| //-------------------------------------------------------------------------------------------------- |
| // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. |
| // |
| // Set-up that's shared across all tests in this directory. In principle, this |
| // config could be moved to lit.local.cfg. However, there are downstream users that |
| // do not use these LIT config files. Hence why this is kept inline. |
| // |
| // DEFINE: %{sparsifier_opts} = enable-runtime-library=true |
| // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} |
| // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" |
| // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" |
| // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils |
| // DEFINE: %{run_libs_sve} = -shared-libs=%native_mlir_runner_utils,%native_mlir_c_runner_utils |
| // DEFINE: %{run_opts} = -e main -entry-point-result=void |
| // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} |
| // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs_sve} |
| // |
| // DEFINE: %{env} = |
| //-------------------------------------------------------------------------------------------------- |
| |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation and vectorization. |
| // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true |
| // RUN: %{compile} | %{run} | FileCheck %s |
| // |
| // Do the same run, but now with direct IR generation and VLA vectorization. |
| // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} |
| |
| #SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}> |
| #DCSR = #sparse_tensor.encoding<{map = (d0, d1) -> (d0 : compressed, d1 : compressed)}> |
| |
| // |
| // Traits for tensor operations. |
| // |
| #trait_vec_scale = { |
| indexing_maps = [ |
| affine_map<(i) -> (i)>, // a (in) |
| affine_map<(i) -> (i)> // x (out) |
| ], |
| iterator_types = ["parallel"] |
| } |
| #trait_vec_op = { |
| indexing_maps = [ |
| affine_map<(i) -> (i)>, // a (in) |
| affine_map<(i) -> (i)>, // b (in) |
| affine_map<(i) -> (i)> // x (out) |
| ], |
| iterator_types = ["parallel"] |
| } |
| #trait_mat_op = { |
| indexing_maps = [ |
| affine_map<(i,j) -> (i,j)>, // A (in) |
| affine_map<(i,j) -> (i,j)>, // B (in) |
| affine_map<(i,j) -> (i,j)> // X (out) |
| ], |
| iterator_types = ["parallel", "parallel"], |
| doc = "X(i,j) = A(i,j) OP B(i,j)" |
| } |
| |
| // |
| // Contains test cases for the sparse_tensor.binary operator (different cases when left/right/overlap |
| // is empty/identity, etc). |
| // |
| |
| module { |
| // Creates a new sparse vector using the minimum values from two input sparse vectors. |
| // When there is no overlap, include the present value in the output. |
| func.func @vector_min(%arga: tensor<?xi32, #SparseVector>, |
| %argb: tensor<?xi32, #SparseVector>) -> tensor<?xi32, #SparseVector> { |
| %c = arith.constant 0 : index |
| %d = tensor.dim %arga, %c : tensor<?xi32, #SparseVector> |
| %xv = tensor.empty(%d) : tensor<?xi32, #SparseVector> |
