| //-------------------------------------------------------------------------------------------------- |
| // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. |
| // |
| // Set-up that's shared across all tests in this directory. In principle, this |
| // config could be moved to lit.local.cfg. However, there are downstream users that |
| // do not use these LIT config files. Hence why this is kept inline. |
| // |
| // DEFINE: %{sparsifier_opts} = enable-runtime-library=true |
| // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} |
| // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" |
| // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" |
| // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils |
| // DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils |
| // DEFINE: %{run_opts} = -e main -entry-point-result=void |
| // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} |
| // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve} |
| // |
| // DEFINE: %{env} = |
| //-------------------------------------------------------------------------------------------------- |
| |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=true |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation and vectorization. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation and VLA vectorization. |
| // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} |
| |
| #Tensor1 = #sparse_tensor.encoding<{ |
| map = (d0, d1, d2) -> (d0 : dense, d1 : dense, d2 : compressed) |
| |
| }> |
| |
| // NOTE: dense after compressed is not currently supported for the target |
| // of direct-sparse2sparse conversion. (It's fine for the source though.) |
| #Tensor2 = #sparse_tensor.encoding<{ |
| map = (d0, d1, d2) -> (d0 : dense, d1 : compressed, d2 : dense) |
| |
| }> |
| |
| #Tensor3 = #sparse_tensor.encoding<{ |
| map = (d0, d1, d2) -> (d0 : dense, d2 : dense, d1 : compressed) |
| |
| }> |
| |
| #SingletonTensor1 = #sparse_tensor.encoding<{ |
| map = (d0, d1, d2) -> (d0 : dense, d1 : compressed(nonunique), d2 : singleton) |
| |
| }> |
| |
| // This also checks the singleton->compressed conversion. |
| #SingletonTensor3 = #sparse_tensor.encoding<{ |
| map = (d0, d1, d2) -> (d0 : dense, d1 : dense, d2 : compressed) |
| |
| }> |
| |
| module { |
| // |
| // Utility for output. |
| // |
| func.func @dump(%arg0: tensor<2x3x4xf64>) { |
| %c0 = arith.constant 0 : index |
| %d0 = arith.constant -1.0 : f64 |
| %0 = vector.transfer_read %arg0[%c0, %c0, %c0], %d0: tensor<2x3x4xf64>, vector<2x3x4xf64> |
| vector.print %0 : vector<2x3x4xf64> |
| return |
| } |
| |
| // |
| // The first test suite (for non-singleton LevelTypes). |
| // |
| func.func @testNonSingleton() { |
| // |
| // Initialize a 3-dim dense tensor. |
| // |
| %src = arith.constant dense<[ |
| [ [ 1.0, 2.0, 3.0, 4.0 ], |
| [ 5.0, 6.0, 7.0, 8.0 ], |
| [ 9.0, 10.0, 11.0, 12.0 ] ], |
| [ [ 13.0, 14.0, 15.0, 16.0 ], |
| [ 17.0, 18.0, 19.0, 20.0 ], |
| [ 21.0, 22.0, 23.0, 24.0 ] ] |
| ]> : tensor<2x3x4xf64> |
| |
| // |
| // Convert dense tensor directly to various sparse tensors. |
| // |
| %s1 = sparse_tensor.convert %src : tensor<2x3x4xf64> to tensor<2x3x4xf64, #Tensor1> |
| %s3 = sparse_tensor.convert %src : tensor<2x3x4xf64> to tensor<2x3x4xf64, #Tensor3> |
| |
| // |
| // Convert sparse tensor directly to another sparse format. |
| // |
| %t13 = sparse_tensor.convert %s1 : tensor<2x3x4xf64, #Tensor1> to tensor<2x3x4xf64, #Tensor3> |
