| # RUN: env SUPPORT_LIB=%mlir_c_runner_utils \ |
| # RUN: %PYTHON %s | FileCheck %s |
| |
| import ctypes |
| import numpy as np |
| import os |
| import sys |
| |
| from mlir import ir |
| from mlir import runtime as rt |
| |
| from mlir.dialects import sparse_tensor as st |
| from mlir.dialects import builtin |
| from mlir.dialects import func |
| from mlir.dialects.linalg.opdsl import lang as dsl |
| |
| _SCRIPT_PATH = os.path.dirname(os.path.abspath(__file__)) |
| sys.path.append(_SCRIPT_PATH) |
| from tools import sparsifier |
| |
| |
| @dsl.linalg_structured_op |
| def sddmm_dsl( |
| A=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.K), |
| B=dsl.TensorDef(dsl.T, dsl.S.K, dsl.S.N), |
| S=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N), |
| C=dsl.TensorDef(dsl.T, dsl.S.M, dsl.S.N, output=True), |
| ): |
| C[dsl.D.m, dsl.D.n] += ( |
| S[dsl.D.m, dsl.D.n] * A[dsl.D.m, dsl.D.k] * B[dsl.D.k, dsl.D.n] |
| ) |
| |
| |
| def build_SDDMM(attr: st.EncodingAttr): |
| """Build SDDMM kernel. |
| |
| This method generates a linalg op with for matrix multiplication using |
| just the Python API. Effectively, a generic linalg op is constructed |
| that computes C(i,j) += S(i,j) SUM_k A(i,k) B(k,j) for sparse S. |
| """ |
| module = ir.Module.create() |
| f64 = ir.F64Type.get() |
| a = ir.RankedTensorType.get([8, 8], f64) |
| b = ir.RankedTensorType.get([8, 8], f64) |
| c = ir.RankedTensorType.get([8, 8], f64) |
| s = ir.RankedTensorType.get([8, 8], f64, attr) |
| arguments = [a, b, s, c] |
| with ir.InsertionPoint(module.body): |
| |
| @func.FuncOp.from_py_func(*arguments) |
| def sddmm(*args): |
| return sddmm_dsl(args[0], args[1], args[2], outs=[args[3]]) |
| |
| return module |
| |
| |
| def boilerplate(attr: st.EncodingAttr): |
| """Returns boilerplate code for main driver.""" |
| return f""" |
| func.func @main(%a: tensor<8x8xf64>, |
| %b: tensor<8x8xf64>, |
| %c: tensor<8x8xf64>) -> tensor<8x8xf64> attributes {{ llvm.emit_c_interface }} {{ |
| %t = arith.constant sparse<[[0,0], [0,2], [4,1]], [1.0, 2.0, 3.0]> : tensor<8x8xf64> |
| %s = sparse_tensor.convert %t : tensor<8x8xf64> to tensor<8x8xf64, {attr}> |
| %0 = call @sddmm(%a, %b, %s, %c) : (tensor<8x8xf64>, |
| tensor<8x8xf64>, |
| tensor<8x8xf64, {attr}>, |
| tensor<8x8xf64>) -> tensor<8x8xf64> |
| return %0 : tensor<8x8xf64> |
| }} |
| """ |
| |
| |
| def build_compile_and_run_SDDMMM(attr: st.EncodingAttr, compiler): |
| # Build. |
| module = build_SDDMM(attr) |
| func = str(module.operation.regions[0].blocks[0].operations[0].operation) |
| module = ir.Module.parse(func + boilerplate(attr)) |
| |
| # Compile. |
| engine = compiler.compile_and_jit(module) |
| |
| # Set up numpy input and buffer for output. |
| a = np.array( |
| [ |
| [1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 8.1], |
| [1.2, 2.2, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2], |
| [1.3, 2.3, 3.3, 4.3, 5.3, 6.3, 7.3, 8.3], |
| [1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 8.4], |
| [1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5], |
| [1.6, 2.6, 3.6, 4.6, 5.6, 6.6, 7.6, 8.6], |