| %0 = linalg.generic #trait_vec_op |
| ins(%arga, %argb: tensor<?xi32, #SparseVector>, tensor<?xi32, #SparseVector>) |
| outs(%xv: tensor<?xi32, #SparseVector>) { |
| ^bb(%a: i32, %b: i32, %x: i32): |
| %1 = sparse_tensor.binary %a, %b : i32, i32 to i32 |
| overlap={ |
| ^bb0(%a0: i32, %b0: i32): |
| %2 = arith.minsi %a0, %b0: i32 |
| sparse_tensor.yield %2 : i32 |
| } |
| left=identity |
| right=identity |
| linalg.yield %1 : i32 |
| } -> tensor<?xi32, #SparseVector> |
| return %0 : tensor<?xi32, #SparseVector> |
| } |
| |
| // Creates a new sparse vector by multiplying a sparse vector with a dense vector. |
| // When there is no overlap, leave the result empty. |
| func.func @vector_mul(%arga: tensor<?xf64, #SparseVector>, |
| %argb: tensor<?xf64>) -> tensor<?xf64, #SparseVector> { |
| %c = arith.constant 0 : index |
| %d = tensor.dim %arga, %c : tensor<?xf64, #SparseVector> |
| %xv = tensor.empty(%d) : tensor<?xf64, #SparseVector> |
| %0 = linalg.generic #trait_vec_op |
| ins(%arga, %argb: tensor<?xf64, #SparseVector>, tensor<?xf64>) |
| outs(%xv: tensor<?xf64, #SparseVector>) { |
| ^bb(%a: f64, %b: f64, %x: f64): |
| %1 = sparse_tensor.binary %a, %b : f64, f64 to f64 |
| overlap={ |
| ^bb0(%a0: f64, %b0: f64): |
| %ret = arith.mulf %a0, %b0 : f64 |
| sparse_tensor.yield %ret : f64 |
| } |
| left={} |
| right={} |
| linalg.yield %1 : f64 |
| } -> tensor<?xf64, #SparseVector> |
| return %0 : tensor<?xf64, #SparseVector> |
| } |
| |
| // Take a set difference of two sparse vectors. The result will include only those |
| // sparse elements present in the first, but not the second vector. |
| func.func @vector_setdiff(%arga: tensor<?xf64, #SparseVector>, |
| %argb: tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector> { |
| %c = arith.constant 0 : index |
| %d = tensor.dim %arga, %c : tensor<?xf64, #SparseVector> |
| %xv = tensor.empty(%d) : tensor<?xf64, #SparseVector> |
| %0 = linalg.generic #trait_vec_op |
| ins(%arga, %argb: tensor<?xf64, #SparseVector>, tensor<?xf64, #SparseVector>) |
| outs(%xv: tensor<?xf64, #SparseVector>) { |
| ^bb(%a: f64, %b: f64, %x: f64): |
| %1 = sparse_tensor.binary %a, %b : f64, f64 to f64 |
| overlap={} |
| left=identity |
| right={} |
| linalg.yield %1 : f64 |
| } -> tensor<?xf64, #SparseVector> |
| return %0 : tensor<?xf64, #SparseVector> |
| } |
| |
| // Return the index of each entry |
| func.func @vector_index(%arga: tensor<?xf64, #SparseVector>) -> tensor<?xi32, #SparseVector> { |
| %c = arith.constant 0 : index |
| %d = tensor.dim %arga, %c : tensor<?xf64, #SparseVector> |
| %xv = tensor.empty(%d) : tensor<?xi32, #SparseVector> |
| %0 = linalg.generic #trait_vec_scale |
| ins(%arga: tensor<?xf64, #SparseVector>) |
| outs(%xv: tensor<?xi32, #SparseVector>) { |
| ^bb(%a: f64, %x: i32): |
| %idx = linalg.index 0 : index |
| %1 = sparse_tensor.binary %a, %idx : f64, index to i32 |
| overlap={ |
| ^bb0(%x0: f64, %i: index): |
| %ret = arith.index_cast %i : index to i32 |
| sparse_tensor.yield %ret : i32 |
| } |
| left={} |
