw_inttoptr: |
| case lltok::kw_ptrtoint: |
| return parseCast(Inst, PFS, KeywordVal); |
| case lltok::kw_fptrunc: |
| case lltok::kw_fpext: { |
| FastMathFlags FMF = EatFastMathFlagsIfPresent(); |
| if (parseCast(Inst, PFS, KeywordVal)) |
| return true; |
| if (FMF.any()) |
| Inst->setFastMathFlags(FMF); |
| return false; |
| } |
| |
| // Other. |
| case lltok::kw_select: { |
| FastMathFlags FMF = EatFastMathFlagsIfPresent(); |
| int Res = parseSelect(Inst, PFS); |
| if (Res != 0) |
| return Res; |
| if (FMF.any()) { |
| if (!isa<FPMathOperator>(Inst)) |
| return error(Loc, "fast-math-flags specified for select without " |
| "floating-point scalar or vector return type"); |
| Inst->setFastMathFlags(FMF); |
| } |
| return 0; |
| } |
| case lltok::kw_va_arg: |
| return parseVAArg(Inst, PFS); |
| case lltok::kw_extractelement: |
| return parseExtractElement(Inst, PFS); |
| case lltok::kw_insertelement: |
| return parseInsertElement(Inst, PFS); |
| case lltok::kw_shufflevector: |
| return parseShuffleVector(Inst, PFS); |
| case lltok::kw_phi: { |
| FastMathFlags FMF = EatFastMathFlagsIfPresent(); |
| int Res = parsePHI(Inst, PFS); |
| if (Res != 0) |
| return Res; |
| if (FMF.any()) { |
| if (!isa<FPMathOperator>(Inst)) |
| return error(Loc, "fast-math-flags specified for phi without " |
| "floating-point scalar or vector return type"); |
| Inst->setFastMathFlags(FMF); |
| } |
| return 0; |
| } |
| case lltok::kw_landingpad: |
| return parseLandingPad(Inst, PFS); |
| case lltok::kw_freeze: |
| return parseFreeze(Inst, PFS); |
| // Call. |
| case lltok::kw_call: |
| return parseCall(Inst, PFS, CallInst::TCK_None); |
| case lltok::kw_tail: |
| return parseCall(Inst, PFS, CallInst::TCK_Tail); |
| case lltok::kw_musttail: |
| return parseCall(Inst, PFS, CallInst::TCK_MustTail); |
| case lltok::kw_notail: |
| return parseCall(Inst, PFS, CallInst::TCK_NoTail); |
| // Memory. |
| case lltok::kw_alloca: |
| return parseAlloc(Inst, PFS); |
| case lltok::kw_load: |
| return parseLoad(Inst, PFS); |
| case lltok::kw_store: |
| return parseStore(Inst, PFS); |
| case lltok::kw_cmpxchg: |
| return parseCmpXchg(Inst, PFS); |
| case lltok::kw_atomicrmw: |
| return parseAtomicRMW(Inst, PFS); |
| case lltok::kw_fence: |
| return parseFence(Inst, PFS); |
| case lltok::kw_getelementptr: |
| return parseGetElementPtr(Inst, PFS); |
| case lltok::kw_extractvalue: |
| return parseExtractValue(Inst, PFS); |
| case lltok::kw_insertvalue: |
| return parseInsertValue(Inst, PFS); |
| } |
| } |
| |
| /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. |
| bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { |
| if (Opc == Instruction::FCmp) { |
| switch (Lex.getKind()) { |
| default: |
| return tokError("expected fcmp predicate (e.g. 'oeq')"); |
| case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; |
| case lltok::kw_one: P = CmpInst::FCMP_ONE; break; |
| case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; |
| case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; |
| case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; |
| case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; |
| case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; |
| case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; |
| case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; |
| case lltok::kw_une: P = CmpInst::FCMP_UNE; break; |
| case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; |
| case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; |
| case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; |
| case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; |
| case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; |
| case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; |
| } |
| } else { |
| switch (Lex.getKind()) { |
| default: |
| return tokError("expected icmp predicate (e.g. 'eq')"); |
| case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; |
| case lltok::kw_ne: P = CmpInst::ICMP_NE; break; |
| case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; |
| case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; |
| case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; |
| case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; |
| case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; |
| case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; |
| case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; |
| case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; |
| } |
| } |
| Lex.Lex(); |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Terminator Instructions. |
| //===----------------------------------------------------------------------===// |
| |
| /// parseRet - parse a return instruction. |
| /// ::= 'ret' void (',' !dbg, !1)* |
| /// ::= 'ret' TypeAndValue (',' !dbg, !1)* |
| bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, |
| PerFunctionState &PFS) { |
| SMLoc TypeLoc = Lex.getLoc(); |
| Type *Ty = nullptr; |
| if (parseType(Ty, true /*void allowed*/)) |
| return true; |
| |
| Type *ResType = PFS.getFunction().getReturnType(); |
| |
| if (Ty->isVoidTy()) { |
| if (!ResType->isVoidTy()) |
| return error(TypeLoc, "value doesn't match function result type '" + |
| getTypeString(ResType) + "'"); |
| |
| Inst = ReturnInst::Create(Context); |
| return false; |
| } |
| |
| Value *RV; |
| if (parseValue(Ty, RV, PFS)) |
| return true; |
| |
| if (ResType != RV->getType()) |
| return error(TypeLoc, "value doesn't match function result type '" + |
| getTypeString(ResType) + "'"); |
| |
| Inst = ReturnInst::Create(Context, RV); |
| return false; |
| } |
| |
| /// parseBr |
| /// ::= 'br' TypeAndValue |
| /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue |
| bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { |
| LocTy Loc, Loc2; |
| Value *Op0; |
| BasicBlock *Op1, *Op2; |
| if (parseTypeAndValue(Op0, Loc, PFS)) |
| return true; |
| |
| if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { |
| Inst = BranchInst::Create(BB); |
| return false; |
| } |
| |
| if (Op0->getType() != Type::getInt1Ty(Context)) |
| return error(Loc, "branch condition must have 'i1' type"); |
| |
| if (parseToken(lltok::comma, "expected ',' after branch condition") || |
| parseTypeAndBasicBlock(Op1, Loc, PFS) || |
| parseToken(lltok::comma, "expected ',' after true destination") || |
| parseTypeAndBasicBlock(Op2, Loc2, PFS)) |
| return true; |
| |
| Inst = BranchInst::Create(Op1, Op2, Op0); |
| return false; |
| } |
| |
| /// parseSwitch |
| /// Instruction |
| /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' |
| /// JumpTable |
| /// ::= (TypeAndValue ',' TypeAndValue)* |
| bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { |
| LocTy CondLoc, BBLoc; |
| Value *Cond; |
| BasicBlock *DefaultBB; |
| if (parseTypeAndValue(Cond, CondLoc, PFS) || |
| parseToken(lltok::comma, "expected ',' after switch condition") || |
| parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || |
| parseToken(lltok::lsquare, "expected '[' with switch table")) |
| return true; |
| |
| if (!Cond->getType()->isIntegerTy()) |
| return error(CondLoc, "switch condition must have integer type"); |
| |
| // parse the jump table pairs. |
| SmallPtrSet<Value*, 32> SeenCases; |
| SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; |
| while (Lex.getKind() != lltok::rsquare) { |
| Value *Constant; |
| BasicBlock *DestBB; |
| |
| if (parseTypeAndValue(Constant, CondLoc, PFS) || |
| parseToken(lltok::comma, "expected ',' after case value") || |
| parseTypeAndBasicBlock(DestBB, PFS)) |
| return true; |
| |
| if (!SeenCases.insert(Constant).second) |
| return error(CondLoc, "duplicate case value in switch"); |
| if (!isa<ConstantInt>(Constant)) |
| return error(CondLoc, "case value is not a constant integer"); |
| |
| Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); |
| } |
| |
| Lex.Lex(); // Eat the ']'. |
| |
| SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); |
| for (unsigned i = 0, e = Table.size(); i != e; ++i) |
| SI->addCase(Table[i].first, Table[i].second); |
| Inst = SI; |
| return false; |
| } |
| |
| /// parseIndirectBr |
| /// Instruction |
| /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' |
| bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { |
| LocTy AddrLoc; |
| Value *Address; |
| if (parseTypeAndValue(Address, AddrLoc, PFS) || |
| parseToken(lltok::comma, "expected ',' after indirectbr address") || |
| parseToken(lltok::lsquare, "expected '[' with indirectbr")) |
| return true; |
| |
| if (!Address->getType()->isPointerTy()) |
| return error(AddrLoc, "indirectbr address must have pointer type"); |
| |
| // parse the destination list. |
| SmallVector<BasicBlock*, 16> DestList; |
| |
| if (Lex.getKind() != lltok::rsquare) { |
| BasicBlock *DestBB; |
| if (parseTypeAndBasicBlock(DestBB, PFS)) |
| return true; |
| DestList.push_back(DestBB); |
| |
| while (EatIfPresent(lltok::comma)) { |
| if (parseTypeAndBasicBlock(DestBB, PFS)) |
| return true; |
| DestList.push_back(DestBB); |
| } |
| } |
| |
| if (parseToken(lltok::rsquare, "expected ']' at end of block list")) |
| return true; |
| |
| IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); |
| for (BasicBlock *Dest : DestList) |
| IBI->addDestination(Dest); |
| Inst = IBI; |
| return false; |
| } |
| |
| // If RetType is a non-function pointer type, then this is the short syntax |
| // for the call, which means that RetType is just the return type. Infer the |
| // rest of the function argument types from the arguments that are present. |
| bool LLParser::resolveFunctionType(Type *RetType, ArrayRef<ParamInfo> ArgList, |
| FunctionType *&FuncTy) { |
| FuncTy = dyn_cast<FunctionType>(RetType); |
| if (!FuncTy) { |
| // Pull out the types of all of the arguments... |
| SmallVector<Type *, 8> ParamTypes; |
| ParamTypes.reserve(ArgList.size()); |
| for (const ParamInfo &Arg : ArgList) |
| ParamTypes.push_back(Arg.V->getType()); |
| |
| if (!FunctionType::isValidReturnType(RetType)) |
| return true; |
| |
| FuncTy = FunctionType::get(RetType, ParamTypes, false); |
| } |
| return false; |
| } |
| |
| /// parseInvoke |
| /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList |
| /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue |
| bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { |
| LocTy CallLoc = Lex.getLoc(); |
| AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); |
| std::vector<unsigned> FwdRefAttrGrps; |
| LocTy NoBuiltinLoc; |
| unsigned CC; |
| unsigned InvokeAddrSpace; |
| Type *RetType = nullptr; |
| LocTy RetTypeLoc; |
| ValID CalleeID; |
| SmallVector<ParamInfo, 16> ArgList; |
| SmallVector<OperandBundleDef, 2> BundleList; |
| |
| BasicBlock *NormalBB, *UnwindBB; |
| if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || |
| parseOptionalProgramAddrSpace(InvokeAddrSpace) || |
| parseType(RetType, RetTypeLoc, true /*void allowed*/) || |
| parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || |
| parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, |
| NoBuiltinLoc) || |
| parseOptionalOperandBundles(BundleList, PFS) || |
| parseToken(lltok::kw_to, "expected 'to' in invoke") || |
| parseTypeAndBasicBlock(NormalBB, PFS) || |
| parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || |
| parseTypeAndBasicBlock(UnwindBB, PFS)) |
| return true; |
| |
| // If RetType is a non-function pointer type, then this is the short syntax |
| // for the call, which means that RetType is just the return type. Infer the |
| // rest of the function argument types from the arguments that are present. |
| FunctionType *Ty; |
| if (resolveFunctionType(RetType, ArgList, Ty)) |
| return error(RetTypeLoc, "Invalid result type for LLVM function"); |
| |
| CalleeID.FTy = Ty; |
| |
| // Look up the callee. |
| Value *Callee; |
| if (convertValIDToValue(PointerType::get(Context, InvokeAddrSpace), CalleeID, |
| Callee, &PFS)) |
| return true; |
| |
| // Set up the Attribute for the function. |
| SmallVector<Value *, 8> Args; |
| SmallVector<AttributeSet, 8> ArgAttrs; |
| |
| // Loop through FunctionType's arguments and ensure they are specified |
| // correctly. Also, gather any parameter attributes. |
| FunctionType::param_iterator I = Ty->param_begin(); |
| FunctionType::param_iterator E = Ty->param_end(); |
| for (const ParamInfo &Arg : ArgList) { |
| Type *ExpectedTy = nullptr; |
| if (I != E) { |
| ExpectedTy = *I++; |
| } else if (!Ty->isVarArg()) { |
| return error(Arg.Loc, "too many arguments specified"); |
| } |
| |
| if (ExpectedTy && ExpectedTy != Arg.V->getType()) |
| return error(Arg.Loc, "argument is not of expected type '" + |
| getTypeString(ExpectedTy) + "'"); |
| Args.push_back(Arg.V); |
| ArgAttrs.push_back(Arg.Attrs); |
| } |
| |
| if (I != E) |
| return error(CallLoc, "not enough parameters specified for call"); |
| |
| // Finish off the Attribute and check them |
| AttributeList PAL = |
| AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), |
| AttributeSet::get(Context, RetAttrs), ArgAttrs); |
| |
| InvokeInst *II = |
| InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); |
| II->setCallingConv(CC); |
| II->setAttributes(PAL); |
| ForwardRefAttrGroups[II] = FwdRefAttrGrps; |
| Inst = II; |
| return false; |
| } |
| |
| /// parseResume |
| /// ::= 'resume' TypeAndValue |
| bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *Exn; LocTy ExnLoc; |
| if (parseTypeAndValue(Exn, ExnLoc, PFS)) |
| return true; |
| |
| ResumeInst *RI = ResumeInst::Create(Exn); |
| Inst = RI; |
| return false; |
| } |
| |
| bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, |
| PerFunctionState &PFS) { |
| if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) |
| return true; |
| |
| while (Lex.getKind() != lltok::rsquare) { |
| // If this isn't the first argument, we need a comma. |
| if (!Args.empty() && |
| parseToken(lltok::comma, "expected ',' in argument list")) |
| return true; |
| |
| // parse the argument. |
| LocTy ArgLoc; |
| Type *ArgTy = nullptr; |
| if (parseType(ArgTy, ArgLoc)) |
| return true; |
| |
| Value *V; |
| if (ArgTy->isMetadataTy()) { |
| if (parseMetadataAsValue(V, PFS)) |
| return true; |
| } else { |
| if (parseValue(ArgTy, V, PFS)) |
| return true; |
| } |
| Args.push_back(V); |
| } |
| |
| Lex.Lex(); // Lex the ']'. |
| return false; |
| } |
| |
| /// parseCleanupRet |
| /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) |
| bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *CleanupPad = nullptr; |
| |
| if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) |
