|  | //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/ASTDiagnostic.h" | 
|  | #include "clang/AST/Attr.h" | 
|  | #include "clang/AST/CXXInheritance.h" | 
|  | #include "clang/AST/Decl.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/RecordLayout.h" | 
|  | #include "clang/AST/VTableBuilder.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "llvm/Support/Format.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  |  | 
|  | using namespace clang; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// BaseSubobjectInfo - Represents a single base subobject in a complete class. | 
|  | /// For a class hierarchy like | 
|  | /// | 
|  | /// class A { }; | 
|  | /// class B : A { }; | 
|  | /// class C : A, B { }; | 
|  | /// | 
|  | /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo | 
|  | /// instances, one for B and two for A. | 
|  | /// | 
|  | /// If a base is virtual, it will only have one BaseSubobjectInfo allocated. | 
|  | struct BaseSubobjectInfo { | 
|  | /// Class - The class for this base info. | 
|  | const CXXRecordDecl *Class; | 
|  |  | 
|  | /// IsVirtual - Whether the BaseInfo represents a virtual base or not. | 
|  | bool IsVirtual; | 
|  |  | 
|  | /// Bases - Information about the base subobjects. | 
|  | SmallVector<BaseSubobjectInfo*, 4> Bases; | 
|  |  | 
|  | /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base | 
|  | /// of this base info (if one exists). | 
|  | BaseSubobjectInfo *PrimaryVirtualBaseInfo; | 
|  |  | 
|  | // FIXME: Document. | 
|  | const BaseSubobjectInfo *Derived; | 
|  | }; | 
|  |  | 
|  | /// Externally provided layout. Typically used when the AST source, such | 
|  | /// as DWARF, lacks all the information that was available at compile time, such | 
|  | /// as alignment attributes on fields and pragmas in effect. | 
|  | struct ExternalLayout { | 
|  | ExternalLayout() = default; | 
|  |  | 
|  | /// Overall record size in bits. | 
|  | uint64_t Size = 0; | 
|  |  | 
|  | /// Overall record alignment in bits. | 
|  | uint64_t Align = 0; | 
|  |  | 
|  | /// Record field offsets in bits. | 
|  | llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets; | 
|  |  | 
|  | /// Direct, non-virtual base offsets. | 
|  | llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets; | 
|  |  | 
|  | /// Virtual base offsets. | 
|  | llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets; | 
|  |  | 
|  | /// Get the offset of the given field. The external source must provide | 
|  | /// entries for all fields in the record. | 
|  | uint64_t getExternalFieldOffset(const FieldDecl *FD) { | 
|  | assert(FieldOffsets.count(FD) && | 
|  | "Field does not have an external offset"); | 
|  | return FieldOffsets[FD]; | 
|  | } | 
|  |  | 
|  | bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { | 
|  | auto Known = BaseOffsets.find(RD); | 
|  | if (Known == BaseOffsets.end()) | 
|  | return false; | 
|  | BaseOffset = Known->second; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) { | 
|  | auto Known = VirtualBaseOffsets.find(RD); | 
|  | if (Known == VirtualBaseOffsets.end()) | 
|  | return false; | 
|  | BaseOffset = Known->second; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different | 
|  | /// offsets while laying out a C++ class. | 
|  | class EmptySubobjectMap { | 
|  | const ASTContext &Context; | 
|  | uint64_t CharWidth; | 
|  |  | 
|  | /// Class - The class whose empty entries we're keeping track of. | 
|  | const CXXRecordDecl *Class; | 
|  |  | 
|  | /// EmptyClassOffsets - A map from offsets to empty record decls. | 
|  | typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy; | 
|  | typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy; | 
|  | EmptyClassOffsetsMapTy EmptyClassOffsets; | 
|  |  | 
|  | /// MaxEmptyClassOffset - The highest offset known to contain an empty | 
|  | /// base subobject. | 
|  | CharUnits MaxEmptyClassOffset; | 
|  |  | 
|  | /// ComputeEmptySubobjectSizes - Compute the size of the largest base or | 
|  | /// member subobject that is empty. | 
|  | void ComputeEmptySubobjectSizes(); | 
|  |  | 
|  | void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset); | 
|  |  | 
|  | void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, | 
|  | CharUnits Offset, bool PlacingEmptyBase); | 
|  |  | 
|  | void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD, | 
|  | const CXXRecordDecl *Class, CharUnits Offset, | 
|  | bool PlacingOverlappingField); | 
|  | void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset, | 
|  | bool PlacingOverlappingField); | 
|  |  | 
|  | /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty | 
|  | /// subobjects beyond the given offset. | 
|  | bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const { | 
|  | return Offset <= MaxEmptyClassOffset; | 
|  | } | 
|  |  | 
|  | CharUnits getFieldOffset(const ASTRecordLayout &Layout, | 
|  | const FieldDecl *Field) const { | 
|  | uint64_t FieldOffset = Layout.getFieldOffset(Field->getFieldIndex()); | 
|  | assert(FieldOffset % CharWidth == 0 && | 
|  | "Field offset not at char boundary!"); | 
|  |  | 
|  | return Context.toCharUnitsFromBits(FieldOffset); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, | 
|  | CharUnits Offset) const; | 
|  |  | 
|  | bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, | 
|  | CharUnits Offset); | 
|  |  | 
|  | bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, | 
|  | const CXXRecordDecl *Class, | 
|  | CharUnits Offset) const; | 
|  | bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, | 
|  | CharUnits Offset) const; | 
|  |  | 
|  | public: | 
|  | /// This holds the size of the largest empty subobject (either a base | 
|  | /// or a member). Will be zero if the record being built doesn't contain | 
|  | /// any empty classes. | 
|  | CharUnits SizeOfLargestEmptySubobject; | 
|  |  | 
|  | EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class) | 
|  | : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) { | 
|  | ComputeEmptySubobjectSizes(); | 
|  | } | 
|  |  | 
|  | /// CanPlaceBaseAtOffset - Return whether the given base class can be placed | 
|  | /// at the given offset. | 
|  | /// Returns false if placing the record will result in two components | 
|  | /// (direct or indirect) of the same type having the same offset. | 
|  | bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, | 
|  | CharUnits Offset); | 
|  |  | 
|  | /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given | 
|  | /// offset. | 
|  | bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset); | 
|  | }; | 
|  |  | 
|  | void EmptySubobjectMap::ComputeEmptySubobjectSizes() { | 
|  | // Check the bases. | 
|  | for (const CXXBaseSpecifier &Base : Class->bases()) { | 
|  | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | 
|  | assert(BaseDecl != Class && "Class cannot inherit from itself."); | 
|  |  | 
|  | CharUnits EmptySize; | 
|  | const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); | 
|  | if (BaseDecl->isEmpty()) { | 
|  | // If the class decl is empty, get its size. | 
|  | EmptySize = Layout.getSize(); | 
|  | } else { | 
|  | // Otherwise, we get the largest empty subobject for the decl. | 
|  | EmptySize = Layout.getSizeOfLargestEmptySubobject(); | 
|  | } | 
|  |  | 
|  | if (EmptySize > SizeOfLargestEmptySubobject) | 
|  | SizeOfLargestEmptySubobject = EmptySize; | 
|  | } | 
|  |  | 
|  | // Check the fields. | 
|  | for (const FieldDecl *FD : Class->fields()) { | 
|  | // We only care about records. | 
|  | const auto *MemberDecl = | 
|  | Context.getBaseElementType(FD->getType())->getAsCXXRecordDecl(); | 
|  | if (!MemberDecl) | 
|  | continue; | 
|  |  | 
|  | CharUnits EmptySize; | 
|  | const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl); | 
|  | if (MemberDecl->isEmpty()) { | 
|  | // If the class decl is empty, get its size. | 
|  | EmptySize = Layout.getSize(); | 
|  | } else { | 
|  | // Otherwise, we get the largest empty subobject for the decl. | 
|  | EmptySize = Layout.getSizeOfLargestEmptySubobject(); | 
|  | } | 
|  |  | 
|  | if (EmptySize > SizeOfLargestEmptySubobject) | 
|  | SizeOfLargestEmptySubobject = EmptySize; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool | 
|  | EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD, | 
|  | CharUnits Offset) const { | 
|  | // We only need to check empty bases. | 
|  | if (!RD->isEmpty()) | 
|  | return true; | 
|  |  | 
|  | EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset); | 
|  | if (I == EmptyClassOffsets.end()) | 
|  | return true; | 
|  |  | 
|  | const ClassVectorTy &Classes = I->second; | 
|  | if (!llvm::is_contained(Classes, RD)) | 
|  | return true; | 
|  |  | 
|  | // There is already an empty class of the same type at this offset. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD, | 
|  | CharUnits Offset) { | 
|  | // We only care about empty bases. | 
|  | if (!RD->isEmpty()) | 
|  | return; | 
|  |  | 
|  | // If we have empty structures inside a union, we can assign both | 
|  | // the same offset. Just avoid pushing them twice in the list. | 
|  | ClassVectorTy &Classes = EmptyClassOffsets[Offset]; | 
|  | if (llvm::is_contained(Classes, RD)) | 
|  | return; | 
|  |  | 
|  | Classes.push_back(RD); | 
|  |  | 
|  | // Update the empty class offset. | 
|  | if (Offset > MaxEmptyClassOffset) | 
|  | MaxEmptyClassOffset = Offset; | 
|  | } | 
|  |  | 
|  | bool | 
|  | EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info, | 
|  | CharUnits Offset) { | 
|  | // We don't have to keep looking past the maximum offset that's known to | 
|  | // contain an empty class. | 
|  | if (!AnyEmptySubobjectsBeyondOffset(Offset)) | 
|  | return true; | 
|  |  | 
|  | if (!CanPlaceSubobjectAtOffset(Info->Class, Offset)) | 
|  | return false; | 
|  |  | 
|  | // Traverse all non-virtual bases. | 
|  | const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); | 
|  | for (const BaseSubobjectInfo *Base : Info->Bases) { | 
|  | if (Base->IsVirtual) | 
|  | continue; | 
|  |  | 
|  | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); | 
|  |  | 
|  | if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (Info->PrimaryVirtualBaseInfo) { | 
|  | BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; | 
|  |  | 
|  | if (Info == PrimaryVirtualBaseInfo->Derived) { | 
|  | if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Traverse all member variables. | 
|  | for (const FieldDecl *Field : Info->Class->fields()) { | 
|  | if (Field->isBitField()) | 
|  | continue; | 
|  |  | 
|  | CharUnits FieldOffset = Offset + getFieldOffset(Layout, Field); | 
|  | if (!CanPlaceFieldSubobjectAtOffset(Field, FieldOffset)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info, | 
|  | CharUnits Offset, | 
|  | bool PlacingEmptyBase) { | 
|  | if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) { | 
|  | // We know that the only empty subobjects that can conflict with empty | 
|  | // subobject of non-empty bases, are empty bases that can be placed at | 
|  | // offset zero. Because of this, we only need to keep track of empty base | 
|  | // subobjects with offsets less than the size of the largest empty | 
|  | // subobject for our class. | 
|  | return; | 
|  | } | 
|  |  | 
|  | AddSubobjectAtOffset(Info->Class, Offset); | 
|  |  | 
|  | // Traverse all non-virtual bases. | 
|  | const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); | 
|  | for (const BaseSubobjectInfo *Base : Info->Bases) { | 
|  | if (Base->IsVirtual) | 
|  | continue; | 
|  |  | 
|  | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); | 
|  | UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase); | 
|  | } | 
|  |  | 
|  | if (Info->PrimaryVirtualBaseInfo) { | 
|  | BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo; | 
|  |  | 
|  | if (Info == PrimaryVirtualBaseInfo->Derived) | 
|  | UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset, | 
|  | PlacingEmptyBase); | 
|  | } | 
|  |  | 
|  | // Traverse all member variables. | 
|  | for (const FieldDecl *Field : Info->Class->fields()) { | 
|  | if (Field->isBitField()) | 
|  | continue; | 
|  |  | 
|  | CharUnits FieldOffset = Offset + getFieldOffset(Layout, Field); | 
|  | UpdateEmptyFieldSubobjects(Field, FieldOffset, PlacingEmptyBase); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info, | 
|  | CharUnits Offset) { | 
|  | // If we know this class doesn't have any empty subobjects we don't need to | 
|  | // bother checking. | 
|  | if (SizeOfLargestEmptySubobject.isZero()) | 
|  | return true; | 
|  |  | 
|  | if (!CanPlaceBaseSubobjectAtOffset(Info, Offset)) | 
|  | return false; | 
|  |  | 
|  | // We are able to place the base at this offset. Make sure to update the | 
|  | // empty base subobject map. | 
|  | UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD, | 
|  | const CXXRecordDecl *Class, | 
|  | CharUnits Offset) const { | 
|  | // We don't have to keep looking past the maximum offset that's known to | 
|  | // contain an empty class. | 
|  | if (!AnyEmptySubobjectsBeyondOffset(Offset)) | 
|  | return true; | 
|  |  | 
|  | if (!CanPlaceSubobjectAtOffset(RD, Offset)) | 
|  | return false; | 
|  |  | 
|  | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | 
|  |  | 
|  | // Traverse all non-virtual bases. | 
|  | for (const CXXBaseSpecifier &Base : RD->bases()) { | 
|  | if (Base.isVirtual()) | 
|  | continue; | 
|  |  | 
|  | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | 
|  |  | 
|  | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); | 
|  | if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (RD == Class) { | 
|  | // This is the most derived class, traverse virtual bases as well. | 
|  | for (const CXXBaseSpecifier &Base : RD->vbases()) { | 
|  | const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); | 
|  |  | 
|  | CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); | 
|  | if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Traverse all member variables. | 
|  | for (const FieldDecl *Field : RD->fields()) { | 
|  | if (Field->isBitField()) | 
|  | continue; | 
|  |  | 
|  | CharUnits FieldOffset = Offset + getFieldOffset(Layout, Field); | 
|  | if (!CanPlaceFieldSubobjectAtOffset(Field, FieldOffset)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD, | 
|  | CharUnits Offset) const { | 
|  | // We don't have to keep looking past the maximum offset that's known to | 
|  | // contain an empty class. | 
|  | if (!AnyEmptySubobjectsBeyondOffset(Offset)) | 
|  | return true; | 
|  |  | 
|  | QualType T = FD->getType(); | 
|  | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) | 
|  | return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset); | 
|  |  | 
|  | // If we have an array type we need to look at every element. | 
|  | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { | 
|  | QualType ElemTy = Context.getBaseElementType(AT); | 
|  | const auto *RD = ElemTy->getAsCXXRecordDecl(); | 
|  | if (!RD) | 
|  | return true; | 
|  |  | 
|  | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | 
|  |  | 
|  | uint64_t NumElements = Context.getConstantArrayElementCount(AT); | 
|  | CharUnits ElementOffset = Offset; | 
|  | for (uint64_t I = 0; I != NumElements; ++I) { | 
|  | // We don't have to keep looking past the maximum offset that's known to | 
|  | // contain an empty class. | 
|  | if (!AnyEmptySubobjectsBeyondOffset(ElementOffset)) | 
|  | return true; | 
|  |  | 
|  | if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset)) | 
|  | return false; | 
|  |  | 
|  | ElementOffset += Layout.getSize(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD, | 
|  | CharUnits Offset) { | 
|  | if (!CanPlaceFieldSubobjectAtOffset(FD, Offset)) | 
|  | return false; | 
|  |  | 
|  | // We are able to place the member variable at this offset. | 
|  | // Make sure to update the empty field subobject map. | 
|  | UpdateEmptyFieldSubobjects(FD, Offset, FD->hasAttr<NoUniqueAddressAttr>()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void EmptySubobjectMap::UpdateEmptyFieldSubobjects( | 
|  | const CXXRecordDecl *RD, const CXXRecordDecl *Class, CharUnits Offset, | 
|  | bool PlacingOverlappingField) { | 
|  | // We know that the only empty subobjects that can conflict with empty | 
|  | // field subobjects are subobjects of empty bases and potentially-overlapping | 
|  | // fields that can be placed at offset zero. Because of this, we only need to | 
|  | // keep track of empty field subobjects with offsets less than the size of | 
|  | // the largest empty subobject for our class. | 
|  | // | 
|  | // (Proof: we will only consider placing a subobject at offset zero or at | 
|  | // >= the current dsize. The only cases where the earlier subobject can be | 
|  | // placed beyond the end of dsize is if it's an empty base or a | 
|  | // potentially-overlapping field.) | 
|  | if (!PlacingOverlappingField && Offset >= SizeOfLargestEmptySubobject) | 
|  | return; | 
|  |  | 
|  | AddSubobjectAtOffset(RD, Offset); | 
|  |  | 
|  | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | 
|  |  | 
|  | // Traverse all non-virtual bases. | 
|  | for (const CXXBaseSpecifier &Base : RD->bases()) { | 
|  | if (Base.isVirtual()) | 
|  | continue; | 
|  |  | 
|  | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | 
|  |  | 
|  | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl); | 
|  | UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset, | 
|  | PlacingOverlappingField); | 
|  | } | 
|  |  | 
|  | if (RD == Class) { | 
|  | // This is the most derived class, traverse virtual bases as well. | 
|  | for (const CXXBaseSpecifier &Base : RD->vbases()) { | 
|  | const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl(); | 
|  |  | 
|  | CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl); | 
|  | UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset, | 
|  | PlacingOverlappingField); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Traverse all member variables. | 
|  | for (const FieldDecl *Field : RD->fields()) { | 
|  | if (Field->isBitField()) | 
|  | continue; | 
|  |  | 
|  | CharUnits FieldOffset = Offset + getFieldOffset(Layout, Field); | 
|  | UpdateEmptyFieldSubobjects(Field, FieldOffset, PlacingOverlappingField); | 
|  | } | 
|  | } | 
|  |  | 
|  | void EmptySubobjectMap::UpdateEmptyFieldSubobjects( | 
|  | const FieldDecl *FD, CharUnits Offset, bool PlacingOverlappingField) { | 
|  | QualType T = FD->getType(); | 
|  | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { | 
|  | UpdateEmptyFieldSubobjects(RD, RD, Offset, PlacingOverlappingField); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If we have an array type we need to update every element. | 
|  | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) { | 
|  | QualType ElemTy = Context.getBaseElementType(AT); | 
|  | const auto *RD = ElemTy->getAsCXXRecordDecl(); | 
|  | if (!RD) | 
|  | return; | 
|  |  | 
|  | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | 
|  |  | 
|  | uint64_t NumElements = Context.getConstantArrayElementCount(AT); | 
|  | CharUnits ElementOffset = Offset; | 
|  |  | 
|  | for (uint64_t I = 0; I != NumElements; ++I) { | 
|  | // We know that the only empty subobjects that can conflict with empty | 
|  | // field subobjects are subobjects of empty bases that can be placed at | 
|  | // offset zero. Because of this, we only need to keep track of empty field | 
|  | // subobjects with offsets less than the size of the largest empty | 
|  | // subobject for our class. | 
|  | if (!PlacingOverlappingField && | 
|  | ElementOffset >= SizeOfLargestEmptySubobject) | 
|  | return; | 
|  |  | 
|  | UpdateEmptyFieldSubobjects(RD, RD, ElementOffset, | 
|  | PlacingOverlappingField); | 
|  | ElementOffset += Layout.getSize(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy; | 
|  |  | 
|  | class ItaniumRecordLayoutBuilder { | 
|  | protected: | 
|  | // FIXME: Remove this and make the appropriate fields public. | 
|  | friend class clang::ASTContext; | 
|  |  | 
|  | const ASTContext &Context; | 
|  |  | 
|  | EmptySubobjectMap *EmptySubobjects; | 
|  |  | 
|  | /// Size - The current size of the record layout. | 
|  | uint64_t Size; | 
|  |  | 
