|  | //===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements the ASTContext interface. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "ByteCode/Context.h" | 
|  | #include "CXXABI.h" | 
|  | #include "clang/AST/APValue.h" | 
|  | #include "clang/AST/ASTConcept.h" | 
|  | #include "clang/AST/ASTMutationListener.h" | 
|  | #include "clang/AST/ASTStructuralEquivalence.h" | 
|  | #include "clang/AST/ASTTypeTraits.h" | 
|  | #include "clang/AST/Attr.h" | 
|  | #include "clang/AST/AttrIterator.h" | 
|  | #include "clang/AST/CharUnits.h" | 
|  | #include "clang/AST/Comment.h" | 
|  | #include "clang/AST/Decl.h" | 
|  | #include "clang/AST/DeclBase.h" | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/DeclContextInternals.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/DeclOpenMP.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/DeclarationName.h" | 
|  | #include "clang/AST/DependenceFlags.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/ExternalASTSource.h" | 
|  | #include "clang/AST/Mangle.h" | 
|  | #include "clang/AST/MangleNumberingContext.h" | 
|  | #include "clang/AST/NestedNameSpecifier.h" | 
|  | #include "clang/AST/ParentMapContext.h" | 
|  | #include "clang/AST/RawCommentList.h" | 
|  | #include "clang/AST/RecordLayout.h" | 
|  | #include "clang/AST/Stmt.h" | 
|  | #include "clang/AST/TemplateBase.h" | 
|  | #include "clang/AST/TemplateName.h" | 
|  | #include "clang/AST/Type.h" | 
|  | #include "clang/AST/TypeLoc.h" | 
|  | #include "clang/AST/UnresolvedSet.h" | 
|  | #include "clang/AST/VTableBuilder.h" | 
|  | #include "clang/Basic/AddressSpaces.h" | 
|  | #include "clang/Basic/Builtins.h" | 
|  | #include "clang/Basic/CommentOptions.h" | 
|  | #include "clang/Basic/ExceptionSpecificationType.h" | 
|  | #include "clang/Basic/IdentifierTable.h" | 
|  | #include "clang/Basic/LLVM.h" | 
|  | #include "clang/Basic/LangOptions.h" | 
|  | #include "clang/Basic/Linkage.h" | 
|  | #include "clang/Basic/Module.h" | 
|  | #include "clang/Basic/NoSanitizeList.h" | 
|  | #include "clang/Basic/ObjCRuntime.h" | 
|  | #include "clang/Basic/ProfileList.h" | 
|  | #include "clang/Basic/SourceLocation.h" | 
|  | #include "clang/Basic/SourceManager.h" | 
|  | #include "clang/Basic/Specifiers.h" | 
|  | #include "clang/Basic/TargetCXXABI.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Basic/XRayLists.h" | 
|  | #include "llvm/ADT/APFixedPoint.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/APSInt.h" | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/FoldingSet.h" | 
|  | #include "llvm/ADT/PointerUnion.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" | 
|  | #include "llvm/Support/Capacity.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MD5.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/SipHash.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/TargetParser/AArch64TargetParser.h" | 
|  | #include "llvm/TargetParser/Triple.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  | #include <cstdlib> | 
|  | #include <map> | 
|  | #include <memory> | 
|  | #include <optional> | 
|  | #include <string> | 
|  | #include <tuple> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace clang; | 
|  |  | 
|  | enum FloatingRank { | 
|  | BFloat16Rank, | 
|  | Float16Rank, | 
|  | HalfRank, | 
|  | FloatRank, | 
|  | DoubleRank, | 
|  | LongDoubleRank, | 
|  | Float128Rank, | 
|  | Ibm128Rank | 
|  | }; | 
|  |  | 
|  | /// \returns The locations that are relevant when searching for Doc comments | 
|  | /// related to \p D. | 
|  | static SmallVector<SourceLocation, 2> | 
|  | getDeclLocsForCommentSearch(const Decl *D, SourceManager &SourceMgr) { | 
|  | assert(D); | 
|  |  | 
|  | // User can not attach documentation to implicit declarations. | 
|  | if (D->isImplicit()) | 
|  | return {}; | 
|  |  | 
|  | // User can not attach documentation to implicit instantiations. | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | if (const auto *VD = dyn_cast<VarDecl>(D)) { | 
|  | if (VD->isStaticDataMember() && | 
|  | VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) { | 
|  | if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) { | 
|  | TemplateSpecializationKind TSK = CTSD->getSpecializationKind(); | 
|  | if (TSK == TSK_ImplicitInstantiation || | 
|  | TSK == TSK_Undeclared) | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | if (const auto *ED = dyn_cast<EnumDecl>(D)) { | 
|  | if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) | 
|  | return {}; | 
|  | } | 
|  | if (const auto *TD = dyn_cast<TagDecl>(D)) { | 
|  | // When tag declaration (but not definition!) is part of the | 
|  | // decl-specifier-seq of some other declaration, it doesn't get comment | 
|  | if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition()) | 
|  | return {}; | 
|  | } | 
|  | // TODO: handle comments for function parameters properly. | 
|  | if (isa<ParmVarDecl>(D)) | 
|  | return {}; | 
|  |  | 
|  | // TODO: we could look up template parameter documentation in the template | 
|  | // documentation. | 
|  | if (isa<TemplateTypeParmDecl>(D) || | 
|  | isa<NonTypeTemplateParmDecl>(D) || | 
|  | isa<TemplateTemplateParmDecl>(D)) | 
|  | return {}; | 
|  |  | 
|  | SmallVector<SourceLocation, 2> Locations; | 
|  | // Find declaration location. | 
|  | // For Objective-C declarations we generally don't expect to have multiple | 
|  | // declarators, thus use declaration starting location as the "declaration | 
|  | // location". | 
|  | // For all other declarations multiple declarators are used quite frequently, | 
|  | // so we use the location of the identifier as the "declaration location". | 
|  | SourceLocation BaseLocation; | 
|  | if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) || | 
|  | isa<ObjCPropertyDecl>(D) || isa<RedeclarableTemplateDecl>(D) || | 
|  | isa<ClassTemplateSpecializationDecl>(D) || | 
|  | // Allow association with Y across {} in `typedef struct X {} Y`. | 
|  | isa<TypedefDecl>(D)) | 
|  | BaseLocation = D->getBeginLoc(); | 
|  | else | 
|  | BaseLocation = D->getLocation(); | 
|  |  | 
|  | if (!D->getLocation().isMacroID()) { | 
|  | Locations.emplace_back(BaseLocation); | 
|  | } else { | 
|  | const auto *DeclCtx = D->getDeclContext(); | 
|  |  | 
|  | // When encountering definitions generated from a macro (that are not | 
|  | // contained by another declaration in the macro) we need to try and find | 
|  | // the comment at the location of the expansion but if there is no comment | 
|  | // there we should retry to see if there is a comment inside the macro as | 
|  | // well. To this end we return first BaseLocation to first look at the | 
|  | // expansion site, the second value is the spelling location of the | 
|  | // beginning of the declaration defined inside the macro. | 
|  | if (!(DeclCtx && | 
|  | Decl::castFromDeclContext(DeclCtx)->getLocation().isMacroID())) { | 
|  | Locations.emplace_back(SourceMgr.getExpansionLoc(BaseLocation)); | 
|  | } | 
|  |  | 
|  | // We use Decl::getBeginLoc() and not just BaseLocation here to ensure that | 
|  | // we don't refer to the macro argument location at the expansion site (this | 
|  | // can happen if the name's spelling is provided via macro argument), and | 
|  | // always to the declaration itself. | 
|  | Locations.emplace_back(SourceMgr.getSpellingLoc(D->getBeginLoc())); | 
|  | } | 
|  |  | 
|  | return Locations; | 
|  | } | 
|  |  | 
|  | RawComment *ASTContext::getRawCommentForDeclNoCacheImpl( | 
|  | const Decl *D, const SourceLocation RepresentativeLocForDecl, | 
|  | const std::map<unsigned, RawComment *> &CommentsInTheFile) const { | 
|  | // If the declaration doesn't map directly to a location in a file, we | 
|  | // can't find the comment. | 
|  | if (RepresentativeLocForDecl.isInvalid() || | 
|  | !RepresentativeLocForDecl.isFileID()) | 
|  | return nullptr; | 
|  |  | 
|  | // If there are no comments anywhere, we won't find anything. | 
|  | if (CommentsInTheFile.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | // Decompose the location for the declaration and find the beginning of the | 
|  | // file buffer. | 
|  | const FileIDAndOffset DeclLocDecomp = | 
|  | SourceMgr.getDecomposedLoc(RepresentativeLocForDecl); | 
|  |  | 
|  | // Slow path. | 
|  | auto OffsetCommentBehindDecl = | 
|  | CommentsInTheFile.lower_bound(DeclLocDecomp.second); | 
|  |  | 
|  | // First check whether we have a trailing comment. | 
|  | if (OffsetCommentBehindDecl != CommentsInTheFile.end()) { | 
|  | RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second; | 
|  | if ((CommentBehindDecl->isDocumentation() || | 
|  | LangOpts.CommentOpts.ParseAllComments) && | 
|  | CommentBehindDecl->isTrailingComment() && | 
|  | (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) || | 
|  | isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) { | 
|  |  | 
|  | // Check that Doxygen trailing comment comes after the declaration, starts | 
|  | // on the same line and in the same file as the declaration. | 
|  | if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) == | 
|  | Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first, | 
|  | OffsetCommentBehindDecl->first)) { | 
|  | return CommentBehindDecl; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The comment just after the declaration was not a trailing comment. | 
|  | // Let's look at the previous comment. | 
|  | if (OffsetCommentBehindDecl == CommentsInTheFile.begin()) | 
|  | return nullptr; | 
|  |  | 
|  | auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl; | 
|  | RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second; | 
|  |  | 
|  | // Check that we actually have a non-member Doxygen comment. | 
|  | if (!(CommentBeforeDecl->isDocumentation() || | 
|  | LangOpts.CommentOpts.ParseAllComments) || | 
|  | CommentBeforeDecl->isTrailingComment()) | 
|  | return nullptr; | 
|  |  | 
|  | // Decompose the end of the comment. | 
|  | const unsigned CommentEndOffset = | 
|  | Comments.getCommentEndOffset(CommentBeforeDecl); | 
|  |  | 
|  | // Get the corresponding buffer. | 
|  | bool Invalid = false; | 
|  | const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first, | 
|  | &Invalid).data(); | 
|  | if (Invalid) | 
|  | return nullptr; | 
|  |  | 
|  | // Extract text between the comment and declaration. | 
|  | StringRef Text(Buffer + CommentEndOffset, | 
|  | DeclLocDecomp.second - CommentEndOffset); | 
|  |  | 
|  | // There should be no other declarations or preprocessor directives between | 
|  | // comment and declaration. | 
|  | if (Text.find_last_of(";{}#@") != StringRef::npos) | 
|  | return nullptr; | 
|  |  | 
|  | return CommentBeforeDecl; | 
|  | } | 
|  |  | 
|  | RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const { | 
|  | const auto DeclLocs = getDeclLocsForCommentSearch(D, SourceMgr); | 
|  |  | 
|  | for (const auto DeclLoc : DeclLocs) { | 
|  | // If the declaration doesn't map directly to a location in a file, we | 
|  | // can't find the comment. | 
|  | if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) | 
|  | continue; | 
|  |  | 
|  | if (ExternalSource && !CommentsLoaded) { | 
|  | ExternalSource->ReadComments(); | 
|  | CommentsLoaded = true; | 
|  | } | 
|  |  | 
|  | if (Comments.empty()) | 
|  | continue; | 
|  |  | 
|  | const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first; | 
|  | if (!File.isValid()) | 
|  | continue; | 
|  |  | 
|  | const auto CommentsInThisFile = Comments.getCommentsInFile(File); | 
|  | if (!CommentsInThisFile || CommentsInThisFile->empty()) | 
|  | continue; | 
|  |  | 
|  | if (RawComment *Comment = | 
|  | getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) | 
|  | return Comment; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void ASTContext::addComment(const RawComment &RC) { | 
|  | assert(LangOpts.RetainCommentsFromSystemHeaders || | 
|  | !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin())); | 
|  | Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc); | 
|  | } | 
|  |  | 
|  | const RawComment *ASTContext::getRawCommentForAnyRedecl( | 
|  | const Decl *D, | 
|  | const Decl **OriginalDecl) const { | 
|  | if (!D) { | 
|  | if (OriginalDecl) | 
|  | OriginalDecl = nullptr; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | D = &adjustDeclToTemplate(*D); | 
|  |  | 
|  | // Any comment directly attached to D? | 
|  | { | 
|  | auto DeclComment = DeclRawComments.find(D); | 
|  | if (DeclComment != DeclRawComments.end()) { | 
|  | if (OriginalDecl) | 
|  | *OriginalDecl = D; | 
|  | return DeclComment->second; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Any comment attached to any redeclaration of D? | 
|  | const Decl *CanonicalD = D->getCanonicalDecl(); | 
|  | if (!CanonicalD) | 
|  | return nullptr; | 
|  |  | 
|  | { | 
|  | auto RedeclComment = RedeclChainComments.find(CanonicalD); | 
|  | if (RedeclComment != RedeclChainComments.end()) { | 
|  | if (OriginalDecl) | 
|  | *OriginalDecl = RedeclComment->second; | 
|  | auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second); | 
|  | assert(CommentAtRedecl != DeclRawComments.end() && | 
|  | "This decl is supposed to have comment attached."); | 
|  | return CommentAtRedecl->second; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Any redeclarations of D that we haven't checked for comments yet? | 
|  | const Decl *LastCheckedRedecl = [&]() { | 
|  | const Decl *LastChecked = CommentlessRedeclChains.lookup(CanonicalD); | 
|  | bool CanUseCommentlessCache = false; | 
|  | if (LastChecked) { | 
|  | for (auto *Redecl : CanonicalD->redecls()) { | 
|  | if (Redecl == D) { | 
|  | CanUseCommentlessCache = true; | 
|  | break; | 
|  | } | 
|  | if (Redecl == LastChecked) | 
|  | break; | 
|  | } | 
|  | } | 
|  | // FIXME: This could be improved so that even if CanUseCommentlessCache | 
|  | // is false, once we've traversed past CanonicalD we still skip ahead | 
|  | // LastChecked. | 
|  | return CanUseCommentlessCache ? LastChecked : nullptr; | 
|  | }(); | 
|  |  | 
|  | for (const Decl *Redecl : D->redecls()) { | 
|  | assert(Redecl); | 
|  | // Skip all redeclarations that have been checked previously. | 
|  | if (LastCheckedRedecl) { | 
|  | if (LastCheckedRedecl == Redecl) { | 
|  | LastCheckedRedecl = nullptr; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl); | 
|  | if (RedeclComment) { | 
|  | cacheRawCommentForDecl(*Redecl, *RedeclComment); | 
|  | if (OriginalDecl) | 
|  | *OriginalDecl = Redecl; | 
|  | return RedeclComment; | 
|  | } | 
|  | CommentlessRedeclChains[CanonicalD] = Redecl; | 
|  | } | 
|  |  | 
|  | if (OriginalDecl) | 
|  | *OriginalDecl = nullptr; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD, | 
|  | const RawComment &Comment) const { | 
|  | assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments); | 
|  | DeclRawComments.try_emplace(&OriginalD, &Comment); | 
|  | const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl(); | 
|  | RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD); | 
|  | CommentlessRedeclChains.erase(CanonicalDecl); | 
|  | } | 
|  |  | 
|  | static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod, | 
|  | SmallVectorImpl<const NamedDecl *> &Redeclared) { | 
|  | const DeclContext *DC = ObjCMethod->getDeclContext(); | 
|  | if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) { | 
|  | const ObjCInterfaceDecl *ID = IMD->getClassInterface(); | 
|  | if (!ID) | 
|  | return; | 
|  | // Add redeclared method here. | 
|  | for (const auto *Ext : ID->known_extensions()) { | 
|  | if (ObjCMethodDecl *RedeclaredMethod = | 
|  | Ext->getMethod(ObjCMethod->getSelector(), | 
|  | ObjCMethod->isInstanceMethod())) | 
|  | Redeclared.push_back(RedeclaredMethod); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls, | 
|  | const Preprocessor *PP) { | 
|  | if (Comments.empty() || Decls.empty()) | 
|  | return; | 
|  |  | 
|  | FileID File; | 
|  | for (const Decl *D : Decls) { | 
|  | if (D->isInvalidDecl()) | 
|  | continue; | 
|  |  | 
|  | D = &adjustDeclToTemplate(*D); | 
|  | SourceLocation Loc = D->getLocation(); | 
|  | if (Loc.isValid()) { | 
|  | // See if there are any new comments that are not attached to a decl. | 
|  | // The location doesn't have to be precise - we care only about the file. | 
|  | File = SourceMgr.getDecomposedLoc(Loc).first; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (File.isInvalid()) | 
|  | return; | 
|  |  | 
|  | auto CommentsInThisFile = Comments.getCommentsInFile(File); | 
|  | if (!CommentsInThisFile || CommentsInThisFile->empty() || | 
|  | CommentsInThisFile->rbegin()->second->isAttached()) | 
|  | return; | 
|  |  | 
|  | // There is at least one comment not attached to a decl. | 
|  | // Maybe it should be attached to one of Decls? | 
|  | // | 
|  | // Note that this way we pick up not only comments that precede the | 
|  | // declaration, but also comments that *follow* the declaration -- thanks to | 
|  | // the lookahead in the lexer: we've consumed the semicolon and looked | 
|  | // ahead through comments. | 
|  | for (const Decl *D : Decls) { | 
|  | assert(D); | 
|  | if (D->isInvalidDecl()) | 
|  | continue; | 
|  |  | 
|  | D = &adjustDeclToTemplate(*D); | 
|  |  | 
|  | if (DeclRawComments.count(D) > 0) | 
|  | continue; | 
|  |  | 
|  | const auto DeclLocs = getDeclLocsForCommentSearch(D, SourceMgr); | 
|  |  | 
|  | for (const auto DeclLoc : DeclLocs) { | 
|  | if (DeclLoc.isInvalid() || !DeclLoc.isFileID()) | 
|  | continue; | 
|  |  | 
|  | if (RawComment *const DocComment = getRawCommentForDeclNoCacheImpl( | 
|  | D, DeclLoc, *CommentsInThisFile)) { | 
|  | cacheRawCommentForDecl(*D, *DocComment); | 
|  | comments::FullComment *FC = DocComment->parse(*this, PP, D); | 
|  | ParsedComments[D->getCanonicalDecl()] = FC; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC, | 
|  | const Decl *D) const { | 
|  | auto *ThisDeclInfo = new (*this) comments::DeclInfo; | 
|  | ThisDeclInfo->CommentDecl = D; | 
|  | ThisDeclInfo->IsFilled = false; | 
|  | ThisDeclInfo->fill(); | 
|  | ThisDeclInfo->CommentDecl = FC->getDecl(); | 
|  | if (!ThisDeclInfo->TemplateParameters) | 
|  | ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters; | 
|  | comments::FullComment *CFC = | 
|  | new (*this) comments::FullComment(FC->getBlocks(), | 
|  | ThisDeclInfo); | 
|  | return CFC; | 
|  | } | 
|  |  | 
|  | comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const { | 
|  | const RawComment *RC = getRawCommentForDeclNoCache(D); | 
|  | return RC ? RC->parse(*this, nullptr, D) : nullptr; | 
|  | } | 
|  |  | 
|  | comments::FullComment *ASTContext::getCommentForDecl( | 
|  | const Decl *D, | 
|  | const Preprocessor *PP) const { | 
|  | if (!D || D->isInvalidDecl()) | 
|  | return nullptr; | 
|  | D = &adjustDeclToTemplate(*D); | 
|  |  | 
|  | const Decl *Canonical = D->getCanonicalDecl(); | 
|  | llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos = | 
|  | ParsedComments.find(Canonical); | 
|  |  | 
|  | if (Pos != ParsedComments.end()) { | 
|  | if (Canonical != D) { | 
|  | comments::FullComment *FC = Pos->second; | 
|  | comments::FullComment *CFC = cloneFullComment(FC, D); | 
|  | return CFC; | 
|  | } | 
|  | return Pos->second; | 
|  | } | 
|  |  | 
|  | const Decl *OriginalDecl = nullptr; | 
|  |  | 
|  | const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl); | 
|  | if (!RC) { | 
|  | if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) { | 
|  | SmallVector<const NamedDecl*, 8> Overridden; | 
|  | const auto *OMD = dyn_cast<ObjCMethodDecl>(D); | 
|  | if (OMD && OMD->isPropertyAccessor()) | 
|  | if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl()) | 
|  | if (comments::FullComment *FC = getCommentForDecl(PDecl, PP)) | 
|  | return cloneFullComment(FC, D); | 
|  | if (OMD) | 
|  | addRedeclaredMethods(OMD, Overridden); | 
|  | getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden); | 
|  | for (unsigned i = 0, e = Overridden.size(); i < e; i++) | 
|  | if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP)) | 
|  | return cloneFullComment(FC, D); | 
|  | } | 
|  | else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) { | 
|  | // Attach any tag type's documentation to its typedef if latter | 
|  | // does not have one of its own. | 
|  | QualType QT = TD->getUnderlyingType(); | 
|  | if (const auto *TT = QT->getAs<TagType>()) | 
|  | if (comments::FullComment *FC = | 
|  | getCommentForDecl(TT->getOriginalDecl(), PP)) | 
|  | return cloneFullComment(FC, D); | 
|  | } | 
|  | else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) { | 
|  | while (IC->getSuperClass()) { | 
|  | IC = IC->getSuperClass(); | 
|  | if (comments::FullComment *FC = getCommentForDecl(IC, PP)) | 
|  | return cloneFullComment(FC, D); | 
|  | } | 
|  | } | 
|  | else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) { | 
|  | if (const ObjCInterfaceDecl *IC = CD->getClassInterface()) | 
|  | if (comments::FullComment *FC = getCommentForDecl(IC, PP)) | 
|  | return cloneFullComment(FC, D); | 
|  | } | 
|  | else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { | 
|  | if (!(RD = RD->getDefinition())) | 
|  | return nullptr; | 
|  | // Check non-virtual bases. | 
|  | for (const auto &I : RD->bases()) { | 
|  | if (I.isVirtual() || (I.getAccessSpecifier() != AS_public)) | 
|  | continue; | 
|  | QualType Ty = I.getType(); | 
|  | if (Ty.isNull()) | 
|  | continue; | 
|  | if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) { | 
|  | if (!(NonVirtualBase= NonVirtualBase->getDefinition())) | 
|  | continue; | 
|  |  | 
|  | if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP)) | 
|  | return cloneFullComment(FC, D); | 
|  | } | 
|  | } | 
|  | // Check virtual bases. | 
|  | for (const auto &I : RD->vbases()) { | 
|  | if (I.getAccessSpecifier() != AS_public) | 
|  | continue; | 
|  | QualType Ty = I.getType(); | 
|  | if (Ty.isNull()) | 
|  | continue; | 
|  | if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) { | 
|  | if (!(VirtualBase= VirtualBase->getDefinition())) | 
|  | continue; | 
|  | if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP)) | 
|  | return cloneFullComment(FC, D); | 
|  | } | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If the RawComment was attached to other redeclaration of this Decl, we | 
|  | // should parse the comment in context of that other Decl.  This is important | 
|  | // because comments can contain references to parameter names which can be | 
|  | // different across redeclarations. | 
|  | if (D != OriginalDecl && OriginalDecl) | 
|  | return getCommentForDecl(OriginalDecl, PP); | 
|  |  | 
|  | comments::FullComment *FC = RC->parse(*this, PP, D); | 
|  | ParsedComments[Canonical] = FC; | 
|  | return FC; | 
|  | } | 
|  |  | 
|  | void ASTContext::CanonicalTemplateTemplateParm::Profile( | 
|  | llvm::FoldingSetNodeID &ID, const ASTContext &C, | 
|  | TemplateTemplateParmDecl *Parm) { | 
|  | ID.AddInteger(Parm->getDepth()); | 
|  | ID.AddInteger(Parm->getPosition()); | 
|  | ID.AddBoolean(Parm->isParameterPack()); | 
|  | ID.AddInteger(Parm->templateParameterKind()); | 
|  |  | 
|  | TemplateParameterList *Params = Parm->getTemplateParameters(); | 
|  | ID.AddInteger(Params->size()); | 
|  | for (TemplateParameterList::const_iterator P = Params->begin(), | 
|  | PEnd = Params->end(); | 
|  | P != PEnd; ++P) { | 
|  | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { | 
|  | ID.AddInteger(0); | 
|  | ID.AddBoolean(TTP->isParameterPack()); | 
|  | ID.AddInteger( | 
|  | TTP->getNumExpansionParameters().toInternalRepresentation()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { | 
|  | ID.AddInteger(1); | 
|  | ID.AddBoolean(NTTP->isParameterPack()); | 
|  | ID.AddPointer(C.getUnconstrainedType(C.getCanonicalType(NTTP->getType())) | 
|  | .getAsOpaquePtr()); | 
|  | if (NTTP->isExpandedParameterPack()) { | 
|  | ID.AddBoolean(true); | 
|  | ID.AddInteger(NTTP->getNumExpansionTypes()); | 
|  | for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { | 
|  | QualType T = NTTP->getExpansionType(I); | 
|  | ID.AddPointer(T.getCanonicalType().getAsOpaquePtr()); | 
|  | } | 
|  | } else | 
|  | ID.AddBoolean(false); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | auto *TTP = cast<TemplateTemplateParmDecl>(*P); | 
|  | ID.AddInteger(2); | 
|  | Profile(ID, C, TTP); | 
|  | } | 
|  | } | 
|  |  | 
|  | TemplateTemplateParmDecl * | 
|  | ASTContext::getCanonicalTemplateTemplateParmDecl( | 
|  | TemplateTemplateParmDecl *TTP) const { | 
|  | // Check if we already have a canonical template template parameter. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | CanonicalTemplateTemplateParm::Profile(ID, *this, TTP); | 
|  | void *InsertPos = nullptr; | 
|  | CanonicalTemplateTemplateParm *Canonical | 
|  | = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (Canonical) | 
|  | return Canonical->getParam(); | 
|  |  | 
|  | // Build a canonical template parameter list. | 
|  | TemplateParameterList *Params = TTP->getTemplateParameters(); | 
|  | SmallVector<NamedDecl *, 4> CanonParams; | 
|  | CanonParams.reserve(Params->size()); | 
|  | for (TemplateParameterList::const_iterator P = Params->begin(), | 
|  | PEnd = Params->end(); | 
|  | P != PEnd; ++P) { | 
|  | // Note that, per C++20 [temp.over.link]/6, when determining whether | 
|  | // template-parameters are equivalent, constraints are ignored. | 
|  | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) { | 