| return true; |
| |
| if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) |
| return true; |
| |
| if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) |
| return true; |
| |
| BasicBlock *UnwindBB = nullptr; |
| if (Lex.getKind() == lltok::kw_to) { |
| Lex.Lex(); |
| if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) |
| return true; |
| } else { |
| if (parseTypeAndBasicBlock(UnwindBB, PFS)) { |
| return true; |
| } |
| } |
| |
| Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); |
| return false; |
| } |
| |
| /// parseCatchRet |
| /// ::= 'catchret' from Parent Value 'to' TypeAndValue |
| bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *CatchPad = nullptr; |
| |
| if (parseToken(lltok::kw_from, "expected 'from' after catchret")) |
| return true; |
| |
| if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) |
| return true; |
| |
| BasicBlock *BB; |
| if (parseToken(lltok::kw_to, "expected 'to' in catchret") || |
| parseTypeAndBasicBlock(BB, PFS)) |
| return true; |
| |
| Inst = CatchReturnInst::Create(CatchPad, BB); |
| return false; |
| } |
| |
| /// parseCatchSwitch |
| /// ::= 'catchswitch' within Parent |
| bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *ParentPad; |
| |
| if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) |
| return true; |
| |
| if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && |
| Lex.getKind() != lltok::LocalVarID) |
| return tokError("expected scope value for catchswitch"); |
| |
| if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) |
| return true; |
| |
| if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) |
| return true; |
| |
| SmallVector<BasicBlock *, 32> Table; |
| do { |
| BasicBlock *DestBB; |
| if (parseTypeAndBasicBlock(DestBB, PFS)) |
| return true; |
| Table.push_back(DestBB); |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) |
| return true; |
| |
| if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) |
| return true; |
| |
| BasicBlock *UnwindBB = nullptr; |
| if (EatIfPresent(lltok::kw_to)) { |
| if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) |
| return true; |
| } else { |
| if (parseTypeAndBasicBlock(UnwindBB, PFS)) |
| return true; |
| } |
| |
| auto *CatchSwitch = |
| CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); |
| for (BasicBlock *DestBB : Table) |
| CatchSwitch->addHandler(DestBB); |
| Inst = CatchSwitch; |
| return false; |
| } |
| |
| /// parseCatchPad |
| /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue |
| bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *CatchSwitch = nullptr; |
| |
| if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) |
| return true; |
| |
| if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) |
| return tokError("expected scope value for catchpad"); |
| |
| if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) |
| return true; |
| |
| SmallVector<Value *, 8> Args; |
| if (parseExceptionArgs(Args, PFS)) |
| return true; |
| |
| Inst = CatchPadInst::Create(CatchSwitch, Args); |
| return false; |
| } |
| |
| /// parseCleanupPad |
| /// ::= 'cleanuppad' within Parent ParamList |
| bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *ParentPad = nullptr; |
| |
| if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) |
| return true; |
| |
| if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && |
| Lex.getKind() != lltok::LocalVarID) |
| return tokError("expected scope value for cleanuppad"); |
| |
| if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) |
| return true; |
| |
| SmallVector<Value *, 8> Args; |
| if (parseExceptionArgs(Args, PFS)) |
| return true; |
| |
| Inst = CleanupPadInst::Create(ParentPad, Args); |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Unary Operators. |
| //===----------------------------------------------------------------------===// |
| |
| /// parseUnaryOp |
| /// ::= UnaryOp TypeAndValue ',' Value |
| /// |
| /// If IsFP is false, then any integer operand is allowed, if it is true, any fp |
| /// operand is allowed. |
| bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, |
| unsigned Opc, bool IsFP) { |
| LocTy Loc; Value *LHS; |
| if (parseTypeAndValue(LHS, Loc, PFS)) |
| return true; |
| |
| bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() |
| : LHS->getType()->isIntOrIntVectorTy(); |
| |
| if (!Valid) |
| return error(Loc, "invalid operand type for instruction"); |
| |
| Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); |
| return false; |
| } |
| |
| /// parseCallBr |
| /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList |
| /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue |
| /// '[' LabelList ']' |
| bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { |
| LocTy CallLoc = Lex.getLoc(); |
| AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); |
| std::vector<unsigned> FwdRefAttrGrps; |
| LocTy NoBuiltinLoc; |
| unsigned CC; |
| Type *RetType = nullptr; |
| LocTy RetTypeLoc; |
| ValID CalleeID; |
| SmallVector<ParamInfo, 16> ArgList; |
| SmallVector<OperandBundleDef, 2> BundleList; |
| |
| BasicBlock *DefaultDest; |
| if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || |
| parseType(RetType, RetTypeLoc, true /*void allowed*/) || |
| parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || |
| parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, |
| NoBuiltinLoc) || |
| parseOptionalOperandBundles(BundleList, PFS) || |
| parseToken(lltok::kw_to, "expected 'to' in callbr") || |
| parseTypeAndBasicBlock(DefaultDest, PFS) || |
| parseToken(lltok::lsquare, "expected '[' in callbr")) |
| return true; |
| |
| // parse the destination list. |
| SmallVector<BasicBlock *, 16> IndirectDests; |
| |
| if (Lex.getKind() != lltok::rsquare) { |
| BasicBlock *DestBB; |
| if (parseTypeAndBasicBlock(DestBB, PFS)) |
| return true; |
| IndirectDests.push_back(DestBB); |
| |
| while (EatIfPresent(lltok::comma)) { |
| if (parseTypeAndBasicBlock(DestBB, PFS)) |
| return true; |
| IndirectDests.push_back(DestBB); |
| } |
| } |
| |
| if (parseToken(lltok::rsquare, "expected ']' at end of block list")) |
| return true; |
| |
| // If RetType is a non-function pointer type, then this is the short syntax |
| // for the call, which means that RetType is just the return type. Infer the |
| // rest of the function argument types from the arguments that are present. |
| FunctionType *Ty; |
| if (resolveFunctionType(RetType, ArgList, Ty)) |
| return error(RetTypeLoc, "Invalid result type for LLVM function"); |
| |
| CalleeID.FTy = Ty; |
| |
| // Look up the callee. |
| Value *Callee; |
| if (convertValIDToValue(PointerType::getUnqual(Context), CalleeID, Callee, |
| &PFS)) |
| return true; |
| |
| // Set up the Attribute for the function. |
| SmallVector<Value *, 8> Args; |
| SmallVector<AttributeSet, 8> ArgAttrs; |
| |
| // Loop through FunctionType's arguments and ensure they are specified |
| // correctly. Also, gather any parameter attributes. |
| FunctionType::param_iterator I = Ty->param_begin(); |
| FunctionType::param_iterator E = Ty->param_end(); |
| for (const ParamInfo &Arg : ArgList) { |
| Type *ExpectedTy = nullptr; |
| if (I != E) { |
| ExpectedTy = *I++; |
| } else if (!Ty->isVarArg()) { |
| return error(Arg.Loc, "too many arguments specified"); |
| } |
| |
| if (ExpectedTy && ExpectedTy != Arg.V->getType()) |
| return error(Arg.Loc, "argument is not of expected type '" + |
| getTypeString(ExpectedTy) + "'"); |
| Args.push_back(Arg.V); |
| ArgAttrs.push_back(Arg.Attrs); |
| } |
| |
| if (I != E) |
| return error(CallLoc, "not enough parameters specified for call"); |
| |
| // Finish off the Attribute and check them |
| AttributeList PAL = |
| AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), |
| AttributeSet::get(Context, RetAttrs), ArgAttrs); |
| |
| CallBrInst *CBI = |
| CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, |
| BundleList); |
| CBI->setCallingConv(CC); |
| CBI->setAttributes(PAL); |
| ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; |
| Inst = CBI; |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Binary Operators. |
| //===----------------------------------------------------------------------===// |
| |
| /// parseArithmetic |
| /// ::= ArithmeticOps TypeAndValue ',' Value |
| /// |
| /// If IsFP is false, then any integer operand is allowed, if it is true, any fp |
| /// operand is allowed. |
| bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, |
| unsigned Opc, bool IsFP) { |
| LocTy Loc; Value *LHS, *RHS; |
| if (parseTypeAndValue(LHS, Loc, PFS) || |
| parseToken(lltok::comma, "expected ',' in arithmetic operation") || |
| parseValue(LHS->getType(), RHS, PFS)) |
| return true; |
| |
| bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() |
| : LHS->getType()->isIntOrIntVectorTy(); |
| |
| if (!Valid) |
| return error(Loc, "invalid operand type for instruction"); |
| |
| Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); |
| return false; |
| } |
| |
| /// parseLogical |
| /// ::= ArithmeticOps TypeAndValue ',' Value { |
| bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, |
| unsigned Opc) { |
| LocTy Loc; Value *LHS, *RHS; |
| if (parseTypeAndValue(LHS, Loc, PFS) || |
| parseToken(lltok::comma, "expected ',' in logical operation") || |
| parseValue(LHS->getType(), RHS, PFS)) |
| return true; |
| |
| if (!LHS->getType()->isIntOrIntVectorTy()) |
| return error(Loc, |
| "instruction requires integer or integer vector operands"); |
| |
| Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); |
| return false; |
| } |
| |
| /// parseCompare |
| /// ::= 'icmp' IPredicates TypeAndValue ',' Value |
| /// ::= 'fcmp' FPredicates TypeAndValue ',' Value |
| bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, |
| unsigned Opc) { |
| // parse the integer/fp comparison predicate. |
| LocTy Loc; |
| unsigned Pred; |
| Value *LHS, *RHS; |
| if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || |
| parseToken(lltok::comma, "expected ',' after compare value") || |
| parseValue(LHS->getType(), RHS, PFS)) |
| return true; |
| |
| if (Opc == Instruction::FCmp) { |
| if (!LHS->getType()->isFPOrFPVectorTy()) |
| return error(Loc, "fcmp requires floating point operands"); |
| Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); |
| } else { |
| assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); |
| if (!LHS->getType()->isIntOrIntVectorTy() && |
| !LHS->getType()->isPtrOrPtrVectorTy()) |
| return error(Loc, "icmp requires integer operands"); |
| Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); |
| } |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Other Instructions. |
| //===----------------------------------------------------------------------===// |
| |
| /// parseCast |
| /// ::= CastOpc TypeAndValue 'to' Type |
| bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, |
| unsigned Opc) { |
| LocTy Loc; |
| Value *Op; |
| Type *DestTy = nullptr; |
| if (parseTypeAndValue(Op, Loc, PFS) || |
| parseToken(lltok::kw_to, "expected 'to' after cast value") || |
| parseType(DestTy)) |
| return true; |
| |
| if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) |
| return error(Loc, "invalid cast opcode for cast from '" + |
| getTypeString(Op->getType()) + "' to '" + |
| getTypeString(DestTy) + "'"); |
| Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); |
| return false; |
| } |
| |
| /// parseSelect |
| /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue |
| bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { |
| LocTy Loc; |
| Value *Op0, *Op1, *Op2; |
| if (parseTypeAndValue(Op0, Loc, PFS) || |
| parseToken(lltok::comma, "expected ',' after select condition") || |
| parseTypeAndValue(Op1, PFS) || |
| parseToken(lltok::comma, "expected ',' after select value") || |
| parseTypeAndValue(Op2, PFS)) |
| return true; |
| |
| if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) |
| return error(Loc, Reason); |
| |
| Inst = SelectInst::Create(Op0, Op1, Op2); |
| return false; |
| } |
| |
| /// parseVAArg |
| /// ::= 'va_arg' TypeAndValue ',' Type |
| bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *Op; |
| Type *EltTy = nullptr; |
| LocTy TypeLoc; |
| if (parseTypeAndValue(Op, PFS) || |
| parseToken(lltok::comma, "expected ',' after vaarg operand") || |
| parseType(EltTy, TypeLoc)) |
| return true; |
| |
| if (!EltTy->isFirstClassType()) |
| return error(TypeLoc, "va_arg requires operand with first class type"); |
| |
| Inst = new VAArgInst(Op, EltTy); |
| return false; |
| } |
| |
| /// parseExtractElement |
| /// ::= 'extractelement' TypeAndValue ',' TypeAndValue |
| bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { |
| LocTy Loc; |
| Value *Op0, *Op1; |
| if (parseTypeAndValue(Op0, Loc, PFS) || |
| parseToken(lltok::comma, "expected ',' after extract value") || |
| parseTypeAndValue(Op1, PFS)) |
| return true; |
| |
| if (!ExtractElementInst::isValidOperands(Op0, Op1)) |
| return error(Loc, "invalid extractelement operands"); |
| |
| Inst = ExtractElementInst::Create(Op0, Op1); |
| return false; |
| } |
| |
| /// parseInsertElement |
| /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue |
| bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { |
| LocTy Loc; |
| Value *Op0, *Op1, *Op2; |
| if (parseTypeAndValue(Op0, Loc, PFS) || |
| parseToken(lltok::comma, "expected ',' after insertelement value") || |
| parseTypeAndValue(Op1, PFS) || |
| parseToken(lltok::comma, "expected ',' after insertelement value") || |
| parseTypeAndValue(Op2, PFS)) |
| return true; |
| |
| if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) |
| return error(Loc, "invalid insertelement operands"); |
| |
| Inst = InsertElementInst::Create(Op0, Op1, Op2); |
| return false; |
| } |
| |
| /// parseShuffleVector |
| /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue |
| bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { |
| LocTy Loc; |
| Value *Op0, *Op1, *Op2; |
| if (parseTypeAndValue(Op0, Loc, PFS) || |
| parseToken(lltok::comma, "expected ',' after shuffle mask") || |
| parseTypeAndValue(Op1, PFS) || |
| parseToken(lltok::comma, "expected ',' after shuffle value") || |
| parseTypeAndValue(Op2, PFS)) |
| return true; |
| |
| if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) |
| return error(Loc, "invalid shufflevector operands"); |
| |
| Inst = new ShuffleVectorInst(Op0, Op1, Op2); |
| return false; |
| } |
| |
| /// parsePHI |
| /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* |
| int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { |
