| //-------------------------------------------------------------------------------------------------- |
| // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. |
| // |
| // Set-up that's shared across all tests in this directory. In principle, this |
| // config could be moved to lit.local.cfg. However, there are downstream users that |
| // do not use these LIT config files. Hence why this is kept inline. |
| // |
| // DEFINE: %{sparsifier_opts} = enable-runtime-library=true |
| // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} |
| // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" |
| // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" |
| // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils |
| // DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils |
| // DEFINE: %{run_opts} = -e main -entry-point-result=void |
| // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} |
| // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve} |
| // |
| // DEFINE: %{env} = |
| //-------------------------------------------------------------------------------------------------- |
| |
| // REDEFINE: %{env} = TENSOR0="%mlir_src_dir/test/Integration/data/ds.mtx" |
| // RUN: %{compile} | env %{env} %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false |
| // RUN: %{compile} | env %{env} %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation and vectorization. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true |
| // RUN: %{compile} | env %{env} %{run} | FileCheck %s |
| |
| !Filename = !llvm.ptr |
| |
| #CSR = #sparse_tensor.encoding<{ |
| map = (i, j) -> ( i : dense, j : compressed) |
| }> |
| |
| #CSR_hi = #sparse_tensor.encoding<{ |
| map = (i, j) -> ( i : dense, j : loose_compressed) |
| }> |
| |
| #NV_24 = #sparse_tensor.encoding<{ |
| map = ( i, j ) -> ( i : dense, |
| j floordiv 4 : dense, |
| j mod 4 : structured[2, 4]), |
| crdWidth = 8 |
| }> |
| |
| #NV_58 = #sparse_tensor.encoding<{ |
| map = ( i, j ) -> ( i : dense, |
| j floordiv 8 : dense, |
| j mod 8 : structured[5, 8]), |
| crdWidth = 8 |
| }> |
| |
| module { |
| |
| func.func private @getTensorFilename(index) -> (!Filename) |
| |
| // |
| // Input matrix: |
| // |
| // [[0.0, 0.0, 1.0, 2.0, 0.0, 3.0, 0.0, 4.0], |
| // [0.0, 5.0, 6.0, 0.0, 7.0, 0.0, 0.0, 8.0], |
| // [9.0, 0.0, 10.0, 0.0, 11.0, 12.0, 0.0, 0.0]] |
| // |
| func.func @main() { |
| %c0 = arith.constant 0 : index |
| %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) |
| |
| %A1 = sparse_tensor.new %fileName : !Filename to tensor<?x?xf64, #CSR> |
| %A2 = sparse_tensor.new %fileName : !Filename to tensor<?x?xf64, #CSR_hi> |
| %A3 = sparse_tensor.new %fileName : !Filename to tensor<?x?xf64, #NV_24> |
| %A4 = sparse_tensor.new %fileName : !Filename to tensor<?x?xf64, #NV_58> |
| |
| // |
| // CSR: |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 12 |
| // CHECK-NEXT: dim = ( 3, 8 ) |
| // CHECK-NEXT: lvl = ( 3, 8 ) |
| // CHECK-NEXT: pos[1] : ( 0, 4, 8, 12 ) |
| // CHECK-NEXT: crd[1] : ( 2, 3, 5, 7, 1, 2, 4, 7, 0, 2, 4, 5 ) |
| // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ) |
| // CHECK-NEXT: ---- |
| // |
| sparse_tensor.print %A1 : tensor<?x?xf64, #CSR> |
| |
| // |
| // CSR_hi: |
| // |
| // CHECK-NEXT: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 12 |
| // CHECK-NEXT: dim = ( 3, 8 ) |
| // CHECK-NEXT: lvl = ( 3, 8 ) |
| // CHECK-NEXT: pos[1] : ( 0, 4, 4, 8, 8, 12, {{.*}} ) |
| // CHECK-NEXT: crd[1] : ( 2, 3, 5, 7, 1, 2, 4, 7, 0, 2, 4, 5 ) |
| // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ) |
| // CHECK-NEXT: ---- |
| // |
| sparse_tensor.print %A2 : tensor<?x?xf64, #CSR_hi> |
| |
| // |
| // NV_24: |
| // |
| // CHECK-NEXT: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 12 |
| // CHECK-NEXT: dim = ( 3, 8 ) |
| // CHECK-NEXT: lvl = ( 3, 2, 4 ) |
| // CHECK-NEXT: crd[2] : ( 2, 3, 1, 3, 1, 2, 0, 3, 0, 2, 0, 1 ) |
| // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ) |
| // CHECK-NEXT: ---- |
| // CHECK-NEXT: ---- Sparse Tensor ---- |
| // |
| sparse_tensor.print %A3 : tensor<?x?xf64, #NV_24> |
| |
| // |
| // NV_58: |
| // |
| // CHECK-NEXT: nse = 12 |
| // CHECK-NEXT: dim = ( 3, 8 ) |
| // CHECK-NEXT: lvl = ( 3, 1, 8 ) |
| // CHECK-NEXT: crd[2] : ( 2, 3, 5, 7, 1, 2, 4, 7, 0, 2, 4, 5 ) |
| // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 ) |
| // CHECK-NEXT: ---- |
| // |
| sparse_tensor.print %A4 : tensor<?x?xf64, #NV_58> |
| |
| // Release the resources. |
| bufferization.dealloc_tensor %A1: tensor<?x?xf64, #CSR> |
| bufferization.dealloc_tensor %A2: tensor<?x?xf64, #CSR_hi> |
| bufferization.dealloc_tensor %A3: tensor<?x?xf64, #NV_24> |
| bufferization.dealloc_tensor %A4: tensor<?x?xf64, #NV_58> |
| |
| return |
| } |
| } |