| //-------------------------------------------------------------------------------------------------- |
| // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. |
| // |
| // Set-up that's shared across all tests in this directory. In principle, this |
| // config could be moved to lit.local.cfg. However, there are downstream users that |
| // do not use these LIT config files. Hence why this is kept inline. |
| // |
| // DEFINE: %{sparsifier_opts} = enable-runtime-library=true |
| // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} |
| // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" |
| // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" |
| // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils |
| // DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils |
| // DEFINE: %{run_opts} = -e main -entry-point-result=void |
| // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} |
| // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve} |
| // |
| // DEFINE: %{env} = |
| //-------------------------------------------------------------------------------------------------- |
| |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation and vectorization. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation and VLA vectorization. |
| // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} |
| |
| #DCSR = #sparse_tensor.encoding<{ |
| map = (d0, d1) -> (d0 : compressed, d1 : compressed) |
| }> |
| |
| #trait = { |
| indexing_maps = [ |
| affine_map<(i,j) -> (i,j)>, // A |
| affine_map<(i,j) -> (i,j)>, // B |
| affine_map<(i,j) -> (i,j)> // x (out) |
| ], |
| iterator_types = ["parallel", "parallel"], |
| doc = "X(i, j) = cmp A(i,j) B(i, j)" |
| } |
| |
| // |
| // Integration test that lowers a kernel annotated as sparse to |
| // actual sparse code, initializes a matching sparse storage scheme |
| // from file, and runs the resulting code with the JIT compiler. |
| // |
| module { |
| func.func @cmp_all_dense(%arga: tensor<4x4xf64>, |
| %argb: tensor<4x4xf64>, |
| %argx: tensor<4x4xi8>) -> tensor<4x4xi8> { |
| %0 = linalg.generic #trait |
| ins(%arga, %argb: tensor<4x4xf64>, tensor<4x4xf64>) |
| outs(%argx: tensor<4x4xi8>) { |
| ^bb(%a: f64, %b: f64, %x: i8): |
| %0 = arith.cmpf ult, %a, %b : f64 |
| %1 = arith.extui %0 : i1 to i8 |
| linalg.yield %1 : i8 |
| } -> tensor<4x4xi8> |
| return %0 : tensor<4x4xi8> |
| } |
| |
| func.func @cmp_lhs_sparse(%arga: tensor<4x4xf64, #DCSR>, |
| %argb: tensor<4x4xf64>) -> tensor<4x4xi8, #DCSR> { |
| %argx = tensor.empty() : tensor<4x4xi8, #DCSR> |
| %0 = linalg.generic #trait |
| ins(%arga, %argb: tensor<4x4xf64, #DCSR>, tensor<4x4xf64>) |
| outs(%argx: tensor<4x4xi8, #DCSR>) { |
| ^bb(%a: f64, %b: f64, %x: i8): |
| %0 = arith.cmpf ult, %a, %b : f64 |
| %1 = arith.extui %0 : i1 to i8 |
| linalg.yield %1 : i8 |
| } -> tensor<4x4xi8, #DCSR> |
| return %0 : tensor<4x4xi8, #DCSR> |
| } |
| |
| func.func @cmp_all_sparse(%arga: tensor<4x4xf64, #DCSR>, |
| %argb: tensor<4x4xf64, #DCSR>) -> tensor<4x4xi8, #DCSR> { |
| %argx = tensor.empty() : tensor<4x4xi8, #DCSR> |
| %0 = linalg.generic #trait |
| ins(%arga, %argb: tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) |