|  | TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create( | 
|  | *this, getTranslationUnitDecl(), SourceLocation(), SourceLocation(), | 
|  | TTP->getDepth(), TTP->getIndex(), nullptr, false, | 
|  | TTP->isParameterPack(), /*HasTypeConstraint=*/false, | 
|  | TTP->getNumExpansionParameters()); | 
|  | CanonParams.push_back(NewTTP); | 
|  | } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) { | 
|  | QualType T = getUnconstrainedType(getCanonicalType(NTTP->getType())); | 
|  | TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); | 
|  | NonTypeTemplateParmDecl *Param; | 
|  | if (NTTP->isExpandedParameterPack()) { | 
|  | SmallVector<QualType, 2> ExpandedTypes; | 
|  | SmallVector<TypeSourceInfo *, 2> ExpandedTInfos; | 
|  | for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) { | 
|  | ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I))); | 
|  | ExpandedTInfos.push_back( | 
|  | getTrivialTypeSourceInfo(ExpandedTypes.back())); | 
|  | } | 
|  |  | 
|  | Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), | 
|  | SourceLocation(), | 
|  | SourceLocation(), | 
|  | NTTP->getDepth(), | 
|  | NTTP->getPosition(), nullptr, | 
|  | T, | 
|  | TInfo, | 
|  | ExpandedTypes, | 
|  | ExpandedTInfos); | 
|  | } else { | 
|  | Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(), | 
|  | SourceLocation(), | 
|  | SourceLocation(), | 
|  | NTTP->getDepth(), | 
|  | NTTP->getPosition(), nullptr, | 
|  | T, | 
|  | NTTP->isParameterPack(), | 
|  | TInfo); | 
|  | } | 
|  | CanonParams.push_back(Param); | 
|  | } else | 
|  | CanonParams.push_back(getCanonicalTemplateTemplateParmDecl( | 
|  | cast<TemplateTemplateParmDecl>(*P))); | 
|  | } | 
|  |  | 
|  | TemplateTemplateParmDecl *CanonTTP = TemplateTemplateParmDecl::Create( | 
|  | *this, getTranslationUnitDecl(), SourceLocation(), TTP->getDepth(), | 
|  | TTP->getPosition(), TTP->isParameterPack(), nullptr, | 
|  | TTP->templateParameterKind(), | 
|  | /*Typename=*/false, | 
|  | TemplateParameterList::Create(*this, SourceLocation(), SourceLocation(), | 
|  | CanonParams, SourceLocation(), | 
|  | /*RequiresClause=*/nullptr)); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!Canonical && "Shouldn't be in the map!"); | 
|  | (void)Canonical; | 
|  |  | 
|  | // Create the canonical template template parameter entry. | 
|  | Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP); | 
|  | CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos); | 
|  | return CanonTTP; | 
|  | } | 
|  |  | 
|  | TemplateTemplateParmDecl * | 
|  | ASTContext::findCanonicalTemplateTemplateParmDeclInternal( | 
|  | TemplateTemplateParmDecl *TTP) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | CanonicalTemplateTemplateParm::Profile(ID, *this, TTP); | 
|  | void *InsertPos = nullptr; | 
|  | CanonicalTemplateTemplateParm *Canonical = | 
|  | CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos); | 
|  | return Canonical ? Canonical->getParam() : nullptr; | 
|  | } | 
|  |  | 
|  | TemplateTemplateParmDecl * | 
|  | ASTContext::insertCanonicalTemplateTemplateParmDeclInternal( | 
|  | TemplateTemplateParmDecl *CanonTTP) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | CanonicalTemplateTemplateParm::Profile(ID, *this, CanonTTP); | 
|  | void *InsertPos = nullptr; | 
|  | if (auto *Existing = | 
|  | CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return Existing->getParam(); | 
|  | CanonTemplateTemplateParms.InsertNode( | 
|  | new (*this) CanonicalTemplateTemplateParm(CanonTTP), InsertPos); | 
|  | return CanonTTP; | 
|  | } | 
|  |  | 
|  | /// Check if a type can have its sanitizer instrumentation elided based on its | 
|  | /// presence within an ignorelist. | 
|  | bool ASTContext::isTypeIgnoredBySanitizer(const SanitizerMask &Mask, | 
|  | const QualType &Ty) const { | 
|  | std::string TyName = Ty.getUnqualifiedType().getAsString(getPrintingPolicy()); | 
|  | return NoSanitizeL->containsType(Mask, TyName); | 
|  | } | 
|  |  | 
|  | TargetCXXABI::Kind ASTContext::getCXXABIKind() const { | 
|  | auto Kind = getTargetInfo().getCXXABI().getKind(); | 
|  | return getLangOpts().CXXABI.value_or(Kind); | 
|  | } | 
|  |  | 
|  | CXXABI *ASTContext::createCXXABI(const TargetInfo &T) { | 
|  | if (!LangOpts.CPlusPlus) return nullptr; | 
|  |  | 
|  | switch (getCXXABIKind()) { | 
|  | case TargetCXXABI::AppleARM64: | 
|  | case TargetCXXABI::Fuchsia: | 
|  | case TargetCXXABI::GenericARM: // Same as Itanium at this level | 
|  | case TargetCXXABI::iOS: | 
|  | case TargetCXXABI::WatchOS: | 
|  | case TargetCXXABI::GenericAArch64: | 
|  | case TargetCXXABI::GenericMIPS: | 
|  | case TargetCXXABI::GenericItanium: | 
|  | case TargetCXXABI::WebAssembly: | 
|  | case TargetCXXABI::XL: | 
|  | return CreateItaniumCXXABI(*this); | 
|  | case TargetCXXABI::Microsoft: | 
|  | return CreateMicrosoftCXXABI(*this); | 
|  | } | 
|  | llvm_unreachable("Invalid CXXABI type!"); | 
|  | } | 
|  |  | 
|  | interp::Context &ASTContext::getInterpContext() { | 
|  | if (!InterpContext) { | 
|  | InterpContext.reset(new interp::Context(*this)); | 
|  | } | 
|  | return *InterpContext; | 
|  | } | 
|  |  | 
|  | ParentMapContext &ASTContext::getParentMapContext() { | 
|  | if (!ParentMapCtx) | 
|  | ParentMapCtx.reset(new ParentMapContext(*this)); | 
|  | return *ParentMapCtx; | 
|  | } | 
|  |  | 
|  | static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI, | 
|  | const LangOptions &LangOpts) { | 
|  | switch (LangOpts.getAddressSpaceMapMangling()) { | 
|  | case LangOptions::ASMM_Target: | 
|  | return TI.useAddressSpaceMapMangling(); | 
|  | case LangOptions::ASMM_On: | 
|  | return true; | 
|  | case LangOptions::ASMM_Off: | 
|  | return false; | 
|  | } | 
|  | llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything."); | 
|  | } | 
|  |  | 
|  | ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM, | 
|  | IdentifierTable &idents, SelectorTable &sels, | 
|  | Builtin::Context &builtins, TranslationUnitKind TUKind) | 
|  | : ConstantArrayTypes(this_(), ConstantArrayTypesLog2InitSize), | 
|  | DependentSizedArrayTypes(this_()), DependentSizedExtVectorTypes(this_()), | 
|  | DependentAddressSpaceTypes(this_()), DependentVectorTypes(this_()), | 
|  | DependentSizedMatrixTypes(this_()), | 
|  | FunctionProtoTypes(this_(), FunctionProtoTypesLog2InitSize), | 
|  | DependentTypeOfExprTypes(this_()), DependentDecltypeTypes(this_()), | 
|  | DependentPackIndexingTypes(this_()), TemplateSpecializationTypes(this_()), | 
|  | DependentBitIntTypes(this_()), SubstTemplateTemplateParmPacks(this_()), | 
|  | DeducedTemplates(this_()), ArrayParameterTypes(this_()), | 
|  | CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts), | 
|  | NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)), | 
|  | XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles, | 
|  | LangOpts.XRayNeverInstrumentFiles, | 
|  | LangOpts.XRayAttrListFiles, SM)), | 
|  | ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)), | 
|  | PrintingPolicy(LOpts), Idents(idents), Selectors(sels), | 
|  | BuiltinInfo(builtins), TUKind(TUKind), DeclarationNames(*this), | 
|  | Comments(SM), CommentCommandTraits(BumpAlloc, LOpts.CommentOpts), | 
|  | CompCategories(this_()), LastSDM(nullptr, 0) { | 
|  | addTranslationUnitDecl(); | 
|  | } | 
|  |  | 
|  | void ASTContext::cleanup() { | 
|  | // Release the DenseMaps associated with DeclContext objects. | 
|  | // FIXME: Is this the ideal solution? | 
|  | ReleaseDeclContextMaps(); | 
|  |  | 
|  | // Call all of the deallocation functions on all of their targets. | 
|  | for (auto &Pair : Deallocations) | 
|  | (Pair.first)(Pair.second); | 
|  | Deallocations.clear(); | 
|  |  | 
|  | // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed | 
|  | // because they can contain DenseMaps. | 
|  | for (llvm::DenseMap<const ObjCInterfaceDecl *, | 
|  | const ASTRecordLayout *>::iterator | 
|  | I = ObjCLayouts.begin(), | 
|  | E = ObjCLayouts.end(); | 
|  | I != E;) | 
|  | // Increment in loop to prevent using deallocated memory. | 
|  | if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) | 
|  | R->Destroy(*this); | 
|  | ObjCLayouts.clear(); | 
|  |  | 
|  | for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator | 
|  | I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) { | 
|  | // Increment in loop to prevent using deallocated memory. | 
|  | if (auto *R = const_cast<ASTRecordLayout *>((I++)->second)) | 
|  | R->Destroy(*this); | 
|  | } | 
|  | ASTRecordLayouts.clear(); | 
|  |  | 
|  | for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(), | 
|  | AEnd = DeclAttrs.end(); | 
|  | A != AEnd; ++A) | 
|  | A->second->~AttrVec(); | 
|  | DeclAttrs.clear(); | 
|  |  | 
|  | for (const auto &Value : ModuleInitializers) | 
|  | Value.second->~PerModuleInitializers(); | 
|  | ModuleInitializers.clear(); | 
|  |  | 
|  | XRayFilter.reset(); | 
|  | NoSanitizeL.reset(); | 
|  | } | 
|  |  | 
|  | ASTContext::~ASTContext() { cleanup(); } | 
|  |  | 
|  | void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) { | 
|  | TraversalScope = TopLevelDecls; | 
|  | getParentMapContext().clear(); | 
|  | } | 
|  |  | 
|  | void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const { | 
|  | Deallocations.push_back({Callback, Data}); | 
|  | } | 
|  |  | 
|  | void | 
|  | ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) { | 
|  | ExternalSource = std::move(Source); | 
|  | } | 
|  |  | 
|  | void ASTContext::PrintStats() const { | 
|  | llvm::errs() << "\n*** AST Context Stats:\n"; | 
|  | llvm::errs() << "  " << Types.size() << " types total.\n"; | 
|  |  | 
|  | unsigned counts[] = { | 
|  | #define TYPE(Name, Parent) 0, | 
|  | #define ABSTRACT_TYPE(Name, Parent) | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  | 0 // Extra | 
|  | }; | 
|  |  | 
|  | for (unsigned i = 0, e = Types.size(); i != e; ++i) { | 
|  | Type *T = Types[i]; | 
|  | counts[(unsigned)T->getTypeClass()]++; | 
|  | } | 
|  |  | 
|  | unsigned Idx = 0; | 
|  | unsigned TotalBytes = 0; | 
|  | #define TYPE(Name, Parent)                                              \ | 
|  | if (counts[Idx])                                                      \ | 
|  | llvm::errs() << "    " << counts[Idx] << " " << #Name               \ | 
|  | << " types, " << sizeof(Name##Type) << " each "        \ | 
|  | << "(" << counts[Idx] * sizeof(Name##Type)             \ | 
|  | << " bytes)\n";                                        \ | 
|  | TotalBytes += counts[Idx] * sizeof(Name##Type);                       \ | 
|  | ++Idx; | 
|  | #define ABSTRACT_TYPE(Name, Parent) | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  |  | 
|  | llvm::errs() << "Total bytes = " << TotalBytes << "\n"; | 
|  |  | 
|  | // Implicit special member functions. | 
|  | llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/" | 
|  | << NumImplicitDefaultConstructors | 
|  | << " implicit default constructors created\n"; | 
|  | llvm::errs() << NumImplicitCopyConstructorsDeclared << "/" | 
|  | << NumImplicitCopyConstructors | 
|  | << " implicit copy constructors created\n"; | 
|  | if (getLangOpts().CPlusPlus) | 
|  | llvm::errs() << NumImplicitMoveConstructorsDeclared << "/" | 
|  | << NumImplicitMoveConstructors | 
|  | << " implicit move constructors created\n"; | 
|  | llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/" | 
|  | << NumImplicitCopyAssignmentOperators | 
|  | << " implicit copy assignment operators created\n"; | 
|  | if (getLangOpts().CPlusPlus) | 
|  | llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/" | 
|  | << NumImplicitMoveAssignmentOperators | 
|  | << " implicit move assignment operators created\n"; | 
|  | llvm::errs() << NumImplicitDestructorsDeclared << "/" | 
|  | << NumImplicitDestructors | 
|  | << " implicit destructors created\n"; | 
|  |  | 
|  | if (ExternalSource) { | 
|  | llvm::errs() << "\n"; | 
|  | ExternalSource->PrintStats(); | 
|  | } | 
|  |  | 
|  | BumpAlloc.PrintStats(); | 
|  | } | 
|  |  | 
|  | void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M, | 
|  | bool NotifyListeners) { | 
|  | if (NotifyListeners) | 
|  | if (auto *Listener = getASTMutationListener(); | 
|  | Listener && !ND->isUnconditionallyVisible()) | 
|  | Listener->RedefinedHiddenDefinition(ND, M); | 
|  |  | 
|  | MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M); | 
|  | } | 
|  |  | 
|  | void ASTContext::deduplicateMergedDefinitionsFor(NamedDecl *ND) { | 
|  | auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl())); | 
|  | if (It == MergedDefModules.end()) | 
|  | return; | 
|  |  | 
|  | auto &Merged = It->second; | 
|  | llvm::DenseSet<Module*> Found; | 
|  | for (Module *&M : Merged) | 
|  | if (!Found.insert(M).second) | 
|  | M = nullptr; | 
|  | llvm::erase(Merged, nullptr); | 
|  | } | 
|  |  | 
|  | ArrayRef<Module *> | 
|  | ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) { | 
|  | auto MergedIt = | 
|  | MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl())); | 
|  | if (MergedIt == MergedDefModules.end()) | 
|  | return {}; | 
|  | return MergedIt->second; | 
|  | } | 
|  |  | 
|  | void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) { | 
|  | if (LazyInitializers.empty()) | 
|  | return; | 
|  |  | 
|  | auto *Source = Ctx.getExternalSource(); | 
|  | assert(Source && "lazy initializers but no external source"); | 
|  |  | 
|  | auto LazyInits = std::move(LazyInitializers); | 
|  | LazyInitializers.clear(); | 
|  |  | 
|  | for (auto ID : LazyInits) | 
|  | Initializers.push_back(Source->GetExternalDecl(ID)); | 
|  |  | 
|  | assert(LazyInitializers.empty() && | 
|  | "GetExternalDecl for lazy module initializer added more inits"); | 
|  | } | 
|  |  | 
|  | void ASTContext::addModuleInitializer(Module *M, Decl *D) { | 
|  | // One special case: if we add a module initializer that imports another | 
|  | // module, and that module's only initializer is an ImportDecl, simplify. | 
|  | if (const auto *ID = dyn_cast<ImportDecl>(D)) { | 
|  | auto It = ModuleInitializers.find(ID->getImportedModule()); | 
|  |  | 
|  | // Maybe the ImportDecl does nothing at all. (Common case.) | 
|  | if (It == ModuleInitializers.end()) | 
|  | return; | 
|  |  | 
|  | // Maybe the ImportDecl only imports another ImportDecl. | 
|  | auto &Imported = *It->second; | 
|  | if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) { | 
|  | Imported.resolve(*this); | 
|  | auto *OnlyDecl = Imported.Initializers.front(); | 
|  | if (isa<ImportDecl>(OnlyDecl)) | 
|  | D = OnlyDecl; | 
|  | } | 
|  | } | 
|  |  | 
|  | auto *&Inits = ModuleInitializers[M]; | 
|  | if (!Inits) | 
|  | Inits = new (*this) PerModuleInitializers; | 
|  | Inits->Initializers.push_back(D); | 
|  | } | 
|  |  | 
|  | void ASTContext::addLazyModuleInitializers(Module *M, | 
|  | ArrayRef<GlobalDeclID> IDs) { | 
|  | auto *&Inits = ModuleInitializers[M]; | 
|  | if (!Inits) | 
|  | Inits = new (*this) PerModuleInitializers; | 
|  | Inits->LazyInitializers.insert(Inits->LazyInitializers.end(), | 
|  | IDs.begin(), IDs.end()); | 
|  | } | 
|  |  | 
|  | ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) { | 
|  | auto It = ModuleInitializers.find(M); | 
|  | if (It == ModuleInitializers.end()) | 
|  | return {}; | 
|  |  | 
|  | auto *Inits = It->second; | 
|  | Inits->resolve(*this); | 
|  | return Inits->Initializers; | 
|  | } | 
|  |  | 
|  | void ASTContext::setCurrentNamedModule(Module *M) { | 
|  | assert(M->isNamedModule()); | 
|  | assert(!CurrentCXXNamedModule && | 
|  | "We should set named module for ASTContext for only once"); | 
|  | CurrentCXXNamedModule = M; | 
|  | } | 
|  |  | 
|  | bool ASTContext::isInSameModule(const Module *M1, const Module *M2) const { | 
|  | if (!M1 != !M2) | 
|  | return false; | 
|  |  | 
|  | /// Get the representative module for M. The representative module is the | 
|  | /// first module unit for a specific primary module name. So that the module | 
|  | /// units have the same representative module belongs to the same module. | 
|  | /// | 
|  | /// The process is helpful to reduce the expensive string operations. | 
|  | auto GetRepresentativeModule = [this](const Module *M) { | 
|  | auto Iter = SameModuleLookupSet.find(M); | 
|  | if (Iter != SameModuleLookupSet.end()) | 
|  | return Iter->second; | 
|  |  | 
|  | const Module *RepresentativeModule = | 
|  | PrimaryModuleNameMap.try_emplace(M->getPrimaryModuleInterfaceName(), M) | 
|  | .first->second; | 
|  | SameModuleLookupSet[M] = RepresentativeModule; | 
|  | return RepresentativeModule; | 
|  | }; | 
|  |  | 
|  | assert(M1 && "Shouldn't call `isInSameModule` if both M1 and M2 are none."); | 
|  | return GetRepresentativeModule(M1) == GetRepresentativeModule(M2); | 
|  | } | 
|  |  | 
|  | ExternCContextDecl *ASTContext::getExternCContextDecl() const { | 
|  | if (!ExternCContext) | 
|  | ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl()); | 
|  |  | 
|  | return ExternCContext; | 
|  | } | 
|  |  | 
|  | BuiltinTemplateDecl * | 
|  | ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK, | 
|  | const IdentifierInfo *II) const { | 
|  | auto *BuiltinTemplate = | 
|  | BuiltinTemplateDecl::Create(*this, getTranslationUnitDecl(), II, BTK); | 
|  | BuiltinTemplate->setImplicit(); | 
|  | getTranslationUnitDecl()->addDecl(BuiltinTemplate); | 
|  |  | 
|  | return BuiltinTemplate; | 
|  | } | 
|  |  | 
|  | #define BuiltinTemplate(BTName)                                                \ | 
|  | BuiltinTemplateDecl *ASTContext::get##BTName##Decl() const {                 \ | 
|  | if (!Decl##BTName)                                                         \ | 
|  | Decl##BTName =                                                           \ | 
|  | buildBuiltinTemplateDecl(BTK##BTName, get##BTName##Name());          \ | 
|  | return Decl##BTName;                                                       \ | 
|  | } | 
|  | #include "clang/Basic/BuiltinTemplates.inc" | 
|  |  | 
|  | RecordDecl *ASTContext::buildImplicitRecord(StringRef Name, | 
|  | RecordDecl::TagKind TK) const { | 
|  | SourceLocation Loc; | 
|  | RecordDecl *NewDecl; | 
|  | if (getLangOpts().CPlusPlus) | 
|  | NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, | 
|  | Loc, &Idents.get(Name)); | 
|  | else | 
|  | NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc, | 
|  | &Idents.get(Name)); | 
|  | NewDecl->setImplicit(); | 
|  | NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit( | 
|  | const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default)); | 
|  | return NewDecl; | 
|  | } | 
|  |  | 
|  | TypedefDecl *ASTContext::buildImplicitTypedef(QualType T, | 
|  | StringRef Name) const { | 
|  | TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T); | 
|  | TypedefDecl *NewDecl = TypedefDecl::Create( | 
|  | const_cast<ASTContext &>(*this), getTranslationUnitDecl(), | 
|  | SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo); | 
|  | NewDecl->setImplicit(); | 
|  | return NewDecl; | 
|  | } | 
|  |  | 
|  | TypedefDecl *ASTContext::getInt128Decl() const { | 
|  | if (!Int128Decl) | 
|  | Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t"); | 
|  | return Int128Decl; | 
|  | } | 
|  |  | 
|  | TypedefDecl *ASTContext::getUInt128Decl() const { | 
|  | if (!UInt128Decl) | 
|  | UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t"); | 
|  | return UInt128Decl; | 
|  | } | 
|  |  | 
|  | void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) { | 
|  | auto *Ty = new (*this, alignof(BuiltinType)) BuiltinType(K); | 
|  | R = CanQualType::CreateUnsafe(QualType(Ty, 0)); | 
|  | Types.push_back(Ty); | 
|  | } | 
|  |  | 
|  | void ASTContext::InitBuiltinTypes(const TargetInfo &Target, | 
|  | const TargetInfo *AuxTarget) { | 
|  | assert((!this->Target || this->Target == &Target) && | 
|  | "Incorrect target reinitialization"); | 
|  | assert(VoidTy.isNull() && "Context reinitialized?"); | 
|  |  | 
|  | this->Target = &Target; | 
|  | this->AuxTarget = AuxTarget; | 
|  |  | 
|  | ABI.reset(createCXXABI(Target)); | 
|  | AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts); | 
|  |  | 
|  | // C99 6.2.5p19. | 
|  | InitBuiltinType(VoidTy,              BuiltinType::Void); | 
|  |  | 
|  | // C99 6.2.5p2. | 
|  | InitBuiltinType(BoolTy,              BuiltinType::Bool); | 
|  | // C99 6.2.5p3. | 
|  | if (LangOpts.CharIsSigned) | 
|  | InitBuiltinType(CharTy,            BuiltinType::Char_S); | 
|  | else | 
|  | InitBuiltinType(CharTy,            BuiltinType::Char_U); | 
|  | // C99 6.2.5p4. | 
|  | InitBuiltinType(SignedCharTy,        BuiltinType::SChar); | 
|  | InitBuiltinType(ShortTy,             BuiltinType::Short); | 
|  | InitBuiltinType(IntTy,               BuiltinType::Int); | 
|  | InitBuiltinType(LongTy,              BuiltinType::Long); | 
|  | InitBuiltinType(LongLongTy,          BuiltinType::LongLong); | 
|  |  | 
|  | // C99 6.2.5p6. | 
|  | InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar); | 
|  | InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort); | 
|  | InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt); | 
|  | InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong); | 
|  | InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong); | 
|  |  | 
|  | // C99 6.2.5p10. | 
|  | InitBuiltinType(FloatTy,             BuiltinType::Float); | 
|  | InitBuiltinType(DoubleTy,            BuiltinType::Double); | 
|  | InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble); | 
|  |  | 
|  | // GNU extension, __float128 for IEEE quadruple precision | 
|  | InitBuiltinType(Float128Ty,          BuiltinType::Float128); | 
|  |  | 
|  | // __ibm128 for IBM extended precision | 
|  | InitBuiltinType(Ibm128Ty, BuiltinType::Ibm128); | 
|  |  | 
|  | // C11 extension ISO/IEC TS 18661-3 | 
|  | InitBuiltinType(Float16Ty,           BuiltinType::Float16); | 
|  |  | 
|  | // ISO/IEC JTC1 SC22 WG14 N1169 Extension | 
|  | InitBuiltinType(ShortAccumTy,            BuiltinType::ShortAccum); | 
|  | InitBuiltinType(AccumTy,                 BuiltinType::Accum); | 
|  | InitBuiltinType(LongAccumTy,             BuiltinType::LongAccum); | 
|  | InitBuiltinType(UnsignedShortAccumTy,    BuiltinType::UShortAccum); | 
|  | InitBuiltinType(UnsignedAccumTy,         BuiltinType::UAccum); | 
|  | InitBuiltinType(UnsignedLongAccumTy,     BuiltinType::ULongAccum); | 
|  | InitBuiltinType(ShortFractTy,            BuiltinType::ShortFract); | 
|  | InitBuiltinType(FractTy,                 BuiltinType::Fract); | 
|  | InitBuiltinType(LongFractTy,             BuiltinType::LongFract); | 
|  | InitBuiltinType(UnsignedShortFractTy,    BuiltinType::UShortFract); | 
|  | InitBuiltinType(UnsignedFractTy,         BuiltinType::UFract); | 
|  | InitBuiltinType(UnsignedLongFractTy,     BuiltinType::ULongFract); | 
|  | InitBuiltinType(SatShortAccumTy,         BuiltinType::SatShortAccum); | 
|  | InitBuiltinType(SatAccumTy,              BuiltinType::SatAccum); | 
|  | InitBuiltinType(SatLongAccumTy,          BuiltinType::SatLongAccum); | 
|  | InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum); | 
|  | InitBuiltinType(SatUnsignedAccumTy,      BuiltinType::SatUAccum); | 
|  | InitBuiltinType(SatUnsignedLongAccumTy,  BuiltinType::SatULongAccum); | 
|  | InitBuiltinType(SatShortFractTy,         BuiltinType::SatShortFract); | 
|  | InitBuiltinType(SatFractTy,              BuiltinType::SatFract); | 
|  | InitBuiltinType(SatLongFractTy,          BuiltinType::SatLongFract); | 
|  | InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract); | 
|  | InitBuiltinType(SatUnsignedFractTy,      BuiltinType::SatUFract); | 
|  | InitBuiltinType(SatUnsignedLongFractTy,  BuiltinType::SatULongFract); | 
|  |  | 
|  | // GNU extension, 128-bit integers. | 
|  | InitBuiltinType(Int128Ty,            BuiltinType::Int128); | 
|  | InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128); | 
|  |  | 
|  | // C++ 3.9.1p5 | 
|  | if (TargetInfo::isTypeSigned(Target.getWCharType())) | 
|  | InitBuiltinType(WCharTy,           BuiltinType::WChar_S); | 
|  | else  // -fshort-wchar makes wchar_t be unsigned. | 
|  | InitBuiltinType(WCharTy,           BuiltinType::WChar_U); | 
|  | if (LangOpts.CPlusPlus && LangOpts.WChar) | 
|  | WideCharTy = WCharTy; | 
|  | else { | 
|  | // C99 (or C++ using -fno-wchar). | 
|  | WideCharTy = getFromTargetType(Target.getWCharType()); | 
|  | } | 
|  |  | 
|  | WIntTy = getFromTargetType(Target.getWIntType()); | 
|  |  | 
|  | // C++20 (proposed) | 
|  | InitBuiltinType(Char8Ty,              BuiltinType::Char8); | 
|  |  | 
|  | if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ | 
|  | InitBuiltinType(Char16Ty,           BuiltinType::Char16); | 
|  | else // C99 | 
|  | Char16Ty = getFromTargetType(Target.getChar16Type()); | 
|  |  | 
|  | if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++ | 
|  | InitBuiltinType(Char32Ty,           BuiltinType::Char32); | 
|  | else // C99 | 
|  | Char32Ty = getFromTargetType(Target.getChar32Type()); | 
|  |  | 
|  | // Placeholder type for type-dependent expressions whose type is | 
|  | // completely unknown. No code should ever check a type against | 
|  | // DependentTy and users should never see it; however, it is here to | 
|  | // help diagnose failures to properly check for type-dependent | 
|  | // expressions. | 
|  | InitBuiltinType(DependentTy,         BuiltinType::Dependent); | 
|  |  | 
|  | // Placeholder type for functions. | 
