| //-------------------------------------------------------------------------------------------------- |
| // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. |
| // |
| // Set-up that's shared across all tests in this directory. In principle, this |
| // config could be moved to lit.local.cfg. However, there are downstream users that |
| // do not use these LIT config files. Hence why this is kept inline. |
| // |
| // DEFINE: %{sparsifier_opts} = enable-runtime-library=true |
| // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} |
| // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" |
| // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" |
| // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils |
| // DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils |
| // DEFINE: %{run_opts} = -e main -entry-point-result=void |
| // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} |
| // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve} |
| // |
| // DEFINE: %{env} = |
| //-------------------------------------------------------------------------------------------------- |
| |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation and vectorization. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation and VLA vectorization. |
| // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} |
| |
| #SparseVector = #sparse_tensor.encoding<{ |
| map = (d0) -> (d0 : compressed) |
| }> |
| |
| #SparseMatrix = #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d0 : compressed, d1 : compressed) |
| }> |
| |
| #Sparse3dTensor = #sparse_tensor.encoding<{ |
| map = (d0, d1, d2) -> (d0 : compressed, d1 : compressed, d2 : compressed) |
| }> |
| |
| #Sparse4dTensor = #sparse_tensor.encoding<{ |
| map = (d0, d1, d2, d3) -> (d0 : compressed, d1 : compressed, d2 : compressed, d3 : compressed) |
| }> |
| |
| // |
| // Test with various forms of the two most elementary reshape |
| // operations: collapse. |
| // |
| module { |
| |
| func.func @collapse_dense(%arg0: tensor<3x4xf64>) -> tensor<12xf64> { |
| %0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor<3x4xf64> into tensor<12xf64> |
| return %0 : tensor<12xf64> |
| } |
| |
| func.func @collapse_from_sparse(%arg0: tensor<3x4xf64, #SparseMatrix>) -> tensor<12xf64> { |
| %0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor<3x4xf64, #SparseMatrix> into tensor<12xf64> |
| return %0 : tensor<12xf64> |
| } |
| |
| func.func @collapse_to_sparse(%arg0: tensor<3x4xf64>) -> tensor<12xf64, #SparseVector> { |
| %0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor<3x4xf64> into tensor<12xf64, #SparseVector> |
| return %0 : tensor<12xf64, #SparseVector> |
| } |
| |
| func.func @collapse_sparse2sparse(%arg0: tensor<3x4xf64, #SparseMatrix>) -> tensor<12xf64, #SparseVector> { |
| %0 = tensor.collapse_shape %arg0 [[0, 1]] : tensor<3x4xf64, #SparseMatrix> into tensor<12xf64, #SparseVector> |
| return %0 : tensor<12xf64, #SparseVector> |
| } |
| |
| func.func @collapse_dense_6x10(%arg0: tensor<2x3x5x2xf64>) -> tensor<6x10xf64> { |
| %0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<2x3x5x2xf64> into tensor<6x10xf64> |
| return %0 : tensor<6x10xf64> |
| } |
| |
| func.func @collapse_from_sparse_6x10(%arg0: tensor<2x3x5x2xf64, #Sparse4dTensor>) -> tensor<6x10xf64> { |
| %0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<2x3x5x2xf64, #Sparse4dTensor> into tensor<6x10xf64> |