|  | /// Alignment - The current alignment of the record layout. | 
|  | CharUnits Alignment; | 
|  |  | 
|  | /// PreferredAlignment - The preferred alignment of the record layout. | 
|  | CharUnits PreferredAlignment; | 
|  |  | 
|  | /// The alignment if attribute packed is not used. | 
|  | CharUnits UnpackedAlignment; | 
|  |  | 
|  | /// \brief The maximum of the alignments of top-level members. | 
|  | CharUnits UnadjustedAlignment; | 
|  |  | 
|  | SmallVector<uint64_t, 16> FieldOffsets; | 
|  |  | 
|  | /// Whether the external AST source has provided a layout for this | 
|  | /// record. | 
|  | LLVM_PREFERRED_TYPE(bool) | 
|  | unsigned UseExternalLayout : 1; | 
|  |  | 
|  | /// Whether we need to infer alignment, even when we have an | 
|  | /// externally-provided layout. | 
|  | LLVM_PREFERRED_TYPE(bool) | 
|  | unsigned InferAlignment : 1; | 
|  |  | 
|  | /// Packed - Whether the record is packed or not. | 
|  | LLVM_PREFERRED_TYPE(bool) | 
|  | unsigned Packed : 1; | 
|  |  | 
|  | LLVM_PREFERRED_TYPE(bool) | 
|  | unsigned IsUnion : 1; | 
|  |  | 
|  | LLVM_PREFERRED_TYPE(bool) | 
|  | unsigned IsMac68kAlign : 1; | 
|  |  | 
|  | LLVM_PREFERRED_TYPE(bool) | 
|  | unsigned IsNaturalAlign : 1; | 
|  |  | 
|  | LLVM_PREFERRED_TYPE(bool) | 
|  | unsigned IsMsStruct : 1; | 
|  |  | 
|  | /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield, | 
|  | /// this contains the number of bits in the last unit that can be used for | 
|  | /// an adjacent bitfield if necessary.  The unit in question is usually | 
|  | /// a byte, but larger units are used if IsMsStruct. | 
|  | unsigned char UnfilledBitsInLastUnit; | 
|  |  | 
|  | /// LastBitfieldStorageUnitSize - If IsMsStruct, represents the size of the | 
|  | /// storage unit of the previous field if it was a bitfield. | 
|  | unsigned char LastBitfieldStorageUnitSize; | 
|  |  | 
|  | /// MaxFieldAlignment - The maximum allowed field alignment. This is set by | 
|  | /// #pragma pack. | 
|  | CharUnits MaxFieldAlignment; | 
|  |  | 
|  | /// DataSize - The data size of the record being laid out. | 
|  | uint64_t DataSize; | 
|  |  | 
|  | CharUnits NonVirtualSize; | 
|  | CharUnits NonVirtualAlignment; | 
|  | CharUnits PreferredNVAlignment; | 
|  |  | 
|  | /// If we've laid out a field but not included its tail padding in Size yet, | 
|  | /// this is the size up to the end of that field. | 
|  | CharUnits PaddedFieldSize; | 
|  |  | 
|  | /// PrimaryBase - the primary base class (if one exists) of the class | 
|  | /// we're laying out. | 
|  | const CXXRecordDecl *PrimaryBase; | 
|  |  | 
|  | /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying | 
|  | /// out is virtual. | 
|  | bool PrimaryBaseIsVirtual; | 
|  |  | 
|  | /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl | 
|  | /// pointer, as opposed to inheriting one from a primary base class. | 
|  | bool HasOwnVFPtr; | 
|  |  | 
|  | /// the flag of field offset changing due to packed attribute. | 
|  | bool HasPackedField; | 
|  |  | 
|  | /// HandledFirstNonOverlappingEmptyField - An auxiliary field used for AIX. | 
|  | /// When there are OverlappingEmptyFields existing in the aggregate, the | 
|  | /// flag shows if the following first non-empty or empty-but-non-overlapping | 
|  | /// field has been handled, if any. | 
|  | bool HandledFirstNonOverlappingEmptyField; | 
|  |  | 
|  | typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; | 
|  |  | 
|  | /// Bases - base classes and their offsets in the record. | 
|  | BaseOffsetsMapTy Bases; | 
|  |  | 
|  | // VBases - virtual base classes and their offsets in the record. | 
|  | ASTRecordLayout::VBaseOffsetsMapTy VBases; | 
|  |  | 
|  | /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are | 
|  | /// primary base classes for some other direct or indirect base class. | 
|  | CXXIndirectPrimaryBaseSet IndirectPrimaryBases; | 
|  |  | 
|  | /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in | 
|  | /// inheritance graph order. Used for determining the primary base class. | 
|  | const CXXRecordDecl *FirstNearlyEmptyVBase; | 
|  |  | 
|  | /// VisitedVirtualBases - A set of all the visited virtual bases, used to | 
|  | /// avoid visiting virtual bases more than once. | 
|  | llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; | 
|  |  | 
|  | /// Valid if UseExternalLayout is true. | 
|  | ExternalLayout External; | 
|  |  | 
|  | ItaniumRecordLayoutBuilder(const ASTContext &Context, | 
|  | EmptySubobjectMap *EmptySubobjects) | 
|  | : Context(Context), EmptySubobjects(EmptySubobjects), Size(0), | 
|  | Alignment(CharUnits::One()), PreferredAlignment(CharUnits::One()), | 
|  | UnpackedAlignment(CharUnits::One()), | 
|  | UnadjustedAlignment(CharUnits::One()), UseExternalLayout(false), | 
|  | InferAlignment(false), Packed(false), IsUnion(false), | 
|  | IsMac68kAlign(false), | 
|  | IsNaturalAlign(!Context.getTargetInfo().getTriple().isOSAIX()), | 
|  | IsMsStruct(false), UnfilledBitsInLastUnit(0), | 
|  | LastBitfieldStorageUnitSize(0), MaxFieldAlignment(CharUnits::Zero()), | 
|  | DataSize(0), NonVirtualSize(CharUnits::Zero()), | 
|  | NonVirtualAlignment(CharUnits::One()), | 
|  | PreferredNVAlignment(CharUnits::One()), | 
|  | PaddedFieldSize(CharUnits::Zero()), PrimaryBase(nullptr), | 
|  | PrimaryBaseIsVirtual(false), HasOwnVFPtr(false), HasPackedField(false), | 
|  | HandledFirstNonOverlappingEmptyField(false), | 
|  | FirstNearlyEmptyVBase(nullptr) {} | 
|  |  | 
|  | void Layout(const RecordDecl *D); | 
|  | void Layout(const CXXRecordDecl *D); | 
|  | void Layout(const ObjCInterfaceDecl *D); | 
|  |  | 
|  | void LayoutFields(const RecordDecl *D); | 
|  | void LayoutField(const FieldDecl *D, bool InsertExtraPadding); | 
|  | void LayoutWideBitField(uint64_t FieldSize, uint64_t StorageUnitSize, | 
|  | bool FieldPacked, const FieldDecl *D); | 
|  | void LayoutBitField(const FieldDecl *D); | 
|  |  | 
|  | TargetCXXABI getCXXABI() const { | 
|  | return Context.getTargetInfo().getCXXABI(); | 
|  | } | 
|  |  | 
|  | /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects. | 
|  | llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator; | 
|  |  | 
|  | typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *> | 
|  | BaseSubobjectInfoMapTy; | 
|  |  | 
|  | /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases | 
|  | /// of the class we're laying out to their base subobject info. | 
|  | BaseSubobjectInfoMapTy VirtualBaseInfo; | 
|  |  | 
|  | /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the | 
|  | /// class we're laying out to their base subobject info. | 
|  | BaseSubobjectInfoMapTy NonVirtualBaseInfo; | 
|  |  | 
|  | /// ComputeBaseSubobjectInfo - Compute the base subobject information for the | 
|  | /// bases of the given class. | 
|  | void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD); | 
|  |  | 
|  | /// ComputeBaseSubobjectInfo - Compute the base subobject information for a | 
|  | /// single class and all of its base classes. | 
|  | BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD, | 
|  | bool IsVirtual, | 
|  | BaseSubobjectInfo *Derived); | 
|  |  | 
|  | /// DeterminePrimaryBase - Determine the primary base of the given class. | 
|  | void DeterminePrimaryBase(const CXXRecordDecl *RD); | 
|  |  | 
|  | void SelectPrimaryVBase(const CXXRecordDecl *RD); | 
|  |  | 
|  | void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign); | 
|  |  | 
|  | /// LayoutNonVirtualBases - Determines the primary base class (if any) and | 
|  | /// lays it out. Will then proceed to lay out all non-virtual base clasess. | 
|  | void LayoutNonVirtualBases(const CXXRecordDecl *RD); | 
|  |  | 
|  | /// LayoutNonVirtualBase - Lays out a single non-virtual base. | 
|  | void LayoutNonVirtualBase(const BaseSubobjectInfo *Base); | 
|  |  | 
|  | void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info, | 
|  | CharUnits Offset); | 
|  |  | 
|  | /// LayoutVirtualBases - Lays out all the virtual bases. | 
|  | void LayoutVirtualBases(const CXXRecordDecl *RD, | 
|  | const CXXRecordDecl *MostDerivedClass); | 
|  |  | 
|  | /// LayoutVirtualBase - Lays out a single virtual base. | 
|  | void LayoutVirtualBase(const BaseSubobjectInfo *Base); | 
|  |  | 
|  | /// LayoutBase - Will lay out a base and return the offset where it was | 
|  | /// placed, in chars. | 
|  | CharUnits LayoutBase(const BaseSubobjectInfo *Base); | 
|  |  | 
|  | /// InitializeLayout - Initialize record layout for the given record decl. | 
|  | void InitializeLayout(const Decl *D); | 
|  |  | 
|  | /// FinishLayout - Finalize record layout. Adjust record size based on the | 
|  | /// alignment. | 
|  | void FinishLayout(const NamedDecl *D); | 
|  |  | 
|  | void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment, | 
|  | CharUnits PreferredAlignment); | 
|  | void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment) { | 
|  | UpdateAlignment(NewAlignment, UnpackedNewAlignment, NewAlignment); | 
|  | } | 
|  | void UpdateAlignment(CharUnits NewAlignment) { | 
|  | UpdateAlignment(NewAlignment, NewAlignment, NewAlignment); | 
|  | } | 
|  |  | 
|  | /// Retrieve the externally-supplied field offset for the given | 
|  | /// field. | 
|  | /// | 
|  | /// \param Field The field whose offset is being queried. | 
|  | /// \param ComputedOffset The offset that we've computed for this field. | 
|  | uint64_t updateExternalFieldOffset(const FieldDecl *Field, | 
|  | uint64_t ComputedOffset); | 
|  |  | 
|  | void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset, | 
|  | uint64_t UnpackedOffset, unsigned UnpackedAlign, | 
|  | bool isPacked, const FieldDecl *D); | 
|  |  | 
|  | DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID); | 
|  |  | 
|  | CharUnits getSize() const { | 
|  | assert(Size % Context.getCharWidth() == 0); | 
|  | return Context.toCharUnitsFromBits(Size); | 
|  | } | 
|  | uint64_t getSizeInBits() const { return Size; } | 
|  |  | 
|  | void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); } | 
|  | void setSize(uint64_t NewSize) { Size = NewSize; } | 
|  |  | 
|  | CharUnits getAlignment() const { return Alignment; } | 
|  |  | 
|  | CharUnits getDataSize() const { | 
|  | assert(DataSize % Context.getCharWidth() == 0); | 
|  | return Context.toCharUnitsFromBits(DataSize); | 
|  | } | 
|  | uint64_t getDataSizeInBits() const { return DataSize; } | 
|  |  | 
|  | void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); } | 
|  | void setDataSize(uint64_t NewSize) { DataSize = NewSize; } | 
|  |  | 
|  | ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete; | 
|  | void operator=(const ItaniumRecordLayoutBuilder &) = delete; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) { | 
|  | for (const auto &I : RD->bases()) { | 
|  | assert(!I.getType()->isDependentType() && | 
|  | "Cannot layout class with dependent bases."); | 
|  |  | 
|  | const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); | 
|  |  | 
|  | // Check if this is a nearly empty virtual base. | 
|  | if (I.isVirtual() && Context.isNearlyEmpty(Base)) { | 
|  | // If it's not an indirect primary base, then we've found our primary | 
|  | // base. | 
|  | if (!IndirectPrimaryBases.count(Base)) { | 
|  | PrimaryBase = Base; | 
|  | PrimaryBaseIsVirtual = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Is this the first nearly empty virtual base? | 
|  | if (!FirstNearlyEmptyVBase) | 
|  | FirstNearlyEmptyVBase = Base; | 
|  | } | 
|  |  | 
|  | SelectPrimaryVBase(Base); | 
|  | if (PrimaryBase) | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// DeterminePrimaryBase - Determine the primary base of the given class. | 
|  | void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) { | 
|  | // If the class isn't dynamic, it won't have a primary base. | 
|  | if (!RD->isDynamicClass()) | 
|  | return; | 
|  |  | 
|  | // Compute all the primary virtual bases for all of our direct and | 
|  | // indirect bases, and record all their primary virtual base classes. | 
|  | RD->getIndirectPrimaryBases(IndirectPrimaryBases); | 
|  |  | 
|  | // If the record has a dynamic base class, attempt to choose a primary base | 
|  | // class. It is the first (in direct base class order) non-virtual dynamic | 
|  | // base class, if one exists. | 
|  | for (const auto &I : RD->bases()) { | 
|  | // Ignore virtual bases. | 
|  | if (I.isVirtual()) | 
|  | continue; | 
|  |  | 
|  | const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl(); | 
|  |  | 
|  | if (Base->isDynamicClass()) { | 
|  | // We found it. | 
|  | PrimaryBase = Base; | 
|  | PrimaryBaseIsVirtual = false; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Under the Itanium ABI, if there is no non-virtual primary base class, | 
|  | // try to compute the primary virtual base.  The primary virtual base is | 
|  | // the first nearly empty virtual base that is not an indirect primary | 
|  | // virtual base class, if one exists. | 
|  | if (RD->getNumVBases() != 0) { | 
|  | SelectPrimaryVBase(RD); | 
|  | if (PrimaryBase) | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, it is the first indirect primary base class, if one exists. | 
|  | if (FirstNearlyEmptyVBase) { | 
|  | PrimaryBase = FirstNearlyEmptyVBase; | 
|  | PrimaryBaseIsVirtual = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(!PrimaryBase && "Should not get here with a primary base!"); | 
|  | } | 
|  |  | 
|  | BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( | 
|  | const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) { | 
|  | BaseSubobjectInfo *Info; | 
|  |  | 
|  | if (IsVirtual) { | 
|  | // Check if we already have info about this virtual base. | 
|  | BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD]; | 
|  | if (InfoSlot) { | 
|  | assert(InfoSlot->Class == RD && "Wrong class for virtual base info!"); | 
|  | return InfoSlot; | 
|  | } | 
|  |  | 
|  | // We don't, create it. | 
|  | InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; | 
|  | Info = InfoSlot; | 
|  | } else { | 
|  | Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo; | 
|  | } | 
|  |  | 
|  | Info->Class = RD; | 
|  | Info->IsVirtual = IsVirtual; | 
|  | Info->Derived = nullptr; | 
|  | Info->PrimaryVirtualBaseInfo = nullptr; | 
|  |  | 
|  | const CXXRecordDecl *PrimaryVirtualBase = nullptr; | 
|  | BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr; | 
|  |  | 
|  | // Check if this base has a primary virtual base. | 
|  | if (RD->getNumVBases()) { | 
|  | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | 
|  | if (Layout.isPrimaryBaseVirtual()) { | 
|  | // This base does have a primary virtual base. | 
|  | PrimaryVirtualBase = Layout.getPrimaryBase(); | 
|  | assert(PrimaryVirtualBase && "Didn't have a primary virtual base!"); | 
|  |  | 
|  | // Now check if we have base subobject info about this primary base. | 
|  | PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); | 
|  |  | 
|  | if (PrimaryVirtualBaseInfo) { | 
|  | if (PrimaryVirtualBaseInfo->Derived) { | 
|  | // We did have info about this primary base, and it turns out that it | 
|  | // has already been claimed as a primary virtual base for another | 
|  | // base. | 
|  | PrimaryVirtualBase = nullptr; | 
|  | } else { | 
|  | // We can claim this base as our primary base. | 
|  | Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; | 
|  | PrimaryVirtualBaseInfo->Derived = Info; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now go through all direct bases. | 
|  | for (const auto &I : RD->bases()) { | 
|  | bool IsVirtual = I.isVirtual(); | 
|  |  | 
|  | const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); | 
|  |  | 
|  | Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info)); | 
|  | } | 
|  |  | 
|  | if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) { | 
|  | // Traversing the bases must have created the base info for our primary | 
|  | // virtual base. | 
|  | PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase); | 
|  | assert(PrimaryVirtualBaseInfo && | 
|  | "Did not create a primary virtual base!"); | 
|  |  | 
|  | // Claim the primary virtual base as our primary virtual base. | 
|  | Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo; | 
|  | PrimaryVirtualBaseInfo->Derived = Info; | 
|  | } | 
|  |  | 
|  | return Info; | 
|  | } | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo( | 
|  | const CXXRecordDecl *RD) { | 
|  | for (const auto &I : RD->bases()) { | 
|  | bool IsVirtual = I.isVirtual(); | 
|  |  | 
|  | const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); | 
|  |  | 
|  | // Compute the base subobject info for this base. | 
|  | BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, | 
|  | nullptr); | 
|  |  | 
|  | if (IsVirtual) { | 
|  | // ComputeBaseInfo has already added this base for us. | 
|  | assert(VirtualBaseInfo.count(BaseDecl) && | 
|  | "Did not add virtual base!"); | 
|  | } else { | 
|  | // Add the base info to the map of non-virtual bases. | 
|  | assert(!NonVirtualBaseInfo.count(BaseDecl) && | 
|  | "Non-virtual base already exists!"); | 
|  | NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment( | 
|  | CharUnits UnpackedBaseAlign) { | 
|  | CharUnits BaseAlign = Packed ? CharUnits::One() : UnpackedBaseAlign; | 
|  |  | 
|  | // The maximum field alignment overrides base align. | 
|  | if (!MaxFieldAlignment.isZero()) { | 
|  | BaseAlign = std::min(BaseAlign, MaxFieldAlignment); | 
|  | UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment); | 
|  | } | 
|  |  | 
|  | // Round up the current record size to pointer alignment. | 
|  | setSize(getSize().alignTo(BaseAlign)); | 
|  |  | 
|  | // Update the alignment. | 
|  | UpdateAlignment(BaseAlign, UnpackedBaseAlign, BaseAlign); | 
|  | } | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases( | 
|  | const CXXRecordDecl *RD) { | 
|  | // Then, determine the primary base class. | 
|  | DeterminePrimaryBase(RD); | 
|  |  | 
|  | // Compute base subobject info. | 
|  | ComputeBaseSubobjectInfo(RD); | 
|  |  | 
|  | // If we have a primary base class, lay it out. | 
|  | if (PrimaryBase) { | 
|  | if (PrimaryBaseIsVirtual) { | 
|  | // If the primary virtual base was a primary virtual base of some other | 
|  | // base class we'll have to steal it. | 
|  | BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase); | 
|  | PrimaryBaseInfo->Derived = nullptr; | 
|  |  | 
|  | // We have a virtual primary base, insert it as an indirect primary base. | 
|  | IndirectPrimaryBases.insert(PrimaryBase); | 
|  |  | 
|  | assert(!VisitedVirtualBases.count(PrimaryBase) && | 
|  | "vbase already visited!"); | 
|  | VisitedVirtualBases.insert(PrimaryBase); | 
|  |  | 
|  | LayoutVirtualBase(PrimaryBaseInfo); | 
|  | } else { | 
|  | BaseSubobjectInfo *PrimaryBaseInfo = | 
|  | NonVirtualBaseInfo.lookup(PrimaryBase); | 
|  | assert(PrimaryBaseInfo && | 
|  | "Did not find base info for non-virtual primary base!"); | 
|  |  | 
|  | LayoutNonVirtualBase(PrimaryBaseInfo); | 
|  | } | 
|  |  | 
|  | // If this class needs a vtable/vf-table and didn't get one from a | 
|  | // primary base, add it in now. | 
|  | } else if (RD->isDynamicClass()) { | 
|  | assert(DataSize == 0 && "Vtable pointer must be at offset zero!"); | 
|  | CharUnits PtrWidth = Context.toCharUnitsFromBits( | 
|  | Context.getTargetInfo().getPointerWidth(LangAS::Default)); | 
|  | CharUnits PtrAlign = Context.toCharUnitsFromBits( | 
|  | Context.getTargetInfo().getPointerAlign(LangAS::Default)); | 
|  | EnsureVTablePointerAlignment(PtrAlign); | 
|  | HasOwnVFPtr = true; | 
|  |  | 
|  | assert(!IsUnion && "Unions cannot be dynamic classes."); | 
|  | HandledFirstNonOverlappingEmptyField = true; | 
|  |  | 
|  | setSize(getSize() + PtrWidth); | 
|  | setDataSize(getSize()); | 
|  | } | 
|  |  | 
|  | // Now lay out the non-virtual bases. | 
|  | for (const auto &I : RD->bases()) { | 
|  |  | 
|  | // Ignore virtual bases. | 
|  | if (I.isVirtual()) | 
|  | continue; | 
|  |  | 
|  | const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl(); | 
|  |  | 
|  | // Skip the primary base, because we've already laid it out.  The | 
|  | // !PrimaryBaseIsVirtual check is required because we might have a | 