|  | InitBuiltinType(OverloadTy,          BuiltinType::Overload); | 
|  |  | 
|  | // Placeholder type for bound members. | 
|  | InitBuiltinType(BoundMemberTy,       BuiltinType::BoundMember); | 
|  |  | 
|  | // Placeholder type for unresolved templates. | 
|  | InitBuiltinType(UnresolvedTemplateTy, BuiltinType::UnresolvedTemplate); | 
|  |  | 
|  | // Placeholder type for pseudo-objects. | 
|  | InitBuiltinType(PseudoObjectTy,      BuiltinType::PseudoObject); | 
|  |  | 
|  | // "any" type; useful for debugger-like clients. | 
|  | InitBuiltinType(UnknownAnyTy,        BuiltinType::UnknownAny); | 
|  |  | 
|  | // Placeholder type for unbridged ARC casts. | 
|  | InitBuiltinType(ARCUnbridgedCastTy,  BuiltinType::ARCUnbridgedCast); | 
|  |  | 
|  | // Placeholder type for builtin functions. | 
|  | InitBuiltinType(BuiltinFnTy,  BuiltinType::BuiltinFn); | 
|  |  | 
|  | // Placeholder type for OMP array sections. | 
|  | if (LangOpts.OpenMP) { | 
|  | InitBuiltinType(ArraySectionTy, BuiltinType::ArraySection); | 
|  | InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping); | 
|  | InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator); | 
|  | } | 
|  | // Placeholder type for OpenACC array sections, if we are ALSO in OMP mode, | 
|  | // don't bother, as we're just using the same type as OMP. | 
|  | if (LangOpts.OpenACC && !LangOpts.OpenMP) { | 
|  | InitBuiltinType(ArraySectionTy, BuiltinType::ArraySection); | 
|  | } | 
|  | if (LangOpts.MatrixTypes) | 
|  | InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx); | 
|  |  | 
|  | // Builtin types for 'id', 'Class', and 'SEL'. | 
|  | InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId); | 
|  | InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass); | 
|  | InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel); | 
|  |  | 
|  | if (LangOpts.OpenCL) { | 
|  | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | 
|  | InitBuiltinType(SingletonId, BuiltinType::Id); | 
|  | #include "clang/Basic/OpenCLImageTypes.def" | 
|  |  | 
|  | InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler); | 
|  | InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent); | 
|  | InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent); | 
|  | InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue); | 
|  | InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID); | 
|  |  | 
|  | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ | 
|  | InitBuiltinType(Id##Ty, BuiltinType::Id); | 
|  | #include "clang/Basic/OpenCLExtensionTypes.def" | 
|  | } | 
|  |  | 
|  | if (LangOpts.HLSL) { | 
|  | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId)                            \ | 
|  | InitBuiltinType(SingletonId, BuiltinType::Id); | 
|  | #include "clang/Basic/HLSLIntangibleTypes.def" | 
|  | } | 
|  |  | 
|  | if (Target.hasAArch64ACLETypes() || | 
|  | (AuxTarget && AuxTarget->hasAArch64ACLETypes())) { | 
|  | #define SVE_TYPE(Name, Id, SingletonId)                                        \ | 
|  | InitBuiltinType(SingletonId, BuiltinType::Id); | 
|  | #include "clang/Basic/AArch64ACLETypes.def" | 
|  | } | 
|  |  | 
|  | if (Target.getTriple().isPPC64()) { | 
|  | #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \ | 
|  | InitBuiltinType(Id##Ty, BuiltinType::Id); | 
|  | #include "clang/Basic/PPCTypes.def" | 
|  | #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \ | 
|  | InitBuiltinType(Id##Ty, BuiltinType::Id); | 
|  | #include "clang/Basic/PPCTypes.def" | 
|  | } | 
|  |  | 
|  | if (Target.hasRISCVVTypes()) { | 
|  | #define RVV_TYPE(Name, Id, SingletonId)                                        \ | 
|  | InitBuiltinType(SingletonId, BuiltinType::Id); | 
|  | #include "clang/Basic/RISCVVTypes.def" | 
|  | } | 
|  |  | 
|  | if (Target.getTriple().isWasm() && Target.hasFeature("reference-types")) { | 
|  | #define WASM_TYPE(Name, Id, SingletonId)                                       \ | 
|  | InitBuiltinType(SingletonId, BuiltinType::Id); | 
|  | #include "clang/Basic/WebAssemblyReferenceTypes.def" | 
|  | } | 
|  |  | 
|  | if (Target.getTriple().isAMDGPU() || | 
|  | (AuxTarget && AuxTarget->getTriple().isAMDGPU())) { | 
|  | #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align)                       \ | 
|  | InitBuiltinType(SingletonId, BuiltinType::Id); | 
|  | #include "clang/Basic/AMDGPUTypes.def" | 
|  | } | 
|  |  | 
|  | // Builtin type for __objc_yes and __objc_no | 
|  | ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ? | 
|  | SignedCharTy : BoolTy); | 
|  |  | 
|  | ObjCConstantStringType = QualType(); | 
|  |  | 
|  | ObjCSuperType = QualType(); | 
|  |  | 
|  | // void * type | 
|  | if (LangOpts.OpenCLGenericAddressSpace) { | 
|  | auto Q = VoidTy.getQualifiers(); | 
|  | Q.setAddressSpace(LangAS::opencl_generic); | 
|  | VoidPtrTy = getPointerType(getCanonicalType( | 
|  | getQualifiedType(VoidTy.getUnqualifiedType(), Q))); | 
|  | } else { | 
|  | VoidPtrTy = getPointerType(VoidTy); | 
|  | } | 
|  |  | 
|  | // nullptr type (C++0x 2.14.7) | 
|  | InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr); | 
|  |  | 
|  | // half type (OpenCL 6.1.1.1) / ARM NEON __fp16 | 
|  | InitBuiltinType(HalfTy, BuiltinType::Half); | 
|  |  | 
|  | InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16); | 
|  |  | 
|  | // Builtin type used to help define __builtin_va_list. | 
|  | VaListTagDecl = nullptr; | 
|  |  | 
|  | // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls. | 
|  | if (LangOpts.MicrosoftExt || LangOpts.Borland) { | 
|  | MSGuidTagDecl = buildImplicitRecord("_GUID"); | 
|  | getTranslationUnitDecl()->addDecl(MSGuidTagDecl); | 
|  | } | 
|  | } | 
|  |  | 
|  | DiagnosticsEngine &ASTContext::getDiagnostics() const { | 
|  | return SourceMgr.getDiagnostics(); | 
|  | } | 
|  |  | 
|  | AttrVec& ASTContext::getDeclAttrs(const Decl *D) { | 
|  | AttrVec *&Result = DeclAttrs[D]; | 
|  | if (!Result) { | 
|  | void *Mem = Allocate(sizeof(AttrVec)); | 
|  | Result = new (Mem) AttrVec; | 
|  | } | 
|  |  | 
|  | return *Result; | 
|  | } | 
|  |  | 
|  | /// Erase the attributes corresponding to the given declaration. | 
|  | void ASTContext::eraseDeclAttrs(const Decl *D) { | 
|  | llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D); | 
|  | if (Pos != DeclAttrs.end()) { | 
|  | Pos->second->~AttrVec(); | 
|  | DeclAttrs.erase(Pos); | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: Remove ? | 
|  | MemberSpecializationInfo * | 
|  | ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) { | 
|  | assert(Var->isStaticDataMember() && "Not a static data member"); | 
|  | return getTemplateOrSpecializationInfo(Var) | 
|  | .dyn_cast<MemberSpecializationInfo *>(); | 
|  | } | 
|  |  | 
|  | ASTContext::TemplateOrSpecializationInfo | 
|  | ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) { | 
|  | llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos = | 
|  | TemplateOrInstantiation.find(Var); | 
|  | if (Pos == TemplateOrInstantiation.end()) | 
|  | return {}; | 
|  |  | 
|  | return Pos->second; | 
|  | } | 
|  |  | 
|  | void | 
|  | ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl, | 
|  | TemplateSpecializationKind TSK, | 
|  | SourceLocation PointOfInstantiation) { | 
|  | assert(Inst->isStaticDataMember() && "Not a static data member"); | 
|  | assert(Tmpl->isStaticDataMember() && "Not a static data member"); | 
|  | setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo( | 
|  | Tmpl, TSK, PointOfInstantiation)); | 
|  | } | 
|  |  | 
|  | void | 
|  | ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst, | 
|  | TemplateOrSpecializationInfo TSI) { | 
|  | assert(!TemplateOrInstantiation[Inst] && | 
|  | "Already noted what the variable was instantiated from"); | 
|  | TemplateOrInstantiation[Inst] = TSI; | 
|  | } | 
|  |  | 
|  | NamedDecl * | 
|  | ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) { | 
|  | return InstantiatedFromUsingDecl.lookup(UUD); | 
|  | } | 
|  |  | 
|  | void | 
|  | ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) { | 
|  | assert((isa<UsingDecl>(Pattern) || | 
|  | isa<UnresolvedUsingValueDecl>(Pattern) || | 
|  | isa<UnresolvedUsingTypenameDecl>(Pattern)) && | 
|  | "pattern decl is not a using decl"); | 
|  | assert((isa<UsingDecl>(Inst) || | 
|  | isa<UnresolvedUsingValueDecl>(Inst) || | 
|  | isa<UnresolvedUsingTypenameDecl>(Inst)) && | 
|  | "instantiation did not produce a using decl"); | 
|  | assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists"); | 
|  | InstantiatedFromUsingDecl[Inst] = Pattern; | 
|  | } | 
|  |  | 
|  | UsingEnumDecl * | 
|  | ASTContext::getInstantiatedFromUsingEnumDecl(UsingEnumDecl *UUD) { | 
|  | return InstantiatedFromUsingEnumDecl.lookup(UUD); | 
|  | } | 
|  |  | 
|  | void ASTContext::setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst, | 
|  | UsingEnumDecl *Pattern) { | 
|  | assert(!InstantiatedFromUsingEnumDecl[Inst] && "pattern already exists"); | 
|  | InstantiatedFromUsingEnumDecl[Inst] = Pattern; | 
|  | } | 
|  |  | 
|  | UsingShadowDecl * | 
|  | ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) { | 
|  | return InstantiatedFromUsingShadowDecl.lookup(Inst); | 
|  | } | 
|  |  | 
|  | void | 
|  | ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst, | 
|  | UsingShadowDecl *Pattern) { | 
|  | assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists"); | 
|  | InstantiatedFromUsingShadowDecl[Inst] = Pattern; | 
|  | } | 
|  |  | 
|  | FieldDecl * | 
|  | ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) const { | 
|  | return InstantiatedFromUnnamedFieldDecl.lookup(Field); | 
|  | } | 
|  |  | 
|  | void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, | 
|  | FieldDecl *Tmpl) { | 
|  | assert((!Inst->getDeclName() || Inst->isPlaceholderVar(getLangOpts())) && | 
|  | "Instantiated field decl is not unnamed"); | 
|  | assert((!Inst->getDeclName() || Inst->isPlaceholderVar(getLangOpts())) && | 
|  | "Template field decl is not unnamed"); | 
|  | assert(!InstantiatedFromUnnamedFieldDecl[Inst] && | 
|  | "Already noted what unnamed field was instantiated from"); | 
|  |  | 
|  | InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl; | 
|  | } | 
|  |  | 
|  | ASTContext::overridden_cxx_method_iterator | 
|  | ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const { | 
|  | return overridden_methods(Method).begin(); | 
|  | } | 
|  |  | 
|  | ASTContext::overridden_cxx_method_iterator | 
|  | ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const { | 
|  | return overridden_methods(Method).end(); | 
|  | } | 
|  |  | 
|  | unsigned | 
|  | ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const { | 
|  | auto Range = overridden_methods(Method); | 
|  | return Range.end() - Range.begin(); | 
|  | } | 
|  |  | 
|  | ASTContext::overridden_method_range | 
|  | ASTContext::overridden_methods(const CXXMethodDecl *Method) const { | 
|  | llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos = | 
|  | OverriddenMethods.find(Method->getCanonicalDecl()); | 
|  | if (Pos == OverriddenMethods.end()) | 
|  | return overridden_method_range(nullptr, nullptr); | 
|  | return overridden_method_range(Pos->second.begin(), Pos->second.end()); | 
|  | } | 
|  |  | 
|  | void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method, | 
|  | const CXXMethodDecl *Overridden) { | 
|  | assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl()); | 
|  | OverriddenMethods[Method].push_back(Overridden); | 
|  | } | 
|  |  | 
|  | void ASTContext::getOverriddenMethods( | 
|  | const NamedDecl *D, | 
|  | SmallVectorImpl<const NamedDecl *> &Overridden) const { | 
|  | assert(D); | 
|  |  | 
|  | if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) { | 
|  | Overridden.append(overridden_methods_begin(CXXMethod), | 
|  | overridden_methods_end(CXXMethod)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const auto *Method = dyn_cast<ObjCMethodDecl>(D); | 
|  | if (!Method) | 
|  | return; | 
|  |  | 
|  | SmallVector<const ObjCMethodDecl *, 8> OverDecls; | 
|  | Method->getOverriddenMethods(OverDecls); | 
|  | Overridden.append(OverDecls.begin(), OverDecls.end()); | 
|  | } | 
|  |  | 
|  | std::optional<ASTContext::CXXRecordDeclRelocationInfo> | 
|  | ASTContext::getRelocationInfoForCXXRecord(const CXXRecordDecl *RD) const { | 
|  | assert(RD); | 
|  | CXXRecordDecl *D = RD->getDefinition(); | 
|  | auto it = RelocatableClasses.find(D); | 
|  | if (it != RelocatableClasses.end()) | 
|  | return it->getSecond(); | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | void ASTContext::setRelocationInfoForCXXRecord( | 
|  | const CXXRecordDecl *RD, CXXRecordDeclRelocationInfo Info) { | 
|  | assert(RD); | 
|  | CXXRecordDecl *D = RD->getDefinition(); | 
|  | assert(RelocatableClasses.find(D) == RelocatableClasses.end()); | 
|  | RelocatableClasses.insert({D, Info}); | 
|  | } | 
|  |  | 
|  | static bool primaryBaseHaseAddressDiscriminatedVTableAuthentication( | 
|  | const ASTContext &Context, const CXXRecordDecl *Class) { | 
|  | if (!Class->isPolymorphic()) | 
|  | return false; | 
|  | const CXXRecordDecl *BaseType = Context.baseForVTableAuthentication(Class); | 
|  | using AuthAttr = VTablePointerAuthenticationAttr; | 
|  | const AuthAttr *ExplicitAuth = BaseType->getAttr<AuthAttr>(); | 
|  | if (!ExplicitAuth) | 
|  | return Context.getLangOpts().PointerAuthVTPtrAddressDiscrimination; | 
|  | AuthAttr::AddressDiscriminationMode AddressDiscrimination = | 
|  | ExplicitAuth->getAddressDiscrimination(); | 
|  | if (AddressDiscrimination == AuthAttr::DefaultAddressDiscrimination) | 
|  | return Context.getLangOpts().PointerAuthVTPtrAddressDiscrimination; | 
|  | return AddressDiscrimination == AuthAttr::AddressDiscrimination; | 
|  | } | 
|  |  | 
|  | ASTContext::PointerAuthContent | 
|  | ASTContext::findPointerAuthContent(QualType T) const { | 
|  | assert(isPointerAuthenticationAvailable()); | 
|  |  | 
|  | T = T.getCanonicalType(); | 
|  | if (T->isDependentType()) | 
|  | return PointerAuthContent::None; | 
|  |  | 
|  | if (T.hasAddressDiscriminatedPointerAuth()) | 
|  | return PointerAuthContent::AddressDiscriminatedData; | 
|  | const RecordDecl *RD = T->getAsRecordDecl(); | 
|  | if (!RD) | 
|  | return PointerAuthContent::None; | 
|  |  | 
|  | if (auto Existing = RecordContainsAddressDiscriminatedPointerAuth.find(RD); | 
|  | Existing != RecordContainsAddressDiscriminatedPointerAuth.end()) | 
|  | return Existing->second; | 
|  |  | 
|  | PointerAuthContent Result = PointerAuthContent::None; | 
|  |  | 
|  | auto SaveResultAndReturn = [&]() -> PointerAuthContent { | 
|  | auto [ResultIter, DidAdd] = | 
|  | RecordContainsAddressDiscriminatedPointerAuth.try_emplace(RD, Result); | 
|  | (void)ResultIter; | 
|  | (void)DidAdd; | 
|  | assert(DidAdd); | 
|  | return Result; | 
|  | }; | 
|  | auto ShouldContinueAfterUpdate = [&](PointerAuthContent NewResult) { | 
|  | static_assert(PointerAuthContent::None < | 
|  | PointerAuthContent::AddressDiscriminatedVTable); | 
|  | static_assert(PointerAuthContent::AddressDiscriminatedVTable < | 
|  | PointerAuthContent::AddressDiscriminatedData); | 
|  | if (NewResult > Result) | 
|  | Result = NewResult; | 
|  | return Result != PointerAuthContent::AddressDiscriminatedData; | 
|  | }; | 
|  | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { | 
|  | if (primaryBaseHaseAddressDiscriminatedVTableAuthentication(*this, CXXRD) && | 
|  | !ShouldContinueAfterUpdate( | 
|  | PointerAuthContent::AddressDiscriminatedVTable)) | 
|  | return SaveResultAndReturn(); | 
|  | for (auto Base : CXXRD->bases()) { | 
|  | if (!ShouldContinueAfterUpdate(findPointerAuthContent(Base.getType()))) | 
|  | return SaveResultAndReturn(); | 
|  | } | 
|  | } | 
|  | for (auto *FieldDecl : RD->fields()) { | 
|  | if (!ShouldContinueAfterUpdate( | 
|  | findPointerAuthContent(FieldDecl->getType()))) | 
|  | return SaveResultAndReturn(); | 
|  | } | 
|  | return SaveResultAndReturn(); | 
|  | } | 
|  |  | 
|  | void ASTContext::addedLocalImportDecl(ImportDecl *Import) { | 
|  | assert(!Import->getNextLocalImport() && | 
|  | "Import declaration already in the chain"); | 
|  | assert(!Import->isFromASTFile() && "Non-local import declaration"); | 
|  | if (!FirstLocalImport) { | 
|  | FirstLocalImport = Import; | 
|  | LastLocalImport = Import; | 
|  | return; | 
|  | } | 
|  |  | 
|  | LastLocalImport->setNextLocalImport(Import); | 
|  | LastLocalImport = Import; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         Type Sizing and Analysis | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified | 
|  | /// scalar floating point type. | 
|  | const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const { | 
|  | switch (T->castAs<BuiltinType>()->getKind()) { | 
|  | default: | 
|  | llvm_unreachable("Not a floating point type!"); | 
|  | case BuiltinType::BFloat16: | 
|  | return Target->getBFloat16Format(); | 
|  | case BuiltinType::Float16: | 
|  | return Target->getHalfFormat(); | 
|  | case BuiltinType::Half: | 
|  | return Target->getHalfFormat(); | 
|  | case BuiltinType::Float:      return Target->getFloatFormat(); | 
|  | case BuiltinType::Double:     return Target->getDoubleFormat(); | 
|  | case BuiltinType::Ibm128: | 
|  | return Target->getIbm128Format(); | 
|  | case BuiltinType::LongDouble: | 
|  | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice) | 
|  | return AuxTarget->getLongDoubleFormat(); | 
|  | return Target->getLongDoubleFormat(); | 
|  | case BuiltinType::Float128: | 
|  | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice) | 
|  | return AuxTarget->getFloat128Format(); | 
|  | return Target->getFloat128Format(); | 
|  | } | 
|  | } | 
|  |  | 
|  | CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const { | 
|  | unsigned Align = Target->getCharWidth(); | 
|  |  | 
|  | const unsigned AlignFromAttr = D->getMaxAlignment(); | 
|  | if (AlignFromAttr) | 
|  | Align = AlignFromAttr; | 
|  |  | 
|  | // __attribute__((aligned)) can increase or decrease alignment | 
|  | // *except* on a struct or struct member, where it only increases | 
|  | // alignment unless 'packed' is also specified. | 
|  | // | 
|  | // It is an error for alignas to decrease alignment, so we can | 
|  | // ignore that possibility;  Sema should diagnose it. | 
|  | bool UseAlignAttrOnly; | 
|  | if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) | 
|  | UseAlignAttrOnly = | 
|  | FD->hasAttr<PackedAttr>() || FD->getParent()->hasAttr<PackedAttr>(); | 
|  | else | 
|  | UseAlignAttrOnly = AlignFromAttr != 0; | 
|  | // If we're using the align attribute only, just ignore everything | 
|  | // else about the declaration and its type. | 
|  | if (UseAlignAttrOnly) { | 
|  | // do nothing | 
|  | } else if (const auto *VD = dyn_cast<ValueDecl>(D)) { | 
|  | QualType T = VD->getType(); | 
|  | if (const auto *RT = T->getAs<ReferenceType>()) { | 
|  | if (ForAlignof) | 
|  | T = RT->getPointeeType(); | 
|  | else | 
|  | T = getPointerType(RT->getPointeeType()); | 
|  | } | 
|  | QualType BaseT = getBaseElementType(T); | 
|  | if (T->isFunctionType()) | 
|  | Align = getTypeInfoImpl(T.getTypePtr()).Align; | 
|  | else if (!BaseT->isIncompleteType()) { | 
|  | // Adjust alignments of declarations with array type by the | 
|  | // large-array alignment on the target. | 
|  | if (const ArrayType *arrayType = getAsArrayType(T)) { | 
|  | unsigned MinWidth = Target->getLargeArrayMinWidth(); | 
|  | if (!ForAlignof && MinWidth) { | 
|  | if (isa<VariableArrayType>(arrayType)) | 
|  | Align = std::max(Align, Target->getLargeArrayAlign()); | 
|  | else if (isa<ConstantArrayType>(arrayType) && | 
|  | MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType))) | 
|  | Align = std::max(Align, Target->getLargeArrayAlign()); | 
|  | } | 
|  | } | 
|  | Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr())); | 
|  | if (BaseT.getQualifiers().hasUnaligned()) | 
|  | Align = Target->getCharWidth(); | 
|  | } | 
|  |  | 
|  | // Ensure minimum alignment for global variables. | 
|  | if (const auto *VD = dyn_cast<VarDecl>(D)) | 
|  | if (VD->hasGlobalStorage() && !ForAlignof) { | 
|  | uint64_t TypeSize = | 
|  | !BaseT->isIncompleteType() ? getTypeSize(T.getTypePtr()) : 0; | 
|  | Align = std::max(Align, getMinGlobalAlignOfVar(TypeSize, VD)); | 
|  | } | 
|  |  | 
|  | // Fields can be subject to extra alignment constraints, like if | 
|  | // the field is packed, the struct is packed, or the struct has a | 
|  | // a max-field-alignment constraint (#pragma pack).  So calculate | 
|  | // the actual alignment of the field within the struct, and then | 
|  | // (as we're expected to) constrain that by the alignment of the type. | 
|  | if (const auto *Field = dyn_cast<FieldDecl>(VD)) { | 
|  | const RecordDecl *Parent = Field->getParent(); | 
|  | // We can only produce a sensible answer if the record is valid. | 
|  | if (!Parent->isInvalidDecl()) { | 
|  | const ASTRecordLayout &Layout = getASTRecordLayout(Parent); | 
|  |  | 
|  | // Start with the record's overall alignment. | 
|  | unsigned FieldAlign = toBits(Layout.getAlignment()); | 
|  |  | 
|  | // Use the GCD of that and the offset within the record. | 
|  | uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex()); | 
|  | if (Offset > 0) { | 
|  | // Alignment is always a power of 2, so the GCD will be a power of 2, | 
|  | // which means we get to do this crazy thing instead of Euclid's. | 
|  | uint64_t LowBitOfOffset = Offset & (~Offset + 1); | 
|  | if (LowBitOfOffset < FieldAlign) | 
|  | FieldAlign = static_cast<unsigned>(LowBitOfOffset); | 
|  | } | 
|  |  | 
|  | Align = std::min(Align, FieldAlign); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Some targets have hard limitation on the maximum requestable alignment in | 
|  | // aligned attribute for static variables. | 
|  | const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute(); | 
|  | const auto *VD = dyn_cast<VarDecl>(D); | 
|  | if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static) | 
|  | Align = std::min(Align, MaxAlignedAttr); | 
|  |  | 
|  | return toCharUnitsFromBits(Align); | 
|  | } | 
|  |  | 
|  | CharUnits ASTContext::getExnObjectAlignment() const { | 
|  | return toCharUnitsFromBits(Target->getExnObjectAlignment()); | 
|  | } | 
|  |  | 
|  | // getTypeInfoDataSizeInChars - Return the size of a type, in | 
|  | // chars. If the type is a record, its data size is returned.  This is | 
|  | // the size of the memcpy that's performed when assigning this type | 
|  | // using a trivial copy/move assignment operator. | 
|  | TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const { | 
|  | TypeInfoChars Info = getTypeInfoInChars(T); | 
|  |  | 
|  | // In C++, objects can sometimes be allocated into the tail padding | 
|  | // of a base-class subobject.  We decide whether that's possible | 
|  | // during class layout, so here we can just trust the layout results. | 
|  | if (getLangOpts().CPlusPlus) { | 
|  | if (const auto *RD = T->getAsCXXRecordDecl(); RD && !RD->isInvalidDecl()) { | 
|  | const ASTRecordLayout &layout = getASTRecordLayout(RD); | 
|  | Info.Width = layout.getDataSize(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Info; | 
|  | } | 
|  |  | 
|  | /// getConstantArrayInfoInChars - Performing the computation in CharUnits | 
|  | /// instead of in bits prevents overflowing the uint64_t for some large arrays. | 
|  | TypeInfoChars | 
|  | static getConstantArrayInfoInChars(const ASTContext &Context, | 
|  | const ConstantArrayType *CAT) { | 
|  | TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType()); | 
|  | uint64_t Size = CAT->getZExtSize(); | 
|  | assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <= | 
|  | (uint64_t)(-1)/Size) && | 
|  | "Overflow in array type char size evaluation"); | 
|  | uint64_t Width = EltInfo.Width.getQuantity() * Size; | 
|  | unsigned Align = EltInfo.Align.getQuantity(); | 
|  | if (!Context.getTargetInfo().getCXXABI().isMicrosoft() || | 
|  | Context.getTargetInfo().getPointerWidth(LangAS::Default) == 64) | 
|  | Width = llvm::alignTo(Width, Align); | 
|  | return TypeInfoChars(CharUnits::fromQuantity(Width), | 
|  | CharUnits::fromQuantity(Align), | 
|  | EltInfo.AlignRequirement); | 
|  | } | 
|  |  | 
|  | TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const { | 
|  | if (const auto *CAT = dyn_cast<ConstantArrayType>(T)) | 
|  | return getConstantArrayInfoInChars(*this, CAT); | 
|  | TypeInfo Info = getTypeInfo(T); | 
|  | return TypeInfoChars(toCharUnitsFromBits(Info.Width), | 
|  | toCharUnitsFromBits(Info.Align), Info.AlignRequirement); | 
|  | } | 
|  |  | 
|  | TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const { | 
|  | return getTypeInfoInChars(T.getTypePtr()); | 
|  | } | 
|  |  | 
|  | bool ASTContext::isPromotableIntegerType(QualType T) const { | 
|  | // HLSL doesn't promote all small integer types to int, it | 
|  | // just uses the rank-based promotion rules for all types. | 
|  | if (getLangOpts().HLSL) | 
|  | return false; | 
|  |  | 
|  | if (const auto *BT = T->getAs<BuiltinType>()) | 
|  | switch (BT->getKind()) { | 
|  | case BuiltinType::Bool: | 
|  | case BuiltinType::Char_S: | 
|  | case BuiltinType::Char_U: | 
|  | case BuiltinType::SChar: | 
|  | case BuiltinType::UChar: | 
|  | case BuiltinType::Short: | 
|  | case BuiltinType::UShort: | 
|  | case BuiltinType::WChar_S: | 
|  | case BuiltinType::WChar_U: | 
