|  | //===- Type.cpp - Type representation and manipulation --------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements type-related functionality. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/Type.h" | 
|  | #include "Linkage.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/Attr.h" | 
|  | #include "clang/AST/CharUnits.h" | 
|  | #include "clang/AST/Decl.h" | 
|  | #include "clang/AST/DeclBase.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclFriend.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/DependenceFlags.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/NestedNameSpecifier.h" | 
|  | #include "clang/AST/PrettyPrinter.h" | 
|  | #include "clang/AST/TemplateBase.h" | 
|  | #include "clang/AST/TemplateName.h" | 
|  | #include "clang/AST/TypeVisitor.h" | 
|  | #include "clang/Basic/AddressSpaces.h" | 
|  | #include "clang/Basic/ExceptionSpecificationType.h" | 
|  | #include "clang/Basic/IdentifierTable.h" | 
|  | #include "clang/Basic/LLVM.h" | 
|  | #include "clang/Basic/LangOptions.h" | 
|  | #include "clang/Basic/Linkage.h" | 
|  | #include "clang/Basic/Specifiers.h" | 
|  | #include "clang/Basic/TargetCXXABI.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Basic/Visibility.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/APSInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/FoldingSet.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <cstring> | 
|  | #include <optional> | 
|  |  | 
|  | using namespace clang; | 
|  |  | 
|  | bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const { | 
|  | return (*this != Other) && | 
|  | // CVR qualifiers superset | 
|  | (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) && | 
|  | // ObjC GC qualifiers superset | 
|  | ((getObjCGCAttr() == Other.getObjCGCAttr()) || | 
|  | (hasObjCGCAttr() && !Other.hasObjCGCAttr())) && | 
|  | // Address space superset. | 
|  | ((getAddressSpace() == Other.getAddressSpace()) || | 
|  | (hasAddressSpace() && !Other.hasAddressSpace())) && | 
|  | // Lifetime qualifier superset. | 
|  | ((getObjCLifetime() == Other.getObjCLifetime()) || | 
|  | (hasObjCLifetime() && !Other.hasObjCLifetime())); | 
|  | } | 
|  |  | 
|  | bool Qualifiers::isTargetAddressSpaceSupersetOf(LangAS A, LangAS B, | 
|  | const ASTContext &Ctx) { | 
|  | // In OpenCLC v2.0 s6.5.5: every address space except for __constant can be | 
|  | // used as __generic. | 
|  | return (A == LangAS::opencl_generic && B != LangAS::opencl_constant) || | 
|  | // We also define global_device and global_host address spaces, | 
|  | // to distinguish global pointers allocated on host from pointers | 
|  | // allocated on device, which are a subset of __global. | 
|  | (A == LangAS::opencl_global && (B == LangAS::opencl_global_device || | 
|  | B == LangAS::opencl_global_host)) || | 
|  | (A == LangAS::sycl_global && | 
|  | (B == LangAS::sycl_global_device || B == LangAS::sycl_global_host)) || | 
|  | // Consider pointer size address spaces to be equivalent to default. | 
|  | ((isPtrSizeAddressSpace(A) || A == LangAS::Default) && | 
|  | (isPtrSizeAddressSpace(B) || B == LangAS::Default)) || | 
|  | // Default is a superset of SYCL address spaces. | 
|  | (A == LangAS::Default && | 
|  | (B == LangAS::sycl_private || B == LangAS::sycl_local || | 
|  | B == LangAS::sycl_global || B == LangAS::sycl_global_device || | 
|  | B == LangAS::sycl_global_host)) || | 
|  | // In HIP device compilation, any cuda address space is allowed | 
|  | // to implicitly cast into the default address space. | 
|  | (A == LangAS::Default && | 
|  | (B == LangAS::cuda_constant || B == LangAS::cuda_device || | 
|  | B == LangAS::cuda_shared)) || | 
|  | // In HLSL, the this pointer for member functions points to the default | 
|  | // address space. This causes a problem if the structure is in | 
|  | // a different address space. We want to allow casting from these | 
|  | // address spaces to default to work around this problem. | 
|  | (A == LangAS::Default && B == LangAS::hlsl_private) || | 
|  | (A == LangAS::Default && B == LangAS::hlsl_device) || | 
|  | (A == LangAS::Default && B == LangAS::hlsl_input) || | 
|  | // Conversions from target specific address spaces may be legal | 
|  | // depending on the target information. | 
|  | Ctx.getTargetInfo().isAddressSpaceSupersetOf(A, B); | 
|  | } | 
|  |  | 
|  | const IdentifierInfo *QualType::getBaseTypeIdentifier() const { | 
|  | const Type *ty = getTypePtr(); | 
|  | NamedDecl *ND = nullptr; | 
|  | if (const auto *DNT = ty->getAs<DependentNameType>()) | 
|  | return DNT->getIdentifier(); | 
|  | if (ty->isPointerOrReferenceType()) | 
|  | return ty->getPointeeType().getBaseTypeIdentifier(); | 
|  | if (const auto *TT = ty->getAs<TagType>()) | 
|  | ND = TT->getOriginalDecl(); | 
|  | else if (ty->getTypeClass() == Type::Typedef) | 
|  | ND = ty->castAs<TypedefType>()->getDecl(); | 
|  | else if (ty->isArrayType()) | 
|  | return ty->castAsArrayTypeUnsafe() | 
|  | ->getElementType() | 
|  | .getBaseTypeIdentifier(); | 
|  |  | 
|  | if (ND) | 
|  | return ND->getIdentifier(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool QualType::mayBeDynamicClass() const { | 
|  | const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl(); | 
|  | return ClassDecl && ClassDecl->mayBeDynamicClass(); | 
|  | } | 
|  |  | 
|  | bool QualType::mayBeNotDynamicClass() const { | 
|  | const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl(); | 
|  | return !ClassDecl || ClassDecl->mayBeNonDynamicClass(); | 
|  | } | 
|  |  | 
|  | bool QualType::isConstant(QualType T, const ASTContext &Ctx) { | 
|  | if (T.isConstQualified()) | 
|  | return true; | 
|  |  | 
|  | if (const ArrayType *AT = Ctx.getAsArrayType(T)) | 
|  | return AT->getElementType().isConstant(Ctx); | 
|  |  | 
|  | return T.getAddressSpace() == LangAS::opencl_constant; | 
|  | } | 
|  |  | 
|  | std::optional<QualType::NonConstantStorageReason> | 
|  | QualType::isNonConstantStorage(const ASTContext &Ctx, bool ExcludeCtor, | 
|  | bool ExcludeDtor) { | 
|  | if (!isConstant(Ctx) && !(*this)->isReferenceType()) | 
|  | return NonConstantStorageReason::NonConstNonReferenceType; | 
|  | if (!Ctx.getLangOpts().CPlusPlus) | 
|  | return std::nullopt; | 
|  | if (const CXXRecordDecl *Record = | 
|  | Ctx.getBaseElementType(*this)->getAsCXXRecordDecl()) { | 
|  | if (!ExcludeCtor) | 
|  | return NonConstantStorageReason::NonTrivialCtor; | 
|  | if (Record->hasMutableFields()) | 
|  | return NonConstantStorageReason::MutableField; | 
|  | if (!Record->hasTrivialDestructor() && !ExcludeDtor) | 
|  | return NonConstantStorageReason::NonTrivialDtor; | 
|  | } | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | // C++ [temp.dep.type]p1: | 
|  | //   A type is dependent if it is... | 
|  | //     - an array type constructed from any dependent type or whose | 
|  | //       size is specified by a constant expression that is | 
|  | //       value-dependent, | 
|  | ArrayType::ArrayType(TypeClass tc, QualType et, QualType can, | 
|  | ArraySizeModifier sm, unsigned tq, const Expr *sz) | 
|  | // Note, we need to check for DependentSizedArrayType explicitly here | 
|  | // because we use a DependentSizedArrayType with no size expression as the | 
|  | // type of a dependent array of unknown bound with a dependent braced | 
|  | // initializer: | 
|  | // | 
|  | //   template<int ...N> int arr[] = {N...}; | 
|  | : Type(tc, can, | 
|  | et->getDependence() | | 
|  | (sz ? toTypeDependence( | 
|  | turnValueToTypeDependence(sz->getDependence())) | 
|  | : TypeDependence::None) | | 
|  | (tc == VariableArray ? TypeDependence::VariablyModified | 
|  | : TypeDependence::None) | | 
|  | (tc == DependentSizedArray | 
|  | ? TypeDependence::DependentInstantiation | 
|  | : TypeDependence::None)), | 
|  | ElementType(et) { | 
|  | ArrayTypeBits.IndexTypeQuals = tq; | 
|  | ArrayTypeBits.SizeModifier = llvm::to_underlying(sm); | 
|  | } | 
|  |  | 
|  | ConstantArrayType * | 
|  | ConstantArrayType::Create(const ASTContext &Ctx, QualType ET, QualType Can, | 
|  | const llvm::APInt &Sz, const Expr *SzExpr, | 
|  | ArraySizeModifier SzMod, unsigned Qual) { | 
|  | bool NeedsExternalSize = SzExpr != nullptr || Sz.ugt(0x0FFFFFFFFFFFFFFF) || | 
|  | Sz.getBitWidth() > 0xFF; | 
|  | if (!NeedsExternalSize) | 
|  | return new (Ctx, alignof(ConstantArrayType)) ConstantArrayType( | 
|  | ET, Can, Sz.getBitWidth(), Sz.getZExtValue(), SzMod, Qual); | 
|  |  | 
|  | auto *SzPtr = new (Ctx, alignof(ConstantArrayType::ExternalSize)) | 
|  | ConstantArrayType::ExternalSize(Sz, SzExpr); | 
|  | return new (Ctx, alignof(ConstantArrayType)) | 
|  | ConstantArrayType(ET, Can, SzPtr, SzMod, Qual); | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | ConstantArrayType::getNumAddressingBits(const ASTContext &Context, | 
|  | QualType ElementType, | 
|  | const llvm::APInt &NumElements) { | 
|  | uint64_t ElementSize = Context.getTypeSizeInChars(ElementType).getQuantity(); | 
|  |  | 
|  | // Fast path the common cases so we can avoid the conservative computation | 
|  | // below, which in common cases allocates "large" APSInt values, which are | 
|  | // slow. | 
|  |  | 
|  | // If the element size is a power of 2, we can directly compute the additional | 
|  | // number of addressing bits beyond those required for the element count. | 
|  | if (llvm::isPowerOf2_64(ElementSize)) { | 
|  | return NumElements.getActiveBits() + llvm::Log2_64(ElementSize); | 
|  | } | 
|  |  | 
|  | // If both the element count and element size fit in 32-bits, we can do the | 
|  | // computation directly in 64-bits. | 
|  | if ((ElementSize >> 32) == 0 && NumElements.getBitWidth() <= 64 && | 
|  | (NumElements.getZExtValue() >> 32) == 0) { | 
|  | uint64_t TotalSize = NumElements.getZExtValue() * ElementSize; | 
|  | return llvm::bit_width(TotalSize); | 
|  | } | 
|  |  | 
|  | // Otherwise, use APSInt to handle arbitrary sized values. | 
|  | llvm::APSInt SizeExtended(NumElements, true); | 
|  | unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType()); | 
|  | SizeExtended = SizeExtended.extend( | 
|  | std::max(SizeTypeBits, SizeExtended.getBitWidth()) * 2); | 
|  |  | 
|  | llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize)); | 
|  | TotalSize *= SizeExtended; | 
|  |  | 
|  | return TotalSize.getActiveBits(); | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | ConstantArrayType::getNumAddressingBits(const ASTContext &Context) const { | 
|  | return getNumAddressingBits(Context, getElementType(), getSize()); | 
|  | } | 
|  |  | 
|  | unsigned ConstantArrayType::getMaxSizeBits(const ASTContext &Context) { | 
|  | unsigned Bits = Context.getTypeSize(Context.getSizeType()); | 
|  |  | 
|  | // Limit the number of bits in size_t so that maximal bit size fits 64 bit | 
|  | // integer (see PR8256).  We can do this as currently there is no hardware | 
|  | // that supports full 64-bit virtual space. | 
|  | if (Bits > 61) | 
|  | Bits = 61; | 
|  |  | 
|  | return Bits; | 
|  | } | 
|  |  | 
|  | void ConstantArrayType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | const ASTContext &Context, QualType ET, | 
|  | uint64_t ArraySize, const Expr *SizeExpr, | 
|  | ArraySizeModifier SizeMod, unsigned TypeQuals) { | 
|  | ID.AddPointer(ET.getAsOpaquePtr()); | 
|  | ID.AddInteger(ArraySize); | 
|  | ID.AddInteger(llvm::to_underlying(SizeMod)); | 
|  | ID.AddInteger(TypeQuals); | 
|  | ID.AddBoolean(SizeExpr != nullptr); | 
|  | if (SizeExpr) | 
|  | SizeExpr->Profile(ID, Context, true); | 
|  | } | 
|  |  | 
|  | QualType ArrayParameterType::getConstantArrayType(const ASTContext &Ctx) const { | 
|  | return Ctx.getConstantArrayType(getElementType(), getSize(), getSizeExpr(), | 
|  | getSizeModifier(), | 
|  | getIndexTypeQualifiers().getAsOpaqueValue()); | 
|  | } | 
|  |  | 
|  | DependentSizedArrayType::DependentSizedArrayType(QualType et, QualType can, | 
|  | Expr *e, ArraySizeModifier sm, | 
|  | unsigned tq) | 
|  | : ArrayType(DependentSizedArray, et, can, sm, tq, e), SizeExpr((Stmt *)e) {} | 
|  |  | 
|  | void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | const ASTContext &Context, QualType ET, | 
|  | ArraySizeModifier SizeMod, | 
|  | unsigned TypeQuals, Expr *E) { | 
|  | ID.AddPointer(ET.getAsOpaquePtr()); | 
|  | ID.AddInteger(llvm::to_underlying(SizeMod)); | 
|  | ID.AddInteger(TypeQuals); | 
|  | if (E) | 
|  | E->Profile(ID, Context, true); | 
|  | } | 
|  |  | 
|  | DependentVectorType::DependentVectorType(QualType ElementType, | 
|  | QualType CanonType, Expr *SizeExpr, | 
|  | SourceLocation Loc, VectorKind VecKind) | 
|  | : Type(DependentVector, CanonType, | 
|  | TypeDependence::DependentInstantiation | | 
|  | ElementType->getDependence() | | 
|  | (SizeExpr ? toTypeDependence(SizeExpr->getDependence()) | 
|  | : TypeDependence::None)), | 
|  | ElementType(ElementType), SizeExpr(SizeExpr), Loc(Loc) { | 
|  | VectorTypeBits.VecKind = llvm::to_underlying(VecKind); | 
|  | } | 
|  |  | 
|  | void DependentVectorType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | const ASTContext &Context, | 
|  | QualType ElementType, const Expr *SizeExpr, | 
|  | VectorKind VecKind) { | 
|  | ID.AddPointer(ElementType.getAsOpaquePtr()); | 
|  | ID.AddInteger(llvm::to_underlying(VecKind)); | 
|  | SizeExpr->Profile(ID, Context, true); | 
|  | } | 
|  |  | 
|  | DependentSizedExtVectorType::DependentSizedExtVectorType(QualType ElementType, | 
|  | QualType can, | 
|  | Expr *SizeExpr, | 
|  | SourceLocation loc) | 
|  | : Type(DependentSizedExtVector, can, | 
|  | TypeDependence::DependentInstantiation | | 
|  | ElementType->getDependence() | | 
|  | (SizeExpr ? toTypeDependence(SizeExpr->getDependence()) | 
|  | : TypeDependence::None)), | 
|  | SizeExpr(SizeExpr), ElementType(ElementType), loc(loc) {} | 
|  |  | 
|  | void DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | const ASTContext &Context, | 
|  | QualType ElementType, | 
|  | Expr *SizeExpr) { | 
|  | ID.AddPointer(ElementType.getAsOpaquePtr()); | 
|  | SizeExpr->Profile(ID, Context, true); | 
|  | } | 
|  |  | 
|  | DependentAddressSpaceType::DependentAddressSpaceType(QualType PointeeType, | 
|  | QualType can, | 
|  | Expr *AddrSpaceExpr, | 
|  | SourceLocation loc) | 
|  | : Type(DependentAddressSpace, can, | 
|  | TypeDependence::DependentInstantiation | | 
|  | PointeeType->getDependence() | | 
|  | (AddrSpaceExpr ? toTypeDependence(AddrSpaceExpr->getDependence()) | 
|  | : TypeDependence::None)), | 
|  | AddrSpaceExpr(AddrSpaceExpr), PointeeType(PointeeType), loc(loc) {} | 
|  |  | 
|  | void DependentAddressSpaceType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | const ASTContext &Context, | 
|  | QualType PointeeType, | 
|  | Expr *AddrSpaceExpr) { | 
|  | ID.AddPointer(PointeeType.getAsOpaquePtr()); | 
|  | AddrSpaceExpr->Profile(ID, Context, true); | 
|  | } | 
|  |  | 
|  | MatrixType::MatrixType(TypeClass tc, QualType matrixType, QualType canonType, | 
|  | const Expr *RowExpr, const Expr *ColumnExpr) | 
|  | : Type(tc, canonType, | 
|  | (RowExpr ? (matrixType->getDependence() | TypeDependence::Dependent | | 
|  | TypeDependence::Instantiation | | 
|  | (matrixType->isVariablyModifiedType() | 
|  | ? TypeDependence::VariablyModified | 
|  | : TypeDependence::None) | | 
|  | (matrixType->containsUnexpandedParameterPack() || | 
|  | (RowExpr && | 
|  | RowExpr->containsUnexpandedParameterPack()) || | 
|  | (ColumnExpr && | 
|  | ColumnExpr->containsUnexpandedParameterPack()) | 
|  | ? TypeDependence::UnexpandedPack | 
|  | : TypeDependence::None)) | 
|  | : matrixType->getDependence())), | 
|  | ElementType(matrixType) {} | 
|  |  | 
|  | ConstantMatrixType::ConstantMatrixType(QualType matrixType, unsigned nRows, | 
|  | unsigned nColumns, QualType canonType) | 
|  | : ConstantMatrixType(ConstantMatrix, matrixType, nRows, nColumns, | 
|  | canonType) {} | 
|  |  | 
|  | ConstantMatrixType::ConstantMatrixType(TypeClass tc, QualType matrixType, | 
|  | unsigned nRows, unsigned nColumns, | 
|  | QualType canonType) | 
|  | : MatrixType(tc, matrixType, canonType), NumRows(nRows), | 
|  | NumColumns(nColumns) {} | 
|  |  | 
|  | DependentSizedMatrixType::DependentSizedMatrixType(QualType ElementType, | 
|  | QualType CanonicalType, | 
|  | Expr *RowExpr, | 
|  | Expr *ColumnExpr, | 
|  | SourceLocation loc) | 
|  | : MatrixType(DependentSizedMatrix, ElementType, CanonicalType, RowExpr, | 
|  | ColumnExpr), | 
|  | RowExpr(RowExpr), ColumnExpr(ColumnExpr), loc(loc) {} | 
|  |  | 
|  | void DependentSizedMatrixType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | const ASTContext &CTX, | 
|  | QualType ElementType, Expr *RowExpr, | 
|  | Expr *ColumnExpr) { | 
|  | ID.AddPointer(ElementType.getAsOpaquePtr()); | 
|  | RowExpr->Profile(ID, CTX, true); | 
|  | ColumnExpr->Profile(ID, CTX, true); | 
|  | } | 
|  |  | 
|  | VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType, | 
|  | VectorKind vecKind) | 
|  | : VectorType(Vector, vecType, nElements, canonType, vecKind) {} | 
|  |  | 
|  | VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements, | 
|  | QualType canonType, VectorKind vecKind) | 
|  | : Type(tc, canonType, vecType->getDependence()), ElementType(vecType) { | 
|  | VectorTypeBits.VecKind = llvm::to_underlying(vecKind); | 
|  | VectorTypeBits.NumElements = nElements; | 
|  | } | 
|  |  | 
|  | bool Type::isPackedVectorBoolType(const ASTContext &ctx) const { | 
|  | if (ctx.getLangOpts().HLSL) | 
|  | return false; | 
|  | return isExtVectorBoolType(); | 
|  | } | 
|  |  | 
|  | BitIntType::BitIntType(bool IsUnsigned, unsigned NumBits) | 
|  | : Type(BitInt, QualType{}, TypeDependence::None), IsUnsigned(IsUnsigned), | 
|  | NumBits(NumBits) {} | 
|  |  | 
|  | DependentBitIntType::DependentBitIntType(bool IsUnsigned, Expr *NumBitsExpr) | 
|  | : Type(DependentBitInt, QualType{}, | 
|  | toTypeDependence(NumBitsExpr->getDependence())), | 
|  | ExprAndUnsigned(NumBitsExpr, IsUnsigned) {} | 
|  |  | 
|  | bool DependentBitIntType::isUnsigned() const { | 
|  | return ExprAndUnsigned.getInt(); | 
|  | } | 
|  |  | 
|  | clang::Expr *DependentBitIntType::getNumBitsExpr() const { | 
|  | return ExprAndUnsigned.getPointer(); | 
|  | } | 
|  |  | 
|  | void DependentBitIntType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | const ASTContext &Context, bool IsUnsigned, | 
|  | Expr *NumBitsExpr) { | 
|  | ID.AddBoolean(IsUnsigned); | 
|  | NumBitsExpr->Profile(ID, Context, true); | 
|  | } | 
|  |  | 
|  | bool BoundsAttributedType::referencesFieldDecls() const { | 
|  | return llvm::any_of(dependent_decls(), | 
|  | [](const TypeCoupledDeclRefInfo &Info) { | 
|  | return isa<FieldDecl>(Info.getDecl()); | 
|  | }); | 
|  | } | 
|  |  | 
|  | void CountAttributedType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | QualType WrappedTy, Expr *CountExpr, | 
|  | bool CountInBytes, bool OrNull) { | 
|  | ID.AddPointer(WrappedTy.getAsOpaquePtr()); | 
|  | ID.AddBoolean(CountInBytes); | 
|  | ID.AddBoolean(OrNull); | 
|  | // We profile it as a pointer as the StmtProfiler considers parameter | 
|  | // expressions on function declaration and function definition as the | 
|  | // same, resulting in count expression being evaluated with ParamDecl | 
|  | // not in the function scope. | 
|  | ID.AddPointer(CountExpr); | 
|  | } | 
|  |  | 
|  | /// getArrayElementTypeNoTypeQual - If this is an array type, return the | 
|  | /// element type of the array, potentially with type qualifiers missing. | 
|  | /// This method should never be used when type qualifiers are meaningful. | 
|  | const Type *Type::getArrayElementTypeNoTypeQual() const { | 
|  | // If this is directly an array type, return it. | 
|  | if (const auto *ATy = dyn_cast<ArrayType>(this)) | 
|  | return ATy->getElementType().getTypePtr(); | 
|  |  | 
|  | // If the canonical form of this type isn't the right kind, reject it. | 
|  | if (!isa<ArrayType>(CanonicalType)) | 
|  | return nullptr; | 
|  |  | 
|  | // If this is a typedef for an array type, strip the typedef off without | 
|  | // losing all typedef information. | 
|  | return cast<ArrayType>(getUnqualifiedDesugaredType()) | 
|  | ->getElementType() | 
|  | .getTypePtr(); | 
|  | } | 
|  |  | 
|  | /// getDesugaredType - Return the specified type with any "sugar" removed from | 
|  | /// the type.  This takes off typedefs, typeof's etc.  If the outer level of | 
|  | /// the type is already concrete, it returns it unmodified.  This is similar | 
|  | /// to getting the canonical type, but it doesn't remove *all* typedefs.  For | 
|  | /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is | 
|  | /// concrete. | 
|  | QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) { | 
|  | SplitQualType split = getSplitDesugaredType(T); | 
|  | return Context.getQualifiedType(split.Ty, split.Quals); | 
|  | } | 
|  |  | 
|  | QualType QualType::getSingleStepDesugaredTypeImpl(QualType type, | 
|  | const ASTContext &Context) { | 
|  | SplitQualType split = type.split(); | 
|  | QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType(); | 
|  | return Context.getQualifiedType(desugar, split.Quals); | 
|  | } | 
|  |  | 
|  | // Check that no type class is polymorphic. LLVM style RTTI should be used | 
|  | // instead. If absolutely needed an exception can still be added here by | 
|  | // defining the appropriate macro (but please don't do this). | 
|  | #define TYPE(CLASS, BASE)                                                      \ | 
|  | static_assert(!std::is_polymorphic<CLASS##Type>::value,                      \ | 
|  | #CLASS "Type should not be polymorphic!"); | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  |  | 
|  | // Check that no type class has a non-trival destructor. Types are | 
|  | // allocated with the BumpPtrAllocator from ASTContext and therefore | 
|  | // their destructor is not executed. | 
|  | #define TYPE(CLASS, BASE)                                                      \ | 
|  | static_assert(std::is_trivially_destructible<CLASS##Type>::value,            \ | 
|  | #CLASS "Type should be trivially destructible!"); | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  |  | 
|  | QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const { | 
|  | switch (getTypeClass()) { | 
|  | #define ABSTRACT_TYPE(Class, Parent) | 
|  | #define TYPE(Class, Parent)                                                    \ | 
|  | case Type::Class: {                                                          \ | 
|  | const auto *ty = cast<Class##Type>(this);                                  \ | 
|  | if (!ty->isSugared())                                                      \ | 
|  | return QualType(ty, 0);                                                  \ | 
|  | return ty->desugar();                                                      \ | 
|  | } | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  | } | 
|  | llvm_unreachable("bad type kind!"); | 
|  | } | 
|  |  | 
|  | SplitQualType QualType::getSplitDesugaredType(QualType T) { | 
|  | QualifierCollector Qs; | 
|  |  | 
|  | QualType Cur = T; | 
|  | while (true) { | 
|  | const Type *CurTy = Qs.strip(Cur); | 
|  | switch (CurTy->getTypeClass()) { | 
|  | #define ABSTRACT_TYPE(Class, Parent) | 
|  | #define TYPE(Class, Parent)                                                    \ | 
|  | case Type::Class: {                                                          \ | 
|  | const auto *Ty = cast<Class##Type>(CurTy);                                 \ | 
|  | if (!Ty->isSugared())                                                      \ | 
|  | return SplitQualType(Ty, Qs);                                            \ | 
|  | Cur = Ty->desugar();                                                       \ | 
|  | break;                                                                     \ | 
|  | } | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) { | 
|  | SplitQualType split = type.split(); | 
|  |  | 
|  | // All the qualifiers we've seen so far. | 
|  | Qualifiers quals = split.Quals; | 
|  |  | 
|  | // The last type node we saw with any nodes inside it. | 
|  | const Type *lastTypeWithQuals = split.Ty; | 
|  |  | 
|  | while (true) { | 
|  | QualType next; | 
|  |  | 
|  | // Do a single-step desugar, aborting the loop if the type isn't | 
|  | // sugared. | 
|  | switch (split.Ty->getTypeClass()) { | 
|  | #define ABSTRACT_TYPE(Class, Parent) | 
|  | #define TYPE(Class, Parent)                                                    \ | 
|  | case Type::Class: {                                                          \ | 
|  | const auto *ty = cast<Class##Type>(split.Ty);                              \ | 
|  | if (!ty->isSugared())                                                      \ | 
|  | goto done;                                                               \ | 
|  | next = ty->desugar();                                                      \ | 
|  | break;                                                                     \ | 
|  | } | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  | } | 
|  |  | 
|  | // Otherwise, split the underlying type.  If that yields qualifiers, | 
|  | // update the information. | 
|  | split = next.split(); | 
|  | if (!split.Quals.empty()) { | 
|  | lastTypeWithQuals = split.Ty; | 
|  | quals.addConsistentQualifiers(split.Quals); | 
|  | } | 
|  | } | 
|  |  | 
|  | done: | 
|  | return SplitQualType(lastTypeWithQuals, quals); | 
|  | } | 
|  |  | 
|  | QualType QualType::IgnoreParens(QualType T) { | 
|  | // FIXME: this seems inherently un-qualifiers-safe. | 
|  | while (const auto *PT = T->getAs<ParenType>()) | 
|  | T = PT->getInnerType(); | 
|  | return T; | 
|  | } | 
|  |  | 
|  | /// This will check for a T (which should be a Type which can act as | 
|  | /// sugar, such as a TypedefType) by removing any existing sugar until it | 
|  | /// reaches a T or a non-sugared type. | 
|  | template <typename T> static const T *getAsSugar(const Type *Cur) { | 
|  | while (true) { | 
|  | if (const auto *Sugar = dyn_cast<T>(Cur)) | 
|  | return Sugar; | 
|  | switch (Cur->getTypeClass()) { | 
|  | #define ABSTRACT_TYPE(Class, Parent) | 
|  | #define TYPE(Class, Parent)                                                    \ | 
|  | case Type::Class: {                                                          \ | 
|  | const auto *Ty = cast<Class##Type>(Cur);                                   \ | 
|  | if (!Ty->isSugared())                                                      \ | 
|  | return 0;                                                                \ | 
|  | Cur = Ty->desugar().getTypePtr();                                          \ | 
|  | break;                                                                     \ | 
|  | } | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <> const TypedefType *Type::getAs() const { | 
|  | return getAsSugar<TypedefType>(this); | 
|  | } | 
|  |  | 
|  | template <> const UsingType *Type::getAs() const { | 
|  | return getAsSugar<UsingType>(this); | 
|  | } | 
|  |  | 
|  | template <> const TemplateSpecializationType *Type::getAs() const { | 
|  | return getAsSugar<TemplateSpecializationType>(this); | 
|  | } | 
|  |  | 
|  | template <> const AttributedType *Type::getAs() const { | 