| Type *Ty = nullptr; LocTy TypeLoc; |
| Value *Op0, *Op1; |
| |
| if (parseType(Ty, TypeLoc)) |
| return true; |
| |
| if (!Ty->isFirstClassType()) |
| return error(TypeLoc, "phi node must have first class type"); |
| |
| bool First = true; |
| bool AteExtraComma = false; |
| SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; |
| |
| while (true) { |
| if (First) { |
| if (Lex.getKind() != lltok::lsquare) |
| break; |
| First = false; |
| } else if (!EatIfPresent(lltok::comma)) |
| break; |
| |
| if (Lex.getKind() == lltok::MetadataVar) { |
| AteExtraComma = true; |
| break; |
| } |
| |
| if (parseToken(lltok::lsquare, "expected '[' in phi value list") || |
| parseValue(Ty, Op0, PFS) || |
| parseToken(lltok::comma, "expected ',' after insertelement value") || |
| parseValue(Type::getLabelTy(Context), Op1, PFS) || |
| parseToken(lltok::rsquare, "expected ']' in phi value list")) |
| return true; |
| |
| PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); |
| } |
| |
| PHINode *PN = PHINode::Create(Ty, PHIVals.size()); |
| for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) |
| PN->addIncoming(PHIVals[i].first, PHIVals[i].second); |
| Inst = PN; |
| return AteExtraComma ? InstExtraComma : InstNormal; |
| } |
| |
| /// parseLandingPad |
| /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ |
| /// Clause |
| /// ::= 'catch' TypeAndValue |
| /// ::= 'filter' |
| /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* |
| bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { |
| Type *Ty = nullptr; LocTy TyLoc; |
| |
| if (parseType(Ty, TyLoc)) |
| return true; |
| |
| std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); |
| LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); |
| |
| while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ |
| LandingPadInst::ClauseType CT; |
| if (EatIfPresent(lltok::kw_catch)) |
| CT = LandingPadInst::Catch; |
| else if (EatIfPresent(lltok::kw_filter)) |
| CT = LandingPadInst::Filter; |
| else |
| return tokError("expected 'catch' or 'filter' clause type"); |
| |
| Value *V; |
| LocTy VLoc; |
| if (parseTypeAndValue(V, VLoc, PFS)) |
| return true; |
| |
| // A 'catch' type expects a non-array constant. A filter clause expects an |
| // array constant. |
| if (CT == LandingPadInst::Catch) { |
| if (isa<ArrayType>(V->getType())) |
| return error(VLoc, "'catch' clause has an invalid type"); |
| } else { |
| if (!isa<ArrayType>(V->getType())) |
| return error(VLoc, "'filter' clause has an invalid type"); |
| } |
| |
| Constant *CV = dyn_cast<Constant>(V); |
| if (!CV) |
| return error(VLoc, "clause argument must be a constant"); |
| LP->addClause(CV); |
| } |
| |
| Inst = LP.release(); |
| return false; |
| } |
| |
| /// parseFreeze |
| /// ::= 'freeze' Type Value |
| bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { |
| LocTy Loc; |
| Value *Op; |
| if (parseTypeAndValue(Op, Loc, PFS)) |
| return true; |
| |
| Inst = new FreezeInst(Op); |
| return false; |
| } |
| |
| /// parseCall |
| /// ::= 'call' OptionalFastMathFlags OptionalCallingConv |
| /// OptionalAttrs Type Value ParameterList OptionalAttrs |
| /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv |
| /// OptionalAttrs Type Value ParameterList OptionalAttrs |
| /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv |
| /// OptionalAttrs Type Value ParameterList OptionalAttrs |
| /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv |
| /// OptionalAttrs Type Value ParameterList OptionalAttrs |
| bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, |
| CallInst::TailCallKind TCK) { |
| AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); |
| std::vector<unsigned> FwdRefAttrGrps; |
| LocTy BuiltinLoc; |
| unsigned CallAddrSpace; |
| unsigned CC; |
| Type *RetType = nullptr; |
| LocTy RetTypeLoc; |
| ValID CalleeID; |
| SmallVector<ParamInfo, 16> ArgList; |
| SmallVector<OperandBundleDef, 2> BundleList; |
| LocTy CallLoc = Lex.getLoc(); |
| |
| if (TCK != CallInst::TCK_None && |
| parseToken(lltok::kw_call, |
| "expected 'tail call', 'musttail call', or 'notail call'")) |
| return true; |
| |
| FastMathFlags FMF = EatFastMathFlagsIfPresent(); |
| |
| if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || |
| parseOptionalProgramAddrSpace(CallAddrSpace) || |
| parseType(RetType, RetTypeLoc, true /*void allowed*/) || |
| parseValID(CalleeID, &PFS) || |
| parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, |
| PFS.getFunction().isVarArg()) || |
| parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || |
| parseOptionalOperandBundles(BundleList, PFS)) |
| return true; |
| |
| // If RetType is a non-function pointer type, then this is the short syntax |
| // for the call, which means that RetType is just the return type. Infer the |
| // rest of the function argument types from the arguments that are present. |
| FunctionType *Ty; |
| if (resolveFunctionType(RetType, ArgList, Ty)) |
| return error(RetTypeLoc, "Invalid result type for LLVM function"); |
| |
| CalleeID.FTy = Ty; |
| |
| // Look up the callee. |
| Value *Callee; |
| if (convertValIDToValue(PointerType::get(Context, CallAddrSpace), CalleeID, |
| Callee, &PFS)) |
| return true; |
| |
| // Set up the Attribute for the function. |
| SmallVector<AttributeSet, 8> Attrs; |
| |
| SmallVector<Value*, 8> Args; |
| |
| // Loop through FunctionType's arguments and ensure they are specified |
| // correctly. Also, gather any parameter attributes. |
| FunctionType::param_iterator I = Ty->param_begin(); |
| FunctionType::param_iterator E = Ty->param_end(); |
| for (const ParamInfo &Arg : ArgList) { |
| Type *ExpectedTy = nullptr; |
| if (I != E) { |
| ExpectedTy = *I++; |
| } else if (!Ty->isVarArg()) { |
| return error(Arg.Loc, "too many arguments specified"); |
| } |
| |
| if (ExpectedTy && ExpectedTy != Arg.V->getType()) |
| return error(Arg.Loc, "argument is not of expected type '" + |
| getTypeString(ExpectedTy) + "'"); |
| Args.push_back(Arg.V); |
| Attrs.push_back(Arg.Attrs); |
| } |
| |
| if (I != E) |
| return error(CallLoc, "not enough parameters specified for call"); |
| |
| // Finish off the Attribute and check them |
| AttributeList PAL = |
| AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), |
| AttributeSet::get(Context, RetAttrs), Attrs); |
| |
| CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); |
| CI->setTailCallKind(TCK); |
| CI->setCallingConv(CC); |
| if (FMF.any()) { |
| if (!isa<FPMathOperator>(CI)) { |
| CI->deleteValue(); |
| return error(CallLoc, "fast-math-flags specified for call without " |
| "floating-point scalar or vector return type"); |
| } |
| CI->setFastMathFlags(FMF); |
| } |
| |
| if (CalleeID.Kind == ValID::t_GlobalName && |
| isOldDbgFormatIntrinsic(CalleeID.StrVal)) { |
| if (SeenNewDbgInfoFormat) { |
| CI->deleteValue(); |
| return error(CallLoc, "llvm.dbg intrinsic should not appear in a module " |
| "using non-intrinsic debug info"); |
| } |
| if (!SeenOldDbgInfoFormat) |
| M->setNewDbgInfoFormatFlag(false); |
| SeenOldDbgInfoFormat = true; |
| } |
| CI->setAttributes(PAL); |
| ForwardRefAttrGroups[CI] = FwdRefAttrGrps; |
| Inst = CI; |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Memory Instructions. |
| //===----------------------------------------------------------------------===// |
| |
| /// parseAlloc |
| /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? |
| /// (',' 'align' i32)? (',', 'addrspace(n))? |
| int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *Size = nullptr; |
| LocTy SizeLoc, TyLoc, ASLoc; |
| MaybeAlign Alignment; |
| unsigned AddrSpace = 0; |
| Type *Ty = nullptr; |
| |
| bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); |
| bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); |
| |
| if (parseType(Ty, TyLoc)) |
| return true; |
| |
| if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) |
| return error(TyLoc, "invalid type for alloca"); |
| |
| bool AteExtraComma = false; |
| if (EatIfPresent(lltok::comma)) { |
| if (Lex.getKind() == lltok::kw_align) { |
| if (parseOptionalAlignment(Alignment)) |
| return true; |
| if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) |
| return true; |
| } else if (Lex.getKind() == lltok::kw_addrspace) { |
| ASLoc = Lex.getLoc(); |
| if (parseOptionalAddrSpace(AddrSpace)) |
| return true; |
| } else if (Lex.getKind() == lltok::MetadataVar) { |
| AteExtraComma = true; |
| } else { |
| if (parseTypeAndValue(Size, SizeLoc, PFS)) |
| return true; |
| if (EatIfPresent(lltok::comma)) { |
| if (Lex.getKind() == lltok::kw_align) { |
| if (parseOptionalAlignment(Alignment)) |
| return true; |
| if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) |
| return true; |
| } else if (Lex.getKind() == lltok::kw_addrspace) { |
| ASLoc = Lex.getLoc(); |
| if (parseOptionalAddrSpace(AddrSpace)) |
| return true; |
| } else if (Lex.getKind() == lltok::MetadataVar) { |
| AteExtraComma = true; |
| } |
| } |
| } |
| } |
| |
| if (Size && !Size->getType()->isIntegerTy()) |
| return error(SizeLoc, "element count must have integer type"); |
| |
| SmallPtrSet<Type *, 4> Visited; |
| if (!Alignment && !Ty->isSized(&Visited)) |
| return error(TyLoc, "Cannot allocate unsized type"); |
| if (!Alignment) |
| Alignment = M->getDataLayout().getPrefTypeAlign(Ty); |
| AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); |
| AI->setUsedWithInAlloca(IsInAlloca); |
| AI->setSwiftError(IsSwiftError); |
| Inst = AI; |
| return AteExtraComma ? InstExtraComma : InstNormal; |
| } |
| |
| /// parseLoad |
| /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? |
| /// ::= 'load' 'atomic' 'volatile'? TypeAndValue |
| /// 'singlethread'? AtomicOrdering (',' 'align' i32)? |
| int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *Val; LocTy Loc; |
| MaybeAlign Alignment; |
| bool AteExtraComma = false; |
| bool isAtomic = false; |
| AtomicOrdering Ordering = AtomicOrdering::NotAtomic; |
| SyncScope::ID SSID = SyncScope::System; |
| |
| if (Lex.getKind() == lltok::kw_atomic) { |
| isAtomic = true; |
| Lex.Lex(); |
| } |
| |
| bool isVolatile = false; |
| if (Lex.getKind() == lltok::kw_volatile) { |
| isVolatile = true; |
| Lex.Lex(); |
| } |
| |
| Type *Ty; |
| LocTy ExplicitTypeLoc = Lex.getLoc(); |
| if (parseType(Ty) || |
| parseToken(lltok::comma, "expected comma after load's type") || |
| parseTypeAndValue(Val, Loc, PFS) || |
| parseScopeAndOrdering(isAtomic, SSID, Ordering) || |
| parseOptionalCommaAlign(Alignment, AteExtraComma)) |
| return true; |
| |
| if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) |
| return error(Loc, "load operand must be a pointer to a first class type"); |
| if (isAtomic && !Alignment) |
| return error(Loc, "atomic load must have explicit non-zero alignment"); |
| if (Ordering == AtomicOrdering::Release || |
| Ordering == AtomicOrdering::AcquireRelease) |
| return error(Loc, "atomic load cannot use Release ordering"); |
| |
| SmallPtrSet<Type *, 4> Visited; |
| if (!Alignment && !Ty->isSized(&Visited)) |
| return error(ExplicitTypeLoc, "loading unsized types is not allowed"); |
| if (!Alignment) |
| Alignment = M->getDataLayout().getABITypeAlign(Ty); |
| Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); |
| return AteExtraComma ? InstExtraComma : InstNormal; |
| } |
| |
| /// parseStore |
| |
| /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? |
| /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue |
| /// 'singlethread'? AtomicOrdering (',' 'align' i32)? |
| int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *Val, *Ptr; LocTy Loc, PtrLoc; |
| MaybeAlign Alignment; |
| bool AteExtraComma = false; |
| bool isAtomic = false; |
| AtomicOrdering Ordering = AtomicOrdering::NotAtomic; |
| SyncScope::ID SSID = SyncScope::System; |
| |
| if (Lex.getKind() == lltok::kw_atomic) { |
| isAtomic = true; |
| Lex.Lex(); |
| } |
| |
| bool isVolatile = false; |
| if (Lex.getKind() == lltok::kw_volatile) { |
| isVolatile = true; |
| Lex.Lex(); |
| } |
| |
| if (parseTypeAndValue(Val, Loc, PFS) || |
| parseToken(lltok::comma, "expected ',' after store operand") || |
| parseTypeAndValue(Ptr, PtrLoc, PFS) || |
| parseScopeAndOrdering(isAtomic, SSID, Ordering) || |
| parseOptionalCommaAlign(Alignment, AteExtraComma)) |
| return true; |
| |
| if (!Ptr->getType()->isPointerTy()) |
| return error(PtrLoc, "store operand must be a pointer"); |
| if (!Val->getType()->isFirstClassType()) |
| return error(Loc, "store operand must be a first class value"); |
| if (isAtomic && !Alignment) |
| return error(Loc, "atomic store must have explicit non-zero alignment"); |
| if (Ordering == AtomicOrdering::Acquire || |
| Ordering == AtomicOrdering::AcquireRelease) |
| return error(Loc, "atomic store cannot use Acquire ordering"); |
| SmallPtrSet<Type *, 4> Visited; |
| if (!Alignment && !Val->getType()->isSized(&Visited)) |
| return error(Loc, "storing unsized types is not allowed"); |
| if (!Alignment) |
| Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); |
| |
| Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); |
| return AteExtraComma ? InstExtraComma : InstNormal; |
| } |
| |
| /// parseCmpXchg |
| /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' |
| /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' |
| /// 'Align'? |
| int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; |
| bool AteExtraComma = false; |
| AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; |
| AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; |
| SyncScope::ID SSID = SyncScope::System; |
| bool isVolatile = false; |
| bool isWeak = false; |
| MaybeAlign Alignment; |
| |
| if (EatIfPresent(lltok::kw_weak)) |
| isWeak = true; |
| |
| if (EatIfPresent(lltok::kw_volatile)) |
| isVolatile = true; |
| |
| if (parseTypeAndValue(Ptr, PtrLoc, PFS) || |
| parseToken(lltok::comma, "expected ',' after cmpxchg address") || |
| parseTypeAndValue(Cmp, CmpLoc, PFS) || |
| parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || |
| parseTypeAndValue(New, NewLoc, PFS) || |
| parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || |
| parseOrdering(FailureOrdering) || |
| parseOptionalCommaAlign(Alignment, AteExtraComma)) |
| return true; |
| |
| if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) |
| return tokError("invalid cmpxchg success ordering"); |
| if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) |
| return tokError("invalid cmpxchg failure ordering"); |
| if (!Ptr->getType()->isPointerTy()) |
| return error(PtrLoc, "cmpxchg operand must be a pointer"); |