|  | case BuiltinType::Char8: | 
|  | case BuiltinType::Char16: | 
|  | case BuiltinType::Char32: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Enumerated types are promotable to their compatible integer types | 
|  | // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2). | 
|  | if (const auto *ED = T->getAsEnumDecl()) { | 
|  | if (T->isDependentType() || ED->getPromotionType().isNull() || | 
|  | ED->isScoped()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ASTContext::isAlignmentRequired(const Type *T) const { | 
|  | return getTypeInfo(T).AlignRequirement != AlignRequirementKind::None; | 
|  | } | 
|  |  | 
|  | bool ASTContext::isAlignmentRequired(QualType T) const { | 
|  | return isAlignmentRequired(T.getTypePtr()); | 
|  | } | 
|  |  | 
|  | unsigned ASTContext::getTypeAlignIfKnown(QualType T, | 
|  | bool NeedsPreferredAlignment) const { | 
|  | // An alignment on a typedef overrides anything else. | 
|  | if (const auto *TT = T->getAs<TypedefType>()) | 
|  | if (unsigned Align = TT->getDecl()->getMaxAlignment()) | 
|  | return Align; | 
|  |  | 
|  | // If we have an (array of) complete type, we're done. | 
|  | T = getBaseElementType(T); | 
|  | if (!T->isIncompleteType()) | 
|  | return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T); | 
|  |  | 
|  | // If we had an array type, its element type might be a typedef | 
|  | // type with an alignment attribute. | 
|  | if (const auto *TT = T->getAs<TypedefType>()) | 
|  | if (unsigned Align = TT->getDecl()->getMaxAlignment()) | 
|  | return Align; | 
|  |  | 
|  | // Otherwise, see if the declaration of the type had an attribute. | 
|  | if (const auto *TD = T->getAsTagDecl()) | 
|  | return TD->getMaxAlignment(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | TypeInfo ASTContext::getTypeInfo(const Type *T) const { | 
|  | TypeInfoMap::iterator I = MemoizedTypeInfo.find(T); | 
|  | if (I != MemoizedTypeInfo.end()) | 
|  | return I->second; | 
|  |  | 
|  | // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup. | 
|  | TypeInfo TI = getTypeInfoImpl(T); | 
|  | MemoizedTypeInfo[T] = TI; | 
|  | return TI; | 
|  | } | 
|  |  | 
|  | /// getTypeInfoImpl - Return the size of the specified type, in bits.  This | 
|  | /// method does not work on incomplete types. | 
|  | /// | 
|  | /// FIXME: Pointers into different addr spaces could have different sizes and | 
|  | /// alignment requirements: getPointerInfo should take an AddrSpace, this | 
|  | /// should take a QualType, &c. | 
|  | TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const { | 
|  | uint64_t Width = 0; | 
|  | unsigned Align = 8; | 
|  | AlignRequirementKind AlignRequirement = AlignRequirementKind::None; | 
|  | LangAS AS = LangAS::Default; | 
|  | switch (T->getTypeClass()) { | 
|  | #define TYPE(Class, Base) | 
|  | #define ABSTRACT_TYPE(Class, Base) | 
|  | #define NON_CANONICAL_TYPE(Class, Base) | 
|  | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)                       \ | 
|  | case Type::Class:                                                            \ | 
|  | assert(!T->isDependentType() && "should not see dependent types here");      \ | 
|  | return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr()); | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  | llvm_unreachable("Should not see dependent types"); | 
|  |  | 
|  | case Type::FunctionNoProto: | 
|  | case Type::FunctionProto: | 
|  | // GCC extension: alignof(function) = 32 bits | 
|  | Width = 0; | 
|  | Align = 32; | 
|  | break; | 
|  |  | 
|  | case Type::IncompleteArray: | 
|  | case Type::VariableArray: | 
|  | case Type::ConstantArray: | 
|  | case Type::ArrayParameter: { | 
|  | // Model non-constant sized arrays as size zero, but track the alignment. | 
|  | uint64_t Size = 0; | 
|  | if (const auto *CAT = dyn_cast<ConstantArrayType>(T)) | 
|  | Size = CAT->getZExtSize(); | 
|  |  | 
|  | TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType()); | 
|  | assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && | 
|  | "Overflow in array type bit size evaluation"); | 
|  | Width = EltInfo.Width * Size; | 
|  | Align = EltInfo.Align; | 
|  | AlignRequirement = EltInfo.AlignRequirement; | 
|  | if (!getTargetInfo().getCXXABI().isMicrosoft() || | 
|  | getTargetInfo().getPointerWidth(LangAS::Default) == 64) | 
|  | Width = llvm::alignTo(Width, Align); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::ExtVector: | 
|  | case Type::Vector: { | 
|  | const auto *VT = cast<VectorType>(T); | 
|  | TypeInfo EltInfo = getTypeInfo(VT->getElementType()); | 
|  | Width = VT->isPackedVectorBoolType(*this) | 
|  | ? VT->getNumElements() | 
|  | : EltInfo.Width * VT->getNumElements(); | 
|  | // Enforce at least byte size and alignment. | 
|  | Width = std::max<unsigned>(8, Width); | 
|  | Align = std::max<unsigned>(8, Width); | 
|  |  | 
|  | // If the alignment is not a power of 2, round up to the next power of 2. | 
|  | // This happens for non-power-of-2 length vectors. | 
|  | if (Align & (Align-1)) { | 
|  | Align = llvm::bit_ceil(Align); | 
|  | Width = llvm::alignTo(Width, Align); | 
|  | } | 
|  | // Adjust the alignment based on the target max. | 
|  | uint64_t TargetVectorAlign = Target->getMaxVectorAlign(); | 
|  | if (TargetVectorAlign && TargetVectorAlign < Align) | 
|  | Align = TargetVectorAlign; | 
|  | if (VT->getVectorKind() == VectorKind::SveFixedLengthData) | 
|  | // Adjust the alignment for fixed-length SVE vectors. This is important | 
|  | // for non-power-of-2 vector lengths. | 
|  | Align = 128; | 
|  | else if (VT->getVectorKind() == VectorKind::SveFixedLengthPredicate) | 
|  | // Adjust the alignment for fixed-length SVE predicates. | 
|  | Align = 16; | 
|  | else if (VT->getVectorKind() == VectorKind::RVVFixedLengthData || | 
|  | VT->getVectorKind() == VectorKind::RVVFixedLengthMask || | 
|  | VT->getVectorKind() == VectorKind::RVVFixedLengthMask_1 || | 
|  | VT->getVectorKind() == VectorKind::RVVFixedLengthMask_2 || | 
|  | VT->getVectorKind() == VectorKind::RVVFixedLengthMask_4) | 
|  | // Adjust the alignment for fixed-length RVV vectors. | 
|  | Align = std::min<unsigned>(64, Width); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::ConstantMatrix: { | 
|  | const auto *MT = cast<ConstantMatrixType>(T); | 
|  | TypeInfo ElementInfo = getTypeInfo(MT->getElementType()); | 
|  | // The internal layout of a matrix value is implementation defined. | 
|  | // Initially be ABI compatible with arrays with respect to alignment and | 
|  | // size. | 
|  | Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns(); | 
|  | Align = ElementInfo.Align; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::Builtin: | 
|  | switch (cast<BuiltinType>(T)->getKind()) { | 
|  | default: llvm_unreachable("Unknown builtin type!"); | 
|  | case BuiltinType::Void: | 
|  | // GCC extension: alignof(void) = 8 bits. | 
|  | Width = 0; | 
|  | Align = 8; | 
|  | break; | 
|  | case BuiltinType::Bool: | 
|  | Width = Target->getBoolWidth(); | 
|  | Align = Target->getBoolAlign(); | 
|  | break; | 
|  | case BuiltinType::Char_S: | 
|  | case BuiltinType::Char_U: | 
|  | case BuiltinType::UChar: | 
|  | case BuiltinType::SChar: | 
|  | case BuiltinType::Char8: | 
|  | Width = Target->getCharWidth(); | 
|  | Align = Target->getCharAlign(); | 
|  | break; | 
|  | case BuiltinType::WChar_S: | 
|  | case BuiltinType::WChar_U: | 
|  | Width = Target->getWCharWidth(); | 
|  | Align = Target->getWCharAlign(); | 
|  | break; | 
|  | case BuiltinType::Char16: | 
|  | Width = Target->getChar16Width(); | 
|  | Align = Target->getChar16Align(); | 
|  | break; | 
|  | case BuiltinType::Char32: | 
|  | Width = Target->getChar32Width(); | 
|  | Align = Target->getChar32Align(); | 
|  | break; | 
|  | case BuiltinType::UShort: | 
|  | case BuiltinType::Short: | 
|  | Width = Target->getShortWidth(); | 
|  | Align = Target->getShortAlign(); | 
|  | break; | 
|  | case BuiltinType::UInt: | 
|  | case BuiltinType::Int: | 
|  | Width = Target->getIntWidth(); | 
|  | Align = Target->getIntAlign(); | 
|  | break; | 
|  | case BuiltinType::ULong: | 
|  | case BuiltinType::Long: | 
|  | Width = Target->getLongWidth(); | 
|  | Align = Target->getLongAlign(); | 
|  | break; | 
|  | case BuiltinType::ULongLong: | 
|  | case BuiltinType::LongLong: | 
|  | Width = Target->getLongLongWidth(); | 
|  | Align = Target->getLongLongAlign(); | 
|  | break; | 
|  | case BuiltinType::Int128: | 
|  | case BuiltinType::UInt128: | 
|  | Width = 128; | 
|  | Align = Target->getInt128Align(); | 
|  | break; | 
|  | case BuiltinType::ShortAccum: | 
|  | case BuiltinType::UShortAccum: | 
|  | case BuiltinType::SatShortAccum: | 
|  | case BuiltinType::SatUShortAccum: | 
|  | Width = Target->getShortAccumWidth(); | 
|  | Align = Target->getShortAccumAlign(); | 
|  | break; | 
|  | case BuiltinType::Accum: | 
|  | case BuiltinType::UAccum: | 
|  | case BuiltinType::SatAccum: | 
|  | case BuiltinType::SatUAccum: | 
|  | Width = Target->getAccumWidth(); | 
|  | Align = Target->getAccumAlign(); | 
|  | break; | 
|  | case BuiltinType::LongAccum: | 
|  | case BuiltinType::ULongAccum: | 
|  | case BuiltinType::SatLongAccum: | 
|  | case BuiltinType::SatULongAccum: | 
|  | Width = Target->getLongAccumWidth(); | 
|  | Align = Target->getLongAccumAlign(); | 
|  | break; | 
|  | case BuiltinType::ShortFract: | 
|  | case BuiltinType::UShortFract: | 
|  | case BuiltinType::SatShortFract: | 
|  | case BuiltinType::SatUShortFract: | 
|  | Width = Target->getShortFractWidth(); | 
|  | Align = Target->getShortFractAlign(); | 
|  | break; | 
|  | case BuiltinType::Fract: | 
|  | case BuiltinType::UFract: | 
|  | case BuiltinType::SatFract: | 
|  | case BuiltinType::SatUFract: | 
|  | Width = Target->getFractWidth(); | 
|  | Align = Target->getFractAlign(); | 
|  | break; | 
|  | case BuiltinType::LongFract: | 
|  | case BuiltinType::ULongFract: | 
|  | case BuiltinType::SatLongFract: | 
|  | case BuiltinType::SatULongFract: | 
|  | Width = Target->getLongFractWidth(); | 
|  | Align = Target->getLongFractAlign(); | 
|  | break; | 
|  | case BuiltinType::BFloat16: | 
|  | if (Target->hasBFloat16Type()) { | 
|  | Width = Target->getBFloat16Width(); | 
|  | Align = Target->getBFloat16Align(); | 
|  | } else if ((getLangOpts().SYCLIsDevice || | 
|  | (getLangOpts().OpenMP && | 
|  | getLangOpts().OpenMPIsTargetDevice)) && | 
|  | AuxTarget->hasBFloat16Type()) { | 
|  | Width = AuxTarget->getBFloat16Width(); | 
|  | Align = AuxTarget->getBFloat16Align(); | 
|  | } | 
|  | break; | 
|  | case BuiltinType::Float16: | 
|  | case BuiltinType::Half: | 
|  | if (Target->hasFloat16Type() || !getLangOpts().OpenMP || | 
|  | !getLangOpts().OpenMPIsTargetDevice) { | 
|  | Width = Target->getHalfWidth(); | 
|  | Align = Target->getHalfAlign(); | 
|  | } else { | 
|  | assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && | 
|  | "Expected OpenMP device compilation."); | 
|  | Width = AuxTarget->getHalfWidth(); | 
|  | Align = AuxTarget->getHalfAlign(); | 
|  | } | 
|  | break; | 
|  | case BuiltinType::Float: | 
|  | Width = Target->getFloatWidth(); | 
|  | Align = Target->getFloatAlign(); | 
|  | break; | 
|  | case BuiltinType::Double: | 
|  | Width = Target->getDoubleWidth(); | 
|  | Align = Target->getDoubleAlign(); | 
|  | break; | 
|  | case BuiltinType::Ibm128: | 
|  | Width = Target->getIbm128Width(); | 
|  | Align = Target->getIbm128Align(); | 
|  | break; | 
|  | case BuiltinType::LongDouble: | 
|  | if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && | 
|  | (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() || | 
|  | Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) { | 
|  | Width = AuxTarget->getLongDoubleWidth(); | 
|  | Align = AuxTarget->getLongDoubleAlign(); | 
|  | } else { | 
|  | Width = Target->getLongDoubleWidth(); | 
|  | Align = Target->getLongDoubleAlign(); | 
|  | } | 
|  | break; | 
|  | case BuiltinType::Float128: | 
|  | if (Target->hasFloat128Type() || !getLangOpts().OpenMP || | 
|  | !getLangOpts().OpenMPIsTargetDevice) { | 
|  | Width = Target->getFloat128Width(); | 
|  | Align = Target->getFloat128Align(); | 
|  | } else { | 
|  | assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice && | 
|  | "Expected OpenMP device compilation."); | 
|  | Width = AuxTarget->getFloat128Width(); | 
|  | Align = AuxTarget->getFloat128Align(); | 
|  | } | 
|  | break; | 
|  | case BuiltinType::NullPtr: | 
|  | // C++ 3.9.1p11: sizeof(nullptr_t) == sizeof(void*) | 
|  | Width = Target->getPointerWidth(LangAS::Default); | 
|  | Align = Target->getPointerAlign(LangAS::Default); | 
|  | break; | 
|  | case BuiltinType::ObjCId: | 
|  | case BuiltinType::ObjCClass: | 
|  | case BuiltinType::ObjCSel: | 
|  | Width = Target->getPointerWidth(LangAS::Default); | 
|  | Align = Target->getPointerAlign(LangAS::Default); | 
|  | break; | 
|  | case BuiltinType::OCLSampler: | 
|  | case BuiltinType::OCLEvent: | 
|  | case BuiltinType::OCLClkEvent: | 
|  | case BuiltinType::OCLQueue: | 
|  | case BuiltinType::OCLReserveID: | 
|  | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | 
|  | case BuiltinType::Id: | 
|  | #include "clang/Basic/OpenCLImageTypes.def" | 
|  | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ | 
|  | case BuiltinType::Id: | 
|  | #include "clang/Basic/OpenCLExtensionTypes.def" | 
|  | AS = Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)); | 
|  | Width = Target->getPointerWidth(AS); | 
|  | Align = Target->getPointerAlign(AS); | 
|  | break; | 
|  | // The SVE types are effectively target-specific.  The length of an | 
|  | // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple | 
|  | // of 128 bits.  There is one predicate bit for each vector byte, so the | 
|  | // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits. | 
|  | // | 
|  | // Because the length is only known at runtime, we use a dummy value | 
|  | // of 0 for the static length.  The alignment values are those defined | 
|  | // by the Procedure Call Standard for the Arm Architecture. | 
|  | #define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId)                    \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | Width = 0;                                                                 \ | 
|  | Align = 128;                                                               \ | 
|  | break; | 
|  | #define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId)                 \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | Width = 0;                                                                 \ | 
|  | Align = 16;                                                                \ | 
|  | break; | 
|  | #define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingletonId)                    \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | Width = 0;                                                                 \ | 
|  | Align = 16;                                                                \ | 
|  | break; | 
|  | #define SVE_SCALAR_TYPE(Name, MangledName, Id, SingletonId, Bits)              \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | Width = Bits;                                                              \ | 
|  | Align = Bits;                                                              \ | 
|  | break; | 
|  | #include "clang/Basic/AArch64ACLETypes.def" | 
|  | #define PPC_VECTOR_TYPE(Name, Id, Size)                                        \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | Width = Size;                                                              \ | 
|  | Align = Size;                                                              \ | 
|  | break; | 
|  | #include "clang/Basic/PPCTypes.def" | 
|  | #define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned,   \ | 
|  | IsFP, IsBF)                                            \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | Width = 0;                                                                 \ | 
|  | Align = ElBits;                                                            \ | 
|  | break; | 
|  | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind)                      \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | Width = 0;                                                                 \ | 
|  | Align = 8;                                                                 \ | 
|  | break; | 
|  | #include "clang/Basic/RISCVVTypes.def" | 
|  | #define WASM_TYPE(Name, Id, SingletonId)                                       \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | Width = 0;                                                                 \ | 
|  | Align = 8;                                                                 \ | 
|  | break; | 
|  | #include "clang/Basic/WebAssemblyReferenceTypes.def" | 
|  | #define AMDGPU_TYPE(NAME, ID, SINGLETONID, WIDTH, ALIGN)                       \ | 
|  | case BuiltinType::ID:                                                        \ | 
|  | Width = WIDTH;                                                             \ | 
|  | Align = ALIGN;                                                             \ | 
|  | break; | 
|  | #include "clang/Basic/AMDGPUTypes.def" | 
|  | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | 
|  | #include "clang/Basic/HLSLIntangibleTypes.def" | 
|  | Width = Target->getPointerWidth(LangAS::Default); | 
|  | Align = Target->getPointerAlign(LangAS::Default); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case Type::ObjCObjectPointer: | 
|  | Width = Target->getPointerWidth(LangAS::Default); | 
|  | Align = Target->getPointerAlign(LangAS::Default); | 
|  | break; | 
|  | case Type::BlockPointer: | 
|  | AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace(); | 
|  | Width = Target->getPointerWidth(AS); | 
|  | Align = Target->getPointerAlign(AS); | 
|  | break; | 
|  | case Type::LValueReference: | 
|  | case Type::RValueReference: | 
|  | // alignof and sizeof should never enter this code path here, so we go | 
|  | // the pointer route. | 
|  | AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace(); | 
|  | Width = Target->getPointerWidth(AS); | 
|  | Align = Target->getPointerAlign(AS); | 
|  | break; | 
|  | case Type::Pointer: | 
|  | AS = cast<PointerType>(T)->getPointeeType().getAddressSpace(); | 
|  | Width = Target->getPointerWidth(AS); | 
|  | Align = Target->getPointerAlign(AS); | 
|  | break; | 
|  | case Type::MemberPointer: { | 
|  | const auto *MPT = cast<MemberPointerType>(T); | 
|  | CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT); | 
|  | Width = MPI.Width; | 
|  | Align = MPI.Align; | 
|  | break; | 
|  | } | 
|  | case Type::Complex: { | 
|  | // Complex types have the same alignment as their elements, but twice the | 
|  | // size. | 
|  | TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType()); | 
|  | Width = EltInfo.Width * 2; | 
|  | Align = EltInfo.Align; | 
|  | break; | 
|  | } | 
|  | case Type::ObjCObject: | 
|  | return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr()); | 
|  | case Type::Adjusted: | 
|  | case Type::Decayed: | 
|  | return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr()); | 
|  | case Type::ObjCInterface: { | 
|  | const auto *ObjCI = cast<ObjCInterfaceType>(T); | 
|  | if (ObjCI->getDecl()->isInvalidDecl()) { | 
|  | Width = 8; | 
|  | Align = 8; | 
|  | break; | 
|  | } | 
|  | const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); | 
|  | Width = toBits(Layout.getSize()); | 
|  | Align = toBits(Layout.getAlignment()); | 
|  | break; | 
|  | } | 
|  | case Type::BitInt: { | 
|  | const auto *EIT = cast<BitIntType>(T); | 
|  | Align = Target->getBitIntAlign(EIT->getNumBits()); | 
|  | Width = Target->getBitIntWidth(EIT->getNumBits()); | 
|  | break; | 
|  | } | 
|  | case Type::Record: | 
|  | case Type::Enum: { | 
|  | const auto *TT = cast<TagType>(T); | 
|  | const TagDecl *TD = TT->getOriginalDecl()->getDefinitionOrSelf(); | 
|  |  | 
|  | if (TD->isInvalidDecl()) { | 
|  | Width = 8; | 
|  | Align = 8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (isa<EnumType>(TT)) { | 
|  | const EnumDecl *ED = cast<EnumDecl>(TD); | 
|  | TypeInfo Info = | 
|  | getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType()); | 
|  | if (unsigned AttrAlign = ED->getMaxAlignment()) { | 
|  | Info.Align = AttrAlign; | 
|  | Info.AlignRequirement = AlignRequirementKind::RequiredByEnum; | 
|  | } | 
|  | return Info; | 
|  | } | 
|  |  | 
|  | const auto *RD = cast<RecordDecl>(TD); | 
|  | const ASTRecordLayout &Layout = getASTRecordLayout(RD); | 
|  | Width = toBits(Layout.getSize()); | 
|  | Align = toBits(Layout.getAlignment()); | 
|  | AlignRequirement = RD->hasAttr<AlignedAttr>() | 
|  | ? AlignRequirementKind::RequiredByRecord | 
|  | : AlignRequirementKind::None; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::SubstTemplateTypeParm: | 
|  | return getTypeInfo(cast<SubstTemplateTypeParmType>(T)-> | 
|  | getReplacementType().getTypePtr()); | 
|  |  | 
|  | case Type::Auto: | 
|  | case Type::DeducedTemplateSpecialization: { | 
|  | const auto *A = cast<DeducedType>(T); | 
|  | assert(!A->getDeducedType().isNull() && | 
|  | "cannot request the size of an undeduced or dependent auto type"); | 
|  | return getTypeInfo(A->getDeducedType().getTypePtr()); | 
|  | } | 
|  |  | 
|  | case Type::Paren: | 
|  | return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr()); | 
|  |  | 
|  | case Type::MacroQualified: | 
|  | return getTypeInfo( | 
|  | cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr()); | 
|  |  | 
|  | case Type::ObjCTypeParam: | 
|  | return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr()); | 
|  |  | 
|  | case Type::Using: | 
|  | return getTypeInfo(cast<UsingType>(T)->desugar().getTypePtr()); | 
|  |  | 
|  | case Type::Typedef: { | 
|  | const auto *TT = cast<TypedefType>(T); | 
|  | TypeInfo Info = getTypeInfo(TT->desugar().getTypePtr()); | 
|  | // If the typedef has an aligned attribute on it, it overrides any computed | 
|  | // alignment we have.  This violates the GCC documentation (which says that | 
|  | // attribute(aligned) can only round up) but matches its implementation. | 
|  | if (unsigned AttrAlign = TT->getDecl()->getMaxAlignment()) { | 
|  | Align = AttrAlign; | 
|  | AlignRequirement = AlignRequirementKind::RequiredByTypedef; | 
|  | } else { | 
|  | Align = Info.Align; | 
|  | AlignRequirement = Info.AlignRequirement; | 
|  | } | 
|  | Width = Info.Width; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::Attributed: | 
|  | return getTypeInfo( | 
|  | cast<AttributedType>(T)->getEquivalentType().getTypePtr()); | 
|  |  | 
|  | case Type::CountAttributed: | 
|  | return getTypeInfo(cast<CountAttributedType>(T)->desugar().getTypePtr()); | 
|  |  | 
|  | case Type::BTFTagAttributed: | 
|  | return getTypeInfo( | 
|  | cast<BTFTagAttributedType>(T)->getWrappedType().getTypePtr()); | 
|  |  | 
|  | case Type::HLSLAttributedResource: | 
|  | return getTypeInfo( | 
|  | cast<HLSLAttributedResourceType>(T)->getWrappedType().getTypePtr()); | 
|  |  | 
|  | case Type::HLSLInlineSpirv: { | 
|  | const auto *ST = cast<HLSLInlineSpirvType>(T); | 
|  | // Size is specified in bytes, convert to bits | 
|  | Width = ST->getSize() * 8; | 
|  | Align = ST->getAlignment(); | 
|  | if (Width == 0 && Align == 0) { | 
|  | // We are defaulting to laying out opaque SPIR-V types as 32-bit ints. | 
|  | Width = 32; | 
|  | Align = 32; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::Atomic: { | 
|  | // Start with the base type information. | 
|  | TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType()); | 
|  | Width = Info.Width; | 
|  | Align = Info.Align; | 
|  |  | 
|  | if (!Width) { | 
|  | // An otherwise zero-sized type should still generate an | 
|  | // atomic operation. | 
|  | Width = Target->getCharWidth(); | 
|  | assert(Align); | 
|  | } else if (Width <= Target->getMaxAtomicPromoteWidth()) { | 
|  | // If the size of the type doesn't exceed the platform's max | 
|  | // atomic promotion width, make the size and alignment more | 
|  | // favorable to atomic operations: | 
|  |  | 
|  | // Round the size up to a power of 2. | 
|  | Width = llvm::bit_ceil(Width); | 
|  |  | 
|  | // Set the alignment equal to the size. | 
|  | Align = static_cast<unsigned>(Width); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Type::PredefinedSugar: | 
|  | return getTypeInfo(cast<PredefinedSugarType>(T)->desugar().getTypePtr()); | 
|  |  | 
|  | case Type::Pipe: | 
|  | Width = Target->getPointerWidth(LangAS::opencl_global); | 
|  | Align = Target->getPointerAlign(LangAS::opencl_global); | 
|  | break; | 
|  | } | 
|  |  | 
|  | assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2"); | 
|  | return TypeInfo(Width, Align, AlignRequirement); | 
|  | } | 
|  |  | 
|  | unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const { | 
|  | UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T); | 
|  | if (I != MemoizedUnadjustedAlign.end()) | 
|  | return I->second; | 
|  |  | 
|  | unsigned UnadjustedAlign; | 
|  | if (const auto *RT = T->getAsCanonical<RecordType>()) { | 
|  | const ASTRecordLayout &Layout = getASTRecordLayout(RT->getOriginalDecl()); | 
|  | UnadjustedAlign = toBits(Layout.getUnadjustedAlignment()); | 
|  | } else if (const auto *ObjCI = T->getAsCanonical<ObjCInterfaceType>()) { | 