|  | return getAsSugar<AttributedType>(this); | 
|  | } | 
|  |  | 
|  | template <> const BoundsAttributedType *Type::getAs() const { | 
|  | return getAsSugar<BoundsAttributedType>(this); | 
|  | } | 
|  |  | 
|  | template <> const CountAttributedType *Type::getAs() const { | 
|  | return getAsSugar<CountAttributedType>(this); | 
|  | } | 
|  |  | 
|  | /// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic | 
|  | /// sugar off the given type.  This should produce an object of the | 
|  | /// same dynamic type as the canonical type. | 
|  | const Type *Type::getUnqualifiedDesugaredType() const { | 
|  | const Type *Cur = this; | 
|  |  | 
|  | while (true) { | 
|  | switch (Cur->getTypeClass()) { | 
|  | #define ABSTRACT_TYPE(Class, Parent) | 
|  | #define TYPE(Class, Parent)                                                    \ | 
|  | case Class: {                                                                \ | 
|  | const auto *Ty = cast<Class##Type>(Cur);                                   \ | 
|  | if (!Ty->isSugared())                                                      \ | 
|  | return Cur;                                                              \ | 
|  | Cur = Ty->desugar().getTypePtr();                                          \ | 
|  | break;                                                                     \ | 
|  | } | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Type::isClassType() const { | 
|  | if (const auto *RT = getAsCanonical<RecordType>()) | 
|  | return RT->getOriginalDecl()->isClass(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isStructureType() const { | 
|  | if (const auto *RT = getAsCanonical<RecordType>()) | 
|  | return RT->getOriginalDecl()->isStruct(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isStructureTypeWithFlexibleArrayMember() const { | 
|  | const auto *RT = getAsCanonical<RecordType>(); | 
|  | if (!RT) | 
|  | return false; | 
|  | const auto *Decl = RT->getOriginalDecl(); | 
|  | if (!Decl->isStruct()) | 
|  | return false; | 
|  | return Decl->getDefinitionOrSelf()->hasFlexibleArrayMember(); | 
|  | } | 
|  |  | 
|  | bool Type::isObjCBoxableRecordType() const { | 
|  | if (const auto *RD = getAsRecordDecl()) | 
|  | return RD->hasAttr<ObjCBoxableAttr>(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isInterfaceType() const { | 
|  | if (const auto *RT = getAsCanonical<RecordType>()) | 
|  | return RT->getOriginalDecl()->isInterface(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isStructureOrClassType() const { | 
|  | if (const auto *RT = getAsCanonical<RecordType>()) | 
|  | return RT->getOriginalDecl()->isStructureOrClass(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isVoidPointerType() const { | 
|  | if (const auto *PT = getAsCanonical<PointerType>()) | 
|  | return PT->getPointeeType()->isVoidType(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isUnionType() const { | 
|  | if (const auto *RT = getAsCanonical<RecordType>()) | 
|  | return RT->getOriginalDecl()->isUnion(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isComplexType() const { | 
|  | if (const auto *CT = getAsCanonical<ComplexType>()) | 
|  | return CT->getElementType()->isFloatingType(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isComplexIntegerType() const { | 
|  | // Check for GCC complex integer extension. | 
|  | return getAsComplexIntegerType(); | 
|  | } | 
|  |  | 
|  | bool Type::isScopedEnumeralType() const { | 
|  | if (const auto *ET = getAsCanonical<EnumType>()) | 
|  | return ET->getOriginalDecl()->isScoped(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isCountAttributedType() const { | 
|  | return getAs<CountAttributedType>(); | 
|  | } | 
|  |  | 
|  | const ComplexType *Type::getAsComplexIntegerType() const { | 
|  | if (const auto *Complex = getAs<ComplexType>()) | 
|  | if (Complex->getElementType()->isIntegerType()) | 
|  | return Complex; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | QualType Type::getPointeeType() const { | 
|  | if (const auto *PT = getAs<PointerType>()) | 
|  | return PT->getPointeeType(); | 
|  | if (const auto *OPT = getAs<ObjCObjectPointerType>()) | 
|  | return OPT->getPointeeType(); | 
|  | if (const auto *BPT = getAs<BlockPointerType>()) | 
|  | return BPT->getPointeeType(); | 
|  | if (const auto *RT = getAs<ReferenceType>()) | 
|  | return RT->getPointeeType(); | 
|  | if (const auto *MPT = getAs<MemberPointerType>()) | 
|  | return MPT->getPointeeType(); | 
|  | if (const auto *DT = getAs<DecayedType>()) | 
|  | return DT->getPointeeType(); | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | const RecordType *Type::getAsStructureType() const { | 
|  | // If this is directly a structure type, return it. | 
|  | if (const auto *RT = dyn_cast<RecordType>(this)) { | 
|  | if (RT->getOriginalDecl()->isStruct()) | 
|  | return RT; | 
|  | } | 
|  |  | 
|  | // If the canonical form of this type isn't the right kind, reject it. | 
|  | if (const auto *RT = dyn_cast<RecordType>(CanonicalType)) { | 
|  | if (!RT->getOriginalDecl()->isStruct()) | 
|  | return nullptr; | 
|  |  | 
|  | // If this is a typedef for a structure type, strip the typedef off without | 
|  | // losing all typedef information. | 
|  | return cast<RecordType>(getUnqualifiedDesugaredType()); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const RecordType *Type::getAsUnionType() const { | 
|  | // If this is directly a union type, return it. | 
|  | if (const auto *RT = dyn_cast<RecordType>(this)) { | 
|  | if (RT->getOriginalDecl()->isUnion()) | 
|  | return RT; | 
|  | } | 
|  |  | 
|  | // If the canonical form of this type isn't the right kind, reject it. | 
|  | if (const auto *RT = dyn_cast<RecordType>(CanonicalType)) { | 
|  | if (!RT->getOriginalDecl()->isUnion()) | 
|  | return nullptr; | 
|  |  | 
|  | // If this is a typedef for a union type, strip the typedef off without | 
|  | // losing all typedef information. | 
|  | return cast<RecordType>(getUnqualifiedDesugaredType()); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool Type::isObjCIdOrObjectKindOfType(const ASTContext &ctx, | 
|  | const ObjCObjectType *&bound) const { | 
|  | bound = nullptr; | 
|  |  | 
|  | const auto *OPT = getAs<ObjCObjectPointerType>(); | 
|  | if (!OPT) | 
|  | return false; | 
|  |  | 
|  | // Easy case: id. | 
|  | if (OPT->isObjCIdType()) | 
|  | return true; | 
|  |  | 
|  | // If it's not a __kindof type, reject it now. | 
|  | if (!OPT->isKindOfType()) | 
|  | return false; | 
|  |  | 
|  | // If it's Class or qualified Class, it's not an object type. | 
|  | if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) | 
|  | return false; | 
|  |  | 
|  | // Figure out the type bound for the __kindof type. | 
|  | bound = OPT->getObjectType() | 
|  | ->stripObjCKindOfTypeAndQuals(ctx) | 
|  | ->getAs<ObjCObjectType>(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Type::isObjCClassOrClassKindOfType() const { | 
|  | const auto *OPT = getAs<ObjCObjectPointerType>(); | 
|  | if (!OPT) | 
|  | return false; | 
|  |  | 
|  | // Easy case: Class. | 
|  | if (OPT->isObjCClassType()) | 
|  | return true; | 
|  |  | 
|  | // If it's not a __kindof type, reject it now. | 
|  | if (!OPT->isKindOfType()) | 
|  | return false; | 
|  |  | 
|  | // If it's Class or qualified Class, it's a class __kindof type. | 
|  | return OPT->isObjCClassType() || OPT->isObjCQualifiedClassType(); | 
|  | } | 
|  |  | 
|  | ObjCTypeParamType::ObjCTypeParamType(const ObjCTypeParamDecl *D, QualType can, | 
|  | ArrayRef<ObjCProtocolDecl *> protocols) | 
|  | : Type(ObjCTypeParam, can, toSemanticDependence(can->getDependence())), | 
|  | OTPDecl(const_cast<ObjCTypeParamDecl *>(D)) { | 
|  | initialize(protocols); | 
|  | } | 
|  |  | 
|  | ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base, | 
|  | ArrayRef<QualType> typeArgs, | 
|  | ArrayRef<ObjCProtocolDecl *> protocols, | 
|  | bool isKindOf) | 
|  | : Type(ObjCObject, Canonical, Base->getDependence()), BaseType(Base) { | 
|  | ObjCObjectTypeBits.IsKindOf = isKindOf; | 
|  |  | 
|  | ObjCObjectTypeBits.NumTypeArgs = typeArgs.size(); | 
|  | assert(getTypeArgsAsWritten().size() == typeArgs.size() && | 
|  | "bitfield overflow in type argument count"); | 
|  | if (!typeArgs.empty()) | 
|  | memcpy(getTypeArgStorage(), typeArgs.data(), | 
|  | typeArgs.size() * sizeof(QualType)); | 
|  |  | 
|  | for (auto typeArg : typeArgs) { | 
|  | addDependence(typeArg->getDependence() & ~TypeDependence::VariablyModified); | 
|  | } | 
|  | // Initialize the protocol qualifiers. The protocol storage is known | 
|  | // after we set number of type arguments. | 
|  | initialize(protocols); | 
|  | } | 
|  |  | 
|  | bool ObjCObjectType::isSpecialized() const { | 
|  | // If we have type arguments written here, the type is specialized. | 
|  | if (ObjCObjectTypeBits.NumTypeArgs > 0) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, check whether the base type is specialized. | 
|  | if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) { | 
|  | // Terminate when we reach an interface type. | 
|  | if (isa<ObjCInterfaceType>(objcObject)) | 
|  | return false; | 
|  |  | 
|  | return objcObject->isSpecialized(); | 
|  | } | 
|  |  | 
|  | // Not specialized. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ArrayRef<QualType> ObjCObjectType::getTypeArgs() const { | 
|  | // We have type arguments written on this type. | 
|  | if (isSpecializedAsWritten()) | 
|  | return getTypeArgsAsWritten(); | 
|  |  | 
|  | // Look at the base type, which might have type arguments. | 
|  | if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) { | 
|  | // Terminate when we reach an interface type. | 
|  | if (isa<ObjCInterfaceType>(objcObject)) | 
|  | return {}; | 
|  |  | 
|  | return objcObject->getTypeArgs(); | 
|  | } | 
|  |  | 
|  | // No type arguments. | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | bool ObjCObjectType::isKindOfType() const { | 
|  | if (isKindOfTypeAsWritten()) | 
|  | return true; | 
|  |  | 
|  | // Look at the base type, which might have type arguments. | 
|  | if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) { | 
|  | // Terminate when we reach an interface type. | 
|  | if (isa<ObjCInterfaceType>(objcObject)) | 
|  | return false; | 
|  |  | 
|  | return objcObject->isKindOfType(); | 
|  | } | 
|  |  | 
|  | // Not a "__kindof" type. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ObjCObjectType::stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const { | 
|  | if (!isKindOfType() && qual_empty()) | 
|  | return QualType(this, 0); | 
|  |  | 
|  | // Recursively strip __kindof. | 
|  | SplitQualType splitBaseType = getBaseType().split(); | 
|  | QualType baseType(splitBaseType.Ty, 0); | 
|  | if (const auto *baseObj = splitBaseType.Ty->getAs<ObjCObjectType>()) | 
|  | baseType = baseObj->stripObjCKindOfTypeAndQuals(ctx); | 
|  |  | 
|  | return ctx.getObjCObjectType( | 
|  | ctx.getQualifiedType(baseType, splitBaseType.Quals), | 
|  | getTypeArgsAsWritten(), | 
|  | /*protocols=*/{}, | 
|  | /*isKindOf=*/false); | 
|  | } | 
|  |  | 
|  | ObjCInterfaceDecl *ObjCInterfaceType::getDecl() const { | 
|  | ObjCInterfaceDecl *Canon = Decl->getCanonicalDecl(); | 
|  | if (ObjCInterfaceDecl *Def = Canon->getDefinition()) | 
|  | return Def; | 
|  | return Canon; | 
|  | } | 
|  |  | 
|  | const ObjCObjectPointerType *ObjCObjectPointerType::stripObjCKindOfTypeAndQuals( | 
|  | const ASTContext &ctx) const { | 
|  | if (!isKindOfType() && qual_empty()) | 
|  | return this; | 
|  |  | 
|  | QualType obj = getObjectType()->stripObjCKindOfTypeAndQuals(ctx); | 
|  | return ctx.getObjCObjectPointerType(obj)->castAs<ObjCObjectPointerType>(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Visitor used to perform a simple type transformation that does not change | 
|  | /// the semantics of the type. | 
|  | template <typename Derived> | 
|  | struct SimpleTransformVisitor : public TypeVisitor<Derived, QualType> { | 
|  | ASTContext &Ctx; | 
|  |  | 
|  | QualType recurse(QualType type) { | 
|  | // Split out the qualifiers from the type. | 
|  | SplitQualType splitType = type.split(); | 
|  |  | 
|  | // Visit the type itself. | 
|  | QualType result = static_cast<Derived *>(this)->Visit(splitType.Ty); | 
|  | if (result.isNull()) | 
|  | return result; | 
|  |  | 
|  | // Reconstruct the transformed type by applying the local qualifiers | 
|  | // from the split type. | 
|  | return Ctx.getQualifiedType(result, splitType.Quals); | 
|  | } | 
|  |  | 
|  | public: | 
|  | explicit SimpleTransformVisitor(ASTContext &ctx) : Ctx(ctx) {} | 
|  |  | 
|  | // None of the clients of this transformation can occur where | 
|  | // there are dependent types, so skip dependent types. | 
|  | #define TYPE(Class, Base) | 
|  | #define DEPENDENT_TYPE(Class, Base)                                            \ | 
|  | QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); } | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  |  | 
|  | #define TRIVIAL_TYPE_CLASS(Class)                                              \ | 
|  | QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); } | 
|  | #define SUGARED_TYPE_CLASS(Class)                                              \ | 
|  | QualType Visit##Class##Type(const Class##Type *T) {                          \ | 
|  | if (!T->isSugared())                                                       \ | 
|  | return QualType(T, 0);                                                   \ | 
|  | QualType desugaredType = recurse(T->desugar());                            \ | 
|  | if (desugaredType.isNull())                                                \ | 
|  | return {};                                                               \ | 
|  | if (desugaredType.getAsOpaquePtr() == T->desugar().getAsOpaquePtr())       \ | 
|  | return QualType(T, 0);                                                   \ | 
|  | return desugaredType;                                                      \ | 
|  | } | 
|  |  | 
|  | TRIVIAL_TYPE_CLASS(Builtin) | 
|  |  | 
|  | QualType VisitComplexType(const ComplexType *T) { | 
|  | QualType elementType = recurse(T->getElementType()); | 
|  | if (elementType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getComplexType(elementType); | 
|  | } | 
|  |  | 
|  | QualType VisitPointerType(const PointerType *T) { | 
|  | QualType pointeeType = recurse(T->getPointeeType()); | 
|  | if (pointeeType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getPointerType(pointeeType); | 
|  | } | 
|  |  | 
|  | QualType VisitBlockPointerType(const BlockPointerType *T) { | 
|  | QualType pointeeType = recurse(T->getPointeeType()); | 
|  | if (pointeeType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getBlockPointerType(pointeeType); | 
|  | } | 
|  |  | 
|  | QualType VisitLValueReferenceType(const LValueReferenceType *T) { | 
|  | QualType pointeeType = recurse(T->getPointeeTypeAsWritten()); | 
|  | if (pointeeType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (pointeeType.getAsOpaquePtr() == | 
|  | T->getPointeeTypeAsWritten().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getLValueReferenceType(pointeeType, T->isSpelledAsLValue()); | 
|  | } | 
|  |  | 
|  | QualType VisitRValueReferenceType(const RValueReferenceType *T) { | 
|  | QualType pointeeType = recurse(T->getPointeeTypeAsWritten()); | 
|  | if (pointeeType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (pointeeType.getAsOpaquePtr() == | 
|  | T->getPointeeTypeAsWritten().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getRValueReferenceType(pointeeType); | 
|  | } | 
|  |  | 
|  | QualType VisitMemberPointerType(const MemberPointerType *T) { | 
|  | QualType pointeeType = recurse(T->getPointeeType()); | 
|  | if (pointeeType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getMemberPointerType(pointeeType, T->getQualifier(), | 
|  | T->getMostRecentCXXRecordDecl()); | 
|  | } | 
|  |  | 
|  | QualType VisitConstantArrayType(const ConstantArrayType *T) { | 
|  | QualType elementType = recurse(T->getElementType()); | 
|  | if (elementType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getConstantArrayType(elementType, T->getSize(), T->getSizeExpr(), | 
|  | T->getSizeModifier(), | 
|  | T->getIndexTypeCVRQualifiers()); | 
|  | } | 
|  |  | 
|  | QualType VisitVariableArrayType(const VariableArrayType *T) { | 
|  | QualType elementType = recurse(T->getElementType()); | 
|  | if (elementType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getVariableArrayType(elementType, T->getSizeExpr(), | 
|  | T->getSizeModifier(), | 
|  | T->getIndexTypeCVRQualifiers()); | 
|  | } | 
|  |  | 
|  | QualType VisitIncompleteArrayType(const IncompleteArrayType *T) { | 
|  | QualType elementType = recurse(T->getElementType()); | 
|  | if (elementType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getIncompleteArrayType(elementType, T->getSizeModifier(), | 
|  | T->getIndexTypeCVRQualifiers()); | 
|  | } | 
|  |  | 
|  | QualType VisitVectorType(const VectorType *T) { | 
|  | QualType elementType = recurse(T->getElementType()); | 
|  | if (elementType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getVectorType(elementType, T->getNumElements(), | 
|  | T->getVectorKind()); | 
|  | } | 
|  |  | 
|  | QualType VisitExtVectorType(const ExtVectorType *T) { | 
|  | QualType elementType = recurse(T->getElementType()); | 
|  | if (elementType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getExtVectorType(elementType, T->getNumElements()); | 
|  | } | 
|  |  | 
|  | QualType VisitConstantMatrixType(const ConstantMatrixType *T) { | 
|  | QualType elementType = recurse(T->getElementType()); | 
|  | if (elementType.isNull()) | 
|  | return {}; | 
|  | if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getConstantMatrixType(elementType, T->getNumRows(), | 
|  | T->getNumColumns()); | 
|  | } | 
|  |  | 
|  | QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T) { | 
|  | QualType returnType = recurse(T->getReturnType()); | 
|  | if (returnType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getFunctionNoProtoType(returnType, T->getExtInfo()); | 
|  | } | 
|  |  | 
|  | QualType VisitFunctionProtoType(const FunctionProtoType *T) { | 
|  | QualType returnType = recurse(T->getReturnType()); | 
|  | if (returnType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | // Transform parameter types. | 
|  | SmallVector<QualType, 4> paramTypes; | 
|  | bool paramChanged = false; | 
|  | for (auto paramType : T->getParamTypes()) { | 
|  | QualType newParamType = recurse(paramType); | 
|  | if (newParamType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr()) | 
|  | paramChanged = true; | 
|  |  | 
|  | paramTypes.push_back(newParamType); | 
|  | } | 
|  |  | 
|  | // Transform extended info. | 
|  | FunctionProtoType::ExtProtoInfo info = T->getExtProtoInfo(); | 
|  | bool exceptionChanged = false; | 
|  | if (info.ExceptionSpec.Type == EST_Dynamic) { | 
|  | SmallVector<QualType, 4> exceptionTypes; | 
|  | for (auto exceptionType : info.ExceptionSpec.Exceptions) { | 
|  | QualType newExceptionType = recurse(exceptionType); | 
|  | if (newExceptionType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr()) | 
|  | exceptionChanged = true; | 
|  |  | 
|  | exceptionTypes.push_back(newExceptionType); | 
|  | } | 
|  |  | 
|  | if (exceptionChanged) { | 
|  | info.ExceptionSpec.Exceptions = | 
|  | llvm::ArrayRef(exceptionTypes).copy(Ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr() && | 
|  | !paramChanged && !exceptionChanged) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getFunctionType(returnType, paramTypes, info); | 
|  | } | 
|  |  | 
|  | QualType VisitParenType(const ParenType *T) { | 
|  | QualType innerType = recurse(T->getInnerType()); | 
|  | if (innerType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (innerType.getAsOpaquePtr() == T->getInnerType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getParenType(innerType); | 
|  | } | 
|  |  | 
|  | SUGARED_TYPE_CLASS(Typedef) | 
|  | SUGARED_TYPE_CLASS(ObjCTypeParam) | 
|  | SUGARED_TYPE_CLASS(MacroQualified) | 
|  |  | 
|  | QualType VisitAdjustedType(const AdjustedType *T) { | 
|  | QualType originalType = recurse(T->getOriginalType()); | 
|  | if (originalType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | QualType adjustedType = recurse(T->getAdjustedType()); | 
|  | if (adjustedType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (originalType.getAsOpaquePtr() == | 
|  | T->getOriginalType().getAsOpaquePtr() && | 
|  | adjustedType.getAsOpaquePtr() == T->getAdjustedType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getAdjustedType(originalType, adjustedType); | 
|  | } | 
|  |  | 
|  | QualType VisitDecayedType(const DecayedType *T) { | 
|  | QualType originalType = recurse(T->getOriginalType()); | 
|  | if (originalType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (originalType.getAsOpaquePtr() == T->getOriginalType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getDecayedType(originalType); | 
|  | } | 
|  |  | 
|  | QualType VisitArrayParameterType(const ArrayParameterType *T) { | 
|  | QualType ArrTy = VisitConstantArrayType(T); | 
|  | if (ArrTy.isNull()) | 
|  | return {}; | 
|  |  | 
|  | return Ctx.getArrayParameterType(ArrTy); | 
|  | } | 
|  |  | 
|  | SUGARED_TYPE_CLASS(TypeOfExpr) | 
|  | SUGARED_TYPE_CLASS(TypeOf) | 
|  | SUGARED_TYPE_CLASS(Decltype) | 
|  | SUGARED_TYPE_CLASS(UnaryTransform) | 
|  | TRIVIAL_TYPE_CLASS(Record) | 
|  | TRIVIAL_TYPE_CLASS(Enum) | 
|  |  | 
|  | QualType VisitAttributedType(const AttributedType *T) { | 
|  | QualType modifiedType = recurse(T->getModifiedType()); | 
|  | if (modifiedType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | QualType equivalentType = recurse(T->getEquivalentType()); | 
|  | if (equivalentType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (modifiedType.getAsOpaquePtr() == | 
|  | T->getModifiedType().getAsOpaquePtr() && | 
|  | equivalentType.getAsOpaquePtr() == | 
|  | T->getEquivalentType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getAttributedType(T->getAttrKind(), modifiedType, equivalentType, | 
|  | T->getAttr()); | 
|  | } | 
|  |  | 
|  | QualType VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { | 
|  | QualType replacementType = recurse(T->getReplacementType()); | 
|  | if (replacementType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (replacementType.getAsOpaquePtr() == | 
|  | T->getReplacementType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getSubstTemplateTypeParmType( | 
|  | replacementType, T->getAssociatedDecl(), T->getIndex(), | 
|  | T->getPackIndex(), T->getFinal()); | 
|  | } | 
|  |  | 
|  | // FIXME: Non-trivial to implement, but important for C++ | 
|  | SUGARED_TYPE_CLASS(TemplateSpecialization) | 
|  |  | 
|  | QualType VisitAutoType(const AutoType *T) { | 
|  | if (!T->isDeduced()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | QualType deducedType = recurse(T->getDeducedType()); | 
|  | if (deducedType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (deducedType.getAsOpaquePtr() == T->getDeducedType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getAutoType(deducedType, T->getKeyword(), T->isDependentType(), | 
|  | /*IsPack=*/false, T->getTypeConstraintConcept(), | 
|  | T->getTypeConstraintArguments()); | 
|  | } | 
|  |  | 
|  | QualType VisitObjCObjectType(const ObjCObjectType *T) { | 
|  | QualType baseType = recurse(T->getBaseType()); | 
|  | if (baseType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | // Transform type arguments. | 
|  | bool typeArgChanged = false; | 
|  | SmallVector<QualType, 4> typeArgs; | 
|  | for (auto typeArg : T->getTypeArgsAsWritten()) { | 
|  | QualType newTypeArg = recurse(typeArg); | 
|  | if (newTypeArg.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr()) | 
|  | typeArgChanged = true; | 
|  |  | 
|  | typeArgs.push_back(newTypeArg); | 
|  | } | 
|  |  | 
|  | if (baseType.getAsOpaquePtr() == T->getBaseType().getAsOpaquePtr() && | 
|  | !typeArgChanged) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getObjCObjectType( | 
|  | baseType, typeArgs, | 
|  | llvm::ArrayRef(T->qual_begin(), T->getNumProtocols()), | 
|  | T->isKindOfTypeAsWritten()); | 
|  | } | 
|  |  | 
|  | TRIVIAL_TYPE_CLASS(ObjCInterface) | 
|  |  | 
|  | QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T) { | 
|  | QualType pointeeType = recurse(T->getPointeeType()); | 
|  | if (pointeeType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getObjCObjectPointerType(pointeeType); | 
|  | } | 
|  |  | 
|  | QualType VisitAtomicType(const AtomicType *T) { | 
|  | QualType valueType = recurse(T->getValueType()); | 
|  | if (valueType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (valueType.getAsOpaquePtr() == T->getValueType().getAsOpaquePtr()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | return Ctx.getAtomicType(valueType); | 
|  | } | 
|  |  | 
|  | #undef TRIVIAL_TYPE_CLASS | 
|  | #undef SUGARED_TYPE_CLASS | 
|  | }; | 
|  |  | 
|  | struct SubstObjCTypeArgsVisitor | 
|  | : public SimpleTransformVisitor<SubstObjCTypeArgsVisitor> { | 
|  | using BaseType = SimpleTransformVisitor<SubstObjCTypeArgsVisitor>; | 
|  |  | 
|  | ArrayRef<QualType> TypeArgs; | 
|  | ObjCSubstitutionContext SubstContext; | 
|  |  | 
|  | SubstObjCTypeArgsVisitor(ASTContext &ctx, ArrayRef<QualType> typeArgs, | 
|  | ObjCSubstitutionContext context) | 
|  | : BaseType(ctx), TypeArgs(typeArgs), SubstContext(context) {} | 
|  |  | 
|  | QualType VisitObjCTypeParamType(const ObjCTypeParamType *OTPTy) { | 
|  | // Replace an Objective-C type parameter reference with the corresponding | 
|  | // type argument. | 
|  | ObjCTypeParamDecl *typeParam = OTPTy->getDecl(); | 
|  | // If we have type arguments, use them. | 
|  | if (!TypeArgs.empty()) { | 
|  | QualType argType = TypeArgs[typeParam->getIndex()]; | 
|  | if (OTPTy->qual_empty()) | 
|  | return argType; | 
|  |  | 
|  | // Apply protocol lists if exists. | 
|  | bool hasError; | 
|  | SmallVector<ObjCProtocolDecl *, 8> protocolsVec; | 
|  | protocolsVec.append(OTPTy->qual_begin(), OTPTy->qual_end()); | 
|  | ArrayRef<ObjCProtocolDecl *> protocolsToApply = protocolsVec; | 
|  | return Ctx.applyObjCProtocolQualifiers( | 
|  | argType, protocolsToApply, hasError, true /*allowOnPointerType*/); | 
|  | } | 
|  |  | 
|  | switch (SubstContext) { | 
|  | case ObjCSubstitutionContext::Ordinary: | 
|  | case ObjCSubstitutionContext::Parameter: | 
|  | case ObjCSubstitutionContext::Superclass: | 
|  | // Substitute the bound. | 
|  | return typeParam->getUnderlyingType(); | 
|  |  | 
|  | case ObjCSubstitutionContext::Result: | 
|  | case ObjCSubstitutionContext::Property: { | 
|  | // Substitute the __kindof form of the underlying type. | 
|  | const auto *objPtr = | 
|  | typeParam->getUnderlyingType()->castAs<ObjCObjectPointerType>(); | 
|  |  | 
|  | // __kindof types, id, and Class don't need an additional | 
|  | // __kindof. | 
|  | if (objPtr->isKindOfType() || objPtr->isObjCIdOrClassType()) | 
|  | return typeParam->getUnderlyingType(); | 
|  |  | 
|  | // Add __kindof. | 
|  | const auto *obj = objPtr->getObjectType(); | 
|  | QualType resultTy = Ctx.getObjCObjectType( | 
|  | obj->getBaseType(), obj->getTypeArgsAsWritten(), obj->getProtocols(), | 
