| // NOTE: this test requires gpu-sm80 |
| // |
| // DEFINE: %{compile} = mlir-opt %s \ |
| // DEFINE: --sparsifier="enable-gpu-libgen gpu-triple=nvptx64-nvidia-cuda gpu-chip=sm_80 gpu-features=+ptx71 gpu-format=%gpu_compilation_format |
| // DEFINE: %{run} = mlir-cpu-runner \ |
| // DEFINE: --shared-libs=%mlir_cuda_runtime \ |
| // DEFINE: --shared-libs=%mlir_c_runner_utils \ |
| // DEFINE: --e main --entry-point-result=void \ |
| // DEFINE: | FileCheck %s |
| // |
| // with RT lib (SoA COO): |
| // |
| // RUN: %{compile} enable-runtime-library=true" | %{run} |
| // |
| // without RT lib (AoS COO): note, may fall back to CPU |
| // |
| // RUN: %{compile} enable-runtime-library=false" | %{run} |
| |
| #SortedCOO = #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton) |
| }> |
| |
| #CSR = #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d0 : dense, d1 : compressed), |
| posWidth = 32, |
| crdWidth = 32 |
| }> |
| |
| #CSC = #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d1 : dense, d0 : compressed), |
| posWidth = 64, |
| crdWidth = 64 |
| }> |
| |
| module { |
| llvm.func @mgpuCreateSparseEnv() |
| llvm.func @mgpuDestroySparseEnv() |
| |
| // Compute matrix vector y = Ax on COO with default index coordinates. |
| func.func @matvecCOO(%A: tensor<?x?xf64, #SortedCOO>, %x: tensor<?xf64>, %y_in: tensor<?xf64>) -> tensor<?xf64> { |
| %y_out = linalg.matvec |
| ins(%A, %x: tensor<?x?xf64, #SortedCOO>, tensor<?xf64>) |
| outs(%y_in: tensor<?xf64>) -> tensor<?xf64> |
| return %y_out : tensor<?xf64> |
| } |
| |
| // Compute matrix vector y = Ax on CSR with 32-bit positions and coordinates. |
| func.func @matvecCSR(%A: tensor<?x?xf64, #CSR>, %x: tensor<?xf64>, %y_in: tensor<?xf64>) -> tensor<?xf64> { |
| %y_out = linalg.matvec |
| ins(%A, %x: tensor<?x?xf64, #CSR>, tensor<?xf64>) |
| outs(%y_in: tensor<?xf64>) -> tensor<?xf64> |
| return %y_out : tensor<?xf64> |
| } |
| |
| // Compute matrix vector y = Ax on CSC with 64-bit positions and coordinates. |
| func.func @matvecCSC(%A: tensor<?x?xf64, #CSC>, %x: tensor<?xf64>, %y_in: tensor<?xf64>) -> tensor<?xf64> { |
| %y_out = linalg.matvec |
| ins(%A, %x: tensor<?x?xf64, #CSC>, tensor<?xf64>) |
| outs(%y_in: tensor<?xf64>) -> tensor<?xf64> |
| return %y_out : tensor<?xf64> |
| } |
| |
| func.func @main() { |
| llvm.call @mgpuCreateSparseEnv() : () -> () |
| %f0 = arith.constant 0.0 : f64 |
| %f1 = arith.constant 1.0 : f64 |
| %c0 = arith.constant 0 : index |
| %c1 = arith.constant 1 : index |
| |
| // Stress test with a dense matrix DA. |
| %DA = tensor.generate { |
| ^bb0(%i: index, %j: index): |
| %k = arith.addi %i, %j : index |
| %l = arith.index_cast %k : index to i64 |
| %f = arith.uitofp %l : i64 to f64 |
| tensor.yield %f : f64 |
| } : tensor<64x64xf64> |
| |
| // Convert to a "sparse" m x n matrix A. |
| %Acoo = sparse_tensor.convert %DA : tensor<64x64xf64> to tensor<?x?xf64, #SortedCOO> |
| %Acsr = sparse_tensor.convert %DA : tensor<64x64xf64> to tensor<?x?xf64, #CSR> |
| %Acsc = sparse_tensor.convert %DA : tensor<64x64xf64> to tensor<?x?xf64, #CSC> |
| |
| // Initialize dense vector with n elements: |
| // (1, 2, 3, 4, ..., n) |
| %d1 = tensor.dim %Acoo, %c1 : tensor<?x?xf64, #SortedCOO> |
| %x = tensor.generate %d1 { |
| ^bb0(%i : index): |
| %k = arith.addi %i, %c1 : index |
| %j = arith.index_cast %k : index to i64 |