|  | // non-virtual base of the same type as a primary virtual base. | 
|  | if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual) | 
|  | continue; | 
|  |  | 
|  | // Lay out the base. | 
|  | BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl); | 
|  | assert(BaseInfo && "Did not find base info for non-virtual base!"); | 
|  |  | 
|  | LayoutNonVirtualBase(BaseInfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase( | 
|  | const BaseSubobjectInfo *Base) { | 
|  | // Layout the base. | 
|  | CharUnits Offset = LayoutBase(Base); | 
|  |  | 
|  | // Add its base class offset. | 
|  | assert(!Bases.count(Base->Class) && "base offset already exists!"); | 
|  | Bases.insert(std::make_pair(Base->Class, Offset)); | 
|  |  | 
|  | AddPrimaryVirtualBaseOffsets(Base, Offset); | 
|  | } | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets( | 
|  | const BaseSubobjectInfo *Info, CharUnits Offset) { | 
|  | // This base isn't interesting, it has no virtual bases. | 
|  | if (!Info->Class->getNumVBases()) | 
|  | return; | 
|  |  | 
|  | // First, check if we have a virtual primary base to add offsets for. | 
|  | if (Info->PrimaryVirtualBaseInfo) { | 
|  | assert(Info->PrimaryVirtualBaseInfo->IsVirtual && | 
|  | "Primary virtual base is not virtual!"); | 
|  | if (Info->PrimaryVirtualBaseInfo->Derived == Info) { | 
|  | // Add the offset. | 
|  | assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) && | 
|  | "primary vbase offset already exists!"); | 
|  | VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class, | 
|  | ASTRecordLayout::VBaseInfo(Offset, false))); | 
|  |  | 
|  | // Traverse the primary virtual base. | 
|  | AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now go through all direct non-virtual bases. | 
|  | const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class); | 
|  | for (const BaseSubobjectInfo *Base : Info->Bases) { | 
|  | if (Base->IsVirtual) | 
|  | continue; | 
|  |  | 
|  | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class); | 
|  | AddPrimaryVirtualBaseOffsets(Base, BaseOffset); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::LayoutVirtualBases( | 
|  | const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) { | 
|  | const CXXRecordDecl *PrimaryBase; | 
|  | bool PrimaryBaseIsVirtual; | 
|  |  | 
|  | if (MostDerivedClass == RD) { | 
|  | PrimaryBase = this->PrimaryBase; | 
|  | PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual; | 
|  | } else { | 
|  | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); | 
|  | PrimaryBase = Layout.getPrimaryBase(); | 
|  | PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); | 
|  | } | 
|  |  | 
|  | for (const CXXBaseSpecifier &Base : RD->bases()) { | 
|  | assert(!Base.getType()->isDependentType() && | 
|  | "Cannot layout class with dependent bases."); | 
|  |  | 
|  | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | 
|  |  | 
|  | if (Base.isVirtual()) { | 
|  | if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) { | 
|  | bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl); | 
|  |  | 
|  | // Only lay out the virtual base if it's not an indirect primary base. | 
|  | if (!IndirectPrimaryBase) { | 
|  | // Only visit virtual bases once. | 
|  | if (!VisitedVirtualBases.insert(BaseDecl).second) | 
|  | continue; | 
|  |  | 
|  | const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl); | 
|  | assert(BaseInfo && "Did not find virtual base info!"); | 
|  | LayoutVirtualBase(BaseInfo); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!BaseDecl->getNumVBases()) { | 
|  | // This base isn't interesting since it doesn't have any virtual bases. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | LayoutVirtualBases(BaseDecl, MostDerivedClass); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::LayoutVirtualBase( | 
|  | const BaseSubobjectInfo *Base) { | 
|  | assert(!Base->Derived && "Trying to lay out a primary virtual base!"); | 
|  |  | 
|  | // Layout the base. | 
|  | CharUnits Offset = LayoutBase(Base); | 
|  |  | 
|  | // Add its base class offset. | 
|  | assert(!VBases.count(Base->Class) && "vbase offset already exists!"); | 
|  | VBases.insert(std::make_pair(Base->Class, | 
|  | ASTRecordLayout::VBaseInfo(Offset, false))); | 
|  |  | 
|  | AddPrimaryVirtualBaseOffsets(Base, Offset); | 
|  | } | 
|  |  | 
|  | CharUnits | 
|  | ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) { | 
|  | assert(!IsUnion && "Unions cannot have base classes."); | 
|  |  | 
|  | const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class); | 
|  | CharUnits Offset; | 
|  |  | 
|  | // Query the external layout to see if it provides an offset. | 
|  | bool HasExternalLayout = false; | 
|  | if (UseExternalLayout) { | 
|  | if (Base->IsVirtual) | 
|  | HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset); | 
|  | else | 
|  | HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset); | 
|  | } | 
|  |  | 
|  | auto getBaseOrPreferredBaseAlignFromUnpacked = [&](CharUnits UnpackedAlign) { | 
|  | // Clang <= 6 incorrectly applied the 'packed' attribute to base classes. | 
|  | // Per GCC's documentation, it only applies to non-static data members. | 
|  | return (Packed && ((Context.getLangOpts().getClangABICompat() <= | 
|  | LangOptions::ClangABI::Ver6) || | 
|  | Context.getTargetInfo().getTriple().isPS() || | 
|  | Context.getTargetInfo().getTriple().isOSAIX())) | 
|  | ? CharUnits::One() | 
|  | : UnpackedAlign; | 
|  | }; | 
|  |  | 
|  | CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment(); | 
|  | CharUnits UnpackedPreferredBaseAlign = Layout.getPreferredNVAlignment(); | 
|  | CharUnits BaseAlign = | 
|  | getBaseOrPreferredBaseAlignFromUnpacked(UnpackedBaseAlign); | 
|  | CharUnits PreferredBaseAlign = | 
|  | getBaseOrPreferredBaseAlignFromUnpacked(UnpackedPreferredBaseAlign); | 
|  |  | 
|  | const bool DefaultsToAIXPowerAlignment = | 
|  | Context.getTargetInfo().defaultsToAIXPowerAlignment(); | 
|  | if (DefaultsToAIXPowerAlignment) { | 
|  | // AIX `power` alignment does not apply the preferred alignment for | 
|  | // non-union classes if the source of the alignment (the current base in | 
|  | // this context) follows introduction of the first subobject with | 
|  | // exclusively allocated space or zero-extent array. | 
|  | if (!Base->Class->isEmpty() && !HandledFirstNonOverlappingEmptyField) { | 
|  | // By handling a base class that is not empty, we're handling the | 
|  | // "first (inherited) member". | 
|  | HandledFirstNonOverlappingEmptyField = true; | 
|  | } else if (!IsNaturalAlign) { | 
|  | UnpackedPreferredBaseAlign = UnpackedBaseAlign; | 
|  | PreferredBaseAlign = BaseAlign; | 
|  | } | 
|  | } | 
|  |  | 
|  | CharUnits UnpackedAlignTo = !DefaultsToAIXPowerAlignment | 
|  | ? UnpackedBaseAlign | 
|  | : UnpackedPreferredBaseAlign; | 
|  | // If we have an empty base class, try to place it at offset 0. | 
|  | if (Base->Class->isEmpty() && | 
|  | (!HasExternalLayout || Offset == CharUnits::Zero()) && | 
|  | EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) { | 
|  | setSize(std::max(getSize(), Layout.getSize())); | 
|  | // On PS4/PS5, don't update the alignment, to preserve compatibility. | 
|  | if (!Context.getTargetInfo().getTriple().isPS()) | 
|  | UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign); | 
|  |  | 
|  | return CharUnits::Zero(); | 
|  | } | 
|  |  | 
|  | // The maximum field alignment overrides the base align/(AIX-only) preferred | 
|  | // base align. | 
|  | if (!MaxFieldAlignment.isZero()) { | 
|  | BaseAlign = std::min(BaseAlign, MaxFieldAlignment); | 
|  | PreferredBaseAlign = std::min(PreferredBaseAlign, MaxFieldAlignment); | 
|  | UnpackedAlignTo = std::min(UnpackedAlignTo, MaxFieldAlignment); | 
|  | } | 
|  |  | 
|  | CharUnits AlignTo = | 
|  | !DefaultsToAIXPowerAlignment ? BaseAlign : PreferredBaseAlign; | 
|  | if (!HasExternalLayout) { | 
|  | // Round up the current record size to the base's alignment boundary. | 
|  | Offset = getDataSize().alignTo(AlignTo); | 
|  |  | 
|  | // Try to place the base. | 
|  | while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset)) | 
|  | Offset += AlignTo; | 
|  | } else { | 
|  | bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset); | 
|  | (void)Allowed; | 
|  | assert(Allowed && "Base subobject externally placed at overlapping offset"); | 
|  |  | 
|  | if (InferAlignment && Offset < getDataSize().alignTo(AlignTo)) { | 
|  | // The externally-supplied base offset is before the base offset we | 
|  | // computed. Assume that the structure is packed. | 
|  | Alignment = CharUnits::One(); | 
|  | InferAlignment = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!Base->Class->isEmpty()) { | 
|  | // Update the data size. | 
|  | setDataSize(Offset + Layout.getNonVirtualSize()); | 
|  |  | 
|  | setSize(std::max(getSize(), getDataSize())); | 
|  | } else | 
|  | setSize(std::max(getSize(), Offset + Layout.getSize())); | 
|  |  | 
|  | // Remember max struct/class alignment. | 
|  | UnadjustedAlignment = std::max(UnadjustedAlignment, BaseAlign); | 
|  | UpdateAlignment(BaseAlign, UnpackedAlignTo, PreferredBaseAlign); | 
|  |  | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) { | 
|  | if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) { | 
|  | IsUnion = RD->isUnion(); | 
|  | IsMsStruct = RD->isMsStruct(Context); | 
|  | } | 
|  |  | 
|  | Packed = D->hasAttr<PackedAttr>(); | 
|  |  | 
|  | // Honor the default struct packing maximum alignment flag. | 
|  | if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) { | 
|  | MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment); | 
|  | } | 
|  |  | 
|  | // mac68k alignment supersedes maximum field alignment and attribute aligned, | 
|  | // and forces all structures to have 2-byte alignment. The IBM docs on it | 
|  | // allude to additional (more complicated) semantics, especially with regard | 
|  | // to bit-fields, but gcc appears not to follow that. | 
|  | if (D->hasAttr<AlignMac68kAttr>()) { | 
|  | assert( | 
|  | !D->hasAttr<AlignNaturalAttr>() && | 
|  | "Having both mac68k and natural alignment on a decl is not allowed."); | 
|  | IsMac68kAlign = true; | 
|  | MaxFieldAlignment = CharUnits::fromQuantity(2); | 
|  | Alignment = CharUnits::fromQuantity(2); | 
|  | PreferredAlignment = CharUnits::fromQuantity(2); | 
|  | } else { | 
|  | if (D->hasAttr<AlignNaturalAttr>()) | 
|  | IsNaturalAlign = true; | 
|  |  | 
|  | if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>()) | 
|  | MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment()); | 
|  |  | 
|  | if (unsigned MaxAlign = D->getMaxAlignment()) | 
|  | UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign)); | 
|  | } | 
|  |  | 
|  | HandledFirstNonOverlappingEmptyField = | 
|  | !Context.getTargetInfo().defaultsToAIXPowerAlignment() || IsNaturalAlign; | 
|  |  | 
|  | // If there is an external AST source, ask it for the various offsets. | 
|  | if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) | 
|  | if (ExternalASTSource *Source = Context.getExternalSource()) { | 
|  | UseExternalLayout = Source->layoutRecordType( | 
|  | RD, External.Size, External.Align, External.FieldOffsets, | 
|  | External.BaseOffsets, External.VirtualBaseOffsets); | 
|  |  | 
|  | // Update based on external alignment. | 
|  | if (UseExternalLayout) { | 
|  | if (External.Align > 0) { | 
|  | Alignment = Context.toCharUnitsFromBits(External.Align); | 
|  | PreferredAlignment = Context.toCharUnitsFromBits(External.Align); | 
|  | } else { | 
|  | // The external source didn't have alignment information; infer it. | 
|  | InferAlignment = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) { | 
|  | InitializeLayout(D); | 
|  | LayoutFields(D); | 
|  |  | 
|  | // Finally, round the size of the total struct up to the alignment of the | 
|  | // struct itself. | 
|  | FinishLayout(D); | 
|  | } | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) { | 
|  | InitializeLayout(RD); | 
|  |  | 
|  | // Lay out the vtable and the non-virtual bases. | 
|  | LayoutNonVirtualBases(RD); | 
|  |  | 
|  | LayoutFields(RD); | 
|  |  | 
|  | NonVirtualSize = Context.toCharUnitsFromBits( | 
|  | llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign())); | 
|  | NonVirtualAlignment = Alignment; | 
|  | PreferredNVAlignment = PreferredAlignment; | 
|  |  | 
|  | // Lay out the virtual bases and add the primary virtual base offsets. | 
|  | LayoutVirtualBases(RD, RD); | 
|  |  | 
|  | // Finally, round the size of the total struct up to the alignment | 
|  | // of the struct itself. | 
|  | FinishLayout(RD); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Check that we have base offsets for all bases. | 
|  | for (const CXXBaseSpecifier &Base : RD->bases()) { | 
|  | if (Base.isVirtual()) | 
|  | continue; | 
|  |  | 
|  | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | 
|  |  | 
|  | assert(Bases.count(BaseDecl) && "Did not find base offset!"); | 
|  | } | 
|  |  | 
|  | // And all virtual bases. | 
|  | for (const CXXBaseSpecifier &Base : RD->vbases()) { | 
|  | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | 
|  |  | 
|  | assert(VBases.count(BaseDecl) && "Did not find base offset!"); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) { | 
|  | if (ObjCInterfaceDecl *SD = D->getSuperClass()) { | 
|  | const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD); | 
|  |  | 
|  | UpdateAlignment(SL.getAlignment()); | 
|  |  | 
|  | // We start laying out ivars not at the end of the superclass | 
|  | // structure, but at the next byte following the last field. | 
|  | setDataSize(SL.getDataSize()); | 
|  | setSize(getDataSize()); | 
|  | } | 
|  |  | 
|  | InitializeLayout(D); | 
|  | // Layout each ivar sequentially. | 
|  | for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD; | 
|  | IVD = IVD->getNextIvar()) | 
|  | LayoutField(IVD, false); | 
|  |  | 
|  | // Finally, round the size of the total struct up to the alignment of the | 
|  | // struct itself. | 
|  | FinishLayout(D); | 
|  | } | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) { | 
|  | // Layout each field, for now, just sequentially, respecting alignment.  In | 
|  | // the future, this will need to be tweakable by targets. | 
|  | bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true); | 
|  | bool HasFlexibleArrayMember = D->hasFlexibleArrayMember(); | 
|  | for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) { | 
|  | LayoutField(*I, InsertExtraPadding && | 
|  | (std::next(I) != End || !HasFlexibleArrayMember)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Rounds the specified size to have it a multiple of the char size. | 
|  | static uint64_t | 
|  | roundUpSizeToCharAlignment(uint64_t Size, | 
|  | const ASTContext &Context) { | 
|  | uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); | 
|  | return llvm::alignTo(Size, CharAlignment); | 
|  | } | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize, | 
|  | uint64_t StorageUnitSize, | 
|  | bool FieldPacked, | 
|  | const FieldDecl *D) { | 
|  | assert(Context.getLangOpts().CPlusPlus && | 
|  | "Can only have wide bit-fields in C++!"); | 
|  |  | 
|  | // Itanium C++ ABI 2.4: | 
|  | //   If sizeof(T)*8 < n, let T' be the largest integral POD type with | 
|  | //   sizeof(T')*8 <= n. | 
|  |  | 
|  | QualType IntegralPODTypes[] = { | 
|  | Context.UnsignedCharTy,     Context.UnsignedShortTy, | 
|  | Context.UnsignedIntTy,      Context.UnsignedLongTy, | 
|  | Context.UnsignedLongLongTy, Context.UnsignedInt128Ty, | 
|  | }; | 
|  |  | 
|  | QualType Type; | 
|  | uint64_t MaxSize = | 
|  | Context.getTargetInfo().getLargestOverSizedBitfieldContainer(); | 
|  | for (const QualType &QT : IntegralPODTypes) { | 
|  | uint64_t Size = Context.getTypeSize(QT); | 
|  |  | 
|  | if (Size > FieldSize || Size > MaxSize) | 
|  | break; | 
|  |  | 
|  | Type = QT; | 
|  | } | 
|  | assert(!Type.isNull() && "Did not find a type!"); | 
|  |  | 
|  | CharUnits TypeAlign = Context.getTypeAlignInChars(Type); | 
|  |  | 
|  | // We're not going to use any of the unfilled bits in the last byte. | 
|  | UnfilledBitsInLastUnit = 0; | 
|  | LastBitfieldStorageUnitSize = 0; | 
|  |  | 
|  | uint64_t FieldOffset; | 
|  | uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; | 
|  |  | 
|  | if (IsUnion) { | 
|  | uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, | 
|  | Context); | 
|  | setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize)); | 
|  | FieldOffset = 0; | 
|  | } else { | 
|  | // The bitfield is allocated starting at the next offset aligned | 
|  | // appropriately for T', with length n bits. | 
|  | FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign)); | 
|  |  | 
|  | uint64_t NewSizeInBits = FieldOffset + FieldSize; | 
|  |  | 
|  | setDataSize( | 
|  | llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign())); | 
|  | UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; | 
|  | } | 
|  |  | 
|  | // Place this field at the current location. | 
|  | FieldOffsets.push_back(FieldOffset); | 
|  |  | 
|  | CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset, | 
|  | Context.toBits(TypeAlign), FieldPacked, D); | 
|  |  | 
|  | // Update the size. | 
|  | setSize(std::max(getSizeInBits(), getDataSizeInBits())); | 
|  |  | 
|  | // Remember max struct/class alignment. | 
|  | UnadjustedAlignment = std::max(UnadjustedAlignment, TypeAlign); | 
|  | UpdateAlignment(TypeAlign); | 
|  | } | 
|  |  | 
|  | static bool isAIXLayout(const ASTContext &Context) { | 
|  | return Context.getTargetInfo().getTriple().getOS() == llvm::Triple::AIX; | 
|  | } | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) { | 
|  | bool FieldPacked = Packed || D->hasAttr<PackedAttr>(); | 
|  | uint64_t FieldSize = D->getBitWidthValue(); | 
|  | TypeInfo FieldInfo = Context.getTypeInfo(D->getType()); | 
|  | uint64_t StorageUnitSize = FieldInfo.Width; | 
|  | unsigned FieldAlign = FieldInfo.Align; | 
|  | bool AlignIsRequired = FieldInfo.isAlignRequired(); | 
|  | unsigned char PaddingInLastUnit = 0; | 
|  |  | 
|  | // UnfilledBitsInLastUnit is the difference between the end of the | 
|  | // last allocated bitfield (i.e. the first bit offset available for | 
|  | // bitfields) and the end of the current data size in bits (i.e. the | 
|  | // first bit offset available for non-bitfields).  The current data | 
|  | // size in bits is always a multiple of the char size; additionally, | 
|  | // for ms_struct records it's also a multiple of the | 
|  | // LastBitfieldStorageUnitSize (if set). | 
|  |  | 
|  | // The struct-layout algorithm is dictated by the platform ABI, | 
|  | // which in principle could use almost any rules it likes.  In | 
|  | // practice, UNIXy targets tend to inherit the algorithm described | 
|  | // in the System V generic ABI.  The basic bitfield layout rule in | 
|  | // System V is to place bitfields at the next available bit offset | 
|  | // where the entire bitfield would fit in an aligned storage unit of | 
|  | // the declared type; it's okay if an earlier or later non-bitfield | 
|  | // is allocated in the same storage unit.  However, some targets | 
|  | // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't | 
|  | // require this storage unit to be aligned, and therefore always put | 
|  | // the bitfield at the next available bit offset. | 
|  |  | 
|  | // ms_struct basically requests a complete replacement of the | 
|  | // platform ABI's struct-layout algorithm, with the high-level goal | 
|  | // of duplicating MSVC's layout.  For non-bitfields, this follows | 
|  | // the standard algorithm.  The basic bitfield layout rule is to | 
|  | // allocate an entire unit of the bitfield's declared type | 
|  | // (e.g. 'unsigned long'), then parcel it up among successive | 
|  | // bitfields whose declared types have the same size, making a new | 
|  | // unit as soon as the last can no longer store the whole value. | 
|  | // Since it completely replaces the platform ABI's algorithm, | 
|  | // settings like !useBitFieldTypeAlignment() do not apply. | 
|  |  | 
|  | // A zero-width bitfield forces the use of a new storage unit for | 