|  | /*isKindOf=*/true); | 
|  |  | 
|  | // Rebuild object pointer type. | 
|  | return Ctx.getObjCObjectPointerType(resultTy); | 
|  | } | 
|  | } | 
|  | llvm_unreachable("Unexpected ObjCSubstitutionContext!"); | 
|  | } | 
|  |  | 
|  | QualType VisitFunctionType(const FunctionType *funcType) { | 
|  | // If we have a function type, update the substitution context | 
|  | // appropriately. | 
|  |  | 
|  | // Substitute result type. | 
|  | QualType returnType = funcType->getReturnType().substObjCTypeArgs( | 
|  | Ctx, TypeArgs, ObjCSubstitutionContext::Result); | 
|  | if (returnType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | // Handle non-prototyped functions, which only substitute into the result | 
|  | // type. | 
|  | if (isa<FunctionNoProtoType>(funcType)) { | 
|  | // If the return type was unchanged, do nothing. | 
|  | if (returnType.getAsOpaquePtr() == | 
|  | funcType->getReturnType().getAsOpaquePtr()) | 
|  | return BaseType::VisitFunctionType(funcType); | 
|  |  | 
|  | // Otherwise, build a new type. | 
|  | return Ctx.getFunctionNoProtoType(returnType, funcType->getExtInfo()); | 
|  | } | 
|  |  | 
|  | const auto *funcProtoType = cast<FunctionProtoType>(funcType); | 
|  |  | 
|  | // Transform parameter types. | 
|  | SmallVector<QualType, 4> paramTypes; | 
|  | bool paramChanged = false; | 
|  | for (auto paramType : funcProtoType->getParamTypes()) { | 
|  | QualType newParamType = paramType.substObjCTypeArgs( | 
|  | Ctx, TypeArgs, ObjCSubstitutionContext::Parameter); | 
|  | if (newParamType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr()) | 
|  | paramChanged = true; | 
|  |  | 
|  | paramTypes.push_back(newParamType); | 
|  | } | 
|  |  | 
|  | // Transform extended info. | 
|  | FunctionProtoType::ExtProtoInfo info = funcProtoType->getExtProtoInfo(); | 
|  | bool exceptionChanged = false; | 
|  | if (info.ExceptionSpec.Type == EST_Dynamic) { | 
|  | SmallVector<QualType, 4> exceptionTypes; | 
|  | for (auto exceptionType : info.ExceptionSpec.Exceptions) { | 
|  | QualType newExceptionType = exceptionType.substObjCTypeArgs( | 
|  | Ctx, TypeArgs, ObjCSubstitutionContext::Ordinary); | 
|  | if (newExceptionType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr()) | 
|  | exceptionChanged = true; | 
|  |  | 
|  | exceptionTypes.push_back(newExceptionType); | 
|  | } | 
|  |  | 
|  | if (exceptionChanged) { | 
|  | info.ExceptionSpec.Exceptions = | 
|  | llvm::ArrayRef(exceptionTypes).copy(Ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (returnType.getAsOpaquePtr() == | 
|  | funcProtoType->getReturnType().getAsOpaquePtr() && | 
|  | !paramChanged && !exceptionChanged) | 
|  | return BaseType::VisitFunctionType(funcType); | 
|  |  | 
|  | return Ctx.getFunctionType(returnType, paramTypes, info); | 
|  | } | 
|  |  | 
|  | QualType VisitObjCObjectType(const ObjCObjectType *objcObjectType) { | 
|  | // Substitute into the type arguments of a specialized Objective-C object | 
|  | // type. | 
|  | if (objcObjectType->isSpecializedAsWritten()) { | 
|  | SmallVector<QualType, 4> newTypeArgs; | 
|  | bool anyChanged = false; | 
|  | for (auto typeArg : objcObjectType->getTypeArgsAsWritten()) { | 
|  | QualType newTypeArg = typeArg.substObjCTypeArgs( | 
|  | Ctx, TypeArgs, ObjCSubstitutionContext::Ordinary); | 
|  | if (newTypeArg.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr()) { | 
|  | // If we're substituting based on an unspecialized context type, | 
|  | // produce an unspecialized type. | 
|  | ArrayRef<ObjCProtocolDecl *> protocols( | 
|  | objcObjectType->qual_begin(), objcObjectType->getNumProtocols()); | 
|  | if (TypeArgs.empty() && | 
|  | SubstContext != ObjCSubstitutionContext::Superclass) { | 
|  | return Ctx.getObjCObjectType( | 
|  | objcObjectType->getBaseType(), {}, protocols, | 
|  | objcObjectType->isKindOfTypeAsWritten()); | 
|  | } | 
|  |  | 
|  | anyChanged = true; | 
|  | } | 
|  |  | 
|  | newTypeArgs.push_back(newTypeArg); | 
|  | } | 
|  |  | 
|  | if (anyChanged) { | 
|  | ArrayRef<ObjCProtocolDecl *> protocols( | 
|  | objcObjectType->qual_begin(), objcObjectType->getNumProtocols()); | 
|  | return Ctx.getObjCObjectType(objcObjectType->getBaseType(), newTypeArgs, | 
|  | protocols, | 
|  | objcObjectType->isKindOfTypeAsWritten()); | 
|  | } | 
|  | } | 
|  |  | 
|  | return BaseType::VisitObjCObjectType(objcObjectType); | 
|  | } | 
|  |  | 
|  | QualType VisitAttributedType(const AttributedType *attrType) { | 
|  | QualType newType = BaseType::VisitAttributedType(attrType); | 
|  | if (newType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | const auto *newAttrType = dyn_cast<AttributedType>(newType.getTypePtr()); | 
|  | if (!newAttrType || newAttrType->getAttrKind() != attr::ObjCKindOf) | 
|  | return newType; | 
|  |  | 
|  | // Find out if it's an Objective-C object or object pointer type; | 
|  | QualType newEquivType = newAttrType->getEquivalentType(); | 
|  | const ObjCObjectPointerType *ptrType = | 
|  | newEquivType->getAs<ObjCObjectPointerType>(); | 
|  | const ObjCObjectType *objType = ptrType | 
|  | ? ptrType->getObjectType() | 
|  | : newEquivType->getAs<ObjCObjectType>(); | 
|  | if (!objType) | 
|  | return newType; | 
|  |  | 
|  | // Rebuild the "equivalent" type, which pushes __kindof down into | 
|  | // the object type. | 
|  | newEquivType = Ctx.getObjCObjectType( | 
|  | objType->getBaseType(), objType->getTypeArgsAsWritten(), | 
|  | objType->getProtocols(), | 
|  | // There is no need to apply kindof on an unqualified id type. | 
|  | /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true); | 
|  |  | 
|  | // If we started with an object pointer type, rebuild it. | 
|  | if (ptrType) | 
|  | newEquivType = Ctx.getObjCObjectPointerType(newEquivType); | 
|  |  | 
|  | // Rebuild the attributed type. | 
|  | return Ctx.getAttributedType(newAttrType->getAttrKind(), | 
|  | newAttrType->getModifiedType(), newEquivType, | 
|  | newAttrType->getAttr()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct StripObjCKindOfTypeVisitor | 
|  | : public SimpleTransformVisitor<StripObjCKindOfTypeVisitor> { | 
|  | using BaseType = SimpleTransformVisitor<StripObjCKindOfTypeVisitor>; | 
|  |  | 
|  | explicit StripObjCKindOfTypeVisitor(ASTContext &ctx) : BaseType(ctx) {} | 
|  |  | 
|  | QualType VisitObjCObjectType(const ObjCObjectType *objType) { | 
|  | if (!objType->isKindOfType()) | 
|  | return BaseType::VisitObjCObjectType(objType); | 
|  |  | 
|  | QualType baseType = objType->getBaseType().stripObjCKindOfType(Ctx); | 
|  | return Ctx.getObjCObjectType(baseType, objType->getTypeArgsAsWritten(), | 
|  | objType->getProtocols(), | 
|  | /*isKindOf=*/false); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | bool QualType::UseExcessPrecision(const ASTContext &Ctx) { | 
|  | const BuiltinType *BT = getTypePtr()->getAs<BuiltinType>(); | 
|  | if (!BT) { | 
|  | const VectorType *VT = getTypePtr()->getAs<VectorType>(); | 
|  | if (VT) { | 
|  | QualType ElementType = VT->getElementType(); | 
|  | return ElementType.UseExcessPrecision(Ctx); | 
|  | } | 
|  | } else { | 
|  | switch (BT->getKind()) { | 
|  | case BuiltinType::Kind::Float16: { | 
|  | const TargetInfo &TI = Ctx.getTargetInfo(); | 
|  | if (TI.hasFloat16Type() && !TI.hasFastHalfType() && | 
|  | Ctx.getLangOpts().getFloat16ExcessPrecision() != | 
|  | Ctx.getLangOpts().ExcessPrecisionKind::FPP_None) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  | case BuiltinType::Kind::BFloat16: { | 
|  | const TargetInfo &TI = Ctx.getTargetInfo(); | 
|  | if (TI.hasBFloat16Type() && !TI.hasFullBFloat16Type() && | 
|  | Ctx.getLangOpts().getBFloat16ExcessPrecision() != | 
|  | Ctx.getLangOpts().ExcessPrecisionKind::FPP_None) | 
|  | return true; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Substitute the given type arguments for Objective-C type | 
|  | /// parameters within the given type, recursively. | 
|  | QualType QualType::substObjCTypeArgs(ASTContext &ctx, | 
|  | ArrayRef<QualType> typeArgs, | 
|  | ObjCSubstitutionContext context) const { | 
|  | SubstObjCTypeArgsVisitor visitor(ctx, typeArgs, context); | 
|  | return visitor.recurse(*this); | 
|  | } | 
|  |  | 
|  | QualType QualType::substObjCMemberType(QualType objectType, | 
|  | const DeclContext *dc, | 
|  | ObjCSubstitutionContext context) const { | 
|  | if (auto subs = objectType->getObjCSubstitutions(dc)) | 
|  | return substObjCTypeArgs(dc->getParentASTContext(), *subs, context); | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | QualType QualType::stripObjCKindOfType(const ASTContext &constCtx) const { | 
|  | // FIXME: Because ASTContext::getAttributedType() is non-const. | 
|  | auto &ctx = const_cast<ASTContext &>(constCtx); | 
|  | StripObjCKindOfTypeVisitor visitor(ctx); | 
|  | return visitor.recurse(*this); | 
|  | } | 
|  |  | 
|  | QualType QualType::getAtomicUnqualifiedType() const { | 
|  | QualType T = *this; | 
|  | if (const auto AT = T.getTypePtr()->getAs<AtomicType>()) | 
|  | T = AT->getValueType(); | 
|  | return T.getUnqualifiedType(); | 
|  | } | 
|  |  | 
|  | std::optional<ArrayRef<QualType>> | 
|  | Type::getObjCSubstitutions(const DeclContext *dc) const { | 
|  | // Look through method scopes. | 
|  | if (const auto method = dyn_cast<ObjCMethodDecl>(dc)) | 
|  | dc = method->getDeclContext(); | 
|  |  | 
|  | // Find the class or category in which the type we're substituting | 
|  | // was declared. | 
|  | const auto *dcClassDecl = dyn_cast<ObjCInterfaceDecl>(dc); | 
|  | const ObjCCategoryDecl *dcCategoryDecl = nullptr; | 
|  | ObjCTypeParamList *dcTypeParams = nullptr; | 
|  | if (dcClassDecl) { | 
|  | // If the class does not have any type parameters, there's no | 
|  | // substitution to do. | 
|  | dcTypeParams = dcClassDecl->getTypeParamList(); | 
|  | if (!dcTypeParams) | 
|  | return std::nullopt; | 
|  | } else { | 
|  | // If we are in neither a class nor a category, there's no | 
|  | // substitution to perform. | 
|  | dcCategoryDecl = dyn_cast<ObjCCategoryDecl>(dc); | 
|  | if (!dcCategoryDecl) | 
|  | return std::nullopt; | 
|  |  | 
|  | // If the category does not have any type parameters, there's no | 
|  | // substitution to do. | 
|  | dcTypeParams = dcCategoryDecl->getTypeParamList(); | 
|  | if (!dcTypeParams) | 
|  | return std::nullopt; | 
|  |  | 
|  | dcClassDecl = dcCategoryDecl->getClassInterface(); | 
|  | if (!dcClassDecl) | 
|  | return std::nullopt; | 
|  | } | 
|  | assert(dcTypeParams && "No substitutions to perform"); | 
|  | assert(dcClassDecl && "No class context"); | 
|  |  | 
|  | // Find the underlying object type. | 
|  | const ObjCObjectType *objectType; | 
|  | if (const auto *objectPointerType = getAs<ObjCObjectPointerType>()) { | 
|  | objectType = objectPointerType->getObjectType(); | 
|  | } else if (getAs<BlockPointerType>()) { | 
|  | ASTContext &ctx = dc->getParentASTContext(); | 
|  | objectType = ctx.getObjCObjectType(ctx.ObjCBuiltinIdTy, {}, {}) | 
|  | ->castAs<ObjCObjectType>(); | 
|  | } else { | 
|  | objectType = getAs<ObjCObjectType>(); | 
|  | } | 
|  |  | 
|  | /// Extract the class from the receiver object type. | 
|  | ObjCInterfaceDecl *curClassDecl = | 
|  | objectType ? objectType->getInterface() : nullptr; | 
|  | if (!curClassDecl) { | 
|  | // If we don't have a context type (e.g., this is "id" or some | 
|  | // variant thereof), substitute the bounds. | 
|  | return llvm::ArrayRef<QualType>(); | 
|  | } | 
|  |  | 
|  | // Follow the superclass chain until we've mapped the receiver type | 
|  | // to the same class as the context. | 
|  | while (curClassDecl != dcClassDecl) { | 
|  | // Map to the superclass type. | 
|  | QualType superType = objectType->getSuperClassType(); | 
|  | if (superType.isNull()) { | 
|  | objectType = nullptr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | objectType = superType->castAs<ObjCObjectType>(); | 
|  | curClassDecl = objectType->getInterface(); | 
|  | } | 
|  |  | 
|  | // If we don't have a receiver type, or the receiver type does not | 
|  | // have type arguments, substitute in the defaults. | 
|  | if (!objectType || objectType->isUnspecialized()) { | 
|  | return llvm::ArrayRef<QualType>(); | 
|  | } | 
|  |  | 
|  | // The receiver type has the type arguments we want. | 
|  | return objectType->getTypeArgs(); | 
|  | } | 
|  |  | 
|  | bool Type::acceptsObjCTypeParams() const { | 
|  | if (auto *IfaceT = getAsObjCInterfaceType()) { | 
|  | if (auto *ID = IfaceT->getInterface()) { | 
|  | if (ID->getTypeParamList()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void ObjCObjectType::computeSuperClassTypeSlow() const { | 
|  | // Retrieve the class declaration for this type. If there isn't one | 
|  | // (e.g., this is some variant of "id" or "Class"), then there is no | 
|  | // superclass type. | 
|  | ObjCInterfaceDecl *classDecl = getInterface(); | 
|  | if (!classDecl) { | 
|  | CachedSuperClassType.setInt(true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Extract the superclass type. | 
|  | const ObjCObjectType *superClassObjTy = classDecl->getSuperClassType(); | 
|  | if (!superClassObjTy) { | 
|  | CachedSuperClassType.setInt(true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ObjCInterfaceDecl *superClassDecl = superClassObjTy->getInterface(); | 
|  | if (!superClassDecl) { | 
|  | CachedSuperClassType.setInt(true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the superclass doesn't have type parameters, then there is no | 
|  | // substitution to perform. | 
|  | QualType superClassType(superClassObjTy, 0); | 
|  | ObjCTypeParamList *superClassTypeParams = superClassDecl->getTypeParamList(); | 
|  | if (!superClassTypeParams) { | 
|  | CachedSuperClassType.setPointerAndInt( | 
|  | superClassType->castAs<ObjCObjectType>(), true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the superclass reference is unspecialized, return it. | 
|  | if (superClassObjTy->isUnspecialized()) { | 
|  | CachedSuperClassType.setPointerAndInt(superClassObjTy, true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the subclass is not parameterized, there aren't any type | 
|  | // parameters in the superclass reference to substitute. | 
|  | ObjCTypeParamList *typeParams = classDecl->getTypeParamList(); | 
|  | if (!typeParams) { | 
|  | CachedSuperClassType.setPointerAndInt( | 
|  | superClassType->castAs<ObjCObjectType>(), true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the subclass type isn't specialized, return the unspecialized | 
|  | // superclass. | 
|  | if (isUnspecialized()) { | 
|  | QualType unspecializedSuper = | 
|  | classDecl->getASTContext().getObjCInterfaceType( | 
|  | superClassObjTy->getInterface()); | 
|  | CachedSuperClassType.setPointerAndInt( | 
|  | unspecializedSuper->castAs<ObjCObjectType>(), true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Substitute the provided type arguments into the superclass type. | 
|  | ArrayRef<QualType> typeArgs = getTypeArgs(); | 
|  | assert(typeArgs.size() == typeParams->size()); | 
|  | CachedSuperClassType.setPointerAndInt( | 
|  | superClassType | 
|  | .substObjCTypeArgs(classDecl->getASTContext(), typeArgs, | 
|  | ObjCSubstitutionContext::Superclass) | 
|  | ->castAs<ObjCObjectType>(), | 
|  | true); | 
|  | } | 
|  |  | 
|  | const ObjCInterfaceType *ObjCObjectPointerType::getInterfaceType() const { | 
|  | if (auto interfaceDecl = getObjectType()->getInterface()) { | 
|  | return interfaceDecl->getASTContext() | 
|  | .getObjCInterfaceType(interfaceDecl) | 
|  | ->castAs<ObjCInterfaceType>(); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | QualType ObjCObjectPointerType::getSuperClassType() const { | 
|  | QualType superObjectType = getObjectType()->getSuperClassType(); | 
|  | if (superObjectType.isNull()) | 
|  | return superObjectType; | 
|  |  | 
|  | ASTContext &ctx = getInterfaceDecl()->getASTContext(); | 
|  | return ctx.getObjCObjectPointerType(superObjectType); | 
|  | } | 
|  |  | 
|  | const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const { | 
|  | // There is no sugar for ObjCObjectType's, just return the canonical | 
|  | // type pointer if it is the right class.  There is no typedef information to | 
|  | // return and these cannot be Address-space qualified. | 
|  | if (const auto *T = getAs<ObjCObjectType>()) | 
|  | if (T->getNumProtocols() && T->getInterface()) | 
|  | return T; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool Type::isObjCQualifiedInterfaceType() const { | 
|  | return getAsObjCQualifiedInterfaceType() != nullptr; | 
|  | } | 
|  |  | 
|  | const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const { | 
|  | // There is no sugar for ObjCQualifiedIdType's, just return the canonical | 
|  | // type pointer if it is the right class. | 
|  | if (const auto *OPT = getAs<ObjCObjectPointerType>()) { | 
|  | if (OPT->isObjCQualifiedIdType()) | 
|  | return OPT; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const { | 
|  | // There is no sugar for ObjCQualifiedClassType's, just return the canonical | 
|  | // type pointer if it is the right class. | 
|  | if (const auto *OPT = getAs<ObjCObjectPointerType>()) { | 
|  | if (OPT->isObjCQualifiedClassType()) | 
|  | return OPT; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const ObjCObjectType *Type::getAsObjCInterfaceType() const { | 
|  | if (const auto *OT = getAs<ObjCObjectType>()) { | 
|  | if (OT->getInterface()) | 
|  | return OT; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const { | 
|  | if (const auto *OPT = getAs<ObjCObjectPointerType>()) { | 
|  | if (OPT->getInterfaceType()) | 
|  | return OPT; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const CXXRecordDecl *Type::getPointeeCXXRecordDecl() const { | 
|  | QualType PointeeType; | 
|  | if (const auto *PT = getAsCanonical<PointerType>()) | 
|  | PointeeType = PT->getPointeeType(); | 
|  | else if (const auto *RT = getAsCanonical<ReferenceType>()) | 
|  | PointeeType = RT->getPointeeType(); | 
|  | else | 
|  | return nullptr; | 
|  | return PointeeType->getAsCXXRecordDecl(); | 
|  | } | 
|  |  | 
|  | const TemplateSpecializationType * | 
|  | Type::getAsNonAliasTemplateSpecializationType() const { | 
|  | const auto *TST = getAs<TemplateSpecializationType>(); | 
|  | while (TST && TST->isTypeAlias()) | 
|  | TST = TST->desugar()->getAs<TemplateSpecializationType>(); | 
|  | return TST; | 
|  | } | 
|  |  | 
|  | NestedNameSpecifier Type::getPrefix() const { | 
|  | switch (getTypeClass()) { | 
|  | case Type::DependentName: | 
|  | return cast<DependentNameType>(this)->getQualifier(); | 
|  | case Type::TemplateSpecialization: | 
|  | return cast<TemplateSpecializationType>(this) | 
|  | ->getTemplateName() | 
|  | .getQualifier(); | 
|  | case Type::Enum: | 
|  | case Type::Record: | 
|  | case Type::InjectedClassName: | 
|  | return cast<TagType>(this)->getQualifier(); | 
|  | case Type::Typedef: | 
|  | return cast<TypedefType>(this)->getQualifier(); | 
|  | case Type::UnresolvedUsing: | 
|  | return cast<UnresolvedUsingType>(this)->getQualifier(); | 
|  | case Type::Using: | 
|  | return cast<UsingType>(this)->getQualifier(); | 
|  | default: | 
|  | return std::nullopt; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Type::hasAttr(attr::Kind AK) const { | 
|  | const Type *Cur = this; | 
|  | while (const auto *AT = Cur->getAs<AttributedType>()) { | 
|  | if (AT->getAttrKind() == AK) | 
|  | return true; | 
|  | Cur = AT->getEquivalentType().getTypePtr(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class GetContainedDeducedTypeVisitor | 
|  | : public TypeVisitor<GetContainedDeducedTypeVisitor, Type *> { | 
|  | bool Syntactic; | 
|  |  | 
|  | public: | 
|  | GetContainedDeducedTypeVisitor(bool Syntactic = false) | 
|  | : Syntactic(Syntactic) {} | 
|  |  | 
|  | using TypeVisitor<GetContainedDeducedTypeVisitor, Type *>::Visit; | 
|  |  | 
|  | Type *Visit(QualType T) { | 
|  | if (T.isNull()) | 
|  | return nullptr; | 
|  | return Visit(T.getTypePtr()); | 
|  | } | 
|  |  | 
|  | // The deduced type itself. | 
|  | Type *VisitDeducedType(const DeducedType *AT) { | 
|  | return const_cast<DeducedType *>(AT); | 
|  | } | 
|  |  | 
|  | // Only these types can contain the desired 'auto' type. | 
|  | Type *VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { | 
|  | return Visit(T->getReplacementType()); | 
|  | } | 
|  |  | 
|  | Type *VisitPointerType(const PointerType *T) { | 
|  | return Visit(T->getPointeeType()); | 
|  | } | 
|  |  | 
|  | Type *VisitBlockPointerType(const BlockPointerType *T) { | 
|  | return Visit(T->getPointeeType()); | 
|  | } | 
|  |  | 
|  | Type *VisitReferenceType(const ReferenceType *T) { | 
|  | return Visit(T->getPointeeTypeAsWritten()); | 
|  | } | 
|  |  | 
|  | Type *VisitMemberPointerType(const MemberPointerType *T) { | 
|  | return Visit(T->getPointeeType()); | 
|  | } | 
|  |  | 
|  | Type *VisitArrayType(const ArrayType *T) { | 
|  | return Visit(T->getElementType()); | 
|  | } | 
|  |  | 
|  | Type *VisitDependentSizedExtVectorType(const DependentSizedExtVectorType *T) { | 
|  | return Visit(T->getElementType()); | 
|  | } | 
|  |  | 
|  | Type *VisitVectorType(const VectorType *T) { | 
|  | return Visit(T->getElementType()); | 
|  | } | 
|  |  | 
|  | Type *VisitDependentSizedMatrixType(const DependentSizedMatrixType *T) { | 
|  | return Visit(T->getElementType()); | 
|  | } | 
|  |  | 
|  | Type *VisitConstantMatrixType(const ConstantMatrixType *T) { | 
|  | return Visit(T->getElementType()); | 
|  | } | 
|  |  | 
|  | Type *VisitFunctionProtoType(const FunctionProtoType *T) { | 
|  | if (Syntactic && T->hasTrailingReturn()) | 
|  | return const_cast<FunctionProtoType *>(T); | 
|  | return VisitFunctionType(T); | 
|  | } | 
|  |  | 
|  | Type *VisitFunctionType(const FunctionType *T) { | 
|  | return Visit(T->getReturnType()); | 
|  | } | 
|  |  | 
|  | Type *VisitParenType(const ParenType *T) { return Visit(T->getInnerType()); } | 
|  |  | 
|  | Type *VisitAttributedType(const AttributedType *T) { | 
|  | return Visit(T->getModifiedType()); | 
|  | } | 
|  |  | 
|  | Type *VisitMacroQualifiedType(const MacroQualifiedType *T) { | 
|  | return Visit(T->getUnderlyingType()); | 
|  | } | 
|  |  | 
|  | Type *VisitAdjustedType(const AdjustedType *T) { | 
|  | return Visit(T->getOriginalType()); | 
|  | } | 
|  |  | 
|  | Type *VisitPackExpansionType(const PackExpansionType *T) { | 
|  | return Visit(T->getPattern()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | DeducedType *Type::getContainedDeducedType() const { | 
|  | return cast_or_null<DeducedType>( | 
|  | GetContainedDeducedTypeVisitor().Visit(this)); | 
|  | } | 
|  |  | 
|  | bool Type::hasAutoForTrailingReturnType() const { | 
|  | return isa_and_nonnull<FunctionType>( | 
|  | GetContainedDeducedTypeVisitor(true).Visit(this)); | 
|  | } | 
|  |  | 
|  | bool Type::hasIntegerRepresentation() const { | 
|  | if (const auto *VT = dyn_cast<VectorType>(CanonicalType)) | 
|  | return VT->getElementType()->isIntegerType(); | 
|  | if (CanonicalType->isSveVLSBuiltinType()) { | 
|  | const auto *VT = cast<BuiltinType>(CanonicalType); | 
|  | return VT->getKind() == BuiltinType::SveBool || | 
|  | (VT->getKind() >= BuiltinType::SveInt8 && | 
|  | VT->getKind() <= BuiltinType::SveUint64); | 
|  | } | 
|  | if (CanonicalType->isRVVVLSBuiltinType()) { | 
|  | const auto *VT = cast<BuiltinType>(CanonicalType); | 
|  | return (VT->getKind() >= BuiltinType::RvvInt8mf8 && | 
|  | VT->getKind() <= BuiltinType::RvvUint64m8); | 
|  | } | 
|  |  | 
|  | return isIntegerType(); | 
|  | } | 
|  |  | 
|  | /// Determine whether this type is an integral type. | 
|  | /// | 
|  | /// This routine determines whether the given type is an integral type per | 
|  | /// C++ [basic.fundamental]p7. Although the C standard does not define the | 
|  | /// term "integral type", it has a similar term "integer type", and in C++ | 
|  | /// the two terms are equivalent. However, C's "integer type" includes | 
|  | /// enumeration types, while C++'s "integer type" does not. The \c ASTContext | 
|  | /// parameter is used to determine whether we should be following the C or | 
|  | /// C++ rules when determining whether this type is an integral/integer type. | 
|  | /// | 
|  | /// For cases where C permits "an integer type" and C++ permits "an integral | 
|  | /// type", use this routine. | 
|  | /// | 
|  | /// For cases where C permits "an integer type" and C++ permits "an integral | 
|  | /// or enumeration type", use \c isIntegralOrEnumerationType() instead. | 
|  | /// | 
|  | /// \param Ctx The context in which this type occurs. | 
|  | /// | 
|  | /// \returns true if the type is considered an integral type, false otherwise. | 
|  | bool Type::isIntegralType(const ASTContext &Ctx) const { | 
|  | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) | 
|  | return BT->isInteger(); | 
|  |  | 
|  | // Complete enum types are integral in C. | 
|  | if (!Ctx.getLangOpts().CPlusPlus) | 
|  | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) | 
|  | return IsEnumDeclComplete(ET->getOriginalDecl()); | 
|  |  | 
|  | return isBitIntType(); | 
|  | } | 
|  |  | 
|  | bool Type::isIntegralOrUnscopedEnumerationType() const { | 
|  | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) | 
|  | return BT->isInteger(); | 
|  |  | 
|  | if (isBitIntType()) | 
|  | return true; | 
|  |  | 
|  | return isUnscopedEnumerationType(); | 
|  | } | 
|  |  | 
|  | bool Type::isUnscopedEnumerationType() const { | 
|  | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) | 
|  | return !ET->getOriginalDecl()->isScoped(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isCharType() const { | 
|  | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) | 
|  | return BT->getKind() == BuiltinType::Char_U || | 
|  | BT->getKind() == BuiltinType::UChar || | 
|  | BT->getKind() == BuiltinType::Char_S || | 
|  | BT->getKind() == BuiltinType::SChar; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isWideCharType() const { | 
|  | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) | 
|  | return BT->getKind() == BuiltinType::WChar_S || | 
|  | BT->getKind() == BuiltinType::WChar_U; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isChar8Type() const { | 
|  | if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) | 
|  | return BT->getKind() == BuiltinType::Char8; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isChar16Type() const { | 
|  | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) | 
|  | return BT->getKind() == BuiltinType::Char16; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isChar32Type() const { | 
|  | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) | 
|  | return BT->getKind() == BuiltinType::Char32; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Determine whether this type is any of the built-in character | 
|  | /// types. | 
|  | bool Type::isAnyCharacterType() const { | 
|  | const auto *BT = dyn_cast<BuiltinType>(CanonicalType); | 
|  | if (!BT) | 
|  | return false; | 
|  | switch (BT->getKind()) { | 
|  | default: | 
|  | return false; | 
|  | case BuiltinType::Char_U: | 
|  | case BuiltinType::UChar: | 
|  | case BuiltinType::WChar_U: | 
|  | case BuiltinType::Char8: | 
|  | case BuiltinType::Char16: | 