| return %0 : tensor<6x10xf64> |
| } |
| |
| func.func @collapse_to_sparse_6x10(%arg0: tensor<2x3x5x2xf64>) -> tensor<6x10xf64, #SparseMatrix> { |
| %0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<2x3x5x2xf64> into tensor<6x10xf64, #SparseMatrix> |
| return %0 : tensor<6x10xf64, #SparseMatrix> |
| } |
| |
| func.func @collapse_sparse2sparse_6x10(%arg0: tensor<2x3x5x2xf64, #Sparse4dTensor>) -> tensor<6x10xf64, #SparseMatrix> { |
| %0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<2x3x5x2xf64, #Sparse4dTensor> into tensor<6x10xf64, #SparseMatrix> |
| return %0 : tensor<6x10xf64, #SparseMatrix> |
| } |
| |
| func.func @collapse_dense_dyn(%arg0: tensor<?x?x?x?xf64>) -> tensor<?x?xf64> { |
| %0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<?x?x?x?xf64> into tensor<?x?xf64> |
| return %0 : tensor<?x?xf64> |
| } |
| |
| func.func @collapse_from_sparse_dyn(%arg0: tensor<?x?x?x?xf64, #Sparse4dTensor>) -> tensor<?x?xf64> { |
| %0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<?x?x?x?xf64, #Sparse4dTensor> into tensor<?x?xf64> |
| return %0 : tensor<?x?xf64> |
| } |
| |
| func.func @collapse_to_sparse_dyn(%arg0: tensor<?x?x?x?xf64>) -> tensor<?x?xf64, #SparseMatrix> { |
| %0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<?x?x?x?xf64> into tensor<?x?xf64, #SparseMatrix> |
| return %0 : tensor<?x?xf64, #SparseMatrix> |
| } |
| |
| func.func @collapse_sparse2sparse_dyn(%arg0: tensor<?x?x?x?xf64, #Sparse4dTensor>) -> tensor<?x?xf64, #SparseMatrix> { |
| %0 = tensor.collapse_shape %arg0 [[0, 1], [2, 3]] : tensor<?x?x?x?xf64, #Sparse4dTensor> into tensor<?x?xf64, #SparseMatrix> |
| return %0 : tensor<?x?xf64, #SparseMatrix> |
| } |
| |
| // |
| // Main driver. |
| // |
| func.func @main() { |
| %c0 = arith.constant 0 : index |
| %df = arith.constant -1.0 : f64 |
| |
| // Setup test vectors and matrices.. |
| %m = arith.constant dense <[ [ 1.1, 0.0, 1.3, 0.0 ], |
| [ 2.1, 0.0, 2.3, 0.0 ], |
| [ 3.1, 0.0, 3.3, 0.0 ]]> : tensor<3x4xf64> |
| %n = arith.constant dense <[ |
| [ [[ 1.0, 0.0], [ 3.0, 0.0], [ 5.0, 0.0], [ 7.0, 0.0], [ 9.0, 0.0]], |
| [[ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0]], |
| [[21.0, 0.0], [23.0, 0.0], [25.0, 0.0], [27.0, 0.0], [29.0, 0.0]] ], |
| [ [[ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0]], |
| [[41.0, 0.0], [43.0, 0.0], [45.0, 0.0], [47.0, 0.0], [49.0, 0.0]], |
| [[ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0], [ 0.0, 0.0]] ] ]> : tensor<2x3x5x2xf64> |
| %sm = sparse_tensor.convert %m : tensor<3x4xf64> to tensor<3x4xf64, #SparseMatrix> |
| %sn = sparse_tensor.convert %n : tensor<2x3x5x2xf64> to tensor<2x3x5x2xf64, #Sparse4dTensor> |
| |
| %dm = tensor.cast %m : tensor<3x4xf64> to tensor<?x?xf64> |
| |
| %dn = tensor.cast %n : tensor<2x3x5x2xf64> to tensor<?x?x?x?xf64> |
| %sdn = sparse_tensor.convert %dn : tensor<?x?x?x?xf64> to tensor<?x?x?x?xf64, #Sparse4dTensor> |
| |
| // Call the kernels. |
| %collapse0 = call @collapse_dense(%m) : (tensor<3x4xf64>) -> tensor<12xf64> |
| %collapse1 = call @collapse_from_sparse(%sm) : (tensor<3x4xf64, #SparseMatrix>) -> tensor<12xf64> |
| %collapse2 = call @collapse_to_sparse(%m) : (tensor<3x4xf64>) -> tensor<12xf64, #SparseVector> |
| %collapse3 = call @collapse_sparse2sparse(%sm) : (tensor<3x4xf64, #SparseMatrix>) -> tensor<12xf64, #SparseVector> |