|  | const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl()); | 
|  | UnadjustedAlign = toBits(Layout.getUnadjustedAlignment()); | 
|  | } else { | 
|  | UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType()); | 
|  | } | 
|  |  | 
|  | MemoizedUnadjustedAlign[T] = UnadjustedAlign; | 
|  | return UnadjustedAlign; | 
|  | } | 
|  |  | 
|  | unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const { | 
|  | unsigned SimdAlign = llvm::OpenMPIRBuilder::getOpenMPDefaultSimdAlign( | 
|  | getTargetInfo().getTriple(), Target->getTargetOpts().FeatureMap); | 
|  | return SimdAlign; | 
|  | } | 
|  |  | 
|  | /// toCharUnitsFromBits - Convert a size in bits to a size in characters. | 
|  | CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const { | 
|  | return CharUnits::fromQuantity(BitSize / getCharWidth()); | 
|  | } | 
|  |  | 
|  | /// toBits - Convert a size in characters to a size in characters. | 
|  | int64_t ASTContext::toBits(CharUnits CharSize) const { | 
|  | return CharSize.getQuantity() * getCharWidth(); | 
|  | } | 
|  |  | 
|  | /// getTypeSizeInChars - Return the size of the specified type, in characters. | 
|  | /// This method does not work on incomplete types. | 
|  | CharUnits ASTContext::getTypeSizeInChars(QualType T) const { | 
|  | return getTypeInfoInChars(T).Width; | 
|  | } | 
|  | CharUnits ASTContext::getTypeSizeInChars(const Type *T) const { | 
|  | return getTypeInfoInChars(T).Width; | 
|  | } | 
|  |  | 
|  | /// getTypeAlignInChars - Return the ABI-specified alignment of a type, in | 
|  | /// characters. This method does not work on incomplete types. | 
|  | CharUnits ASTContext::getTypeAlignInChars(QualType T) const { | 
|  | return toCharUnitsFromBits(getTypeAlign(T)); | 
|  | } | 
|  | CharUnits ASTContext::getTypeAlignInChars(const Type *T) const { | 
|  | return toCharUnitsFromBits(getTypeAlign(T)); | 
|  | } | 
|  |  | 
|  | /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a | 
|  | /// type, in characters, before alignment adjustments. This method does | 
|  | /// not work on incomplete types. | 
|  | CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const { | 
|  | return toCharUnitsFromBits(getTypeUnadjustedAlign(T)); | 
|  | } | 
|  | CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const { | 
|  | return toCharUnitsFromBits(getTypeUnadjustedAlign(T)); | 
|  | } | 
|  |  | 
|  | /// getPreferredTypeAlign - Return the "preferred" alignment of the specified | 
|  | /// type for the current target in bits.  This can be different than the ABI | 
|  | /// alignment in cases where it is beneficial for performance or backwards | 
|  | /// compatibility preserving to overalign a data type. (Note: despite the name, | 
|  | /// the preferred alignment is ABI-impacting, and not an optimization.) | 
|  | unsigned ASTContext::getPreferredTypeAlign(const Type *T) const { | 
|  | TypeInfo TI = getTypeInfo(T); | 
|  | unsigned ABIAlign = TI.Align; | 
|  |  | 
|  | T = T->getBaseElementTypeUnsafe(); | 
|  |  | 
|  | // The preferred alignment of member pointers is that of a pointer. | 
|  | if (T->isMemberPointerType()) | 
|  | return getPreferredTypeAlign(getPointerDiffType().getTypePtr()); | 
|  |  | 
|  | if (!Target->allowsLargerPreferedTypeAlignment()) | 
|  | return ABIAlign; | 
|  |  | 
|  | if (const auto *RD = T->getAsRecordDecl()) { | 
|  | // When used as part of a typedef, or together with a 'packed' attribute, | 
|  | // the 'aligned' attribute can be used to decrease alignment. Note that the | 
|  | // 'packed' case is already taken into consideration when computing the | 
|  | // alignment, we only need to handle the typedef case here. | 
|  | if (TI.AlignRequirement == AlignRequirementKind::RequiredByTypedef || | 
|  | RD->isInvalidDecl()) | 
|  | return ABIAlign; | 
|  |  | 
|  | unsigned PreferredAlign = static_cast<unsigned>( | 
|  | toBits(getASTRecordLayout(RD).PreferredAlignment)); | 
|  | assert(PreferredAlign >= ABIAlign && | 
|  | "PreferredAlign should be at least as large as ABIAlign."); | 
|  | return PreferredAlign; | 
|  | } | 
|  |  | 
|  | // Double (and, for targets supporting AIX `power` alignment, long double) and | 
|  | // long long should be naturally aligned (despite requiring less alignment) if | 
|  | // possible. | 
|  | if (const auto *CT = T->getAs<ComplexType>()) | 
|  | T = CT->getElementType().getTypePtr(); | 
|  | if (const auto *ED = T->getAsEnumDecl()) | 
|  | T = ED->getIntegerType().getTypePtr(); | 
|  | if (T->isSpecificBuiltinType(BuiltinType::Double) || | 
|  | T->isSpecificBuiltinType(BuiltinType::LongLong) || | 
|  | T->isSpecificBuiltinType(BuiltinType::ULongLong) || | 
|  | (T->isSpecificBuiltinType(BuiltinType::LongDouble) && | 
|  | Target->defaultsToAIXPowerAlignment())) | 
|  | // Don't increase the alignment if an alignment attribute was specified on a | 
|  | // typedef declaration. | 
|  | if (!TI.isAlignRequired()) | 
|  | return std::max(ABIAlign, (unsigned)getTypeSize(T)); | 
|  |  | 
|  | return ABIAlign; | 
|  | } | 
|  |  | 
|  | /// getTargetDefaultAlignForAttributeAligned - Return the default alignment | 
|  | /// for __attribute__((aligned)) on this target, to be used if no alignment | 
|  | /// value is specified. | 
|  | unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const { | 
|  | return getTargetInfo().getDefaultAlignForAttributeAligned(); | 
|  | } | 
|  |  | 
|  | /// getAlignOfGlobalVar - Return the alignment in bits that should be given | 
|  | /// to a global variable of the specified type. | 
|  | unsigned ASTContext::getAlignOfGlobalVar(QualType T, const VarDecl *VD) const { | 
|  | uint64_t TypeSize = getTypeSize(T.getTypePtr()); | 
|  | return std::max(getPreferredTypeAlign(T), | 
|  | getMinGlobalAlignOfVar(TypeSize, VD)); | 
|  | } | 
|  |  | 
|  | /// getAlignOfGlobalVarInChars - Return the alignment in characters that | 
|  | /// should be given to a global variable of the specified type. | 
|  | CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T, | 
|  | const VarDecl *VD) const { | 
|  | return toCharUnitsFromBits(getAlignOfGlobalVar(T, VD)); | 
|  | } | 
|  |  | 
|  | unsigned ASTContext::getMinGlobalAlignOfVar(uint64_t Size, | 
|  | const VarDecl *VD) const { | 
|  | // Make the default handling as that of a non-weak definition in the | 
|  | // current translation unit. | 
|  | bool HasNonWeakDef = !VD || (VD->hasDefinition() && !VD->isWeak()); | 
|  | return getTargetInfo().getMinGlobalAlign(Size, HasNonWeakDef); | 
|  | } | 
|  |  | 
|  | CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const { | 
|  | CharUnits Offset = CharUnits::Zero(); | 
|  | const ASTRecordLayout *Layout = &getASTRecordLayout(RD); | 
|  | while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) { | 
|  | Offset += Layout->getBaseClassOffset(Base); | 
|  | Layout = &getASTRecordLayout(Base); | 
|  | } | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const { | 
|  | const ValueDecl *MPD = MP.getMemberPointerDecl(); | 
|  | CharUnits ThisAdjustment = CharUnits::Zero(); | 
|  | ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath(); | 
|  | bool DerivedMember = MP.isMemberPointerToDerivedMember(); | 
|  | const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext()); | 
|  | for (unsigned I = 0, N = Path.size(); I != N; ++I) { | 
|  | const CXXRecordDecl *Base = RD; | 
|  | const CXXRecordDecl *Derived = Path[I]; | 
|  | if (DerivedMember) | 
|  | std::swap(Base, Derived); | 
|  | ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base); | 
|  | RD = Path[I]; | 
|  | } | 
|  | if (DerivedMember) | 
|  | ThisAdjustment = -ThisAdjustment; | 
|  | return ThisAdjustment; | 
|  | } | 
|  |  | 
|  | /// DeepCollectObjCIvars - | 
|  | /// This routine first collects all declared, but not synthesized, ivars in | 
|  | /// super class and then collects all ivars, including those synthesized for | 
|  | /// current class. This routine is used for implementation of current class | 
|  | /// when all ivars, declared and synthesized are known. | 
|  | void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, | 
|  | bool leafClass, | 
|  | SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const { | 
|  | if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass()) | 
|  | DeepCollectObjCIvars(SuperClass, false, Ivars); | 
|  | if (!leafClass) { | 
|  | llvm::append_range(Ivars, OI->ivars()); | 
|  | } else { | 
|  | auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI); | 
|  | for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv; | 
|  | Iv= Iv->getNextIvar()) | 
|  | Ivars.push_back(Iv); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CollectInheritedProtocols - Collect all protocols in current class and | 
|  | /// those inherited by it. | 
|  | void ASTContext::CollectInheritedProtocols(const Decl *CDecl, | 
|  | llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) { | 
|  | if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) { | 
|  | // We can use protocol_iterator here instead of | 
|  | // all_referenced_protocol_iterator since we are walking all categories. | 
|  | for (auto *Proto : OI->all_referenced_protocols()) { | 
|  | CollectInheritedProtocols(Proto, Protocols); | 
|  | } | 
|  |  | 
|  | // Categories of this Interface. | 
|  | for (const auto *Cat : OI->visible_categories()) | 
|  | CollectInheritedProtocols(Cat, Protocols); | 
|  |  | 
|  | if (ObjCInterfaceDecl *SD = OI->getSuperClass()) | 
|  | while (SD) { | 
|  | CollectInheritedProtocols(SD, Protocols); | 
|  | SD = SD->getSuperClass(); | 
|  | } | 
|  | } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) { | 
|  | for (auto *Proto : OC->protocols()) { | 
|  | CollectInheritedProtocols(Proto, Protocols); | 
|  | } | 
|  | } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) { | 
|  | // Insert the protocol. | 
|  | if (!Protocols.insert( | 
|  | const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second) | 
|  | return; | 
|  |  | 
|  | for (auto *Proto : OP->protocols()) | 
|  | CollectInheritedProtocols(Proto, Protocols); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool unionHasUniqueObjectRepresentations(const ASTContext &Context, | 
|  | const RecordDecl *RD, | 
|  | bool CheckIfTriviallyCopyable) { | 
|  | assert(RD->isUnion() && "Must be union type"); | 
|  | CharUnits UnionSize = | 
|  | Context.getTypeSizeInChars(Context.getCanonicalTagType(RD)); | 
|  |  | 
|  | for (const auto *Field : RD->fields()) { | 
|  | if (!Context.hasUniqueObjectRepresentations(Field->getType(), | 
|  | CheckIfTriviallyCopyable)) | 
|  | return false; | 
|  | CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType()); | 
|  | if (FieldSize != UnionSize) | 
|  | return false; | 
|  | } | 
|  | return !RD->field_empty(); | 
|  | } | 
|  |  | 
|  | static int64_t getSubobjectOffset(const FieldDecl *Field, | 
|  | const ASTContext &Context, | 
|  | const clang::ASTRecordLayout & /*Layout*/) { | 
|  | return Context.getFieldOffset(Field); | 
|  | } | 
|  |  | 
|  | static int64_t getSubobjectOffset(const CXXRecordDecl *RD, | 
|  | const ASTContext &Context, | 
|  | const clang::ASTRecordLayout &Layout) { | 
|  | return Context.toBits(Layout.getBaseClassOffset(RD)); | 
|  | } | 
|  |  | 
|  | static std::optional<int64_t> | 
|  | structHasUniqueObjectRepresentations(const ASTContext &Context, | 
|  | const RecordDecl *RD, | 
|  | bool CheckIfTriviallyCopyable); | 
|  |  | 
|  | static std::optional<int64_t> | 
|  | getSubobjectSizeInBits(const FieldDecl *Field, const ASTContext &Context, | 
|  | bool CheckIfTriviallyCopyable) { | 
|  | if (const auto *RD = Field->getType()->getAsRecordDecl(); | 
|  | RD && !RD->isUnion()) | 
|  | return structHasUniqueObjectRepresentations(Context, RD, | 
|  | CheckIfTriviallyCopyable); | 
|  |  | 
|  | // A _BitInt type may not be unique if it has padding bits | 
|  | // but if it is a bitfield the padding bits are not used. | 
|  | bool IsBitIntType = Field->getType()->isBitIntType(); | 
|  | if (!Field->getType()->isReferenceType() && !IsBitIntType && | 
|  | !Context.hasUniqueObjectRepresentations(Field->getType(), | 
|  | CheckIfTriviallyCopyable)) | 
|  | return std::nullopt; | 
|  |  | 
|  | int64_t FieldSizeInBits = | 
|  | Context.toBits(Context.getTypeSizeInChars(Field->getType())); | 
|  | if (Field->isBitField()) { | 
|  | // If we have explicit padding bits, they don't contribute bits | 
|  | // to the actual object representation, so return 0. | 
|  | if (Field->isUnnamedBitField()) | 
|  | return 0; | 
|  |  | 
|  | int64_t BitfieldSize = Field->getBitWidthValue(); | 
|  | if (IsBitIntType) { | 
|  | if ((unsigned)BitfieldSize > | 
|  | cast<BitIntType>(Field->getType())->getNumBits()) | 
|  | return std::nullopt; | 
|  | } else if (BitfieldSize > FieldSizeInBits) { | 
|  | return std::nullopt; | 
|  | } | 
|  | FieldSizeInBits = BitfieldSize; | 
|  | } else if (IsBitIntType && !Context.hasUniqueObjectRepresentations( | 
|  | Field->getType(), CheckIfTriviallyCopyable)) { | 
|  | return std::nullopt; | 
|  | } | 
|  | return FieldSizeInBits; | 
|  | } | 
|  |  | 
|  | static std::optional<int64_t> | 
|  | getSubobjectSizeInBits(const CXXRecordDecl *RD, const ASTContext &Context, | 
|  | bool CheckIfTriviallyCopyable) { | 
|  | return structHasUniqueObjectRepresentations(Context, RD, | 
|  | CheckIfTriviallyCopyable); | 
|  | } | 
|  |  | 
|  | template <typename RangeT> | 
|  | static std::optional<int64_t> structSubobjectsHaveUniqueObjectRepresentations( | 
|  | const RangeT &Subobjects, int64_t CurOffsetInBits, | 
|  | const ASTContext &Context, const clang::ASTRecordLayout &Layout, | 
|  | bool CheckIfTriviallyCopyable) { | 
|  | for (const auto *Subobject : Subobjects) { | 
|  | std::optional<int64_t> SizeInBits = | 
|  | getSubobjectSizeInBits(Subobject, Context, CheckIfTriviallyCopyable); | 
|  | if (!SizeInBits) | 
|  | return std::nullopt; | 
|  | if (*SizeInBits != 0) { | 
|  | int64_t Offset = getSubobjectOffset(Subobject, Context, Layout); | 
|  | if (Offset != CurOffsetInBits) | 
|  | return std::nullopt; | 
|  | CurOffsetInBits += *SizeInBits; | 
|  | } | 
|  | } | 
|  | return CurOffsetInBits; | 
|  | } | 
|  |  | 
|  | static std::optional<int64_t> | 
|  | structHasUniqueObjectRepresentations(const ASTContext &Context, | 
|  | const RecordDecl *RD, | 
|  | bool CheckIfTriviallyCopyable) { | 
|  | assert(!RD->isUnion() && "Must be struct/class type"); | 
|  | const auto &Layout = Context.getASTRecordLayout(RD); | 
|  |  | 
|  | int64_t CurOffsetInBits = 0; | 
|  | if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) { | 
|  | if (ClassDecl->isDynamicClass()) | 
|  | return std::nullopt; | 
|  |  | 
|  | SmallVector<CXXRecordDecl *, 4> Bases; | 
|  | for (const auto &Base : ClassDecl->bases()) { | 
|  | // Empty types can be inherited from, and non-empty types can potentially | 
|  | // have tail padding, so just make sure there isn't an error. | 
|  | Bases.emplace_back(Base.getType()->getAsCXXRecordDecl()); | 
|  | } | 
|  |  | 
|  | llvm::sort(Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) { | 
|  | return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R); | 
|  | }); | 
|  |  | 
|  | std::optional<int64_t> OffsetAfterBases = | 
|  | structSubobjectsHaveUniqueObjectRepresentations( | 
|  | Bases, CurOffsetInBits, Context, Layout, CheckIfTriviallyCopyable); | 
|  | if (!OffsetAfterBases) | 
|  | return std::nullopt; | 
|  | CurOffsetInBits = *OffsetAfterBases; | 
|  | } | 
|  |  | 
|  | std::optional<int64_t> OffsetAfterFields = | 
|  | structSubobjectsHaveUniqueObjectRepresentations( | 
|  | RD->fields(), CurOffsetInBits, Context, Layout, | 
|  | CheckIfTriviallyCopyable); | 
|  | if (!OffsetAfterFields) | 
|  | return std::nullopt; | 
|  | CurOffsetInBits = *OffsetAfterFields; | 
|  |  | 
|  | return CurOffsetInBits; | 
|  | } | 
|  |  | 
|  | bool ASTContext::hasUniqueObjectRepresentations( | 
|  | QualType Ty, bool CheckIfTriviallyCopyable) const { | 
|  | // C++17 [meta.unary.prop]: | 
|  | //   The predicate condition for a template specialization | 
|  | //   has_unique_object_representations<T> shall be satisfied if and only if: | 
|  | //     (9.1) - T is trivially copyable, and | 
|  | //     (9.2) - any two objects of type T with the same value have the same | 
|  | //     object representation, where: | 
|  | //     - two objects of array or non-union class type are considered to have | 
|  | //       the same value if their respective sequences of direct subobjects | 
|  | //       have the same values, and | 
|  | //     - two objects of union type are considered to have the same value if | 
|  | //       they have the same active member and the corresponding members have | 
|  | //       the same value. | 
|  | //   The set of scalar types for which this condition holds is | 
|  | //   implementation-defined. [ Note: If a type has padding bits, the condition | 
|  | //   does not hold; otherwise, the condition holds true for unsigned integral | 
|  | //   types. -- end note ] | 
|  | assert(!Ty.isNull() && "Null QualType sent to unique object rep check"); | 
|  |  | 
|  | // Arrays are unique only if their element type is unique. | 
|  | if (Ty->isArrayType()) | 
|  | return hasUniqueObjectRepresentations(getBaseElementType(Ty), | 
|  | CheckIfTriviallyCopyable); | 
|  |  | 
|  | assert((Ty->isVoidType() || !Ty->isIncompleteType()) && | 
|  | "hasUniqueObjectRepresentations should not be called with an " | 
|  | "incomplete type"); | 
|  |  | 
|  | // (9.1) - T is trivially copyable... | 
|  | if (CheckIfTriviallyCopyable && !Ty.isTriviallyCopyableType(*this)) | 
|  | return false; | 
|  |  | 
|  | // All integrals and enums are unique. | 
|  | if (Ty->isIntegralOrEnumerationType()) { | 
|  | // Address discriminated integer types are not unique. | 
|  | if (Ty.hasAddressDiscriminatedPointerAuth()) | 
|  | return false; | 
|  | // Except _BitInt types that have padding bits. | 
|  | if (const auto *BIT = Ty->getAs<BitIntType>()) | 
|  | return getTypeSize(BIT) == BIT->getNumBits(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // All other pointers are unique. | 
|  | if (Ty->isPointerType()) | 
|  | return !Ty.hasAddressDiscriminatedPointerAuth(); | 
|  |  | 
|  | if (const auto *MPT = Ty->getAs<MemberPointerType>()) | 
|  | return !ABI->getMemberPointerInfo(MPT).HasPadding; | 
|  |  | 
|  | if (const auto *Record = Ty->getAsRecordDecl()) { | 
|  | if (Record->isInvalidDecl()) | 
|  | return false; | 
|  |  | 
|  | if (Record->isUnion()) | 
|  | return unionHasUniqueObjectRepresentations(*this, Record, | 
|  | CheckIfTriviallyCopyable); | 
|  |  | 
|  | std::optional<int64_t> StructSize = structHasUniqueObjectRepresentations( | 
|  | *this, Record, CheckIfTriviallyCopyable); | 
|  |  | 
|  | return StructSize && *StructSize == static_cast<int64_t>(getTypeSize(Ty)); | 
|  | } | 
|  |  | 
|  | // FIXME: More cases to handle here (list by rsmith): | 
|  | // vectors (careful about, eg, vector of 3 foo) | 
|  | // _Complex int and friends | 
|  | // _Atomic T | 
|  | // Obj-C block pointers | 
|  | // Obj-C object pointers | 
|  | // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t, | 
|  | // clk_event_t, queue_t, reserve_id_t) | 
|  | // There're also Obj-C class types and the Obj-C selector type, but I think it | 
|  | // makes sense for those to return false here. | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const { | 
|  | unsigned count = 0; | 
|  | // Count ivars declared in class extension. | 
|  | for (const auto *Ext : OI->known_extensions()) | 
|  | count += Ext->ivar_size(); | 
|  |  | 
|  | // Count ivar defined in this class's implementation.  This | 
|  | // includes synthesized ivars. | 
|  | if (ObjCImplementationDecl *ImplDecl = OI->getImplementation()) | 
|  | count += ImplDecl->ivar_size(); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | bool ASTContext::isSentinelNullExpr(const Expr *E) { | 
|  | if (!E) | 
|  | return false; | 
|  |  | 
|  | // nullptr_t is always treated as null. | 
|  | if (E->getType()->isNullPtrType()) return true; | 
|  |  | 
|  | if (E->getType()->isAnyPointerType() && | 
|  | E->IgnoreParenCasts()->isNullPointerConstant(*this, | 
|  | Expr::NPC_ValueDependentIsNull)) | 
|  | return true; | 
|  |  | 
|  | // Unfortunately, __null has type 'int'. | 
|  | if (isa<GNUNullExpr>(E)) return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Get the implementation of ObjCInterfaceDecl, or nullptr if none | 
|  | /// exists. | 
|  | ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) { | 
|  | llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator | 
|  | I = ObjCImpls.find(D); | 
|  | if (I != ObjCImpls.end()) | 
|  | return cast<ObjCImplementationDecl>(I->second); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Get the implementation of ObjCCategoryDecl, or nullptr if none | 
|  | /// exists. | 
|  | ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) { | 
|  | llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator | 
|  | I = ObjCImpls.find(D); | 
|  | if (I != ObjCImpls.end()) | 
|  | return cast<ObjCCategoryImplDecl>(I->second); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Set the implementation of ObjCInterfaceDecl. | 
|  | void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD, | 
|  | ObjCImplementationDecl *ImplD) { | 
|  | assert(IFaceD && ImplD && "Passed null params"); | 
|  | ObjCImpls[IFaceD] = ImplD; | 
|  | } | 
|  |  | 
|  | /// Set the implementation of ObjCCategoryDecl. | 
|  | void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD, | 
|  | ObjCCategoryImplDecl *ImplD) { | 
|  | assert(CatD && ImplD && "Passed null params"); | 
|  | ObjCImpls[CatD] = ImplD; | 
|  | } | 
|  |  | 
|  | const ObjCMethodDecl * | 
|  | ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const { | 
|  | return ObjCMethodRedecls.lookup(MD); | 
|  | } | 
|  |  | 
|  | void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD, | 
|  | const ObjCMethodDecl *Redecl) { | 
|  | assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration"); | 
|  | ObjCMethodRedecls[MD] = Redecl; | 
|  | } | 
|  |  | 
|  | const ObjCInterfaceDecl *ASTContext::getObjContainingInterface( | 
|  | const NamedDecl *ND) const { | 
|  | if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext())) | 
|  | return ID; | 
|  | if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext())) | 
|  | return CD->getClassInterface(); | 
|  | if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext())) | 
|  | return IMD->getClassInterface(); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Get the copy initialization expression of VarDecl, or nullptr if | 
|  | /// none exists. | 
|  | BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const { | 
|  | assert(VD && "Passed null params"); | 
|  | assert(VD->hasAttr<BlocksAttr>() && | 
|  | "getBlockVarCopyInits - not __block var"); | 
|  | auto I = BlockVarCopyInits.find(VD); | 
|  | if (I != BlockVarCopyInits.end()) | 
|  | return I->second; | 
|  | return {nullptr, false}; | 
|  | } | 
|  |  | 
|  | /// Set the copy initialization expression of a block var decl. | 
|  | void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr, | 
|  | bool CanThrow) { | 
|  | assert(VD && CopyExpr && "Passed null params"); | 
|  | assert(VD->hasAttr<BlocksAttr>() && | 
|  | "setBlockVarCopyInits - not __block var"); | 
|  | BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow); | 
|  | } | 
|  |  | 
|  | TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T, | 
|  | unsigned DataSize) const { | 
|  | if (!DataSize) | 
|  | DataSize = TypeLoc::getFullDataSizeForType(T); | 
|  | else | 
|  | assert(DataSize == TypeLoc::getFullDataSizeForType(T) && | 
|  | "incorrect data size provided to CreateTypeSourceInfo!"); | 
|  |  | 
|  | auto *TInfo = | 
|  | (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8); | 
|  | new (TInfo) TypeSourceInfo(T, DataSize); | 
|  | return TInfo; | 
|  | } | 
|  |  | 
|  | TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T, | 
|  | SourceLocation L) const { | 
|  | TypeSourceInfo *DI = CreateTypeSourceInfo(T); | 
|  | DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L); | 
|  | return DI; | 
|  | } | 
|  |  | 
|  | const ASTRecordLayout & | 
|  | ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const { | 
|  | return getObjCLayout(D); | 
|  | } | 
|  |  | 
|  | static auto getCanonicalTemplateArguments(const ASTContext &C, | 
|  | ArrayRef<TemplateArgument> Args, | 
|  | bool &AnyNonCanonArgs) { | 
|  | SmallVector<TemplateArgument, 16> CanonArgs(Args); | 
|  | AnyNonCanonArgs |= C.canonicalizeTemplateArguments(CanonArgs); | 
|  | return CanonArgs; | 
|  | } | 
|  |  | 
|  | bool ASTContext::canonicalizeTemplateArguments( | 
|  | MutableArrayRef<TemplateArgument> Args) const { | 
|  | bool AnyNonCanonArgs = false; | 
|  | for (auto &Arg : Args) { | 
|  | TemplateArgument OrigArg = Arg; | 
|  | Arg = getCanonicalTemplateArgument(Arg); | 
|  | AnyNonCanonArgs |= !Arg.structurallyEquals(OrigArg); | 
|  | } | 
|  | return AnyNonCanonArgs; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                   Type creation/memoization methods | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | QualType | 
|  | ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const { | 
|  | unsigned fastQuals = quals.getFastQualifiers(); | 
|  | quals.removeFastQualifiers(); | 
|  |  | 