|  | // later bitfields.  In general, this occurs by rounding up the | 
|  | // current size of the struct as if the algorithm were about to | 
|  | // place a non-bitfield of the field's formal type.  Usually this | 
|  | // does not change the alignment of the struct itself, but it does | 
|  | // on some targets (those that useZeroLengthBitfieldAlignment(), | 
|  | // e.g. ARM).  In ms_struct layout, zero-width bitfields are | 
|  | // ignored unless they follow a non-zero-width bitfield. | 
|  |  | 
|  | // A field alignment restriction (e.g. from #pragma pack) or | 
|  | // specification (e.g. from __attribute__((aligned))) changes the | 
|  | // formal alignment of the field.  For System V, this alters the | 
|  | // required alignment of the notional storage unit that must contain | 
|  | // the bitfield.  For ms_struct, this only affects the placement of | 
|  | // new storage units.  In both cases, the effect of #pragma pack is | 
|  | // ignored on zero-width bitfields. | 
|  |  | 
|  | // On System V, a packed field (e.g. from #pragma pack or | 
|  | // __attribute__((packed))) always uses the next available bit | 
|  | // offset. | 
|  |  | 
|  | // In an ms_struct struct, the alignment of a fundamental type is | 
|  | // always equal to its size.  This is necessary in order to mimic | 
|  | // the i386 alignment rules on targets which might not fully align | 
|  | // all types (e.g. Darwin PPC32, where alignof(long long) == 4). | 
|  |  | 
|  | // First, some simple bookkeeping to perform for ms_struct structs. | 
|  | if (IsMsStruct) { | 
|  | // The field alignment for integer types is always the size. | 
|  | FieldAlign = StorageUnitSize; | 
|  |  | 
|  | // If the previous field was not a bitfield, or was a bitfield | 
|  | // with a different storage unit size, or if this field doesn't fit into | 
|  | // the current storage unit, we're done with that storage unit. | 
|  | if (LastBitfieldStorageUnitSize != StorageUnitSize || | 
|  | UnfilledBitsInLastUnit < FieldSize) { | 
|  | // Also, ignore zero-length bitfields after non-bitfields. | 
|  | if (!LastBitfieldStorageUnitSize && !FieldSize) | 
|  | FieldAlign = 1; | 
|  |  | 
|  | PaddingInLastUnit = UnfilledBitsInLastUnit; | 
|  | UnfilledBitsInLastUnit = 0; | 
|  | LastBitfieldStorageUnitSize = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isAIXLayout(Context)) { | 
|  | if (StorageUnitSize < Context.getTypeSize(Context.UnsignedIntTy)) { | 
|  | // On AIX, [bool, char, short] bitfields have the same alignment | 
|  | // as [unsigned]. | 
|  | StorageUnitSize = Context.getTypeSize(Context.UnsignedIntTy); | 
|  | } else if (StorageUnitSize > Context.getTypeSize(Context.UnsignedIntTy) && | 
|  | Context.getTargetInfo().getTriple().isArch32Bit() && | 
|  | FieldSize <= 32) { | 
|  | // Under 32-bit compile mode, the bitcontainer is 32 bits if a single | 
|  | // long long bitfield has length no greater than 32 bits. | 
|  | StorageUnitSize = 32; | 
|  |  | 
|  | if (!AlignIsRequired) | 
|  | FieldAlign = 32; | 
|  | } | 
|  |  | 
|  | if (FieldAlign < StorageUnitSize) { | 
|  | // The bitfield alignment should always be greater than or equal to | 
|  | // bitcontainer size. | 
|  | FieldAlign = StorageUnitSize; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the field is wider than its declared type, it follows | 
|  | // different rules in all cases, except on AIX. | 
|  | // On AIX, wide bitfield follows the same rules as normal bitfield. | 
|  | if (FieldSize > StorageUnitSize && !isAIXLayout(Context)) { | 
|  | LayoutWideBitField(FieldSize, StorageUnitSize, FieldPacked, D); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Compute the next available bit offset. | 
|  | uint64_t FieldOffset = | 
|  | IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit); | 
|  |  | 
|  | // Handle targets that don't honor bitfield type alignment. | 
|  | if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) { | 
|  | // Some such targets do honor it on zero-width bitfields. | 
|  | if (FieldSize == 0 && | 
|  | Context.getTargetInfo().useZeroLengthBitfieldAlignment()) { | 
|  | // Some targets don't honor leading zero-width bitfield. | 
|  | if (!IsUnion && FieldOffset == 0 && | 
|  | !Context.getTargetInfo().useLeadingZeroLengthBitfield()) | 
|  | FieldAlign = 1; | 
|  | else { | 
|  | // The alignment to round up to is the max of the field's natural | 
|  | // alignment and a target-specific fixed value (sometimes zero). | 
|  | unsigned ZeroLengthBitfieldBoundary = | 
|  | Context.getTargetInfo().getZeroLengthBitfieldBoundary(); | 
|  | FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary); | 
|  | } | 
|  | // If that doesn't apply, just ignore the field alignment. | 
|  | } else { | 
|  | FieldAlign = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remember the alignment we would have used if the field were not packed. | 
|  | unsigned UnpackedFieldAlign = FieldAlign; | 
|  |  | 
|  | // Ignore the field alignment if the field is packed unless it has zero-size. | 
|  | if (!IsMsStruct && FieldPacked && FieldSize != 0) | 
|  | FieldAlign = 1; | 
|  |  | 
|  | // But, if there's an 'aligned' attribute on the field, honor that. | 
|  | unsigned ExplicitFieldAlign = D->getMaxAlignment(); | 
|  | if (ExplicitFieldAlign) { | 
|  | FieldAlign = std::max(FieldAlign, ExplicitFieldAlign); | 
|  | UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign); | 
|  | } | 
|  |  | 
|  | // But, if there's a #pragma pack in play, that takes precedent over | 
|  | // even the 'aligned' attribute, for non-zero-width bitfields. | 
|  | unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment); | 
|  | if (!MaxFieldAlignment.isZero() && FieldSize) { | 
|  | UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits); | 
|  | if (FieldPacked) | 
|  | FieldAlign = UnpackedFieldAlign; | 
|  | else | 
|  | FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits); | 
|  | } | 
|  |  | 
|  | // But, ms_struct just ignores all of that in unions, even explicit | 
|  | // alignment attributes. | 
|  | if (IsMsStruct && IsUnion) { | 
|  | FieldAlign = UnpackedFieldAlign = 1; | 
|  | } | 
|  |  | 
|  | // For purposes of diagnostics, we're going to simultaneously | 
|  | // compute the field offsets that we would have used if we weren't | 
|  | // adding any alignment padding or if the field weren't packed. | 
|  | uint64_t UnpaddedFieldOffset = FieldOffset - PaddingInLastUnit; | 
|  | uint64_t UnpackedFieldOffset = FieldOffset; | 
|  |  | 
|  | // Check if we need to add padding to fit the bitfield within an | 
|  | // allocation unit with the right size and alignment.  The rules are | 
|  | // somewhat different here for ms_struct structs. | 
|  | if (IsMsStruct) { | 
|  | // If it's not a zero-width bitfield, and we can fit the bitfield | 
|  | // into the active storage unit (and we haven't already decided to | 
|  | // start a new storage unit), just do so, regardless of any other | 
|  | // other consideration.  Otherwise, round up to the right alignment. | 
|  | if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) { | 
|  | FieldOffset = llvm::alignTo(FieldOffset, FieldAlign); | 
|  | UnpackedFieldOffset = | 
|  | llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign); | 
|  | UnfilledBitsInLastUnit = 0; | 
|  | } | 
|  |  | 
|  | } else { | 
|  | // #pragma pack, with any value, suppresses the insertion of padding. | 
|  | bool AllowPadding = MaxFieldAlignment.isZero(); | 
|  |  | 
|  | // Compute the real offset. | 
|  | if (FieldSize == 0 || | 
|  | (AllowPadding && | 
|  | (FieldOffset & (FieldAlign - 1)) + FieldSize > StorageUnitSize)) { | 
|  | FieldOffset = llvm::alignTo(FieldOffset, FieldAlign); | 
|  | } else if (ExplicitFieldAlign && | 
|  | (MaxFieldAlignmentInBits == 0 || | 
|  | ExplicitFieldAlign <= MaxFieldAlignmentInBits) && | 
|  | Context.getTargetInfo().useExplicitBitFieldAlignment()) { | 
|  | // TODO: figure it out what needs to be done on targets that don't honor | 
|  | // bit-field type alignment like ARM APCS ABI. | 
|  | FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign); | 
|  | } | 
|  |  | 
|  | // Repeat the computation for diagnostic purposes. | 
|  | if (FieldSize == 0 || | 
|  | (AllowPadding && | 
|  | (UnpackedFieldOffset & (UnpackedFieldAlign - 1)) + FieldSize > | 
|  | StorageUnitSize)) | 
|  | UnpackedFieldOffset = | 
|  | llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign); | 
|  | else if (ExplicitFieldAlign && | 
|  | (MaxFieldAlignmentInBits == 0 || | 
|  | ExplicitFieldAlign <= MaxFieldAlignmentInBits) && | 
|  | Context.getTargetInfo().useExplicitBitFieldAlignment()) | 
|  | UnpackedFieldOffset = | 
|  | llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign); | 
|  | } | 
|  |  | 
|  | // If we're using external layout, give the external layout a chance | 
|  | // to override this information. | 
|  | if (UseExternalLayout) | 
|  | FieldOffset = updateExternalFieldOffset(D, FieldOffset); | 
|  |  | 
|  | // Okay, place the bitfield at the calculated offset. | 
|  | FieldOffsets.push_back(FieldOffset); | 
|  |  | 
|  | // Bookkeeping: | 
|  |  | 
|  | // Anonymous members don't affect the overall record alignment, | 
|  | // except on targets where they do. | 
|  | if (!IsMsStruct && | 
|  | !Context.getTargetInfo().useZeroLengthBitfieldAlignment() && | 
|  | !D->getIdentifier()) | 
|  | FieldAlign = UnpackedFieldAlign = 1; | 
|  |  | 
|  | // On AIX, zero-width bitfields pad out to the natural alignment boundary, | 
|  | // but do not increase the alignment greater than the MaxFieldAlignment, or 1 | 
|  | // if packed. | 
|  | if (isAIXLayout(Context) && !FieldSize) { | 
|  | if (FieldPacked) | 
|  | FieldAlign = 1; | 
|  | if (!MaxFieldAlignment.isZero()) { | 
|  | UnpackedFieldAlign = | 
|  | std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits); | 
|  | FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Diagnose differences in layout due to padding or packing. | 
|  | if (!UseExternalLayout) | 
|  | CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset, | 
|  | UnpackedFieldAlign, FieldPacked, D); | 
|  |  | 
|  | // Update DataSize to include the last byte containing (part of) the bitfield. | 
|  |  | 
|  | // For unions, this is just a max operation, as usual. | 
|  | if (IsUnion) { | 
|  | // For ms_struct, allocate the entire storage unit --- unless this | 
|  | // is a zero-width bitfield, in which case just use a size of 1. | 
|  | uint64_t RoundedFieldSize; | 
|  | if (IsMsStruct) { | 
|  | RoundedFieldSize = (FieldSize ? StorageUnitSize | 
|  | : Context.getTargetInfo().getCharWidth()); | 
|  |  | 
|  | // Otherwise, allocate just the number of bytes required to store | 
|  | // the bitfield. | 
|  | } else { | 
|  | RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context); | 
|  | } | 
|  | setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize)); | 
|  |  | 
|  | // For non-zero-width bitfields in ms_struct structs, allocate a new | 
|  | // storage unit if necessary. | 
|  | } else if (IsMsStruct && FieldSize) { | 
|  | // We should have cleared UnfilledBitsInLastUnit in every case | 
|  | // where we changed storage units. | 
|  | if (!UnfilledBitsInLastUnit) { | 
|  | setDataSize(FieldOffset + StorageUnitSize); | 
|  | UnfilledBitsInLastUnit = StorageUnitSize; | 
|  | } | 
|  | UnfilledBitsInLastUnit -= FieldSize; | 
|  | LastBitfieldStorageUnitSize = StorageUnitSize; | 
|  |  | 
|  | // Otherwise, bump the data size up to include the bitfield, | 
|  | // including padding up to char alignment, and then remember how | 
|  | // bits we didn't use. | 
|  | } else { | 
|  | uint64_t NewSizeInBits = FieldOffset + FieldSize; | 
|  | uint64_t CharAlignment = Context.getTargetInfo().getCharAlign(); | 
|  | setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment)); | 
|  | UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits; | 
|  |  | 
|  | // The only time we can get here for an ms_struct is if this is a | 
|  | // zero-width bitfield, which doesn't count as anything for the | 
|  | // purposes of unfilled bits. | 
|  | LastBitfieldStorageUnitSize = 0; | 
|  | } | 
|  |  | 
|  | // Update the size. | 
|  | setSize(std::max(getSizeInBits(), getDataSizeInBits())); | 
|  |  | 
|  | // Remember max struct/class alignment. | 
|  | UnadjustedAlignment = | 
|  | std::max(UnadjustedAlignment, Context.toCharUnitsFromBits(FieldAlign)); | 
|  | UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign), | 
|  | Context.toCharUnitsFromBits(UnpackedFieldAlign)); | 
|  | } | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D, | 
|  | bool InsertExtraPadding) { | 
|  | auto *FieldClass = D->getType()->getAsCXXRecordDecl(); | 
|  | bool IsOverlappingEmptyField = | 
|  | D->isPotentiallyOverlapping() && FieldClass->isEmpty(); | 
|  |  | 
|  | CharUnits FieldOffset = | 
|  | (IsUnion || IsOverlappingEmptyField) ? CharUnits::Zero() : getDataSize(); | 
|  |  | 
|  | const bool DefaultsToAIXPowerAlignment = | 
|  | Context.getTargetInfo().defaultsToAIXPowerAlignment(); | 
|  | bool FoundFirstNonOverlappingEmptyFieldForAIX = false; | 
|  | if (DefaultsToAIXPowerAlignment && !HandledFirstNonOverlappingEmptyField) { | 
|  | assert(FieldOffset == CharUnits::Zero() && | 
|  | "The first non-overlapping empty field should have been handled."); | 
|  |  | 
|  | if (!IsOverlappingEmptyField) { | 
|  | FoundFirstNonOverlappingEmptyFieldForAIX = true; | 
|  |  | 
|  | // We're going to handle the "first member" based on | 
|  | // `FoundFirstNonOverlappingEmptyFieldForAIX` during the current | 
|  | // invocation of this function; record it as handled for future | 
|  | // invocations (except for unions, because the current field does not | 
|  | // represent all "firsts"). | 
|  | HandledFirstNonOverlappingEmptyField = !IsUnion; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (D->isBitField()) { | 
|  | LayoutBitField(D); | 
|  | return; | 
|  | } | 
|  |  | 
|  | uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit; | 
|  | // Reset the unfilled bits. | 
|  | UnfilledBitsInLastUnit = 0; | 
|  | LastBitfieldStorageUnitSize = 0; | 
|  |  | 
|  | llvm::Triple Target = Context.getTargetInfo().getTriple(); | 
|  |  | 
|  | AlignRequirementKind AlignRequirement = AlignRequirementKind::None; | 
|  | CharUnits FieldSize; | 
|  | CharUnits FieldAlign; | 
|  | // The amount of this class's dsize occupied by the field. | 
|  | // This is equal to FieldSize unless we're permitted to pack | 
|  | // into the field's tail padding. | 
|  | CharUnits EffectiveFieldSize; | 
|  |  | 
|  | auto setDeclInfo = [&](bool IsIncompleteArrayType) { | 
|  | auto TI = Context.getTypeInfoInChars(D->getType()); | 
|  | FieldAlign = TI.Align; | 
|  | // Flexible array members don't have any size, but they have to be | 
|  | // aligned appropriately for their element type. | 
|  | EffectiveFieldSize = FieldSize = | 
|  | IsIncompleteArrayType ? CharUnits::Zero() : TI.Width; | 
|  | AlignRequirement = TI.AlignRequirement; | 
|  | }; | 
|  |  | 
|  | if (D->getType()->isIncompleteArrayType()) { | 
|  | setDeclInfo(true /* IsIncompleteArrayType */); | 
|  | } else { | 
|  | setDeclInfo(false /* IsIncompleteArrayType */); | 
|  |  | 
|  | // A potentially-overlapping field occupies its dsize or nvsize, whichever | 
|  | // is larger. | 
|  | if (D->isPotentiallyOverlapping()) { | 
|  | const ASTRecordLayout &Layout = Context.getASTRecordLayout(FieldClass); | 
|  | EffectiveFieldSize = | 
|  | std::max(Layout.getNonVirtualSize(), Layout.getDataSize()); | 
|  | } | 
|  |  | 
|  | if (IsMsStruct) { | 
|  | // If MS bitfield layout is required, figure out what type is being | 
|  | // laid out and align the field to the width of that type. | 
|  |  | 
|  | // Resolve all typedefs down to their base type and round up the field | 
|  | // alignment if necessary. | 
|  | QualType T = Context.getBaseElementType(D->getType()); | 
|  | if (const BuiltinType *BTy = T->getAs<BuiltinType>()) { | 
|  | CharUnits TypeSize = Context.getTypeSizeInChars(BTy); | 
|  |  | 
|  | if (!llvm::isPowerOf2_64(TypeSize.getQuantity())) { | 
|  | assert( | 
|  | !Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment() && | 
|  | "Non PowerOf2 size in MSVC mode"); | 
|  | // Base types with sizes that aren't a power of two don't work | 
|  | // with the layout rules for MS structs. This isn't an issue in | 
|  | // MSVC itself since there are no such base data types there. | 
|  | // On e.g. x86_32 mingw and linux, long double is 12 bytes though. | 
|  | // Any structs involving that data type obviously can't be ABI | 
|  | // compatible with MSVC regardless of how it is laid out. | 
|  |  | 
|  | // Since ms_struct can be mass enabled (via a pragma or via the | 
|  | // -mms-bitfields command line parameter), this can trigger for | 
|  | // structs that don't actually need MSVC compatibility, so we | 
|  | // need to be able to sidestep the ms_struct layout for these types. | 
|  |  | 
|  | // Since the combination of -mms-bitfields together with structs | 
|  | // like max_align_t (which contains a long double) for mingw is | 
|  | // quite common (and GCC handles it silently), just handle it | 
|  | // silently there. For other targets that have ms_struct enabled | 
|  | // (most probably via a pragma or attribute), trigger a diagnostic | 
|  | // that defaults to an error. | 
|  | if (!Context.getTargetInfo().getTriple().isOSCygMing()) | 
|  | Diag(D->getLocation(), diag::warn_npot_ms_struct); | 
|  | } | 
|  | if (TypeSize > FieldAlign && | 
|  | llvm::isPowerOf2_64(TypeSize.getQuantity())) | 
|  | FieldAlign = TypeSize; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool FieldPacked = (Packed && (!FieldClass || FieldClass->isPOD() || | 
|  | FieldClass->hasAttr<PackedAttr>() || | 
|  | Context.getLangOpts().getClangABICompat() <= | 
|  | LangOptions::ClangABI::Ver15 || | 
|  | Target.isPS() || Target.isOSDarwin() || | 
|  | Target.isOSAIX())) || | 
|  | D->hasAttr<PackedAttr>(); | 
|  |  | 
|  | // When used as part of a typedef, or together with a 'packed' attribute, the | 
|  | // 'aligned' attribute can be used to decrease alignment. In that case, it | 
|  | // overrides any computed alignment we have, and there is no need to upgrade | 
|  | // the alignment. | 
|  | auto alignedAttrCanDecreaseAIXAlignment = [AlignRequirement, FieldPacked] { | 
|  | // Enum alignment sources can be safely ignored here, because this only | 
|  | // helps decide whether we need the AIX alignment upgrade, which only | 
|  | // applies to floating-point types. | 
|  | return AlignRequirement == AlignRequirementKind::RequiredByTypedef || | 
|  | (AlignRequirement == AlignRequirementKind::RequiredByRecord && | 
|  | FieldPacked); | 
|  | }; | 
|  |  | 
|  | // The AIX `power` alignment rules apply the natural alignment of the | 
|  | // "first member" if it is of a floating-point data type (or is an aggregate | 
|  | // whose recursively "first" member or element is such a type). The alignment | 
|  | // associated with these types for subsequent members use an alignment value | 
|  | // where the floating-point data type is considered to have 4-byte alignment. | 
|  | // | 
|  | // For the purposes of the foregoing: vtable pointers, non-empty base classes, | 
|  | // and zero-width bit-fields count as prior members; members of empty class | 
|  | // types marked `no_unique_address` are not considered to be prior members. | 
|  | CharUnits PreferredAlign = FieldAlign; | 
|  | if (DefaultsToAIXPowerAlignment && !alignedAttrCanDecreaseAIXAlignment() && | 
|  | (FoundFirstNonOverlappingEmptyFieldForAIX || IsNaturalAlign)) { | 
|  | auto performBuiltinTypeAlignmentUpgrade = [&](const BuiltinType *BTy) { | 
|  | if (BTy->getKind() == BuiltinType::Double || | 
|  | BTy->getKind() == BuiltinType::LongDouble) { | 
|  | assert(PreferredAlign == CharUnits::fromQuantity(4) && | 
|  | "No need to upgrade the alignment value."); | 
|  | PreferredAlign = CharUnits::fromQuantity(8); | 
|  | } | 
|  | }; | 
|  |  | 
|  | const Type *BaseTy = D->getType()->getBaseElementTypeUnsafe(); | 
|  | if (const ComplexType *CTy = BaseTy->getAs<ComplexType>()) { | 
|  | performBuiltinTypeAlignmentUpgrade( | 