|  | case BuiltinType::Char32: | 
|  | case BuiltinType::Char_S: | 
|  | case BuiltinType::SChar: | 
|  | case BuiltinType::WChar_S: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Type::isUnicodeCharacterType() const { | 
|  | const auto *BT = dyn_cast<BuiltinType>(CanonicalType); | 
|  | if (!BT) | 
|  | return false; | 
|  | switch (BT->getKind()) { | 
|  | default: | 
|  | return false; | 
|  | case BuiltinType::Char8: | 
|  | case BuiltinType::Char16: | 
|  | case BuiltinType::Char32: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isSignedIntegerType - Return true if this is an integer type that is | 
|  | /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..], | 
|  | /// an enum decl which has a signed representation | 
|  | bool Type::isSignedIntegerType() const { | 
|  | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) | 
|  | return BT->isSignedInteger(); | 
|  |  | 
|  | if (const auto *ED = getAsEnumDecl()) { | 
|  | // Incomplete enum types are not treated as integer types. | 
|  | // FIXME: In C++, enum types are never integer types. | 
|  | if (!ED->isComplete() || ED->isScoped()) | 
|  | return false; | 
|  | return ED->getIntegerType()->isSignedIntegerType(); | 
|  | } | 
|  |  | 
|  | if (const auto *IT = dyn_cast<BitIntType>(CanonicalType)) | 
|  | return IT->isSigned(); | 
|  | if (const auto *IT = dyn_cast<DependentBitIntType>(CanonicalType)) | 
|  | return IT->isSigned(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isSignedIntegerOrEnumerationType() const { | 
|  | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) | 
|  | return BT->isSignedInteger(); | 
|  |  | 
|  | if (const auto *ED = getAsEnumDecl()) { | 
|  | if (!ED->isComplete()) | 
|  | return false; | 
|  | return ED->getIntegerType()->isSignedIntegerType(); | 
|  | } | 
|  |  | 
|  | if (const auto *IT = dyn_cast<BitIntType>(CanonicalType)) | 
|  | return IT->isSigned(); | 
|  | if (const auto *IT = dyn_cast<DependentBitIntType>(CanonicalType)) | 
|  | return IT->isSigned(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::hasSignedIntegerRepresentation() const { | 
|  | if (const auto *VT = dyn_cast<VectorType>(CanonicalType)) | 
|  | return VT->getElementType()->isSignedIntegerOrEnumerationType(); | 
|  | else | 
|  | return isSignedIntegerOrEnumerationType(); | 
|  | } | 
|  |  | 
|  | /// isUnsignedIntegerType - Return true if this is an integer type that is | 
|  | /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum | 
|  | /// decl which has an unsigned representation | 
|  | bool Type::isUnsignedIntegerType() const { | 
|  | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) | 
|  | return BT->isUnsignedInteger(); | 
|  |  | 
|  | if (const auto *ED = getAsEnumDecl()) { | 
|  | // Incomplete enum types are not treated as integer types. | 
|  | // FIXME: In C++, enum types are never integer types. | 
|  | if (!ED->isComplete() || ED->isScoped()) | 
|  | return false; | 
|  | return ED->getIntegerType()->isUnsignedIntegerType(); | 
|  | } | 
|  |  | 
|  | if (const auto *IT = dyn_cast<BitIntType>(CanonicalType)) | 
|  | return IT->isUnsigned(); | 
|  | if (const auto *IT = dyn_cast<DependentBitIntType>(CanonicalType)) | 
|  | return IT->isUnsigned(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isUnsignedIntegerOrEnumerationType() const { | 
|  | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) | 
|  | return BT->isUnsignedInteger(); | 
|  |  | 
|  | if (const auto *ED = getAsEnumDecl()) { | 
|  | if (!ED->isComplete()) | 
|  | return false; | 
|  | return ED->getIntegerType()->isUnsignedIntegerType(); | 
|  | } | 
|  |  | 
|  | if (const auto *IT = dyn_cast<BitIntType>(CanonicalType)) | 
|  | return IT->isUnsigned(); | 
|  | if (const auto *IT = dyn_cast<DependentBitIntType>(CanonicalType)) | 
|  | return IT->isUnsigned(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::hasUnsignedIntegerRepresentation() const { | 
|  | if (const auto *VT = dyn_cast<VectorType>(CanonicalType)) | 
|  | return VT->getElementType()->isUnsignedIntegerOrEnumerationType(); | 
|  | if (const auto *VT = dyn_cast<MatrixType>(CanonicalType)) | 
|  | return VT->getElementType()->isUnsignedIntegerOrEnumerationType(); | 
|  | if (CanonicalType->isSveVLSBuiltinType()) { | 
|  | const auto *VT = cast<BuiltinType>(CanonicalType); | 
|  | return VT->getKind() >= BuiltinType::SveUint8 && | 
|  | VT->getKind() <= BuiltinType::SveUint64; | 
|  | } | 
|  | return isUnsignedIntegerOrEnumerationType(); | 
|  | } | 
|  |  | 
|  | bool Type::isFloatingType() const { | 
|  | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) | 
|  | return BT->isFloatingPoint(); | 
|  | if (const auto *CT = dyn_cast<ComplexType>(CanonicalType)) | 
|  | return CT->getElementType()->isFloatingType(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::hasFloatingRepresentation() const { | 
|  | if (const auto *VT = dyn_cast<VectorType>(CanonicalType)) | 
|  | return VT->getElementType()->isFloatingType(); | 
|  | if (const auto *MT = dyn_cast<MatrixType>(CanonicalType)) | 
|  | return MT->getElementType()->isFloatingType(); | 
|  | return isFloatingType(); | 
|  | } | 
|  |  | 
|  | bool Type::isRealFloatingType() const { | 
|  | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) | 
|  | return BT->isFloatingPoint(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isRealType() const { | 
|  | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) | 
|  | return BT->getKind() >= BuiltinType::Bool && | 
|  | BT->getKind() <= BuiltinType::Ibm128; | 
|  | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) { | 
|  | const auto *ED = ET->getOriginalDecl(); | 
|  | return !ED->isScoped() && ED->getDefinitionOrSelf()->isComplete(); | 
|  | } | 
|  | return isBitIntType(); | 
|  | } | 
|  |  | 
|  | bool Type::isArithmeticType() const { | 
|  | if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) | 
|  | return BT->getKind() >= BuiltinType::Bool && | 
|  | BT->getKind() <= BuiltinType::Ibm128; | 
|  | if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) { | 
|  | // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2). | 
|  | // If a body isn't seen by the time we get here, return false. | 
|  | // | 
|  | // C++0x: Enumerations are not arithmetic types. For now, just return | 
|  | // false for scoped enumerations since that will disable any | 
|  | // unwanted implicit conversions. | 
|  | const auto *ED = ET->getOriginalDecl(); | 
|  | return !ED->isScoped() && ED->getDefinitionOrSelf()->isComplete(); | 
|  | } | 
|  | return isa<ComplexType>(CanonicalType) || isBitIntType(); | 
|  | } | 
|  |  | 
|  | bool Type::hasBooleanRepresentation() const { | 
|  | if (const auto *VT = dyn_cast<VectorType>(CanonicalType)) | 
|  | return VT->getElementType()->isBooleanType(); | 
|  | if (const auto *ED = getAsEnumDecl()) | 
|  | return ED->isComplete() && ED->getIntegerType()->isBooleanType(); | 
|  | if (const auto *IT = dyn_cast<BitIntType>(CanonicalType)) | 
|  | return IT->getNumBits() == 1; | 
|  | return isBooleanType(); | 
|  | } | 
|  |  | 
|  | Type::ScalarTypeKind Type::getScalarTypeKind() const { | 
|  | assert(isScalarType()); | 
|  |  | 
|  | const Type *T = CanonicalType.getTypePtr(); | 
|  | if (const auto *BT = dyn_cast<BuiltinType>(T)) { | 
|  | if (BT->getKind() == BuiltinType::Bool) | 
|  | return STK_Bool; | 
|  | if (BT->getKind() == BuiltinType::NullPtr) | 
|  | return STK_CPointer; | 
|  | if (BT->isInteger()) | 
|  | return STK_Integral; | 
|  | if (BT->isFloatingPoint()) | 
|  | return STK_Floating; | 
|  | if (BT->isFixedPointType()) | 
|  | return STK_FixedPoint; | 
|  | llvm_unreachable("unknown scalar builtin type"); | 
|  | } else if (isa<PointerType>(T)) { | 
|  | return STK_CPointer; | 
|  | } else if (isa<BlockPointerType>(T)) { | 
|  | return STK_BlockPointer; | 
|  | } else if (isa<ObjCObjectPointerType>(T)) { | 
|  | return STK_ObjCObjectPointer; | 
|  | } else if (isa<MemberPointerType>(T)) { | 
|  | return STK_MemberPointer; | 
|  | } else if (isa<EnumType>(T)) { | 
|  | assert(T->castAsEnumDecl()->isComplete()); | 
|  | return STK_Integral; | 
|  | } else if (const auto *CT = dyn_cast<ComplexType>(T)) { | 
|  | if (CT->getElementType()->isRealFloatingType()) | 
|  | return STK_FloatingComplex; | 
|  | return STK_IntegralComplex; | 
|  | } else if (isBitIntType()) { | 
|  | return STK_Integral; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unknown scalar type"); | 
|  | } | 
|  |  | 
|  | /// Determines whether the type is a C++ aggregate type or C | 
|  | /// aggregate or union type. | 
|  | /// | 
|  | /// An aggregate type is an array or a class type (struct, union, or | 
|  | /// class) that has no user-declared constructors, no private or | 
|  | /// protected non-static data members, no base classes, and no virtual | 
|  | /// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type | 
|  | /// subsumes the notion of C aggregates (C99 6.2.5p21) because it also | 
|  | /// includes union types. | 
|  | bool Type::isAggregateType() const { | 
|  | if (const auto *Record = dyn_cast<RecordType>(CanonicalType)) { | 
|  | if (const auto *ClassDecl = | 
|  | dyn_cast<CXXRecordDecl>(Record->getOriginalDecl())) | 
|  | return ClassDecl->isAggregate(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return isa<ArrayType>(CanonicalType); | 
|  | } | 
|  |  | 
|  | /// isConstantSizeType - Return true if this is not a variable sized type, | 
|  | /// according to the rules of C99 6.7.5p3.  It is not legal to call this on | 
|  | /// incomplete types or dependent types. | 
|  | bool Type::isConstantSizeType() const { | 
|  | assert(!isIncompleteType() && "This doesn't make sense for incomplete types"); | 
|  | assert(!isDependentType() && "This doesn't make sense for dependent types"); | 
|  | // The VAT must have a size, as it is known to be complete. | 
|  | return !isa<VariableArrayType>(CanonicalType); | 
|  | } | 
|  |  | 
|  | /// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1) | 
|  | /// - a type that can describe objects, but which lacks information needed to | 
|  | /// determine its size. | 
|  | bool Type::isIncompleteType(NamedDecl **Def) const { | 
|  | if (Def) | 
|  | *Def = nullptr; | 
|  |  | 
|  | switch (CanonicalType->getTypeClass()) { | 
|  | default: | 
|  | return false; | 
|  | case Builtin: | 
|  | // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never | 
|  | // be completed. | 
|  | return isVoidType(); | 
|  | case Enum: { | 
|  | auto *EnumD = castAsEnumDecl(); | 
|  | if (Def) | 
|  | *Def = EnumD; | 
|  | return !EnumD->isComplete(); | 
|  | } | 
|  | case Record: { | 
|  | // A tagged type (struct/union/enum/class) is incomplete if the decl is a | 
|  | // forward declaration, but not a full definition (C99 6.2.5p22). | 
|  | auto *Rec = castAsRecordDecl(); | 
|  | if (Def) | 
|  | *Def = Rec; | 
|  | return !Rec->isCompleteDefinition(); | 
|  | } | 
|  | case InjectedClassName: { | 
|  | auto *Rec = castAsCXXRecordDecl(); | 
|  | if (!Rec->isBeingDefined()) | 
|  | return false; | 
|  | if (Def) | 
|  | *Def = Rec; | 
|  | return true; | 
|  | } | 
|  | case ConstantArray: | 
|  | case VariableArray: | 
|  | // An array is incomplete if its element type is incomplete | 
|  | // (C++ [dcl.array]p1). | 
|  | // We don't handle dependent-sized arrays (dependent types are never treated | 
|  | // as incomplete). | 
|  | return cast<ArrayType>(CanonicalType) | 
|  | ->getElementType() | 
|  | ->isIncompleteType(Def); | 
|  | case IncompleteArray: | 
|  | // An array of unknown size is an incomplete type (C99 6.2.5p22). | 
|  | return true; | 
|  | case MemberPointer: { | 
|  | // Member pointers in the MS ABI have special behavior in | 
|  | // RequireCompleteType: they attach a MSInheritanceAttr to the CXXRecordDecl | 
|  | // to indicate which inheritance model to use. | 
|  | // The inheritance attribute might only be present on the most recent | 
|  | // CXXRecordDecl. | 
|  | const CXXRecordDecl *RD = | 
|  | cast<MemberPointerType>(CanonicalType)->getMostRecentCXXRecordDecl(); | 
|  | // Member pointers with dependent class types don't get special treatment. | 
|  | if (!RD || RD->isDependentType()) | 
|  | return false; | 
|  | ASTContext &Context = RD->getASTContext(); | 
|  | // Member pointers not in the MS ABI don't get special treatment. | 
|  | if (!Context.getTargetInfo().getCXXABI().isMicrosoft()) | 
|  | return false; | 
|  | // Nothing interesting to do if the inheritance attribute is already set. | 
|  | if (RD->hasAttr<MSInheritanceAttr>()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | case ObjCObject: | 
|  | return cast<ObjCObjectType>(CanonicalType) | 
|  | ->getBaseType() | 
|  | ->isIncompleteType(Def); | 
|  | case ObjCInterface: { | 
|  | // ObjC interfaces are incomplete if they are @class, not @interface. | 
|  | ObjCInterfaceDecl *Interface = | 
|  | cast<ObjCInterfaceType>(CanonicalType)->getDecl(); | 
|  | if (Def) | 
|  | *Def = Interface; | 
|  | return !Interface->hasDefinition(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Type::isAlwaysIncompleteType() const { | 
|  | if (!isIncompleteType()) | 
|  | return false; | 
|  |  | 
|  | // Forward declarations of structs, classes, enums, and unions could be later | 
|  | // completed in a compilation unit by providing a type definition. | 
|  | if (isa<TagType>(CanonicalType)) | 
|  | return false; | 
|  |  | 
|  | // Other types are incompletable. | 
|  | // | 
|  | // E.g. `char[]` and `void`. The type is incomplete and no future | 
|  | // type declarations can make the type complete. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool Type::isSizelessBuiltinType() const { | 
|  | if (isSizelessVectorType()) | 
|  | return true; | 
|  |  | 
|  | if (const BuiltinType *BT = getAs<BuiltinType>()) { | 
|  | switch (BT->getKind()) { | 
|  | // WebAssembly reference types | 
|  | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | 
|  | #include "clang/Basic/WebAssemblyReferenceTypes.def" | 
|  | // HLSL intangible types | 
|  | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | 
|  | #include "clang/Basic/HLSLIntangibleTypes.def" | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isWebAssemblyExternrefType() const { | 
|  | if (const auto *BT = getAs<BuiltinType>()) | 
|  | return BT->getKind() == BuiltinType::WasmExternRef; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isWebAssemblyTableType() const { | 
|  | if (const auto *ATy = dyn_cast<ArrayType>(this)) | 
|  | return ATy->getElementType().isWebAssemblyReferenceType(); | 
|  |  | 
|  | if (const auto *PTy = dyn_cast<PointerType>(this)) | 
|  | return PTy->getPointeeType().isWebAssemblyReferenceType(); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isSizelessType() const { return isSizelessBuiltinType(); } | 
|  |  | 
|  | bool Type::isSizelessVectorType() const { | 
|  | return isSVESizelessBuiltinType() || isRVVSizelessBuiltinType(); | 
|  | } | 
|  |  | 
|  | bool Type::isSVESizelessBuiltinType() const { | 
|  | if (const BuiltinType *BT = getAs<BuiltinType>()) { | 
|  | switch (BT->getKind()) { | 
|  | // SVE Types | 
|  | #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId)                    \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return true; | 
|  | #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingletonId)                    \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return true; | 
|  | #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId)                 \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return true; | 
|  | #include "clang/Basic/AArch64ACLETypes.def" | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isRVVSizelessBuiltinType() const { | 
|  | if (const BuiltinType *BT = getAs<BuiltinType>()) { | 
|  | switch (BT->getKind()) { | 
|  | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | 
|  | #include "clang/Basic/RISCVVTypes.def" | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isSveVLSBuiltinType() const { | 
|  | if (const BuiltinType *BT = getAs<BuiltinType>()) { | 
|  | switch (BT->getKind()) { | 
|  | case BuiltinType::SveInt8: | 
|  | case BuiltinType::SveInt16: | 
|  | case BuiltinType::SveInt32: | 
|  | case BuiltinType::SveInt64: | 
|  | case BuiltinType::SveUint8: | 
|  | case BuiltinType::SveUint16: | 
|  | case BuiltinType::SveUint32: | 
|  | case BuiltinType::SveUint64: | 
|  | case BuiltinType::SveFloat16: | 
|  | case BuiltinType::SveFloat32: | 
|  | case BuiltinType::SveFloat64: | 
|  | case BuiltinType::SveBFloat16: | 
|  | case BuiltinType::SveBool: | 
|  | case BuiltinType::SveBoolx2: | 
|  | case BuiltinType::SveBoolx4: | 
|  | case BuiltinType::SveMFloat8: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QualType Type::getSizelessVectorEltType(const ASTContext &Ctx) const { | 
|  | assert(isSizelessVectorType() && "Must be sizeless vector type"); | 
|  | // Currently supports SVE and RVV | 
|  | if (isSVESizelessBuiltinType()) | 
|  | return getSveEltType(Ctx); | 
|  |  | 
|  | if (isRVVSizelessBuiltinType()) | 
|  | return getRVVEltType(Ctx); | 
|  |  | 
|  | llvm_unreachable("Unhandled type"); | 
|  | } | 
|  |  | 
|  | QualType Type::getSveEltType(const ASTContext &Ctx) const { | 
|  | assert(isSveVLSBuiltinType() && "unsupported type!"); | 
|  |  | 
|  | const BuiltinType *BTy = castAs<BuiltinType>(); | 
|  | if (BTy->getKind() == BuiltinType::SveBool) | 
|  | // Represent predicates as i8 rather than i1 to avoid any layout issues. | 
|  | // The type is bitcasted to a scalable predicate type when casting between | 
|  | // scalable and fixed-length vectors. | 
|  | return Ctx.UnsignedCharTy; | 
|  | else | 
|  | return Ctx.getBuiltinVectorTypeInfo(BTy).ElementType; | 
|  | } | 
|  |  | 
|  | bool Type::isRVVVLSBuiltinType() const { | 
|  | if (const BuiltinType *BT = getAs<BuiltinType>()) { | 
|  | switch (BT->getKind()) { | 
|  | #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned,   \ | 
|  | IsFP, IsBF)                                            \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return NF == 1; | 
|  | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return true; | 
|  | #include "clang/Basic/RISCVVTypes.def" | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QualType Type::getRVVEltType(const ASTContext &Ctx) const { | 
|  | assert(isRVVVLSBuiltinType() && "unsupported type!"); | 
|  |  | 
|  | const BuiltinType *BTy = castAs<BuiltinType>(); | 
|  |  | 
|  | switch (BTy->getKind()) { | 
|  | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return Ctx.UnsignedCharTy; | 
|  | default: | 
|  | return Ctx.getBuiltinVectorTypeInfo(BTy).ElementType; | 
|  | #include "clang/Basic/RISCVVTypes.def" | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unhandled type"); | 
|  | } | 
|  |  | 
|  | bool QualType::isPODType(const ASTContext &Context) const { | 
|  | // C++11 has a more relaxed definition of POD. | 
|  | if (Context.getLangOpts().CPlusPlus11) | 
|  | return isCXX11PODType(Context); | 
|  |  | 
|  | return isCXX98PODType(Context); | 
|  | } | 
|  |  | 
|  | bool QualType::isCXX98PODType(const ASTContext &Context) const { | 
|  | // The compiler shouldn't query this for incomplete types, but the user might. | 
|  | // We return false for that case. Except for incomplete arrays of PODs, which | 
|  | // are PODs according to the standard. | 
|  | if (isNull()) | 
|  | return false; | 
|  |  | 
|  | if ((*this)->isIncompleteArrayType()) | 
|  | return Context.getBaseElementType(*this).isCXX98PODType(Context); | 
|  |  | 
|  | if ((*this)->isIncompleteType()) | 
|  | return false; | 
|  |  | 
|  | if (hasNonTrivialObjCLifetime()) | 
|  | return false; | 
|  |  | 
|  | QualType CanonicalType = getTypePtr()->CanonicalType; | 
|  |  | 
|  | // Any type that is, or contains, address discriminated data is never POD. | 
|  | if (Context.containsAddressDiscriminatedPointerAuth(CanonicalType)) | 
|  | return false; | 
|  |  | 
|  | switch (CanonicalType->getTypeClass()) { | 
|  | // Everything not explicitly mentioned is not POD. | 
|  | default: | 
|  | return false; | 
|  | case Type::VariableArray: | 
|  | case Type::ConstantArray: | 
|  | // IncompleteArray is handled above. | 
|  | return Context.getBaseElementType(*this).isCXX98PODType(Context); | 
|  |  | 
|  | case Type::ObjCObjectPointer: | 
|  | case Type::BlockPointer: | 
|  | case Type::Builtin: | 
|  | case Type::Complex: | 
|  | case Type::Pointer: | 
|  | case Type::MemberPointer: | 
|  | case Type::Vector: | 
|  | case Type::ExtVector: | 
|  | case Type::BitInt: | 
|  | return true; | 
|  |  | 
|  | case Type::Enum: | 
|  | return true; | 
|  |  | 
|  | case Type::Record: | 
|  | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>( | 
|  | cast<RecordType>(CanonicalType)->getOriginalDecl())) | 
|  | return ClassDecl->isPOD(); | 
|  |  | 
|  | // C struct/union is POD. | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool QualType::isTrivialType(const ASTContext &Context) const { | 
|  | // The compiler shouldn't query this for incomplete types, but the user might. | 
|  | // We return false for that case. Except for incomplete arrays of PODs, which | 
|  | // are PODs according to the standard. | 
|  | if (isNull()) | 
|  | return false; | 
|  |  | 
|  | if ((*this)->isArrayType()) | 
|  | return Context.getBaseElementType(*this).isTrivialType(Context); | 
|  |  | 
|  | if ((*this)->isSizelessBuiltinType()) | 
|  | return true; | 
|  |  | 
|  | // Return false for incomplete types after skipping any incomplete array | 
|  | // types which are expressly allowed by the standard and thus our API. | 
|  | if ((*this)->isIncompleteType()) | 
|  | return false; | 
|  |  | 
|  | if (hasNonTrivialObjCLifetime()) | 
|  | return false; | 
|  |  | 
|  | QualType CanonicalType = getTypePtr()->CanonicalType; | 
|  | if (CanonicalType->isDependentType()) | 
|  | return false; | 
|  |  | 
|  | // Any type that is, or contains, address discriminated data is never a | 
|  | // trivial type. | 
|  | if (Context.containsAddressDiscriminatedPointerAuth(CanonicalType)) | 
|  | return false; | 
|  |  | 
|  | // C++0x [basic.types]p9: | 
|  | //   Scalar types, trivial class types, arrays of such types, and | 
|  | //   cv-qualified versions of these types are collectively called trivial | 
|  | //   types. | 
|  |  | 
|  | // As an extension, Clang treats vector types as Scalar types. | 
|  | if (CanonicalType->isScalarType() || CanonicalType->isVectorType()) | 
|  | return true; | 
|  |  | 
|  | if (const auto *ClassDecl = CanonicalType->getAsCXXRecordDecl()) { | 
|  | // C++20 [class]p6: | 
|  | //   A trivial class is a class that is trivially copyable, and | 
|  | //     has one or more eligible default constructors such that each is | 
|  | //     trivial. | 
|  | // FIXME: We should merge this definition of triviality into | 
|  | // CXXRecordDecl::isTrivial. Currently it computes the wrong thing. | 
|  | return ClassDecl->hasTrivialDefaultConstructor() && | 
|  | !ClassDecl->hasNonTrivialDefaultConstructor() && | 
|  | ClassDecl->isTriviallyCopyable(); | 
|  | } | 
|  |  | 
|  | if (isa<RecordType>(CanonicalType)) | 
|  | return true; | 
|  |  | 
|  | // No other types can match. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isTriviallyCopyableTypeImpl(const QualType &type, | 
|  | const ASTContext &Context, | 
|  | bool IsCopyConstructible) { | 
|  | if (type->isArrayType()) | 
|  | return isTriviallyCopyableTypeImpl(Context.getBaseElementType(type), | 
|  | Context, IsCopyConstructible); | 
|  |  | 
|  | if (type.hasNonTrivialObjCLifetime()) | 
|  | return false; | 
|  |  | 
|  | // C++11 [basic.types]p9 - See Core 2094 | 
|  | //   Scalar types, trivially copyable class types, arrays of such types, and | 
|  | //   cv-qualified versions of these types are collectively | 
|  | //   called trivially copy constructible types. | 
|  |  | 
|  | QualType CanonicalType = type.getCanonicalType(); | 
|  | if (CanonicalType->isDependentType()) | 
|  | return false; | 
|  |  | 
|  | if (CanonicalType->isSizelessBuiltinType()) | 
|  | return true; | 
|  |  | 
|  | // Return false for incomplete types after skipping any incomplete array types | 
|  | // which are expressly allowed by the standard and thus our API. | 
|  | if (CanonicalType->isIncompleteType()) | 
|  | return false; | 
|  |  | 
|  | if (CanonicalType.hasAddressDiscriminatedPointerAuth()) | 
|  | return false; | 
|  |  | 
|  | // As an extension, Clang treats vector types as Scalar types. | 
|  | if (CanonicalType->isScalarType() || CanonicalType->isVectorType()) | 
|  | return true; | 
|  |  | 
|  | // Mfloat8 type is a special case as it not scalar, but is still trivially | 
|  | // copyable. | 
|  | if (CanonicalType->isMFloat8Type()) | 
|  | return true; | 
|  |  | 
|  | if (const auto *RD = CanonicalType->getAsRecordDecl()) { | 
|  | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) { | 
|  | if (IsCopyConstructible) | 
|  | return ClassDecl->isTriviallyCopyConstructible(); | 
|  | return ClassDecl->isTriviallyCopyable(); | 
|  | } | 
|  | return !RD->isNonTrivialToPrimitiveCopy(); | 
|  | } | 
|  | // No other types can match. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool QualType::isTriviallyCopyableType(const ASTContext &Context) const { | 
|  | return isTriviallyCopyableTypeImpl(*this, Context, | 
|  | /*IsCopyConstructible=*/false); | 
|  | } | 
|  |  | 
|  | // FIXME: each call will trigger a full computation, cache the result. | 
|  | bool QualType::isBitwiseCloneableType(const ASTContext &Context) const { | 
|  | auto CanonicalType = getCanonicalType(); | 
|  | if (CanonicalType.hasNonTrivialObjCLifetime()) | 
|  | return false; | 
|  | if (CanonicalType->isArrayType()) | 
|  | return Context.getBaseElementType(CanonicalType) | 
|  | .isBitwiseCloneableType(Context); | 
|  |  | 
|  | if (CanonicalType->isIncompleteType()) | 
|  | return false; | 
|  |  | 
|  | // Any type that is, or contains, address discriminated data is never | 
|  | // bitwise clonable. | 
|  | if (Context.containsAddressDiscriminatedPointerAuth(CanonicalType)) | 
|  | return false; | 
|  |  | 
|  | const auto *RD = CanonicalType->getAsRecordDecl(); // struct/union/class | 
|  | if (!RD) | 
|  | return true; | 
|  |  | 
|  | // Never allow memcpy when we're adding poisoned padding bits to the struct. | 
|  | // Accessing these posioned bits will trigger false alarms on | 
|  | // SanitizeAddressFieldPadding etc. | 
|  | if (RD->mayInsertExtraPadding()) | 
|  | return false; | 
|  |  | 
|  | for (auto *const Field : RD->fields()) { | 
|  | if (!Field->getType().isBitwiseCloneableType(Context)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { | 
|  | for (auto Base : CXXRD->bases()) | 
|  | if (!Base.getType().isBitwiseCloneableType(Context)) | 
|  | return false; | 
|  | for (auto VBase : CXXRD->vbases()) | 
|  | if (!VBase.getType().isBitwiseCloneableType(Context)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool QualType::isTriviallyCopyConstructibleType( | 
|  | const ASTContext &Context) const { | 
|  | return isTriviallyCopyableTypeImpl(*this, Context, | 
|  | /*IsCopyConstructible=*/true); | 
|  | } | 
|  |  | 
|  | bool QualType::isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const { | 
|  | return !Context.getLangOpts().ObjCAutoRefCount && | 
