| //-------------------------------------------------------------------------------------------------- |
| // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. |
| // |
| // Set-up that's shared across all tests in this directory. In principle, this |
| // config could be moved to lit.local.cfg. However, there are downstream users that |
| // do not use these LIT config files. Hence why this is kept inline. |
| // |
| // DEFINE: %{sparsifier_opts} = enable-runtime-library=true |
| // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} |
| // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" |
| // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" |
| // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils |
| // DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils |
| // DEFINE: %{run_opts} = -e main -entry-point-result=void |
| // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} |
| // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve} |
| // |
| // DEFINE: %{env} = |
| //-------------------------------------------------------------------------------------------------- |
| |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation and vectorization. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation and VLA vectorization. |
| // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} |
| |
| #SortedCOO = #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton) |
| }> |
| |
| #SortedCOOI32 = #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d0 : compressed(nonunique), d1 : singleton), |
| posWidth = 32, |
| crdWidth = 32 |
| }> |
| |
| #CSR = #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d0 : dense, d1 : compressed), |
| posWidth = 32, |
| crdWidth = 32 |
| }> |
| |
| #BCOO = #sparse_tensor.encoding<{ |
| map = (d0, d1, d2) -> (d0 : dense, d1 : loose_compressed(nonunique), d2 : singleton) |
| }> |
| |
| module { |
| // |
| // Main driver. |
| // |
| func.func @main() { |
| %c0 = arith.constant 0 : index |
| %f0 = arith.constant 0.0 : f64 |
| %i0 = arith.constant 0 : i32 |
| |
| // |
| // Setup COO. |
| // |
| |
| %data = arith.constant dense< |
| [ 1.0, 2.0, 3.0 ] |
| > : tensor<3xf64> |
| |
| %pos = arith.constant dense< |
| [0, 3] |
| > : tensor<2xindex> |
| |
| %index = arith.constant dense< |
| [[ 1, 2], |
| [ 5, 6], |
| [ 7, 8]] |
| > : tensor<3x2xindex> |
| |
| %pos32 = arith.constant dense< |
| [0, 3] |
| > : tensor<2xi32> |
| |
| %index32 = arith.constant dense< |
| [[ 1, 2], |
| [ 5, 6], |
| [ 7, 8]] |
| > : tensor<3x2xi32> |
| |
| %s4 = sparse_tensor.assemble (%pos, %index), %data : (tensor<2xindex>, tensor<3x2xindex>), tensor<3xf64> |
| to tensor<10x10xf64, #SortedCOO> |
| %s5 = sparse_tensor.assemble (%pos32, %index32), %data : (tensor<2xi32>, tensor<3x2xi32>), tensor<3xf64> |
| to tensor<10x10xf64, #SortedCOOI32> |
| |
| // |
| // Setup CSR. |
| // |
| |
| %csr_data = arith.constant dense< |
| [ 1.0, 2.0, 3.0 ] |
| > : tensor<3xf64> |
| |
| %csr_pos32 = arith.constant dense< |
| [0, 1, 3] |
| > : tensor<3xi32> |
| |
| %csr_index32 = arith.constant dense< |
| [1, 0, 1] |
| > : tensor<3xi32> |
