| //-------------------------------------------------------------------------------------------------- |
| // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. |
| // |
| // Set-up that's shared across all tests in this directory. In principle, this |
| // config could be moved to lit.local.cfg. However, there are downstream users that |
| // do not use these LIT config files. Hence why this is kept inline. |
| // |
| // DEFINE: %{sparsifier_opts} = enable-runtime-library=true |
| // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} |
| // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" |
| // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" |
| // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils |
| // DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils |
| // DEFINE: %{run_opts} = -e main -entry-point-result=void |
| // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} |
| // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve} |
| // |
| // DEFINE: %{env} = |
| //-------------------------------------------------------------------------------------------------- |
| |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with vectorization. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with VLA vectorization. |
| // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} |
| |
| // |
| // Several common sparse storage schemes. |
| // |
| |
| #Dense = #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d0 : dense, d1 : dense) |
| }> |
| |
| #CSR = #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d0 : dense, d1 : compressed) |
| }> |
| |
| #DCSR = #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d0 : compressed, d1 : compressed) |
| }> |
| |
| #CSC = #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d1 : dense, d0 : compressed) |
| }> |
| |
| #DCSC = #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d1 : compressed, d0 : compressed) |
| }> |
| |
| #BlockRow = #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d0 : compressed, d1 : dense) |
| }> |
| |
| #BlockCol = #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d1 : compressed, d0 : dense) |
| }> |
| |
| // |
| // Integration test that looks "under the hood" of sparse storage schemes. |
| // |
| module { |
| // |
| // Main driver that initializes a sparse tensor and inspects the sparse |
| // storage schemes in detail. Note that users of the MLIR sparsifier |
| // are typically not concerned with such details, but the test ensures |
| // everything is working "under the hood". |
| // |
| func.func @main() { |
| %c0 = arith.constant 0 : index |
| %c1 = arith.constant 1 : index |
| %d0 = arith.constant 0.0 : f64 |
| |
| // |
| // Initialize a dense tensor. |
| // |
| %t = arith.constant dense<[ |
| [ 1.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 3.0], |
| [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], |
| [ 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0, 0.0], |
| [ 0.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0], |
| [ 0.0, 0.0, 0.0, 0.0, 6.0, 0.0, 0.0, 0.0], |
| [ 0.0, 7.0, 8.0, 0.0, 0.0, 0.0, 0.0, 9.0], |
| [ 0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 11.0, 12.0], |
| [ 0.0, 13.0, 14.0, 0.0, 0.0, 0.0, 15.0, 16.0], |
| [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], |
| [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 17.0, 0.0] |
| ]> : tensor<10x8xf64> |
| |
| // |
| // Convert dense tensor to various sparse tensors. |
| // |
| %0 = sparse_tensor.convert %t : tensor<10x8xf64> to tensor<10x8xf64, #Dense> |
| %1 = sparse_tensor.convert %t : tensor<10x8xf64> to tensor<10x8xf64, #CSR> |
| %2 = sparse_tensor.convert %t : tensor<10x8xf64> to tensor<10x8xf64, #DCSR> |
| %3 = sparse_tensor.convert %t : tensor<10x8xf64> to tensor<10x8xf64, #CSC> |
| %4 = sparse_tensor.convert %t : tensor<10x8xf64> to tensor<10x8xf64, #DCSC> |
| %x = sparse_tensor.convert %t : tensor<10x8xf64> to tensor<10x8xf64, #BlockRow> |
| %y = sparse_tensor.convert %t : tensor<10x8xf64> to tensor<10x8xf64, #BlockCol> |
| |
| // |
| // Inspect storage scheme of Dense. |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 80 |