| if (Cmp->getType() != New->getType()) |
| return error(NewLoc, "compare value and new value type do not match"); |
| if (!New->getType()->isFirstClassType()) |
| return error(NewLoc, "cmpxchg operand must be a first class value"); |
| |
| const Align DefaultAlignment( |
| PFS.getFunction().getDataLayout().getTypeStoreSize( |
| Cmp->getType())); |
| |
| AtomicCmpXchgInst *CXI = |
| new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(DefaultAlignment), |
| SuccessOrdering, FailureOrdering, SSID); |
| CXI->setVolatile(isVolatile); |
| CXI->setWeak(isWeak); |
| |
| Inst = CXI; |
| return AteExtraComma ? InstExtraComma : InstNormal; |
| } |
| |
| /// parseAtomicRMW |
| /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue |
| /// 'singlethread'? AtomicOrdering |
| int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *Ptr, *Val; LocTy PtrLoc, ValLoc; |
| bool AteExtraComma = false; |
| AtomicOrdering Ordering = AtomicOrdering::NotAtomic; |
| SyncScope::ID SSID = SyncScope::System; |
| bool isVolatile = false; |
| bool IsFP = false; |
| AtomicRMWInst::BinOp Operation; |
| MaybeAlign Alignment; |
| |
| if (EatIfPresent(lltok::kw_volatile)) |
| isVolatile = true; |
| |
| switch (Lex.getKind()) { |
| default: |
| return tokError("expected binary operation in atomicrmw"); |
| case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; |
| case lltok::kw_add: Operation = AtomicRMWInst::Add; break; |
| case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; |
| case lltok::kw_and: Operation = AtomicRMWInst::And; break; |
| case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; |
| case lltok::kw_or: Operation = AtomicRMWInst::Or; break; |
| case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; |
| case lltok::kw_max: Operation = AtomicRMWInst::Max; break; |
| case lltok::kw_min: Operation = AtomicRMWInst::Min; break; |
| case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; |
| case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; |
| case lltok::kw_uinc_wrap: |
| Operation = AtomicRMWInst::UIncWrap; |
| break; |
| case lltok::kw_udec_wrap: |
| Operation = AtomicRMWInst::UDecWrap; |
| break; |
| case lltok::kw_usub_cond: |
| Operation = AtomicRMWInst::USubCond; |
| break; |
| case lltok::kw_usub_sat: |
| Operation = AtomicRMWInst::USubSat; |
| break; |
| case lltok::kw_fadd: |
| Operation = AtomicRMWInst::FAdd; |
| IsFP = true; |
| break; |
| case lltok::kw_fsub: |
| Operation = AtomicRMWInst::FSub; |
| IsFP = true; |
| break; |
| case lltok::kw_fmax: |
| Operation = AtomicRMWInst::FMax; |
| IsFP = true; |
| break; |
| case lltok::kw_fmin: |
| Operation = AtomicRMWInst::FMin; |
| IsFP = true; |
| break; |
| } |
| Lex.Lex(); // Eat the operation. |
| |
| if (parseTypeAndValue(Ptr, PtrLoc, PFS) || |
| parseToken(lltok::comma, "expected ',' after atomicrmw address") || |
| parseTypeAndValue(Val, ValLoc, PFS) || |
| parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || |
| parseOptionalCommaAlign(Alignment, AteExtraComma)) |
| return true; |
| |
| if (Ordering == AtomicOrdering::Unordered) |
| return tokError("atomicrmw cannot be unordered"); |
| if (!Ptr->getType()->isPointerTy()) |
| return error(PtrLoc, "atomicrmw operand must be a pointer"); |
| if (Val->getType()->isScalableTy()) |
| return error(ValLoc, "atomicrmw operand may not be scalable"); |
| |
| if (Operation == AtomicRMWInst::Xchg) { |
| if (!Val->getType()->isIntegerTy() && |
| !Val->getType()->isFloatingPointTy() && |
| !Val->getType()->isPointerTy()) { |
| return error( |
| ValLoc, |
| "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + |
| " operand must be an integer, floating point, or pointer type"); |
| } |
| } else if (IsFP) { |
| if (!Val->getType()->isFPOrFPVectorTy()) { |
| return error(ValLoc, "atomicrmw " + |
| AtomicRMWInst::getOperationName(Operation) + |
| " operand must be a floating point type"); |
| } |
| } else { |
| if (!Val->getType()->isIntegerTy()) { |
| return error(ValLoc, "atomicrmw " + |
| AtomicRMWInst::getOperationName(Operation) + |
| " operand must be an integer"); |
| } |
| } |
| |
| unsigned Size = |
| PFS.getFunction().getDataLayout().getTypeStoreSizeInBits( |
| Val->getType()); |
| if (Size < 8 || (Size & (Size - 1))) |
| return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" |
| " integer"); |
| const Align DefaultAlignment( |
| PFS.getFunction().getDataLayout().getTypeStoreSize( |
| Val->getType())); |
| AtomicRMWInst *RMWI = |
| new AtomicRMWInst(Operation, Ptr, Val, |
| Alignment.value_or(DefaultAlignment), Ordering, SSID); |
| RMWI->setVolatile(isVolatile); |
| Inst = RMWI; |
| return AteExtraComma ? InstExtraComma : InstNormal; |
| } |
| |
| /// parseFence |
| /// ::= 'fence' 'singlethread'? AtomicOrdering |
| int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { |
| AtomicOrdering Ordering = AtomicOrdering::NotAtomic; |
| SyncScope::ID SSID = SyncScope::System; |
| if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) |
| return true; |
| |
| if (Ordering == AtomicOrdering::Unordered) |
| return tokError("fence cannot be unordered"); |
| if (Ordering == AtomicOrdering::Monotonic) |
| return tokError("fence cannot be monotonic"); |
| |
| Inst = new FenceInst(Context, Ordering, SSID); |
| return InstNormal; |
| } |
| |
| /// parseGetElementPtr |
| /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* |
| int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *Ptr = nullptr; |
| Value *Val = nullptr; |
| LocTy Loc, EltLoc; |
| GEPNoWrapFlags NW; |
| |
| while (true) { |
| if (EatIfPresent(lltok::kw_inbounds)) |
| NW |= GEPNoWrapFlags::inBounds(); |
| else if (EatIfPresent(lltok::kw_nusw)) |
| NW |= GEPNoWrapFlags::noUnsignedSignedWrap(); |
| else if (EatIfPresent(lltok::kw_nuw)) |
| NW |= GEPNoWrapFlags::noUnsignedWrap(); |
| else |
| break; |
| } |
| |
| Type *Ty = nullptr; |
| if (parseType(Ty) || |
| parseToken(lltok::comma, "expected comma after getelementptr's type") || |
| parseTypeAndValue(Ptr, Loc, PFS)) |
| return true; |
| |
| Type *BaseType = Ptr->getType(); |
| PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); |
| if (!BasePointerType) |
| return error(Loc, "base of getelementptr must be a pointer"); |
| |
| SmallVector<Value*, 16> Indices; |
| bool AteExtraComma = false; |
| // GEP returns a vector of pointers if at least one of parameters is a vector. |
| // All vector parameters should have the same vector width. |
| ElementCount GEPWidth = BaseType->isVectorTy() |
| ? cast<VectorType>(BaseType)->getElementCount() |
| : ElementCount::getFixed(0); |
| |
| while (EatIfPresent(lltok::comma)) { |
| if (Lex.getKind() == lltok::MetadataVar) { |
| AteExtraComma = true; |
| break; |
| } |
| if (parseTypeAndValue(Val, EltLoc, PFS)) |
| return true; |
| if (!Val->getType()->isIntOrIntVectorTy()) |
| return error(EltLoc, "getelementptr index must be an integer"); |
| |
| if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { |
| ElementCount ValNumEl = ValVTy->getElementCount(); |
| if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) |
| return error( |
| EltLoc, |
| "getelementptr vector index has a wrong number of elements"); |
| GEPWidth = ValNumEl; |
| } |
| Indices.push_back(Val); |
| } |
| |
| SmallPtrSet<Type*, 4> Visited; |
| if (!Indices.empty() && !Ty->isSized(&Visited)) |
| return error(Loc, "base element of getelementptr must be sized"); |
| |
| auto *STy = dyn_cast<StructType>(Ty); |
| if (STy && STy->isScalableTy()) |
| return error(Loc, "getelementptr cannot target structure that contains " |
| "scalable vector type"); |
| |
| if (!GetElementPtrInst::getIndexedType(Ty, Indices)) |
| return error(Loc, "invalid getelementptr indices"); |
| GetElementPtrInst *GEP = GetElementPtrInst::Create(Ty, Ptr, Indices); |
| Inst = GEP; |
| GEP->setNoWrapFlags(NW); |
| return AteExtraComma ? InstExtraComma : InstNormal; |
| } |
| |
| /// parseExtractValue |
| /// ::= 'extractvalue' TypeAndValue (',' uint32)+ |
| int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *Val; LocTy Loc; |
| SmallVector<unsigned, 4> Indices; |
| bool AteExtraComma; |
| if (parseTypeAndValue(Val, Loc, PFS) || |
| parseIndexList(Indices, AteExtraComma)) |
| return true; |
| |
| if (!Val->getType()->isAggregateType()) |
| return error(Loc, "extractvalue operand must be aggregate type"); |
| |
| if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) |
| return error(Loc, "invalid indices for extractvalue"); |
| Inst = ExtractValueInst::Create(Val, Indices); |
| return AteExtraComma ? InstExtraComma : InstNormal; |
| } |
| |
| /// parseInsertValue |
| /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ |
| int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { |
| Value *Val0, *Val1; LocTy Loc0, Loc1; |
| SmallVector<unsigned, 4> Indices; |
| bool AteExtraComma; |
| if (parseTypeAndValue(Val0, Loc0, PFS) || |
| parseToken(lltok::comma, "expected comma after insertvalue operand") || |
| parseTypeAndValue(Val1, Loc1, PFS) || |
| parseIndexList(Indices, AteExtraComma)) |
| return true; |
| |
| if (!Val0->getType()->isAggregateType()) |
| return error(Loc0, "insertvalue operand must be aggregate type"); |
| |
| Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); |
| if (!IndexedType) |
| return error(Loc0, "invalid indices for insertvalue"); |
| if (IndexedType != Val1->getType()) |
| return error(Loc1, "insertvalue operand and field disagree in type: '" + |
| getTypeString(Val1->getType()) + "' instead of '" + |
| getTypeString(IndexedType) + "'"); |
| Inst = InsertValueInst::Create(Val0, Val1, Indices); |
| return AteExtraComma ? InstExtraComma : InstNormal; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Embedded metadata. |
| //===----------------------------------------------------------------------===// |
| |
| /// parseMDNodeVector |
| /// ::= { Element (',' Element)* } |
| /// Element |
| /// ::= 'null' | Metadata |
| bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { |
| if (parseToken(lltok::lbrace, "expected '{' here")) |
| return true; |
| |
| // Check for an empty list. |
| if (EatIfPresent(lltok::rbrace)) |
| return false; |
| |
| do { |
| if (EatIfPresent(lltok::kw_null)) { |
| Elts.push_back(nullptr); |
| continue; |
| } |
| |
| Metadata *MD; |
| if (parseMetadata(MD, nullptr)) |
| return true; |
| Elts.push_back(MD); |
| } while (EatIfPresent(lltok::comma)); |
| |
| return parseToken(lltok::rbrace, "expected end of metadata node"); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Use-list order directives. |
| //===----------------------------------------------------------------------===// |
| bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, |
| SMLoc Loc) { |
| if (V->use_empty()) |
| return error(Loc, "value has no uses"); |
| |
| unsigned NumUses = 0; |
| SmallDenseMap<const Use *, unsigned, 16> Order; |
| for (const Use &U : V->uses()) { |
| if (++NumUses > Indexes.size()) |
| break; |
| Order[&U] = Indexes[NumUses - 1]; |
| } |
| if (NumUses < 2) |
| return error(Loc, "value only has one use"); |
| if (Order.size() != Indexes.size() || NumUses > Indexes.size()) |
| return error(Loc, |
| "wrong number of indexes, expected " + Twine(V->getNumUses())); |
| |
| V->sortUseList([&](const Use &L, const Use &R) { |
| return Order.lookup(&L) < Order.lookup(&R); |
| }); |
| return false; |
| } |
| |
| /// parseUseListOrderIndexes |
| /// ::= '{' uint32 (',' uint32)+ '}' |
| bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { |
| SMLoc Loc = Lex.getLoc(); |
| if (parseToken(lltok::lbrace, "expected '{' here")) |
| return true; |
| if (Lex.getKind() == lltok::rbrace) |
| return tokError("expected non-empty list of uselistorder indexes"); |
| |
| // Use Offset, Max, and IsOrdered to check consistency of indexes. The |
| // indexes should be distinct numbers in the range [0, size-1], and should |
| // not be in order. |
| unsigned Offset = 0; |
| unsigned Max = 0; |
| bool IsOrdered = true; |
| assert(Indexes.empty() && "Expected empty order vector"); |
| do { |
| unsigned Index; |
| if (parseUInt32(Index)) |
| return true; |
| |
| // Update consistency checks. |
| Offset += Index - Indexes.size(); |
| Max = std::max(Max, Index); |
| IsOrdered &= Index == Indexes.size(); |
| |
| Indexes.push_back(Index); |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rbrace, "expected '}' here")) |
| return true; |
| |
| if (Indexes.size() < 2) |
| return error(Loc, "expected >= 2 uselistorder indexes"); |
| if (Offset != 0 || Max >= Indexes.size()) |
| return error(Loc, |
| "expected distinct uselistorder indexes in range [0, size)"); |
| if (IsOrdered) |
| return error(Loc, "expected uselistorder indexes to change the order"); |
| |
| return false; |
| } |
| |
| /// parseUseListOrder |
| /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes |
| bool LLParser::parseUseListOrder(PerFunctionState *PFS) { |
| SMLoc Loc = Lex.getLoc(); |
| if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) |
| return true; |
| |
| Value *V; |
| SmallVector<unsigned, 16> Indexes; |
| if (parseTypeAndValue(V, PFS) || |
| parseToken(lltok::comma, "expected comma in uselistorder directive") || |
| parseUseListOrderIndexes(Indexes)) |
| return true; |
| |
| return sortUseListOrder(V, Indexes, Loc); |
| } |
| |
| /// parseUseListOrderBB |
| /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes |
| bool LLParser::parseUseListOrderBB() { |
| assert(Lex.getKind() == lltok::kw_uselistorder_bb); |
| SMLoc Loc = Lex.getLoc(); |
| Lex.Lex(); |
| |
| ValID Fn, Label; |
| SmallVector<unsigned, 16> Indexes; |
| if (parseValID(Fn, /*PFS=*/nullptr) || |
| parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || |
| parseValID(Label, /*PFS=*/nullptr) || |
| parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || |
| parseUseListOrderIndexes(Indexes)) |
| return true; |
| |
| // Check the function. |
| GlobalValue *GV; |
| if (Fn.Kind == ValID::t_GlobalName) |
| GV = M->getNamedValue(Fn.StrVal); |
| else if (Fn.Kind == ValID::t_GlobalID) |
| GV = NumberedVals.get(Fn.UIntVal); |
| else |
| return error(Fn.Loc, "expected function name in uselistorder_bb"); |
| if (!GV) |
| return error(Fn.Loc, |
| "invalid function forward reference in uselistorder_bb"); |
| auto *F = dyn_cast<Function>(GV); |
| if (!F) |
| return error(Fn.Loc, "expected function name in uselistorder_bb"); |
| if (F->isDeclaration()) |
| return error(Fn.Loc, "invalid declaration in uselistorder_bb"); |
| |
| // Check the basic block. |
| if (Label.Kind == ValID::t_LocalID) |
| return error(Label.Loc, "invalid numeric label in uselistorder_bb"); |