| [1.7, 2.7, 3.7, 4.7, 5.7, 6.7, 7.7, 8.7], |
| [1.8, 2.8, 3.8, 4.8, 5.8, 6.8, 7.8, 8.8], |
| ], |
| np.float64, |
| ) |
| b = np.ones((8, 8), np.float64) |
| c = np.zeros((8, 8), np.float64) |
| |
| mem_a = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(a))) |
| mem_b = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(b))) |
| mem_c = ctypes.pointer(ctypes.pointer(rt.get_ranked_memref_descriptor(c))) |
| |
| # Allocate a MemRefDescriptor to receive the output tensor. |
| # The buffer itself is allocated inside the MLIR code generation. |
| ref_out = rt.make_nd_memref_descriptor(2, ctypes.c_double)() |
| mem_out = ctypes.pointer(ctypes.pointer(ref_out)) |
| |
| # Invoke the kernel and get numpy output. |
| # Built-in bufferization uses in-out buffers. |
| engine.invoke("main", mem_out, mem_a, mem_b, mem_c) |
| |
| # Sanity check on computed result. Only a few elements |
| # are sampled from the full dense matrix multiplication. |
| full_matmul = np.matmul(a, b) |
| expected = np.zeros((8, 8), np.float64) |
| expected[0, 0] = 1.0 * full_matmul[0, 0] |
| expected[0, 2] = 2.0 * full_matmul[0, 2] |
| expected[4, 1] = 3.0 * full_matmul[4, 1] |
| c = rt.ranked_memref_to_numpy(mem_out[0]) |
| if np.allclose(c, expected): |
| pass |
| else: |
| quit(f"FAILURE") |
| |
| |
| def main(): |
| support_lib = os.getenv("SUPPORT_LIB") |
| assert support_lib is not None, "SUPPORT_LIB is undefined" |
| if not os.path.exists(support_lib): |
| raise FileNotFoundError(errno.ENOENT, os.strerror(errno.ENOENT), support_lib) |
| |
| # CHECK-LABEL: TEST: testSDDMMM |
| print("\nTEST: testSDDMMM") |
| count = 0 |
| with ir.Context() as ctx, ir.Location.unknown(): |
| # Loop over various ways to compile and annotate the SDDMM kernel with |
| # a *single* sparse tensor. Note that we deliberate do not exhaustively |
| # search the full state space to reduce runtime of the test. It is |
| # straightforward to adapt the code below to explore more combinations. |
| # For these simple orderings, dim2lvl and lvl2dim are the same. |
| builder = st.EncodingAttr.build_level_type |
| fmt = st.LevelFormat |
| prop = st.LevelProperty |
| levels = [ |
| [builder(fmt.compressed, [prop.non_unique]), builder(fmt.singleton)], |
| [builder(fmt.dense), builder(fmt.dense)], |
| [builder(fmt.dense), builder(fmt.compressed)], |
| [builder(fmt.compressed), builder(fmt.dense)], |
| [builder(fmt.compressed), builder(fmt.compressed)], |
| ] |
| orderings = [ |
| ir.AffineMap.get_permutation([0, 1]), |
| ir.AffineMap.get_permutation([1, 0]), |
| ] |
| for level in levels: |
| for ordering in orderings: |
| for pwidth in [32]: |
| for iwidth in [32]: |
| for e in [True]: |
| attr = st.EncodingAttr.get( |
| level, ordering, ordering, pwidth, iwidth |
| ) |
| opt = f"parallelization-strategy=none" |
| compiler = sparsifier.Sparsifier( |
| extras="", |
| options=opt, |
| opt_level=0, |
| shared_libs=[support_lib], |
| ) |
| build_compile_and_run_SDDMMM(attr, compiler) |
| count = count + 1 |
| # CHECK: Passed 10 tests |
| print("Passed ", count, "tests") |
| |
| |
| if __name__ == "__main__": |
| main() |