| right={} |
| linalg.yield %1 : i32 |
| } -> tensor<?xi32, #SparseVector> |
| return %0 : tensor<?xi32, #SparseVector> |
| } |
| |
| // Adds two sparse matrices when they intersect. Where they don't intersect, |
| // negate the 2nd argument's values; ignore 1st argument-only values. |
| func.func @matrix_intersect(%arga: tensor<?x?xf64, #DCSR>, |
| %argb: tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR> { |
| %c0 = arith.constant 0 : index |
| %c1 = arith.constant 1 : index |
| %d0 = tensor.dim %arga, %c0 : tensor<?x?xf64, #DCSR> |
| %d1 = tensor.dim %arga, %c1 : tensor<?x?xf64, #DCSR> |
| %xv = tensor.empty(%d0, %d1) : tensor<?x?xf64, #DCSR> |
| %0 = linalg.generic #trait_mat_op |
| ins(%arga, %argb: tensor<?x?xf64, #DCSR>, tensor<?x?xf64, #DCSR>) |
| outs(%xv: tensor<?x?xf64, #DCSR>) { |
| ^bb(%a: f64, %b: f64, %x: f64): |
| %1 = sparse_tensor.binary %a, %b: f64, f64 to f64 |
| overlap={ |
| ^bb0(%x0: f64, %y0: f64): |
| %ret = arith.addf %x0, %y0 : f64 |
| sparse_tensor.yield %ret : f64 |
| } |
| left={} |
| right={ |
| ^bb0(%x1: f64): |
| %lret = arith.negf %x1 : f64 |
| sparse_tensor.yield %lret : f64 |
| } |
| linalg.yield %1 : f64 |
| } -> tensor<?x?xf64, #DCSR> |
| return %0 : tensor<?x?xf64, #DCSR> |
| } |
| |
| // Tensor addition (use semi-ring binary operation). |
| func.func @add_tensor_1(%A: tensor<4x4xf64, #DCSR>, |
| %B: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> { |
| %C = tensor.empty() : tensor<4x4xf64, #DCSR> |
| %0 = linalg.generic #trait_mat_op |
| ins(%A, %B: tensor<4x4xf64, #DCSR>, |
| tensor<4x4xf64, #DCSR>) |
| outs(%C: tensor<4x4xf64, #DCSR>) { |
| ^bb0(%a: f64, %b: f64, %c: f64) : |
| %result = sparse_tensor.binary %a, %b : f64, f64 to f64 |
| overlap={ |
| ^bb0(%x: f64, %y: f64): |
| %ret = arith.addf %x, %y : f64 |
| sparse_tensor.yield %ret : f64 |
| } |
| left=identity |
| right=identity |
| linalg.yield %result : f64 |
| } -> tensor<4x4xf64, #DCSR> |
| return %0 : tensor<4x4xf64, #DCSR> |
| } |
| |
| // Same as @add_tensor_1, but use sparse_tensor.yield instead of identity to yield value. |
| func.func @add_tensor_2(%A: tensor<4x4xf64, #DCSR>, |
| %B: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> { |
| %C = tensor.empty() : tensor<4x4xf64, #DCSR> |
| %0 = linalg.generic #trait_mat_op |
| ins(%A, %B: tensor<4x4xf64, #DCSR>, |
| tensor<4x4xf64, #DCSR>) |
| outs(%C: tensor<4x4xf64, #DCSR>) { |
| ^bb0(%a: f64, %b: f64, %c: f64) : |
| %result = sparse_tensor.binary %a, %b : f64, f64 to f64 |
| overlap={ |
| ^bb0(%x: f64, %y: f64): |
| %ret = arith.addf %x, %y : f64 |
| sparse_tensor.yield %ret : f64 |
| } |
| left={ |
| ^bb0(%x: f64): |
| sparse_tensor.yield %x : f64 |
| } |
| right={ |
| ^bb0(%y: f64): |
| sparse_tensor.yield %y : f64 |
| } |
| linalg.yield %result : f64 |
| } -> tensor<4x4xf64, #DCSR> |
| return %0 : tensor<4x4xf64, #DCSR> |
| } |
| |
| // Performs triangular add/sub operation (using semi-ring binary op). |
| func.func @triangular(%A: tensor<4x4xf64, #DCSR>, |
