| //-------------------------------------------------------------------------------------------------- |
| // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. |
| // |
| // Set-up that's shared across all tests in this directory. In principle, this |
| // config could be moved to lit.local.cfg. However, there are downstream users that |
| // do not use these LIT config files. Hence why this is kept inline. |
| // |
| // DEFINE: %{sparsifier_opts} = enable-runtime-library=true |
| // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} |
| // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" |
| // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" |
| // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils |
| // DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils |
| // DEFINE: %{run_opts} = -e main -entry-point-result=void |
| // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} |
| // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve} |
| // |
| // DEFINE: %{env} = |
| //-------------------------------------------------------------------------------------------------- |
| |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with vectorization. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with VLA vectorization. |
| // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} |
| |
| #DCSR = #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d0 : compressed, d1 : compressed) |
| }> |
| |
| #DCSC = #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d1 : compressed, d0 : compressed) |
| }> |
| |
| #transpose_trait = { |
| indexing_maps = [ |
| affine_map<(i,j) -> (j,i)>, // A |
| affine_map<(i,j) -> (i,j)> // X |
| ], |
| iterator_types = ["parallel", "parallel"], |
| doc = "X(i,j) = A(j,i)" |
| } |
| |
| module { |
| |
| // |
| // Transposing a sparse row-wise matrix into another sparse row-wise |
| // matrix introduces a cycle in the iteration graph. This complication |
| // can be avoided by manually inserting a conversion of the incoming |
| // matrix into a sparse column-wise matrix first. |
| // |
| func.func @sparse_transpose(%arga: tensor<3x4xf64, #DCSR>) |
| -> tensor<4x3xf64, #DCSR> { |
| %t = sparse_tensor.convert %arga |
| : tensor<3x4xf64, #DCSR> to tensor<3x4xf64, #DCSC> |
| |
| %i = tensor.empty() : tensor<4x3xf64, #DCSR> |
| %0 = linalg.generic #transpose_trait |
| ins(%t: tensor<3x4xf64, #DCSC>) |
| outs(%i: tensor<4x3xf64, #DCSR>) { |
| ^bb(%a: f64, %x: f64): |
| linalg.yield %a : f64 |
| } -> tensor<4x3xf64, #DCSR> |
| |
| bufferization.dealloc_tensor %t : tensor<3x4xf64, #DCSC> |
| |
| return %0 : tensor<4x3xf64, #DCSR> |
| } |
| |
| // |
| // However, even better, the sparsifier is able to insert such a |
| // conversion automatically to resolve a cycle in the iteration graph! |
| // |
| func.func @sparse_transpose_auto(%arga: tensor<3x4xf64, #DCSR>) |
| -> tensor<4x3xf64, #DCSR> { |
| %i = tensor.empty() : tensor<4x3xf64, #DCSR> |
| %0 = linalg.generic #transpose_trait |
| ins(%arga: tensor<3x4xf64, #DCSR>) |
| outs(%i: tensor<4x3xf64, #DCSR>) { |
| ^bb(%a: f64, %x: f64): |
| linalg.yield %a : f64 |
| } -> tensor<4x3xf64, #DCSR> |
| return %0 : tensor<4x3xf64, #DCSR> |
| } |
| |
| // |
| // Main driver. |
| // |
| func.func @main() { |
| %c0 = arith.constant 0 : index |
| %c1 = arith.constant 1 : index |
| %c4 = arith.constant 4 : index |
| %du = arith.constant 0.0 : f64 |
| |
| // Setup input sparse matrix from compressed constant. |
| %d = arith.constant dense <[ |
| [ 1.1, 1.2, 0.0, 1.4 ], |
| [ 0.0, 0.0, 0.0, 0.0 ], |
| [ 3.1, 0.0, 3.3, 3.4 ] |
| ]> : tensor<3x4xf64> |
| %a = sparse_tensor.convert %d : tensor<3x4xf64> to tensor<3x4xf64, #DCSR> |
| |
| // Call the kernels. |
| %0 = call @sparse_transpose(%a) |
| : (tensor<3x4xf64, #DCSR>) -> tensor<4x3xf64, #DCSR> |
| %1 = call @sparse_transpose_auto(%a) |
| : (tensor<3x4xf64, #DCSR>) -> tensor<4x3xf64, #DCSR> |
| |
| // |
| // Verify result. |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 6 |
| // CHECK-NEXT: dim = ( 4, 3 ) |
| // CHECK-NEXT: lvl = ( 4, 3 ) |
| // CHECK-NEXT: pos[0] : ( 0, 4 ) |
| // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 ) |
| // CHECK-NEXT: pos[1] : ( 0, 2, 3, 4, 6 ) |
| // CHECK-NEXT: crd[1] : ( 0, 2, 0, 2, 0, 2 ) |
| // CHECK-NEXT: values : ( 1.1, 3.1, 1.2, 3.3, 1.4, 3.4 ) |
| // CHECK-NEXT: ---- |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 6 |
| // CHECK-NEXT: dim = ( 4, 3 ) |
| // CHECK-NEXT: lvl = ( 4, 3 ) |
| // CHECK-NEXT: pos[0] : ( 0, 4 ) |
| // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 ) |
| // CHECK-NEXT: pos[1] : ( 0, 2, 3, 4, 6 ) |
| // CHECK-NEXT: crd[1] : ( 0, 2, 0, 2, 0, 2 ) |
| // CHECK-NEXT: values : ( 1.1, 3.1, 1.2, 3.3, 1.4, 3.4 ) |
| // CHECK-NEXT: ---- |
| // |
| sparse_tensor.print %0 : tensor<4x3xf64, #DCSR> |
| sparse_tensor.print %1 : tensor<4x3xf64, #DCSR> |
| |
| // Release resources. |
| bufferization.dealloc_tensor %a : tensor<3x4xf64, #DCSR> |
| bufferization.dealloc_tensor %0 : tensor<4x3xf64, #DCSR> |
| bufferization.dealloc_tensor %1 : tensor<4x3xf64, #DCSR> |
| |
| return |
| } |
| } |