|  | Context.getLangOpts().ObjCWeak && | 
|  | getObjCLifetime() != Qualifiers::OCL_Weak; | 
|  | } | 
|  |  | 
|  | bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion( | 
|  | const RecordDecl *RD) { | 
|  | return RD->hasNonTrivialToPrimitiveDefaultInitializeCUnion(); | 
|  | } | 
|  |  | 
|  | bool QualType::hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD) { | 
|  | return RD->hasNonTrivialToPrimitiveDestructCUnion(); | 
|  | } | 
|  |  | 
|  | bool QualType::hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD) { | 
|  | return RD->hasNonTrivialToPrimitiveCopyCUnion(); | 
|  | } | 
|  |  | 
|  | bool QualType::isWebAssemblyReferenceType() const { | 
|  | return isWebAssemblyExternrefType() || isWebAssemblyFuncrefType(); | 
|  | } | 
|  |  | 
|  | bool QualType::isWebAssemblyExternrefType() const { | 
|  | return getTypePtr()->isWebAssemblyExternrefType(); | 
|  | } | 
|  |  | 
|  | bool QualType::isWebAssemblyFuncrefType() const { | 
|  | return getTypePtr()->isFunctionPointerType() && | 
|  | getAddressSpace() == LangAS::wasm_funcref; | 
|  | } | 
|  |  | 
|  | QualType::PrimitiveDefaultInitializeKind | 
|  | QualType::isNonTrivialToPrimitiveDefaultInitialize() const { | 
|  | if (const auto *RD = | 
|  | getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl()) | 
|  | if (RD->isNonTrivialToPrimitiveDefaultInitialize()) | 
|  | return PDIK_Struct; | 
|  |  | 
|  | switch (getQualifiers().getObjCLifetime()) { | 
|  | case Qualifiers::OCL_Strong: | 
|  | return PDIK_ARCStrong; | 
|  | case Qualifiers::OCL_Weak: | 
|  | return PDIK_ARCWeak; | 
|  | default: | 
|  | return PDIK_Trivial; | 
|  | } | 
|  | } | 
|  |  | 
|  | QualType::PrimitiveCopyKind QualType::isNonTrivialToPrimitiveCopy() const { | 
|  | if (const auto *RD = | 
|  | getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl()) | 
|  | if (RD->isNonTrivialToPrimitiveCopy()) | 
|  | return PCK_Struct; | 
|  |  | 
|  | Qualifiers Qs = getQualifiers(); | 
|  | switch (Qs.getObjCLifetime()) { | 
|  | case Qualifiers::OCL_Strong: | 
|  | return PCK_ARCStrong; | 
|  | case Qualifiers::OCL_Weak: | 
|  | return PCK_ARCWeak; | 
|  | default: | 
|  | if (hasAddressDiscriminatedPointerAuth()) | 
|  | return PCK_PtrAuth; | 
|  | return Qs.hasVolatile() ? PCK_VolatileTrivial : PCK_Trivial; | 
|  | } | 
|  | } | 
|  |  | 
|  | QualType::PrimitiveCopyKind | 
|  | QualType::isNonTrivialToPrimitiveDestructiveMove() const { | 
|  | return isNonTrivialToPrimitiveCopy(); | 
|  | } | 
|  |  | 
|  | bool Type::isLiteralType(const ASTContext &Ctx) const { | 
|  | if (isDependentType()) | 
|  | return false; | 
|  |  | 
|  | // C++1y [basic.types]p10: | 
|  | //   A type is a literal type if it is: | 
|  | //   -- cv void; or | 
|  | if (Ctx.getLangOpts().CPlusPlus14 && isVoidType()) | 
|  | return true; | 
|  |  | 
|  | // C++11 [basic.types]p10: | 
|  | //   A type is a literal type if it is: | 
|  | //   [...] | 
|  | //   -- an array of literal type other than an array of runtime bound; or | 
|  | if (isVariableArrayType()) | 
|  | return false; | 
|  | const Type *BaseTy = getBaseElementTypeUnsafe(); | 
|  | assert(BaseTy && "NULL element type"); | 
|  |  | 
|  | // Return false for incomplete types after skipping any incomplete array | 
|  | // types; those are expressly allowed by the standard and thus our API. | 
|  | if (BaseTy->isIncompleteType()) | 
|  | return false; | 
|  |  | 
|  | // C++11 [basic.types]p10: | 
|  | //   A type is a literal type if it is: | 
|  | //    -- a scalar type; or | 
|  | // As an extension, Clang treats vector types and complex types as | 
|  | // literal types. | 
|  | if (BaseTy->isScalarType() || BaseTy->isVectorType() || | 
|  | BaseTy->isAnyComplexType()) | 
|  | return true; | 
|  | //    -- a reference type; or | 
|  | if (BaseTy->isReferenceType()) | 
|  | return true; | 
|  | //    -- a class type that has all of the following properties: | 
|  | if (const auto *RD = BaseTy->getAsRecordDecl()) { | 
|  | //    -- a trivial destructor, | 
|  | //    -- every constructor call and full-expression in the | 
|  | //       brace-or-equal-initializers for non-static data members (if any) | 
|  | //       is a constant expression, | 
|  | //    -- it is an aggregate type or has at least one constexpr | 
|  | //       constructor or constructor template that is not a copy or move | 
|  | //       constructor, and | 
|  | //    -- all non-static data members and base classes of literal types | 
|  | // | 
|  | // We resolve DR1361 by ignoring the second bullet. | 
|  | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) | 
|  | return ClassDecl->isLiteral(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // We treat _Atomic T as a literal type if T is a literal type. | 
|  | if (const auto *AT = BaseTy->getAs<AtomicType>()) | 
|  | return AT->getValueType()->isLiteralType(Ctx); | 
|  |  | 
|  | // If this type hasn't been deduced yet, then conservatively assume that | 
|  | // it'll work out to be a literal type. | 
|  | if (isa<AutoType>(BaseTy->getCanonicalTypeInternal())) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isStructuralType() const { | 
|  | // C++20 [temp.param]p6: | 
|  | //   A structural type is one of the following: | 
|  | //   -- a scalar type; or | 
|  | //   -- a vector type [Clang extension]; or | 
|  | if (isScalarType() || isVectorType()) | 
|  | return true; | 
|  | //   -- an lvalue reference type; or | 
|  | if (isLValueReferenceType()) | 
|  | return true; | 
|  | //  -- a literal class type [...under some conditions] | 
|  | if (const CXXRecordDecl *RD = getAsCXXRecordDecl()) | 
|  | return RD->isStructural(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isStandardLayoutType() const { | 
|  | if (isDependentType()) | 
|  | return false; | 
|  |  | 
|  | // C++0x [basic.types]p9: | 
|  | //   Scalar types, standard-layout class types, arrays of such types, and | 
|  | //   cv-qualified versions of these types are collectively called | 
|  | //   standard-layout types. | 
|  | const Type *BaseTy = getBaseElementTypeUnsafe(); | 
|  | assert(BaseTy && "NULL element type"); | 
|  |  | 
|  | // Return false for incomplete types after skipping any incomplete array | 
|  | // types which are expressly allowed by the standard and thus our API. | 
|  | if (BaseTy->isIncompleteType()) | 
|  | return false; | 
|  |  | 
|  | // As an extension, Clang treats vector types as Scalar types. | 
|  | if (BaseTy->isScalarType() || BaseTy->isVectorType()) | 
|  | return true; | 
|  | if (const auto *RD = BaseTy->getAsRecordDecl()) { | 
|  | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD); | 
|  | ClassDecl && !ClassDecl->isStandardLayout()) | 
|  | return false; | 
|  |  | 
|  | // Default to 'true' for non-C++ class types. | 
|  | // FIXME: This is a bit dubious, but plain C structs should trivially meet | 
|  | // all the requirements of standard layout classes. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // No other types can match. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // This is effectively the intersection of isTrivialType and | 
|  | // isStandardLayoutType. We implement it directly to avoid redundant | 
|  | // conversions from a type to a CXXRecordDecl. | 
|  | bool QualType::isCXX11PODType(const ASTContext &Context) const { | 
|  | const Type *ty = getTypePtr(); | 
|  | if (ty->isDependentType()) | 
|  | return false; | 
|  |  | 
|  | if (hasNonTrivialObjCLifetime()) | 
|  | return false; | 
|  |  | 
|  | // C++11 [basic.types]p9: | 
|  | //   Scalar types, POD classes, arrays of such types, and cv-qualified | 
|  | //   versions of these types are collectively called trivial types. | 
|  | const Type *BaseTy = ty->getBaseElementTypeUnsafe(); | 
|  | assert(BaseTy && "NULL element type"); | 
|  |  | 
|  | if (BaseTy->isSizelessBuiltinType()) | 
|  | return true; | 
|  |  | 
|  | // Return false for incomplete types after skipping any incomplete array | 
|  | // types which are expressly allowed by the standard and thus our API. | 
|  | if (BaseTy->isIncompleteType()) | 
|  | return false; | 
|  |  | 
|  | // Any type that is, or contains, address discriminated data is non-POD. | 
|  | if (Context.containsAddressDiscriminatedPointerAuth(*this)) | 
|  | return false; | 
|  |  | 
|  | // As an extension, Clang treats vector types as Scalar types. | 
|  | if (BaseTy->isScalarType() || BaseTy->isVectorType()) | 
|  | return true; | 
|  | if (const auto *RD = BaseTy->getAsRecordDecl()) { | 
|  | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) { | 
|  | // C++11 [class]p10: | 
|  | //   A POD struct is a non-union class that is both a trivial class [...] | 
|  | if (!ClassDecl->isTrivial()) | 
|  | return false; | 
|  |  | 
|  | // C++11 [class]p10: | 
|  | //   A POD struct is a non-union class that is both a trivial class and | 
|  | //   a standard-layout class [...] | 
|  | if (!ClassDecl->isStandardLayout()) | 
|  | return false; | 
|  |  | 
|  | // C++11 [class]p10: | 
|  | //   A POD struct is a non-union class that is both a trivial class and | 
|  | //   a standard-layout class, and has no non-static data members of type | 
|  | //   non-POD struct, non-POD union (or array of such types). [...] | 
|  | // | 
|  | // We don't directly query the recursive aspect as the requirements for | 
|  | // both standard-layout classes and trivial classes apply recursively | 
|  | // already. | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // No other types can match. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isNothrowT() const { | 
|  | if (const auto *RD = getAsCXXRecordDecl()) { | 
|  | IdentifierInfo *II = RD->getIdentifier(); | 
|  | if (II && II->isStr("nothrow_t") && RD->isInStdNamespace()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isAlignValT() const { | 
|  | if (const auto *ET = getAsCanonical<EnumType>()) { | 
|  | const auto *ED = ET->getOriginalDecl(); | 
|  | IdentifierInfo *II = ED->getIdentifier(); | 
|  | if (II && II->isStr("align_val_t") && ED->isInStdNamespace()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isStdByteType() const { | 
|  | if (const auto *ET = getAsCanonical<EnumType>()) { | 
|  | const auto *ED = ET->getOriginalDecl(); | 
|  | IdentifierInfo *II = ED->getIdentifier(); | 
|  | if (II && II->isStr("byte") && ED->isInStdNamespace()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isSpecifierType() const { | 
|  | // Note that this intentionally does not use the canonical type. | 
|  | switch (getTypeClass()) { | 
|  | case Builtin: | 
|  | case Record: | 
|  | case Enum: | 
|  | case Typedef: | 
|  | case Complex: | 
|  | case TypeOfExpr: | 
|  | case TypeOf: | 
|  | case TemplateTypeParm: | 
|  | case SubstTemplateTypeParm: | 
|  | case TemplateSpecialization: | 
|  | case DependentName: | 
|  | case ObjCInterface: | 
|  | case ObjCObject: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | ElaboratedTypeKeyword KeywordHelpers::getKeywordForTypeSpec(unsigned TypeSpec) { | 
|  | switch (TypeSpec) { | 
|  | default: | 
|  | return ElaboratedTypeKeyword::None; | 
|  | case TST_typename: | 
|  | return ElaboratedTypeKeyword::Typename; | 
|  | case TST_class: | 
|  | return ElaboratedTypeKeyword::Class; | 
|  | case TST_struct: | 
|  | return ElaboratedTypeKeyword::Struct; | 
|  | case TST_interface: | 
|  | return ElaboratedTypeKeyword::Interface; | 
|  | case TST_union: | 
|  | return ElaboratedTypeKeyword::Union; | 
|  | case TST_enum: | 
|  | return ElaboratedTypeKeyword::Enum; | 
|  | } | 
|  | } | 
|  |  | 
|  | TagTypeKind KeywordHelpers::getTagTypeKindForTypeSpec(unsigned TypeSpec) { | 
|  | switch (TypeSpec) { | 
|  | case TST_class: | 
|  | return TagTypeKind::Class; | 
|  | case TST_struct: | 
|  | return TagTypeKind::Struct; | 
|  | case TST_interface: | 
|  | return TagTypeKind::Interface; | 
|  | case TST_union: | 
|  | return TagTypeKind::Union; | 
|  | case TST_enum: | 
|  | return TagTypeKind::Enum; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Type specifier is not a tag type kind."); | 
|  | } | 
|  |  | 
|  | ElaboratedTypeKeyword | 
|  | KeywordHelpers::getKeywordForTagTypeKind(TagTypeKind Kind) { | 
|  | switch (Kind) { | 
|  | case TagTypeKind::Class: | 
|  | return ElaboratedTypeKeyword::Class; | 
|  | case TagTypeKind::Struct: | 
|  | return ElaboratedTypeKeyword::Struct; | 
|  | case TagTypeKind::Interface: | 
|  | return ElaboratedTypeKeyword::Interface; | 
|  | case TagTypeKind::Union: | 
|  | return ElaboratedTypeKeyword::Union; | 
|  | case TagTypeKind::Enum: | 
|  | return ElaboratedTypeKeyword::Enum; | 
|  | } | 
|  | llvm_unreachable("Unknown tag type kind."); | 
|  | } | 
|  |  | 
|  | TagTypeKind | 
|  | KeywordHelpers::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) { | 
|  | switch (Keyword) { | 
|  | case ElaboratedTypeKeyword::Class: | 
|  | return TagTypeKind::Class; | 
|  | case ElaboratedTypeKeyword::Struct: | 
|  | return TagTypeKind::Struct; | 
|  | case ElaboratedTypeKeyword::Interface: | 
|  | return TagTypeKind::Interface; | 
|  | case ElaboratedTypeKeyword::Union: | 
|  | return TagTypeKind::Union; | 
|  | case ElaboratedTypeKeyword::Enum: | 
|  | return TagTypeKind::Enum; | 
|  | case ElaboratedTypeKeyword::None: // Fall through. | 
|  | case ElaboratedTypeKeyword::Typename: | 
|  | llvm_unreachable("Elaborated type keyword is not a tag type kind."); | 
|  | } | 
|  | llvm_unreachable("Unknown elaborated type keyword."); | 
|  | } | 
|  |  | 
|  | bool KeywordHelpers::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) { | 
|  | switch (Keyword) { | 
|  | case ElaboratedTypeKeyword::None: | 
|  | case ElaboratedTypeKeyword::Typename: | 
|  | return false; | 
|  | case ElaboratedTypeKeyword::Class: | 
|  | case ElaboratedTypeKeyword::Struct: | 
|  | case ElaboratedTypeKeyword::Interface: | 
|  | case ElaboratedTypeKeyword::Union: | 
|  | case ElaboratedTypeKeyword::Enum: | 
|  | return true; | 
|  | } | 
|  | llvm_unreachable("Unknown elaborated type keyword."); | 
|  | } | 
|  |  | 
|  | StringRef KeywordHelpers::getKeywordName(ElaboratedTypeKeyword Keyword) { | 
|  | switch (Keyword) { | 
|  | case ElaboratedTypeKeyword::None: | 
|  | return {}; | 
|  | case ElaboratedTypeKeyword::Typename: | 
|  | return "typename"; | 
|  | case ElaboratedTypeKeyword::Class: | 
|  | return "class"; | 
|  | case ElaboratedTypeKeyword::Struct: | 
|  | return "struct"; | 
|  | case ElaboratedTypeKeyword::Interface: | 
|  | return "__interface"; | 
|  | case ElaboratedTypeKeyword::Union: | 
|  | return "union"; | 
|  | case ElaboratedTypeKeyword::Enum: | 
|  | return "enum"; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unknown elaborated type keyword."); | 
|  | } | 
|  |  | 
|  | bool Type::isElaboratedTypeSpecifier() const { | 
|  | ElaboratedTypeKeyword Keyword; | 
|  | if (const auto *TST = dyn_cast<TemplateSpecializationType>(this)) | 
|  | Keyword = TST->getKeyword(); | 
|  | else if (const auto *DepName = dyn_cast<DependentNameType>(this)) | 
|  | Keyword = DepName->getKeyword(); | 
|  | else if (const auto *T = dyn_cast<TagType>(this)) | 
|  | Keyword = T->getKeyword(); | 
|  | else if (const auto *T = dyn_cast<TypedefType>(this)) | 
|  | Keyword = T->getKeyword(); | 
|  | else if (const auto *T = dyn_cast<UnresolvedUsingType>(this)) | 
|  | Keyword = T->getKeyword(); | 
|  | else if (const auto *T = dyn_cast<UsingType>(this)) | 
|  | Keyword = T->getKeyword(); | 
|  | else | 
|  | return false; | 
|  |  | 
|  | return TypeWithKeyword::KeywordIsTagTypeKind(Keyword); | 
|  | } | 
|  |  | 
|  | const char *Type::getTypeClassName() const { | 
|  | switch (TypeBits.TC) { | 
|  | #define ABSTRACT_TYPE(Derived, Base) | 
|  | #define TYPE(Derived, Base)                                                    \ | 
|  | case Derived:                                                                \ | 
|  | return #Derived; | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid type class."); | 
|  | } | 
|  |  | 
|  | StringRef BuiltinType::getName(const PrintingPolicy &Policy) const { | 
|  | switch (getKind()) { | 
|  | case Void: | 
|  | return "void"; | 
|  | case Bool: | 
|  | return Policy.Bool ? "bool" : "_Bool"; | 
|  | case Char_S: | 
|  | return "char"; | 
|  | case Char_U: | 
|  | return "char"; | 
|  | case SChar: | 
|  | return "signed char"; | 
|  | case Short: | 
|  | return "short"; | 
|  | case Int: | 
|  | return "int"; | 
|  | case Long: | 
|  | return "long"; | 
|  | case LongLong: | 
|  | return "long long"; | 
|  | case Int128: | 
|  | return "__int128"; | 
|  | case UChar: | 
|  | return "unsigned char"; | 
|  | case UShort: | 
|  | return "unsigned short"; | 
|  | case UInt: | 
|  | return "unsigned int"; | 
|  | case ULong: | 
|  | return "unsigned long"; | 
|  | case ULongLong: | 
|  | return "unsigned long long"; | 
|  | case UInt128: | 
|  | return "unsigned __int128"; | 
|  | case Half: | 
|  | return Policy.Half ? "half" : "__fp16"; | 
|  | case BFloat16: | 
|  | return "__bf16"; | 
|  | case Float: | 
|  | return "float"; | 
|  | case Double: | 
|  | return "double"; | 
|  | case LongDouble: | 
|  | return "long double"; | 
|  | case ShortAccum: | 
|  | return "short _Accum"; | 
|  | case Accum: | 
|  | return "_Accum"; | 
|  | case LongAccum: | 
|  | return "long _Accum"; | 
|  | case UShortAccum: | 
|  | return "unsigned short _Accum"; | 
|  | case UAccum: | 
|  | return "unsigned _Accum"; | 
|  | case ULongAccum: | 
|  | return "unsigned long _Accum"; | 
|  | case BuiltinType::ShortFract: | 
|  | return "short _Fract"; | 
|  | case BuiltinType::Fract: | 
|  | return "_Fract"; | 
|  | case BuiltinType::LongFract: | 
|  | return "long _Fract"; | 
|  | case BuiltinType::UShortFract: | 
|  | return "unsigned short _Fract"; | 
|  | case BuiltinType::UFract: | 
|  | return "unsigned _Fract"; | 
|  | case BuiltinType::ULongFract: | 
|  | return "unsigned long _Fract"; | 
|  | case BuiltinType::SatShortAccum: | 
|  | return "_Sat short _Accum"; | 
|  | case BuiltinType::SatAccum: | 
|  | return "_Sat _Accum"; | 
|  | case BuiltinType::SatLongAccum: | 
|  | return "_Sat long _Accum"; | 
|  | case BuiltinType::SatUShortAccum: | 
|  | return "_Sat unsigned short _Accum"; | 
|  | case BuiltinType::SatUAccum: | 
|  | return "_Sat unsigned _Accum"; | 
|  | case BuiltinType::SatULongAccum: | 
|  | return "_Sat unsigned long _Accum"; | 
|  | case BuiltinType::SatShortFract: | 
|  | return "_Sat short _Fract"; | 
|  | case BuiltinType::SatFract: | 
|  | return "_Sat _Fract"; | 
|  | case BuiltinType::SatLongFract: | 
|  | return "_Sat long _Fract"; | 
|  | case BuiltinType::SatUShortFract: | 
|  | return "_Sat unsigned short _Fract"; | 
|  | case BuiltinType::SatUFract: | 
|  | return "_Sat unsigned _Fract"; | 
|  | case BuiltinType::SatULongFract: | 
|  | return "_Sat unsigned long _Fract"; | 
|  | case Float16: | 
|  | return "_Float16"; | 
|  | case Float128: | 
|  | return "__float128"; | 
|  | case Ibm128: | 
|  | return "__ibm128"; | 
|  | case WChar_S: | 
|  | case WChar_U: | 
|  | return Policy.MSWChar ? "__wchar_t" : "wchar_t"; | 
|  | case Char8: | 
|  | return "char8_t"; | 
|  | case Char16: | 
|  | return "char16_t"; | 
|  | case Char32: | 
|  | return "char32_t"; | 
|  | case NullPtr: | 
|  | return Policy.NullptrTypeInNamespace ? "std::nullptr_t" : "nullptr_t"; | 
|  | case Overload: | 
|  | return "<overloaded function type>"; | 
|  | case BoundMember: | 
|  | return "<bound member function type>"; | 
|  | case UnresolvedTemplate: | 
|  | return "<unresolved template type>"; | 
|  | case PseudoObject: | 
|  | return "<pseudo-object type>"; | 
|  | case Dependent: | 
|  | return "<dependent type>"; | 
|  | case UnknownAny: | 
|  | return "<unknown type>"; | 
|  | case ARCUnbridgedCast: | 
|  | return "<ARC unbridged cast type>"; | 
|  | case BuiltinFn: | 
|  | return "<builtin fn type>"; | 
|  | case ObjCId: | 
|  | return "id"; | 
|  | case ObjCClass: | 
|  | return "Class"; | 
|  | case ObjCSel: | 
|  | return "SEL"; | 
|  | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \ | 
|  | case Id:                                                                     \ | 
|  | return "__" #Access " " #ImgType "_t"; | 
|  | #include "clang/Basic/OpenCLImageTypes.def" | 
|  | case OCLSampler: | 
|  | return "sampler_t"; | 
|  | case OCLEvent: | 
|  | return "event_t"; | 
|  | case OCLClkEvent: | 
|  | return "clk_event_t"; | 
|  | case OCLQueue: | 
|  | return "queue_t"; | 
|  | case OCLReserveID: | 
|  | return "reserve_id_t"; | 
|  | case IncompleteMatrixIdx: | 
|  | return "<incomplete matrix index type>"; | 
|  | case ArraySection: | 
|  | return "<array section type>"; | 
|  | case OMPArrayShaping: | 
|  | return "<OpenMP array shaping type>"; | 
|  | case OMPIterator: | 
|  | return "<OpenMP iterator type>"; | 
|  | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext)                                      \ | 
|  | case Id:                                                                     \ | 
|  | return #ExtType; | 
|  | #include "clang/Basic/OpenCLExtensionTypes.def" | 
|  | #define SVE_TYPE(Name, Id, SingletonId)                                        \ | 
|  | case Id:                                                                     \ | 
|  | return #Name; | 
|  | #include "clang/Basic/AArch64ACLETypes.def" | 
|  | #define PPC_VECTOR_TYPE(Name, Id, Size)                                        \ | 
|  | case Id:                                                                     \ | 
|  | return #Name; | 
|  | #include "clang/Basic/PPCTypes.def" | 
|  | #define RVV_TYPE(Name, Id, SingletonId)                                        \ | 
|  | case Id:                                                                     \ | 
|  | return Name; | 
|  | #include "clang/Basic/RISCVVTypes.def" | 
|  | #define WASM_TYPE(Name, Id, SingletonId)                                       \ | 
|  | case Id:                                                                     \ | 
|  | return Name; | 
|  | #include "clang/Basic/WebAssemblyReferenceTypes.def" | 
|  | #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align)                       \ | 
|  | case Id:                                                                     \ | 
|  | return Name; | 
|  | #include "clang/Basic/AMDGPUTypes.def" | 
|  | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId)                            \ | 
|  | case Id:                                                                     \ | 
|  | return #Name; | 
|  | #include "clang/Basic/HLSLIntangibleTypes.def" | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid builtin type."); | 
|  | } | 
|  |  | 
|  | QualType QualType::getNonPackExpansionType() const { | 
|  | // We never wrap type sugar around a PackExpansionType. | 
|  | if (auto *PET = dyn_cast<PackExpansionType>(getTypePtr())) | 
|  | return PET->getPattern(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | QualType QualType::getNonLValueExprType(const ASTContext &Context) const { | 
|  | if (const auto *RefType = getTypePtr()->getAs<ReferenceType>()) | 
|  | return RefType->getPointeeType(); | 
|  |  | 
|  | // C++0x [basic.lval]: | 
|  | //   Class prvalues can have cv-qualified types; non-class prvalues always | 
|  | //   have cv-unqualified types. | 
|  | // | 
|  | // See also C99 6.3.2.1p2. | 
|  | if (!Context.getLangOpts().CPlusPlus || | 
|  | (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType())) | 
|  | return getUnqualifiedType(); | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | bool FunctionType::getCFIUncheckedCalleeAttr() const { | 
|  | if (const auto *FPT = getAs<FunctionProtoType>()) | 
|  | return FPT->hasCFIUncheckedCallee(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | StringRef FunctionType::getNameForCallConv(CallingConv CC) { | 
|  | switch (CC) { | 
|  | case CC_C: | 
|  | return "cdecl"; | 
|  | case CC_X86StdCall: | 
|  | return "stdcall"; | 
|  | case CC_X86FastCall: | 
|  | return "fastcall"; | 
|  | case CC_X86ThisCall: | 
|  | return "thiscall"; | 
|  | case CC_X86Pascal: | 
|  | return "pascal"; | 
|  | case CC_X86VectorCall: | 
|  | return "vectorcall"; | 
|  | case CC_Win64: | 
|  | return "ms_abi"; | 
|  | case CC_X86_64SysV: | 
|  | return "sysv_abi"; | 
|  | case CC_X86RegCall: | 
|  | return "regcall"; | 
|  | case CC_AAPCS: | 
|  | return "aapcs"; | 
|  | case CC_AAPCS_VFP: | 
|  | return "aapcs-vfp"; | 
|  | case CC_AArch64VectorCall: | 
|  | return "aarch64_vector_pcs"; | 
|  | case CC_AArch64SVEPCS: | 
|  | return "aarch64_sve_pcs"; | 
|  | case CC_IntelOclBicc: | 
|  | return "intel_ocl_bicc"; | 
|  | case CC_SpirFunction: | 
|  | return "spir_function"; | 
|  | case CC_DeviceKernel: | 
|  | return "device_kernel"; | 
|  | case CC_Swift: | 
|  | return "swiftcall"; | 
|  | case CC_SwiftAsync: | 
|  | return "swiftasynccall"; | 
|  | case CC_PreserveMost: | 
|  | return "preserve_most"; | 
|  | case CC_PreserveAll: | 
|  | return "preserve_all"; | 
|  | case CC_M68kRTD: | 
|  | return "m68k_rtd"; | 
|  | case CC_PreserveNone: | 
|  | return "preserve_none"; | 
|  | // clang-format off | 
|  | case CC_RISCVVectorCall: return "riscv_vector_cc"; | 
|  | #define CC_VLS_CASE(ABI_VLEN) \ | 
|  | case CC_RISCVVLSCall_##ABI_VLEN: return "riscv_vls_cc(" #ABI_VLEN ")"; | 
|  | CC_VLS_CASE(32) | 
|  | CC_VLS_CASE(64) | 
|  | CC_VLS_CASE(128) | 
|  | CC_VLS_CASE(256) | 
|  | CC_VLS_CASE(512) | 
|  | CC_VLS_CASE(1024) | 
|  | CC_VLS_CASE(2048) | 
|  | CC_VLS_CASE(4096) | 
|  | CC_VLS_CASE(8192) | 
|  | CC_VLS_CASE(16384) | 
|  | CC_VLS_CASE(32768) | 
|  | CC_VLS_CASE(65536) | 
|  | #undef CC_VLS_CASE | 
|  | // clang-format on | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid calling convention."); | 
|  | } | 
|  |  | 
|  | void FunctionProtoType::ExceptionSpecInfo::instantiate() { | 
|  | assert(Type == EST_Uninstantiated); | 
|  | NoexceptExpr = | 
|  | cast<FunctionProtoType>(SourceTemplate->getType())->getNoexceptExpr(); | 
|  | Type = EST_DependentNoexcept; | 
|  | } | 
|  |  | 
|  | FunctionProtoType::FunctionProtoType(QualType result, ArrayRef<QualType> params, | 
|  | QualType canonical, | 
|  | const ExtProtoInfo &epi) | 
|  | : FunctionType(FunctionProto, result, canonical, result->getDependence(), | 
|  | epi.ExtInfo) { | 
|  | FunctionTypeBits.FastTypeQuals = epi.TypeQuals.getFastQualifiers(); | 
|  | FunctionTypeBits.RefQualifier = epi.RefQualifier; | 
|  | FunctionTypeBits.NumParams = params.size(); | 
|  | assert(getNumParams() == params.size() && "NumParams overflow!"); | 
|  | FunctionTypeBits.ExceptionSpecType = epi.ExceptionSpec.Type; | 
|  | FunctionTypeBits.HasExtParameterInfos = !!epi.ExtParameterInfos; | 
|  | FunctionTypeBits.Variadic = epi.Variadic; | 
|  | FunctionTypeBits.HasTrailingReturn = epi.HasTrailingReturn; | 
|  | FunctionTypeBits.CFIUncheckedCallee = epi.CFIUncheckedCallee; | 
|  |  | 
|  | if (epi.requiresFunctionProtoTypeExtraBitfields()) { | 
|  | FunctionTypeBits.HasExtraBitfields = true; | 
|  | auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>(); | 
|  | ExtraBits = FunctionTypeExtraBitfields(); | 
|  | } else { | 
|  | FunctionTypeBits.HasExtraBitfields = false; | 
|  | } | 
|  |  | 
|  | // Propagate any extra attribute information. | 
|  | if (epi.requiresFunctionProtoTypeExtraAttributeInfo()) { | 