| if (Label.Kind != ValID::t_LocalName) |
| return error(Label.Loc, "expected basic block name in uselistorder_bb"); |
| Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); |
| if (!V) |
| return error(Label.Loc, "invalid basic block in uselistorder_bb"); |
| if (!isa<BasicBlock>(V)) |
| return error(Label.Loc, "expected basic block in uselistorder_bb"); |
| |
| return sortUseListOrder(V, Indexes, Loc); |
| } |
| |
| /// ModuleEntry |
| /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' |
| /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' |
| bool LLParser::parseModuleEntry(unsigned ID) { |
| assert(Lex.getKind() == lltok::kw_module); |
| Lex.Lex(); |
| |
| std::string Path; |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here") || |
| parseToken(lltok::kw_path, "expected 'path' here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseStringConstant(Path) || |
| parseToken(lltok::comma, "expected ',' here") || |
| parseToken(lltok::kw_hash, "expected 'hash' here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here")) |
| return true; |
| |
| ModuleHash Hash; |
| if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || |
| parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || |
| parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || |
| parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || |
| parseUInt32(Hash[4])) |
| return true; |
| |
| if (parseToken(lltok::rparen, "expected ')' here") || |
| parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| auto ModuleEntry = Index->addModule(Path, Hash); |
| ModuleIdMap[ID] = ModuleEntry->first(); |
| |
| return false; |
| } |
| |
| /// TypeIdEntry |
| /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' |
| bool LLParser::parseTypeIdEntry(unsigned ID) { |
| assert(Lex.getKind() == lltok::kw_typeid); |
| Lex.Lex(); |
| |
| std::string Name; |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here") || |
| parseToken(lltok::kw_name, "expected 'name' here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseStringConstant(Name)) |
| return true; |
| |
| TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); |
| if (parseToken(lltok::comma, "expected ',' here") || |
| parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| // Check if this ID was forward referenced, and if so, update the |
| // corresponding GUIDs. |
| auto FwdRefTIDs = ForwardRefTypeIds.find(ID); |
| if (FwdRefTIDs != ForwardRefTypeIds.end()) { |
| for (auto TIDRef : FwdRefTIDs->second) { |
| assert(!*TIDRef.first && |
| "Forward referenced type id GUID expected to be 0"); |
| *TIDRef.first = GlobalValue::getGUID(Name); |
| } |
| ForwardRefTypeIds.erase(FwdRefTIDs); |
| } |
| |
| return false; |
| } |
| |
| /// TypeIdSummary |
| /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' |
| bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { |
| if (parseToken(lltok::kw_summary, "expected 'summary' here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here") || |
| parseTypeTestResolution(TIS.TTRes)) |
| return true; |
| |
| if (EatIfPresent(lltok::comma)) { |
| // Expect optional wpdResolutions field |
| if (parseOptionalWpdResolutions(TIS.WPDRes)) |
| return true; |
| } |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| return false; |
| } |
| |
| static ValueInfo EmptyVI = |
| ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); |
| |
| /// TypeIdCompatibleVtableEntry |
| /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' |
| /// TypeIdCompatibleVtableInfo |
| /// ')' |
| bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { |
| assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); |
| Lex.Lex(); |
| |
| std::string Name; |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here") || |
| parseToken(lltok::kw_name, "expected 'name' here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseStringConstant(Name)) |
| return true; |
| |
| TypeIdCompatibleVtableInfo &TI = |
| Index->getOrInsertTypeIdCompatibleVtableSummary(Name); |
| if (parseToken(lltok::comma, "expected ',' here") || |
| parseToken(lltok::kw_summary, "expected 'summary' here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here")) |
| return true; |
| |
| IdToIndexMapType IdToIndexMap; |
| // parse each call edge |
| do { |
| uint64_t Offset; |
| if (parseToken(lltok::lparen, "expected '(' here") || |
| parseToken(lltok::kw_offset, "expected 'offset' here") || |
| parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || |
| parseToken(lltok::comma, "expected ',' here")) |
| return true; |
| |
| LocTy Loc = Lex.getLoc(); |
| unsigned GVId; |
| ValueInfo VI; |
| if (parseGVReference(VI, GVId)) |
| return true; |
| |
| // Keep track of the TypeIdCompatibleVtableInfo array index needing a |
| // forward reference. We will save the location of the ValueInfo needing an |
| // update, but can only do so once the std::vector is finalized. |
| if (VI == EmptyVI) |
| IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); |
| TI.push_back({Offset, VI}); |
| |
| if (parseToken(lltok::rparen, "expected ')' in call")) |
| return true; |
| } while (EatIfPresent(lltok::comma)); |
| |
| // Now that the TI vector is finalized, it is safe to save the locations |
| // of any forward GV references that need updating later. |
| for (auto I : IdToIndexMap) { |
| auto &Infos = ForwardRefValueInfos[I.first]; |
| for (auto P : I.second) { |
| assert(TI[P.first].VTableVI == EmptyVI && |
| "Forward referenced ValueInfo expected to be empty"); |
| Infos.emplace_back(&TI[P.first].VTableVI, P.second); |
| } |
| } |
| |
| if (parseToken(lltok::rparen, "expected ')' here") || |
| parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| // Check if this ID was forward referenced, and if so, update the |
| // corresponding GUIDs. |
| auto FwdRefTIDs = ForwardRefTypeIds.find(ID); |
| if (FwdRefTIDs != ForwardRefTypeIds.end()) { |
| for (auto TIDRef : FwdRefTIDs->second) { |
| assert(!*TIDRef.first && |
| "Forward referenced type id GUID expected to be 0"); |
| *TIDRef.first = GlobalValue::getGUID(Name); |
| } |
| ForwardRefTypeIds.erase(FwdRefTIDs); |
| } |
| |
| return false; |
| } |
| |
| /// TypeTestResolution |
| /// ::= 'typeTestRes' ':' '(' 'kind' ':' |
| /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' |
| /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? |
| /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? |
| /// [',' 'inlinesBits' ':' UInt64]? ')' |
| bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { |
| if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here") || |
| parseToken(lltok::kw_kind, "expected 'kind' here") || |
| parseToken(lltok::colon, "expected ':' here")) |
| return true; |
| |
| switch (Lex.getKind()) { |
| case lltok::kw_unknown: |
| TTRes.TheKind = TypeTestResolution::Unknown; |
| break; |
| case lltok::kw_unsat: |
| TTRes.TheKind = TypeTestResolution::Unsat; |
| break; |
| case lltok::kw_byteArray: |
| TTRes.TheKind = TypeTestResolution::ByteArray; |
| break; |
| case lltok::kw_inline: |
| TTRes.TheKind = TypeTestResolution::Inline; |
| break; |
| case lltok::kw_single: |
| TTRes.TheKind = TypeTestResolution::Single; |
| break; |
| case lltok::kw_allOnes: |
| TTRes.TheKind = TypeTestResolution::AllOnes; |
| break; |
| default: |
| return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); |
| } |
| Lex.Lex(); |
| |
| if (parseToken(lltok::comma, "expected ',' here") || |
| parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseUInt32(TTRes.SizeM1BitWidth)) |
| return true; |
| |
| // parse optional fields |
| while (EatIfPresent(lltok::comma)) { |
| switch (Lex.getKind()) { |
| case lltok::kw_alignLog2: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || |
| parseUInt64(TTRes.AlignLog2)) |
| return true; |
| break; |
| case lltok::kw_sizeM1: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) |
| return true; |
| break; |
| case lltok::kw_bitMask: { |
| unsigned Val; |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) |
| return true; |
| assert(Val <= 0xff); |
| TTRes.BitMask = (uint8_t)Val; |
| break; |
| } |
| case lltok::kw_inlineBits: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || |
| parseUInt64(TTRes.InlineBits)) |
| return true; |
| break; |
| default: |
| return error(Lex.getLoc(), "expected optional TypeTestResolution field"); |
| } |
| } |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| return false; |
| } |
| |
| /// OptionalWpdResolutions |
| /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' |
| /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' |
| bool LLParser::parseOptionalWpdResolutions( |
| std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { |
| if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here")) |
| return true; |
| |
| do { |
| uint64_t Offset; |
| WholeProgramDevirtResolution WPDRes; |
| if (parseToken(lltok::lparen, "expected '(' here") || |
| parseToken(lltok::kw_offset, "expected 'offset' here") || |
| parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || |
| parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || |
| parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| WPDResMap[Offset] = WPDRes; |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| return false; |
| } |
| |
| /// WpdRes |
| /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' |
| /// [',' OptionalResByArg]? ')' |
| /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' |
| /// ',' 'singleImplName' ':' STRINGCONSTANT ',' |
| /// [',' OptionalResByArg]? ')' |
| /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' |
| /// [',' OptionalResByArg]? ')' |
| bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { |
| if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here") || |
| parseToken(lltok::kw_kind, "expected 'kind' here") || |
| parseToken(lltok::colon, "expected ':' here")) |
| return true; |
| |
| switch (Lex.getKind()) { |
| case lltok::kw_indir: |
| WPDRes.TheKind = WholeProgramDevirtResolution::Indir; |
| break; |
| case lltok::kw_singleImpl: |
| WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; |
| break; |
| case lltok::kw_branchFunnel: |
| WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; |
| break; |
| default: |
| return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); |
| } |
| Lex.Lex(); |
| |
| // parse optional fields |
| while (EatIfPresent(lltok::comma)) { |
| switch (Lex.getKind()) { |
| case lltok::kw_singleImplName: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseStringConstant(WPDRes.SingleImplName)) |
| return true; |
| break; |
| case lltok::kw_resByArg: |
| if (parseOptionalResByArg(WPDRes.ResByArg)) |
| return true; |
| break; |
| default: |
| return error(Lex.getLoc(), |
| "expected optional WholeProgramDevirtResolution field"); |
| } |
| } |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| return false; |
| } |
| |
| /// OptionalResByArg |
| /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' |
| /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' |
| /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | |
| /// 'virtualConstProp' ) |
| /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? |
| /// [',' 'bit' ':' UInt32]? ')' |
| bool LLParser::parseOptionalResByArg( |
| std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> |
| &ResByArg) { |
| if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here")) |
| return true; |
| |
| do { |
| std::vector<uint64_t> Args; |
| if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || |
| parseToken(lltok::kw_byArg, "expected 'byArg here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here") || |
| parseToken(lltok::kw_kind, "expected 'kind' here") || |
| parseToken(lltok::colon, "expected ':' here")) |
| return true; |
| |
| WholeProgramDevirtResolution::ByArg ByArg; |
| switch (Lex.getKind()) { |
| case lltok::kw_indir: |
| ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; |
| break; |
| case lltok::kw_uniformRetVal: |
| ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; |
| break; |
| case lltok::kw_uniqueRetVal: |
| ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; |
| break; |
| case lltok::kw_virtualConstProp: |
| ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; |
| break; |
| default: |
| return error(Lex.getLoc(), |
| "unexpected WholeProgramDevirtResolution::ByArg kind"); |
| } |
| Lex.Lex(); |
| |
| // parse optional fields |
| while (EatIfPresent(lltok::comma)) { |
| switch (Lex.getKind()) { |
| case lltok::kw_info: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseUInt64(ByArg.Info)) |
| return true; |
| break; |
| case lltok::kw_byte: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseUInt32(ByArg.Byte)) |
| return true; |
| break; |
| case lltok::kw_bit: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseUInt32(ByArg.Bit)) |
| return true; |
| break; |
| default: |
| return error(Lex.getLoc(), |
| "expected optional whole program devirt field"); |
| } |
| } |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| ResByArg[Args] = ByArg; |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| return false; |
| } |
| |
| /// OptionalResByArg |
| /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' |
| bool LLParser::parseArgs(std::vector<uint64_t> &Args) { |
| if (parseToken(lltok::kw_args, "expected 'args' here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here")) |
| return true; |
| |
| do { |
| uint64_t Val; |
| if (parseUInt64(Val)) |
| return true; |
| Args.push_back(Val); |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| return false; |
| } |
| |
| static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; |
| |
| static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { |
| bool ReadOnly = Fwd->isReadOnly(); |
| bool WriteOnly = Fwd->isWriteOnly(); |
| assert(!(ReadOnly && WriteOnly)); |
| *Fwd = Resolved; |
| if (ReadOnly) |
| Fwd->setReadOnly(); |
| if (WriteOnly) |
| Fwd->setWriteOnly(); |
| } |
| |
| /// Stores the given Name/GUID and associated summary into the Index. |
| /// Also updates any forward references to the associated entry ID. |
| bool LLParser::addGlobalValueToIndex( |
| std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, |
| unsigned ID, std::unique_ptr<GlobalValueSummary> Summary, LocTy Loc) { |
| // First create the ValueInfo utilizing the Name or GUID. |
| ValueInfo VI; |
| if (GUID != 0) { |
| assert(Name.empty()); |
| VI = Index->getOrInsertValueInfo(GUID); |
| } else { |
| assert(!Name.empty()); |
| if (M) { |
| auto *GV = M->getNamedValue(Name); |