| %csr = sparse_tensor.assemble (%csr_pos32, %csr_index32), %csr_data : (tensor<3xi32>, tensor<3xi32>), tensor<3xf64> |
| to tensor<2x2xf64, #CSR> |
| |
| // |
| // Setup BCOO. |
| // |
| |
| %bdata = arith.constant dense< |
| [ 1.0, 2.0, 3.0, 4.0, 5.0 ] |
| > : tensor<5xf64> |
| |
| %bpos = arith.constant dense< |
| [0, 3, 3, 5] |
| > : tensor<4xindex> |
| |
| %bindex = arith.constant dense< |
| [[ 1, 2], |
| [ 5, 6], |
| [ 7, 8], |
| [ 2, 3], |
| [ 4, 2], |
| [ 10, 10]] |
| > : tensor<6x2xindex> |
| |
| %bs = sparse_tensor.assemble (%bpos, %bindex), %bdata : |
| (tensor<4xindex>, tensor<6x2xindex>), tensor<5xf64> to tensor<2x10x10xf64, #BCOO> |
| |
| // |
| // Verify results. |
| // |
| |
| // CHECK: 1 |
| // CHECK-NEXT:2 |
| // CHECK-NEXT:1 |
| // |
| // CHECK-NEXT:5 |
| // CHECK-NEXT:6 |
| // CHECK-NEXT:2 |
| // |
| // CHECK-NEXT:7 |
| // CHECK-NEXT:8 |
| // CHECK-NEXT:3 |
| sparse_tensor.foreach in %s4 : tensor<10x10xf64, #SortedCOO> do { |
| ^bb0(%1: index, %2: index, %v: f64) : |
| vector.print %1: index |
| vector.print %2: index |
| vector.print %v: f64 |
| } |
| |
| // CHECK-NEXT:1 |
| // CHECK-NEXT:2 |
| // CHECK-NEXT:1 |
| // |
| // CHECK-NEXT:5 |
| // CHECK-NEXT:6 |
| // CHECK-NEXT:2 |
| // |
| // CHECK-NEXT:7 |
| // CHECK-NEXT:8 |
| // CHECK-NEXT:3 |
| sparse_tensor.foreach in %s5 : tensor<10x10xf64, #SortedCOOI32> do { |
| ^bb0(%1: index, %2: index, %v: f64) : |
| vector.print %1: index |
| vector.print %2: index |
| vector.print %v: f64 |
| } |
| |
| // CHECK-NEXT:0 |
| // CHECK-NEXT:1 |
| // CHECK-NEXT:1 |
| // |
| // CHECK-NEXT:1 |
| // CHECK-NEXT:0 |
| // CHECK-NEXT:2 |
| // |
| // CHECK-NEXT:1 |
| // CHECK-NEXT:1 |
| // CHECK-NEXT:3 |
| sparse_tensor.foreach in %csr : tensor<2x2xf64, #CSR> do { |
| ^bb0(%1: index, %2: index, %v: f64) : |
| vector.print %1: index |
| vector.print %2: index |
| vector.print %v: f64 |
| } |
| |
| // CHECK-NEXT:0 |
| // CHECK-NEXT:1 |
| // CHECK-NEXT:2 |
| // CHECK-NEXT:1 |
| // |
| // CHECK-NEXT:0 |
| // CHECK-NEXT:5 |
| // CHECK-NEXT:6 |
| // CHECK-NEXT:2 |
| // |
| // CHECK-NEXT:0 |
| // CHECK-NEXT:7 |
| // CHECK-NEXT:8 |
| // CHECK-NEXT:3 |
| // |
| // CHECK-NEXT:1 |
| // CHECK-NEXT:2 |
| // CHECK-NEXT:3 |
| // CHECK-NEXT:4 |
| // |
| // CHECK-NEXT:1 |
| // CHECK-NEXT:4 |
| // CHECK-NEXT:2 |
| // CHECK-NEXT:5 |
| sparse_tensor.foreach in %bs : tensor<2x10x10xf64, #BCOO> do { |
| ^bb0(%0: index, %1: index, %2: index, %v: f64) : |
| vector.print %0: index |
| vector.print %1: index |
| vector.print %2: index |
| vector.print %v: f64 |
| } |
| |
| // |
| // Verify disassemble operations. |
| // |
| |
| %od = tensor.empty() : tensor<3xf64> |
| %op = tensor.empty() : tensor<2xi32> |
| %oi = tensor.empty() : tensor<3x2xi32> |
| %p, %i, %d, %pl, %il, %dl = sparse_tensor.disassemble %s5 : tensor<10x10xf64, #SortedCOOI32> |
| out_lvls(%op, %oi : tensor<2xi32>, tensor<3x2xi32>) |
| out_vals(%od : tensor<3xf64>) |
| -> (tensor<2xi32>, tensor<3x2xi32>), tensor<3xf64>, (i32, i64), index |
| |
| // CHECK-NEXT: ( 1, 2, 3 ) |
| %vd = vector.transfer_read %d[%c0], %f0 : tensor<3xf64>, vector<3xf64> |