|  | CTy->getElementType()->castAs<BuiltinType>()); | 
|  | } else if (const BuiltinType *BTy = BaseTy->getAs<BuiltinType>()) { | 
|  | performBuiltinTypeAlignmentUpgrade(BTy); | 
|  | } else if (const RecordType *RT = BaseTy->getAsCanonical<RecordType>()) { | 
|  | const RecordDecl *RD = RT->getOriginalDecl(); | 
|  | const ASTRecordLayout &FieldRecord = Context.getASTRecordLayout(RD); | 
|  | PreferredAlign = FieldRecord.getPreferredAlignment(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The align if the field is not packed. This is to check if the attribute | 
|  | // was unnecessary (-Wpacked). | 
|  | CharUnits UnpackedFieldAlign = FieldAlign; | 
|  | CharUnits PackedFieldAlign = CharUnits::One(); | 
|  | CharUnits UnpackedFieldOffset = FieldOffset; | 
|  | CharUnits OriginalFieldAlign = UnpackedFieldAlign; | 
|  |  | 
|  | CharUnits MaxAlignmentInChars = | 
|  | Context.toCharUnitsFromBits(D->getMaxAlignment()); | 
|  | PackedFieldAlign = std::max(PackedFieldAlign, MaxAlignmentInChars); | 
|  | PreferredAlign = std::max(PreferredAlign, MaxAlignmentInChars); | 
|  | UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars); | 
|  |  | 
|  | // The maximum field alignment overrides the aligned attribute. | 
|  | if (!MaxFieldAlignment.isZero()) { | 
|  | PackedFieldAlign = std::min(PackedFieldAlign, MaxFieldAlignment); | 
|  | PreferredAlign = std::min(PreferredAlign, MaxFieldAlignment); | 
|  | UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment); | 
|  | } | 
|  |  | 
|  |  | 
|  | if (!FieldPacked) | 
|  | FieldAlign = UnpackedFieldAlign; | 
|  | if (DefaultsToAIXPowerAlignment) | 
|  | UnpackedFieldAlign = PreferredAlign; | 
|  | if (FieldPacked) { | 
|  | PreferredAlign = PackedFieldAlign; | 
|  | FieldAlign = PackedFieldAlign; | 
|  | } | 
|  |  | 
|  | CharUnits AlignTo = | 
|  | !DefaultsToAIXPowerAlignment ? FieldAlign : PreferredAlign; | 
|  | // Round up the current record size to the field's alignment boundary. | 
|  | FieldOffset = FieldOffset.alignTo(AlignTo); | 
|  | UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign); | 
|  |  | 
|  | if (UseExternalLayout) { | 
|  | FieldOffset = Context.toCharUnitsFromBits( | 
|  | updateExternalFieldOffset(D, Context.toBits(FieldOffset))); | 
|  |  | 
|  | if (!IsUnion && EmptySubobjects) { | 
|  | // Record the fact that we're placing a field at this offset. | 
|  | bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset); | 
|  | (void)Allowed; | 
|  | assert(Allowed && "Externally-placed field cannot be placed here"); | 
|  | } | 
|  | } else { | 
|  | if (!IsUnion && EmptySubobjects) { | 
|  | // Check if we can place the field at this offset. | 
|  | while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) { | 
|  | // We couldn't place the field at the offset. Try again at a new offset. | 
|  | // We try offset 0 (for an empty field) and then dsize(C) onwards. | 
|  | if (FieldOffset == CharUnits::Zero() && | 
|  | getDataSize() != CharUnits::Zero()) | 
|  | FieldOffset = getDataSize().alignTo(AlignTo); | 
|  | else | 
|  | FieldOffset += AlignTo; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Place this field at the current location. | 
|  | FieldOffsets.push_back(Context.toBits(FieldOffset)); | 
|  |  | 
|  | if (!UseExternalLayout) | 
|  | CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset, | 
|  | Context.toBits(UnpackedFieldOffset), | 
|  | Context.toBits(UnpackedFieldAlign), FieldPacked, D); | 
|  |  | 
|  | if (InsertExtraPadding) { | 
|  | CharUnits ASanAlignment = CharUnits::fromQuantity(8); | 
|  | CharUnits ExtraSizeForAsan = ASanAlignment; | 
|  | if (!FieldSize.isMultipleOf(ASanAlignment)) | 
|  | ExtraSizeForAsan += ASanAlignment - (FieldSize % ASanAlignment); | 
|  | EffectiveFieldSize = FieldSize = FieldSize + ExtraSizeForAsan; | 
|  | } | 
|  |  | 
|  | // Reserve space for this field. | 
|  | if (!IsOverlappingEmptyField) { | 
|  | uint64_t EffectiveFieldSizeInBits = Context.toBits(EffectiveFieldSize); | 
|  | if (IsUnion) | 
|  | setDataSize(std::max(getDataSizeInBits(), EffectiveFieldSizeInBits)); | 
|  | else | 
|  | setDataSize(FieldOffset + EffectiveFieldSize); | 
|  |  | 
|  | PaddedFieldSize = std::max(PaddedFieldSize, FieldOffset + FieldSize); | 
|  | setSize(std::max(getSizeInBits(), getDataSizeInBits())); | 
|  | } else { | 
|  | setSize(std::max(getSizeInBits(), | 
|  | (uint64_t)Context.toBits(FieldOffset + FieldSize))); | 
|  | } | 
|  |  | 
|  | // Remember max struct/class ABI-specified alignment. | 
|  | UnadjustedAlignment = std::max(UnadjustedAlignment, FieldAlign); | 
|  | UpdateAlignment(FieldAlign, UnpackedFieldAlign, PreferredAlign); | 
|  |  | 
|  | // For checking the alignment of inner fields against | 
|  | // the alignment of its parent record. | 
|  | if (const RecordDecl *RD = D->getParent()) { | 
|  | // Check if packed attribute or pragma pack is present. | 
|  | if (RD->hasAttr<PackedAttr>() || !MaxFieldAlignment.isZero()) | 
|  | if (FieldAlign < OriginalFieldAlign) | 
|  | if (D->getType()->isRecordType()) { | 
|  | // If the offset is not a multiple of the alignment of | 
|  | // the type, raise the warning. | 
|  | // TODO: Takes no account the alignment of the outer struct | 
|  | if (!FieldOffset.isMultipleOf(OriginalFieldAlign)) | 
|  | Diag(D->getLocation(), diag::warn_unaligned_access) | 
|  | << Context.getCanonicalTagType(RD) << D->getName() | 
|  | << D->getType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Packed && !FieldPacked && PackedFieldAlign < FieldAlign) | 
|  | Diag(D->getLocation(), diag::warn_unpacked_field) << D; | 
|  | } | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) { | 
|  | // In C++, records cannot be of size 0. | 
|  | if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) { | 
|  | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { | 
|  | // Compatibility with gcc requires a class (pod or non-pod) | 
|  | // which is not empty but of size 0; such as having fields of | 
|  | // array of zero-length, remains of Size 0 | 
|  | if (RD->isEmpty()) | 
|  | setSize(CharUnits::One()); | 
|  | } | 
|  | else | 
|  | setSize(CharUnits::One()); | 
|  | } | 
|  |  | 
|  | // If we have any remaining field tail padding, include that in the overall | 
|  | // size. | 
|  | setSize(std::max(getSizeInBits(), (uint64_t)Context.toBits(PaddedFieldSize))); | 
|  |  | 
|  | // Finally, round the size of the record up to the alignment of the | 
|  | // record itself. | 
|  | uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit; | 
|  | uint64_t UnpackedSizeInBits = | 
|  | llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment)); | 
|  |  | 
|  | uint64_t RoundedSize = llvm::alignTo( | 
|  | getSizeInBits(), | 
|  | Context.toBits(!Context.getTargetInfo().defaultsToAIXPowerAlignment() | 
|  | ? Alignment | 
|  | : PreferredAlignment)); | 
|  |  | 
|  | if (UseExternalLayout) { | 
|  | // If we're inferring alignment, and the external size is smaller than | 
|  | // our size after we've rounded up to alignment, conservatively set the | 
|  | // alignment to 1. | 
|  | if (InferAlignment && External.Size < RoundedSize) { | 
|  | Alignment = CharUnits::One(); | 
|  | PreferredAlignment = CharUnits::One(); | 
|  | InferAlignment = false; | 
|  | } | 
|  | setSize(External.Size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Set the size to the final size. | 
|  | setSize(RoundedSize); | 
|  |  | 
|  | unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); | 
|  | if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) { | 
|  | // Warn if padding was introduced to the struct/class/union. | 
|  | if (getSizeInBits() > UnpaddedSize) { | 
|  | unsigned PadSize = getSizeInBits() - UnpaddedSize; | 
|  | bool InBits = true; | 
|  | if (PadSize % CharBitNum == 0) { | 
|  | PadSize = PadSize / CharBitNum; | 
|  | InBits = false; | 
|  | } | 
|  | Diag(RD->getLocation(), diag::warn_padded_struct_size) | 
|  | << Context.getCanonicalTagType(RD) << PadSize | 
|  | << (InBits ? 1 : 0); // (byte|bit) | 
|  | } | 
|  |  | 
|  | const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); | 
|  |  | 
|  | // Warn if we packed it unnecessarily, when the unpacked alignment is not | 
|  | // greater than the one after packing, the size in bits doesn't change and | 
|  | // the offset of each field is identical. | 
|  | // Unless the type is non-POD (for Clang ABI > 15), where the packed | 
|  | // attribute on such a type does allow the type to be packed into other | 
|  | // structures that use the packed attribute. | 
|  | if (Packed && UnpackedAlignment <= Alignment && | 
|  | UnpackedSizeInBits == getSizeInBits() && !HasPackedField && | 
|  | (!CXXRD || CXXRD->isPOD() || | 
|  | Context.getLangOpts().getClangABICompat() <= | 
|  | LangOptions::ClangABI::Ver15)) | 
|  | Diag(D->getLocation(), diag::warn_unnecessary_packed) | 
|  | << Context.getCanonicalTagType(RD); | 
|  | } | 
|  | } | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::UpdateAlignment( | 
|  | CharUnits NewAlignment, CharUnits UnpackedNewAlignment, | 
|  | CharUnits PreferredNewAlignment) { | 
|  | // The alignment is not modified when using 'mac68k' alignment or when | 
|  | // we have an externally-supplied layout that also provides overall alignment. | 
|  | if (IsMac68kAlign || (UseExternalLayout && !InferAlignment)) | 
|  | return; | 
|  |  | 
|  | if (NewAlignment > Alignment) { | 
|  | assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) && | 
|  | "Alignment not a power of 2"); | 
|  | Alignment = NewAlignment; | 
|  | } | 
|  |  | 
|  | if (UnpackedNewAlignment > UnpackedAlignment) { | 
|  | assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) && | 
|  | "Alignment not a power of 2"); | 
|  | UnpackedAlignment = UnpackedNewAlignment; | 
|  | } | 
|  |  | 
|  | if (PreferredNewAlignment > PreferredAlignment) { | 
|  | assert(llvm::isPowerOf2_64(PreferredNewAlignment.getQuantity()) && | 
|  | "Alignment not a power of 2"); | 
|  | PreferredAlignment = PreferredNewAlignment; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t | 
|  | ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field, | 
|  | uint64_t ComputedOffset) { | 
|  | uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field); | 
|  |  | 
|  | if (InferAlignment && ExternalFieldOffset < ComputedOffset) { | 
|  | // The externally-supplied field offset is before the field offset we | 
|  | // computed. Assume that the structure is packed. | 
|  | Alignment = CharUnits::One(); | 
|  | PreferredAlignment = CharUnits::One(); | 
|  | InferAlignment = false; | 
|  | } | 
|  |  | 
|  | // Use the externally-supplied field offset. | 
|  | return ExternalFieldOffset; | 
|  | } | 
|  |  | 
|  | /// Get diagnostic %select index for tag kind for | 
|  | /// field padding diagnostic message. | 
|  | /// WARNING: Indexes apply to particular diagnostics only! | 
|  | /// | 
|  | /// \returns diagnostic %select index. | 
|  | static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) { | 
|  | switch (Tag) { | 
|  | case TagTypeKind::Struct: | 
|  | return 0; | 
|  | case TagTypeKind::Interface: | 
|  | return 1; | 
|  | case TagTypeKind::Class: | 
|  | return 2; | 
|  | default: llvm_unreachable("Invalid tag kind for field padding diagnostic!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void CheckFieldPadding(const ASTContext &Context, bool IsUnion, | 
|  | uint64_t Offset, uint64_t UnpaddedOffset, | 
|  | const FieldDecl *D) { | 
|  | // We let objc ivars without warning, objc interfaces generally are not used | 
|  | // for padding tricks. | 
|  | if (isa<ObjCIvarDecl>(D)) | 
|  | return; | 
|  |  | 
|  | // Don't warn about structs created without a SourceLocation.  This can | 
|  | // be done by clients of the AST, such as codegen. | 
|  | if (D->getLocation().isInvalid()) | 
|  | return; | 
|  |  | 
|  | unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); | 
|  |  | 
|  | // Warn if padding was introduced to the struct/class. | 
|  | if (!IsUnion && Offset > UnpaddedOffset) { | 
|  | unsigned PadSize = Offset - UnpaddedOffset; | 
|  | bool InBits = true; | 
|  | if (PadSize % CharBitNum == 0) { | 
|  | PadSize = PadSize / CharBitNum; | 
|  | InBits = false; | 
|  | } | 
|  | if (D->getIdentifier()) { | 
|  | auto Diagnostic = D->isBitField() ? diag::warn_padded_struct_bitfield | 
|  | : diag::warn_padded_struct_field; | 
|  | Context.getDiagnostics().Report(D->getLocation(), | 
|  | Diagnostic) | 
|  | << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) | 
|  | << Context.getCanonicalTagType(D->getParent()) << PadSize | 
|  | << (InBits ? 1 : 0) // (byte|bit) | 
|  | << D->getIdentifier(); | 
|  | } else { | 
|  | auto Diagnostic = D->isBitField() ? diag::warn_padded_struct_anon_bitfield | 
|  | : diag::warn_padded_struct_anon_field; | 
|  | Context.getDiagnostics().Report(D->getLocation(), | 
|  | Diagnostic) | 
|  | << getPaddingDiagFromTagKind(D->getParent()->getTagKind()) | 
|  | << Context.getCanonicalTagType(D->getParent()) << PadSize | 
|  | << (InBits ? 1 : 0); // (byte|bit) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ItaniumRecordLayoutBuilder::CheckFieldPadding( | 
|  | uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset, | 
|  | unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) { | 
|  | ::CheckFieldPadding(Context, IsUnion, Offset, UnpaddedOffset, D); | 
|  | if (isPacked && Offset != UnpackedOffset) { | 
|  | HasPackedField = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const CXXMethodDecl *computeKeyFunction(ASTContext &Context, | 
|  | const CXXRecordDecl *RD) { | 
|  | // If a class isn't polymorphic it doesn't have a key function. | 
|  | if (!RD->isPolymorphic()) | 
|  | return nullptr; | 
|  |  | 
|  | // A class that is not externally visible doesn't have a key function. (Or | 
|  | // at least, there's no point to assigning a key function to such a class; | 
|  | // this doesn't affect the ABI.) | 
|  | if (!RD->isExternallyVisible()) | 
|  | return nullptr; | 
|  |  | 
|  | // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6. | 
|  | // Same behavior as GCC. | 
|  | TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); | 
|  | if (TSK == TSK_ImplicitInstantiation || | 
|  | TSK == TSK_ExplicitInstantiationDeclaration || | 
|  | TSK == TSK_ExplicitInstantiationDefinition) | 
|  | return nullptr; | 
|  |  | 
|  | bool allowInlineFunctions = | 
|  | Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline(); | 
|  |  | 
|  | for (const CXXMethodDecl *MD : RD->methods()) { | 
|  | if (!MD->isVirtual()) | 
|  | continue; | 
|  |  | 
|  | if (MD->isPureVirtual()) | 
|  | continue; | 
|  |  | 
|  | // Ignore implicit member functions, they are always marked as inline, but | 
|  | // they don't have a body until they're defined. | 
|  | if (MD->isImplicit()) | 
|  | continue; | 
|  |  | 
|  | if (MD->isInlineSpecified() || MD->isConstexpr()) | 
|  | continue; | 
|  |  | 
|  | if (MD->hasInlineBody()) | 
|  | continue; | 
|  |  | 
|  | // Ignore inline deleted or defaulted functions. | 
|  | if (!MD->isUserProvided()) | 
|  | continue; | 
|  |  | 
|  | // In certain ABIs, ignore functions with out-of-line inline definitions. | 
|  | if (!allowInlineFunctions) { | 
|  | const FunctionDecl *Def; | 
|  | if (MD->hasBody(Def) && Def->isInlineSpecified()) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Context.getLangOpts().CUDA) { | 
|  | // While compiler may see key method in this TU, during CUDA | 
|  | // compilation we should ignore methods that are not accessible | 
|  | // on this side of compilation. | 
|  | if (Context.getLangOpts().CUDAIsDevice) { | 
|  | // In device mode ignore methods without __device__ attribute. | 
|  | if (!MD->hasAttr<CUDADeviceAttr>()) | 
|  | continue; | 
|  | } else { | 
|  | // In host mode ignore __device__-only methods. | 
|  | if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>()) | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the key function is dllimport but the class isn't, then the class has | 
|  | // no key function. The DLL that exports the key function won't export the | 
|  | // vtable in this case. | 
|  | if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>() && | 
|  | !Context.getTargetInfo().hasPS4DLLImportExport()) | 
|  | return nullptr; | 
|  |  | 
|  | // We found it. | 
|  | return MD; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc, | 
|  | unsigned DiagID) { | 
|  | return Context.getDiagnostics().Report(Loc, DiagID); | 
|  | } | 
|  |  | 
|  | /// Does the target C++ ABI require us to skip over the tail-padding | 
|  | /// of the given class (considering it as a base class) when allocating | 
|  | /// objects? | 
|  | static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) { | 
|  | switch (ABI.getTailPaddingUseRules()) { | 
|  | case TargetCXXABI::AlwaysUseTailPadding: | 
|  | return false; | 
|  |  | 
|  | case TargetCXXABI::UseTailPaddingUnlessPOD03: | 
|  | // FIXME: To the extent that this is meant to cover the Itanium ABI | 
|  | // rules, we should implement the restrictions about over-sized | 
|  | // bitfields: | 
|  | // | 
|  | // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#POD : | 
|  | //   In general, a type is considered a POD for the purposes of | 
|  | //   layout if it is a POD type (in the sense of ISO C++ | 
|  | //   [basic.types]). However, a POD-struct or POD-union (in the | 
|  | //   sense of ISO C++ [class]) with a bitfield member whose | 
|  | //   declared width is wider than the declared type of the | 
|  | //   bitfield is not a POD for the purpose of layout.  Similarly, | 
|  | //   an array type is not a POD for the purpose of layout if the | 
|  | //   element type of the array is not a POD for the purpose of | 
|  | //   layout. | 
|  | // | 
|  | //   Where references to the ISO C++ are made in this paragraph, | 
|  | //   the Technical Corrigendum 1 version of the standard is | 
|  | //   intended. | 
|  | return RD->isPOD(); | 
|  |  | 
|  | case TargetCXXABI::UseTailPaddingUnlessPOD11: | 
|  | // This is equivalent to RD->getTypeForDecl().isCXX11PODType(), | 
|  | // but with a lot of abstraction penalty stripped off.  This does | 
|  | // assume that these properties are set correctly even in C++98 | 
|  | // mode; fortunately, that is true because we want to assign | 
|  | // consistently semantics to the type-traits intrinsics (or at | 
|  | // least as many of them as possible). | 
|  | return RD->isTrivial() && RD->isCXX11StandardLayout(); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("bad tail-padding use kind"); | 
|  | } | 
|  |  | 
|  | // This section contains an implementation of struct layout that is, up to the | 
|  | // included tests, compatible with cl.exe (2013).  The layout produced is | 
|  | // significantly different than those produced by the Itanium ABI.  Here we note | 
|  | // the most important differences. | 
|  | // | 
|  | // * The alignment of bitfields in unions is ignored when computing the | 
|  | //   alignment of the union. | 
|  | // * The existence of zero-width bitfield that occurs after anything other than | 
|  | //   a non-zero length bitfield is ignored. | 
|  | // * There is no explicit primary base for the purposes of layout.  All bases | 
|  | //   with vfptrs are laid out first, followed by all bases without vfptrs. | 
|  | // * The Itanium equivalent vtable pointers are split into a vfptr (virtual | 
|  | //   function pointer) and a vbptr (virtual base pointer).  They can each be | 
|  | //   shared with a, non-virtual bases. These bases need not be the same.  vfptrs | 
|  | //   always occur at offset 0.  vbptrs can occur at an arbitrary offset and are | 
|  | //   placed after the lexicographically last non-virtual base.  This placement | 
|  | //   is always before fields but can be in the middle of the non-virtual bases | 
|  | //   due to the two-pass layout scheme for non-virtual-bases. | 
|  | // * Virtual bases sometimes require a 'vtordisp' field that is laid out before | 
|  | //   the virtual base and is used in conjunction with virtual overrides during | 
|  | //   construction and destruction.  This is always a 4 byte value and is used as | 
|  | //   an alternative to constructor vtables. | 