|  | // Check if we've already instantiated this type. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ExtQuals::Profile(ID, baseType, quals); | 
|  | void *insertPos = nullptr; | 
|  | if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) { | 
|  | assert(eq->getQualifiers() == quals); | 
|  | return QualType(eq, fastQuals); | 
|  | } | 
|  |  | 
|  | // If the base type is not canonical, make the appropriate canonical type. | 
|  | QualType canon; | 
|  | if (!baseType->isCanonicalUnqualified()) { | 
|  | SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split(); | 
|  | canonSplit.Quals.addConsistentQualifiers(quals); | 
|  | canon = getExtQualType(canonSplit.Ty, canonSplit.Quals); | 
|  |  | 
|  | // Re-find the insert position. | 
|  | (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos); | 
|  | } | 
|  |  | 
|  | auto *eq = new (*this, alignof(ExtQuals)) ExtQuals(baseType, canon, quals); | 
|  | ExtQualNodes.InsertNode(eq, insertPos); | 
|  | return QualType(eq, fastQuals); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getAddrSpaceQualType(QualType T, | 
|  | LangAS AddressSpace) const { | 
|  | QualType CanT = getCanonicalType(T); | 
|  | if (CanT.getAddressSpace() == AddressSpace) | 
|  | return T; | 
|  |  | 
|  | // If we are composing extended qualifiers together, merge together | 
|  | // into one ExtQuals node. | 
|  | QualifierCollector Quals; | 
|  | const Type *TypeNode = Quals.strip(T); | 
|  |  | 
|  | // If this type already has an address space specified, it cannot get | 
|  | // another one. | 
|  | assert(!Quals.hasAddressSpace() && | 
|  | "Type cannot be in multiple addr spaces!"); | 
|  | Quals.addAddressSpace(AddressSpace); | 
|  |  | 
|  | return getExtQualType(TypeNode, Quals); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::removeAddrSpaceQualType(QualType T) const { | 
|  | // If the type is not qualified with an address space, just return it | 
|  | // immediately. | 
|  | if (!T.hasAddressSpace()) | 
|  | return T; | 
|  |  | 
|  | QualifierCollector Quals; | 
|  | const Type *TypeNode; | 
|  | // For arrays, strip the qualifier off the element type, then reconstruct the | 
|  | // array type | 
|  | if (T.getTypePtr()->isArrayType()) { | 
|  | T = getUnqualifiedArrayType(T, Quals); | 
|  | TypeNode = T.getTypePtr(); | 
|  | } else { | 
|  | // If we are composing extended qualifiers together, merge together | 
|  | // into one ExtQuals node. | 
|  | while (T.hasAddressSpace()) { | 
|  | TypeNode = Quals.strip(T); | 
|  |  | 
|  | // If the type no longer has an address space after stripping qualifiers, | 
|  | // jump out. | 
|  | if (!QualType(TypeNode, 0).hasAddressSpace()) | 
|  | break; | 
|  |  | 
|  | // There might be sugar in the way. Strip it and try again. | 
|  | T = T.getSingleStepDesugaredType(*this); | 
|  | } | 
|  | } | 
|  |  | 
|  | Quals.removeAddressSpace(); | 
|  |  | 
|  | // Removal of the address space can mean there are no longer any | 
|  | // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts) | 
|  | // or required. | 
|  | if (Quals.hasNonFastQualifiers()) | 
|  | return getExtQualType(TypeNode, Quals); | 
|  | else | 
|  | return QualType(TypeNode, Quals.getFastQualifiers()); | 
|  | } | 
|  |  | 
|  | uint16_t | 
|  | ASTContext::getPointerAuthVTablePointerDiscriminator(const CXXRecordDecl *RD) { | 
|  | assert(RD->isPolymorphic() && | 
|  | "Attempted to get vtable pointer discriminator on a monomorphic type"); | 
|  | std::unique_ptr<MangleContext> MC(createMangleContext()); | 
|  | SmallString<256> Str; | 
|  | llvm::raw_svector_ostream Out(Str); | 
|  | MC->mangleCXXVTable(RD, Out); | 
|  | return llvm::getPointerAuthStableSipHash(Str); | 
|  | } | 
|  |  | 
|  | /// Encode a function type for use in the discriminator of a function pointer | 
|  | /// type. We can't use the itanium scheme for this since C has quite permissive | 
|  | /// rules for type compatibility that we need to be compatible with. | 
|  | /// | 
|  | /// Formally, this function associates every function pointer type T with an | 
|  | /// encoded string E(T). Let the equivalence relation T1 ~ T2 be defined as | 
|  | /// E(T1) == E(T2). E(T) is part of the ABI of values of type T. C type | 
|  | /// compatibility requires equivalent treatment under the ABI, so | 
|  | /// CCompatible(T1, T2) must imply E(T1) == E(T2), that is, CCompatible must be | 
|  | /// a subset of ~. Crucially, however, it must be a proper subset because | 
|  | /// CCompatible is not an equivalence relation: for example, int[] is compatible | 
|  | /// with both int[1] and int[2], but the latter are not compatible with each | 
|  | /// other. Therefore this encoding function must be careful to only distinguish | 
|  | /// types if there is no third type with which they are both required to be | 
|  | /// compatible. | 
|  | static void encodeTypeForFunctionPointerAuth(const ASTContext &Ctx, | 
|  | raw_ostream &OS, QualType QT) { | 
|  | // FIXME: Consider address space qualifiers. | 
|  | const Type *T = QT.getCanonicalType().getTypePtr(); | 
|  |  | 
|  | // FIXME: Consider using the C++ type mangling when we encounter a construct | 
|  | // that is incompatible with C. | 
|  |  | 
|  | switch (T->getTypeClass()) { | 
|  | case Type::Atomic: | 
|  | return encodeTypeForFunctionPointerAuth( | 
|  | Ctx, OS, cast<AtomicType>(T)->getValueType()); | 
|  |  | 
|  | case Type::LValueReference: | 
|  | OS << "R"; | 
|  | encodeTypeForFunctionPointerAuth(Ctx, OS, | 
|  | cast<ReferenceType>(T)->getPointeeType()); | 
|  | return; | 
|  | case Type::RValueReference: | 
|  | OS << "O"; | 
|  | encodeTypeForFunctionPointerAuth(Ctx, OS, | 
|  | cast<ReferenceType>(T)->getPointeeType()); | 
|  | return; | 
|  |  | 
|  | case Type::Pointer: | 
|  | // C11 6.7.6.1p2: | 
|  | //   For two pointer types to be compatible, both shall be identically | 
|  | //   qualified and both shall be pointers to compatible types. | 
|  | // FIXME: we should also consider pointee types. | 
|  | OS << "P"; | 
|  | return; | 
|  |  | 
|  | case Type::ObjCObjectPointer: | 
|  | case Type::BlockPointer: | 
|  | OS << "P"; | 
|  | return; | 
|  |  | 
|  | case Type::Complex: | 
|  | OS << "C"; | 
|  | return encodeTypeForFunctionPointerAuth( | 
|  | Ctx, OS, cast<ComplexType>(T)->getElementType()); | 
|  |  | 
|  | case Type::VariableArray: | 
|  | case Type::ConstantArray: | 
|  | case Type::IncompleteArray: | 
|  | case Type::ArrayParameter: | 
|  | // C11 6.7.6.2p6: | 
|  | //   For two array types to be compatible, both shall have compatible | 
|  | //   element types, and if both size specifiers are present, and are integer | 
|  | //   constant expressions, then both size specifiers shall have the same | 
|  | //   constant value [...] | 
|  | // | 
|  | // So since ElemType[N] has to be compatible ElemType[], we can't encode the | 
|  | // width of the array. | 
|  | OS << "A"; | 
|  | return encodeTypeForFunctionPointerAuth( | 
|  | Ctx, OS, cast<ArrayType>(T)->getElementType()); | 
|  |  | 
|  | case Type::ObjCInterface: | 
|  | case Type::ObjCObject: | 
|  | OS << "<objc_object>"; | 
|  | return; | 
|  |  | 
|  | case Type::Enum: { | 
|  | // C11 6.7.2.2p4: | 
|  | //   Each enumerated type shall be compatible with char, a signed integer | 
|  | //   type, or an unsigned integer type. | 
|  | // | 
|  | // So we have to treat enum types as integers. | 
|  | QualType UnderlyingType = T->castAsEnumDecl()->getIntegerType(); | 
|  | return encodeTypeForFunctionPointerAuth( | 
|  | Ctx, OS, UnderlyingType.isNull() ? Ctx.IntTy : UnderlyingType); | 
|  | } | 
|  |  | 
|  | case Type::FunctionNoProto: | 
|  | case Type::FunctionProto: { | 
|  | // C11 6.7.6.3p15: | 
|  | //   For two function types to be compatible, both shall specify compatible | 
|  | //   return types. Moreover, the parameter type lists, if both are present, | 
|  | //   shall agree in the number of parameters and in the use of the ellipsis | 
|  | //   terminator; corresponding parameters shall have compatible types. | 
|  | // | 
|  | // That paragraph goes on to describe how unprototyped functions are to be | 
|  | // handled, which we ignore here. Unprototyped function pointers are hashed | 
|  | // as though they were prototyped nullary functions since thats probably | 
|  | // what the user meant. This behavior is non-conforming. | 
|  | // FIXME: If we add a "custom discriminator" function type attribute we | 
|  | // should encode functions as their discriminators. | 
|  | OS << "F"; | 
|  | const auto *FuncType = cast<FunctionType>(T); | 
|  | encodeTypeForFunctionPointerAuth(Ctx, OS, FuncType->getReturnType()); | 
|  | if (const auto *FPT = dyn_cast<FunctionProtoType>(FuncType)) { | 
|  | for (QualType Param : FPT->param_types()) { | 
|  | Param = Ctx.getSignatureParameterType(Param); | 
|  | encodeTypeForFunctionPointerAuth(Ctx, OS, Param); | 
|  | } | 
|  | if (FPT->isVariadic()) | 
|  | OS << "z"; | 
|  | } | 
|  | OS << "E"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Type::MemberPointer: { | 
|  | OS << "M"; | 
|  | const auto *MPT = T->castAs<MemberPointerType>(); | 
|  | encodeTypeForFunctionPointerAuth( | 
|  | Ctx, OS, QualType(MPT->getQualifier().getAsType(), 0)); | 
|  | encodeTypeForFunctionPointerAuth(Ctx, OS, MPT->getPointeeType()); | 
|  | return; | 
|  | } | 
|  | case Type::ExtVector: | 
|  | case Type::Vector: | 
|  | OS << "Dv" << Ctx.getTypeSizeInChars(T).getQuantity(); | 
|  | break; | 
|  |  | 
|  | // Don't bother discriminating based on these types. | 
|  | case Type::Pipe: | 
|  | case Type::BitInt: | 
|  | case Type::ConstantMatrix: | 
|  | OS << "?"; | 
|  | return; | 
|  |  | 
|  | case Type::Builtin: { | 
|  | const auto *BTy = T->castAs<BuiltinType>(); | 
|  | switch (BTy->getKind()) { | 
|  | #define SIGNED_TYPE(Id, SingletonId)                                           \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | OS << "i";                                                                 \ | 
|  | return; | 
|  | #define UNSIGNED_TYPE(Id, SingletonId)                                         \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | OS << "i";                                                                 \ | 
|  | return; | 
|  | #define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id: | 
|  | #define BUILTIN_TYPE(Id, SingletonId) | 
|  | #include "clang/AST/BuiltinTypes.def" | 
|  | llvm_unreachable("placeholder types should not appear here."); | 
|  |  | 
|  | case BuiltinType::Half: | 
|  | OS << "Dh"; | 
|  | return; | 
|  | case BuiltinType::Float: | 
|  | OS << "f"; | 
|  | return; | 
|  | case BuiltinType::Double: | 
|  | OS << "d"; | 
|  | return; | 
|  | case BuiltinType::LongDouble: | 
|  | OS << "e"; | 
|  | return; | 
|  | case BuiltinType::Float16: | 
|  | OS << "DF16_"; | 
|  | return; | 
|  | case BuiltinType::Float128: | 
|  | OS << "g"; | 
|  | return; | 
|  |  | 
|  | case BuiltinType::Void: | 
|  | OS << "v"; | 
|  | return; | 
|  |  | 
|  | case BuiltinType::ObjCId: | 
|  | case BuiltinType::ObjCClass: | 
|  | case BuiltinType::ObjCSel: | 
|  | case BuiltinType::NullPtr: | 
|  | OS << "P"; | 
|  | return; | 
|  |  | 
|  | // Don't bother discriminating based on OpenCL types. | 
|  | case BuiltinType::OCLSampler: | 
|  | case BuiltinType::OCLEvent: | 
|  | case BuiltinType::OCLClkEvent: | 
|  | case BuiltinType::OCLQueue: | 
|  | case BuiltinType::OCLReserveID: | 
|  | case BuiltinType::BFloat16: | 
|  | case BuiltinType::VectorQuad: | 
|  | case BuiltinType::VectorPair: | 
|  | case BuiltinType::DMR1024: | 
|  | case BuiltinType::DMR2048: | 
|  | OS << "?"; | 
|  | return; | 
|  |  | 
|  | // Don't bother discriminating based on these seldom-used types. | 
|  | case BuiltinType::Ibm128: | 
|  | return; | 
|  | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return; | 
|  | #include "clang/Basic/OpenCLImageTypes.def" | 
|  | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext)                                      \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return; | 
|  | #include "clang/Basic/OpenCLExtensionTypes.def" | 
|  | #define SVE_TYPE(Name, Id, SingletonId)                                        \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return; | 
|  | #include "clang/Basic/AArch64ACLETypes.def" | 
|  | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId)                            \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return; | 
|  | #include "clang/Basic/HLSLIntangibleTypes.def" | 
|  | case BuiltinType::Dependent: | 
|  | llvm_unreachable("should never get here"); | 
|  | #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id: | 
|  | #include "clang/Basic/AMDGPUTypes.def" | 
|  | case BuiltinType::WasmExternRef: | 
|  | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | 
|  | #include "clang/Basic/RISCVVTypes.def" | 
|  | llvm_unreachable("not yet implemented"); | 
|  | } | 
|  | llvm_unreachable("should never get here"); | 
|  | } | 
|  | case Type::Record: { | 
|  | const RecordDecl *RD = T->castAsCanonical<RecordType>()->getOriginalDecl(); | 
|  | const IdentifierInfo *II = RD->getIdentifier(); | 
|  |  | 
|  | // In C++, an immediate typedef of an anonymous struct or union | 
|  | // is considered to name it for ODR purposes, but C's specification | 
|  | // of type compatibility does not have a similar rule.  Using the typedef | 
|  | // name in function type discriminators anyway, as we do here, | 
|  | // therefore technically violates the C standard: two function pointer | 
|  | // types defined in terms of two typedef'd anonymous structs with | 
|  | // different names are formally still compatible, but we are assigning | 
|  | // them different discriminators and therefore incompatible ABIs. | 
|  | // | 
|  | // This is a relatively minor violation that significantly improves | 
|  | // discrimination in some cases and has not caused problems in | 
|  | // practice.  Regardless, it is now part of the ABI in places where | 
|  | // function type discrimination is used, and it can no longer be | 
|  | // changed except on new platforms. | 
|  |  | 
|  | if (!II) | 
|  | if (const TypedefNameDecl *Typedef = RD->getTypedefNameForAnonDecl()) | 
|  | II = Typedef->getDeclName().getAsIdentifierInfo(); | 
|  |  | 
|  | if (!II) { | 
|  | OS << "<anonymous_record>"; | 
|  | return; | 
|  | } | 
|  | OS << II->getLength() << II->getName(); | 
|  | return; | 
|  | } | 
|  | case Type::HLSLAttributedResource: | 
|  | case Type::HLSLInlineSpirv: | 
|  | llvm_unreachable("should never get here"); | 
|  | break; | 
|  | case Type::DeducedTemplateSpecialization: | 
|  | case Type::Auto: | 
|  | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | 
|  | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #define ABSTRACT_TYPE(Class, Base) | 
|  | #define TYPE(Class, Base) | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  | llvm_unreachable("unexpected non-canonical or dependent type!"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint16_t ASTContext::getPointerAuthTypeDiscriminator(QualType T) { | 
|  | assert(!T->isDependentType() && | 
|  | "cannot compute type discriminator of a dependent type"); | 
|  |  | 
|  | SmallString<256> Str; | 
|  | llvm::raw_svector_ostream Out(Str); | 
|  |  | 
|  | if (T->isFunctionPointerType() || T->isFunctionReferenceType()) | 
|  | T = T->getPointeeType(); | 
|  |  | 
|  | if (T->isFunctionType()) { | 
|  | encodeTypeForFunctionPointerAuth(*this, Out, T); | 
|  | } else { | 
|  | T = T.getUnqualifiedType(); | 
|  | // Calls to member function pointers don't need to worry about | 
|  | // language interop or the laxness of the C type compatibility rules. | 
|  | // We just mangle the member pointer type directly, which is | 
|  | // implicitly much stricter about type matching. However, we do | 
|  | // strip any top-level exception specification before this mangling. | 
|  | // C++23 requires calls to work when the function type is convertible | 
|  | // to the pointer type by a function pointer conversion, which can | 
|  | // change the exception specification. This does not technically | 
|  | // require the exception specification to not affect representation, | 
|  | // because the function pointer conversion is still always a direct | 
|  | // value conversion and therefore an opportunity to resign the | 
|  | // pointer. (This is in contrast to e.g. qualification conversions, | 
|  | // which can be applied in nested pointer positions, effectively | 
|  | // requiring qualified and unqualified representations to match.) | 
|  | // However, it is pragmatic to ignore exception specifications | 
|  | // because it allows a certain amount of `noexcept` mismatching | 
|  | // to not become a visible ODR problem. This also leaves some | 
|  | // room for the committee to add laxness to function pointer | 
|  | // conversions in future standards. | 
|  | if (auto *MPT = T->getAs<MemberPointerType>()) | 
|  | if (MPT->isMemberFunctionPointer()) { | 
|  | QualType PointeeType = MPT->getPointeeType(); | 
|  | if (PointeeType->castAs<FunctionProtoType>()->getExceptionSpecType() != | 
|  | EST_None) { | 
|  | QualType FT = getFunctionTypeWithExceptionSpec(PointeeType, EST_None); | 
|  | T = getMemberPointerType(FT, MPT->getQualifier(), | 
|  | MPT->getMostRecentCXXRecordDecl()); | 
|  | } | 
|  | } | 
|  | std::unique_ptr<MangleContext> MC(createMangleContext()); | 
|  | MC->mangleCanonicalTypeName(T, Out); | 
|  | } | 
|  |  | 
|  | return llvm::getPointerAuthStableSipHash(Str); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getObjCGCQualType(QualType T, | 
|  | Qualifiers::GC GCAttr) const { | 
|  | QualType CanT = getCanonicalType(T); | 
|  | if (CanT.getObjCGCAttr() == GCAttr) | 
|  | return T; | 
|  |  | 
|  | if (const auto *ptr = T->getAs<PointerType>()) { | 
|  | QualType Pointee = ptr->getPointeeType(); | 
|  | if (Pointee->isAnyPointerType()) { | 
|  | QualType ResultType = getObjCGCQualType(Pointee, GCAttr); | 
|  | return getPointerType(ResultType); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we are composing extended qualifiers together, merge together | 
|  | // into one ExtQuals node. | 
|  | QualifierCollector Quals; | 
|  | const Type *TypeNode = Quals.strip(T); | 
|  |  | 
|  | // If this type already has an ObjCGC specified, it cannot get | 
|  | // another one. | 
|  | assert(!Quals.hasObjCGCAttr() && | 
|  | "Type cannot have multiple ObjCGCs!"); | 
|  | Quals.addObjCGCAttr(GCAttr); | 
|  |  | 
|  | return getExtQualType(TypeNode, Quals); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::removePtrSizeAddrSpace(QualType T) const { | 
|  | if (const PointerType *Ptr = T->getAs<PointerType>()) { | 
|  | QualType Pointee = Ptr->getPointeeType(); | 
|  | if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) { | 
|  | return getPointerType(removeAddrSpaceQualType(Pointee)); | 
|  | } | 
|  | } | 
|  | return T; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getCountAttributedType( | 
|  | QualType WrappedTy, Expr *CountExpr, bool CountInBytes, bool OrNull, | 
|  | ArrayRef<TypeCoupledDeclRefInfo> DependentDecls) const { | 
|  | assert(WrappedTy->isPointerType() || WrappedTy->isArrayType()); | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | CountAttributedType::Profile(ID, WrappedTy, CountExpr, CountInBytes, OrNull); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | CountAttributedType *CATy = | 
|  | CountAttributedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (CATy) | 
|  | return QualType(CATy, 0); | 
|  |  | 
|  | QualType CanonTy = getCanonicalType(WrappedTy); | 
|  | size_t Size = CountAttributedType::totalSizeToAlloc<TypeCoupledDeclRefInfo>( | 
|  | DependentDecls.size()); | 
|  | CATy = (CountAttributedType *)Allocate(Size, TypeAlignment); | 
|  | new (CATy) CountAttributedType(WrappedTy, CanonTy, CountExpr, CountInBytes, | 
|  | OrNull, DependentDecls); | 
|  | Types.push_back(CATy); | 
|  | CountAttributedTypes.InsertNode(CATy, InsertPos); | 
|  |  | 
|  | return QualType(CATy, 0); | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ASTContext::adjustType(QualType Orig, | 
|  | llvm::function_ref<QualType(QualType)> Adjust) const { | 
|  | switch (Orig->getTypeClass()) { | 
|  | case Type::Attributed: { | 
|  | const auto *AT = cast<AttributedType>(Orig); | 
|  | return getAttributedType(AT->getAttrKind(), | 
|  | adjustType(AT->getModifiedType(), Adjust), | 
|  | adjustType(AT->getEquivalentType(), Adjust), | 
|  | AT->getAttr()); | 
|  | } | 
|  |  | 
|  | case Type::BTFTagAttributed: { | 
|  | const auto *BTFT = dyn_cast<BTFTagAttributedType>(Orig); | 
|  | return getBTFTagAttributedType(BTFT->getAttr(), | 
|  | adjustType(BTFT->getWrappedType(), Adjust)); | 
|  | } | 
|  |  | 
|  | case Type::Paren: | 
|  | return getParenType( | 
|  | adjustType(cast<ParenType>(Orig)->getInnerType(), Adjust)); | 
|  |  | 
|  | case Type::Adjusted: { | 
|  | const auto *AT = cast<AdjustedType>(Orig); | 
|  | return getAdjustedType(AT->getOriginalType(), | 
|  | adjustType(AT->getAdjustedType(), Adjust)); | 
|  | } | 
|  |  | 
|  | case Type::MacroQualified: { | 
|  | const auto *MQT = cast<MacroQualifiedType>(Orig); | 
|  | return getMacroQualifiedType(adjustType(MQT->getUnderlyingType(), Adjust), | 
|  | MQT->getMacroIdentifier()); | 
|  | } | 
|  |  | 
|  | default: | 
|  | return Adjust(Orig); | 
|  | } | 
|  | } | 
|  |  | 
|  | const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T, | 
|  | FunctionType::ExtInfo Info) { | 
|  | if (T->getExtInfo() == Info) | 
|  | return T; | 
|  |  | 
|  | QualType Result; | 
|  | if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) { | 
|  | Result = getFunctionNoProtoType(FNPT->getReturnType(), Info); | 
|  | } else { | 
|  | const auto *FPT = cast<FunctionProtoType>(T); | 
|  | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | 
|  | EPI.ExtInfo = Info; | 
|  | Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI); | 
|  | } | 
|  |  | 
|  | return cast<FunctionType>(Result.getTypePtr()); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::adjustFunctionResultType(QualType FunctionType, | 
|  | QualType ResultType) { | 
|  | return adjustType(FunctionType, [&](QualType Orig) { | 
|  | if (const auto *FNPT = Orig->getAs<FunctionNoProtoType>()) | 
|  | return getFunctionNoProtoType(ResultType, FNPT->getExtInfo()); | 
|  |  | 
|  | const auto *FPT = Orig->castAs<FunctionProtoType>(); | 
|  | return getFunctionType(ResultType, FPT->getParamTypes(), | 
|  | FPT->getExtProtoInfo()); | 
|  | }); | 
|  | } | 
|  |  | 
|  | void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD, | 
|  | QualType ResultType) { | 
|  | FD = FD->getMostRecentDecl(); | 
|  | while (true) { | 
|  | FD->setType(adjustFunctionResultType(FD->getType(), ResultType)); | 
|  | if (FunctionDecl *Next = FD->getPreviousDecl()) | 
|  | FD = Next; | 
|  | else | 
|  | break; | 
|  | } | 
|  | if (ASTMutationListener *L = getASTMutationListener()) | 
|  | L->DeducedReturnType(FD, ResultType); | 
|  | } | 
|  |  | 
|  | /// Get a function type and produce the equivalent function type with the | 
|  | /// specified exception specification. Type sugar that can be present on a | 
|  | /// declaration of a function with an exception specification is permitted | 
|  | /// and preserved. Other type sugar (for instance, typedefs) is not. | 
|  | QualType ASTContext::getFunctionTypeWithExceptionSpec( | 
|  | QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const { | 
|  | return adjustType(Orig, [&](QualType Ty) { | 
|  | const auto *Proto = Ty->castAs<FunctionProtoType>(); | 
|  | return getFunctionType(Proto->getReturnType(), Proto->getParamTypes(), | 
|  | Proto->getExtProtoInfo().withExceptionSpec(ESI)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T, | 
|  | QualType U) const { | 
|  | return hasSameType(T, U) || | 
|  | (getLangOpts().CPlusPlus17 && | 
|  | hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None), | 
|  | getFunctionTypeWithExceptionSpec(U, EST_None))); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) { | 
|  | if (const auto *Proto = T->getAs<FunctionProtoType>()) { | 
|  | QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType()); | 
|  | SmallVector<QualType, 16> Args(Proto->param_types().size()); | 
|  | for (unsigned i = 0, n = Args.size(); i != n; ++i) | 
|  | Args[i] = removePtrSizeAddrSpace(Proto->param_types()[i]); | 
|  | return getFunctionType(RetTy, Args, Proto->getExtProtoInfo()); | 
|  | } | 
|  |  | 
|  | if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) { | 
|  | QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType()); | 
|  | return getFunctionNoProtoType(RetTy, Proto->getExtInfo()); | 
|  | } | 
|  |  | 
|  | return T; | 
|  | } | 
|  |  | 
|  | bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) { | 
|  | return hasSameType(T, U) || | 
|  | hasSameType(getFunctionTypeWithoutPtrSizes(T), | 
|  | getFunctionTypeWithoutPtrSizes(U)); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getFunctionTypeWithoutParamABIs(QualType T) const { | 
|  | if (const auto *Proto = T->getAs<FunctionProtoType>()) { | 
|  | FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); | 
|  | EPI.ExtParameterInfos = nullptr; | 
|  | return getFunctionType(Proto->getReturnType(), Proto->param_types(), EPI); | 
|  | } | 
|  | return T; | 
|  | } | 
|  |  | 
|  | bool ASTContext::hasSameFunctionTypeIgnoringParamABI(QualType T, | 
|  | QualType U) const { | 