| %collapse4 = call @collapse_dense_6x10(%n) : (tensor<2x3x5x2xf64>) -> tensor<6x10xf64> |
| %collapse5 = call @collapse_from_sparse_6x10(%sn) : (tensor<2x3x5x2xf64, #Sparse4dTensor>) -> tensor<6x10xf64> |
| %collapse6 = call @collapse_to_sparse_6x10(%n) : (tensor<2x3x5x2xf64>) -> tensor<6x10xf64, #SparseMatrix> |
| %collapse7 = call @collapse_sparse2sparse_6x10(%sn) : (tensor<2x3x5x2xf64, #Sparse4dTensor>) -> tensor<6x10xf64, #SparseMatrix> |
| %collapse8 = call @collapse_dense_dyn(%dn) : (tensor<?x?x?x?xf64>) -> tensor<?x?xf64> |
| %collapse9 = call @collapse_from_sparse_dyn(%sdn) : (tensor<?x?x?x?xf64, #Sparse4dTensor>) -> tensor<?x?xf64> |
| %collapse10 = call @collapse_to_sparse_dyn(%dn) : (tensor<?x?x?x?xf64>) -> tensor<?x?xf64, #SparseMatrix> |
| %collapse11 = call @collapse_sparse2sparse_dyn(%sdn) : (tensor<?x?x?x?xf64, #Sparse4dTensor>) -> tensor<?x?xf64, #SparseMatrix> |
| |
| // |
| // Verify results of collapse |
| // |
| // CHECK: ( 1.1, 0, 1.3, 0, 2.1, 0, 2.3, 0, 3.1, 0, 3.3, 0 ) |
| // CHECK-NEXT: ( 1.1, 0, 1.3, 0, 2.1, 0, 2.3, 0, 3.1, 0, 3.3, 0 ) |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 6 |
| // CHECK-NEXT: dim = ( 12 ) |
| // CHECK-NEXT: lvl = ( 12 ) |
| // CHECK-NEXT: pos[0] : ( 0, 6 ) |
| // CHECK-NEXT: crd[0] : ( 0, 2, 4, 6, 8, 10 ) |
| // CHECK-NEXT: values : ( 1.1, 1.3, 2.1, 2.3, 3.1, 3.3 ) |
| // CHECK-NEXT: ---- |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 6 |
| // CHECK-NEXT: dim = ( 12 ) |
| // CHECK-NEXT: lvl = ( 12 ) |
| // CHECK-NEXT: pos[0] : ( 0, 6 ) |
| // CHECK-NEXT: crd[0] : ( 0, 2, 4, 6, 8, 10 ) |
| // CHECK-NEXT: values : ( 1.1, 1.3, 2.1, 2.3, 3.1, 3.3 ) |
| // CHECK-NEXT: ---- |
| // |
| // CHECK: ( ( 1, 0, 3, 0, 5, 0, 7, 0, 9, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), ( 21, 0, 23, 0, 25, 0, 27, 0, 29, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), ( 41, 0, 43, 0, 45, 0, 47, 0, 49, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) ) |
| // CHECK-NEXT: ( ( 1, 0, 3, 0, 5, 0, 7, 0, 9, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), ( 21, 0, 23, 0, 25, 0, 27, 0, 29, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), ( 41, 0, 43, 0, 45, 0, 47, 0, 49, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) ) |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 15 |
| // CHECK-NEXT: dim = ( 6, 10 ) |
| // CHECK-NEXT: lvl = ( 6, 10 ) |
| // CHECK-NEXT: pos[0] : ( 0, 3 ) |
| // CHECK-NEXT: crd[0] : ( 0, 2, 4 ) |
| // CHECK-NEXT: pos[1] : ( 0, 5, 10, 15 ) |
| // CHECK-NEXT: crd[1] : ( 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8 ) |
| // CHECK-NEXT: values : ( 1, 3, 5, 7, 9, 21, 23, 25, 27, 29, 41, 43, 45, 47, 49 ) |
| // CHECK-NEXT: ---- |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 15 |
| // CHECK-NEXT: dim = ( 6, 10 ) |
| // CHECK-NEXT: lvl = ( 6, 10 ) |
| // CHECK-NEXT: pos[0] : ( 0, 3 ) |
| // CHECK-NEXT: crd[0] : ( 0, 2, 4 ) |
| // CHECK-NEXT: pos[1] : ( 0, 5, 10, 15 ) |
| // CHECK-NEXT: crd[1] : ( 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8 ) |
| // CHECK-NEXT: values : ( 1, 3, 5, 7, 9, 21, 23, 25, 27, 29, 41, 43, 45, 47, 49 ) |
| // CHECK-NEXT: ---- |
| // |
| // CHECK: ( ( 1, 0, 3, 0, 5, 0, 7, 0, 9, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), ( 21, 0, 23, 0, 25, 0, 27, 0, 29, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), ( 41, 0, 43, 0, 45, 0, 47, 0, 49, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) ) |