| if (!GV) |
| return error(Loc, "Reference to undefined global \"" + Name + "\""); |
| |
| VI = Index->getOrInsertValueInfo(GV); |
| } else { |
| assert( |
| (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && |
| "Need a source_filename to compute GUID for local"); |
| GUID = GlobalValue::getGUID( |
| GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); |
| VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); |
| } |
| } |
| |
| // Resolve forward references from calls/refs |
| auto FwdRefVIs = ForwardRefValueInfos.find(ID); |
| if (FwdRefVIs != ForwardRefValueInfos.end()) { |
| for (auto VIRef : FwdRefVIs->second) { |
| assert(VIRef.first->getRef() == FwdVIRef && |
| "Forward referenced ValueInfo expected to be empty"); |
| resolveFwdRef(VIRef.first, VI); |
| } |
| ForwardRefValueInfos.erase(FwdRefVIs); |
| } |
| |
| // Resolve forward references from aliases |
| auto FwdRefAliasees = ForwardRefAliasees.find(ID); |
| if (FwdRefAliasees != ForwardRefAliasees.end()) { |
| for (auto AliaseeRef : FwdRefAliasees->second) { |
| assert(!AliaseeRef.first->hasAliasee() && |
| "Forward referencing alias already has aliasee"); |
| assert(Summary && "Aliasee must be a definition"); |
| AliaseeRef.first->setAliasee(VI, Summary.get()); |
| } |
| ForwardRefAliasees.erase(FwdRefAliasees); |
| } |
| |
| // Add the summary if one was provided. |
| if (Summary) |
| Index->addGlobalValueSummary(VI, std::move(Summary)); |
| |
| // Save the associated ValueInfo for use in later references by ID. |
| if (ID == NumberedValueInfos.size()) |
| NumberedValueInfos.push_back(VI); |
| else { |
| // Handle non-continuous numbers (to make test simplification easier). |
| if (ID > NumberedValueInfos.size()) |
| NumberedValueInfos.resize(ID + 1); |
| NumberedValueInfos[ID] = VI; |
| } |
| |
| return false; |
| } |
| |
| /// parseSummaryIndexFlags |
| /// ::= 'flags' ':' UInt64 |
| bool LLParser::parseSummaryIndexFlags() { |
| assert(Lex.getKind() == lltok::kw_flags); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::colon, "expected ':' here")) |
| return true; |
| uint64_t Flags; |
| if (parseUInt64(Flags)) |
| return true; |
| if (Index) |
| Index->setFlags(Flags); |
| return false; |
| } |
| |
| /// parseBlockCount |
| /// ::= 'blockcount' ':' UInt64 |
| bool LLParser::parseBlockCount() { |
| assert(Lex.getKind() == lltok::kw_blockcount); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::colon, "expected ':' here")) |
| return true; |
| uint64_t BlockCount; |
| if (parseUInt64(BlockCount)) |
| return true; |
| if (Index) |
| Index->setBlockCount(BlockCount); |
| return false; |
| } |
| |
| /// parseGVEntry |
| /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) |
| /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' |
| /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' |
| bool LLParser::parseGVEntry(unsigned ID) { |
| assert(Lex.getKind() == lltok::kw_gv); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here")) |
| return true; |
| |
| LocTy Loc = Lex.getLoc(); |
| std::string Name; |
| GlobalValue::GUID GUID = 0; |
| switch (Lex.getKind()) { |
| case lltok::kw_name: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseStringConstant(Name)) |
| return true; |
| // Can't create GUID/ValueInfo until we have the linkage. |
| break; |
| case lltok::kw_guid: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) |
| return true; |
| break; |
| default: |
| return error(Lex.getLoc(), "expected name or guid tag"); |
| } |
| |
| if (!EatIfPresent(lltok::comma)) { |
| // No summaries. Wrap up. |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| // This was created for a call to an external or indirect target. |
| // A GUID with no summary came from a VALUE_GUID record, dummy GUID |
| // created for indirect calls with VP. A Name with no GUID came from |
| // an external definition. We pass ExternalLinkage since that is only |
| // used when the GUID must be computed from Name, and in that case |
| // the symbol must have external linkage. |
| return addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, |
| nullptr, Loc); |
| } |
| |
| // Have a list of summaries |
| if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here")) |
| return true; |
| do { |
| switch (Lex.getKind()) { |
| case lltok::kw_function: |
| if (parseFunctionSummary(Name, GUID, ID)) |
| return true; |
| break; |
| case lltok::kw_variable: |
| if (parseVariableSummary(Name, GUID, ID)) |
| return true; |
| break; |
| case lltok::kw_alias: |
| if (parseAliasSummary(Name, GUID, ID)) |
| return true; |
| break; |
| default: |
| return error(Lex.getLoc(), "expected summary type"); |
| } |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')' here") || |
| parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| return false; |
| } |
| |
| /// FunctionSummary |
| /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags |
| /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? |
| /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? |
| /// [',' OptionalRefs]? ')' |
| bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, |
| unsigned ID) { |
| LocTy Loc = Lex.getLoc(); |
| assert(Lex.getKind() == lltok::kw_function); |
| Lex.Lex(); |
| |
| StringRef ModulePath; |
| GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( |
| GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, |
| /*NotEligibleToImport=*/false, |
| /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false, |
| GlobalValueSummary::Definition); |
| unsigned InstCount; |
| SmallVector<FunctionSummary::EdgeTy, 0> Calls; |
| FunctionSummary::TypeIdInfo TypeIdInfo; |
| std::vector<FunctionSummary::ParamAccess> ParamAccesses; |
| SmallVector<ValueInfo, 0> Refs; |
| std::vector<CallsiteInfo> Callsites; |
| std::vector<AllocInfo> Allocs; |
| // Default is all-zeros (conservative values). |
| FunctionSummary::FFlags FFlags = {}; |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here") || |
| parseModuleReference(ModulePath) || |
| parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || |
| parseToken(lltok::comma, "expected ',' here") || |
| parseToken(lltok::kw_insts, "expected 'insts' here") || |
| parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) |
| return true; |
| |
| // parse optional fields |
| while (EatIfPresent(lltok::comma)) { |
| switch (Lex.getKind()) { |
| case lltok::kw_funcFlags: |
| if (parseOptionalFFlags(FFlags)) |
| return true; |
| break; |
| case lltok::kw_calls: |
| if (parseOptionalCalls(Calls)) |
| return true; |
| break; |
| case lltok::kw_typeIdInfo: |
| if (parseOptionalTypeIdInfo(TypeIdInfo)) |
| return true; |
| break; |
| case lltok::kw_refs: |
| if (parseOptionalRefs(Refs)) |
| return true; |
| break; |
| case lltok::kw_params: |
| if (parseOptionalParamAccesses(ParamAccesses)) |
| return true; |
| break; |
| case lltok::kw_allocs: |
| if (parseOptionalAllocs(Allocs)) |
| return true; |
| break; |
| case lltok::kw_callsites: |
| if (parseOptionalCallsites(Callsites)) |
| return true; |
| break; |
| default: |
| return error(Lex.getLoc(), "expected optional function summary field"); |
| } |
| } |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| auto FS = std::make_unique<FunctionSummary>( |
| GVFlags, InstCount, FFlags, std::move(Refs), std::move(Calls), |
| std::move(TypeIdInfo.TypeTests), |
| std::move(TypeIdInfo.TypeTestAssumeVCalls), |
| std::move(TypeIdInfo.TypeCheckedLoadVCalls), |
| std::move(TypeIdInfo.TypeTestAssumeConstVCalls), |
| std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), |
| std::move(ParamAccesses), std::move(Callsites), std::move(Allocs)); |
| |
| FS->setModulePath(ModulePath); |
| |
| return addGlobalValueToIndex(Name, GUID, |
| (GlobalValue::LinkageTypes)GVFlags.Linkage, ID, |
| std::move(FS), Loc); |
| } |
| |
| /// VariableSummary |
| /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags |
| /// [',' OptionalRefs]? ')' |
| bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, |
| unsigned ID) { |
| LocTy Loc = Lex.getLoc(); |
| assert(Lex.getKind() == lltok::kw_variable); |
| Lex.Lex(); |
| |
| StringRef ModulePath; |
| GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( |
| GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, |
| /*NotEligibleToImport=*/false, |
| /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false, |
| GlobalValueSummary::Definition); |
| GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, |
| /* WriteOnly */ false, |
| /* Constant */ false, |
| GlobalObject::VCallVisibilityPublic); |
| SmallVector<ValueInfo, 0> Refs; |
| VTableFuncList VTableFuncs; |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here") || |
| parseModuleReference(ModulePath) || |
| parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || |
| parseToken(lltok::comma, "expected ',' here") || |
| parseGVarFlags(GVarFlags)) |
| return true; |
| |
| // parse optional fields |
| while (EatIfPresent(lltok::comma)) { |
| switch (Lex.getKind()) { |
| case lltok::kw_vTableFuncs: |
| if (parseOptionalVTableFuncs(VTableFuncs)) |
| return true; |
| break; |
| case lltok::kw_refs: |
| if (parseOptionalRefs(Refs)) |
| return true; |
| break; |
| default: |
| return error(Lex.getLoc(), "expected optional variable summary field"); |
| } |
| } |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| auto GS = |
| std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); |
| |
| GS->setModulePath(ModulePath); |
| GS->setVTableFuncs(std::move(VTableFuncs)); |
| |
| return addGlobalValueToIndex(Name, GUID, |
| (GlobalValue::LinkageTypes)GVFlags.Linkage, ID, |
| std::move(GS), Loc); |
| } |
| |
| /// AliasSummary |
| /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' |
| /// 'aliasee' ':' GVReference ')' |
| bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, |
| unsigned ID) { |
| assert(Lex.getKind() == lltok::kw_alias); |
| LocTy Loc = Lex.getLoc(); |
| Lex.Lex(); |
| |
| StringRef ModulePath; |
| GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( |
| GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, |
| /*NotEligibleToImport=*/false, |
| /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false, |
| GlobalValueSummary::Definition); |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here") || |
| parseModuleReference(ModulePath) || |
| parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || |
| parseToken(lltok::comma, "expected ',' here") || |
| parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || |
| parseToken(lltok::colon, "expected ':' here")) |
| return true; |
| |
| ValueInfo AliaseeVI; |
| unsigned GVId; |
| if (parseGVReference(AliaseeVI, GVId)) |
| return true; |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| auto AS = std::make_unique<AliasSummary>(GVFlags); |
| |
| AS->setModulePath(ModulePath); |
| |
| // Record forward reference if the aliasee is not parsed yet. |
| if (AliaseeVI.getRef() == FwdVIRef) { |
| ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); |
| } else { |
| auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); |
| assert(Summary && "Aliasee must be a definition"); |
| AS->setAliasee(AliaseeVI, Summary); |
| } |
| |
| return addGlobalValueToIndex(Name, GUID, |
| (GlobalValue::LinkageTypes)GVFlags.Linkage, ID, |
| std::move(AS), Loc); |
| } |
| |
| /// Flag |
| /// ::= [0|1] |
| bool LLParser::parseFlag(unsigned &Val) { |
| if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) |
| return tokError("expected integer"); |
| Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// OptionalFFlags |
| /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? |
| /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? |
| /// [',' 'returnDoesNotAlias' ':' Flag]? ')' |
| /// [',' 'noInline' ':' Flag]? ')' |
| /// [',' 'alwaysInline' ':' Flag]? ')' |
| /// [',' 'noUnwind' ':' Flag]? ')' |
| /// [',' 'mayThrow' ':' Flag]? ')' |
| /// [',' 'hasUnknownCall' ':' Flag]? ')' |
| /// [',' 'mustBeUnreachable' ':' Flag]? ')' |
| |
| bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { |
| assert(Lex.getKind() == lltok::kw_funcFlags); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::colon, "expected ':' in funcFlags") || |
| parseToken(lltok::lparen, "expected '(' in funcFlags")) |
| return true; |
| |
| do { |
| unsigned Val = 0; |
| switch (Lex.getKind()) { |
| case lltok::kw_readNone: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) |
| return true; |
| FFlags.ReadNone = Val; |
| break; |
| case lltok::kw_readOnly: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) |
| return true; |
| FFlags.ReadOnly = Val; |
| break; |
| case lltok::kw_noRecurse: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) |
| return true; |
| FFlags.NoRecurse = Val; |
| break; |
| case lltok::kw_returnDoesNotAlias: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) |
| return true; |
| FFlags.ReturnDoesNotAlias = Val; |
| break; |
| case lltok::kw_noInline: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) |
| return true; |
| FFlags.NoInline = Val; |
| break; |
| case lltok::kw_alwaysInline: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) |
| return true; |
| FFlags.AlwaysInline = Val; |
| break; |
| case lltok::kw_noUnwind: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) |
| return true; |
| FFlags.NoUnwind = Val; |
| break; |
| case lltok::kw_mayThrow: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) |
| return true; |
| FFlags.MayThrow = Val; |
| break; |
| case lltok::kw_hasUnknownCall: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) |
| return true; |
| FFlags.HasUnknownCall = Val; |
| break; |
| case lltok::kw_mustBeUnreachable: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) |
| return true; |
| FFlags.MustBeUnreachable = Val; |
| break; |
| default: |
| return error(Lex.getLoc(), "expected function flag type"); |
| } |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')' in funcFlags")) |
| return true; |
| |
| return false; |
| } |
| |
| /// OptionalCalls |
| /// := 'calls' ':' '(' Call [',' Call]* ')' |
| /// Call ::= '(' 'callee' ':' GVReference |
| /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? |
| /// [ ',' 'tail' ]? ')' |
| bool LLParser::parseOptionalCalls( |
| SmallVectorImpl<FunctionSummary::EdgeTy> &Calls) { |
| assert(Lex.getKind() == lltok::kw_calls); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::colon, "expected ':' in calls") || |
| parseToken(lltok::lparen, "expected '(' in calls")) |
| return true; |
| |
| IdToIndexMapType IdToIndexMap; |