| %B: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> { |
| %C = tensor.empty() : tensor<4x4xf64, #DCSR> |
| %0 = linalg.generic #trait_mat_op |
| ins(%A, %B: tensor<4x4xf64, #DCSR>, |
| tensor<4x4xf64, #DCSR>) |
| outs(%C: tensor<4x4xf64, #DCSR>) { |
| ^bb0(%a: f64, %b: f64, %c: f64) : |
| %row = linalg.index 0 : index |
| %col = linalg.index 1 : index |
| %result = sparse_tensor.binary %a, %b : f64, f64 to f64 |
| overlap={ |
| ^bb0(%x: f64, %y: f64): |
| %cmp = arith.cmpi "uge", %col, %row : index |
| %upperTriangleResult = arith.addf %x, %y : f64 |
| %lowerTriangleResult = arith.subf %x, %y : f64 |
| %ret = arith.select %cmp, %upperTriangleResult, %lowerTriangleResult : f64 |
| sparse_tensor.yield %ret : f64 |
| } |
| left=identity |
| right={ |
| ^bb0(%y: f64): |
| %cmp = arith.cmpi "uge", %col, %row : index |
| %lowerTriangleResult = arith.negf %y : f64 |
| %ret = arith.select %cmp, %y, %lowerTriangleResult : f64 |
| sparse_tensor.yield %ret : f64 |
| } |
| linalg.yield %result : f64 |
| } -> tensor<4x4xf64, #DCSR> |
| return %0 : tensor<4x4xf64, #DCSR> |
| } |
| |
| // Perform sub operation (using semi-ring binary op) with a constant threshold. |
| func.func @sub_with_thres(%A: tensor<4x4xf64, #DCSR>, |
| %B: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> { |
| %C = tensor.empty() : tensor<4x4xf64, #DCSR> |
| // Defines out-block constant bounds. |
| %thres_out_up = arith.constant 2.0 : f64 |
| %thres_out_lo = arith.constant -2.0 : f64 |
| |
| %0 = linalg.generic #trait_mat_op |
| ins(%A, %B: tensor<4x4xf64, #DCSR>, |
| tensor<4x4xf64, #DCSR>) |
| outs(%C: tensor<4x4xf64, #DCSR>) { |
| ^bb0(%a: f64, %b: f64, %c: f64) : |
| %result = sparse_tensor.binary %a, %b : f64, f64 to f64 |
| overlap={ |
| ^bb0(%x: f64, %y: f64): |
| // Defines in-block constant bounds. |
| %thres_up = arith.constant 1.0 : f64 |
| %thres_lo = arith.constant -1.0 : f64 |
| %result = arith.subf %x, %y : f64 |
| %cmp = arith.cmpf "oge", %result, %thres_up : f64 |
| %tmp = arith.select %cmp, %thres_up, %result : f64 |
| %cmp1 = arith.cmpf "ole", %tmp, %thres_lo : f64 |
| %ret = arith.select %cmp1, %thres_lo, %tmp : f64 |
| sparse_tensor.yield %ret : f64 |
| } |
| left={ |
| ^bb0(%x: f64): |
| // Uses out-block constant bounds. |
| %cmp = arith.cmpf "oge", %x, %thres_out_up : f64 |
| %tmp = arith.select %cmp, %thres_out_up, %x : f64 |
| %cmp1 = arith.cmpf "ole", %tmp, %thres_out_lo : f64 |
| %ret = arith.select %cmp1, %thres_out_lo, %tmp : f64 |
| sparse_tensor.yield %ret : f64 |
| } |
| right={ |
| ^bb0(%y: f64): |
| %ny = arith.negf %y : f64 |
| %cmp = arith.cmpf "oge", %ny, %thres_out_up : f64 |
| %tmp = arith.select %cmp, %thres_out_up, %ny : f64 |
| %cmp1 = arith.cmpf "ole", %tmp, %thres_out_lo : f64 |
| %ret = arith.select %cmp1, %thres_out_lo, %tmp : f64 |
| sparse_tensor.yield %ret : f64 |
| } |
| linalg.yield %result : f64 |
| } -> tensor<4x4xf64, #DCSR> |
| return %0 : tensor<4x4xf64, #DCSR> |
| } |
| |
| // Performs isEqual only on intersecting elements. |