|  | auto &ExtraAttrInfo = *getTrailingObjects<FunctionTypeExtraAttributeInfo>(); | 
|  | ExtraAttrInfo.CFISalt = epi.ExtraAttributeInfo.CFISalt; | 
|  |  | 
|  | // Also set the bit in FunctionTypeExtraBitfields. | 
|  | auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>(); | 
|  | ExtraBits.HasExtraAttributeInfo = true; | 
|  | } | 
|  |  | 
|  | if (epi.requiresFunctionProtoTypeArmAttributes()) { | 
|  | auto &ArmTypeAttrs = *getTrailingObjects<FunctionTypeArmAttributes>(); | 
|  | ArmTypeAttrs = FunctionTypeArmAttributes(); | 
|  |  | 
|  | // Also set the bit in FunctionTypeExtraBitfields | 
|  | auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>(); | 
|  | ExtraBits.HasArmTypeAttributes = true; | 
|  | } | 
|  |  | 
|  | // Fill in the trailing argument array. | 
|  | auto *argSlot = getTrailingObjects<QualType>(); | 
|  | for (unsigned i = 0; i != getNumParams(); ++i) { | 
|  | addDependence(params[i]->getDependence() & | 
|  | ~TypeDependence::VariablyModified); | 
|  | argSlot[i] = params[i]; | 
|  | } | 
|  |  | 
|  | // Propagate the SME ACLE attributes. | 
|  | if (epi.AArch64SMEAttributes != SME_NormalFunction) { | 
|  | auto &ArmTypeAttrs = *getTrailingObjects<FunctionTypeArmAttributes>(); | 
|  | assert(epi.AArch64SMEAttributes <= SME_AttributeMask && | 
|  | "Not enough bits to encode SME attributes"); | 
|  | ArmTypeAttrs.AArch64SMEAttributes = epi.AArch64SMEAttributes; | 
|  | } | 
|  |  | 
|  | // Fill in the exception type array if present. | 
|  | if (getExceptionSpecType() == EST_Dynamic) { | 
|  | auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>(); | 
|  | size_t NumExceptions = epi.ExceptionSpec.Exceptions.size(); | 
|  | assert(NumExceptions <= 1023 && "Not enough bits to encode exceptions"); | 
|  | ExtraBits.NumExceptionType = NumExceptions; | 
|  |  | 
|  | assert(hasExtraBitfields() && "missing trailing extra bitfields!"); | 
|  | auto *exnSlot = | 
|  | reinterpret_cast<QualType *>(getTrailingObjects<ExceptionType>()); | 
|  | unsigned I = 0; | 
|  | for (QualType ExceptionType : epi.ExceptionSpec.Exceptions) { | 
|  | // Note that, before C++17, a dependent exception specification does | 
|  | // *not* make a type dependent; it's not even part of the C++ type | 
|  | // system. | 
|  | addDependence( | 
|  | ExceptionType->getDependence() & | 
|  | (TypeDependence::Instantiation | TypeDependence::UnexpandedPack)); | 
|  |  | 
|  | exnSlot[I++] = ExceptionType; | 
|  | } | 
|  | } | 
|  | // Fill in the Expr * in the exception specification if present. | 
|  | else if (isComputedNoexcept(getExceptionSpecType())) { | 
|  | assert(epi.ExceptionSpec.NoexceptExpr && "computed noexcept with no expr"); | 
|  | assert((getExceptionSpecType() == EST_DependentNoexcept) == | 
|  | epi.ExceptionSpec.NoexceptExpr->isValueDependent()); | 
|  |  | 
|  | // Store the noexcept expression and context. | 
|  | *getTrailingObjects<Expr *>() = epi.ExceptionSpec.NoexceptExpr; | 
|  |  | 
|  | addDependence( | 
|  | toTypeDependence(epi.ExceptionSpec.NoexceptExpr->getDependence()) & | 
|  | (TypeDependence::Instantiation | TypeDependence::UnexpandedPack)); | 
|  | } | 
|  | // Fill in the FunctionDecl * in the exception specification if present. | 
|  | else if (getExceptionSpecType() == EST_Uninstantiated) { | 
|  | // Store the function decl from which we will resolve our | 
|  | // exception specification. | 
|  | auto **slot = getTrailingObjects<FunctionDecl *>(); | 
|  | slot[0] = epi.ExceptionSpec.SourceDecl; | 
|  | slot[1] = epi.ExceptionSpec.SourceTemplate; | 
|  | // This exception specification doesn't make the type dependent, because | 
|  | // it's not instantiated as part of instantiating the type. | 
|  | } else if (getExceptionSpecType() == EST_Unevaluated) { | 
|  | // Store the function decl from which we will resolve our | 
|  | // exception specification. | 
|  | auto **slot = getTrailingObjects<FunctionDecl *>(); | 
|  | slot[0] = epi.ExceptionSpec.SourceDecl; | 
|  | } | 
|  |  | 
|  | // If this is a canonical type, and its exception specification is dependent, | 
|  | // then it's a dependent type. This only happens in C++17 onwards. | 
|  | if (isCanonicalUnqualified()) { | 
|  | if (getExceptionSpecType() == EST_Dynamic || | 
|  | getExceptionSpecType() == EST_DependentNoexcept) { | 
|  | assert(hasDependentExceptionSpec() && "type should not be canonical"); | 
|  | addDependence(TypeDependence::DependentInstantiation); | 
|  | } | 
|  | } else if (getCanonicalTypeInternal()->isDependentType()) { | 
|  | // Ask our canonical type whether our exception specification was dependent. | 
|  | addDependence(TypeDependence::DependentInstantiation); | 
|  | } | 
|  |  | 
|  | // Fill in the extra parameter info if present. | 
|  | if (epi.ExtParameterInfos) { | 
|  | auto *extParamInfos = getTrailingObjects<ExtParameterInfo>(); | 
|  | for (unsigned i = 0; i != getNumParams(); ++i) | 
|  | extParamInfos[i] = epi.ExtParameterInfos[i]; | 
|  | } | 
|  |  | 
|  | if (epi.TypeQuals.hasNonFastQualifiers()) { | 
|  | FunctionTypeBits.HasExtQuals = 1; | 
|  | *getTrailingObjects<Qualifiers>() = epi.TypeQuals; | 
|  | } else { | 
|  | FunctionTypeBits.HasExtQuals = 0; | 
|  | } | 
|  |  | 
|  | // Fill in the Ellipsis location info if present. | 
|  | if (epi.Variadic) { | 
|  | auto &EllipsisLoc = *getTrailingObjects<SourceLocation>(); | 
|  | EllipsisLoc = epi.EllipsisLoc; | 
|  | } | 
|  |  | 
|  | if (!epi.FunctionEffects.empty()) { | 
|  | auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>(); | 
|  | size_t EffectsCount = epi.FunctionEffects.size(); | 
|  | ExtraBits.NumFunctionEffects = EffectsCount; | 
|  | assert(ExtraBits.NumFunctionEffects == EffectsCount && | 
|  | "effect bitfield overflow"); | 
|  |  | 
|  | ArrayRef<FunctionEffect> SrcFX = epi.FunctionEffects.effects(); | 
|  | auto *DestFX = getTrailingObjects<FunctionEffect>(); | 
|  | llvm::uninitialized_copy(SrcFX, DestFX); | 
|  |  | 
|  | ArrayRef<EffectConditionExpr> SrcConds = epi.FunctionEffects.conditions(); | 
|  | if (!SrcConds.empty()) { | 
|  | ExtraBits.EffectsHaveConditions = true; | 
|  | auto *DestConds = getTrailingObjects<EffectConditionExpr>(); | 
|  | llvm::uninitialized_copy(SrcConds, DestConds); | 
|  | assert(llvm::any_of(SrcConds, | 
|  | [](const EffectConditionExpr &EC) { | 
|  | if (const Expr *E = EC.getCondition()) | 
|  | return E->isTypeDependent() || | 
|  | E->isValueDependent(); | 
|  | return false; | 
|  | }) && | 
|  | "expected a dependent expression among the conditions"); | 
|  | addDependence(TypeDependence::DependentInstantiation); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool FunctionProtoType::hasDependentExceptionSpec() const { | 
|  | if (Expr *NE = getNoexceptExpr()) | 
|  | return NE->isValueDependent(); | 
|  | for (QualType ET : exceptions()) | 
|  | // A pack expansion with a non-dependent pattern is still dependent, | 
|  | // because we don't know whether the pattern is in the exception spec | 
|  | // or not (that depends on whether the pack has 0 expansions). | 
|  | if (ET->isDependentType() || ET->getAs<PackExpansionType>()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool FunctionProtoType::hasInstantiationDependentExceptionSpec() const { | 
|  | if (Expr *NE = getNoexceptExpr()) | 
|  | return NE->isInstantiationDependent(); | 
|  | for (QualType ET : exceptions()) | 
|  | if (ET->isInstantiationDependentType()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | CanThrowResult FunctionProtoType::canThrow() const { | 
|  | switch (getExceptionSpecType()) { | 
|  | case EST_Unparsed: | 
|  | case EST_Unevaluated: | 
|  | llvm_unreachable("should not call this with unresolved exception specs"); | 
|  |  | 
|  | case EST_DynamicNone: | 
|  | case EST_BasicNoexcept: | 
|  | case EST_NoexceptTrue: | 
|  | case EST_NoThrow: | 
|  | return CT_Cannot; | 
|  |  | 
|  | case EST_None: | 
|  | case EST_MSAny: | 
|  | case EST_NoexceptFalse: | 
|  | return CT_Can; | 
|  |  | 
|  | case EST_Dynamic: | 
|  | // A dynamic exception specification is throwing unless every exception | 
|  | // type is an (unexpanded) pack expansion type. | 
|  | for (unsigned I = 0; I != getNumExceptions(); ++I) | 
|  | if (!getExceptionType(I)->getAs<PackExpansionType>()) | 
|  | return CT_Can; | 
|  | return CT_Dependent; | 
|  |  | 
|  | case EST_Uninstantiated: | 
|  | case EST_DependentNoexcept: | 
|  | return CT_Dependent; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unexpected exception specification kind"); | 
|  | } | 
|  |  | 
|  | bool FunctionProtoType::isTemplateVariadic() const { | 
|  | for (unsigned ArgIdx = getNumParams(); ArgIdx; --ArgIdx) | 
|  | if (isa<PackExpansionType>(getParamType(ArgIdx - 1))) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result, | 
|  | const QualType *ArgTys, unsigned NumParams, | 
|  | const ExtProtoInfo &epi, | 
|  | const ASTContext &Context, bool Canonical) { | 
|  | // We have to be careful not to get ambiguous profile encodings. | 
|  | // Note that valid type pointers are never ambiguous with anything else. | 
|  | // | 
|  | // The encoding grammar begins: | 
|  | //      type type* bool int bool | 
|  | // If that final bool is true, then there is a section for the EH spec: | 
|  | //      bool type* | 
|  | // This is followed by an optional "consumed argument" section of the | 
|  | // same length as the first type sequence: | 
|  | //      bool* | 
|  | // This is followed by the ext info: | 
|  | //      int | 
|  | // Finally we have a trailing return type flag (bool) | 
|  | // combined with AArch64 SME Attributes and extra attribute info, to save | 
|  | // space: | 
|  | //      int | 
|  | // combined with any FunctionEffects | 
|  | // | 
|  | // There is no ambiguity between the consumed arguments and an empty EH | 
|  | // spec because of the leading 'bool' which unambiguously indicates | 
|  | // whether the following bool is the EH spec or part of the arguments. | 
|  |  | 
|  | ID.AddPointer(Result.getAsOpaquePtr()); | 
|  | for (unsigned i = 0; i != NumParams; ++i) | 
|  | ID.AddPointer(ArgTys[i].getAsOpaquePtr()); | 
|  | // This method is relatively performance sensitive, so as a performance | 
|  | // shortcut, use one AddInteger call instead of four for the next four | 
|  | // fields. | 
|  | assert(!(unsigned(epi.Variadic) & ~1) && !(unsigned(epi.RefQualifier) & ~3) && | 
|  | !(unsigned(epi.ExceptionSpec.Type) & ~15) && | 
|  | "Values larger than expected."); | 
|  | ID.AddInteger(unsigned(epi.Variadic) + (epi.RefQualifier << 1) + | 
|  | (epi.ExceptionSpec.Type << 3)); | 
|  | ID.Add(epi.TypeQuals); | 
|  | if (epi.ExceptionSpec.Type == EST_Dynamic) { | 
|  | for (QualType Ex : epi.ExceptionSpec.Exceptions) | 
|  | ID.AddPointer(Ex.getAsOpaquePtr()); | 
|  | } else if (isComputedNoexcept(epi.ExceptionSpec.Type)) { | 
|  | epi.ExceptionSpec.NoexceptExpr->Profile(ID, Context, Canonical); | 
|  | } else if (epi.ExceptionSpec.Type == EST_Uninstantiated || | 
|  | epi.ExceptionSpec.Type == EST_Unevaluated) { | 
|  | ID.AddPointer(epi.ExceptionSpec.SourceDecl->getCanonicalDecl()); | 
|  | } | 
|  | if (epi.ExtParameterInfos) { | 
|  | for (unsigned i = 0; i != NumParams; ++i) | 
|  | ID.AddInteger(epi.ExtParameterInfos[i].getOpaqueValue()); | 
|  | } | 
|  |  | 
|  | epi.ExtInfo.Profile(ID); | 
|  | epi.ExtraAttributeInfo.Profile(ID); | 
|  |  | 
|  | unsigned EffectCount = epi.FunctionEffects.size(); | 
|  | bool HasConds = !epi.FunctionEffects.Conditions.empty(); | 
|  |  | 
|  | ID.AddInteger((EffectCount << 3) | (HasConds << 2) | | 
|  | (epi.AArch64SMEAttributes << 1) | epi.HasTrailingReturn); | 
|  | ID.AddInteger(epi.CFIUncheckedCallee); | 
|  |  | 
|  | for (unsigned Idx = 0; Idx != EffectCount; ++Idx) { | 
|  | ID.AddInteger(epi.FunctionEffects.Effects[Idx].toOpaqueInt32()); | 
|  | if (HasConds) | 
|  | ID.AddPointer(epi.FunctionEffects.Conditions[Idx].getCondition()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | const ASTContext &Ctx) { | 
|  | Profile(ID, getReturnType(), param_type_begin(), getNumParams(), | 
|  | getExtProtoInfo(), Ctx, isCanonicalUnqualified()); | 
|  | } | 
|  |  | 
|  | TypeCoupledDeclRefInfo::TypeCoupledDeclRefInfo(ValueDecl *D, bool Deref) | 
|  | : Data(D, Deref << DerefShift) {} | 
|  |  | 
|  | bool TypeCoupledDeclRefInfo::isDeref() const { | 
|  | return Data.getInt() & DerefMask; | 
|  | } | 
|  | ValueDecl *TypeCoupledDeclRefInfo::getDecl() const { return Data.getPointer(); } | 
|  | unsigned TypeCoupledDeclRefInfo::getInt() const { return Data.getInt(); } | 
|  | void *TypeCoupledDeclRefInfo::getOpaqueValue() const { | 
|  | return Data.getOpaqueValue(); | 
|  | } | 
|  | bool TypeCoupledDeclRefInfo::operator==( | 
|  | const TypeCoupledDeclRefInfo &Other) const { | 
|  | return getOpaqueValue() == Other.getOpaqueValue(); | 
|  | } | 
|  | void TypeCoupledDeclRefInfo::setFromOpaqueValue(void *V) { | 
|  | Data.setFromOpaqueValue(V); | 
|  | } | 
|  |  | 
|  | BoundsAttributedType::BoundsAttributedType(TypeClass TC, QualType Wrapped, | 
|  | QualType Canon) | 
|  | : Type(TC, Canon, Wrapped->getDependence()), WrappedTy(Wrapped) {} | 
|  |  | 
|  | CountAttributedType::CountAttributedType( | 
|  | QualType Wrapped, QualType Canon, Expr *CountExpr, bool CountInBytes, | 
|  | bool OrNull, ArrayRef<TypeCoupledDeclRefInfo> CoupledDecls) | 
|  | : BoundsAttributedType(CountAttributed, Wrapped, Canon), | 
|  | CountExpr(CountExpr) { | 
|  | CountAttributedTypeBits.NumCoupledDecls = CoupledDecls.size(); | 
|  | CountAttributedTypeBits.CountInBytes = CountInBytes; | 
|  | CountAttributedTypeBits.OrNull = OrNull; | 
|  | auto *DeclSlot = getTrailingObjects(); | 
|  | llvm::copy(CoupledDecls, DeclSlot); | 
|  | Decls = llvm::ArrayRef(DeclSlot, CoupledDecls.size()); | 
|  | } | 
|  |  | 
|  | StringRef CountAttributedType::getAttributeName(bool WithMacroPrefix) const { | 
|  | // TODO: This method isn't really ideal because it doesn't return the spelling | 
|  | // of the attribute that was used in the user's code. This method is used for | 
|  | // diagnostics so the fact it doesn't use the spelling of the attribute in | 
|  | // the user's code could be confusing (#113585). | 
|  | #define ENUMERATE_ATTRS(PREFIX)                                                \ | 
|  | do {                                                                         \ | 
|  | if (isCountInBytes()) {                                                    \ | 
|  | if (isOrNull())                                                          \ | 
|  | return PREFIX "sized_by_or_null";                                      \ | 
|  | return PREFIX "sized_by";                                                \ | 
|  | }                                                                          \ | 
|  | if (isOrNull())                                                            \ | 
|  | return PREFIX "counted_by_or_null";                                      \ | 
|  | return PREFIX "counted_by";                                                \ | 
|  | } while (0) | 
|  |  | 
|  | if (WithMacroPrefix) | 
|  | ENUMERATE_ATTRS("__"); | 
|  | else | 
|  | ENUMERATE_ATTRS(""); | 
|  |  | 
|  | #undef ENUMERATE_ATTRS | 
|  | } | 
|  |  | 
|  | TypedefType::TypedefType(TypeClass TC, ElaboratedTypeKeyword Keyword, | 
|  | NestedNameSpecifier Qualifier, | 
|  | const TypedefNameDecl *D, QualType UnderlyingType, | 
|  | bool HasTypeDifferentFromDecl) | 
|  | : TypeWithKeyword( | 
|  | Keyword, TC, UnderlyingType.getCanonicalType(), | 
|  | toSemanticDependence(UnderlyingType->getDependence()) | | 
|  | (Qualifier | 
|  | ? toTypeDependence(Qualifier.getDependence() & | 
|  | ~NestedNameSpecifierDependence::Dependent) | 
|  | : TypeDependence{})), | 
|  | Decl(const_cast<TypedefNameDecl *>(D)) { | 
|  | if ((TypedefBits.hasQualifier = !!Qualifier)) | 
|  | *getTrailingObjects<NestedNameSpecifier>() = Qualifier; | 
|  | if ((TypedefBits.hasTypeDifferentFromDecl = HasTypeDifferentFromDecl)) | 
|  | *getTrailingObjects<QualType>() = UnderlyingType; | 
|  | } | 
|  |  | 
|  | QualType TypedefType::desugar() const { | 
|  | return typeMatchesDecl() ? Decl->getUnderlyingType() | 
|  | : *getTrailingObjects<QualType>(); | 
|  | } | 
|  |  | 
|  | UnresolvedUsingType::UnresolvedUsingType(ElaboratedTypeKeyword Keyword, | 
|  | NestedNameSpecifier Qualifier, | 
|  | const UnresolvedUsingTypenameDecl *D, | 
|  | const Type *CanonicalType) | 
|  | : TypeWithKeyword( | 
|  | Keyword, UnresolvedUsing, QualType(CanonicalType, 0), | 
|  | TypeDependence::DependentInstantiation | | 
|  | (Qualifier | 
|  | ? toTypeDependence(Qualifier.getDependence() & | 
|  | ~NestedNameSpecifierDependence::Dependent) | 
|  | : TypeDependence{})), | 
|  | Decl(const_cast<UnresolvedUsingTypenameDecl *>(D)) { | 
|  | if ((UnresolvedUsingBits.hasQualifier = !!Qualifier)) | 
|  | *getTrailingObjects<NestedNameSpecifier>() = Qualifier; | 
|  | } | 
|  |  | 
|  | UsingType::UsingType(ElaboratedTypeKeyword Keyword, | 
|  | NestedNameSpecifier Qualifier, const UsingShadowDecl *D, | 
|  | QualType UnderlyingType) | 
|  | : TypeWithKeyword(Keyword, Using, UnderlyingType.getCanonicalType(), | 
|  | toSemanticDependence(UnderlyingType->getDependence())), | 
|  | D(const_cast<UsingShadowDecl *>(D)), UnderlyingType(UnderlyingType) { | 
|  | if ((UsingBits.hasQualifier = !!Qualifier)) | 
|  | *getTrailingObjects() = Qualifier; | 
|  | } | 
|  |  | 
|  | QualType MacroQualifiedType::desugar() const { return getUnderlyingType(); } | 
|  |  | 
|  | QualType MacroQualifiedType::getModifiedType() const { | 
|  | // Step over MacroQualifiedTypes from the same macro to find the type | 
|  | // ultimately qualified by the macro qualifier. | 
|  | QualType Inner = cast<AttributedType>(getUnderlyingType())->getModifiedType(); | 
|  | while (auto *InnerMQT = dyn_cast<MacroQualifiedType>(Inner)) { | 
|  | if (InnerMQT->getMacroIdentifier() != getMacroIdentifier()) | 
|  | break; | 
|  | Inner = InnerMQT->getModifiedType(); | 
|  | } | 
|  | return Inner; | 
|  | } | 
|  |  | 
|  | TypeOfExprType::TypeOfExprType(const ASTContext &Context, Expr *E, | 
|  | TypeOfKind Kind, QualType Can) | 
|  | : Type(TypeOfExpr, | 
|  | // We have to protect against 'Can' being invalid through its | 
|  | // default argument. | 
|  | Kind == TypeOfKind::Unqualified && !Can.isNull() | 
|  | ? Context.getUnqualifiedArrayType(Can).getAtomicUnqualifiedType() | 
|  | : Can, | 
|  | toTypeDependence(E->getDependence()) | | 
|  | (E->getType()->getDependence() & | 
|  | TypeDependence::VariablyModified)), | 
|  | TOExpr(E), Context(Context) { | 
|  | TypeOfBits.Kind = static_cast<unsigned>(Kind); | 
|  | } | 
|  |  | 
|  | bool TypeOfExprType::isSugared() const { return !TOExpr->isTypeDependent(); } | 
|  |  | 
|  | QualType TypeOfExprType::desugar() const { | 
|  | if (isSugared()) { | 
|  | QualType QT = getUnderlyingExpr()->getType(); | 
|  | return getKind() == TypeOfKind::Unqualified | 
|  | ? Context.getUnqualifiedArrayType(QT).getAtomicUnqualifiedType() | 
|  | : QT; | 
|  | } | 
|  | return QualType(this, 0); | 
|  | } | 
|  |  | 
|  | void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | const ASTContext &Context, Expr *E, | 
|  | bool IsUnqual) { | 
|  | E->Profile(ID, Context, true); | 
|  | ID.AddBoolean(IsUnqual); | 
|  | } | 
|  |  | 
|  | TypeOfType::TypeOfType(const ASTContext &Context, QualType T, QualType Can, | 
|  | TypeOfKind Kind) | 
|  | : Type(TypeOf, | 
|  | Kind == TypeOfKind::Unqualified | 
|  | ? Context.getUnqualifiedArrayType(Can).getAtomicUnqualifiedType() | 
|  | : Can, | 
|  | T->getDependence()), | 
|  | TOType(T), Context(Context) { | 
|  | TypeOfBits.Kind = static_cast<unsigned>(Kind); | 
|  | } | 
|  |  | 
|  | QualType TypeOfType::desugar() const { | 
|  | QualType QT = getUnmodifiedType(); | 
|  | return getKind() == TypeOfKind::Unqualified | 
|  | ? Context.getUnqualifiedArrayType(QT).getAtomicUnqualifiedType() | 
|  | : QT; | 
|  | } | 
|  |  | 
|  | DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can) | 
|  | // C++11 [temp.type]p2: "If an expression e involves a template parameter, | 
|  | // decltype(e) denotes a unique dependent type." Hence a decltype type is | 
|  | // type-dependent even if its expression is only instantiation-dependent. | 
|  | : Type(Decltype, can, | 
|  | toTypeDependence(E->getDependence()) | | 
|  | (E->isInstantiationDependent() ? TypeDependence::Dependent | 
|  | : TypeDependence::None) | | 
|  | (E->getType()->getDependence() & | 
|  | TypeDependence::VariablyModified)), | 
|  | E(E), UnderlyingType(underlyingType) {} | 
|  |  | 
|  | bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); } | 
|  |  | 
|  | QualType DecltypeType::desugar() const { | 
|  | if (isSugared()) | 
|  | return getUnderlyingType(); | 
|  |  | 
|  | return QualType(this, 0); | 
|  | } | 
|  |  | 
|  | DependentDecltypeType::DependentDecltypeType(Expr *E) | 
|  | : DecltypeType(E, QualType()) {} | 
|  |  | 
|  | void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | const ASTContext &Context, Expr *E) { | 
|  | E->Profile(ID, Context, true); | 
|  | } | 
|  |  | 
|  | PackIndexingType::PackIndexingType(QualType Canonical, QualType Pattern, | 
|  | Expr *IndexExpr, bool FullySubstituted, | 
|  | ArrayRef<QualType> Expansions) | 
|  | : Type(PackIndexing, Canonical, | 
|  | computeDependence(Pattern, IndexExpr, Expansions)), | 
|  | Pattern(Pattern), IndexExpr(IndexExpr), Size(Expansions.size()), | 
|  | FullySubstituted(FullySubstituted) { | 
|  |  | 
|  | llvm::uninitialized_copy(Expansions, getTrailingObjects()); | 
|  | } | 
|  |  | 
|  | UnsignedOrNone PackIndexingType::getSelectedIndex() const { | 
|  | if (isInstantiationDependentType()) | 
|  | return std::nullopt; | 
|  | // Should only be not a constant for error recovery. | 
|  | ConstantExpr *CE = dyn_cast<ConstantExpr>(getIndexExpr()); | 
|  | if (!CE) | 
|  | return std::nullopt; | 
|  | auto Index = CE->getResultAsAPSInt(); | 
|  | assert(Index.isNonNegative() && "Invalid index"); | 
|  | return static_cast<unsigned>(Index.getExtValue()); | 
|  | } | 
|  |  | 
|  | TypeDependence | 
|  | PackIndexingType::computeDependence(QualType Pattern, Expr *IndexExpr, | 
|  | ArrayRef<QualType> Expansions) { | 
|  | TypeDependence IndexD = toTypeDependence(IndexExpr->getDependence()); | 
|  |  | 
|  | TypeDependence TD = IndexD | (IndexExpr->isInstantiationDependent() | 
|  | ? TypeDependence::DependentInstantiation | 
|  | : TypeDependence::None); | 
|  | if (Expansions.empty()) | 
|  | TD |= Pattern->getDependence() & TypeDependence::DependentInstantiation; | 
|  | else | 
|  | for (const QualType &T : Expansions) | 
|  | TD |= T->getDependence(); | 
|  |  | 
|  | if (!(IndexD & TypeDependence::UnexpandedPack)) | 
|  | TD &= ~TypeDependence::UnexpandedPack; | 
|  |  | 
|  | // If the pattern does not contain an unexpended pack, | 
|  | // the type is still dependent, and invalid | 
|  | if (!Pattern->containsUnexpandedParameterPack()) | 
|  | TD |= TypeDependence::Error | TypeDependence::DependentInstantiation; | 
|  |  | 
|  | return TD; | 
|  | } | 
|  |  | 
|  | void PackIndexingType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | const ASTContext &Context) { | 
|  | Profile(ID, Context, getPattern(), getIndexExpr(), isFullySubstituted(), | 
|  | getExpansions()); | 
|  | } | 
|  |  | 
|  | void PackIndexingType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | const ASTContext &Context, QualType Pattern, | 
|  | Expr *E, bool FullySubstituted, | 
|  | ArrayRef<QualType> Expansions) { | 
|  |  | 
|  | E->Profile(ID, Context, true); | 
|  | ID.AddBoolean(FullySubstituted); | 
|  | if (!Expansions.empty()) { | 
|  | ID.AddInteger(Expansions.size()); | 
|  | for (QualType T : Expansions) | 
|  | T.getCanonicalType().Profile(ID); | 
|  | } else { | 
|  | Pattern.Profile(ID); | 
|  | } | 
|  | } | 
|  |  | 
|  | UnaryTransformType::UnaryTransformType(QualType BaseType, | 
|  | QualType UnderlyingType, UTTKind UKind, | 
|  | QualType CanonicalType) | 
|  | : Type(UnaryTransform, CanonicalType, BaseType->getDependence()), | 
|  | BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind) {} | 
|  |  | 
|  | TagType::TagType(TypeClass TC, ElaboratedTypeKeyword Keyword, | 
|  | NestedNameSpecifier Qualifier, const TagDecl *Tag, | 
|  | bool OwnsTag, bool ISInjected, const Type *CanonicalType) | 
|  | : TypeWithKeyword( | 
|  | Keyword, TC, QualType(CanonicalType, 0), | 
|  | (Tag->isDependentType() ? TypeDependence::DependentInstantiation | 
|  | : TypeDependence::None) | | 
|  | (Qualifier | 
|  | ? toTypeDependence(Qualifier.getDependence() & | 
|  | ~NestedNameSpecifierDependence::Dependent) | 
|  | : TypeDependence{})), | 
|  | decl(const_cast<TagDecl *>(Tag)) { | 
|  | if ((TagTypeBits.HasQualifier = !!Qualifier)) | 
|  | getTrailingQualifier() = Qualifier; | 
|  | TagTypeBits.OwnsTag = !!OwnsTag; | 
|  | TagTypeBits.IsInjected = ISInjected; | 
|  | } | 
|  |  | 
|  | void *TagType::getTrailingPointer() const { | 
|  | switch (getTypeClass()) { | 
|  | case Type::Enum: | 
|  | return const_cast<EnumType *>(cast<EnumType>(this) + 1); | 
|  | case Type::Record: | 
|  | return const_cast<RecordType *>(cast<RecordType>(this) + 1); | 
|  | case Type::InjectedClassName: | 
|  | return const_cast<InjectedClassNameType *>( | 
|  | cast<InjectedClassNameType>(this) + 1); | 
|  | default: | 
|  | llvm_unreachable("unexpected type class"); | 
|  | } | 
|  | } | 
|  |  | 
|  | NestedNameSpecifier &TagType::getTrailingQualifier() const { | 
|  | assert(TagTypeBits.HasQualifier); | 
|  | return *reinterpret_cast<NestedNameSpecifier *>(llvm::alignAddr( | 
|  | getTrailingPointer(), llvm::Align::Of<NestedNameSpecifier *>())); | 
|  | } | 
|  |  | 
|  | NestedNameSpecifier TagType::getQualifier() const { | 
|  | return TagTypeBits.HasQualifier ? getTrailingQualifier() : std::nullopt; | 
|  | } | 
|  |  | 
|  | ClassTemplateDecl *TagType::getTemplateDecl() const { | 
|  | auto *Decl = dyn_cast<CXXRecordDecl>(decl); | 
|  | if (!Decl) | 
|  | return nullptr; | 
|  | if (auto *RD = dyn_cast<ClassTemplateSpecializationDecl>(Decl)) | 
|  | return RD->getSpecializedTemplate(); | 
|  | return Decl->getDescribedClassTemplate(); | 
|  | } | 
|  |  | 
|  | TemplateName TagType::getTemplateName(const ASTContext &Ctx) const { | 
|  | auto *TD = getTemplateDecl(); | 
|  | if (!TD) | 
|  | return TemplateName(); | 
|  | if (isCanonicalUnqualified()) | 
|  | return TemplateName(TD); | 
|  | return Ctx.getQualifiedTemplateName(getQualifier(), /*TemplateKeyword=*/false, | 
|  | TemplateName(TD)); | 
|  | } | 
|  |  | 
|  | ArrayRef<TemplateArgument> | 
|  | TagType::getTemplateArgs(const ASTContext &Ctx) const { | 
|  | auto *Decl = dyn_cast<CXXRecordDecl>(decl); | 
|  | if (!Decl) | 
|  | return {}; | 
|  |  | 
|  | if (auto *RD = dyn_cast<ClassTemplateSpecializationDecl>(Decl)) | 
|  | return RD->getTemplateArgs().asArray(); | 
|  | if (ClassTemplateDecl *TD = Decl->getDescribedClassTemplate()) | 
|  | return TD->getTemplateParameters()->getInjectedTemplateArgs(Ctx); | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | bool RecordType::hasConstFields() const { | 
|  | std::vector<const RecordType *> RecordTypeList; | 
|  | RecordTypeList.push_back(this); | 
|  | unsigned NextToCheckIndex = 0; | 
|  |  | 