| // parse each call edge |
| do { |
| ValueInfo VI; |
| if (parseToken(lltok::lparen, "expected '(' in call") || |
| parseToken(lltok::kw_callee, "expected 'callee' in call") || |
| parseToken(lltok::colon, "expected ':'")) |
| return true; |
| |
| LocTy Loc = Lex.getLoc(); |
| unsigned GVId; |
| if (parseGVReference(VI, GVId)) |
| return true; |
| |
| CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; |
| unsigned RelBF = 0; |
| unsigned HasTailCall = false; |
| |
| // parse optional fields |
| while (EatIfPresent(lltok::comma)) { |
| switch (Lex.getKind()) { |
| case lltok::kw_hotness: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) |
| return true; |
| break; |
| case lltok::kw_relbf: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) |
| return true; |
| break; |
| case lltok::kw_tail: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseFlag(HasTailCall)) |
| return true; |
| break; |
| default: |
| return error(Lex.getLoc(), "expected hotness, relbf, or tail"); |
| } |
| } |
| if (Hotness != CalleeInfo::HotnessType::Unknown && RelBF > 0) |
| return tokError("Expected only one of hotness or relbf"); |
| // Keep track of the Call array index needing a forward reference. |
| // We will save the location of the ValueInfo needing an update, but |
| // can only do so once the std::vector is finalized. |
| if (VI.getRef() == FwdVIRef) |
| IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); |
| Calls.push_back( |
| FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, HasTailCall, RelBF)}); |
| |
| if (parseToken(lltok::rparen, "expected ')' in call")) |
| return true; |
| } while (EatIfPresent(lltok::comma)); |
| |
| // Now that the Calls vector is finalized, it is safe to save the locations |
| // of any forward GV references that need updating later. |
| for (auto I : IdToIndexMap) { |
| auto &Infos = ForwardRefValueInfos[I.first]; |
| for (auto P : I.second) { |
| assert(Calls[P.first].first.getRef() == FwdVIRef && |
| "Forward referenced ValueInfo expected to be empty"); |
| Infos.emplace_back(&Calls[P.first].first, P.second); |
| } |
| } |
| |
| if (parseToken(lltok::rparen, "expected ')' in calls")) |
| return true; |
| |
| return false; |
| } |
| |
| /// Hotness |
| /// := ('unknown'|'cold'|'none'|'hot'|'critical') |
| bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { |
| switch (Lex.getKind()) { |
| case lltok::kw_unknown: |
| Hotness = CalleeInfo::HotnessType::Unknown; |
| break; |
| case lltok::kw_cold: |
| Hotness = CalleeInfo::HotnessType::Cold; |
| break; |
| case lltok::kw_none: |
| Hotness = CalleeInfo::HotnessType::None; |
| break; |
| case lltok::kw_hot: |
| Hotness = CalleeInfo::HotnessType::Hot; |
| break; |
| case lltok::kw_critical: |
| Hotness = CalleeInfo::HotnessType::Critical; |
| break; |
| default: |
| return error(Lex.getLoc(), "invalid call edge hotness"); |
| } |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// OptionalVTableFuncs |
| /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' |
| /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' |
| bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { |
| assert(Lex.getKind() == lltok::kw_vTableFuncs); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::colon, "expected ':' in vTableFuncs") || |
| parseToken(lltok::lparen, "expected '(' in vTableFuncs")) |
| return true; |
| |
| IdToIndexMapType IdToIndexMap; |
| // parse each virtual function pair |
| do { |
| ValueInfo VI; |
| if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || |
| parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || |
| parseToken(lltok::colon, "expected ':'")) |
| return true; |
| |
| LocTy Loc = Lex.getLoc(); |
| unsigned GVId; |
| if (parseGVReference(VI, GVId)) |
| return true; |
| |
| uint64_t Offset; |
| if (parseToken(lltok::comma, "expected comma") || |
| parseToken(lltok::kw_offset, "expected offset") || |
| parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) |
| return true; |
| |
| // Keep track of the VTableFuncs array index needing a forward reference. |
| // We will save the location of the ValueInfo needing an update, but |
| // can only do so once the std::vector is finalized. |
| if (VI == EmptyVI) |
| IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); |
| VTableFuncs.push_back({VI, Offset}); |
| |
| if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) |
| return true; |
| } while (EatIfPresent(lltok::comma)); |
| |
| // Now that the VTableFuncs vector is finalized, it is safe to save the |
| // locations of any forward GV references that need updating later. |
| for (auto I : IdToIndexMap) { |
| auto &Infos = ForwardRefValueInfos[I.first]; |
| for (auto P : I.second) { |
| assert(VTableFuncs[P.first].FuncVI == EmptyVI && |
| "Forward referenced ValueInfo expected to be empty"); |
| Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); |
| } |
| } |
| |
| if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) |
| return true; |
| |
| return false; |
| } |
| |
| /// ParamNo := 'param' ':' UInt64 |
| bool LLParser::parseParamNo(uint64_t &ParamNo) { |
| if (parseToken(lltok::kw_param, "expected 'param' here") || |
| parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) |
| return true; |
| return false; |
| } |
| |
| /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' |
| bool LLParser::parseParamAccessOffset(ConstantRange &Range) { |
| APSInt Lower; |
| APSInt Upper; |
| auto ParseAPSInt = [&](APSInt &Val) { |
| if (Lex.getKind() != lltok::APSInt) |
| return tokError("expected integer"); |
| Val = Lex.getAPSIntVal(); |
| Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); |
| Val.setIsSigned(true); |
| Lex.Lex(); |
| return false; |
| }; |
| if (parseToken(lltok::kw_offset, "expected 'offset' here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || |
| parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || |
| parseToken(lltok::rsquare, "expected ']' here")) |
| return true; |
| |
| ++Upper; |
| Range = |
| (Lower == Upper && !Lower.isMaxValue()) |
| ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) |
| : ConstantRange(Lower, Upper); |
| |
| return false; |
| } |
| |
| /// ParamAccessCall |
| /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' |
| bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, |
| IdLocListType &IdLocList) { |
| if (parseToken(lltok::lparen, "expected '(' here") || |
| parseToken(lltok::kw_callee, "expected 'callee' here") || |
| parseToken(lltok::colon, "expected ':' here")) |
| return true; |
| |
| unsigned GVId; |
| ValueInfo VI; |
| LocTy Loc = Lex.getLoc(); |
| if (parseGVReference(VI, GVId)) |
| return true; |
| |
| Call.Callee = VI; |
| IdLocList.emplace_back(GVId, Loc); |
| |
| if (parseToken(lltok::comma, "expected ',' here") || |
| parseParamNo(Call.ParamNo) || |
| parseToken(lltok::comma, "expected ',' here") || |
| parseParamAccessOffset(Call.Offsets)) |
| return true; |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| return false; |
| } |
| |
| /// ParamAccess |
| /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' |
| /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' |
| bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, |
| IdLocListType &IdLocList) { |
| if (parseToken(lltok::lparen, "expected '(' here") || |
| parseParamNo(Param.ParamNo) || |
| parseToken(lltok::comma, "expected ',' here") || |
| parseParamAccessOffset(Param.Use)) |
| return true; |
| |
| if (EatIfPresent(lltok::comma)) { |
| if (parseToken(lltok::kw_calls, "expected 'calls' here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here")) |
| return true; |
| do { |
| FunctionSummary::ParamAccess::Call Call; |
| if (parseParamAccessCall(Call, IdLocList)) |
| return true; |
| Param.Calls.push_back(Call); |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| } |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| return false; |
| } |
| |
| /// OptionalParamAccesses |
| /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' |
| bool LLParser::parseOptionalParamAccesses( |
| std::vector<FunctionSummary::ParamAccess> &Params) { |
| assert(Lex.getKind() == lltok::kw_params); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here")) |
| return true; |
| |
| IdLocListType VContexts; |
| size_t CallsNum = 0; |
| do { |
| FunctionSummary::ParamAccess ParamAccess; |
| if (parseParamAccess(ParamAccess, VContexts)) |
| return true; |
| CallsNum += ParamAccess.Calls.size(); |
| assert(VContexts.size() == CallsNum); |
| (void)CallsNum; |
| Params.emplace_back(std::move(ParamAccess)); |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| // Now that the Params is finalized, it is safe to save the locations |
| // of any forward GV references that need updating later. |
| IdLocListType::const_iterator ItContext = VContexts.begin(); |
| for (auto &PA : Params) { |
| for (auto &C : PA.Calls) { |
| if (C.Callee.getRef() == FwdVIRef) |
| ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, |
| ItContext->second); |
| ++ItContext; |
| } |
| } |
| assert(ItContext == VContexts.end()); |
| |
| return false; |
| } |
| |
| /// OptionalRefs |
| /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' |
| bool LLParser::parseOptionalRefs(SmallVectorImpl<ValueInfo> &Refs) { |
| assert(Lex.getKind() == lltok::kw_refs); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::colon, "expected ':' in refs") || |
| parseToken(lltok::lparen, "expected '(' in refs")) |
| return true; |
| |
| struct ValueContext { |
| ValueInfo VI; |
| unsigned GVId; |
| LocTy Loc; |
| }; |
| std::vector<ValueContext> VContexts; |
| // parse each ref edge |
| do { |
| ValueContext VC; |
| VC.Loc = Lex.getLoc(); |
| if (parseGVReference(VC.VI, VC.GVId)) |
| return true; |
| VContexts.push_back(VC); |
| } while (EatIfPresent(lltok::comma)); |
| |
| // Sort value contexts so that ones with writeonly |
| // and readonly ValueInfo are at the end of VContexts vector. |
| // See FunctionSummary::specialRefCounts() |
| llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { |
| return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); |
| }); |
| |
| IdToIndexMapType IdToIndexMap; |
| for (auto &VC : VContexts) { |
| // Keep track of the Refs array index needing a forward reference. |
| // We will save the location of the ValueInfo needing an update, but |
| // can only do so once the std::vector is finalized. |
| if (VC.VI.getRef() == FwdVIRef) |
| IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); |
| Refs.push_back(VC.VI); |
| } |
| |
| // Now that the Refs vector is finalized, it is safe to save the locations |
| // of any forward GV references that need updating later. |
| for (auto I : IdToIndexMap) { |
| auto &Infos = ForwardRefValueInfos[I.first]; |
| for (auto P : I.second) { |
| assert(Refs[P.first].getRef() == FwdVIRef && |
| "Forward referenced ValueInfo expected to be empty"); |
| Infos.emplace_back(&Refs[P.first], P.second); |
| } |
| } |
| |
| if (parseToken(lltok::rparen, "expected ')' in refs")) |
| return true; |
| |
| return false; |
| } |
| |
| /// OptionalTypeIdInfo |
| /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? |
| /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? |
| /// [',' TypeCheckedLoadConstVCalls]? ')' |
| bool LLParser::parseOptionalTypeIdInfo( |
| FunctionSummary::TypeIdInfo &TypeIdInfo) { |
| assert(Lex.getKind() == lltok::kw_typeIdInfo); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' in typeIdInfo")) |
| return true; |
| |
| do { |
| switch (Lex.getKind()) { |
| case lltok::kw_typeTests: |
| if (parseTypeTests(TypeIdInfo.TypeTests)) |
| return true; |
| break; |
| case lltok::kw_typeTestAssumeVCalls: |
| if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, |
| TypeIdInfo.TypeTestAssumeVCalls)) |
| return true; |
| break; |
| case lltok::kw_typeCheckedLoadVCalls: |
| if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, |
| TypeIdInfo.TypeCheckedLoadVCalls)) |
| return true; |
| break; |
| case lltok::kw_typeTestAssumeConstVCalls: |
| if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, |
| TypeIdInfo.TypeTestAssumeConstVCalls)) |
| return true; |
| break; |
| case lltok::kw_typeCheckedLoadConstVCalls: |
| if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, |
| TypeIdInfo.TypeCheckedLoadConstVCalls)) |
| return true; |
| break; |
| default: |
| return error(Lex.getLoc(), "invalid typeIdInfo list type"); |
| } |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) |
| return true; |
| |
| return false; |
| } |
| |
| /// TypeTests |
| /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) |
| /// [',' (SummaryID | UInt64)]* ')' |
| bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { |
| assert(Lex.getKind() == lltok::kw_typeTests); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' in typeIdInfo")) |
| return true; |
| |
| IdToIndexMapType IdToIndexMap; |
| do { |
| GlobalValue::GUID GUID = 0; |
| if (Lex.getKind() == lltok::SummaryID) { |
| unsigned ID = Lex.getUIntVal(); |
| LocTy Loc = Lex.getLoc(); |
| // Keep track of the TypeTests array index needing a forward reference. |
| // We will save the location of the GUID needing an update, but |
| // can only do so once the std::vector is finalized. |
| IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); |
| Lex.Lex(); |
| } else if (parseUInt64(GUID)) |
| return true; |
| TypeTests.push_back(GUID); |
| } while (EatIfPresent(lltok::comma)); |
| |
| // Now that the TypeTests vector is finalized, it is safe to save the |
| // locations of any forward GV references that need updating later. |
| for (auto I : IdToIndexMap) { |
| auto &Ids = ForwardRefTypeIds[I.first]; |
| for (auto P : I.second) { |
| assert(TypeTests[P.first] == 0 && |
| "Forward referenced type id GUID expected to be 0"); |
| Ids.emplace_back(&TypeTests[P.first], P.second); |
| } |
| } |
| |
| if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) |
| return true; |
| |
| return false; |
| } |
| |
| /// VFuncIdList |
| /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' |
| bool LLParser::parseVFuncIdList( |
| lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { |
| assert(Lex.getKind() == Kind); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here")) |
| return true; |
| |
| IdToIndexMapType IdToIndexMap; |
| do { |
| FunctionSummary::VFuncId VFuncId; |
| if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) |
| return true; |
| VFuncIdList.push_back(VFuncId); |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| // Now that the VFuncIdList vector is finalized, it is safe to save the |