|  | return hasSameType(T, U) || hasSameType(getFunctionTypeWithoutParamABIs(T), | 
|  | getFunctionTypeWithoutParamABIs(U)); | 
|  | } | 
|  |  | 
|  | void ASTContext::adjustExceptionSpec( | 
|  | FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI, | 
|  | bool AsWritten) { | 
|  | // Update the type. | 
|  | QualType Updated = | 
|  | getFunctionTypeWithExceptionSpec(FD->getType(), ESI); | 
|  | FD->setType(Updated); | 
|  |  | 
|  | if (!AsWritten) | 
|  | return; | 
|  |  | 
|  | // Update the type in the type source information too. | 
|  | if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) { | 
|  | // If the type and the type-as-written differ, we may need to update | 
|  | // the type-as-written too. | 
|  | if (TSInfo->getType() != FD->getType()) | 
|  | Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI); | 
|  |  | 
|  | // FIXME: When we get proper type location information for exceptions, | 
|  | // we'll also have to rebuild the TypeSourceInfo. For now, we just patch | 
|  | // up the TypeSourceInfo; | 
|  | assert(TypeLoc::getFullDataSizeForType(Updated) == | 
|  | TypeLoc::getFullDataSizeForType(TSInfo->getType()) && | 
|  | "TypeLoc size mismatch from updating exception specification"); | 
|  | TSInfo->overrideType(Updated); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getComplexType - Return the uniqued reference to the type for a complex | 
|  | /// number with the specified element type. | 
|  | QualType ASTContext::getComplexType(QualType T) const { | 
|  | // Unique pointers, to guarantee there is only one pointer of a particular | 
|  | // structure. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ComplexType::Profile(ID, T); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(CT, 0); | 
|  |  | 
|  | // If the pointee type isn't canonical, this won't be a canonical type either, | 
|  | // so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (!T.isCanonical()) { | 
|  | Canonical = getComplexType(getCanonicalType(T)); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  | auto *New = new (*this, alignof(ComplexType)) ComplexType(T, Canonical); | 
|  | Types.push_back(New); | 
|  | ComplexTypes.InsertNode(New, InsertPos); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// getPointerType - Return the uniqued reference to the type for a pointer to | 
|  | /// the specified type. | 
|  | QualType ASTContext::getPointerType(QualType T) const { | 
|  | // Unique pointers, to guarantee there is only one pointer of a particular | 
|  | // structure. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | PointerType::Profile(ID, T); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(PT, 0); | 
|  |  | 
|  | // If the pointee type isn't canonical, this won't be a canonical type either, | 
|  | // so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (!T.isCanonical()) { | 
|  | Canonical = getPointerType(getCanonicalType(T)); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  | auto *New = new (*this, alignof(PointerType)) PointerType(T, Canonical); | 
|  | Types.push_back(New); | 
|  | PointerTypes.InsertNode(New, InsertPos); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | AdjustedType::Profile(ID, Orig, New); | 
|  | void *InsertPos = nullptr; | 
|  | AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (AT) | 
|  | return QualType(AT, 0); | 
|  |  | 
|  | QualType Canonical = getCanonicalType(New); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!AT && "Shouldn't be in the map!"); | 
|  |  | 
|  | AT = new (*this, alignof(AdjustedType)) | 
|  | AdjustedType(Type::Adjusted, Orig, New, Canonical); | 
|  | Types.push_back(AT); | 
|  | AdjustedTypes.InsertNode(AT, InsertPos); | 
|  | return QualType(AT, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getDecayedType(QualType Orig, QualType Decayed) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | AdjustedType::Profile(ID, Orig, Decayed); | 
|  | void *InsertPos = nullptr; | 
|  | AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (AT) | 
|  | return QualType(AT, 0); | 
|  |  | 
|  | QualType Canonical = getCanonicalType(Decayed); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!AT && "Shouldn't be in the map!"); | 
|  |  | 
|  | AT = new (*this, alignof(DecayedType)) DecayedType(Orig, Decayed, Canonical); | 
|  | Types.push_back(AT); | 
|  | AdjustedTypes.InsertNode(AT, InsertPos); | 
|  | return QualType(AT, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getDecayedType(QualType T) const { | 
|  | assert((T->isArrayType() || T->isFunctionType()) && "T does not decay"); | 
|  |  | 
|  | QualType Decayed; | 
|  |  | 
|  | // C99 6.7.5.3p7: | 
|  | //   A declaration of a parameter as "array of type" shall be | 
|  | //   adjusted to "qualified pointer to type", where the type | 
|  | //   qualifiers (if any) are those specified within the [ and ] of | 
|  | //   the array type derivation. | 
|  | if (T->isArrayType()) | 
|  | Decayed = getArrayDecayedType(T); | 
|  |  | 
|  | // C99 6.7.5.3p8: | 
|  | //   A declaration of a parameter as "function returning type" | 
|  | //   shall be adjusted to "pointer to function returning type", as | 
|  | //   in 6.3.2.1. | 
|  | if (T->isFunctionType()) | 
|  | Decayed = getPointerType(T); | 
|  |  | 
|  | return getDecayedType(T, Decayed); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getArrayParameterType(QualType Ty) const { | 
|  | if (Ty->isArrayParameterType()) | 
|  | return Ty; | 
|  | assert(Ty->isConstantArrayType() && "Ty must be an array type."); | 
|  | QualType DTy = Ty.getDesugaredType(*this); | 
|  | const auto *ATy = cast<ConstantArrayType>(DTy); | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ATy->Profile(ID, *this, ATy->getElementType(), ATy->getZExtSize(), | 
|  | ATy->getSizeExpr(), ATy->getSizeModifier(), | 
|  | ATy->getIndexTypeQualifiers().getAsOpaqueValue()); | 
|  | void *InsertPos = nullptr; | 
|  | ArrayParameterType *AT = | 
|  | ArrayParameterTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (AT) | 
|  | return QualType(AT, 0); | 
|  |  | 
|  | QualType Canonical; | 
|  | if (!DTy.isCanonical()) { | 
|  | Canonical = getArrayParameterType(getCanonicalType(Ty)); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | AT = ArrayParameterTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!AT && "Shouldn't be in the map!"); | 
|  | } | 
|  |  | 
|  | AT = new (*this, alignof(ArrayParameterType)) | 
|  | ArrayParameterType(ATy, Canonical); | 
|  | Types.push_back(AT); | 
|  | ArrayParameterTypes.InsertNode(AT, InsertPos); | 
|  | return QualType(AT, 0); | 
|  | } | 
|  |  | 
|  | /// getBlockPointerType - Return the uniqued reference to the type for | 
|  | /// a pointer to the specified block. | 
|  | QualType ASTContext::getBlockPointerType(QualType T) const { | 
|  | assert(T->isFunctionType() && "block of function types only"); | 
|  | // Unique pointers, to guarantee there is only one block of a particular | 
|  | // structure. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | BlockPointerType::Profile(ID, T); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (BlockPointerType *PT = | 
|  | BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(PT, 0); | 
|  |  | 
|  | // If the block pointee type isn't canonical, this won't be a canonical | 
|  | // type either so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (!T.isCanonical()) { | 
|  | Canonical = getBlockPointerType(getCanonicalType(T)); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | BlockPointerType *NewIP = | 
|  | BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  | auto *New = | 
|  | new (*this, alignof(BlockPointerType)) BlockPointerType(T, Canonical); | 
|  | Types.push_back(New); | 
|  | BlockPointerTypes.InsertNode(New, InsertPos); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// getLValueReferenceType - Return the uniqued reference to the type for an | 
|  | /// lvalue reference to the specified type. | 
|  | QualType | 
|  | ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const { | 
|  | assert((!T->isPlaceholderType() || | 
|  | T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) && | 
|  | "Unresolved placeholder type"); | 
|  |  | 
|  | // Unique pointers, to guarantee there is only one pointer of a particular | 
|  | // structure. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ReferenceType::Profile(ID, T, SpelledAsLValue); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (LValueReferenceType *RT = | 
|  | LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(RT, 0); | 
|  |  | 
|  | const auto *InnerRef = T->getAs<ReferenceType>(); | 
|  |  | 
|  | // If the referencee type isn't canonical, this won't be a canonical type | 
|  | // either, so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (!SpelledAsLValue || InnerRef || !T.isCanonical()) { | 
|  | QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); | 
|  | Canonical = getLValueReferenceType(getCanonicalType(PointeeType)); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | LValueReferenceType *NewIP = | 
|  | LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  |  | 
|  | auto *New = new (*this, alignof(LValueReferenceType)) | 
|  | LValueReferenceType(T, Canonical, SpelledAsLValue); | 
|  | Types.push_back(New); | 
|  | LValueReferenceTypes.InsertNode(New, InsertPos); | 
|  |  | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// getRValueReferenceType - Return the uniqued reference to the type for an | 
|  | /// rvalue reference to the specified type. | 
|  | QualType ASTContext::getRValueReferenceType(QualType T) const { | 
|  | assert((!T->isPlaceholderType() || | 
|  | T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) && | 
|  | "Unresolved placeholder type"); | 
|  |  | 
|  | // Unique pointers, to guarantee there is only one pointer of a particular | 
|  | // structure. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ReferenceType::Profile(ID, T, false); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (RValueReferenceType *RT = | 
|  | RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(RT, 0); | 
|  |  | 
|  | const auto *InnerRef = T->getAs<ReferenceType>(); | 
|  |  | 
|  | // If the referencee type isn't canonical, this won't be a canonical type | 
|  | // either, so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (InnerRef || !T.isCanonical()) { | 
|  | QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T); | 
|  | Canonical = getRValueReferenceType(getCanonicalType(PointeeType)); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | RValueReferenceType *NewIP = | 
|  | RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  |  | 
|  | auto *New = new (*this, alignof(RValueReferenceType)) | 
|  | RValueReferenceType(T, Canonical); | 
|  | Types.push_back(New); | 
|  | RValueReferenceTypes.InsertNode(New, InsertPos); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getMemberPointerType(QualType T, | 
|  | NestedNameSpecifier Qualifier, | 
|  | const CXXRecordDecl *Cls) const { | 
|  | if (!Qualifier) { | 
|  | assert(Cls && "At least one of Qualifier or Cls must be provided"); | 
|  | Qualifier = NestedNameSpecifier(getCanonicalTagType(Cls).getTypePtr()); | 
|  | } else if (!Cls) { | 
|  | Cls = Qualifier.getAsRecordDecl(); | 
|  | } | 
|  | // Unique pointers, to guarantee there is only one pointer of a particular | 
|  | // structure. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | MemberPointerType::Profile(ID, T, Qualifier, Cls); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (MemberPointerType *PT = | 
|  | MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(PT, 0); | 
|  |  | 
|  | NestedNameSpecifier CanonicalQualifier = [&] { | 
|  | if (!Cls) | 
|  | return Qualifier.getCanonical(); | 
|  | NestedNameSpecifier R(getCanonicalTagType(Cls).getTypePtr()); | 
|  | assert(R.isCanonical()); | 
|  | return R; | 
|  | }(); | 
|  | // If the pointee or class type isn't canonical, this won't be a canonical | 
|  | // type either, so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (!T.isCanonical() || Qualifier != CanonicalQualifier) { | 
|  | Canonical = | 
|  | getMemberPointerType(getCanonicalType(T), CanonicalQualifier, Cls); | 
|  | assert(!cast<MemberPointerType>(Canonical)->isSugared()); | 
|  | // Get the new insert position for the node we care about. | 
|  | [[maybe_unused]] MemberPointerType *NewIP = | 
|  | MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); | 
|  | } | 
|  | auto *New = new (*this, alignof(MemberPointerType)) | 
|  | MemberPointerType(T, Qualifier, Canonical); | 
|  | Types.push_back(New); | 
|  | MemberPointerTypes.InsertNode(New, InsertPos); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// getConstantArrayType - Return the unique reference to the type for an | 
|  | /// array of the specified element type. | 
|  | QualType ASTContext::getConstantArrayType(QualType EltTy, | 
|  | const llvm::APInt &ArySizeIn, | 
|  | const Expr *SizeExpr, | 
|  | ArraySizeModifier ASM, | 
|  | unsigned IndexTypeQuals) const { | 
|  | assert((EltTy->isDependentType() || | 
|  | EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && | 
|  | "Constant array of VLAs is illegal!"); | 
|  |  | 
|  | // We only need the size as part of the type if it's instantiation-dependent. | 
|  | if (SizeExpr && !SizeExpr->isInstantiationDependent()) | 
|  | SizeExpr = nullptr; | 
|  |  | 
|  | // Convert the array size into a canonical width matching the pointer size for | 
|  | // the target. | 
|  | llvm::APInt ArySize(ArySizeIn); | 
|  | ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth()); | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ConstantArrayType::Profile(ID, *this, EltTy, ArySize.getZExtValue(), SizeExpr, | 
|  | ASM, IndexTypeQuals); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (ConstantArrayType *ATP = | 
|  | ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(ATP, 0); | 
|  |  | 
|  | // If the element type isn't canonical or has qualifiers, or the array bound | 
|  | // is instantiation-dependent, this won't be a canonical type either, so fill | 
|  | // in the canonical type field. | 
|  | QualType Canon; | 
|  | // FIXME: Check below should look for qualifiers behind sugar. | 
|  | if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) { | 
|  | SplitQualType canonSplit = getCanonicalType(EltTy).split(); | 
|  | Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr, | 
|  | ASM, IndexTypeQuals); | 
|  | Canon = getQualifiedType(Canon, canonSplit.Quals); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | ConstantArrayType *NewIP = | 
|  | ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  |  | 
|  | auto *New = ConstantArrayType::Create(*this, EltTy, Canon, ArySize, SizeExpr, | 
|  | ASM, IndexTypeQuals); | 
|  | ConstantArrayTypes.InsertNode(New, InsertPos); | 
|  | Types.push_back(New); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// getVariableArrayDecayedType - Turns the given type, which may be | 
|  | /// variably-modified, into the corresponding type with all the known | 
|  | /// sizes replaced with [*]. | 
|  | QualType ASTContext::getVariableArrayDecayedType(QualType type) const { | 
|  | // Vastly most common case. | 
|  | if (!type->isVariablyModifiedType()) return type; | 
|  |  | 
|  | QualType result; | 
|  |  | 
|  | SplitQualType split = type.getSplitDesugaredType(); | 
|  | const Type *ty = split.Ty; | 
|  | switch (ty->getTypeClass()) { | 
|  | #define TYPE(Class, Base) | 
|  | #define ABSTRACT_TYPE(Class, Base) | 
|  | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  | llvm_unreachable("didn't desugar past all non-canonical types?"); | 
|  |  | 
|  | // These types should never be variably-modified. | 
|  | case Type::Builtin: | 
|  | case Type::Complex: | 
|  | case Type::Vector: | 
|  | case Type::DependentVector: | 
|  | case Type::ExtVector: | 
|  | case Type::DependentSizedExtVector: | 
|  | case Type::ConstantMatrix: | 
|  | case Type::DependentSizedMatrix: | 
|  | case Type::DependentAddressSpace: | 
|  | case Type::ObjCObject: | 
|  | case Type::ObjCInterface: | 
|  | case Type::ObjCObjectPointer: | 
|  | case Type::Record: | 
|  | case Type::Enum: | 
|  | case Type::UnresolvedUsing: | 
|  | case Type::TypeOfExpr: | 
|  | case Type::TypeOf: | 
|  | case Type::Decltype: | 
|  | case Type::UnaryTransform: | 
|  | case Type::DependentName: | 
|  | case Type::InjectedClassName: | 
|  | case Type::TemplateSpecialization: | 
|  | case Type::TemplateTypeParm: | 
|  | case Type::SubstTemplateTypeParmPack: | 
|  | case Type::SubstBuiltinTemplatePack: | 
|  | case Type::Auto: | 
|  | case Type::DeducedTemplateSpecialization: | 
|  | case Type::PackExpansion: | 
|  | case Type::PackIndexing: | 
|  | case Type::BitInt: | 
|  | case Type::DependentBitInt: | 
|  | case Type::ArrayParameter: | 
|  | case Type::HLSLAttributedResource: | 
|  | case Type::HLSLInlineSpirv: | 
|  | llvm_unreachable("type should never be variably-modified"); | 
|  |  | 
|  | // These types can be variably-modified but should never need to | 
|  | // further decay. | 
|  | case Type::FunctionNoProto: | 
|  | case Type::FunctionProto: | 
|  | case Type::BlockPointer: | 
|  | case Type::MemberPointer: | 
|  | case Type::Pipe: | 
|  | return type; | 
|  |  | 
|  | // These types can be variably-modified.  All these modifications | 
|  | // preserve structure except as noted by comments. | 
|  | // TODO: if we ever care about optimizing VLAs, there are no-op | 
|  | // optimizations available here. | 
|  | case Type::Pointer: | 
|  | result = getPointerType(getVariableArrayDecayedType( | 
|  | cast<PointerType>(ty)->getPointeeType())); | 
|  | break; | 
|  |  | 
|  | case Type::LValueReference: { | 
|  | const auto *lv = cast<LValueReferenceType>(ty); | 
|  | result = getLValueReferenceType( | 
|  | getVariableArrayDecayedType(lv->getPointeeType()), | 
|  | lv->isSpelledAsLValue()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::RValueReference: { | 
|  | const auto *lv = cast<RValueReferenceType>(ty); | 
|  | result = getRValueReferenceType( | 
|  | getVariableArrayDecayedType(lv->getPointeeType())); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::Atomic: { | 
|  | const auto *at = cast<AtomicType>(ty); | 
|  | result = getAtomicType(getVariableArrayDecayedType(at->getValueType())); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::ConstantArray: { | 
|  | const auto *cat = cast<ConstantArrayType>(ty); | 
|  | result = getConstantArrayType( | 
|  | getVariableArrayDecayedType(cat->getElementType()), | 
|  | cat->getSize(), | 
|  | cat->getSizeExpr(), | 
|  | cat->getSizeModifier(), | 
|  | cat->getIndexTypeCVRQualifiers()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case Type::DependentSizedArray: { | 
|  | const auto *dat = cast<DependentSizedArrayType>(ty); | 
|  | result = getDependentSizedArrayType( | 
|  | getVariableArrayDecayedType(dat->getElementType()), dat->getSizeExpr(), | 
|  | dat->getSizeModifier(), dat->getIndexTypeCVRQualifiers()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Turn incomplete types into [*] types. | 
|  | case Type::IncompleteArray: { | 
|  | const auto *iat = cast<IncompleteArrayType>(ty); | 
|  | result = | 
|  | getVariableArrayType(getVariableArrayDecayedType(iat->getElementType()), | 
|  | /*size*/ nullptr, ArraySizeModifier::Normal, | 
|  | iat->getIndexTypeCVRQualifiers()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Turn VLA types into [*] types. | 
|  | case Type::VariableArray: { | 
|  | const auto *vat = cast<VariableArrayType>(ty); | 
|  | result = | 
|  | getVariableArrayType(getVariableArrayDecayedType(vat->getElementType()), | 
|  | /*size*/ nullptr, ArraySizeModifier::Star, | 
|  | vat->getIndexTypeCVRQualifiers()); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Apply the top-level qualifiers from the original. | 
|  | return getQualifiedType(result, split.Quals); | 
|  | } | 
|  |  | 
|  | /// getVariableArrayType - Returns a non-unique reference to the type for a | 
|  | /// variable array of the specified element type. | 
|  | QualType ASTContext::getVariableArrayType(QualType EltTy, Expr *NumElts, | 
|  | ArraySizeModifier ASM, | 
|  | unsigned IndexTypeQuals) const { | 
|  | // Since we don't unique expressions, it isn't possible to unique VLA's | 
|  | // that have an expression provided for their size. | 
|  | QualType Canon; | 
|  |  | 
|  | // Be sure to pull qualifiers off the element type. | 
|  | // FIXME: Check below should look for qualifiers behind sugar. | 
|  | if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) { | 
|  | SplitQualType canonSplit = getCanonicalType(EltTy).split(); | 
|  | Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM, | 
|  | IndexTypeQuals); | 
|  | Canon = getQualifiedType(Canon, canonSplit.Quals); | 
|  | } | 
|  |  | 
|  | auto *New = new (*this, alignof(VariableArrayType)) | 
|  | VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals); | 
|  |  | 
|  | VariableArrayTypes.push_back(New); | 
|  | Types.push_back(New); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// getDependentSizedArrayType - Returns a non-unique reference to | 
|  | /// the type for a dependently-sized array of the specified element | 
|  | /// type. | 
|  | QualType | 
|  | ASTContext::getDependentSizedArrayType(QualType elementType, Expr *numElements, | 
|  | ArraySizeModifier ASM, | 
|  | unsigned elementTypeQuals) const { | 
|  | assert((!numElements || numElements->isTypeDependent() || | 
|  | numElements->isValueDependent()) && | 
|  | "Size must be type- or value-dependent!"); | 
|  |  | 
|  | SplitQualType canonElementType = getCanonicalType(elementType).split(); | 
|  |  | 
|  | void *insertPos = nullptr; | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DependentSizedArrayType::Profile( | 
|  | ID, *this, numElements ? QualType(canonElementType.Ty, 0) : elementType, | 
|  | ASM, elementTypeQuals, numElements); | 
|  |  | 
|  | // Look for an existing type with these properties. | 
|  | DependentSizedArrayType *canonTy = | 
|  | DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos); | 
|  |  | 
|  | // Dependently-sized array types that do not have a specified number | 
|  | // of elements will have their sizes deduced from a dependent | 
|  | // initializer. | 
|  | if (!numElements) { | 
|  | if (canonTy) | 
|  | return QualType(canonTy, 0); | 
|  |  | 
|  | auto *newType = new (*this, alignof(DependentSizedArrayType)) | 
|  | DependentSizedArrayType(elementType, QualType(), numElements, ASM, | 
|  | elementTypeQuals); | 
|  | DependentSizedArrayTypes.InsertNode(newType, insertPos); | 
|  | Types.push_back(newType); | 
|  | return QualType(newType, 0); | 
|  | } | 
|  |  | 
|  | // If we don't have one, build one. | 
|  | if (!canonTy) { | 
|  | canonTy = new (*this, alignof(DependentSizedArrayType)) | 
|  | DependentSizedArrayType(QualType(canonElementType.Ty, 0), QualType(), | 
|  | numElements, ASM, elementTypeQuals); | 
|  | DependentSizedArrayTypes.InsertNode(canonTy, insertPos); | 
|  | Types.push_back(canonTy); | 
|  | } | 
|  |  | 
|  | // Apply qualifiers from the element type to the array. | 
|  | QualType canon = getQualifiedType(QualType(canonTy,0), | 
|  | canonElementType.Quals); | 
|  |  | 
|  | // If we didn't need extra canonicalization for the element type or the size | 
|  | // expression, then just use that as our result. | 
|  | if (QualType(canonElementType.Ty, 0) == elementType && | 
|  | canonTy->getSizeExpr() == numElements) | 
|  | return canon; | 
|  |  | 
|  | // Otherwise, we need to build a type which follows the spelling | 
|  | // of the element type. | 
|  | auto *sugaredType = new (*this, alignof(DependentSizedArrayType)) | 
|  | DependentSizedArrayType(elementType, canon, numElements, ASM, | 
|  | elementTypeQuals); | 
|  | Types.push_back(sugaredType); | 
|  | return QualType(sugaredType, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getIncompleteArrayType(QualType elementType, | 
|  | ArraySizeModifier ASM, | 
|  | unsigned elementTypeQuals) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals); | 
|  |  | 
|  | void *insertPos = nullptr; | 
|  | if (IncompleteArrayType *iat = | 
|  | IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos)) | 
|  | return QualType(iat, 0); | 
|  |  | 
|  | // If the element type isn't canonical, this won't be a canonical type | 
|  | // either, so fill in the canonical type field.  We also have to pull | 
|  | // qualifiers off the element type. | 
|  | QualType canon; | 
|  |  | 
|  | // FIXME: Check below should look for qualifiers behind sugar. | 
|  | if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) { | 
|  | SplitQualType canonSplit = getCanonicalType(elementType).split(); | 
|  | canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0), | 
|  | ASM, elementTypeQuals); | 
|  | canon = getQualifiedType(canon, canonSplit.Quals); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | IncompleteArrayType *existing = | 
|  | IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos); | 
|  | assert(!existing && "Shouldn't be in the map!"); (void) existing; | 
|  | } | 
|  |  | 
|  | auto *newType = new (*this, alignof(IncompleteArrayType)) | 
|  | IncompleteArrayType(elementType, canon, ASM, elementTypeQuals); | 
|  |  | 
|  | IncompleteArrayTypes.InsertNode(newType, insertPos); | 
|  | Types.push_back(newType); | 
|  | return QualType(newType, 0); | 
|  | } | 
|  |  | 