|  | while (RecordTypeList.size() > NextToCheckIndex) { | 
|  | for (FieldDecl *FD : RecordTypeList[NextToCheckIndex] | 
|  | ->getOriginalDecl() | 
|  | ->getDefinitionOrSelf() | 
|  | ->fields()) { | 
|  | QualType FieldTy = FD->getType(); | 
|  | if (FieldTy.isConstQualified()) | 
|  | return true; | 
|  | FieldTy = FieldTy.getCanonicalType(); | 
|  | if (const auto *FieldRecTy = FieldTy->getAsCanonical<RecordType>()) { | 
|  | if (!llvm::is_contained(RecordTypeList, FieldRecTy)) | 
|  | RecordTypeList.push_back(FieldRecTy); | 
|  | } | 
|  | } | 
|  | ++NextToCheckIndex; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | InjectedClassNameType::InjectedClassNameType(ElaboratedTypeKeyword Keyword, | 
|  | NestedNameSpecifier Qualifier, | 
|  | const TagDecl *TD, bool IsInjected, | 
|  | const Type *CanonicalType) | 
|  | : TagType(TypeClass::InjectedClassName, Keyword, Qualifier, TD, | 
|  | /*OwnsTag=*/false, IsInjected, CanonicalType) {} | 
|  |  | 
|  | AttributedType::AttributedType(QualType canon, const Attr *attr, | 
|  | QualType modified, QualType equivalent) | 
|  | : AttributedType(canon, attr->getKind(), attr, modified, equivalent) {} | 
|  |  | 
|  | AttributedType::AttributedType(QualType canon, attr::Kind attrKind, | 
|  | const Attr *attr, QualType modified, | 
|  | QualType equivalent) | 
|  | : Type(Attributed, canon, equivalent->getDependence()), Attribute(attr), | 
|  | ModifiedType(modified), EquivalentType(equivalent) { | 
|  | AttributedTypeBits.AttrKind = attrKind; | 
|  | assert(!attr || attr->getKind() == attrKind); | 
|  | } | 
|  |  | 
|  | bool AttributedType::isQualifier() const { | 
|  | // FIXME: Generate this with TableGen. | 
|  | switch (getAttrKind()) { | 
|  | // These are type qualifiers in the traditional C sense: they annotate | 
|  | // something about a specific value/variable of a type.  (They aren't | 
|  | // always part of the canonical type, though.) | 
|  | case attr::ObjCGC: | 
|  | case attr::ObjCOwnership: | 
|  | case attr::ObjCInertUnsafeUnretained: | 
|  | case attr::TypeNonNull: | 
|  | case attr::TypeNullable: | 
|  | case attr::TypeNullableResult: | 
|  | case attr::TypeNullUnspecified: | 
|  | case attr::LifetimeBound: | 
|  | case attr::AddressSpace: | 
|  | return true; | 
|  |  | 
|  | // All other type attributes aren't qualifiers; they rewrite the modified | 
|  | // type to be a semantically different type. | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool AttributedType::isMSTypeSpec() const { | 
|  | // FIXME: Generate this with TableGen? | 
|  | switch (getAttrKind()) { | 
|  | default: | 
|  | return false; | 
|  | case attr::Ptr32: | 
|  | case attr::Ptr64: | 
|  | case attr::SPtr: | 
|  | case attr::UPtr: | 
|  | return true; | 
|  | } | 
|  | llvm_unreachable("invalid attr kind"); | 
|  | } | 
|  |  | 
|  | bool AttributedType::isWebAssemblyFuncrefSpec() const { | 
|  | return getAttrKind() == attr::WebAssemblyFuncref; | 
|  | } | 
|  |  | 
|  | bool AttributedType::isCallingConv() const { | 
|  | // FIXME: Generate this with TableGen. | 
|  | switch (getAttrKind()) { | 
|  | default: | 
|  | return false; | 
|  | case attr::Pcs: | 
|  | case attr::CDecl: | 
|  | case attr::FastCall: | 
|  | case attr::StdCall: | 
|  | case attr::ThisCall: | 
|  | case attr::RegCall: | 
|  | case attr::SwiftCall: | 
|  | case attr::SwiftAsyncCall: | 
|  | case attr::VectorCall: | 
|  | case attr::AArch64VectorPcs: | 
|  | case attr::AArch64SVEPcs: | 
|  | case attr::DeviceKernel: | 
|  | case attr::Pascal: | 
|  | case attr::MSABI: | 
|  | case attr::SysVABI: | 
|  | case attr::IntelOclBicc: | 
|  | case attr::PreserveMost: | 
|  | case attr::PreserveAll: | 
|  | case attr::M68kRTD: | 
|  | case attr::PreserveNone: | 
|  | case attr::RISCVVectorCC: | 
|  | case attr::RISCVVLSCC: | 
|  | return true; | 
|  | } | 
|  | llvm_unreachable("invalid attr kind"); | 
|  | } | 
|  |  | 
|  | IdentifierInfo *TemplateTypeParmType::getIdentifier() const { | 
|  | return isCanonicalUnqualified() ? nullptr : getDecl()->getIdentifier(); | 
|  | } | 
|  |  | 
|  | static const TemplateTypeParmDecl *getReplacedParameter(Decl *D, | 
|  | unsigned Index) { | 
|  | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(D)) | 
|  | return TTP; | 
|  | return cast<TemplateTypeParmDecl>( | 
|  | getReplacedTemplateParameterList(D)->getParam(Index)); | 
|  | } | 
|  |  | 
|  | SubstTemplateTypeParmType::SubstTemplateTypeParmType(QualType Replacement, | 
|  | Decl *AssociatedDecl, | 
|  | unsigned Index, | 
|  | UnsignedOrNone PackIndex, | 
|  | bool Final) | 
|  | : Type(SubstTemplateTypeParm, Replacement.getCanonicalType(), | 
|  | Replacement->getDependence()), | 
|  | AssociatedDecl(AssociatedDecl) { | 
|  | SubstTemplateTypeParmTypeBits.HasNonCanonicalUnderlyingType = | 
|  | Replacement != getCanonicalTypeInternal(); | 
|  | if (SubstTemplateTypeParmTypeBits.HasNonCanonicalUnderlyingType) | 
|  | *getTrailingObjects() = Replacement; | 
|  |  | 
|  | SubstTemplateTypeParmTypeBits.Index = Index; | 
|  | SubstTemplateTypeParmTypeBits.Final = Final; | 
|  | SubstTemplateTypeParmTypeBits.PackIndex = | 
|  | PackIndex.toInternalRepresentation(); | 
|  | assert(AssociatedDecl != nullptr); | 
|  | } | 
|  |  | 
|  | const TemplateTypeParmDecl * | 
|  | SubstTemplateTypeParmType::getReplacedParameter() const { | 
|  | return ::getReplacedParameter(getAssociatedDecl(), getIndex()); | 
|  | } | 
|  |  | 
|  | void SubstTemplateTypeParmType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | QualType Replacement, | 
|  | const Decl *AssociatedDecl, | 
|  | unsigned Index, | 
|  | UnsignedOrNone PackIndex, bool Final) { | 
|  | Replacement.Profile(ID); | 
|  | ID.AddPointer(AssociatedDecl); | 
|  | ID.AddInteger(Index); | 
|  | ID.AddInteger(PackIndex.toInternalRepresentation()); | 
|  | ID.AddBoolean(Final); | 
|  | } | 
|  |  | 
|  | SubstPackType::SubstPackType(TypeClass Derived, QualType Canon, | 
|  | const TemplateArgument &ArgPack) | 
|  | : Type(Derived, Canon, | 
|  | TypeDependence::DependentInstantiation | | 
|  | TypeDependence::UnexpandedPack), | 
|  | Arguments(ArgPack.pack_begin()) { | 
|  | assert(llvm::all_of( | 
|  | ArgPack.pack_elements(), | 
|  | [](auto &P) { return P.getKind() == TemplateArgument::Type; }) && | 
|  | "non-type argument to SubstPackType?"); | 
|  | SubstPackTypeBits.NumArgs = ArgPack.pack_size(); | 
|  | } | 
|  |  | 
|  | TemplateArgument SubstPackType::getArgumentPack() const { | 
|  | return TemplateArgument(llvm::ArrayRef(Arguments, getNumArgs())); | 
|  | } | 
|  |  | 
|  | void SubstPackType::Profile(llvm::FoldingSetNodeID &ID) { | 
|  | Profile(ID, getArgumentPack()); | 
|  | } | 
|  |  | 
|  | void SubstPackType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | const TemplateArgument &ArgPack) { | 
|  | ID.AddInteger(ArgPack.pack_size()); | 
|  | for (const auto &P : ArgPack.pack_elements()) | 
|  | ID.AddPointer(P.getAsType().getAsOpaquePtr()); | 
|  | } | 
|  |  | 
|  | SubstTemplateTypeParmPackType::SubstTemplateTypeParmPackType( | 
|  | QualType Canon, Decl *AssociatedDecl, unsigned Index, bool Final, | 
|  | const TemplateArgument &ArgPack) | 
|  | : SubstPackType(SubstTemplateTypeParmPack, Canon, ArgPack), | 
|  | AssociatedDeclAndFinal(AssociatedDecl, Final) { | 
|  | assert(AssociatedDecl != nullptr); | 
|  |  | 
|  | SubstPackTypeBits.SubstTemplTypeParmPackIndex = Index; | 
|  | assert(getNumArgs() == ArgPack.pack_size() && | 
|  | "Parent bitfields in SubstPackType were overwritten." | 
|  | "Check NumSubstPackTypeBits."); | 
|  | } | 
|  |  | 
|  | Decl *SubstTemplateTypeParmPackType::getAssociatedDecl() const { | 
|  | return AssociatedDeclAndFinal.getPointer(); | 
|  | } | 
|  |  | 
|  | bool SubstTemplateTypeParmPackType::getFinal() const { | 
|  | return AssociatedDeclAndFinal.getInt(); | 
|  | } | 
|  |  | 
|  | const TemplateTypeParmDecl * | 
|  | SubstTemplateTypeParmPackType::getReplacedParameter() const { | 
|  | return ::getReplacedParameter(getAssociatedDecl(), getIndex()); | 
|  | } | 
|  |  | 
|  | IdentifierInfo *SubstTemplateTypeParmPackType::getIdentifier() const { | 
|  | return getReplacedParameter()->getIdentifier(); | 
|  | } | 
|  |  | 
|  | void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) { | 
|  | Profile(ID, getAssociatedDecl(), getIndex(), getFinal(), getArgumentPack()); | 
|  | } | 
|  |  | 
|  | void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | const Decl *AssociatedDecl, | 
|  | unsigned Index, bool Final, | 
|  | const TemplateArgument &ArgPack) { | 
|  | ID.AddPointer(AssociatedDecl); | 
|  | ID.AddInteger(Index); | 
|  | ID.AddBoolean(Final); | 
|  | SubstPackType::Profile(ID, ArgPack); | 
|  | } | 
|  |  | 
|  | SubstBuiltinTemplatePackType::SubstBuiltinTemplatePackType( | 
|  | QualType Canon, const TemplateArgument &ArgPack) | 
|  | : SubstPackType(SubstBuiltinTemplatePack, Canon, ArgPack) {} | 
|  |  | 
|  | bool TemplateSpecializationType::anyDependentTemplateArguments( | 
|  | const TemplateArgumentListInfo &Args, | 
|  | ArrayRef<TemplateArgument> Converted) { | 
|  | return anyDependentTemplateArguments(Args.arguments(), Converted); | 
|  | } | 
|  |  | 
|  | bool TemplateSpecializationType::anyDependentTemplateArguments( | 
|  | ArrayRef<TemplateArgumentLoc> Args, ArrayRef<TemplateArgument> Converted) { | 
|  | for (const TemplateArgument &Arg : Converted) | 
|  | if (Arg.isDependent()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool TemplateSpecializationType::anyInstantiationDependentTemplateArguments( | 
|  | ArrayRef<TemplateArgumentLoc> Args) { | 
|  | for (const TemplateArgumentLoc &ArgLoc : Args) { | 
|  | if (ArgLoc.getArgument().isInstantiationDependent()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static TypeDependence | 
|  | getTemplateSpecializationTypeDependence(QualType Underlying, TemplateName T) { | 
|  | TypeDependence D = Underlying.isNull() | 
|  | ? TypeDependence::DependentInstantiation | 
|  | : toSemanticDependence(Underlying->getDependence()); | 
|  | D |= toTypeDependence(T.getDependence()) & TypeDependence::UnexpandedPack; | 
|  | if (isPackProducingBuiltinTemplateName(T)) { | 
|  | if (Underlying.isNull()) // Dependent, will produce a pack on substitution. | 
|  | D |= TypeDependence::UnexpandedPack; | 
|  | else | 
|  | D |= (Underlying->getDependence() & TypeDependence::UnexpandedPack); | 
|  | } | 
|  | return D; | 
|  | } | 
|  |  | 
|  | TemplateSpecializationType::TemplateSpecializationType( | 
|  | ElaboratedTypeKeyword Keyword, TemplateName T, bool IsAlias, | 
|  | ArrayRef<TemplateArgument> Args, QualType Underlying) | 
|  | : TypeWithKeyword(Keyword, TemplateSpecialization, | 
|  | Underlying.isNull() ? QualType(this, 0) | 
|  | : Underlying.getCanonicalType(), | 
|  | getTemplateSpecializationTypeDependence(Underlying, T)), | 
|  | Template(T) { | 
|  | TemplateSpecializationTypeBits.NumArgs = Args.size(); | 
|  | TemplateSpecializationTypeBits.TypeAlias = IsAlias; | 
|  |  | 
|  | auto *TemplateArgs = | 
|  | const_cast<TemplateArgument *>(template_arguments().data()); | 
|  | for (const TemplateArgument &Arg : Args) { | 
|  | // Update instantiation-dependent, variably-modified, and error bits. | 
|  | // If the canonical type exists and is non-dependent, the template | 
|  | // specialization type can be non-dependent even if one of the type | 
|  | // arguments is. Given: | 
|  | //   template<typename T> using U = int; | 
|  | // U<T> is always non-dependent, irrespective of the type T. | 
|  | // However, U<Ts> contains an unexpanded parameter pack, even though | 
|  | // its expansion (and thus its desugared type) doesn't. | 
|  | addDependence(toTypeDependence(Arg.getDependence()) & | 
|  | ~TypeDependence::Dependent); | 
|  | if (Arg.getKind() == TemplateArgument::Type) | 
|  | addDependence(Arg.getAsType()->getDependence() & | 
|  | TypeDependence::VariablyModified); | 
|  | new (TemplateArgs++) TemplateArgument(Arg); | 
|  | } | 
|  |  | 
|  | // Store the aliased type after the template arguments, if this is a type | 
|  | // alias template specialization. | 
|  | if (IsAlias) | 
|  | *reinterpret_cast<QualType *>(TemplateArgs) = Underlying; | 
|  | } | 
|  |  | 
|  | QualType TemplateSpecializationType::getAliasedType() const { | 
|  | assert(isTypeAlias() && "not a type alias template specialization"); | 
|  | return *reinterpret_cast<const QualType *>(template_arguments().end()); | 
|  | } | 
|  |  | 
|  | bool clang::TemplateSpecializationType::isSugared() const { | 
|  | return !isDependentType() || isCurrentInstantiation() || isTypeAlias() || | 
|  | (isPackProducingBuiltinTemplateName(Template) && | 
|  | isa<SubstBuiltinTemplatePackType>(*getCanonicalTypeInternal())); | 
|  | } | 
|  |  | 
|  | void TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | const ASTContext &Ctx) { | 
|  | Profile(ID, getKeyword(), Template, template_arguments(), | 
|  | isSugared() ? desugar() : QualType(), Ctx); | 
|  | } | 
|  |  | 
|  | void TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | ElaboratedTypeKeyword Keyword, | 
|  | TemplateName T, | 
|  | ArrayRef<TemplateArgument> Args, | 
|  | QualType Underlying, | 
|  | const ASTContext &Context) { | 
|  | ID.AddInteger(llvm::to_underlying(Keyword)); | 
|  | T.Profile(ID); | 
|  | Underlying.Profile(ID); | 
|  |  | 
|  | ID.AddInteger(Args.size()); | 
|  | for (const TemplateArgument &Arg : Args) | 
|  | Arg.Profile(ID, Context); | 
|  | } | 
|  |  | 
|  | QualType QualifierCollector::apply(const ASTContext &Context, | 
|  | QualType QT) const { | 
|  | if (!hasNonFastQualifiers()) | 
|  | return QT.withFastQualifiers(getFastQualifiers()); | 
|  |  | 
|  | return Context.getQualifiedType(QT, *this); | 
|  | } | 
|  |  | 
|  | QualType QualifierCollector::apply(const ASTContext &Context, | 
|  | const Type *T) const { | 
|  | if (!hasNonFastQualifiers()) | 
|  | return QualType(T, getFastQualifiers()); | 
|  |  | 
|  | return Context.getQualifiedType(T, *this); | 
|  | } | 
|  |  | 
|  | void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID, QualType BaseType, | 
|  | ArrayRef<QualType> typeArgs, | 
|  | ArrayRef<ObjCProtocolDecl *> protocols, | 
|  | bool isKindOf) { | 
|  | ID.AddPointer(BaseType.getAsOpaquePtr()); | 
|  | ID.AddInteger(typeArgs.size()); | 
|  | for (auto typeArg : typeArgs) | 
|  | ID.AddPointer(typeArg.getAsOpaquePtr()); | 
|  | ID.AddInteger(protocols.size()); | 
|  | for (auto *proto : protocols) | 
|  | ID.AddPointer(proto); | 
|  | ID.AddBoolean(isKindOf); | 
|  | } | 
|  |  | 
|  | void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) { | 
|  | Profile(ID, getBaseType(), getTypeArgsAsWritten(), | 
|  | llvm::ArrayRef(qual_begin(), getNumProtocols()), | 
|  | isKindOfTypeAsWritten()); | 
|  | } | 
|  |  | 
|  | void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID, | 
|  | const ObjCTypeParamDecl *OTPDecl, | 
|  | QualType CanonicalType, | 
|  | ArrayRef<ObjCProtocolDecl *> protocols) { | 
|  | ID.AddPointer(OTPDecl); | 
|  | ID.AddPointer(CanonicalType.getAsOpaquePtr()); | 
|  | ID.AddInteger(protocols.size()); | 
|  | for (auto *proto : protocols) | 
|  | ID.AddPointer(proto); | 
|  | } | 
|  |  | 
|  | void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID) { | 
|  | Profile(ID, getDecl(), getCanonicalTypeInternal(), | 
|  | llvm::ArrayRef(qual_begin(), getNumProtocols())); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// The cached properties of a type. | 
|  | class CachedProperties { | 
|  | Linkage L; | 
|  | bool local; | 
|  |  | 
|  | public: | 
|  | CachedProperties(Linkage L, bool local) : L(L), local(local) {} | 
|  |  | 
|  | Linkage getLinkage() const { return L; } | 
|  | bool hasLocalOrUnnamedType() const { return local; } | 
|  |  | 
|  | friend CachedProperties merge(CachedProperties L, CachedProperties R) { | 
|  | Linkage MergedLinkage = minLinkage(L.L, R.L); | 
|  | return CachedProperties(MergedLinkage, L.hasLocalOrUnnamedType() || | 
|  | R.hasLocalOrUnnamedType()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | static CachedProperties computeCachedProperties(const Type *T); | 
|  |  | 
|  | namespace clang { | 
|  |  | 
|  | /// The type-property cache.  This is templated so as to be | 
|  | /// instantiated at an internal type to prevent unnecessary symbol | 
|  | /// leakage. | 
|  | template <class Private> class TypePropertyCache { | 
|  | public: | 
|  | static CachedProperties get(QualType T) { return get(T.getTypePtr()); } | 
|  |  | 
|  | static CachedProperties get(const Type *T) { | 
|  | ensure(T); | 
|  | return CachedProperties(T->TypeBits.getLinkage(), | 
|  | T->TypeBits.hasLocalOrUnnamedType()); | 
|  | } | 
|  |  | 
|  | static void ensure(const Type *T) { | 
|  | // If the cache is valid, we're okay. | 
|  | if (T->TypeBits.isCacheValid()) | 
|  | return; | 
|  |  | 
|  | // If this type is non-canonical, ask its canonical type for the | 
|  | // relevant information. | 
|  | if (!T->isCanonicalUnqualified()) { | 
|  | const Type *CT = T->getCanonicalTypeInternal().getTypePtr(); | 
|  | ensure(CT); | 
|  | T->TypeBits.CacheValid = true; | 
|  | T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage; | 
|  | T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Compute the cached properties and then set the cache. | 
|  | CachedProperties Result = computeCachedProperties(T); | 
|  | T->TypeBits.CacheValid = true; | 
|  | T->TypeBits.CachedLinkage = llvm::to_underlying(Result.getLinkage()); | 
|  | T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // namespace clang | 
|  |  | 
|  | // Instantiate the friend template at a private class.  In a | 
|  | // reasonable implementation, these symbols will be internal. | 
|  | // It is terrible that this is the best way to accomplish this. | 
|  | namespace { | 
|  |  | 
|  | class Private {}; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | using Cache = TypePropertyCache<Private>; | 
|  |  | 
|  | static CachedProperties computeCachedProperties(const Type *T) { | 
|  | switch (T->getTypeClass()) { | 
|  | #define TYPE(Class, Base) | 
|  | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  | llvm_unreachable("didn't expect a non-canonical type here"); | 
|  |  | 
|  | #define TYPE(Class, Base) | 
|  | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  | // Treat instantiation-dependent types as external. | 
|  | assert(T->isInstantiationDependentType()); | 
|  | return CachedProperties(Linkage::External, false); | 
|  |  | 
|  | case Type::Auto: | 
|  | case Type::DeducedTemplateSpecialization: | 
|  | // Give non-deduced 'auto' types external linkage. We should only see them | 
|  | // here in error recovery. | 
|  | return CachedProperties(Linkage::External, false); | 
|  |  | 
|  | case Type::BitInt: | 
|  | case Type::Builtin: | 
|  | // C++ [basic.link]p8: | 
|  | //   A type is said to have linkage if and only if: | 
|  | //     - it is a fundamental type (3.9.1); or | 
|  | return CachedProperties(Linkage::External, false); | 
|  |  | 
|  | case Type::Record: | 
|  | case Type::Enum: { | 
|  | const TagDecl *Tag = | 
|  | cast<TagType>(T)->getOriginalDecl()->getDefinitionOrSelf(); | 
|  |  | 
|  | // C++ [basic.link]p8: | 
|  | //     - it is a class or enumeration type that is named (or has a name | 
|  | //       for linkage purposes (7.1.3)) and the name has linkage; or | 
|  | //     -  it is a specialization of a class template (14); or | 
|  | Linkage L = Tag->getLinkageInternal(); | 
|  | bool IsLocalOrUnnamed = Tag->getDeclContext()->isFunctionOrMethod() || | 
|  | !Tag->hasNameForLinkage(); | 
|  | return CachedProperties(L, IsLocalOrUnnamed); | 
|  | } | 
|  |  | 
|  | // C++ [basic.link]p8: | 
|  | //   - it is a compound type (3.9.2) other than a class or enumeration, | 
|  | //     compounded exclusively from types that have linkage; or | 
|  | case Type::Complex: | 
|  | return Cache::get(cast<ComplexType>(T)->getElementType()); | 
|  | case Type::Pointer: | 
|  | return Cache::get(cast<PointerType>(T)->getPointeeType()); | 
|  | case Type::BlockPointer: | 
|  | return Cache::get(cast<BlockPointerType>(T)->getPointeeType()); | 
|  | case Type::LValueReference: | 
|  | case Type::RValueReference: | 
|  | return Cache::get(cast<ReferenceType>(T)->getPointeeType()); | 
|  | case Type::MemberPointer: { | 
|  | const auto *MPT = cast<MemberPointerType>(T); | 
|  | CachedProperties Cls = [&] { | 
|  | if (MPT->isSugared()) | 
|  | MPT = cast<MemberPointerType>(MPT->getCanonicalTypeInternal()); | 
|  | return Cache::get(MPT->getQualifier().getAsType()); | 
|  | }(); | 
|  | return merge(Cls, Cache::get(MPT->getPointeeType())); | 
|  | } | 
|  | case Type::ConstantArray: | 
|  | case Type::IncompleteArray: | 
|  | case Type::VariableArray: | 
|  | case Type::ArrayParameter: | 
|  | return Cache::get(cast<ArrayType>(T)->getElementType()); | 
|  | case Type::Vector: | 
|  | case Type::ExtVector: | 
|  | return Cache::get(cast<VectorType>(T)->getElementType()); | 
|  | case Type::ConstantMatrix: | 
|  | return Cache::get(cast<ConstantMatrixType>(T)->getElementType()); | 
|  | case Type::FunctionNoProto: | 
|  | return Cache::get(cast<FunctionType>(T)->getReturnType()); | 
|  | case Type::FunctionProto: { | 
|  | const auto *FPT = cast<FunctionProtoType>(T); | 
|  | CachedProperties result = Cache::get(FPT->getReturnType()); | 
|  | for (const auto &ai : FPT->param_types()) | 
|  | result = merge(result, Cache::get(ai)); | 
|  | return result; | 
|  | } | 
|  | case Type::ObjCInterface: { | 
|  | Linkage L = cast<ObjCInterfaceType>(T)->getDecl()->getLinkageInternal(); | 
|  | return CachedProperties(L, false); | 
|  | } | 
|  | case Type::ObjCObject: | 
|  | return Cache::get(cast<ObjCObjectType>(T)->getBaseType()); | 
|  | case Type::ObjCObjectPointer: | 
|  | return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType()); | 
|  | case Type::Atomic: | 
|  | return Cache::get(cast<AtomicType>(T)->getValueType()); | 
|  | case Type::Pipe: | 
|  | return Cache::get(cast<PipeType>(T)->getElementType()); | 
|  | case Type::HLSLAttributedResource: | 
|  | return Cache::get(cast<HLSLAttributedResourceType>(T)->getWrappedType()); | 
|  | case Type::HLSLInlineSpirv: | 
|  | return CachedProperties(Linkage::External, false); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unhandled type class"); | 
|  | } | 
|  |  | 
|  | /// Determine the linkage of this type. | 
|  | Linkage Type::getLinkage() const { | 
|  | Cache::ensure(this); | 
|  | return TypeBits.getLinkage(); | 
|  | } | 
|  |  | 
|  | bool Type::hasUnnamedOrLocalType() const { | 
|  | Cache::ensure(this); | 
|  | return TypeBits.hasLocalOrUnnamedType(); | 
|  | } | 
|  |  | 
|  | LinkageInfo LinkageComputer::computeTypeLinkageInfo(const Type *T) { | 
|  | switch (T->getTypeClass()) { | 
|  | #define TYPE(Class, Base) | 
|  | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  | llvm_unreachable("didn't expect a non-canonical type here"); | 
|  |  | 
|  | #define TYPE(Class, Base) | 
|  | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  | // Treat instantiation-dependent types as external. | 
|  | assert(T->isInstantiationDependentType()); | 
|  | return LinkageInfo::external(); | 
|  |  | 
|  | case Type::BitInt: | 
|  | case Type::Builtin: | 
|  | return LinkageInfo::external(); | 
|  |  | 
|  | case Type::Auto: | 
|  | case Type::DeducedTemplateSpecialization: | 
|  | return LinkageInfo::external(); | 
|  |  | 
|  | case Type::Record: | 
|  | case Type::Enum: | 
|  | return getDeclLinkageAndVisibility( | 
|  | cast<TagType>(T)->getOriginalDecl()->getDefinitionOrSelf()); | 
|  |  | 
|  | case Type::Complex: | 
|  | return computeTypeLinkageInfo(cast<ComplexType>(T)->getElementType()); | 
|  | case Type::Pointer: | 
|  | return computeTypeLinkageInfo(cast<PointerType>(T)->getPointeeType()); | 
|  | case Type::BlockPointer: | 
|  | return computeTypeLinkageInfo(cast<BlockPointerType>(T)->getPointeeType()); | 
|  | case Type::LValueReference: | 
|  | case Type::RValueReference: | 
|  | return computeTypeLinkageInfo(cast<ReferenceType>(T)->getPointeeType()); | 
|  | case Type::MemberPointer: { | 
|  | const auto *MPT = cast<MemberPointerType>(T); | 
|  | LinkageInfo LV; | 
|  | if (auto *D = MPT->getMostRecentCXXRecordDecl()) { | 
|  | LV.merge(getDeclLinkageAndVisibility(D)); | 
|  | } else { | 
|  | LV.merge(computeTypeLinkageInfo(MPT->getQualifier().getAsType())); | 
|  | } | 
|  | LV.merge(computeTypeLinkageInfo(MPT->getPointeeType())); | 
|  | return LV; | 
|  | } | 
|  | case Type::ConstantArray: | 
|  | case Type::IncompleteArray: | 
|  | case Type::VariableArray: | 
|  | case Type::ArrayParameter: | 
|  | return computeTypeLinkageInfo(cast<ArrayType>(T)->getElementType()); | 
|  | case Type::Vector: | 
|  | case Type::ExtVector: | 
|  | return computeTypeLinkageInfo(cast<VectorType>(T)->getElementType()); | 
|  | case Type::ConstantMatrix: | 
|  | return computeTypeLinkageInfo( | 
|  | cast<ConstantMatrixType>(T)->getElementType()); | 
|  | case Type::FunctionNoProto: | 
|  | return computeTypeLinkageInfo(cast<FunctionType>(T)->getReturnType()); | 
|  | case Type::FunctionProto: { | 
|  | const auto *FPT = cast<FunctionProtoType>(T); | 
|  | LinkageInfo LV = computeTypeLinkageInfo(FPT->getReturnType()); | 
|  | for (const auto &ai : FPT->param_types()) | 
|  | LV.merge(computeTypeLinkageInfo(ai)); | 
|  | return LV; | 
|  | } | 
|  | case Type::ObjCInterface: | 
|  | return getDeclLinkageAndVisibility(cast<ObjCInterfaceType>(T)->getDecl()); | 
|  | case Type::ObjCObject: | 
|  | return computeTypeLinkageInfo(cast<ObjCObjectType>(T)->getBaseType()); | 
|  | case Type::ObjCObjectPointer: | 
|  | return computeTypeLinkageInfo( | 
|  | cast<ObjCObjectPointerType>(T)->getPointeeType()); | 
|  | case Type::Atomic: | 
|  | return computeTypeLinkageInfo(cast<AtomicType>(T)->getValueType()); | 
|  | case Type::Pipe: | 
|  | return computeTypeLinkageInfo(cast<PipeType>(T)->getElementType()); | 
|  | case Type::HLSLAttributedResource: | 
|  | return computeTypeLinkageInfo(cast<HLSLAttributedResourceType>(T) | 
|  | ->getContainedType() | 
|  | ->getCanonicalTypeInternal()); | 
|  | case Type::HLSLInlineSpirv: | 
|  | return LinkageInfo::external(); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("unhandled type class"); | 
|  | } | 
|  |  | 
|  | bool Type::isLinkageValid() const { | 
|  | if (!TypeBits.isCacheValid()) | 
|  | return true; | 
|  |  | 
|  | Linkage L = LinkageComputer{} | 
|  | .computeTypeLinkageInfo(getCanonicalTypeInternal()) | 
|  | .getLinkage(); | 
|  | return L == TypeBits.getLinkage(); | 
|  | } | 
|  |  | 
|  | LinkageInfo LinkageComputer::getTypeLinkageAndVisibility(const Type *T) { | 
|  | if (!T->isCanonicalUnqualified()) | 
|  | return computeTypeLinkageInfo(T->getCanonicalTypeInternal()); | 
|  |  | 
|  | LinkageInfo LV = computeTypeLinkageInfo(T); | 
|  | assert(LV.getLinkage() == T->getLinkage()); | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | LinkageInfo Type::getLinkageAndVisibility() const { | 
|  | return LinkageComputer{}.getTypeLinkageAndVisibility(this); | 
|  | } | 
|  |  | 
|  | std::optional<NullabilityKind> Type::getNullability() const { | 
|  | QualType Type(this, 0); | 
|  | while (const auto *AT = Type->getAs<AttributedType>()) { | 
|  | // Check whether this is an attributed type with nullability | 