| func.func @intersect_equal(%A: tensor<4x4xf64, #DCSR>, |
| %B: tensor<4x4xf64, #DCSR>) -> tensor<4x4xi8, #DCSR> { |
| %C = tensor.empty() : tensor<4x4xi8, #DCSR> |
| %0 = linalg.generic #trait_mat_op |
| ins(%A, %B: tensor<4x4xf64, #DCSR>, |
| tensor<4x4xf64, #DCSR>) |
| outs(%C: tensor<4x4xi8, #DCSR>) { |
| ^bb0(%a: f64, %b: f64, %c: i8) : |
| %result = sparse_tensor.binary %a, %b : f64, f64 to i8 |
| overlap={ |
| ^bb0(%x: f64, %y: f64): |
| %cmp = arith.cmpf "oeq", %x, %y : f64 |
| %ret = arith.extui %cmp : i1 to i8 |
| sparse_tensor.yield %ret : i8 |
| } |
| left={} |
| right={} |
| linalg.yield %result : i8 |
| } -> tensor<4x4xi8, #DCSR> |
| return %0 : tensor<4x4xi8, #DCSR> |
| } |
| |
| // Keeps values on left, negate value on right, ignore value when overlapping. |
| func.func @only_left_right(%A: tensor<4x4xf64, #DCSR>, |
| %B: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> { |
| %C = tensor.empty() : tensor<4x4xf64, #DCSR> |
| %0 = linalg.generic #trait_mat_op |
| ins(%A, %B: tensor<4x4xf64, #DCSR>, |
| tensor<4x4xf64, #DCSR>) |
| outs(%C: tensor<4x4xf64, #DCSR>) { |
| ^bb0(%a: f64, %b: f64, %c: f64) : |
| %result = sparse_tensor.binary %a, %b : f64, f64 to f64 |
| overlap={} |
| left=identity |
| right={ |
| ^bb0(%y: f64): |
| %ret = arith.negf %y : f64 |
| sparse_tensor.yield %ret : f64 |
| } |
| linalg.yield %result : f64 |
| } -> tensor<4x4xf64, #DCSR> |
| return %0 : tensor<4x4xf64, #DCSR> |
| } |
| |
| // Driver method to call and verify kernels. |
| func.func @main() { |
| %c0 = arith.constant 0 : index |
| |
| // Setup sparse vectors. |
| %v1 = arith.constant sparse< |
| [ [0], [3], [11], [17], [20], [21], [28], [29], [31] ], |
| [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ] |
| > : tensor<32xf64> |
| %v2 = arith.constant sparse< |
| [ [1], [3], [4], [10], [16], [18], [21], [28], [29], [31] ], |
| [11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0 ] |
| > : tensor<32xf64> |
| %v3 = arith.constant dense< |
| [0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., |
| 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 0., 1.] |
| > : tensor<32xf64> |
| %v1_si = arith.fptosi %v1 : tensor<32xf64> to tensor<32xi32> |
| %v2_si = arith.fptosi %v2 : tensor<32xf64> to tensor<32xi32> |
| |
| %sv1 = sparse_tensor.convert %v1 : tensor<32xf64> to tensor<?xf64, #SparseVector> |
| %sv2 = sparse_tensor.convert %v2 : tensor<32xf64> to tensor<?xf64, #SparseVector> |
| %sv1_si = sparse_tensor.convert %v1_si : tensor<32xi32> to tensor<?xi32, #SparseVector> |
| %sv2_si = sparse_tensor.convert %v2_si : tensor<32xi32> to tensor<?xi32, #SparseVector> |
| %dv3 = tensor.cast %v3 : tensor<32xf64> to tensor<?xf64> |
| |
| // Setup sparse matrices. |
| %m1 = arith.constant sparse< |
| [ [0,0], [0,1], [1,7], [2,2], [2,4], [2,7], [3,0], [3,2], [3,3] ], |
| [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ] |
| > : tensor<4x8xf64> |
| %m2 = arith.constant sparse< |
| [ [0,0], [0,7], [1,0], [1,6], [2,1], [2,7] ], |
| [6.0, 5.0, 4.0, 3.0, 2.0, 1.0 ] |