| %f = arith.uitofp %j : i64 to f64 |
| tensor.yield %f : f64 |
| } : tensor<?xf64> |
| |
| // Initialize dense vectors to m zeros and m ones. |
| %d0 = tensor.dim %Acoo, %c0 : tensor<?x?xf64, #SortedCOO> |
| %y0 = tensor.generate %d0 { |
| ^bb0(%i : index): |
| tensor.yield %f0 : f64 |
| } : tensor<?xf64> |
| %y1 = tensor.generate %d0 { |
| ^bb0(%i : index): |
| tensor.yield %f1 : f64 |
| } : tensor<?xf64> |
| |
| // Call the kernels. |
| %0 = call @matvecCOO(%Acoo, %x, %y0) : (tensor<?x?xf64, #SortedCOO>, |
| tensor<?xf64>, |
| tensor<?xf64>) -> tensor<?xf64> |
| %1 = call @matvecCSR(%Acsr, %x, %y0) : (tensor<?x?xf64, #CSR>, |
| tensor<?xf64>, |
| tensor<?xf64>) -> tensor<?xf64> |
| %2 = call @matvecCSC(%Acsc, %x, %y0) : (tensor<?x?xf64, #CSC>, |
| tensor<?xf64>, |
| tensor<?xf64>) -> tensor<?xf64> |
| %3 = call @matvecCOO(%Acoo, %x, %y1) : (tensor<?x?xf64, #SortedCOO>, |
| tensor<?xf64>, |
| tensor<?xf64>) -> tensor<?xf64> |
| %4 = call @matvecCSR(%Acsr, %x, %y1) : (tensor<?x?xf64, #CSR>, |
| tensor<?xf64>, |
| tensor<?xf64>) -> tensor<?xf64> |
| %5 = call @matvecCSC(%Acsc, %x, %y1) : (tensor<?x?xf64, #CSC>, |
| tensor<?xf64>, |
| tensor<?xf64>) -> tensor<?xf64> |
| |
| // |
| // Sanity check on the results. |
| // |
| // CHECK-COUNT-3: ( 87360, 89440, 91520, 93600, 95680, 97760, 99840, 101920, 104000, 106080, 108160, 110240, 112320, 114400, 116480, 118560, 120640, 122720, 124800, 126880, 128960, 131040, 133120, 135200, 137280, 139360, 141440, 143520, 145600, 147680, 149760, 151840, 153920, 156000, 158080, 160160, 162240, 164320, 166400, 168480, 170560, 172640, 174720, 176800, 178880, 180960, 183040, 185120, 187200, 189280, 191360, 193440, 195520, 197600, 199680, 201760, 203840, 205920, 208000, 210080, 212160, 214240, 216320, 218400 ) |
| // |
| // CHECK-COUNT-3: ( 87361, 89441, 91521, 93601, 95681, 97761, 99841, 101921, 104001, 106081, 108161, 110241, 112321, 114401, 116481, 118561, 120641, 122721, 124801, 126881, 128961, 131041, 133121, 135201, 137281, 139361, 141441, 143521, 145601, 147681, 149761, 151841, 153921, 156001, 158081, 160161, 162241, 164321, 166401, 168481, 170561, 172641, 174721, 176801, 178881, 180961, 183041, 185121, 187201, 189281, 191361, 193441, 195521, 197601, 199681, 201761, 203841, 205921, 208001, 210081, 212161, 214241, 216321, 218401 ) |
| // |
| %pb0 = vector.transfer_read %0[%c0], %f0 : tensor<?xf64>, vector<64xf64> |
| vector.print %pb0 : vector<64xf64> |
| %pb1 = vector.transfer_read %1[%c0], %f0 : tensor<?xf64>, vector<64xf64> |
| vector.print %pb1 : vector<64xf64> |
| %pb2 = vector.transfer_read %2[%c0], %f0 : tensor<?xf64>, vector<64xf64> |
| vector.print %pb2 : vector<64xf64> |
| %pb3 = vector.transfer_read %3[%c0], %f0 : tensor<?xf64>, vector<64xf64> |
| vector.print %pb3 : vector<64xf64> |
| %pb4 = vector.transfer_read %4[%c0], %f0 : tensor<?xf64>, vector<64xf64> |
| vector.print %pb4 : vector<64xf64> |
| %pb5 = vector.transfer_read %5[%c0], %f0 : tensor<?xf64>, vector<64xf64> |
| vector.print %pb5 : vector<64xf64> |
| |
| // Release the resources. |
| bufferization.dealloc_tensor %Acoo : tensor<?x?xf64, #SortedCOO> |
| bufferization.dealloc_tensor %Acsr : tensor<?x?xf64, #CSR> |
| bufferization.dealloc_tensor %Acsc : tensor<?x?xf64, #CSC> |
| |
| llvm.call @mgpuDestroySparseEnv() : () -> () |
| return |
| } |
| } |