|  | // information. | 
|  | if (auto Nullability = AT->getImmediateNullability()) | 
|  | return Nullability; | 
|  |  | 
|  | Type = AT->getEquivalentType(); | 
|  | } | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | bool Type::canHaveNullability(bool ResultIfUnknown) const { | 
|  | QualType type = getCanonicalTypeInternal(); | 
|  |  | 
|  | switch (type->getTypeClass()) { | 
|  | #define NON_CANONICAL_TYPE(Class, Parent)                                      \ | 
|  | /* We'll only see canonical types here. */                                   \ | 
|  | case Type::Class:                                                            \ | 
|  | llvm_unreachable("non-canonical type"); | 
|  | #define TYPE(Class, Parent) | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  |  | 
|  | // Pointer types. | 
|  | case Type::Pointer: | 
|  | case Type::BlockPointer: | 
|  | case Type::MemberPointer: | 
|  | case Type::ObjCObjectPointer: | 
|  | return true; | 
|  |  | 
|  | // Dependent types that could instantiate to pointer types. | 
|  | case Type::UnresolvedUsing: | 
|  | case Type::TypeOfExpr: | 
|  | case Type::TypeOf: | 
|  | case Type::Decltype: | 
|  | case Type::PackIndexing: | 
|  | case Type::UnaryTransform: | 
|  | case Type::TemplateTypeParm: | 
|  | case Type::SubstTemplateTypeParmPack: | 
|  | case Type::SubstBuiltinTemplatePack: | 
|  | case Type::DependentName: | 
|  | case Type::Auto: | 
|  | return ResultIfUnknown; | 
|  |  | 
|  | // Dependent template specializations could instantiate to pointer types. | 
|  | case Type::TemplateSpecialization: | 
|  | // If it's a known class template, we can already check if it's nullable. | 
|  | if (TemplateDecl *templateDecl = | 
|  | cast<TemplateSpecializationType>(type.getTypePtr()) | 
|  | ->getTemplateName() | 
|  | .getAsTemplateDecl()) | 
|  | if (auto *CTD = dyn_cast<ClassTemplateDecl>(templateDecl)) | 
|  | return llvm::any_of( | 
|  | CTD->redecls(), [](const RedeclarableTemplateDecl *RTD) { | 
|  | return RTD->getTemplatedDecl()->hasAttr<TypeNullableAttr>(); | 
|  | }); | 
|  | return ResultIfUnknown; | 
|  |  | 
|  | case Type::Builtin: | 
|  | switch (cast<BuiltinType>(type.getTypePtr())->getKind()) { | 
|  | // Signed, unsigned, and floating-point types cannot have nullability. | 
|  | #define SIGNED_TYPE(Id, SingletonId) case BuiltinType::Id: | 
|  | #define UNSIGNED_TYPE(Id, SingletonId) case BuiltinType::Id: | 
|  | #define FLOATING_TYPE(Id, SingletonId) case BuiltinType::Id: | 
|  | #define BUILTIN_TYPE(Id, SingletonId) | 
|  | #include "clang/AST/BuiltinTypes.def" | 
|  | return false; | 
|  |  | 
|  | case BuiltinType::UnresolvedTemplate: | 
|  | // Dependent types that could instantiate to a pointer type. | 
|  | case BuiltinType::Dependent: | 
|  | case BuiltinType::Overload: | 
|  | case BuiltinType::BoundMember: | 
|  | case BuiltinType::PseudoObject: | 
|  | case BuiltinType::UnknownAny: | 
|  | case BuiltinType::ARCUnbridgedCast: | 
|  | return ResultIfUnknown; | 
|  |  | 
|  | case BuiltinType::Void: | 
|  | case BuiltinType::ObjCId: | 
|  | case BuiltinType::ObjCClass: | 
|  | case BuiltinType::ObjCSel: | 
|  | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \ | 
|  | case BuiltinType::Id: | 
|  | #include "clang/Basic/OpenCLImageTypes.def" | 
|  | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) case BuiltinType::Id: | 
|  | #include "clang/Basic/OpenCLExtensionTypes.def" | 
|  | case BuiltinType::OCLSampler: | 
|  | case BuiltinType::OCLEvent: | 
|  | case BuiltinType::OCLClkEvent: | 
|  | case BuiltinType::OCLQueue: | 
|  | case BuiltinType::OCLReserveID: | 
|  | #define SVE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | 
|  | #include "clang/Basic/AArch64ACLETypes.def" | 
|  | #define PPC_VECTOR_TYPE(Name, Id, Size) case BuiltinType::Id: | 
|  | #include "clang/Basic/PPCTypes.def" | 
|  | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | 
|  | #include "clang/Basic/RISCVVTypes.def" | 
|  | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | 
|  | #include "clang/Basic/WebAssemblyReferenceTypes.def" | 
|  | #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id: | 
|  | #include "clang/Basic/AMDGPUTypes.def" | 
|  | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | 
|  | #include "clang/Basic/HLSLIntangibleTypes.def" | 
|  | case BuiltinType::BuiltinFn: | 
|  | case BuiltinType::NullPtr: | 
|  | case BuiltinType::IncompleteMatrixIdx: | 
|  | case BuiltinType::ArraySection: | 
|  | case BuiltinType::OMPArrayShaping: | 
|  | case BuiltinType::OMPIterator: | 
|  | return false; | 
|  | } | 
|  | llvm_unreachable("unknown builtin type"); | 
|  |  | 
|  | case Type::Record: { | 
|  | const RecordDecl *RD = cast<RecordType>(type)->getOriginalDecl(); | 
|  | // For template specializations, look only at primary template attributes. | 
|  | // This is a consistent regardless of whether the instantiation is known. | 
|  | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(RD)) | 
|  | return llvm::any_of( | 
|  | CTSD->getSpecializedTemplate()->redecls(), | 
|  | [](const RedeclarableTemplateDecl *RTD) { | 
|  | return RTD->getTemplatedDecl()->hasAttr<TypeNullableAttr>(); | 
|  | }); | 
|  | return llvm::any_of(RD->redecls(), [](const TagDecl *RD) { | 
|  | return RD->hasAttr<TypeNullableAttr>(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Non-pointer types. | 
|  | case Type::Complex: | 
|  | case Type::LValueReference: | 
|  | case Type::RValueReference: | 
|  | case Type::ConstantArray: | 
|  | case Type::IncompleteArray: | 
|  | case Type::VariableArray: | 
|  | case Type::DependentSizedArray: | 
|  | case Type::DependentVector: | 
|  | case Type::DependentSizedExtVector: | 
|  | case Type::Vector: | 
|  | case Type::ExtVector: | 
|  | case Type::ConstantMatrix: | 
|  | case Type::DependentSizedMatrix: | 
|  | case Type::DependentAddressSpace: | 
|  | case Type::FunctionProto: | 
|  | case Type::FunctionNoProto: | 
|  | case Type::DeducedTemplateSpecialization: | 
|  | case Type::Enum: | 
|  | case Type::InjectedClassName: | 
|  | case Type::PackExpansion: | 
|  | case Type::ObjCObject: | 
|  | case Type::ObjCInterface: | 
|  | case Type::Atomic: | 
|  | case Type::Pipe: | 
|  | case Type::BitInt: | 
|  | case Type::DependentBitInt: | 
|  | case Type::ArrayParameter: | 
|  | case Type::HLSLAttributedResource: | 
|  | case Type::HLSLInlineSpirv: | 
|  | return false; | 
|  | } | 
|  | llvm_unreachable("bad type kind!"); | 
|  | } | 
|  |  | 
|  | std::optional<NullabilityKind> AttributedType::getImmediateNullability() const { | 
|  | if (getAttrKind() == attr::TypeNonNull) | 
|  | return NullabilityKind::NonNull; | 
|  | if (getAttrKind() == attr::TypeNullable) | 
|  | return NullabilityKind::Nullable; | 
|  | if (getAttrKind() == attr::TypeNullUnspecified) | 
|  | return NullabilityKind::Unspecified; | 
|  | if (getAttrKind() == attr::TypeNullableResult) | 
|  | return NullabilityKind::NullableResult; | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | std::optional<NullabilityKind> | 
|  | AttributedType::stripOuterNullability(QualType &T) { | 
|  | QualType AttrTy = T; | 
|  | if (auto MacroTy = dyn_cast<MacroQualifiedType>(T)) | 
|  | AttrTy = MacroTy->getUnderlyingType(); | 
|  |  | 
|  | if (auto attributed = dyn_cast<AttributedType>(AttrTy)) { | 
|  | if (auto nullability = attributed->getImmediateNullability()) { | 
|  | T = attributed->getModifiedType(); | 
|  | return nullability; | 
|  | } | 
|  | } | 
|  |  | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | bool Type::isSignableIntegerType(const ASTContext &Ctx) const { | 
|  | if (!isIntegralType(Ctx) || isEnumeralType()) | 
|  | return false; | 
|  | return Ctx.getTypeSize(this) == Ctx.getTypeSize(Ctx.VoidPtrTy); | 
|  | } | 
|  |  | 
|  | bool Type::isBlockCompatibleObjCPointerType(ASTContext &ctx) const { | 
|  | const auto *objcPtr = getAs<ObjCObjectPointerType>(); | 
|  | if (!objcPtr) | 
|  | return false; | 
|  |  | 
|  | if (objcPtr->isObjCIdType()) { | 
|  | // id is always okay. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Blocks are NSObjects. | 
|  | if (ObjCInterfaceDecl *iface = objcPtr->getInterfaceDecl()) { | 
|  | if (iface->getIdentifier() != ctx.getNSObjectName()) | 
|  | return false; | 
|  |  | 
|  | // Continue to check qualifiers, below. | 
|  | } else if (objcPtr->isObjCQualifiedIdType()) { | 
|  | // Continue to check qualifiers, below. | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check protocol qualifiers. | 
|  | for (ObjCProtocolDecl *proto : objcPtr->quals()) { | 
|  | // Blocks conform to NSObject and NSCopying. | 
|  | if (proto->getIdentifier() != ctx.getNSObjectName() && | 
|  | proto->getIdentifier() != ctx.getNSCopyingName()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const { | 
|  | if (isObjCARCImplicitlyUnretainedType()) | 
|  | return Qualifiers::OCL_ExplicitNone; | 
|  | return Qualifiers::OCL_Strong; | 
|  | } | 
|  |  | 
|  | bool Type::isObjCARCImplicitlyUnretainedType() const { | 
|  | assert(isObjCLifetimeType() && | 
|  | "cannot query implicit lifetime for non-inferrable type"); | 
|  |  | 
|  | const Type *canon = getCanonicalTypeInternal().getTypePtr(); | 
|  |  | 
|  | // Walk down to the base type.  We don't care about qualifiers for this. | 
|  | while (const auto *array = dyn_cast<ArrayType>(canon)) | 
|  | canon = array->getElementType().getTypePtr(); | 
|  |  | 
|  | if (const auto *opt = dyn_cast<ObjCObjectPointerType>(canon)) { | 
|  | // Class and Class<Protocol> don't require retention. | 
|  | if (opt->getObjectType()->isObjCClass()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isObjCNSObjectType() const { | 
|  | if (const auto *typedefType = getAs<TypedefType>()) | 
|  | return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isObjCIndependentClassType() const { | 
|  | if (const auto *typedefType = getAs<TypedefType>()) | 
|  | return typedefType->getDecl()->hasAttr<ObjCIndependentClassAttr>(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isObjCRetainableType() const { | 
|  | return isObjCObjectPointerType() || isBlockPointerType() || | 
|  | isObjCNSObjectType(); | 
|  | } | 
|  |  | 
|  | bool Type::isObjCIndirectLifetimeType() const { | 
|  | if (isObjCLifetimeType()) | 
|  | return true; | 
|  | if (const auto *OPT = getAs<PointerType>()) | 
|  | return OPT->getPointeeType()->isObjCIndirectLifetimeType(); | 
|  | if (const auto *Ref = getAs<ReferenceType>()) | 
|  | return Ref->getPointeeType()->isObjCIndirectLifetimeType(); | 
|  | if (const auto *MemPtr = getAs<MemberPointerType>()) | 
|  | return MemPtr->getPointeeType()->isObjCIndirectLifetimeType(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Returns true if objects of this type have lifetime semantics under | 
|  | /// ARC. | 
|  | bool Type::isObjCLifetimeType() const { | 
|  | const Type *type = this; | 
|  | while (const ArrayType *array = type->getAsArrayTypeUnsafe()) | 
|  | type = array->getElementType().getTypePtr(); | 
|  | return type->isObjCRetainableType(); | 
|  | } | 
|  |  | 
|  | /// Determine whether the given type T is a "bridgable" Objective-C type, | 
|  | /// which is either an Objective-C object pointer type or an | 
|  | bool Type::isObjCARCBridgableType() const { | 
|  | return isObjCObjectPointerType() || isBlockPointerType(); | 
|  | } | 
|  |  | 
|  | /// Determine whether the given type T is a "bridgeable" C type. | 
|  | bool Type::isCARCBridgableType() const { | 
|  | const auto *Pointer = getAsCanonical<PointerType>(); | 
|  | if (!Pointer) | 
|  | return false; | 
|  |  | 
|  | QualType Pointee = Pointer->getPointeeType(); | 
|  | return Pointee->isVoidType() || Pointee->isRecordType(); | 
|  | } | 
|  |  | 
|  | /// Check if the specified type is the CUDA device builtin surface type. | 
|  | bool Type::isCUDADeviceBuiltinSurfaceType() const { | 
|  | if (const auto *RT = getAsCanonical<RecordType>()) | 
|  | return RT->getOriginalDecl() | 
|  | ->getMostRecentDecl() | 
|  | ->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Check if the specified type is the CUDA device builtin texture type. | 
|  | bool Type::isCUDADeviceBuiltinTextureType() const { | 
|  | if (const auto *RT = getAsCanonical<RecordType>()) | 
|  | return RT->getOriginalDecl() | 
|  | ->getMostRecentDecl() | 
|  | ->hasAttr<CUDADeviceBuiltinTextureTypeAttr>(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::hasSizedVLAType() const { | 
|  | if (!isVariablyModifiedType()) | 
|  | return false; | 
|  |  | 
|  | if (const auto *ptr = getAs<PointerType>()) | 
|  | return ptr->getPointeeType()->hasSizedVLAType(); | 
|  | if (const auto *ref = getAs<ReferenceType>()) | 
|  | return ref->getPointeeType()->hasSizedVLAType(); | 
|  | if (const ArrayType *arr = getAsArrayTypeUnsafe()) { | 
|  | if (isa<VariableArrayType>(arr) && | 
|  | cast<VariableArrayType>(arr)->getSizeExpr()) | 
|  | return true; | 
|  |  | 
|  | return arr->getElementType()->hasSizedVLAType(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Type::isHLSLResourceRecord() const { | 
|  | return HLSLAttributedResourceType::findHandleTypeOnResource(this) != nullptr; | 
|  | } | 
|  |  | 
|  | bool Type::isHLSLResourceRecordArray() const { | 
|  | const Type *Ty = getUnqualifiedDesugaredType(); | 
|  | if (!Ty->isArrayType()) | 
|  | return false; | 
|  | while (isa<ArrayType>(Ty)) | 
|  | Ty = Ty->getArrayElementTypeNoTypeQual(); | 
|  | return Ty->isHLSLResourceRecord(); | 
|  | } | 
|  |  | 
|  | bool Type::isHLSLIntangibleType() const { | 
|  | const Type *Ty = getUnqualifiedDesugaredType(); | 
|  |  | 
|  | // check if it's a builtin type first | 
|  | if (Ty->isBuiltinType()) | 
|  | return Ty->isHLSLBuiltinIntangibleType(); | 
|  |  | 
|  | // unwrap arrays | 
|  | while (isa<ArrayType>(Ty)) | 
|  | Ty = Ty->getArrayElementTypeNoTypeQual(); | 
|  |  | 
|  | const RecordType *RT = | 
|  | dyn_cast<RecordType>(Ty->getUnqualifiedDesugaredType()); | 
|  | if (!RT) | 
|  | return false; | 
|  |  | 
|  | CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); | 
|  | assert(RD != nullptr && | 
|  | "all HLSL structs and classes should be CXXRecordDecl"); | 
|  | assert(RD->isCompleteDefinition() && "expecting complete type"); | 
|  | return RD->isHLSLIntangible(); | 
|  | } | 
|  |  | 
|  | QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) { | 
|  | switch (type.getObjCLifetime()) { | 
|  | case Qualifiers::OCL_None: | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | break; | 
|  |  | 
|  | case Qualifiers::OCL_Strong: | 
|  | return DK_objc_strong_lifetime; | 
|  | case Qualifiers::OCL_Weak: | 
|  | return DK_objc_weak_lifetime; | 
|  | } | 
|  |  | 
|  | if (const auto *RD = type->getBaseElementTypeUnsafe()->getAsRecordDecl()) { | 
|  | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { | 
|  | /// Check if this is a C++ object with a non-trivial destructor. | 
|  | if (CXXRD->hasDefinition() && !CXXRD->hasTrivialDestructor()) | 
|  | return DK_cxx_destructor; | 
|  | } else { | 
|  | /// Check if this is a C struct that is non-trivial to destroy or an array | 
|  | /// that contains such a struct. | 
|  | if (RD->isNonTrivialToPrimitiveDestroy()) | 
|  | return DK_nontrivial_c_struct; | 
|  | } | 
|  | } | 
|  |  | 
|  | return DK_none; | 
|  | } | 
|  |  | 
|  | bool MemberPointerType::isSugared() const { | 
|  | CXXRecordDecl *D1 = getMostRecentCXXRecordDecl(), | 
|  | *D2 = getQualifier().getAsRecordDecl(); | 
|  | assert(!D1 == !D2); | 
|  | return D1 != D2 && D1->getCanonicalDecl() != D2->getCanonicalDecl(); | 
|  | } | 
|  |  | 
|  | void MemberPointerType::Profile(llvm::FoldingSetNodeID &ID, QualType Pointee, | 
|  | const NestedNameSpecifier Qualifier, | 
|  | const CXXRecordDecl *Cls) { | 
|  | ID.AddPointer(Pointee.getAsOpaquePtr()); | 
|  | Qualifier.Profile(ID); | 
|  | if (Cls) | 
|  | ID.AddPointer(Cls->getCanonicalDecl()); | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *MemberPointerType::getCXXRecordDecl() const { | 
|  | return dyn_cast<MemberPointerType>(getCanonicalTypeInternal()) | 
|  | ->getQualifier() | 
|  | .getAsRecordDecl(); | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *MemberPointerType::getMostRecentCXXRecordDecl() const { | 
|  | auto *RD = getCXXRecordDecl(); | 
|  | if (!RD) | 
|  | return nullptr; | 
|  | return RD->getMostRecentDecl(); | 
|  | } | 
|  |  | 
|  | void clang::FixedPointValueToString(SmallVectorImpl<char> &Str, | 
|  | llvm::APSInt Val, unsigned Scale) { | 
|  | llvm::FixedPointSemantics FXSema(Val.getBitWidth(), Scale, Val.isSigned(), | 
|  | /*IsSaturated=*/false, | 
|  | /*HasUnsignedPadding=*/false); | 
|  | llvm::APFixedPoint(Val, FXSema).toString(Str); | 
|  | } | 
|  |  | 
|  | AutoType::AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword, | 
|  | TypeDependence ExtraDependence, QualType Canon, | 
|  | TemplateDecl *TypeConstraintConcept, | 
|  | ArrayRef<TemplateArgument> TypeConstraintArgs) | 
|  | : DeducedType(Auto, DeducedAsType, ExtraDependence, Canon) { | 
|  | AutoTypeBits.Keyword = llvm::to_underlying(Keyword); | 
|  | AutoTypeBits.NumArgs = TypeConstraintArgs.size(); | 
|  | this->TypeConstraintConcept = TypeConstraintConcept; | 
|  | assert(TypeConstraintConcept || AutoTypeBits.NumArgs == 0); | 
|  | if (TypeConstraintConcept) { | 
|  | if (isa<TemplateTemplateParmDecl>(TypeConstraintConcept)) | 
|  | addDependence(TypeDependence::DependentInstantiation); | 
|  |  | 
|  | auto *ArgBuffer = | 
|  | const_cast<TemplateArgument *>(getTypeConstraintArguments().data()); | 
|  | for (const TemplateArgument &Arg : TypeConstraintArgs) { | 
|  | // We only syntactically depend on the constraint arguments. They don't | 
|  | // affect the deduced type, only its validity. | 
|  | addDependence( | 
|  | toSyntacticDependence(toTypeDependence(Arg.getDependence()))); | 
|  |  | 
|  | new (ArgBuffer++) TemplateArgument(Arg); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void AutoType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context, | 
|  | QualType Deduced, AutoTypeKeyword Keyword, | 
|  | bool IsDependent, TemplateDecl *CD, | 
|  | ArrayRef<TemplateArgument> Arguments) { | 
|  | ID.AddPointer(Deduced.getAsOpaquePtr()); | 
|  | ID.AddInteger((unsigned)Keyword); | 
|  | ID.AddBoolean(IsDependent); | 
|  | ID.AddPointer(CD); | 
|  | for (const TemplateArgument &Arg : Arguments) | 
|  | Arg.Profile(ID, Context); | 
|  | } | 
|  |  | 
|  | void AutoType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) { | 
|  | Profile(ID, Context, getDeducedType(), getKeyword(), isDependentType(), | 
|  | getTypeConstraintConcept(), getTypeConstraintArguments()); | 
|  | } | 
|  |  | 
|  | FunctionEffect::Kind FunctionEffect::oppositeKind() const { | 
|  | switch (kind()) { | 
|  | case Kind::NonBlocking: | 
|  | return Kind::Blocking; | 
|  | case Kind::Blocking: | 
|  | return Kind::NonBlocking; | 
|  | case Kind::NonAllocating: | 
|  | return Kind::Allocating; | 
|  | case Kind::Allocating: | 
|  | return Kind::NonAllocating; | 
|  | } | 
|  | llvm_unreachable("unknown effect kind"); | 
|  | } | 
|  |  | 
|  | StringRef FunctionEffect::name() const { | 
|  | switch (kind()) { | 
|  | case Kind::NonBlocking: | 
|  | return "nonblocking"; | 
|  | case Kind::NonAllocating: | 
|  | return "nonallocating"; | 
|  | case Kind::Blocking: | 
|  | return "blocking"; | 
|  | case Kind::Allocating: | 
|  | return "allocating"; | 
|  | } | 
|  | llvm_unreachable("unknown effect kind"); | 
|  | } | 
|  |  | 
|  | std::optional<FunctionEffect> FunctionEffect::effectProhibitingInference( | 
|  | const Decl &Callee, FunctionEffectKindSet CalleeFX) const { | 
|  | switch (kind()) { | 
|  | case Kind::NonAllocating: | 
|  | case Kind::NonBlocking: { | 
|  | for (FunctionEffect Effect : CalleeFX) { | 
|  | // nonblocking/nonallocating cannot call allocating. | 
|  | if (Effect.kind() == Kind::Allocating) | 
|  | return Effect; | 
|  | // nonblocking cannot call blocking. | 
|  | if (kind() == Kind::NonBlocking && Effect.kind() == Kind::Blocking) | 
|  | return Effect; | 
|  | } | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | case Kind::Allocating: | 
|  | case Kind::Blocking: | 
|  | assert(0 && "effectProhibitingInference with non-inferable effect kind"); | 
|  | break; | 
|  | } | 
|  | llvm_unreachable("unknown effect kind"); | 
|  | } | 
|  |  | 
|  | bool FunctionEffect::shouldDiagnoseFunctionCall( | 
|  | bool Direct, FunctionEffectKindSet CalleeFX) const { | 
|  | switch (kind()) { | 
|  | case Kind::NonAllocating: | 
|  | case Kind::NonBlocking: { | 
|  | const Kind CallerKind = kind(); | 
|  | for (FunctionEffect Effect : CalleeFX) { | 
|  | const Kind EK = Effect.kind(); | 
|  | // Does callee have same or stronger constraint? | 
|  | if (EK == CallerKind || | 
|  | (CallerKind == Kind::NonAllocating && EK == Kind::NonBlocking)) { | 
|  | return false; // no diagnostic | 
|  | } | 
|  | } | 
|  | return true; // warning | 
|  | } | 
|  | case Kind::Allocating: | 
|  | case Kind::Blocking: | 
|  | return false; | 
|  | } | 
|  | llvm_unreachable("unknown effect kind"); | 
|  | } | 
|  |  | 
|  | // ===== | 
|  |  | 
|  | bool FunctionEffectSet::insert(const FunctionEffectWithCondition &NewEC, | 
|  | Conflicts &Errs) { | 
|  | FunctionEffect::Kind NewOppositeKind = NewEC.Effect.oppositeKind(); | 
|  | Expr *NewCondition = NewEC.Cond.getCondition(); | 
|  |  | 
|  | // The index at which insertion will take place; default is at end | 
|  | // but we might find an earlier insertion point. | 
|  | unsigned InsertIdx = Effects.size(); | 
|  | unsigned Idx = 0; | 
|  | for (const FunctionEffectWithCondition &EC : *this) { | 
|  | // Note about effects with conditions: They are considered distinct from | 
|  | // those without conditions; they are potentially unique, redundant, or | 
|  | // in conflict, but we can't tell which until the condition is evaluated. | 
|  | if (EC.Cond.getCondition() == nullptr && NewCondition == nullptr) { | 
|  | if (EC.Effect.kind() == NewEC.Effect.kind()) { | 
|  | // There is no condition, and the effect kind is already present, | 
|  | // so just fail to insert the new one (creating a duplicate), | 
|  | // and return success. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (EC.Effect.kind() == NewOppositeKind) { | 
|  | Errs.push_back({EC, NewEC}); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NewEC.Effect.kind() < EC.Effect.kind() && InsertIdx > Idx) | 
|  | InsertIdx = Idx; | 
|  |  | 
|  | ++Idx; | 
|  | } | 
|  |  | 
|  | if (NewCondition || !Conditions.empty()) { | 
|  | if (Conditions.empty() && !Effects.empty()) | 
|  | Conditions.resize(Effects.size()); | 
|  | Conditions.insert(Conditions.begin() + InsertIdx, | 
|  | NewEC.Cond.getCondition()); | 
|  | } | 
|  | Effects.insert(Effects.begin() + InsertIdx, NewEC.Effect); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FunctionEffectSet::insert(const FunctionEffectsRef &Set, Conflicts &Errs) { | 
|  | for (const auto &Item : Set) | 
|  | insert(Item, Errs); | 
|  | return Errs.empty(); | 
|  | } | 
|  |  | 
|  | FunctionEffectSet FunctionEffectSet::getIntersection(FunctionEffectsRef LHS, | 
|  | FunctionEffectsRef RHS) { | 
|  | FunctionEffectSet Result; | 
|  | FunctionEffectSet::Conflicts Errs; | 
|  |  | 
|  | // We could use std::set_intersection but that would require expanding the | 
|  | // container interface to include push_back, making it available to clients | 
|  | // who might fail to maintain invariants. | 
|  | auto IterA = LHS.begin(), EndA = LHS.end(); | 
|  | auto IterB = RHS.begin(), EndB = RHS.end(); | 
|  |  | 
|  | auto FEWCLess = [](const FunctionEffectWithCondition &LHS, | 
|  | const FunctionEffectWithCondition &RHS) { | 
|  | return std::tuple(LHS.Effect, uintptr_t(LHS.Cond.getCondition())) < | 
|  | std::tuple(RHS.Effect, uintptr_t(RHS.Cond.getCondition())); | 
|  | }; | 
|  |  | 
|  | while (IterA != EndA && IterB != EndB) { | 
|  | FunctionEffectWithCondition A = *IterA; | 
|  | FunctionEffectWithCondition B = *IterB; | 
|  | if (FEWCLess(A, B)) | 
|  | ++IterA; | 
|  | else if (FEWCLess(B, A)) | 
|  | ++IterB; | 
|  | else { | 
|  | Result.insert(A, Errs); | 
|  | ++IterA; | 
|  | ++IterB; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Insertion shouldn't be able to fail; that would mean both input | 
|  | // sets contained conflicts. | 
|  | assert(Errs.empty() && "conflict shouldn't be possible in getIntersection"); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | FunctionEffectSet FunctionEffectSet::getUnion(FunctionEffectsRef LHS, | 
|  | FunctionEffectsRef RHS, | 
|  | Conflicts &Errs) { | 
|  | // Optimize for either of the two sets being empty (very common). | 
|  | if (LHS.empty()) | 
|  | return FunctionEffectSet(RHS); | 
|  |  | 
|  | FunctionEffectSet Combined(LHS); | 
|  | Combined.insert(RHS, Errs); | 
|  | return Combined; | 
|  | } | 
|  |  | 
|  | namespace clang { | 
|  |  | 
|  | raw_ostream &operator<<(raw_ostream &OS, | 
|  | const FunctionEffectWithCondition &CFE) { | 
|  | OS << CFE.Effect.name(); | 
|  | if (Expr *E = CFE.Cond.getCondition()) { | 
|  | OS << '('; | 
|  | E->dump(); | 
|  | OS << ')'; | 
|  | } | 
|  | return OS; | 
|  | } | 
|  |  | 
|  | } // namespace clang | 
|  |  | 
|  | LLVM_DUMP_METHOD void FunctionEffectsRef::dump(llvm::raw_ostream &OS) const { | 
|  | OS << "Effects{"; | 
|  | llvm::interleaveComma(*this, OS); | 
|  | OS << "}"; | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void FunctionEffectSet::dump(llvm::raw_ostream &OS) const { | 
|  | FunctionEffectsRef(*this).dump(OS); | 
|  | } | 
|  |  | 
|  | LLVM_DUMP_METHOD void FunctionEffectKindSet::dump(llvm::raw_ostream &OS) const { | 
|  | OS << "Effects{"; | 
|  | llvm::interleaveComma(*this, OS); | 
|  | OS << "}"; | 
|  | } | 
|  |  | 
|  | FunctionEffectsRef | 
|  | FunctionEffectsRef::create(ArrayRef<FunctionEffect> FX, | 
|  | ArrayRef<EffectConditionExpr> Conds) { | 
|  | assert(llvm::is_sorted(FX) && "effects should be sorted"); | 
|  | assert((Conds.empty() || Conds.size() == FX.size()) && | 
|  | "effects size should match conditions size"); | 
|  | return FunctionEffectsRef(FX, Conds); | 
|  | } | 
|  |  | 
|  | std::string FunctionEffectWithCondition::description() const { | 
|  | std::string Result(Effect.name().str()); | 
|  | if (Cond.getCondition() != nullptr) | 
|  | Result += "(expr)"; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | const HLSLAttributedResourceType * | 
|  | HLSLAttributedResourceType::findHandleTypeOnResource(const Type *RT) { | 
|  | // If the type RT is an HLSL resource class, the first field must | 
|  | // be the resource handle of type HLSLAttributedResourceType | 
|  | const clang::Type *Ty = RT->getUnqualifiedDesugaredType(); | 
|  | if (const RecordDecl *RD = Ty->getAsCXXRecordDecl()) { | 
|  | if (!RD->fields().empty()) { | 
|  | const auto &FirstFD = RD->fields().begin(); | 
|  | return dyn_cast<HLSLAttributedResourceType>( | 
|  | FirstFD->getType().getTypePtr()); | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | StringRef PredefinedSugarType::getName(Kind KD) { | 
|  | switch (KD) { | 
|  | case Kind::SizeT: | 
|  | return "__size_t"; | 
|  | case Kind::SignedSizeT: | 
|  | return "__signed_size_t"; | 
|  | case Kind::PtrdiffT: | 
|  | return "__ptrdiff_t"; | 
|  | } | 
|  | llvm_unreachable("unexpected kind"); | 
|  | } |