| > : tensor<4x8xf64> |
| %sm1 = sparse_tensor.convert %m1 : tensor<4x8xf64> to tensor<?x?xf64, #DCSR> |
| %sm2 = sparse_tensor.convert %m2 : tensor<4x8xf64> to tensor<?x?xf64, #DCSR> |
| |
| %m3 = arith.constant dense< |
| [ [ 1.0, 0.0, 3.0, 0.0], |
| [ 0.0, 2.0, 0.0, 0.0], |
| [ 0.0, 0.0, 0.0, 4.0], |
| [ 3.0, 4.0, 0.0, 0.0] ]> : tensor<4x4xf64> |
| %m4 = arith.constant dense< |
| [ [ 1.0, 0.0, 1.0, 1.0], |
| [ 0.0, 0.5, 0.0, 0.0], |
| [ 1.0, 5.0, 2.0, 0.0], |
| [ 2.0, 0.0, 0.0, 0.0] ]> : tensor<4x4xf64> |
| |
| %sm3 = sparse_tensor.convert %m3 : tensor<4x4xf64> to tensor<4x4xf64, #DCSR> |
| %sm4 = sparse_tensor.convert %m4 : tensor<4x4xf64> to tensor<4x4xf64, #DCSR> |
| |
| // Call sparse vector kernels. |
| %0 = call @vector_min(%sv1_si, %sv2_si) |
| : (tensor<?xi32, #SparseVector>, |
| tensor<?xi32, #SparseVector>) -> tensor<?xi32, #SparseVector> |
| %1 = call @vector_mul(%sv1, %dv3) |
| : (tensor<?xf64, #SparseVector>, |
| tensor<?xf64>) -> tensor<?xf64, #SparseVector> |
| %2 = call @vector_setdiff(%sv1, %sv2) |
| : (tensor<?xf64, #SparseVector>, |
| tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector> |
| %3 = call @vector_index(%sv1) |
| : (tensor<?xf64, #SparseVector>) -> tensor<?xi32, #SparseVector> |
| |
| // Call sparse matrix kernels. |
| %5 = call @matrix_intersect(%sm1, %sm2) |
| : (tensor<?x?xf64, #DCSR>, tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR> |
| %6 = call @add_tensor_1(%sm3, %sm4) |
| : (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> |
| %7 = call @add_tensor_2(%sm3, %sm4) |
| : (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> |
| %8 = call @triangular(%sm3, %sm4) |
| : (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> |
| %9 = call @sub_with_thres(%sm3, %sm4) |
| : (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> |
| %10 = call @intersect_equal(%sm3, %sm4) |
| : (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xi8, #DCSR> |
| %11 = call @only_left_right(%sm3, %sm4) |
| : (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> |
| |
| // |
| // Verify the results. |
| // |
| // CHECK: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 9 |
| // CHECK-NEXT: dim = ( 32 ) |
| // CHECK-NEXT: lvl = ( 32 ) |
| // CHECK-NEXT: pos[0] : ( 0, 9 ) |
| // CHECK-NEXT: crd[0] : ( 0, 3, 11, 17, 20, 21, 28, 29, 31 ) |
| // CHECK-NEXT: values : ( 1, 2, 3, 4, 5, 6, 7, 8, 9 ) |
| // CHECK-NEXT: ---- |
| // |
| // CHECK-NEXT: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 10 |
| // CHECK-NEXT: dim = ( 32 ) |
| // CHECK-NEXT: lvl = ( 32 ) |
| // CHECK-NEXT: pos[0] : ( 0, 10 ) |
| // CHECK-NEXT: crd[0] : ( 1, 3, 4, 10, 16, 18, 21, 28, 29, 31 ) |
| // CHECK-NEXT: values : ( 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ) |
| // CHECK-NEXT: ---- |
| // |
| // CHECK-NEXT: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 14 |
| // CHECK-NEXT: dim = ( 32 ) |
| // CHECK-NEXT: lvl = ( 32 ) |
| // CHECK-NEXT: pos[0] : ( 0, 14 ) |
| // CHECK-NEXT: crd[0] : ( 0, 1, 3, 4, 10, 11, 16, 17, 18, 20, 21, 28, 29, 31 ) |
