| //-------------------------------------------------------------------------------------------------- |
| // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. |
| // |
| // Set-up that's shared across all tests in this directory. In principle, this |
| // config could be moved to lit.local.cfg. However, there are downstream users that |
| // do not use these LIT config files. Hence why this is kept inline. |
| // |
| // DEFINE: %{sparsifier_opts} = enable-runtime-library=true |
| // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} |
| // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" |
| // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" |
| // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils |
| // DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils |
| // DEFINE: %{run_opts} = -e main -entry-point-result=void |
| // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} |
| // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve} |
| // |
| // DEFINE: %{env} = |
| //-------------------------------------------------------------------------------------------------- |
| |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation and vectorization. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation and VLA vectorization. |
| // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} |
| |
| #DCSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : compressed, d1 : compressed) }> |
| |
| // An example of a quantized sparse matmul. With the zero offset for the |
| // sparse input, the sparsifier generates very efficient code for the |
| // x(i,j) += (ext(a(i,k)) - 2) * ext(b(k,j)) |
| // operation. |
| module { |
| |
| func.func @quantized_matmul(%input1: tensor<5x3xi8>, |
| %input2: tensor<3x6xi8, #DCSR>, |
| %output: tensor<5x6xi32>) -> tensor<5x6xi32> { |
| %c0 = arith.constant 0 : i32 |
| %c2 = arith.constant 2 : i32 |
| %0 = linalg.quantized_matmul |
| ins(%input1, %input2, %c2, %c0 : tensor<5x3xi8>, tensor<3x6xi8, #DCSR>, i32, i32) |
| outs(%output : tensor<5x6xi32>) -> tensor<5x6xi32> |
| return %0: tensor<5x6xi32> |
| } |
| |
| func.func @main() { |
| %c0 = arith.constant 0 : index |
| %i0 = arith.constant 0 : i32 |
| |
| %input1 = arith.constant dense<[ |
| [ -128, 3, 127 ], |
| [ 0, 0, 0 ], |
| [ 11, 1, 0 ], |
| [ 0, 5, -1 ], |
| [ 13, 0, 3 ] |
| ]> : tensor<5x3xi8> |
| |
| %input2 = arith.constant dense<[ |
| [ 127, 0, -128, 0, 0, 3 ], |
| [ 0, 0, 0, 0, 0, 0 ], |
| [ 0, 0, 0, 100, 10, 0 ] |
| ]> : tensor<3x6xi8> |
| |
| %sparse_input2 = sparse_tensor.convert %input2 : tensor<3x6xi8> to tensor<3x6xi8, #DCSR> |
| |
| // Call the kernel. |
| %output = arith.constant dense<0> : tensor<5x6xi32> |
| %0 = call @quantized_matmul(%input1, %sparse_input2, %output) |
| : (tensor<5x3xi8>, |
| tensor<3x6xi8, #DCSR>, |
| tensor<5x6xi32>) -> tensor<5x6xi32> |
| |
| // |
| // Verify the output. |
| // |
| // CHECK: ( ( -16510, 0, 16640, 12500, 1250, -390 ), |
| // CHECK-SAME: ( -254, 0, 256, -200, -20, -6 ), |
| // CHECK-SAME: ( 1143, 0, -1152, -200, -20, 27 ), |
| // CHECK-SAME: ( -254, 0, 256, -300, -30, -6 ), |
| // CHECK-SAME: ( 1397, 0, -1408, 100, 10, 33 ) ) |
| // |
| %v = vector.transfer_read %0[%c0, %c0], %i0 |
| : tensor<5x6xi32>, vector<5x6xi32> |
| vector.print %v : vector<5x6xi32> |
| |
| // Release the resources. |
| bufferization.dealloc_tensor %sparse_input2 : tensor<3x6xi8, #DCSR> |
| bufferization.dealloc_tensor %0 : tensor<5x6xi32> |
| |
| return |
| } |
| } |