| // CHECK-NEXT: dim = ( 10, 8 ) |
| // CHECK-NEXT: lvl = ( 10, 8 ) |
| // CHECK-NEXT: values : ( 1, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 7, 8, 0, 0, 0, 0, 9, 0, 0, 10, 0, 0, 0, 11, 12, 0, 13, 14, 0, 0, 0, 15, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 0 ) |
| // CHECK-NEXT: ---- |
| // |
| sparse_tensor.print %0 : tensor<10x8xf64, #Dense> |
| |
| // |
| // Inspect storage scheme of CSR. |
| // |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 17 |
| // CHECK-NEXT: dim = ( 10, 8 ) |
| // CHECK-NEXT: lvl = ( 10, 8 ) |
| // CHECK-NEXT: pos[1] : ( 0, 3, 3, 4, 5, 6, 9, 12, 16, 16, 17 ) |
| // CHECK-NEXT: crd[1] : ( 0, 2, 7, 2, 3, 4, 1, 2, 7, 2, 6, 7, 1, 2, 6, 7, 6 ) |
| // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ) |
| // CHECK-NEXT: ---- |
| // |
| sparse_tensor.print %1 : tensor<10x8xf64, #CSR> |
| |
| // |
| // Inspect storage scheme of DCSR. |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 17 |
| // CHECK-NEXT: dim = ( 10, 8 ) |
| // CHECK-NEXT: lvl = ( 10, 8 ) |
| // CHECK-NEXT: pos[0] : ( 0, 8 ) |
| // CHECK-NEXT: crd[0] : ( 0, 2, 3, 4, 5, 6, 7, 9 ) |
| // CHECK-NEXT: pos[1] : ( 0, 3, 4, 5, 6, 9, 12, 16, 17 ) |
| // CHECK-NEXT: crd[1] : ( 0, 2, 7, 2, 3, 4, 1, 2, 7, 2, 6, 7, 1, 2, 6, 7, 6 ) |
| // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ) |
| // CHECK-NEXT: ---- |
| // |
| sparse_tensor.print %2 : tensor<10x8xf64, #DCSR> |
| |
| // |
| // Inspect storage scheme of CSC. |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 17 |
| // CHECK-NEXT: dim = ( 10, 8 ) |
| // CHECK-NEXT: lvl = ( 8, 10 ) |
| // CHECK-NEXT: pos[1] : ( 0, 1, 3, 8, 9, 10, 10, 13, 17 ) |
| // CHECK-NEXT: crd[1] : ( 0, 5, 7, 0, 2, 5, 6, 7, 3, 4, 6, 7, 9, 0, 5, 6, 7 ) |
| // CHECK-NEXT: values : ( 1, 7, 13, 2, 4, 8, 10, 14, 5, 6, 11, 15, 17, 3, 9, 12, 16 ) |
| // CHECK-NEXT: ---- |
| // |
| sparse_tensor.print %3 : tensor<10x8xf64, #CSC> |
| |
| // |
| // Inspect storage scheme of DCSC. |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 17 |
| // CHECK-NEXT: dim = ( 10, 8 ) |
| // CHECK-NEXT: lvl = ( 8, 10 ) |
| // CHECK-NEXT: pos[0] : ( 0, 7 ) |
| // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 4, 6, 7 ) |
| // CHECK-NEXT: pos[1] : ( 0, 1, 3, 8, 9, 10, 13, 17 ) |
| // CHECK-NEXT: crd[1] : ( 0, 5, 7, 0, 2, 5, 6, 7, 3, 4, 6, 7, 9, 0, 5, 6, 7 ) |
| // CHECK-NEXT: values : ( 1, 7, 13, 2, 4, 8, 10, 14, 5, 6, 11, 15, 17, 3, 9, 12, 16 ) |
| // CHECK-NEXT: ---- |
| // |
| sparse_tensor.print %4 : tensor<10x8xf64, #DCSC> |
| |
| // |
| // Inspect storage scheme of BlockRow. |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 64 |
| // CHECK-NEXT: dim = ( 10, 8 ) |
| // CHECK-NEXT: lvl = ( 10, 8 ) |
| // CHECK-NEXT: pos[0] : ( 0, 8 ) |
| // CHECK-NEXT: crd[0] : ( 0, 2, 3, 4, 5, 6, 7, 9 ) |
| // CHECK-NEXT: values : ( 1, 0, 2, 0, 0, 0, 0, 3, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 7, 8, 0, 0, 0, 0, 9, 0, 0, 10, 0, 0, 0, 11, 12, 0, 13, 14, 0, 0, 0, 15, 16, 0, 0, 0, 0, 0, 0, 17, 0 ) |
| // CHECK-NEXT: ---- |
| // |
| sparse_tensor.print %x : tensor<10x8xf64, #BlockRow> |
| |
| // |
| // Inspect storage scheme of BlockCol. |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 70 |
| // CHECK-NEXT: dim = ( 10, 8 ) |
| // CHECK-NEXT: lvl = ( 8, 10 ) |
| // CHECK-NEXT: pos[0] : ( 0, 7 ) |
| // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3, 4, 6, 7 ) |
| // CHECK-NEXT: values : ( 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 13, 0, 0, 2, 0, 4, 0, 0, 8, 10, 14, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 15, 0, 17, 3, 0, 0, 0, 0, 9, 12, 16, 0, 0 ) |
| // CHECK-NEXT: ---- |
| // |
| sparse_tensor.print %y : tensor<10x8xf64, #BlockCol> |
| |
| // Release the resources. |
| bufferization.dealloc_tensor %0 : tensor<10x8xf64, #Dense> |
| bufferization.dealloc_tensor %1 : tensor<10x8xf64, #CSR> |
| bufferization.dealloc_tensor %2 : tensor<10x8xf64, #DCSR> |
| bufferization.dealloc_tensor %3 : tensor<10x8xf64, #CSC> |
| bufferization.dealloc_tensor %4 : tensor<10x8xf64, #DCSC> |
| bufferization.dealloc_tensor %x : tensor<10x8xf64, #BlockRow> |
| bufferization.dealloc_tensor %y : tensor<10x8xf64, #BlockCol> |
| |
| return |
| } |
| } |