| %t31 = sparse_tensor.convert %s3 : tensor<2x3x4xf64, #Tensor3> to tensor<2x3x4xf64, #Tensor1> |
| |
| // |
| // Convert sparse tensor back to dense. |
| // |
| %d13 = sparse_tensor.convert %t13 : tensor<2x3x4xf64, #Tensor3> to tensor<2x3x4xf64> |
| %d31 = sparse_tensor.convert %t31 : tensor<2x3x4xf64, #Tensor1> to tensor<2x3x4xf64> |
| |
| // |
| // Check round-trip equality. And release dense tensors. |
| // |
| // CHECK-COUNT-3: ( ( ( 1, 2, 3, 4 ), ( 5, 6, 7, 8 ), ( 9, 10, 11, 12 ) ), ( ( 13, 14, 15, 16 ), ( 17, 18, 19, 20 ), ( 21, 22, 23, 24 ) ) ) |
| call @dump(%src) : (tensor<2x3x4xf64>) -> () |
| call @dump(%d13) : (tensor<2x3x4xf64>) -> () |
| call @dump(%d31) : (tensor<2x3x4xf64>) -> () |
| |
| // |
| // Release the resources. |
| // |
| bufferization.dealloc_tensor %t13 : tensor<2x3x4xf64, #Tensor3> |
| bufferization.dealloc_tensor %t31 : tensor<2x3x4xf64, #Tensor1> |
| bufferization.dealloc_tensor %s1 : tensor<2x3x4xf64, #Tensor1> |
| bufferization.dealloc_tensor %s3 : tensor<2x3x4xf64, #Tensor3> |
| bufferization.dealloc_tensor %d13 : tensor<2x3x4xf64> |
| bufferization.dealloc_tensor %d31 : tensor<2x3x4xf64> |
| |
| return |
| } |
| |
| // |
| // The second test suite (for singleton LevelTypes). |
| // |
| func.func @testSingleton() { |
| // |
| // Initialize a 3-dim dense tensor with the 3rd dim being singleton. |
| // |
| %src = arith.constant dense<[ |
| [ [ 1.0, 0.0, 0.0, 0.0 ], |
| [ 0.0, 6.0, 0.0, 0.0 ], |
| [ 0.0, 0.0, 11.0, 0.0 ] ], |
| [ [ 0.0, 14.0, 0.0, 0.0 ], |
| [ 0.0, 0.0, 0.0, 20.0 ], |
| [ 21.0, 0.0, 0.0, 0.0 ] ] |
| ]> : tensor<2x3x4xf64> |
| |
| // |
| // Convert dense tensor directly to various sparse tensors. |
| // |
| %s1 = sparse_tensor.convert %src : tensor<2x3x4xf64> to tensor<2x3x4xf64, #SingletonTensor1> |
| %s3 = sparse_tensor.convert %src : tensor<2x3x4xf64> to tensor<2x3x4xf64, #SingletonTensor3> |
| |
| // |
| // Convert sparse tensor directly to another sparse format. |
| // |
| %t13 = sparse_tensor.convert %s1 : tensor<2x3x4xf64, #SingletonTensor1> to tensor<2x3x4xf64, #SingletonTensor3> |
| %t31 = sparse_tensor.convert %s3 : tensor<2x3x4xf64, #SingletonTensor3> to tensor<2x3x4xf64, #SingletonTensor1> |
| |
| // |
| // Convert sparse tensor back to dense. |
| // |
| %d13 = sparse_tensor.convert %t13 : tensor<2x3x4xf64, #SingletonTensor3> to tensor<2x3x4xf64> |
| %d31 = sparse_tensor.convert %t31 : tensor<2x3x4xf64, #SingletonTensor1> to tensor<2x3x4xf64> |
| |
| // |
| // Check round-trip equality. And release dense tensors. |
| // |
| // CHECK-COUNT-3: ( ( ( 1, 0, 0, 0 ), ( 0, 6, 0, 0 ), ( 0, 0, 11, 0 ) ), ( ( 0, 14, 0, 0 ), ( 0, 0, 0, 20 ), ( 21, 0, 0, 0 ) ) ) |
| call @dump(%src) : (tensor<2x3x4xf64>) -> () |
| call @dump(%d13) : (tensor<2x3x4xf64>) -> () |
| call @dump(%d31) : (tensor<2x3x4xf64>) -> () |
| |
| // |
| // Release the resources. |
| // |
| bufferization.dealloc_tensor %t13 : tensor<2x3x4xf64, #SingletonTensor3> |
| bufferization.dealloc_tensor %t31 : tensor<2x3x4xf64, #SingletonTensor1> |
| bufferization.dealloc_tensor %s1 : tensor<2x3x4xf64, #SingletonTensor1> |
| bufferization.dealloc_tensor %s3 : tensor<2x3x4xf64, #SingletonTensor3> |
| bufferization.dealloc_tensor %d13 : tensor<2x3x4xf64> |
| bufferization.dealloc_tensor %d31 : tensor<2x3x4xf64> |
| |
| return |
| } |
| |
| // |
| // Main driver. |
| // |
| func.func @main() { |
| call @testNonSingleton() : () -> () |
| call @testSingleton() : () -> () |
| return |
| } |
| } |