| outs(%argx: tensor<4x4xi8, #DCSR>) { |
| ^bb(%a: f64, %b: f64, %x: i8): |
| %0 = arith.cmpf ult, %a, %b : f64 |
| %1 = arith.extui %0 : i1 to i8 |
| linalg.yield %1 : i8 |
| } -> tensor<4x4xi8, #DCSR> |
| return %0 : tensor<4x4xi8, #DCSR> |
| } |
| |
| // |
| // Main driver that constructs matrix and calls the sparse kernel to perform |
| // element-wise comparison. |
| // |
| func.func @main() { |
| %d0 = arith.constant 0 : i8 |
| %c0 = arith.constant 0 : index |
| |
| %lhs_dn = arith.constant dense< |
| [ [ 0.0, 0.0, 1.5, 1.0], |
| [ 0.0, 3.5, 0.0, 0.0], |
| [ 1.0, 5.0, 2.0, 0.0], |
| [ 1.0, 0.5, 0.0, 0.0] ]> : tensor<4x4xf64> |
| |
| %rhs_dn = arith.constant dense< |
| [ [ 0.0, 1.5, 1.0, 1.5], |
| [ 3.5, 0.0, 0.0, 0.0], |
| [ 5.0, 2.0, 0.0, 2.0], |
| [ 0.5, 0.0, 0.0, 0.0] ]> : tensor<4x4xf64> |
| |
| %lhs_sp = sparse_tensor.convert %lhs_dn : tensor<4x4xf64> to tensor<4x4xf64, #DCSR> |
| %rhs_sp = sparse_tensor.convert %rhs_dn : tensor<4x4xf64> to tensor<4x4xf64, #DCSR> |
| |
| %output = arith.constant dense<0> : tensor<4x4xi8> |
| %all_dn_out = call @cmp_all_dense(%lhs_dn, %rhs_dn, %output) |
| : (tensor<4x4xf64>, tensor<4x4xf64>, tensor<4x4xi8>) -> tensor<4x4xi8> |
| %lhs_sp_out = call @cmp_lhs_sparse(%lhs_sp, %rhs_dn) |
| : (tensor<4x4xf64, #DCSR>, tensor<4x4xf64>) -> tensor<4x4xi8, #DCSR> |
| %all_sp_out = call @cmp_all_sparse(%lhs_sp, %rhs_sp) |
| : (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xi8, #DCSR> |
| |
| // |
| // All should have the same boolean values. |
| // |
| // CHECK: ( ( 0, 1, 0, 1 ), ( 1, 0, 0, 0 ), ( 1, 0, 0, 1 ), ( 0, 0, 0, 0 ) ) |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 16 |
| // CHECK-NEXT: dim = ( 4, 4 ) |
| // CHECK-NEXT: lvl = ( 4, 4 ) |
| // CHECK-NEXT: pos[0] : ( 0, 4 ) |
| // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 ) |
| // CHECK-NEXT: pos[1] : ( 0, 4, 8, 12, 16 ) |
| // CHECK-NEXT: crd[1] : ( 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 ) |
| // CHECK-NEXT: values : ( 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0 ) |
| // CHECK-NEXT: ---- |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 11 |
| // CHECK-NEXT: dim = ( 4, 4 ) |
| // CHECK-NEXT: lvl = ( 4, 4 ) |
| // CHECK-NEXT: pos[0] : ( 0, 4 ) |
| // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 ) |
| // CHECK-NEXT: pos[1] : ( 0, 3, 5, 9, 11 ) |
| // CHECK-NEXT: crd[1] : ( 1, 2, 3, 0, 1, 0, 1, 2, 3, 0, 1 ) |
| // CHECK-NEXT: values : ( 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0 ) |
| // CHECK-NEXT: ---- |
| // |
| %v = vector.transfer_read %all_dn_out[%c0, %c0], %d0 |
| : tensor<4x4xi8>, vector<4x4xi8> |
| vector.print %v : vector<4x4xi8> |
| sparse_tensor.print %lhs_sp_out : tensor<4x4xi8, #DCSR> |
| sparse_tensor.print %all_sp_out : tensor<4x4xi8, #DCSR> |
| |
| bufferization.dealloc_tensor %lhs_sp : tensor<4x4xf64, #DCSR> |
| bufferization.dealloc_tensor %rhs_sp : tensor<4x4xf64, #DCSR> |
| bufferization.dealloc_tensor %all_dn_out : tensor<4x4xi8> |
| bufferization.dealloc_tensor %lhs_sp_out : tensor<4x4xi8, #DCSR> |
| bufferization.dealloc_tensor %all_sp_out : tensor<4x4xi8, #DCSR> |
| |
| return |
| } |
| } |