|  | // * vtordisps are allocated in a block of memory with size and alignment equal | 
|  | //   to the alignment of the completed structure (before applying __declspec( | 
|  | //   align())).  The vtordisp always occur at the end of the allocation block, | 
|  | //   immediately prior to the virtual base. | 
|  | // * vfptrs are injected after all bases and fields have been laid out.  In | 
|  | //   order to guarantee proper alignment of all fields, the vfptr injection | 
|  | //   pushes all bases and fields back by the alignment imposed by those bases | 
|  | //   and fields.  This can potentially add a significant amount of padding. | 
|  | //   vfptrs are always injected at offset 0. | 
|  | // * vbptrs are injected after all bases and fields have been laid out.  In | 
|  | //   order to guarantee proper alignment of all fields, the vfptr injection | 
|  | //   pushes all bases and fields back by the alignment imposed by those bases | 
|  | //   and fields.  This can potentially add a significant amount of padding. | 
|  | //   vbptrs are injected immediately after the last non-virtual base as | 
|  | //   lexicographically ordered in the code.  If this site isn't pointer aligned | 
|  | //   the vbptr is placed at the next properly aligned location.  Enough padding | 
|  | //   is added to guarantee a fit. | 
|  | // * The last zero sized non-virtual base can be placed at the end of the | 
|  | //   struct (potentially aliasing another object), or may alias with the first | 
|  | //   field, even if they are of the same type. | 
|  | // * The last zero size virtual base may be placed at the end of the struct | 
|  | //   potentially aliasing another object. | 
|  | // * The ABI attempts to avoid aliasing of zero sized bases by adding padding | 
|  | //   between bases or vbases with specific properties.  The criteria for | 
|  | //   additional padding between two bases is that the first base is zero sized | 
|  | //   or ends with a zero sized subobject and the second base is zero sized or | 
|  | //   trails with a zero sized base or field (sharing of vfptrs can reorder the | 
|  | //   layout of the so the leading base is not always the first one declared). | 
|  | //   This rule does take into account fields that are not records, so padding | 
|  | //   will occur even if the last field is, e.g. an int. The padding added for | 
|  | //   bases is 1 byte.  The padding added between vbases depends on the alignment | 
|  | //   of the object but is at least 4 bytes (in both 32 and 64 bit modes). | 
|  | // * There is no concept of non-virtual alignment, non-virtual alignment and | 
|  | //   alignment are always identical. | 
|  | // * There is a distinction between alignment and required alignment. | 
|  | //   __declspec(align) changes the required alignment of a struct.  This | 
|  | //   alignment is _always_ obeyed, even in the presence of #pragma pack. A | 
|  | //   record inherits required alignment from all of its fields and bases. | 
|  | // * __declspec(align) on bitfields has the effect of changing the bitfield's | 
|  | //   alignment instead of its required alignment.  This is the only known way | 
|  | //   to make the alignment of a struct bigger than 8.  Interestingly enough | 
|  | //   this alignment is also immune to the effects of #pragma pack and can be | 
|  | //   used to create structures with large alignment under #pragma pack. | 
|  | //   However, because it does not impact required alignment, such a structure, | 
|  | //   when used as a field or base, will not be aligned if #pragma pack is | 
|  | //   still active at the time of use. | 
|  | // | 
|  | // Known incompatibilities: | 
|  | // * all: #pragma pack between fields in a record | 
|  | // * 2010 and back: If the last field in a record is a bitfield, every object | 
|  | //   laid out after the record will have extra padding inserted before it.  The | 
|  | //   extra padding will have size equal to the size of the storage class of the | 
|  | //   bitfield.  0 sized bitfields don't exhibit this behavior and the extra | 
|  | //   padding can be avoided by adding a 0 sized bitfield after the non-zero- | 
|  | //   sized bitfield. | 
|  | // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or | 
|  | //   greater due to __declspec(align()) then a second layout phase occurs after | 
|  | //   The locations of the vf and vb pointers are known.  This layout phase | 
|  | //   suffers from the "last field is a bitfield" bug in 2010 and results in | 
|  | //   _every_ field getting padding put in front of it, potentially including the | 
|  | //   vfptr, leaving the vfprt at a non-zero location which results in a fault if | 
|  | //   anything tries to read the vftbl.  The second layout phase also treats | 
|  | //   bitfields as separate entities and gives them each storage rather than | 
|  | //   packing them.  Additionally, because this phase appears to perform a | 
|  | //   (an unstable) sort on the members before laying them out and because merged | 
|  | //   bitfields have the same address, the bitfields end up in whatever order | 
|  | //   the sort left them in, a behavior we could never hope to replicate. | 
|  |  | 
|  | namespace { | 
|  | struct MicrosoftRecordLayoutBuilder { | 
|  | struct ElementInfo { | 
|  | CharUnits Size; | 
|  | CharUnits Alignment; | 
|  | }; | 
|  | typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy; | 
|  | MicrosoftRecordLayoutBuilder(const ASTContext &Context, | 
|  | EmptySubobjectMap *EmptySubobjects) | 
|  | : Context(Context), EmptySubobjects(EmptySubobjects), | 
|  | RemainingBitsInField(0) {} | 
|  |  | 
|  | private: | 
|  | MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete; | 
|  | void operator=(const MicrosoftRecordLayoutBuilder &) = delete; | 
|  | public: | 
|  | void layout(const RecordDecl *RD); | 
|  | void cxxLayout(const CXXRecordDecl *RD); | 
|  | /// Initializes size and alignment and honors some flags. | 
|  | void initializeLayout(const RecordDecl *RD); | 
|  | /// Initialized C++ layout, compute alignment and virtual alignment and | 
|  | /// existence of vfptrs and vbptrs.  Alignment is needed before the vfptr is | 
|  | /// laid out. | 
|  | void initializeCXXLayout(const CXXRecordDecl *RD); | 
|  | void layoutNonVirtualBases(const CXXRecordDecl *RD); | 
|  | void layoutNonVirtualBase(const CXXRecordDecl *RD, | 
|  | const CXXRecordDecl *BaseDecl, | 
|  | const ASTRecordLayout &BaseLayout, | 
|  | const ASTRecordLayout *&PreviousBaseLayout); | 
|  | void injectVFPtr(const CXXRecordDecl *RD); | 
|  | void injectVBPtr(const CXXRecordDecl *RD); | 
|  | /// Lays out the fields of the record.  Also rounds size up to | 
|  | /// alignment. | 
|  | void layoutFields(const RecordDecl *RD); | 
|  | void layoutField(const FieldDecl *FD); | 
|  | void layoutBitField(const FieldDecl *FD); | 
|  | /// Lays out a single zero-width bit-field in the record and handles | 
|  | /// special cases associated with zero-width bit-fields. | 
|  | void layoutZeroWidthBitField(const FieldDecl *FD); | 
|  | void layoutVirtualBases(const CXXRecordDecl *RD); | 
|  | void finalizeLayout(const RecordDecl *RD); | 
|  | /// Gets the size and alignment of a base taking pragma pack and | 
|  | /// __declspec(align) into account. | 
|  | ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout); | 
|  | /// Gets the size and alignment of a field taking pragma  pack and | 
|  | /// __declspec(align) into account.  It also updates RequiredAlignment as a | 
|  | /// side effect because it is most convenient to do so here. | 
|  | ElementInfo getAdjustedElementInfo(const FieldDecl *FD); | 
|  | /// Places a field at an offset in CharUnits. | 
|  | void placeFieldAtOffset(CharUnits FieldOffset) { | 
|  | FieldOffsets.push_back(Context.toBits(FieldOffset)); | 
|  | } | 
|  | /// Places a bitfield at a bit offset. | 
|  | void placeFieldAtBitOffset(uint64_t FieldOffset) { | 
|  | FieldOffsets.push_back(FieldOffset); | 
|  | } | 
|  | /// Compute the set of virtual bases for which vtordisps are required. | 
|  | void computeVtorDispSet( | 
|  | llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet, | 
|  | const CXXRecordDecl *RD) const; | 
|  | const ASTContext &Context; | 
|  | EmptySubobjectMap *EmptySubobjects; | 
|  |  | 
|  | /// The size of the record being laid out. | 
|  | CharUnits Size; | 
|  | /// The non-virtual size of the record layout. | 
|  | CharUnits NonVirtualSize; | 
|  | /// The data size of the record layout. | 
|  | CharUnits DataSize; | 
|  | /// The current alignment of the record layout. | 
|  | CharUnits Alignment; | 
|  | /// The maximum allowed field alignment. This is set by #pragma pack. | 
|  | CharUnits MaxFieldAlignment; | 
|  | /// The alignment that this record must obey.  This is imposed by | 
|  | /// __declspec(align()) on the record itself or one of its fields or bases. | 
|  | CharUnits RequiredAlignment; | 
|  | /// The size of the allocation of the currently active bitfield. | 
|  | /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield | 
|  | /// is true. | 
|  | CharUnits CurrentBitfieldSize; | 
|  | /// Offset to the virtual base table pointer (if one exists). | 
|  | CharUnits VBPtrOffset; | 
|  | /// Minimum record size possible. | 
|  | CharUnits MinEmptyStructSize; | 
|  | /// The size and alignment info of a pointer. | 
|  | ElementInfo PointerInfo; | 
|  | /// The primary base class (if one exists). | 
|  | const CXXRecordDecl *PrimaryBase; | 
|  | /// The class we share our vb-pointer with. | 
|  | const CXXRecordDecl *SharedVBPtrBase; | 
|  | /// The collection of field offsets. | 
|  | SmallVector<uint64_t, 16> FieldOffsets; | 
|  | /// Base classes and their offsets in the record. | 
|  | BaseOffsetsMapTy Bases; | 
|  | /// virtual base classes and their offsets in the record. | 
|  | ASTRecordLayout::VBaseOffsetsMapTy VBases; | 
|  | /// The number of remaining bits in our last bitfield allocation. | 
|  | unsigned RemainingBitsInField; | 
|  | bool IsUnion : 1; | 
|  | /// True if the last field laid out was a bitfield and was not 0 | 
|  | /// width. | 
|  | bool LastFieldIsNonZeroWidthBitfield : 1; | 
|  | /// True if the class has its own vftable pointer. | 
|  | bool HasOwnVFPtr : 1; | 
|  | /// True if the class has a vbtable pointer. | 
|  | bool HasVBPtr : 1; | 
|  | /// True if the last sub-object within the type is zero sized or the | 
|  | /// object itself is zero sized.  This *does not* count members that are not | 
|  | /// records.  Only used for MS-ABI. | 
|  | bool EndsWithZeroSizedObject : 1; | 
|  | /// True if this class is zero sized or first base is zero sized or | 
|  | /// has this property.  Only used for MS-ABI. | 
|  | bool LeadsWithZeroSizedBase : 1; | 
|  |  | 
|  | /// True if the external AST source provided a layout for this record. | 
|  | bool UseExternalLayout : 1; | 
|  |  | 
|  | /// The layout provided by the external AST source. Only active if | 
|  | /// UseExternalLayout is true. | 
|  | ExternalLayout External; | 
|  | }; | 
|  | } // namespace | 
|  |  | 
|  | MicrosoftRecordLayoutBuilder::ElementInfo | 
|  | MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( | 
|  | const ASTRecordLayout &Layout) { | 
|  | ElementInfo Info; | 
|  | Info.Alignment = Layout.getAlignment(); | 
|  | // Respect pragma pack. | 
|  | if (!MaxFieldAlignment.isZero()) | 
|  | Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment); | 
|  | // Track zero-sized subobjects here where it's already available. | 
|  | EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); | 
|  | // Respect required alignment, this is necessary because we may have adjusted | 
|  | // the alignment in the case of pragma pack.  Note that the required alignment | 
|  | // doesn't actually apply to the struct alignment at this point. | 
|  | Alignment = std::max(Alignment, Info.Alignment); | 
|  | RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment()); | 
|  | Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment()); | 
|  | Info.Size = Layout.getNonVirtualSize(); | 
|  | return Info; | 
|  | } | 
|  |  | 
|  | MicrosoftRecordLayoutBuilder::ElementInfo | 
|  | MicrosoftRecordLayoutBuilder::getAdjustedElementInfo( | 
|  | const FieldDecl *FD) { | 
|  | // Get the alignment of the field type's natural alignment, ignore any | 
|  | // alignment attributes. | 
|  | auto TInfo = | 
|  | Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType()); | 
|  | ElementInfo Info{TInfo.Width, TInfo.Align}; | 
|  | // Respect align attributes on the field. | 
|  | CharUnits FieldRequiredAlignment = | 
|  | Context.toCharUnitsFromBits(FD->getMaxAlignment()); | 
|  | // Respect align attributes on the type. | 
|  | if (Context.isAlignmentRequired(FD->getType())) | 
|  | FieldRequiredAlignment = std::max( | 
|  | Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment); | 
|  | // Respect attributes applied to subobjects of the field. | 
|  | if (FD->isBitField()) | 
|  | // For some reason __declspec align impacts alignment rather than required | 
|  | // alignment when it is applied to bitfields. | 
|  | Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment); | 
|  | else { | 
|  | if (const auto *RT = FD->getType() | 
|  | ->getBaseElementTypeUnsafe() | 
|  | ->getAsCanonical<RecordType>()) { | 
|  | auto const &Layout = Context.getASTRecordLayout(RT->getOriginalDecl()); | 
|  | EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject(); | 
|  | FieldRequiredAlignment = std::max(FieldRequiredAlignment, | 
|  | Layout.getRequiredAlignment()); | 
|  | } | 
|  | // Capture required alignment as a side-effect. | 
|  | RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment); | 
|  | } | 
|  | // Respect pragma pack, attribute pack and declspec align | 
|  | if (!MaxFieldAlignment.isZero()) | 
|  | Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment); | 
|  | if (FD->hasAttr<PackedAttr>()) | 
|  | Info.Alignment = CharUnits::One(); | 
|  | Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment); | 
|  | return Info; | 
|  | } | 
|  |  | 
|  | void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) { | 
|  | // For C record layout, zero-sized records always have size 4. | 
|  | MinEmptyStructSize = CharUnits::fromQuantity(4); | 
|  | initializeLayout(RD); | 
|  | layoutFields(RD); | 
|  | DataSize = Size = Size.alignTo(Alignment); | 
|  | RequiredAlignment = std::max( | 
|  | RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment())); | 
|  | finalizeLayout(RD); | 
|  | } | 
|  |  | 
|  | void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) { | 
|  | // The C++ standard says that empty structs have size 1. | 
|  | MinEmptyStructSize = CharUnits::One(); | 
|  | initializeLayout(RD); | 
|  | initializeCXXLayout(RD); | 
|  | layoutNonVirtualBases(RD); | 
|  | layoutFields(RD); | 
|  | injectVBPtr(RD); | 
|  | injectVFPtr(RD); | 
|  | if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase)) | 
|  | Alignment = std::max(Alignment, PointerInfo.Alignment); | 
|  | auto RoundingAlignment = Alignment; | 
|  | if (!MaxFieldAlignment.isZero()) | 
|  | RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment); | 
|  | if (!UseExternalLayout) | 
|  | Size = Size.alignTo(RoundingAlignment); | 
|  | NonVirtualSize = Size; | 
|  | RequiredAlignment = std::max( | 
|  | RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment())); | 
|  | layoutVirtualBases(RD); | 
|  | finalizeLayout(RD); | 
|  | } | 
|  |  | 
|  | void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) { | 
|  | IsUnion = RD->isUnion(); | 
|  | Size = CharUnits::Zero(); | 
|  | Alignment = CharUnits::One(); | 
|  | // In 64-bit mode we always perform an alignment step after laying out vbases. | 
|  | // In 32-bit mode we do not.  The check to see if we need to perform alignment | 
|  | // checks the RequiredAlignment field and performs alignment if it isn't 0. | 
|  | RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit() | 
|  | ? CharUnits::One() | 
|  | : CharUnits::Zero(); | 
|  | // Compute the maximum field alignment. | 
|  | MaxFieldAlignment = CharUnits::Zero(); | 
|  | // Honor the default struct packing maximum alignment flag. | 
|  | if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) | 
|  | MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment); | 
|  | // Honor the packing attribute.  The MS-ABI ignores pragma pack if its larger | 
|  | // than the pointer size. | 
|  | if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){ | 
|  | unsigned PackedAlignment = MFAA->getAlignment(); | 
|  | if (PackedAlignment <= | 
|  | Context.getTargetInfo().getPointerWidth(LangAS::Default)) | 
|  | MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment); | 
|  | } | 
|  | // Packed attribute forces max field alignment to be 1. | 
|  | if (RD->hasAttr<PackedAttr>()) | 
|  | MaxFieldAlignment = CharUnits::One(); | 
|  |  | 
|  | // Try to respect the external layout if present. | 
|  | UseExternalLayout = false; | 
|  | if (ExternalASTSource *Source = Context.getExternalSource()) | 
|  | UseExternalLayout = Source->layoutRecordType( | 
|  | RD, External.Size, External.Align, External.FieldOffsets, | 
|  | External.BaseOffsets, External.VirtualBaseOffsets); | 
|  | } | 
|  |  | 
|  | void | 
|  | MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) { | 
|  | EndsWithZeroSizedObject = false; | 
|  | LeadsWithZeroSizedBase = false; | 
|  | HasOwnVFPtr = false; | 
|  | HasVBPtr = false; | 
|  | PrimaryBase = nullptr; | 
|  | SharedVBPtrBase = nullptr; | 
|  | // Calculate pointer size and alignment.  These are used for vfptr and vbprt | 
|  | // injection. | 
|  | PointerInfo.Size = Context.toCharUnitsFromBits( | 
|  | Context.getTargetInfo().getPointerWidth(LangAS::Default)); | 
|  | PointerInfo.Alignment = Context.toCharUnitsFromBits( | 
|  | Context.getTargetInfo().getPointerAlign(LangAS::Default)); | 
|  | // Respect pragma pack. | 
|  | if (!MaxFieldAlignment.isZero()) | 
|  | PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment); | 
|  | } | 
|  |  | 
|  | void | 
|  | MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) { | 
|  | // The MS-ABI lays out all bases that contain leading vfptrs before it lays | 
|  | // out any bases that do not contain vfptrs.  We implement this as two passes | 
|  | // over the bases.  This approach guarantees that the primary base is laid out | 
|  | // first.  We use these passes to calculate some additional aggregated | 
|  | // information about the bases, such as required alignment and the presence of | 
|  | // zero sized members. | 
|  | const ASTRecordLayout *PreviousBaseLayout = nullptr; | 
|  | bool HasPolymorphicBaseClass = false; | 
|  | // Iterate through the bases and lay out the non-virtual ones. | 
|  | for (const CXXBaseSpecifier &Base : RD->bases()) { | 
|  | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | 
|  | HasPolymorphicBaseClass |= BaseDecl->isPolymorphic(); | 
|  | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); | 
|  | // Mark and skip virtual bases. | 
|  | if (Base.isVirtual()) { | 
|  | HasVBPtr = true; | 
|  | continue; | 
|  | } | 
|  | // Check for a base to share a VBPtr with. | 
|  | if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) { | 
|  | SharedVBPtrBase = BaseDecl; | 
|  | HasVBPtr = true; | 
|  | } | 
|  | // Only lay out bases with extendable VFPtrs on the first pass. | 
|  | if (!BaseLayout.hasExtendableVFPtr()) | 
|  | continue; | 
|  | // If we don't have a primary base, this one qualifies. | 
|  | if (!PrimaryBase) { | 
|  | PrimaryBase = BaseDecl; | 
|  | LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); | 
|  | } | 
|  | // Lay out the base. | 
|  | layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); | 
|  | } | 
|  | // Figure out if we need a fresh VFPtr for this class. | 
|  | if (RD->isPolymorphic()) { | 
|  | if (!HasPolymorphicBaseClass) | 
|  | // This class introduces polymorphism, so we need a vftable to store the | 
|  | // RTTI information. | 
|  | HasOwnVFPtr = true; | 
|  | else if (!PrimaryBase) { | 
|  | // We have a polymorphic base class but can't extend its vftable. Add a | 
|  | // new vfptr if we would use any vftable slots. | 