| // CHECK-NEXT: values : ( 1, 11, 2, 13, 14, 3, 15, 4, 16, 5, 6, 7, 8, 9 ) |
| // CHECK-NEXT: ---- |
| // |
| // CHECK-NEXT: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 9 |
| // CHECK-NEXT: dim = ( 32 ) |
| // CHECK-NEXT: lvl = ( 32 ) |
| // CHECK-NEXT: pos[0] : ( 0, 9 ) |
| // CHECK-NEXT: crd[0] : ( 0, 3, 11, 17, 20, 21, 28, 29, 31 ) |
| // CHECK-NEXT: values : ( 0, 6, 3, 28, 0, 6, 56, 72, 9 ) |
| // CHECK-NEXT: ---- |
| // |
| // CHECK-NEXT: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 4 |
| // CHECK-NEXT: dim = ( 32 ) |
| // CHECK-NEXT: lvl = ( 32 ) |
| // CHECK-NEXT: pos[0] : ( 0, 4 ) |
| // CHECK-NEXT: crd[0] : ( 0, 11, 17, 20 ) |
| // CHECK-NEXT: values : ( 1, 3, 4, 5 ) |
| // CHECK-NEXT: ---- |
| // |
| // CHECK-NEXT: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 9 |
| // CHECK-NEXT: dim = ( 32 ) |
| // CHECK-NEXT: lvl = ( 32 ) |
| // CHECK-NEXT: pos[0] : ( 0, 9 ) |
| // CHECK-NEXT: crd[0] : ( 0, 3, 11, 17, 20, 21, 28, 29, 31 ) |
| // CHECK-NEXT: values : ( 0, 3, 11, 17, 20, 21, 28, 29, 31 ) |
| // CHECK-NEXT: ---- |
| // |
| // CHECK-NEXT: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 6 |
| // CHECK-NEXT: dim = ( 4, 8 ) |
| // CHECK-NEXT: lvl = ( 4, 8 ) |
| // CHECK-NEXT: pos[0] : ( 0, 3 ) |
| // CHECK-NEXT: crd[0] : ( 0, 1, 2 ) |
| // CHECK-NEXT: pos[1] : ( 0, 2, 4, 6 ) |
| // CHECK-NEXT: crd[1] : ( 0, 7, 0, 6, 1, 7 ) |
| // CHECK-NEXT: values : ( 7, -5, -4, -3, -2, 7 ) |
| // CHECK-NEXT: ---- |
| // |
| // CHECK-NEXT: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 10 |
| // CHECK-NEXT: dim = ( 4, 4 ) |
| // CHECK-NEXT: lvl = ( 4, 4 ) |
| // CHECK-NEXT: pos[0] : ( 0, 4 ) |
| // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 ) |
| // CHECK-NEXT: pos[1] : ( 0, 3, 4, 8, 10 ) |
| // CHECK-NEXT: crd[1] : ( 0, 2, 3, 1, 0, 1, 2, 3, 0, 1 ) |
| // CHECK-NEXT: values : ( 2, 4, 1, 2.5, 1, 5, 2, 4, 5, 4 ) |
| // CHECK-NEXT: ---- |
| // |
| // CHECK-NEXT: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 10 |
| // CHECK-NEXT: dim = ( 4, 4 ) |
| // CHECK-NEXT: lvl = ( 4, 4 ) |
| // CHECK-NEXT: pos[0] : ( 0, 4 ) |
| // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 ) |
| // CHECK-NEXT: pos[1] : ( 0, 3, 4, 8, 10 ) |
| // CHECK-NEXT: crd[1] : ( 0, 2, 3, 1, 0, 1, 2, 3, 0, 1 ) |
| // CHECK-NEXT: values : ( 2, 4, 1, 2.5, 1, 5, 2, 4, 5, 4 ) |
| // CHECK-NEXT: ---- |
| // |
| // CHECK-NEXT: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 10 |
| // CHECK-NEXT: dim = ( 4, 4 ) |
| // CHECK-NEXT: lvl = ( 4, 4 ) |
| // CHECK-NEXT: pos[0] : ( 0, 4 ) |
| // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 ) |
| // CHECK-NEXT: pos[1] : ( 0, 3, 4, 8, 10 ) |
| // CHECK-NEXT: crd[1] : ( 0, 2, 3, 1, 0, 1, 2, 3, 0, 1 ) |
| // CHECK-NEXT: values : ( 2, 4, 1, 2.5, -1, -5, 2, 4, 1, 4 ) |
| // CHECK-NEXT: ---- |
| // |
| // CHECK-NEXT: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 10 |
| // CHECK-NEXT: dim = ( 4, 4 ) |
| // CHECK-NEXT: lvl = ( 4, 4 ) |
| // CHECK-NEXT: pos[0] : ( 0, 4 ) |