| // CHECK-NEXT: ( ( 1, 0, 3, 0, 5, 0, 7, 0, 9, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), ( 21, 0, 23, 0, 25, 0, 27, 0, 29, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ), ( 41, 0, 43, 0, 45, 0, 47, 0, 49, 0 ), ( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) ) |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 15 |
| // CHECK-NEXT: dim = ( 6, 10 ) |
| // CHECK-NEXT: lvl = ( 6, 10 ) |
| // CHECK-NEXT: pos[0] : ( 0, 3 ) |
| // CHECK-NEXT: crd[0] : ( 0, 2, 4 ) |
| // CHECK-NEXT: pos[1] : ( 0, 5, 10, 15 ) |
| // CHECK-NEXT: crd[1] : ( 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8 ) |
| // CHECK-NEXT: values : ( 1, 3, 5, 7, 9, 21, 23, 25, 27, 29, 41, 43, 45, 47, 49 ) |
| // CHECK-NEXT: ---- |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 15 |
| // CHECK-NEXT: dim = ( 6, 10 ) |
| // CHECK-NEXT: lvl = ( 6, 10 ) |
| // CHECK-NEXT: pos[0] : ( 0, 3 ) |
| // CHECK-NEXT: crd[0] : ( 0, 2, 4 ) |
| // CHECK-NEXT: pos[1] : ( 0, 5, 10, 15 ) |
| // CHECK-NEXT: crd[1] : ( 0, 2, 4, 6, 8, 0, 2, 4, 6, 8, 0, 2, 4, 6, 8 ) |
| // CHECK-NEXT: values : ( 1, 3, 5, 7, 9, 21, 23, 25, 27, 29, 41, 43, 45, 47, 49 ) |
| // CHECK-NEXT: ---- |
| // |
| %v0 = vector.transfer_read %collapse0[%c0], %df: tensor<12xf64>, vector<12xf64> |
| vector.print %v0 : vector<12xf64> |
| %v1 = vector.transfer_read %collapse1[%c0], %df: tensor<12xf64>, vector<12xf64> |
| vector.print %v1 : vector<12xf64> |
| sparse_tensor.print %collapse2 : tensor<12xf64, #SparseVector> |
| sparse_tensor.print %collapse3 : tensor<12xf64, #SparseVector> |
| |
| %v4 = vector.transfer_read %collapse4[%c0, %c0], %df: tensor<6x10xf64>, vector<6x10xf64> |
| vector.print %v4 : vector<6x10xf64> |
| %v5 = vector.transfer_read %collapse5[%c0, %c0], %df: tensor<6x10xf64>, vector<6x10xf64> |
| vector.print %v5 : vector<6x10xf64> |
| sparse_tensor.print %collapse6 : tensor<6x10xf64, #SparseMatrix> |
| sparse_tensor.print %collapse7 : tensor<6x10xf64, #SparseMatrix> |
| |
| %v8 = vector.transfer_read %collapse8[%c0, %c0], %df: tensor<?x?xf64>, vector<6x10xf64> |
| vector.print %v8 : vector<6x10xf64> |
| %v9 = vector.transfer_read %collapse9[%c0, %c0], %df: tensor<?x?xf64>, vector<6x10xf64> |
| vector.print %v9 : vector<6x10xf64> |
| sparse_tensor.print %collapse10 : tensor<?x?xf64, #SparseMatrix> |
| sparse_tensor.print %collapse11 : tensor<?x?xf64, #SparseMatrix> |
| |
| // Release sparse resources. |
| bufferization.dealloc_tensor %sm : tensor<3x4xf64, #SparseMatrix> |
| bufferization.dealloc_tensor %sn : tensor<2x3x5x2xf64, #Sparse4dTensor> |
| bufferization.dealloc_tensor %sdn : tensor<?x?x?x?xf64, #Sparse4dTensor> |
| bufferization.dealloc_tensor %collapse2 : tensor<12xf64, #SparseVector> |
| bufferization.dealloc_tensor %collapse3 : tensor<12xf64, #SparseVector> |
| bufferization.dealloc_tensor %collapse6 : tensor<6x10xf64, #SparseMatrix> |
| bufferization.dealloc_tensor %collapse7 : tensor<6x10xf64, #SparseMatrix> |
| bufferization.dealloc_tensor %collapse10 : tensor<?x?xf64, #SparseMatrix> |
| bufferization.dealloc_tensor %collapse11 : tensor<?x?xf64, #SparseMatrix> |
| |
| // Release dense resources. |
| bufferization.dealloc_tensor %collapse1 : tensor<12xf64> |
| bufferization.dealloc_tensor %collapse5 : tensor<6x10xf64> |
| bufferization.dealloc_tensor %collapse9: tensor<?x?xf64> |
| |
| return |
| } |
| } |