|  | for (CXXMethodDecl *M : RD->methods()) { | 
|  | if (MicrosoftVTableContext::hasVtableSlot(M) && | 
|  | M->size_overridden_methods() == 0) { | 
|  | HasOwnVFPtr = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // If we don't have a primary base then we have a leading object that could | 
|  | // itself lead with a zero-sized object, something we track. | 
|  | bool CheckLeadingLayout = !PrimaryBase; | 
|  | // Iterate through the bases and lay out the non-virtual ones. | 
|  | for (const CXXBaseSpecifier &Base : RD->bases()) { | 
|  | if (Base.isVirtual()) | 
|  | continue; | 
|  | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | 
|  | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); | 
|  | // Only lay out bases without extendable VFPtrs on the second pass. | 
|  | if (BaseLayout.hasExtendableVFPtr()) { | 
|  | VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); | 
|  | continue; | 
|  | } | 
|  | // If this is the first layout, check to see if it leads with a zero sized | 
|  | // object.  If it does, so do we. | 
|  | if (CheckLeadingLayout) { | 
|  | CheckLeadingLayout = false; | 
|  | LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase(); | 
|  | } | 
|  | // Lay out the base. | 
|  | layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout); | 
|  | VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize(); | 
|  | } | 
|  | // Set our VBPtroffset if we know it at this point. | 
|  | if (!HasVBPtr) | 
|  | VBPtrOffset = CharUnits::fromQuantity(-1); | 
|  | else if (SharedVBPtrBase) { | 
|  | const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase); | 
|  | VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool recordUsesEBO(const RecordDecl *RD) { | 
|  | if (!isa<CXXRecordDecl>(RD)) | 
|  | return false; | 
|  | if (RD->hasAttr<EmptyBasesAttr>()) | 
|  | return true; | 
|  | if (auto *LVA = RD->getAttr<LayoutVersionAttr>()) | 
|  | // TODO: Double check with the next version of MSVC. | 
|  | if (LVA->getVersion() <= LangOptions::MSVC2015) | 
|  | return false; | 
|  | // TODO: Some later version of MSVC will change the default behavior of the | 
|  | // compiler to enable EBO by default.  When this happens, we will need an | 
|  | // additional isCompatibleWithMSVC check. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase( | 
|  | const CXXRecordDecl *RD, const CXXRecordDecl *BaseDecl, | 
|  | const ASTRecordLayout &BaseLayout, | 
|  | const ASTRecordLayout *&PreviousBaseLayout) { | 
|  | // Insert padding between two bases if the left first one is zero sized or | 
|  | // contains a zero sized subobject and the right is zero sized or one leads | 
|  | // with a zero sized base. | 
|  | bool MDCUsesEBO = recordUsesEBO(RD); | 
|  | if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && | 
|  | BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO) | 
|  | Size++; | 
|  | ElementInfo Info = getAdjustedElementInfo(BaseLayout); | 
|  | CharUnits BaseOffset; | 
|  |  | 
|  | // Respect the external AST source base offset, if present. | 
|  | bool FoundBase = false; | 
|  | if (UseExternalLayout) { | 
|  | FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset); | 
|  | if (BaseOffset > Size) { | 
|  | Size = BaseOffset; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!FoundBase) { | 
|  | if (MDCUsesEBO && BaseDecl->isEmpty() && | 
|  | (BaseLayout.getNonVirtualSize() == CharUnits::Zero())) { | 
|  | BaseOffset = CharUnits::Zero(); | 
|  | } else { | 
|  | // Otherwise, lay the base out at the end of the MDC. | 
|  | BaseOffset = Size = Size.alignTo(Info.Alignment); | 
|  | } | 
|  | } | 
|  | Bases.insert(std::make_pair(BaseDecl, BaseOffset)); | 
|  | Size += BaseLayout.getNonVirtualSize(); | 
|  | DataSize = Size; | 
|  | PreviousBaseLayout = &BaseLayout; | 
|  | } | 
|  |  | 
|  | void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) { | 
|  | LastFieldIsNonZeroWidthBitfield = false; | 
|  | for (const FieldDecl *Field : RD->fields()) | 
|  | layoutField(Field); | 
|  | } | 
|  |  | 
|  | void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) { | 
|  | if (FD->isBitField()) { | 
|  | layoutBitField(FD); | 
|  | return; | 
|  | } | 
|  | LastFieldIsNonZeroWidthBitfield = false; | 
|  | ElementInfo Info = getAdjustedElementInfo(FD); | 
|  | Alignment = std::max(Alignment, Info.Alignment); | 
|  |  | 
|  | const CXXRecordDecl *FieldClass = FD->getType()->getAsCXXRecordDecl(); | 
|  | bool IsOverlappingEmptyField = FD->isPotentiallyOverlapping() && | 
|  | FieldClass->isEmpty() && | 
|  | FieldClass->fields().empty(); | 
|  | CharUnits FieldOffset = CharUnits::Zero(); | 
|  |  | 
|  | if (UseExternalLayout) { | 
|  | FieldOffset = | 
|  | Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD)); | 
|  | } else if (IsUnion) { | 
|  | FieldOffset = CharUnits::Zero(); | 
|  | } else if (EmptySubobjects) { | 
|  | if (!IsOverlappingEmptyField) | 
|  | FieldOffset = DataSize.alignTo(Info.Alignment); | 
|  |  | 
|  | while (!EmptySubobjects->CanPlaceFieldAtOffset(FD, FieldOffset)) { | 
|  | const CXXRecordDecl *ParentClass = cast<CXXRecordDecl>(FD->getParent()); | 
|  | bool HasBases = ParentClass && (!ParentClass->bases().empty() || | 
|  | !ParentClass->vbases().empty()); | 
|  | if (FieldOffset == CharUnits::Zero() && DataSize != CharUnits::Zero() && | 
|  | HasBases) { | 
|  | // MSVC appears to only do this when there are base classes; | 
|  | // otherwise it overlaps no_unique_address fields in non-zero offsets. | 
|  | FieldOffset = DataSize.alignTo(Info.Alignment); | 
|  | } else { | 
|  | FieldOffset += Info.Alignment; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | FieldOffset = Size.alignTo(Info.Alignment); | 
|  | } | 
|  |  | 
|  | uint64_t UnpaddedFielddOffsetInBits = | 
|  | Context.toBits(DataSize) - RemainingBitsInField; | 
|  |  | 
|  | ::CheckFieldPadding(Context, IsUnion, Context.toBits(FieldOffset), | 
|  | UnpaddedFielddOffsetInBits, FD); | 
|  |  | 
|  | RemainingBitsInField = 0; | 
|  |  | 
|  | placeFieldAtOffset(FieldOffset); | 
|  |  | 
|  | if (!IsOverlappingEmptyField) | 
|  | DataSize = std::max(DataSize, FieldOffset + Info.Size); | 
|  |  | 
|  | Size = std::max(Size, FieldOffset + Info.Size); | 
|  | } | 
|  |  | 
|  | void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) { | 
|  | unsigned Width = FD->getBitWidthValue(); | 
|  | if (Width == 0) { | 
|  | layoutZeroWidthBitField(FD); | 
|  | return; | 
|  | } | 
|  | ElementInfo Info = getAdjustedElementInfo(FD); | 
|  | // Clamp the bitfield to a containable size for the sake of being able | 
|  | // to lay them out.  Sema will throw an error. | 
|  | if (Width > Context.toBits(Info.Size)) | 
|  | Width = Context.toBits(Info.Size); | 
|  | // Check to see if this bitfield fits into an existing allocation.  Note: | 
|  | // MSVC refuses to pack bitfields of formal types with different sizes | 
|  | // into the same allocation. | 
|  | if (!UseExternalLayout && !IsUnion && LastFieldIsNonZeroWidthBitfield && | 
|  | CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) { | 
|  | placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField); | 
|  | RemainingBitsInField -= Width; | 
|  | return; | 
|  | } | 
|  | LastFieldIsNonZeroWidthBitfield = true; | 
|  | CurrentBitfieldSize = Info.Size; | 
|  | if (UseExternalLayout) { | 
|  | auto FieldBitOffset = External.getExternalFieldOffset(FD); | 
|  | placeFieldAtBitOffset(FieldBitOffset); | 
|  | auto NewSize = Context.toCharUnitsFromBits( | 
|  | llvm::alignDown(FieldBitOffset, Context.toBits(Info.Alignment)) + | 
|  | Context.toBits(Info.Size)); | 
|  | Size = std::max(Size, NewSize); | 
|  | Alignment = std::max(Alignment, Info.Alignment); | 
|  | } else if (IsUnion) { | 
|  | placeFieldAtOffset(CharUnits::Zero()); | 
|  | Size = std::max(Size, Info.Size); | 
|  | // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. | 
|  | } else { | 
|  | // Allocate a new block of memory and place the bitfield in it. | 
|  | CharUnits FieldOffset = Size.alignTo(Info.Alignment); | 
|  | uint64_t UnpaddedFieldOffsetInBits = | 
|  | Context.toBits(DataSize) - RemainingBitsInField; | 
|  | placeFieldAtOffset(FieldOffset); | 
|  | Size = FieldOffset + Info.Size; | 
|  | Alignment = std::max(Alignment, Info.Alignment); | 
|  | RemainingBitsInField = Context.toBits(Info.Size) - Width; | 
|  | ::CheckFieldPadding(Context, IsUnion, Context.toBits(FieldOffset), | 
|  | UnpaddedFieldOffsetInBits, FD); | 
|  | } | 
|  | DataSize = Size; | 
|  | } | 
|  |  | 
|  | void | 
|  | MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) { | 
|  | // Zero-width bitfields are ignored unless they follow a non-zero-width | 
|  | // bitfield. | 
|  | if (!LastFieldIsNonZeroWidthBitfield) { | 
|  | placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size); | 
|  | // TODO: Add a Sema warning that MS ignores alignment for zero | 
|  | // sized bitfields that occur after zero-size bitfields or non-bitfields. | 
|  | return; | 
|  | } | 
|  | LastFieldIsNonZeroWidthBitfield = false; | 
|  | ElementInfo Info = getAdjustedElementInfo(FD); | 
|  | if (IsUnion) { | 
|  | placeFieldAtOffset(CharUnits::Zero()); | 
|  | Size = std::max(Size, Info.Size); | 
|  | // TODO: Add a Sema warning that MS ignores bitfield alignment in unions. | 
|  | } else { | 
|  | // Round up the current record size to the field's alignment boundary. | 
|  | CharUnits FieldOffset = Size.alignTo(Info.Alignment); | 
|  | uint64_t UnpaddedFieldOffsetInBits = | 
|  | Context.toBits(DataSize) - RemainingBitsInField; | 
|  | placeFieldAtOffset(FieldOffset); | 
|  | RemainingBitsInField = 0; | 
|  | Size = FieldOffset; | 
|  | Alignment = std::max(Alignment, Info.Alignment); | 
|  | ::CheckFieldPadding(Context, IsUnion, Context.toBits(FieldOffset), | 
|  | UnpaddedFieldOffsetInBits, FD); | 
|  | } | 
|  | DataSize = Size; | 
|  | } | 
|  |  | 
|  | void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) { | 
|  | if (!HasVBPtr || SharedVBPtrBase) | 
|  | return; | 
|  | // Inject the VBPointer at the injection site. | 
|  | CharUnits InjectionSite = VBPtrOffset; | 
|  | // But before we do, make sure it's properly aligned. | 
|  | VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment); | 
|  | // Determine where the first field should be laid out after the vbptr. | 
|  | CharUnits FieldStart = VBPtrOffset + PointerInfo.Size; | 
|  | // Shift everything after the vbptr down, unless we're using an external | 
|  | // layout. | 
|  | if (UseExternalLayout) { | 
|  | // It is possible that there were no fields or bases located after vbptr, | 
|  | // so the size was not adjusted before. | 
|  | if (Size < FieldStart) | 
|  | Size = FieldStart; | 
|  | return; | 
|  | } | 
|  | // Make sure that the amount we push the fields back by is a multiple of the | 
|  | // alignment. | 
|  | CharUnits Offset = (FieldStart - InjectionSite) | 
|  | .alignTo(std::max(RequiredAlignment, Alignment)); | 
|  | Size += Offset; | 
|  | for (uint64_t &FieldOffset : FieldOffsets) | 
|  | FieldOffset += Context.toBits(Offset); | 
|  | for (BaseOffsetsMapTy::value_type &Base : Bases) | 
|  | if (Base.second >= InjectionSite) | 
|  | Base.second += Offset; | 
|  | } | 
|  |  | 
|  | void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) { | 
|  | if (!HasOwnVFPtr) | 
|  | return; | 
|  | // Make sure that the amount we push the struct back by is a multiple of the | 
|  | // alignment. | 
|  | CharUnits Offset = | 
|  | PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment)); | 
|  | // Push back the vbptr, but increase the size of the object and push back | 
|  | // regular fields by the offset only if not using external record layout. | 
|  | if (HasVBPtr) | 
|  | VBPtrOffset += Offset; | 
|  |  | 
|  | if (UseExternalLayout) { | 
|  | // The class may have size 0 and a vfptr (e.g. it's an interface class). The | 
|  | // size was not correctly set before in this case. | 
|  | if (Size.isZero()) | 
|  | Size += Offset; | 
|  | return; | 
|  | } | 
|  |  | 
|  | Size += Offset; | 
|  |  | 
|  | // If we're using an external layout, the fields offsets have already | 
|  | // accounted for this adjustment. | 
|  | for (uint64_t &FieldOffset : FieldOffsets) | 
|  | FieldOffset += Context.toBits(Offset); | 
|  | for (BaseOffsetsMapTy::value_type &Base : Bases) | 
|  | Base.second += Offset; | 
|  | } | 
|  |  | 
|  | void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) { | 
|  | if (!HasVBPtr) | 
|  | return; | 
|  | // Vtordisps are always 4 bytes (even in 64-bit mode) | 
|  | CharUnits VtorDispSize = CharUnits::fromQuantity(4); | 
|  | CharUnits VtorDispAlignment = VtorDispSize; | 
|  | // vtordisps respect pragma pack. | 
|  | if (!MaxFieldAlignment.isZero()) | 
|  | VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment); | 
|  | // The alignment of the vtordisp is at least the required alignment of the | 
|  | // entire record.  This requirement may be present to support vtordisp | 
|  | // injection. | 
|  | for (const CXXBaseSpecifier &VBase : RD->vbases()) { | 
|  | const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); | 
|  | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); | 
|  | RequiredAlignment = | 
|  | std::max(RequiredAlignment, BaseLayout.getRequiredAlignment()); | 
|  | } | 
|  | VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment); | 
|  | // Compute the vtordisp set. | 
|  | llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet; | 
|  | computeVtorDispSet(HasVtorDispSet, RD); | 
|  | // Iterate through the virtual bases and lay them out. | 
|  | const ASTRecordLayout *PreviousBaseLayout = nullptr; | 
|  | for (const CXXBaseSpecifier &VBase : RD->vbases()) { | 
|  | const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl(); | 
|  | const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl); | 
|  | bool HasVtordisp = HasVtorDispSet.contains(BaseDecl); | 
|  | // Insert padding between two bases if the left first one is zero sized or | 
|  | // contains a zero sized subobject and the right is zero sized or one leads | 
|  | // with a zero sized base.  The padding between virtual bases is 4 | 
|  | // bytes (in both 32 and 64 bits modes) and always involves rounding up to | 
|  | // the required alignment, we don't know why. | 
|  | if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() && | 
|  | BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) || | 
|  | HasVtordisp) { | 
|  | Size = Size.alignTo(VtorDispAlignment) + VtorDispSize; | 
|  | Alignment = std::max(VtorDispAlignment, Alignment); | 
|  | } | 
|  | // Insert the virtual base. | 
|  | ElementInfo Info = getAdjustedElementInfo(BaseLayout); | 
|  | CharUnits BaseOffset; | 
|  |  | 
|  | // Respect the external AST source base offset, if present. | 
|  | if (UseExternalLayout) { | 
|  | if (!External.getExternalVBaseOffset(BaseDecl, BaseOffset)) | 
|  | BaseOffset = Size; | 
|  | } else | 
|  | BaseOffset = Size.alignTo(Info.Alignment); | 
|  |  | 
|  | assert(BaseOffset >= Size && "base offset already allocated"); | 
|  |  | 
|  | VBases.insert(std::make_pair(BaseDecl, | 
|  | ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp))); | 
|  | Size = BaseOffset + BaseLayout.getNonVirtualSize(); | 
|  | PreviousBaseLayout = &BaseLayout; | 
|  | } | 
|  | } | 
|  |  | 
|  | void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) { | 
|  | uint64_t UnpaddedSizeInBits = Context.toBits(DataSize); | 
|  | UnpaddedSizeInBits -= RemainingBitsInField; | 
|  |  | 
|  | // MS ABI allocates 1 byte for empty class | 
|  | // (not padding) | 
|  | if (Size.isZero()) | 
|  | UnpaddedSizeInBits += 8; | 
|  |  | 
|  | // Respect required alignment.  Note that in 32-bit mode Required alignment | 
|  | // may be 0 and cause size not to be updated. | 
|  | DataSize = Size; | 
|  | if (!RequiredAlignment.isZero()) { | 
|  | Alignment = std::max(Alignment, RequiredAlignment); | 
|  | auto RoundingAlignment = Alignment; | 
|  | if (!MaxFieldAlignment.isZero()) | 
|  | RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment); | 
|  | RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment); | 
|  | Size = Size.alignTo(RoundingAlignment); | 
|  | } | 
|  | if (Size.isZero()) { | 
|  | if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) { | 
|  | EndsWithZeroSizedObject = true; | 
|  | LeadsWithZeroSizedBase = true; | 
|  | } | 
|  | // Zero-sized structures have size equal to their alignment if a | 
|  | // __declspec(align) came into play. | 
|  | if (RequiredAlignment >= MinEmptyStructSize) | 
|  | Size = Alignment; | 
|  | else | 
|  | Size = MinEmptyStructSize; | 
|  | } | 
|  |  | 
|  | if (UseExternalLayout) { | 
|  | Size = Context.toCharUnitsFromBits(External.Size); | 
|  | if (External.Align) | 
|  | Alignment = Context.toCharUnitsFromBits(External.Align); | 
|  | return; | 
|  | } | 
|  | unsigned CharBitNum = Context.getTargetInfo().getCharWidth(); | 
|  | uint64_t SizeInBits = Context.toBits(Size); | 
|  |  | 
|  | if (SizeInBits > UnpaddedSizeInBits) { | 
|  | unsigned int PadSize = SizeInBits - UnpaddedSizeInBits; | 
|  | bool InBits = true; | 
|  | if (PadSize % CharBitNum == 0) { | 
|  | PadSize = PadSize / CharBitNum; | 
|  | InBits = false; | 
|  | } | 
|  |  | 
|  | Context.getDiagnostics().Report(RD->getLocation(), | 
|  | diag::warn_padded_struct_size) | 
|  | << Context.getCanonicalTagType(RD) << PadSize | 
|  | << (InBits ? 1 : 0); // (byte|bit) | 
|  | } | 
|  | } | 
|  |  | 
|  | // Recursively walks the non-virtual bases of a class and determines if any of | 
|  | // them are in the bases with overridden methods set. | 
|  | static bool | 
|  | RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> & | 
|  | BasesWithOverriddenMethods, | 
|  | const CXXRecordDecl *RD) { | 
|  | if (BasesWithOverriddenMethods.count(RD)) | 
|  | return true; | 
|  | // If any of a virtual bases non-virtual bases (recursively) requires a | 
|  | // vtordisp than so does this virtual base. | 
|  | for (const CXXBaseSpecifier &Base : RD->bases()) | 
|  | if (!Base.isVirtual() && | 
|  | RequiresVtordisp(BasesWithOverriddenMethods, | 
|  | Base.getType()->getAsCXXRecordDecl())) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void MicrosoftRecordLayoutBuilder::computeVtorDispSet( | 
|  | llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet, | 
|  | const CXXRecordDecl *RD) const { | 
|  | // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with | 
|  | // vftables. | 
|  | if (RD->getMSVtorDispMode() == MSVtorDispMode::ForVFTable) { | 
|  | for (const CXXBaseSpecifier &Base : RD->vbases()) { | 
|  | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | 
|  | const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); | 
|  | if (Layout.hasExtendableVFPtr()) | 
|  | HasVtordispSet.insert(BaseDecl); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If any of our bases need a vtordisp for this type, so do we.  Check our | 
|  | // direct bases for vtordisp requirements. | 
|  | for (const CXXBaseSpecifier &Base : RD->bases()) { | 
|  | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | 
|  | const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl); | 
|  | for (const auto &bi : Layout.getVBaseOffsetsMap()) | 
|  | if (bi.second.hasVtorDisp()) | 
|  | HasVtordispSet.insert(bi.first); | 
|  | } | 
|  | // We don't introduce any additional vtordisps if either: | 
|  | // * A user declared constructor or destructor aren't declared. | 
|  | // * #pragma vtordisp(0) or the /vd0 flag are in use. | 
|  | if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) || | 
|  | RD->getMSVtorDispMode() == MSVtorDispMode::Never) | 
|  | return; | 
|  | // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's | 
|  | // possible for a partially constructed object with virtual base overrides to | 
|  | // escape a non-trivial constructor. | 
|  | assert(RD->getMSVtorDispMode() == MSVtorDispMode::ForVBaseOverride); | 
|  | // Compute a set of base classes which define methods we override.  A virtual | 
|  | // base in this set will require a vtordisp.  A virtual base that transitively | 
|  | // contains one of these bases as a non-virtual base will also require a | 
|  | // vtordisp. | 
|  | llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work; | 