| // CHECK-NEXT: crd[0] : ( 0, 1, 2, 3 ) |
| // CHECK-NEXT: pos[1] : ( 0, 3, 4, 8, 10 ) |
| // CHECK-NEXT: crd[1] : ( 0, 2, 3, 1, 0, 1, 2, 3, 0, 1 ) |
| // CHECK-NEXT: values : ( 0, 1, -1, 1, -1, -2, -2, 2, 1, 2 ) |
| // CHECK-NEXT: ---- |
| // |
| // CHECK-NEXT: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 4 |
| // CHECK-NEXT: dim = ( 4, 4 ) |
| // CHECK-NEXT: lvl = ( 4, 4 ) |
| // CHECK-NEXT: pos[0] : ( 0, 3 ) |
| // CHECK-NEXT: crd[0] : ( 0, 1, 3 ) |
| // CHECK-NEXT: pos[1] : ( 0, 2, 3, 4 ) |
| // CHECK-NEXT: crd[1] : ( 0, 2, 1, 0 ) |
| // CHECK-NEXT: values : ( 1, 0, 0, 0 ) |
| // CHECK-NEXT: ---- |
| // |
| // CHECK-NEXT: ---- Sparse Tensor ---- |
| // CHECK-NEXT: nse = 6 |
| // CHECK-NEXT: dim = ( 4, 4 ) |
| // CHECK-NEXT: lvl = ( 4, 4 ) |
| // CHECK-NEXT: pos[0] : ( 0, 3 ) |
| // CHECK-NEXT: crd[0] : ( 0, 2, 3 ) |
| // CHECK-NEXT: pos[1] : ( 0, 1, 5, 6 ) |
| // CHECK-NEXT: crd[1] : ( 3, 0, 1, 2, 3, 1 ) |
| // CHECK-NEXT: values : ( -1, -1, -5, -2, 4, 4 ) |
| // |
| sparse_tensor.print %sv1 : tensor<?xf64, #SparseVector> |
| sparse_tensor.print %sv2 : tensor<?xf64, #SparseVector> |
| sparse_tensor.print %0 : tensor<?xi32, #SparseVector> |
| sparse_tensor.print %1 : tensor<?xf64, #SparseVector> |
| sparse_tensor.print %2 : tensor<?xf64, #SparseVector> |
| sparse_tensor.print %3 : tensor<?xi32, #SparseVector> |
| sparse_tensor.print %5 : tensor<?x?xf64, #DCSR> |
| sparse_tensor.print %6 : tensor<4x4xf64, #DCSR> |
| sparse_tensor.print %7 : tensor<4x4xf64, #DCSR> |
| sparse_tensor.print %8 : tensor<4x4xf64, #DCSR> |
| sparse_tensor.print %9 : tensor<4x4xf64, #DCSR> |
| sparse_tensor.print %10 : tensor<4x4xi8, #DCSR> |
| sparse_tensor.print %11 : tensor<4x4xf64, #DCSR> |
| |
| // Release the resources. |
| bufferization.dealloc_tensor %sv1 : tensor<?xf64, #SparseVector> |
| bufferization.dealloc_tensor %sv2 : tensor<?xf64, #SparseVector> |
| bufferization.dealloc_tensor %sv1_si : tensor<?xi32, #SparseVector> |
| bufferization.dealloc_tensor %sv2_si : tensor<?xi32, #SparseVector> |
| bufferization.dealloc_tensor %sm1 : tensor<?x?xf64, #DCSR> |
| bufferization.dealloc_tensor %sm2 : tensor<?x?xf64, #DCSR> |
| bufferization.dealloc_tensor %sm3 : tensor<4x4xf64, #DCSR> |
| bufferization.dealloc_tensor %sm4 : tensor<4x4xf64, #DCSR> |
| bufferization.dealloc_tensor %0 : tensor<?xi32, #SparseVector> |
| bufferization.dealloc_tensor %1 : tensor<?xf64, #SparseVector> |
| bufferization.dealloc_tensor %2 : tensor<?xf64, #SparseVector> |
| bufferization.dealloc_tensor %3 : tensor<?xi32, #SparseVector> |
| bufferization.dealloc_tensor %5 : tensor<?x?xf64, #DCSR> |
| bufferization.dealloc_tensor %6 : tensor<4x4xf64, #DCSR> |
| bufferization.dealloc_tensor %7 : tensor<4x4xf64, #DCSR> |
| bufferization.dealloc_tensor %8 : tensor<4x4xf64, #DCSR> |
| bufferization.dealloc_tensor %9 : tensor<4x4xf64, #DCSR> |
| bufferization.dealloc_tensor %10 : tensor<4x4xi8, #DCSR> |
| bufferization.dealloc_tensor %11 : tensor<4x4xf64, #DCSR> |
| return |
| } |
| } |