| vector.print %vd : vector<3xf64> |
| |
| // CHECK-NEXT: ( ( 1, 2 ), ( 5, 6 ), ( 7, 8 ) ) |
| %vi = vector.transfer_read %i[%c0, %c0], %i0 : tensor<3x2xi32>, vector<3x2xi32> |
| vector.print %vi : vector<3x2xi32> |
| |
| // CHECK-NEXT: 3 |
| vector.print %dl : index |
| |
| %d_csr = tensor.empty() : tensor<4xf64> |
| %p_csr = tensor.empty() : tensor<3xi32> |
| %i_csr = tensor.empty() : tensor<3xi32> |
| %rp_csr, %ri_csr, %rd_csr, %lp_csr, %li_csr, %ld_csr = sparse_tensor.disassemble %csr : tensor<2x2xf64, #CSR> |
| out_lvls(%p_csr, %i_csr : tensor<3xi32>, tensor<3xi32>) |
| out_vals(%d_csr : tensor<4xf64>) |
| -> (tensor<3xi32>, tensor<3xi32>), tensor<4xf64>, (i32, i64), index |
| |
| // CHECK-NEXT: ( 1, 2, 3 ) |
| %vd_csr = vector.transfer_read %rd_csr[%c0], %f0 : tensor<4xf64>, vector<3xf64> |
| vector.print %vd_csr : vector<3xf64> |
| |
| // CHECK-NEXT: 3 |
| vector.print %ld_csr : index |
| |
| %bod = tensor.empty() : tensor<6xf64> |
| %bop = tensor.empty() : tensor<4xindex> |
| %boi = tensor.empty() : tensor<6x2xindex> |
| %bp, %bi, %bd, %lp, %li, %ld = sparse_tensor.disassemble %bs : tensor<2x10x10xf64, #BCOO> |
| out_lvls(%bop, %boi : tensor<4xindex>, tensor<6x2xindex>) |
| out_vals(%bod : tensor<6xf64>) |
| -> (tensor<4xindex>, tensor<6x2xindex>), tensor<6xf64>, (i32, tensor<i64>), index |
| |
| // CHECK-NEXT: ( 1, 2, 3, 4, 5 ) |
| %vbd = vector.transfer_read %bd[%c0], %f0 : tensor<6xf64>, vector<5xf64> |
| vector.print %vbd : vector<5xf64> |
| |
| // CHECK-NEXT: 5 |
| vector.print %ld : index |
| |
| // CHECK-NEXT: ( ( 1, 2 ), ( 5, 6 ), ( 7, 8 ), ( 2, 3 ), ( 4, 2 ), ( {{.*}}, {{.*}} ) ) |
| %vbi = vector.transfer_read %bi[%c0, %c0], %c0 : tensor<6x2xindex>, vector<6x2xindex> |
| vector.print %vbi : vector<6x2xindex> |
| |
| // CHECK-NEXT: 10 |
| %si = tensor.extract %li[] : tensor<i64> |
| vector.print %si : i64 |
| |
| // TODO: This check is no longer needed once the codegen path uses the |
| // buffer deallocation pass. "dealloc_tensor" turn into a no-op in the |
| // codegen path. |
| %has_runtime = sparse_tensor.has_runtime_library |
| scf.if %has_runtime { |
| // sparse_tensor.assemble copies buffers when running with the runtime |
| // library. Deallocations are not needed when running in codegen mode. |
| bufferization.dealloc_tensor %s4 : tensor<10x10xf64, #SortedCOO> |
| bufferization.dealloc_tensor %s5 : tensor<10x10xf64, #SortedCOOI32> |
| bufferization.dealloc_tensor %csr : tensor<2x2xf64, #CSR> |
| bufferization.dealloc_tensor %bs : tensor<2x10x10xf64, #BCOO> |
| } |
| |
| bufferization.dealloc_tensor %li : tensor<i64> |
| bufferization.dealloc_tensor %od : tensor<3xf64> |
| bufferization.dealloc_tensor %op : tensor<2xi32> |
| bufferization.dealloc_tensor %oi : tensor<3x2xi32> |
| bufferization.dealloc_tensor %d_csr : tensor<4xf64> |
| bufferization.dealloc_tensor %p_csr : tensor<3xi32> |
| bufferization.dealloc_tensor %i_csr : tensor<3xi32> |
| bufferization.dealloc_tensor %bod : tensor<6xf64> |
| bufferization.dealloc_tensor %bop : tensor<4xindex> |
| bufferization.dealloc_tensor %boi : tensor<6x2xindex> |
| |
| return |
| } |
| } |