|  | llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods; | 
|  | // Seed the working set with our non-destructor, non-pure virtual methods. | 
|  | for (const CXXMethodDecl *MD : RD->methods()) | 
|  | if (MicrosoftVTableContext::hasVtableSlot(MD) && | 
|  | !isa<CXXDestructorDecl>(MD) && !MD->isPureVirtual()) | 
|  | Work.insert(MD); | 
|  | while (!Work.empty()) { | 
|  | const CXXMethodDecl *MD = *Work.begin(); | 
|  | auto MethodRange = MD->overridden_methods(); | 
|  | // If a virtual method has no-overrides it lives in its parent's vtable. | 
|  | if (MethodRange.begin() == MethodRange.end()) | 
|  | BasesWithOverriddenMethods.insert(MD->getParent()); | 
|  | else | 
|  | Work.insert_range(MethodRange); | 
|  | // We've finished processing this element, remove it from the working set. | 
|  | Work.erase(MD); | 
|  | } | 
|  | // For each of our virtual bases, check if it is in the set of overridden | 
|  | // bases or if it transitively contains a non-virtual base that is. | 
|  | for (const CXXBaseSpecifier &Base : RD->vbases()) { | 
|  | const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); | 
|  | if (!HasVtordispSet.count(BaseDecl) && | 
|  | RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl)) | 
|  | HasVtordispSet.insert(BaseDecl); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getASTRecordLayout - Get or compute information about the layout of the | 
|  | /// specified record (struct/union/class), which indicates its size and field | 
|  | /// position information. | 
|  | const ASTRecordLayout & | 
|  | ASTContext::getASTRecordLayout(const RecordDecl *D) const { | 
|  | // These asserts test different things.  A record has a definition | 
|  | // as soon as we begin to parse the definition.  That definition is | 
|  | // not a complete definition (which is what isDefinition() tests) | 
|  | // until we *finish* parsing the definition. | 
|  |  | 
|  | if (D->hasExternalLexicalStorage() && !D->getDefinition()) | 
|  | getExternalSource()->CompleteType(const_cast<RecordDecl*>(D)); | 
|  | // Complete the redecl chain (if necessary). | 
|  | (void)D->getMostRecentDecl(); | 
|  |  | 
|  | D = D->getDefinition(); | 
|  | assert(D && "Cannot get layout of forward declarations!"); | 
|  | assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!"); | 
|  | assert(D->isCompleteDefinition() && "Cannot layout type before complete!"); | 
|  |  | 
|  | // Look up this layout, if already laid out, return what we have. | 
|  | // Note that we can't save a reference to the entry because this function | 
|  | // is recursive. | 
|  | const ASTRecordLayout *Entry = ASTRecordLayouts[D]; | 
|  | if (Entry) return *Entry; | 
|  |  | 
|  | const ASTRecordLayout *NewEntry = nullptr; | 
|  |  | 
|  | if (getTargetInfo().hasMicrosoftRecordLayout()) { | 
|  | if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { | 
|  | EmptySubobjectMap EmptySubobjects(*this, RD); | 
|  | MicrosoftRecordLayoutBuilder Builder(*this, &EmptySubobjects); | 
|  | Builder.cxxLayout(RD); | 
|  | NewEntry = new (*this) ASTRecordLayout( | 
|  | *this, Builder.Size, Builder.Alignment, Builder.Alignment, | 
|  | Builder.Alignment, Builder.RequiredAlignment, Builder.HasOwnVFPtr, | 
|  | Builder.HasOwnVFPtr || Builder.PrimaryBase, Builder.VBPtrOffset, | 
|  | Builder.DataSize, Builder.FieldOffsets, Builder.NonVirtualSize, | 
|  | Builder.Alignment, Builder.Alignment, CharUnits::Zero(), | 
|  | Builder.PrimaryBase, false, Builder.SharedVBPtrBase, | 
|  | Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase, | 
|  | Builder.Bases, Builder.VBases); | 
|  | } else { | 
|  | MicrosoftRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); | 
|  | Builder.layout(D); | 
|  | NewEntry = new (*this) ASTRecordLayout( | 
|  | *this, Builder.Size, Builder.Alignment, Builder.Alignment, | 
|  | Builder.Alignment, Builder.RequiredAlignment, Builder.Size, | 
|  | Builder.FieldOffsets); | 
|  | } | 
|  | } else { | 
|  | if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { | 
|  | EmptySubobjectMap EmptySubobjects(*this, RD); | 
|  | ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects); | 
|  | Builder.Layout(RD); | 
|  |  | 
|  | // In certain situations, we are allowed to lay out objects in the | 
|  | // tail-padding of base classes.  This is ABI-dependent. | 
|  | // FIXME: this should be stored in the record layout. | 
|  | bool skipTailPadding = | 
|  | mustSkipTailPadding(getTargetInfo().getCXXABI(), RD); | 
|  |  | 
|  | // FIXME: This should be done in FinalizeLayout. | 
|  | CharUnits DataSize = | 
|  | skipTailPadding ? Builder.getSize() : Builder.getDataSize(); | 
|  | CharUnits NonVirtualSize = | 
|  | skipTailPadding ? DataSize : Builder.NonVirtualSize; | 
|  | NewEntry = new (*this) ASTRecordLayout( | 
|  | *this, Builder.getSize(), Builder.Alignment, | 
|  | Builder.PreferredAlignment, Builder.UnadjustedAlignment, | 
|  | /*RequiredAlignment : used by MS-ABI)*/ | 
|  | Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(), | 
|  | CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets, | 
|  | NonVirtualSize, Builder.NonVirtualAlignment, | 
|  | Builder.PreferredNVAlignment, | 
|  | EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase, | 
|  | Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases, | 
|  | Builder.VBases); | 
|  | } else { | 
|  | ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); | 
|  | Builder.Layout(D); | 
|  |  | 
|  | NewEntry = new (*this) ASTRecordLayout( | 
|  | *this, Builder.getSize(), Builder.Alignment, | 
|  | Builder.PreferredAlignment, Builder.UnadjustedAlignment, | 
|  | /*RequiredAlignment : used by MS-ABI)*/ | 
|  | Builder.Alignment, Builder.getSize(), Builder.FieldOffsets); | 
|  | } | 
|  | } | 
|  |  | 
|  | ASTRecordLayouts[D] = NewEntry; | 
|  |  | 
|  | constexpr uint64_t MaxStructSizeInBytes = 1ULL << 60; | 
|  | CharUnits StructSize = NewEntry->getSize(); | 
|  | if (static_cast<uint64_t>(StructSize.getQuantity()) >= MaxStructSizeInBytes) { | 
|  | getDiagnostics().Report(D->getLocation(), diag::err_struct_too_large) | 
|  | << D->getName() << MaxStructSizeInBytes; | 
|  | } | 
|  |  | 
|  | if (getLangOpts().DumpRecordLayouts) { | 
|  | llvm::outs() << "\n*** Dumping AST Record Layout\n"; | 
|  | DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple); | 
|  | } | 
|  |  | 
|  | return *NewEntry; | 
|  | } | 
|  |  | 
|  | const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) { | 
|  | if (!getTargetInfo().getCXXABI().hasKeyFunctions()) | 
|  | return nullptr; | 
|  |  | 
|  | assert(RD->getDefinition() && "Cannot get key function for forward decl!"); | 
|  | RD = RD->getDefinition(); | 
|  |  | 
|  | // Beware: | 
|  | //  1) computing the key function might trigger deserialization, which might | 
|  | //     invalidate iterators into KeyFunctions | 
|  | //  2) 'get' on the LazyDeclPtr might also trigger deserialization and | 
|  | //     invalidate the LazyDeclPtr within the map itself | 
|  | LazyDeclPtr Entry = KeyFunctions[RD]; | 
|  | const Decl *Result = | 
|  | Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD); | 
|  |  | 
|  | // Store it back if it changed. | 
|  | if (Entry.isOffset() || Entry.isValid() != bool(Result)) | 
|  | KeyFunctions[RD] = const_cast<Decl*>(Result); | 
|  |  | 
|  | return cast_or_null<CXXMethodDecl>(Result); | 
|  | } | 
|  |  | 
|  | void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) { | 
|  | assert(Method == Method->getFirstDecl() && | 
|  | "not working with method declaration from class definition"); | 
|  |  | 
|  | // Look up the cache entry.  Since we're working with the first | 
|  | // declaration, its parent must be the class definition, which is | 
|  | // the correct key for the KeyFunctions hash. | 
|  | const auto &Map = KeyFunctions; | 
|  | auto I = Map.find(Method->getParent()); | 
|  |  | 
|  | // If it's not cached, there's nothing to do. | 
|  | if (I == Map.end()) return; | 
|  |  | 
|  | // If it is cached, check whether it's the target method, and if so, | 
|  | // remove it from the cache. Note, the call to 'get' might invalidate | 
|  | // the iterator and the LazyDeclPtr object within the map. | 
|  | LazyDeclPtr Ptr = I->second; | 
|  | if (Ptr.get(getExternalSource()) == Method) { | 
|  | // FIXME: remember that we did this for module / chained PCH state? | 
|  | KeyFunctions.erase(Method->getParent()); | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) { | 
|  | const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent()); | 
|  | return Layout.getFieldOffset(FD->getFieldIndex()); | 
|  | } | 
|  |  | 
|  | uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const { | 
|  | uint64_t OffsetInBits; | 
|  | if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) { | 
|  | OffsetInBits = ::getFieldOffset(*this, FD); | 
|  | } else { | 
|  | const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD); | 
|  |  | 
|  | OffsetInBits = 0; | 
|  | for (const NamedDecl *ND : IFD->chain()) | 
|  | OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND)); | 
|  | } | 
|  |  | 
|  | return OffsetInBits; | 
|  | } | 
|  |  | 
|  | uint64_t ASTContext::lookupFieldBitOffset(const ObjCInterfaceDecl *OID, | 
|  | const ObjCIvarDecl *Ivar) const { | 
|  | Ivar = Ivar->getCanonicalDecl(); | 
|  | const ObjCInterfaceDecl *Container = Ivar->getContainingInterface(); | 
|  | const ASTRecordLayout *RL = &getASTObjCInterfaceLayout(Container); | 
|  |  | 
|  | // Compute field index. | 
|  | // | 
|  | // FIXME: The index here is closely tied to how ASTContext::getObjCLayout is | 
|  | // implemented. This should be fixed to get the information from the layout | 
|  | // directly. | 
|  | unsigned Index = 0; | 
|  |  | 
|  | for (const ObjCIvarDecl *IVD = Container->all_declared_ivar_begin(); | 
|  | IVD; IVD = IVD->getNextIvar()) { | 
|  | if (Ivar == IVD) | 
|  | break; | 
|  | ++Index; | 
|  | } | 
|  | assert(Index < RL->getFieldCount() && "Ivar is not inside record layout!"); | 
|  |  | 
|  | return RL->getFieldOffset(Index); | 
|  | } | 
|  |  | 
|  | /// getObjCLayout - Get or compute information about the layout of the | 
|  | /// given interface. | 
|  | /// | 
|  | /// \param Impl - If given, also include the layout of the interface's | 
|  | /// implementation. This may differ by including synthesized ivars. | 
|  | const ASTRecordLayout & | 
|  | ASTContext::getObjCLayout(const ObjCInterfaceDecl *D) const { | 
|  | // Retrieve the definition | 
|  | if (D->hasExternalLexicalStorage() && !D->getDefinition()) | 
|  | getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D)); | 
|  | D = D->getDefinition(); | 
|  | assert(D && !D->isInvalidDecl() && D->isThisDeclarationADefinition() && | 
|  | "Invalid interface decl!"); | 
|  |  | 
|  | // Look up this layout, if already laid out, return what we have. | 
|  | if (const ASTRecordLayout *Entry = ObjCLayouts[D]) | 
|  | return *Entry; | 
|  |  | 
|  | ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr); | 
|  | Builder.Layout(D); | 
|  |  | 
|  | const ASTRecordLayout *NewEntry = new (*this) ASTRecordLayout( | 
|  | *this, Builder.getSize(), Builder.Alignment, Builder.PreferredAlignment, | 
|  | Builder.UnadjustedAlignment, | 
|  | /*RequiredAlignment : used by MS-ABI)*/ | 
|  | Builder.Alignment, Builder.getDataSize(), Builder.FieldOffsets); | 
|  |  | 
|  | ObjCLayouts[D] = NewEntry; | 
|  |  | 
|  | return *NewEntry; | 
|  | } | 
|  |  | 
|  | static void PrintOffset(raw_ostream &OS, | 
|  | CharUnits Offset, unsigned IndentLevel) { | 
|  | OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity()); | 
|  | OS.indent(IndentLevel * 2); | 
|  | } | 
|  |  | 
|  | static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset, | 
|  | unsigned Begin, unsigned Width, | 
|  | unsigned IndentLevel) { | 
|  | llvm::SmallString<10> Buffer; | 
|  | { | 
|  | llvm::raw_svector_ostream BufferOS(Buffer); | 
|  | BufferOS << Offset.getQuantity() << ':'; | 
|  | if (Width == 0) { | 
|  | BufferOS << '-'; | 
|  | } else { | 
|  | BufferOS << Begin << '-' << (Begin + Width - 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | OS << llvm::right_justify(Buffer, 10) << " | "; | 
|  | OS.indent(IndentLevel * 2); | 
|  | } | 
|  |  | 
|  | static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) { | 
|  | OS << "           | "; | 
|  | OS.indent(IndentLevel * 2); | 
|  | } | 
|  |  | 
|  | static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD, | 
|  | const ASTContext &C, | 
|  | CharUnits Offset, | 
|  | unsigned IndentLevel, | 
|  | const char* Description, | 
|  | bool PrintSizeInfo, | 
|  | bool IncludeVirtualBases) { | 
|  | const ASTRecordLayout &Layout = C.getASTRecordLayout(RD); | 
|  | auto CXXRD = dyn_cast<CXXRecordDecl>(RD); | 
|  |  | 
|  | PrintOffset(OS, Offset, IndentLevel); | 
|  | OS << C.getCanonicalTagType(const_cast<RecordDecl *>(RD)); | 
|  | if (Description) | 
|  | OS << ' ' << Description; | 
|  | if (CXXRD && CXXRD->isEmpty()) | 
|  | OS << " (empty)"; | 
|  | OS << '\n'; | 
|  |  | 
|  | IndentLevel++; | 
|  |  | 
|  | // Dump bases. | 
|  | if (CXXRD) { | 
|  | const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); | 
|  | bool HasOwnVFPtr = Layout.hasOwnVFPtr(); | 
|  | bool HasOwnVBPtr = Layout.hasOwnVBPtr(); | 
|  |  | 
|  | // Vtable pointer. | 
|  | if (CXXRD->isDynamicClass() && !PrimaryBase && | 
|  | !C.getTargetInfo().hasMicrosoftRecordLayout()) { | 
|  | PrintOffset(OS, Offset, IndentLevel); | 
|  | OS << '(' << *RD << " vtable pointer)\n"; | 
|  | } else if (HasOwnVFPtr) { | 
|  | PrintOffset(OS, Offset, IndentLevel); | 
|  | // vfptr (for Microsoft C++ ABI) | 
|  | OS << '(' << *RD << " vftable pointer)\n"; | 
|  | } | 
|  |  | 
|  | // Collect nvbases. | 
|  | SmallVector<const CXXRecordDecl *, 4> Bases; | 
|  | for (const CXXBaseSpecifier &Base : CXXRD->bases()) { | 
|  | assert(!Base.getType()->isDependentType() && | 
|  | "Cannot layout class with dependent bases."); | 
|  | if (!Base.isVirtual()) | 
|  | Bases.push_back(Base.getType()->getAsCXXRecordDecl()); | 
|  | } | 
|  |  | 
|  | // Sort nvbases by offset. | 
|  | llvm::stable_sort( | 
|  | Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) { | 
|  | return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R); | 
|  | }); | 
|  |  | 
|  | // Dump (non-virtual) bases | 
|  | for (const CXXRecordDecl *Base : Bases) { | 
|  | CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base); | 
|  | DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel, | 
|  | Base == PrimaryBase ? "(primary base)" : "(base)", | 
|  | /*PrintSizeInfo=*/false, | 
|  | /*IncludeVirtualBases=*/false); | 
|  | } | 
|  |  | 
|  | // vbptr (for Microsoft C++ ABI) | 
|  | if (HasOwnVBPtr) { | 
|  | PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel); | 
|  | OS << '(' << *RD << " vbtable pointer)\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Dump fields. | 
|  | for (const FieldDecl *Field : RD->fields()) { | 
|  | uint64_t LocalFieldOffsetInBits = | 
|  | Layout.getFieldOffset(Field->getFieldIndex()); | 
|  | CharUnits FieldOffset = | 
|  | Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits); | 
|  |  | 
|  | // Recursively dump fields of record type. | 
|  | if (const auto *RD = Field->getType()->getAsRecordDecl()) { | 
|  | DumpRecordLayout(OS, RD, C, FieldOffset, IndentLevel, | 
|  | Field->getName().data(), | 
|  | /*PrintSizeInfo=*/false, | 
|  | /*IncludeVirtualBases=*/true); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Field->isBitField()) { | 
|  | uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset); | 
|  | unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits; | 
|  | unsigned Width = Field->getBitWidthValue(); | 
|  | PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel); | 
|  | } else { | 
|  | PrintOffset(OS, FieldOffset, IndentLevel); | 
|  | } | 
|  | const QualType &FieldType = C.getLangOpts().DumpRecordLayoutsCanonical | 
|  | ? Field->getType().getCanonicalType() | 
|  | : Field->getType(); | 
|  | OS << FieldType << ' ' << *Field << '\n'; | 
|  | } | 
|  |  | 
|  | // Dump virtual bases. | 
|  | if (CXXRD && IncludeVirtualBases) { | 
|  | const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps = | 
|  | Layout.getVBaseOffsetsMap(); | 
|  |  | 
|  | for (const CXXBaseSpecifier &Base : CXXRD->vbases()) { | 
|  | assert(Base.isVirtual() && "Found non-virtual class!"); | 
|  | const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl(); | 
|  |  | 
|  | CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase); | 
|  |  | 
|  | if (VtorDisps.find(VBase)->second.hasVtorDisp()) { | 
|  | PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel); | 
|  | OS << "(vtordisp for vbase " << *VBase << ")\n"; | 
|  | } | 
|  |  | 
|  | DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel, | 
|  | VBase == Layout.getPrimaryBase() ? | 
|  | "(primary virtual base)" : "(virtual base)", | 
|  | /*PrintSizeInfo=*/false, | 
|  | /*IncludeVirtualBases=*/false); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!PrintSizeInfo) return; | 
|  |  | 
|  | PrintIndentNoOffset(OS, IndentLevel - 1); | 
|  | OS << "[sizeof=" << Layout.getSize().getQuantity(); | 
|  | if (CXXRD && !C.getTargetInfo().hasMicrosoftRecordLayout()) | 
|  | OS << ", dsize=" << Layout.getDataSize().getQuantity(); | 
|  | OS << ", align=" << Layout.getAlignment().getQuantity(); | 
|  | if (C.getTargetInfo().defaultsToAIXPowerAlignment()) | 
|  | OS << ", preferredalign=" << Layout.getPreferredAlignment().getQuantity(); | 
|  |  | 
|  | if (CXXRD) { | 
|  | OS << ",\n"; | 
|  | PrintIndentNoOffset(OS, IndentLevel - 1); | 
|  | OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity(); | 
|  | OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity(); | 
|  | if (C.getTargetInfo().defaultsToAIXPowerAlignment()) | 
|  | OS << ", preferrednvalign=" | 
|  | << Layout.getPreferredNVAlignment().getQuantity(); | 
|  | } | 
|  | OS << "]\n"; | 
|  | } | 
|  |  | 
|  | void ASTContext::DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS, | 
|  | bool Simple) const { | 
|  | if (!Simple) { | 
|  | ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr, | 
|  | /*PrintSizeInfo*/ true, | 
|  | /*IncludeVirtualBases=*/true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // The "simple" format is designed to be parsed by the | 
|  | // layout-override testing code.  There shouldn't be any external | 
|  | // uses of this format --- when LLDB overrides a layout, it sets up | 
|  | // the data structures directly --- so feel free to adjust this as | 
|  | // you like as long as you also update the rudimentary parser for it | 
|  | // in libFrontend. | 
|  |  | 
|  | const ASTRecordLayout &Info = getASTRecordLayout(RD); | 
|  | OS << "Type: " << getCanonicalTagType(RD) << "\n"; | 
|  | OS << "\nLayout: "; | 
|  | OS << "<ASTRecordLayout\n"; | 
|  | OS << "  Size:" << toBits(Info.getSize()) << "\n"; | 
|  | if (!getTargetInfo().hasMicrosoftRecordLayout()) | 
|  | OS << "  DataSize:" << toBits(Info.getDataSize()) << "\n"; | 
|  | OS << "  Alignment:" << toBits(Info.getAlignment()) << "\n"; | 
|  | if (Target->defaultsToAIXPowerAlignment()) | 
|  | OS << "  PreferredAlignment:" << toBits(Info.getPreferredAlignment()) | 
|  | << "\n"; | 
|  | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { | 
|  | OS << "  BaseOffsets: ["; | 
|  | const CXXRecordDecl *Base = nullptr; | 
|  | for (auto I : CXXRD->bases()) { | 
|  | if (I.isVirtual()) | 
|  | continue; | 
|  | if (Base) | 
|  | OS << ", "; | 
|  | Base = I.getType()->getAsCXXRecordDecl(); | 
|  | OS << Info.CXXInfo->BaseOffsets[Base].getQuantity(); | 
|  | } | 
|  | OS << "]>\n"; | 
|  | OS << "  VBaseOffsets: ["; | 
|  | const CXXRecordDecl *VBase = nullptr; | 
|  | for (auto I : CXXRD->vbases()) { | 
|  | if (VBase) | 
|  | OS << ", "; | 
|  | VBase = I.getType()->getAsCXXRecordDecl(); | 
|  | OS << Info.CXXInfo->VBaseOffsets[VBase].VBaseOffset.getQuantity(); | 
|  | } | 
|  | OS << "]>\n"; | 
|  | } | 
|  | OS << "  FieldOffsets: ["; | 
|  | for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) { | 
|  | if (i) | 
|  | OS << ", "; | 
|  | OS << Info.getFieldOffset(i); | 
|  | } | 
|  | OS << "]>\n"; | 
|  | } |