| // locations of any forward GV references that need updating later. |
| for (auto I : IdToIndexMap) { |
| auto &Ids = ForwardRefTypeIds[I.first]; |
| for (auto P : I.second) { |
| assert(VFuncIdList[P.first].GUID == 0 && |
| "Forward referenced type id GUID expected to be 0"); |
| Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// ConstVCallList |
| /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' |
| bool LLParser::parseConstVCallList( |
| lltok::Kind Kind, |
| std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { |
| assert(Lex.getKind() == Kind); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here")) |
| return true; |
| |
| IdToIndexMapType IdToIndexMap; |
| do { |
| FunctionSummary::ConstVCall ConstVCall; |
| if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) |
| return true; |
| ConstVCallList.push_back(ConstVCall); |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| // Now that the ConstVCallList vector is finalized, it is safe to save the |
| // locations of any forward GV references that need updating later. |
| for (auto I : IdToIndexMap) { |
| auto &Ids = ForwardRefTypeIds[I.first]; |
| for (auto P : I.second) { |
| assert(ConstVCallList[P.first].VFunc.GUID == 0 && |
| "Forward referenced type id GUID expected to be 0"); |
| Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// ConstVCall |
| /// ::= '(' VFuncId ',' Args ')' |
| bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, |
| IdToIndexMapType &IdToIndexMap, unsigned Index) { |
| if (parseToken(lltok::lparen, "expected '(' here") || |
| parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) |
| return true; |
| |
| if (EatIfPresent(lltok::comma)) |
| if (parseArgs(ConstVCall.Args)) |
| return true; |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| return false; |
| } |
| |
| /// VFuncId |
| /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' |
| /// 'offset' ':' UInt64 ')' |
| bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, |
| IdToIndexMapType &IdToIndexMap, unsigned Index) { |
| assert(Lex.getKind() == lltok::kw_vFuncId); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here")) |
| return true; |
| |
| if (Lex.getKind() == lltok::SummaryID) { |
| VFuncId.GUID = 0; |
| unsigned ID = Lex.getUIntVal(); |
| LocTy Loc = Lex.getLoc(); |
| // Keep track of the array index needing a forward reference. |
| // We will save the location of the GUID needing an update, but |
| // can only do so once the caller's std::vector is finalized. |
| IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); |
| Lex.Lex(); |
| } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseUInt64(VFuncId.GUID)) |
| return true; |
| |
| if (parseToken(lltok::comma, "expected ',' here") || |
| parseToken(lltok::kw_offset, "expected 'offset' here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseUInt64(VFuncId.Offset) || |
| parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| return false; |
| } |
| |
| /// GVFlags |
| /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' |
| /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' |
| /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' |
| /// 'canAutoHide' ':' Flag ',' ')' |
| bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { |
| assert(Lex.getKind() == lltok::kw_flags); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here")) |
| return true; |
| |
| do { |
| unsigned Flag = 0; |
| switch (Lex.getKind()) { |
| case lltok::kw_linkage: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'")) |
| return true; |
| bool HasLinkage; |
| GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); |
| assert(HasLinkage && "Linkage not optional in summary entry"); |
| Lex.Lex(); |
| break; |
| case lltok::kw_visibility: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'")) |
| return true; |
| parseOptionalVisibility(Flag); |
| GVFlags.Visibility = Flag; |
| break; |
| case lltok::kw_notEligibleToImport: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) |
| return true; |
| GVFlags.NotEligibleToImport = Flag; |
| break; |
| case lltok::kw_live: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) |
| return true; |
| GVFlags.Live = Flag; |
| break; |
| case lltok::kw_dsoLocal: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) |
| return true; |
| GVFlags.DSOLocal = Flag; |
| break; |
| case lltok::kw_canAutoHide: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) |
| return true; |
| GVFlags.CanAutoHide = Flag; |
| break; |
| case lltok::kw_importType: |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'")) |
| return true; |
| GlobalValueSummary::ImportKind IK; |
| if (parseOptionalImportType(Lex.getKind(), IK)) |
| return true; |
| GVFlags.ImportType = static_cast<unsigned>(IK); |
| Lex.Lex(); |
| break; |
| default: |
| return error(Lex.getLoc(), "expected gv flag type"); |
| } |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')' here")) |
| return true; |
| |
| return false; |
| } |
| |
| /// GVarFlags |
| /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag |
| /// ',' 'writeonly' ':' Flag |
| /// ',' 'constant' ':' Flag ')' |
| bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { |
| assert(Lex.getKind() == lltok::kw_varFlags); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::lparen, "expected '(' here")) |
| return true; |
| |
| auto ParseRest = [this](unsigned int &Val) { |
| Lex.Lex(); |
| if (parseToken(lltok::colon, "expected ':'")) |
| return true; |
| return parseFlag(Val); |
| }; |
| |
| do { |
| unsigned Flag = 0; |
| switch (Lex.getKind()) { |
| case lltok::kw_readonly: |
| if (ParseRest(Flag)) |
| return true; |
| GVarFlags.MaybeReadOnly = Flag; |
| break; |
| case lltok::kw_writeonly: |
| if (ParseRest(Flag)) |
| return true; |
| GVarFlags.MaybeWriteOnly = Flag; |
| break; |
| case lltok::kw_constant: |
| if (ParseRest(Flag)) |
| return true; |
| GVarFlags.Constant = Flag; |
| break; |
| case lltok::kw_vcall_visibility: |
| if (ParseRest(Flag)) |
| return true; |
| GVarFlags.VCallVisibility = Flag; |
| break; |
| default: |
| return error(Lex.getLoc(), "expected gvar flag type"); |
| } |
| } while (EatIfPresent(lltok::comma)); |
| return parseToken(lltok::rparen, "expected ')' here"); |
| } |
| |
| /// ModuleReference |
| /// ::= 'module' ':' UInt |
| bool LLParser::parseModuleReference(StringRef &ModulePath) { |
| // parse module id. |
| if (parseToken(lltok::kw_module, "expected 'module' here") || |
| parseToken(lltok::colon, "expected ':' here") || |
| parseToken(lltok::SummaryID, "expected module ID")) |
| return true; |
| |
| unsigned ModuleID = Lex.getUIntVal(); |
| auto I = ModuleIdMap.find(ModuleID); |
| // We should have already parsed all module IDs |
| assert(I != ModuleIdMap.end()); |
| ModulePath = I->second; |
| return false; |
| } |
| |
| /// GVReference |
| /// ::= SummaryID |
| bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { |
| bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); |
| if (!ReadOnly) |
| WriteOnly = EatIfPresent(lltok::kw_writeonly); |
| if (parseToken(lltok::SummaryID, "expected GV ID")) |
| return true; |
| |
| GVId = Lex.getUIntVal(); |
| // Check if we already have a VI for this GV |
| if (GVId < NumberedValueInfos.size() && NumberedValueInfos[GVId]) { |
| assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); |
| VI = NumberedValueInfos[GVId]; |
| } else |
| // We will create a forward reference to the stored location. |
| VI = ValueInfo(false, FwdVIRef); |
| |
| if (ReadOnly) |
| VI.setReadOnly(); |
| if (WriteOnly) |
| VI.setWriteOnly(); |
| return false; |
| } |
| |
| /// OptionalAllocs |
| /// := 'allocs' ':' '(' Alloc [',' Alloc]* ')' |
| /// Alloc ::= '(' 'versions' ':' '(' Version [',' Version]* ')' |
| /// ',' MemProfs ')' |
| /// Version ::= UInt32 |
| bool LLParser::parseOptionalAllocs(std::vector<AllocInfo> &Allocs) { |
| assert(Lex.getKind() == lltok::kw_allocs); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::colon, "expected ':' in allocs") || |
| parseToken(lltok::lparen, "expected '(' in allocs")) |
| return true; |
| |
| // parse each alloc |
| do { |
| if (parseToken(lltok::lparen, "expected '(' in alloc") || |
| parseToken(lltok::kw_versions, "expected 'versions' in alloc") || |
| parseToken(lltok::colon, "expected ':'") || |
| parseToken(lltok::lparen, "expected '(' in versions")) |
| return true; |
| |
| SmallVector<uint8_t> Versions; |
| do { |
| uint8_t V = 0; |
| if (parseAllocType(V)) |
| return true; |
| Versions.push_back(V); |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')' in versions") || |
| parseToken(lltok::comma, "expected ',' in alloc")) |
| return true; |
| |
| std::vector<MIBInfo> MIBs; |
| if (parseMemProfs(MIBs)) |
| return true; |
| |
| Allocs.push_back({Versions, MIBs}); |
| |
| if (parseToken(lltok::rparen, "expected ')' in alloc")) |
| return true; |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')' in allocs")) |
| return true; |
| |
| return false; |
| } |
| |
| /// MemProfs |
| /// := 'memProf' ':' '(' MemProf [',' MemProf]* ')' |
| /// MemProf ::= '(' 'type' ':' AllocType |
| /// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')' |
| /// StackId ::= UInt64 |
| bool LLParser::parseMemProfs(std::vector<MIBInfo> &MIBs) { |
| assert(Lex.getKind() == lltok::kw_memProf); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::colon, "expected ':' in memprof") || |
| parseToken(lltok::lparen, "expected '(' in memprof")) |
| return true; |
| |
| // parse each MIB |
| do { |
| if (parseToken(lltok::lparen, "expected '(' in memprof") || |
| parseToken(lltok::kw_type, "expected 'type' in memprof") || |
| parseToken(lltok::colon, "expected ':'")) |
| return true; |
| |
| uint8_t AllocType; |
| if (parseAllocType(AllocType)) |
| return true; |
| |
| if (parseToken(lltok::comma, "expected ',' in memprof") || |
| parseToken(lltok::kw_stackIds, "expected 'stackIds' in memprof") || |
| parseToken(lltok::colon, "expected ':'") || |
| parseToken(lltok::lparen, "expected '(' in stackIds")) |
| return true; |
| |
| SmallVector<unsigned> StackIdIndices; |
| do { |
| uint64_t StackId = 0; |
| if (parseUInt64(StackId)) |
| return true; |
| StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId)); |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')' in stackIds")) |
| return true; |
| |
| MIBs.push_back({(AllocationType)AllocType, StackIdIndices}); |
| |
| if (parseToken(lltok::rparen, "expected ')' in memprof")) |
| return true; |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')' in memprof")) |
| return true; |
| |
| return false; |
| } |
| |
| /// AllocType |
| /// := ('none'|'notcold'|'cold'|'hot') |
| bool LLParser::parseAllocType(uint8_t &AllocType) { |
| switch (Lex.getKind()) { |
| case lltok::kw_none: |
| AllocType = (uint8_t)AllocationType::None; |
| break; |
| case lltok::kw_notcold: |
| AllocType = (uint8_t)AllocationType::NotCold; |
| break; |
| case lltok::kw_cold: |
| AllocType = (uint8_t)AllocationType::Cold; |
| break; |
| case lltok::kw_hot: |
| AllocType = (uint8_t)AllocationType::Hot; |
| break; |
| default: |
| return error(Lex.getLoc(), "invalid alloc type"); |
| } |
| Lex.Lex(); |
| return false; |
| } |
| |
| /// OptionalCallsites |
| /// := 'callsites' ':' '(' Callsite [',' Callsite]* ')' |
| /// Callsite ::= '(' 'callee' ':' GVReference |
| /// ',' 'clones' ':' '(' Version [',' Version]* ')' |
| /// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')' |
| /// Version ::= UInt32 |
| /// StackId ::= UInt64 |
| bool LLParser::parseOptionalCallsites(std::vector<CallsiteInfo> &Callsites) { |
| assert(Lex.getKind() == lltok::kw_callsites); |
| Lex.Lex(); |
| |
| if (parseToken(lltok::colon, "expected ':' in callsites") || |
| parseToken(lltok::lparen, "expected '(' in callsites")) |
| return true; |
| |
| IdToIndexMapType IdToIndexMap; |
| // parse each callsite |
| do { |
| if (parseToken(lltok::lparen, "expected '(' in callsite") || |
| parseToken(lltok::kw_callee, "expected 'callee' in callsite") || |
| parseToken(lltok::colon, "expected ':'")) |
| return true; |
| |
| ValueInfo VI; |
| unsigned GVId = 0; |
| LocTy Loc = Lex.getLoc(); |
| if (!EatIfPresent(lltok::kw_null)) { |
| if (parseGVReference(VI, GVId)) |
| return true; |
| } |
| |
| if (parseToken(lltok::comma, "expected ',' in callsite") || |
| parseToken(lltok::kw_clones, "expected 'clones' in callsite") || |
| parseToken(lltok::colon, "expected ':'") || |
| parseToken(lltok::lparen, "expected '(' in clones")) |
| return true; |
| |
| SmallVector<unsigned> Clones; |
| do { |
| unsigned V = 0; |
| if (parseUInt32(V)) |
| return true; |
| Clones.push_back(V); |
| } while (EatIfPresent(lltok::comma)); |
| |
| if (parseToken(lltok::rparen, "expected ')' in clones") || |
| parseToken(lltok::comma, "expected ',' in callsite") || |
| parseToken(lltok::kw_stackIds, "expected 'stackIds' in callsite") || |
| parseToken(lltok::colon, "expected ':'") || |
| parseToken(lltok::lparen, "expected '(' in stackIds")) |
| return true; |
| |
| SmallVector<unsigned> StackIdIndices; |
| // Synthesized callsite records will not have a stack id list. |
| if (Lex.getKind() != lltok::rparen) { |
| do { |
| uint64_t StackId = 0; |
| if (parseUInt64(StackId)) |
| return true; |
| StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId)); |
| } while (EatIfPresent(lltok::comma)); |
| } |
| |
| if (parseToken(lltok::rparen, "expected ')' in stackIds")) |
| return true; |
| |
| // Keep track of the Callsites array index needing a forward reference. |
| // We will save the location of the ValueInfo needing an update, but |
| // can only do so once the SmallVector is finalized. |
| if (VI.getRef() == FwdVIRef) |
| IdToIndexMap[GVId].push_back(std::make_pair(Callsites.size(), Loc)); |
| Callsites.push_back({VI, Clones, StackIdIndices}); |
| |
| if (parseToken(lltok::rparen, "expected ')' in callsite")) |
| return true; |
| } while (EatIfPresent(lltok::comma)); |
| |
| // Now that the Callsites vector is finalized, it is safe to save the |
| // locations of any forward GV references that need updating later. |
| for (auto I : IdToIndexMap) { |
| auto &Infos = ForwardRefValueInfos[I.first]; |
| for (auto P : I.second) { |
| assert(Callsites[P.first].Callee.getRef() == FwdVIRef && |
| "Forward referenced ValueInfo expected to be empty"); |
| Infos.emplace_back(&Callsites[P.first].Callee, P.second); |
| } |
| } |
| |
| if (parseToken(lltok::rparen, "expected ')' in callsites")) |
| return true; |
| |
| return false; |
| } |