|  | ASTContext::BuiltinVectorTypeInfo | 
|  | ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const { | 
|  | #define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS)                          \ | 
|  | {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \ | 
|  | NUMVECTORS}; | 
|  |  | 
|  | #define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS)                                     \ | 
|  | {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS}; | 
|  |  | 
|  | switch (Ty->getKind()) { | 
|  | default: | 
|  | llvm_unreachable("Unsupported builtin vector type"); | 
|  |  | 
|  | #define SVE_VECTOR_TYPE_INT(Name, MangledName, Id, SingletonId, NumEls,        \ | 
|  | ElBits, NF, IsSigned)                              \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return {getIntTypeForBitwidth(ElBits, IsSigned),                           \ | 
|  | llvm::ElementCount::getScalable(NumEls), NF}; | 
|  | #define SVE_VECTOR_TYPE_FLOAT(Name, MangledName, Id, SingletonId, NumEls,      \ | 
|  | ElBits, NF)                                      \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return {ElBits == 16 ? HalfTy : (ElBits == 32 ? FloatTy : DoubleTy),       \ | 
|  | llvm::ElementCount::getScalable(NumEls), NF}; | 
|  | #define SVE_VECTOR_TYPE_BFLOAT(Name, MangledName, Id, SingletonId, NumEls,     \ | 
|  | ElBits, NF)                                     \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return {BFloat16Ty, llvm::ElementCount::getScalable(NumEls), NF}; | 
|  | #define SVE_VECTOR_TYPE_MFLOAT(Name, MangledName, Id, SingletonId, NumEls,     \ | 
|  | ElBits, NF)                                     \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return {MFloat8Ty, llvm::ElementCount::getScalable(NumEls), NF}; | 
|  | #define SVE_PREDICATE_TYPE_ALL(Name, MangledName, Id, SingletonId, NumEls, NF) \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return {BoolTy, llvm::ElementCount::getScalable(NumEls), NF}; | 
|  | #include "clang/Basic/AArch64ACLETypes.def" | 
|  |  | 
|  | #define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF,         \ | 
|  | IsSigned)                                          \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return {getIntTypeForBitwidth(ElBits, IsSigned),                           \ | 
|  | llvm::ElementCount::getScalable(NumEls), NF}; | 
|  | #define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF)       \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return {ElBits == 16 ? Float16Ty : (ElBits == 32 ? FloatTy : DoubleTy),    \ | 
|  | llvm::ElementCount::getScalable(NumEls), NF}; | 
|  | #define RVV_VECTOR_TYPE_BFLOAT(Name, Id, SingletonId, NumEls, ElBits, NF)      \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return {BFloat16Ty, llvm::ElementCount::getScalable(NumEls), NF}; | 
|  | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1}; | 
|  | #include "clang/Basic/RISCVVTypes.def" | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getExternrefType - Return a WebAssembly externref type, which represents an | 
|  | /// opaque reference to a host value. | 
|  | QualType ASTContext::getWebAssemblyExternrefType() const { | 
|  | if (Target->getTriple().isWasm() && Target->hasFeature("reference-types")) { | 
|  | #define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS)                  \ | 
|  | if (BuiltinType::Id == BuiltinType::WasmExternRef)                           \ | 
|  | return SingletonId; | 
|  | #include "clang/Basic/WebAssemblyReferenceTypes.def" | 
|  | } | 
|  | llvm_unreachable( | 
|  | "shouldn't try to generate type externref outside WebAssembly target"); | 
|  | } | 
|  |  | 
|  | /// getScalableVectorType - Return the unique reference to a scalable vector | 
|  | /// type of the specified element type and size. VectorType must be a built-in | 
|  | /// type. | 
|  | QualType ASTContext::getScalableVectorType(QualType EltTy, unsigned NumElts, | 
|  | unsigned NumFields) const { | 
|  | auto K = llvm::ScalableVecTyKey{EltTy, NumElts, NumFields}; | 
|  | if (auto It = ScalableVecTyMap.find(K); It != ScalableVecTyMap.end()) | 
|  | return It->second; | 
|  |  | 
|  | if (Target->hasAArch64ACLETypes()) { | 
|  | uint64_t EltTySize = getTypeSize(EltTy); | 
|  |  | 
|  | #define SVE_VECTOR_TYPE_INT(Name, MangledName, Id, SingletonId, NumEls,        \ | 
|  | ElBits, NF, IsSigned)                              \ | 
|  | if (EltTy->hasIntegerRepresentation() && !EltTy->isBooleanType() &&          \ | 
|  | EltTy->hasSignedIntegerRepresentation() == IsSigned &&                   \ | 
|  | EltTySize == ElBits && NumElts == (NumEls * NF) && NumFields == 1) {     \ | 
|  | return ScalableVecTyMap[K] = SingletonId;                                  \ | 
|  | } | 
|  | #define SVE_VECTOR_TYPE_FLOAT(Name, MangledName, Id, SingletonId, NumEls,      \ | 
|  | ElBits, NF)                                      \ | 
|  | if (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() &&        \ | 
|  | EltTySize == ElBits && NumElts == (NumEls * NF) && NumFields == 1) {     \ | 
|  | return ScalableVecTyMap[K] = SingletonId;                                  \ | 
|  | } | 
|  | #define SVE_VECTOR_TYPE_BFLOAT(Name, MangledName, Id, SingletonId, NumEls,     \ | 
|  | ElBits, NF)                                     \ | 
|  | if (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() &&         \ | 
|  | EltTySize == ElBits && NumElts == (NumEls * NF) && NumFields == 1) {     \ | 
|  | return ScalableVecTyMap[K] = SingletonId;                                  \ | 
|  | } | 
|  | #define SVE_VECTOR_TYPE_MFLOAT(Name, MangledName, Id, SingletonId, NumEls,     \ | 
|  | ElBits, NF)                                     \ | 
|  | if (EltTy->isMFloat8Type() && EltTySize == ElBits &&                         \ | 
|  | NumElts == (NumEls * NF) && NumFields == 1) {                            \ | 
|  | return ScalableVecTyMap[K] = SingletonId;                                  \ | 
|  | } | 
|  | #define SVE_PREDICATE_TYPE_ALL(Name, MangledName, Id, SingletonId, NumEls, NF) \ | 
|  | if (EltTy->isBooleanType() && NumElts == (NumEls * NF) && NumFields == 1)    \ | 
|  | return ScalableVecTyMap[K] = SingletonId; | 
|  | #include "clang/Basic/AArch64ACLETypes.def" | 
|  | } else if (Target->hasRISCVVTypes()) { | 
|  | uint64_t EltTySize = getTypeSize(EltTy); | 
|  | #define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned,   \ | 
|  | IsFP, IsBF)                                            \ | 
|  | if (!EltTy->isBooleanType() &&                                               \ | 
|  | ((EltTy->hasIntegerRepresentation() &&                                   \ | 
|  | EltTy->hasSignedIntegerRepresentation() == IsSigned) ||                \ | 
|  | (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() &&      \ | 
|  | IsFP && !IsBF) ||                                                      \ | 
|  | (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() &&       \ | 
|  | IsBF && !IsFP)) &&                                                     \ | 
|  | EltTySize == ElBits && NumElts == NumEls && NumFields == NF)             \ | 
|  | return ScalableVecTyMap[K] = SingletonId; | 
|  | #define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls)                      \ | 
|  | if (EltTy->isBooleanType() && NumElts == NumEls)                             \ | 
|  | return ScalableVecTyMap[K] = SingletonId; | 
|  | #include "clang/Basic/RISCVVTypes.def" | 
|  | } | 
|  | return QualType(); | 
|  | } | 
|  |  | 
|  | /// getVectorType - Return the unique reference to a vector type of | 
|  | /// the specified element type and size. VectorType must be a built-in type. | 
|  | QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts, | 
|  | VectorKind VecKind) const { | 
|  | assert(vecType->isBuiltinType() || | 
|  | (vecType->isBitIntType() && | 
|  | // Only support _BitInt elements with byte-sized power of 2 NumBits. | 
|  | llvm::isPowerOf2_32(vecType->castAs<BitIntType>()->getNumBits()))); | 
|  |  | 
|  | // Check if we've already instantiated a vector of this type. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(VTP, 0); | 
|  |  | 
|  | // If the element type isn't canonical, this won't be a canonical type either, | 
|  | // so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (!vecType.isCanonical()) { | 
|  | Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  | auto *New = new (*this, alignof(VectorType)) | 
|  | VectorType(vecType, NumElts, Canonical, VecKind); | 
|  | VectorTypes.InsertNode(New, InsertPos); | 
|  | Types.push_back(New); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr, | 
|  | SourceLocation AttrLoc, | 
|  | VectorKind VecKind) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr, | 
|  | VecKind); | 
|  | void *InsertPos = nullptr; | 
|  | DependentVectorType *Canon = | 
|  | DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | DependentVectorType *New; | 
|  |  | 
|  | if (Canon) { | 
|  | New = new (*this, alignof(DependentVectorType)) DependentVectorType( | 
|  | VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind); | 
|  | } else { | 
|  | QualType CanonVecTy = getCanonicalType(VecType); | 
|  | if (CanonVecTy == VecType) { | 
|  | New = new (*this, alignof(DependentVectorType)) | 
|  | DependentVectorType(VecType, QualType(), SizeExpr, AttrLoc, VecKind); | 
|  |  | 
|  | DependentVectorType *CanonCheck = | 
|  | DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!CanonCheck && | 
|  | "Dependent-sized vector_size canonical type broken"); | 
|  | (void)CanonCheck; | 
|  | DependentVectorTypes.InsertNode(New, InsertPos); | 
|  | } else { | 
|  | QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr, | 
|  | SourceLocation(), VecKind); | 
|  | New = new (*this, alignof(DependentVectorType)) | 
|  | DependentVectorType(VecType, CanonTy, SizeExpr, AttrLoc, VecKind); | 
|  | } | 
|  | } | 
|  |  | 
|  | Types.push_back(New); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// getExtVectorType - Return the unique reference to an extended vector type of | 
|  | /// the specified element type and size. VectorType must be a built-in type. | 
|  | QualType ASTContext::getExtVectorType(QualType vecType, | 
|  | unsigned NumElts) const { | 
|  | assert(vecType->isBuiltinType() || vecType->isDependentType() || | 
|  | (vecType->isBitIntType() && | 
|  | // Only support _BitInt elements with byte-sized power of 2 NumBits. | 
|  | llvm::isPowerOf2_32(vecType->castAs<BitIntType>()->getNumBits()))); | 
|  |  | 
|  | // Check if we've already instantiated a vector of this type. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, | 
|  | VectorKind::Generic); | 
|  | void *InsertPos = nullptr; | 
|  | if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(VTP, 0); | 
|  |  | 
|  | // If the element type isn't canonical, this won't be a canonical type either, | 
|  | // so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (!vecType.isCanonical()) { | 
|  | Canonical = getExtVectorType(getCanonicalType(vecType), NumElts); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  | auto *New = new (*this, alignof(ExtVectorType)) | 
|  | ExtVectorType(vecType, NumElts, Canonical); | 
|  | VectorTypes.InsertNode(New, InsertPos); | 
|  | Types.push_back(New); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ASTContext::getDependentSizedExtVectorType(QualType vecType, | 
|  | Expr *SizeExpr, | 
|  | SourceLocation AttrLoc) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType), | 
|  | SizeExpr); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | DependentSizedExtVectorType *Canon | 
|  | = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | DependentSizedExtVectorType *New; | 
|  | if (Canon) { | 
|  | // We already have a canonical version of this array type; use it as | 
|  | // the canonical type for a newly-built type. | 
|  | New = new (*this, alignof(DependentSizedExtVectorType)) | 
|  | DependentSizedExtVectorType(vecType, QualType(Canon, 0), SizeExpr, | 
|  | AttrLoc); | 
|  | } else { | 
|  | QualType CanonVecTy = getCanonicalType(vecType); | 
|  | if (CanonVecTy == vecType) { | 
|  | New = new (*this, alignof(DependentSizedExtVectorType)) | 
|  | DependentSizedExtVectorType(vecType, QualType(), SizeExpr, AttrLoc); | 
|  |  | 
|  | DependentSizedExtVectorType *CanonCheck | 
|  | = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken"); | 
|  | (void)CanonCheck; | 
|  | DependentSizedExtVectorTypes.InsertNode(New, InsertPos); | 
|  | } else { | 
|  | QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr, | 
|  | SourceLocation()); | 
|  | New = new (*this, alignof(DependentSizedExtVectorType)) | 
|  | DependentSizedExtVectorType(vecType, CanonExtTy, SizeExpr, AttrLoc); | 
|  | } | 
|  | } | 
|  |  | 
|  | Types.push_back(New); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows, | 
|  | unsigned NumColumns) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns, | 
|  | Type::ConstantMatrix); | 
|  |  | 
|  | assert(MatrixType::isValidElementType(ElementTy) && | 
|  | "need a valid element type"); | 
|  | assert(ConstantMatrixType::isDimensionValid(NumRows) && | 
|  | ConstantMatrixType::isDimensionValid(NumColumns) && | 
|  | "need valid matrix dimensions"); | 
|  | void *InsertPos = nullptr; | 
|  | if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(MTP, 0); | 
|  |  | 
|  | QualType Canonical; | 
|  | if (!ElementTy.isCanonical()) { | 
|  | Canonical = | 
|  | getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns); | 
|  |  | 
|  | ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Matrix type shouldn't already exist in the map"); | 
|  | (void)NewIP; | 
|  | } | 
|  |  | 
|  | auto *New = new (*this, alignof(ConstantMatrixType)) | 
|  | ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical); | 
|  | MatrixTypes.InsertNode(New, InsertPos); | 
|  | Types.push_back(New); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy, | 
|  | Expr *RowExpr, | 
|  | Expr *ColumnExpr, | 
|  | SourceLocation AttrLoc) const { | 
|  | QualType CanonElementTy = getCanonicalType(ElementTy); | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr, | 
|  | ColumnExpr); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | DependentSizedMatrixType *Canon = | 
|  | DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  |  | 
|  | if (!Canon) { | 
|  | Canon = new (*this, alignof(DependentSizedMatrixType)) | 
|  | DependentSizedMatrixType(CanonElementTy, QualType(), RowExpr, | 
|  | ColumnExpr, AttrLoc); | 
|  | #ifndef NDEBUG | 
|  | DependentSizedMatrixType *CanonCheck = | 
|  | DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!CanonCheck && "Dependent-sized matrix canonical type broken"); | 
|  | #endif | 
|  | DependentSizedMatrixTypes.InsertNode(Canon, InsertPos); | 
|  | Types.push_back(Canon); | 
|  | } | 
|  |  | 
|  | // Already have a canonical version of the matrix type | 
|  | // | 
|  | // If it exactly matches the requested type, use it directly. | 
|  | if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr && | 
|  | Canon->getRowExpr() == ColumnExpr) | 
|  | return QualType(Canon, 0); | 
|  |  | 
|  | // Use Canon as the canonical type for newly-built type. | 
|  | DependentSizedMatrixType *New = new (*this, alignof(DependentSizedMatrixType)) | 
|  | DependentSizedMatrixType(ElementTy, QualType(Canon, 0), RowExpr, | 
|  | ColumnExpr, AttrLoc); | 
|  | Types.push_back(New); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType, | 
|  | Expr *AddrSpaceExpr, | 
|  | SourceLocation AttrLoc) const { | 
|  | assert(AddrSpaceExpr->isInstantiationDependent()); | 
|  |  | 
|  | QualType canonPointeeType = getCanonicalType(PointeeType); | 
|  |  | 
|  | void *insertPos = nullptr; | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DependentAddressSpaceType::Profile(ID, *this, canonPointeeType, | 
|  | AddrSpaceExpr); | 
|  |  | 
|  | DependentAddressSpaceType *canonTy = | 
|  | DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos); | 
|  |  | 
|  | if (!canonTy) { | 
|  | canonTy = new (*this, alignof(DependentAddressSpaceType)) | 
|  | DependentAddressSpaceType(canonPointeeType, QualType(), AddrSpaceExpr, | 
|  | AttrLoc); | 
|  | DependentAddressSpaceTypes.InsertNode(canonTy, insertPos); | 
|  | Types.push_back(canonTy); | 
|  | } | 
|  |  | 
|  | if (canonPointeeType == PointeeType && | 
|  | canonTy->getAddrSpaceExpr() == AddrSpaceExpr) | 
|  | return QualType(canonTy, 0); | 
|  |  | 
|  | auto *sugaredType = new (*this, alignof(DependentAddressSpaceType)) | 
|  | DependentAddressSpaceType(PointeeType, QualType(canonTy, 0), | 
|  | AddrSpaceExpr, AttrLoc); | 
|  | Types.push_back(sugaredType); | 
|  | return QualType(sugaredType, 0); | 
|  | } | 
|  |  | 
|  | /// Determine whether \p T is canonical as the result type of a function. | 
|  | static bool isCanonicalResultType(QualType T) { | 
|  | return T.isCanonical() && | 
|  | (T.getObjCLifetime() == Qualifiers::OCL_None || | 
|  | T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone); | 
|  | } | 
|  |  | 
|  | /// getFunctionNoProtoType - Return a K&R style C function type like 'int()'. | 
|  | QualType | 
|  | ASTContext::getFunctionNoProtoType(QualType ResultTy, | 
|  | const FunctionType::ExtInfo &Info) const { | 
|  | // FIXME: This assertion cannot be enabled (yet) because the ObjC rewriter | 
|  | // functionality creates a function without a prototype regardless of | 
|  | // language mode (so it makes them even in C++). Once the rewriter has been | 
|  | // fixed, this assertion can be enabled again. | 
|  | //assert(!LangOpts.requiresStrictPrototypes() && | 
|  | //       "strict prototypes are disabled"); | 
|  |  | 
|  | // Unique functions, to guarantee there is only one function of a particular | 
|  | // structure. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | FunctionNoProtoType::Profile(ID, ResultTy, Info); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (FunctionNoProtoType *FT = | 
|  | FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(FT, 0); | 
|  |  | 
|  | QualType Canonical; | 
|  | if (!isCanonicalResultType(ResultTy)) { | 
|  | Canonical = | 
|  | getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | FunctionNoProtoType *NewIP = | 
|  | FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  |  | 
|  | auto *New = new (*this, alignof(FunctionNoProtoType)) | 
|  | FunctionNoProtoType(ResultTy, Canonical, Info); | 
|  | Types.push_back(New); | 
|  | FunctionNoProtoTypes.InsertNode(New, InsertPos); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | CanQualType | 
|  | ASTContext::getCanonicalFunctionResultType(QualType ResultType) const { | 
|  | CanQualType CanResultType = getCanonicalType(ResultType); | 
|  |  | 
|  | // Canonical result types do not have ARC lifetime qualifiers. | 
|  | if (CanResultType.getQualifiers().hasObjCLifetime()) { | 
|  | Qualifiers Qs = CanResultType.getQualifiers(); | 
|  | Qs.removeObjCLifetime(); | 
|  | return CanQualType::CreateUnsafe( | 
|  | getQualifiedType(CanResultType.getUnqualifiedType(), Qs)); | 
|  | } | 
|  |  | 
|  | return CanResultType; | 
|  | } | 
|  |  | 
|  | static bool isCanonicalExceptionSpecification( | 
|  | const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) { | 
|  | if (ESI.Type == EST_None) | 
|  | return true; | 
|  | if (!NoexceptInType) | 
|  | return false; | 
|  |  | 
|  | // C++17 onwards: exception specification is part of the type, as a simple | 
|  | // boolean "can this function type throw". | 
|  | if (ESI.Type == EST_BasicNoexcept) | 
|  | return true; | 
|  |  | 
|  | // A noexcept(expr) specification is (possibly) canonical if expr is | 
|  | // value-dependent. | 
|  | if (ESI.Type == EST_DependentNoexcept) | 
|  | return true; | 
|  |  | 
|  | // A dynamic exception specification is canonical if it only contains pack | 
|  | // expansions (so we can't tell whether it's non-throwing) and all its | 
|  | // contained types are canonical. | 
|  | if (ESI.Type == EST_Dynamic) { | 
|  | bool AnyPackExpansions = false; | 
|  | for (QualType ET : ESI.Exceptions) { | 
|  | if (!ET.isCanonical()) | 
|  | return false; | 
|  | if (ET->getAs<PackExpansionType>()) | 
|  | AnyPackExpansions = true; | 
|  | } | 
|  | return AnyPackExpansions; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getFunctionTypeInternal( | 
|  | QualType ResultTy, ArrayRef<QualType> ArgArray, | 
|  | const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const { | 
|  | size_t NumArgs = ArgArray.size(); | 
|  |  | 
|  | // Unique functions, to guarantee there is only one function of a particular | 
|  | // structure. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI, | 
|  | *this, true); | 
|  |  | 
|  | QualType Canonical; | 
|  | bool Unique = false; | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (FunctionProtoType *FPT = | 
|  | FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) { | 
|  | QualType Existing = QualType(FPT, 0); | 
|  |  | 
|  | // If we find a pre-existing equivalent FunctionProtoType, we can just reuse | 
|  | // it so long as our exception specification doesn't contain a dependent | 
|  | // noexcept expression, or we're just looking for a canonical type. | 
|  | // Otherwise, we're going to need to create a type | 
|  | // sugar node to hold the concrete expression. | 
|  | if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) || | 
|  | EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr()) | 
|  | return Existing; | 
|  |  | 
|  | // We need a new type sugar node for this one, to hold the new noexcept | 
|  | // expression. We do no canonicalization here, but that's OK since we don't | 
|  | // expect to see the same noexcept expression much more than once. | 
|  | Canonical = getCanonicalType(Existing); | 
|  | Unique = true; | 
|  | } | 
|  |  | 
|  | bool NoexceptInType = getLangOpts().CPlusPlus17; | 
|  | bool IsCanonicalExceptionSpec = | 
|  | isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType); | 
|  |  | 
|  | // Determine whether the type being created is already canonical or not. | 
|  | bool isCanonical = !Unique && IsCanonicalExceptionSpec && | 
|  | isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn; | 
|  | for (unsigned i = 0; i != NumArgs && isCanonical; ++i) | 
|  | if (!ArgArray[i].isCanonicalAsParam()) | 
|  | isCanonical = false; | 
|  |  | 
|  | if (OnlyWantCanonical) | 
|  | assert(isCanonical && | 
|  | "given non-canonical parameters constructing canonical type"); | 
|  |  | 
|  | // If this type isn't canonical, get the canonical version of it if we don't | 
|  | // already have it. The exception spec is only partially part of the | 
|  | // canonical type, and only in C++17 onwards. | 
|  | if (!isCanonical && Canonical.isNull()) { | 
|  | SmallVector<QualType, 16> CanonicalArgs; | 
|  | CanonicalArgs.reserve(NumArgs); | 
|  | for (unsigned i = 0; i != NumArgs; ++i) | 
|  | CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i])); | 
|  |  | 
|  | llvm::SmallVector<QualType, 8> ExceptionTypeStorage; | 
|  | FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI; | 
|  | CanonicalEPI.HasTrailingReturn = false; | 
|  |  | 
|  | if (IsCanonicalExceptionSpec) { | 
|  | // Exception spec is already OK. | 
|  | } else if (NoexceptInType) { | 
|  | switch (EPI.ExceptionSpec.Type) { | 
|  | case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated: | 
|  | // We don't know yet. It shouldn't matter what we pick here; no-one | 
|  | // should ever look at this. | 
|  | [[fallthrough]]; | 
|  | case EST_None: case EST_MSAny: case EST_NoexceptFalse: | 
|  | CanonicalEPI.ExceptionSpec.Type = EST_None; | 
|  | break; | 
|  |  | 
|  | // A dynamic exception specification is almost always "not noexcept", | 
|  | // with the exception that a pack expansion might expand to no types. | 
|  | case EST_Dynamic: { | 
|  | bool AnyPacks = false; | 
|  | for (QualType ET : EPI.ExceptionSpec.Exceptions) { | 
|  | if (ET->getAs<PackExpansionType>()) | 
|  | AnyPacks = true; | 
|  | ExceptionTypeStorage.push_back(getCanonicalType(ET)); | 
|  | } | 
|  | if (!AnyPacks) | 
|  | CanonicalEPI.ExceptionSpec.Type = EST_None; | 
|  | else { | 
|  | CanonicalEPI.ExceptionSpec.Type = EST_Dynamic; | 
|  | CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case EST_DynamicNone: | 
|  | case EST_BasicNoexcept: | 
|  | case EST_NoexceptTrue: | 
|  | case EST_NoThrow: | 
|  | CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept; | 
|  | break; | 
|  |  | 
|  | case EST_DependentNoexcept: | 
|  | llvm_unreachable("dependent noexcept is already canonical"); | 
|  | } | 
|  | } else { | 
|  | CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo(); | 
|  | } | 
|  |  | 
|  | // Adjust the canonical function result type. | 
|  | CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy); | 
|  | Canonical = | 
|  | getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | FunctionProtoType *NewIP = | 
|  | FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  |  | 
|  | // Compute the needed size to hold this FunctionProtoType and the | 
|  | // various trailing objects. | 
|  | auto ESH = FunctionProtoType::getExceptionSpecSize( | 
|  | EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size()); | 
|  | size_t Size = FunctionProtoType::totalSizeToAlloc< | 
|  | QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields, | 
|  | FunctionType::FunctionTypeExtraAttributeInfo, | 
|  | FunctionType::FunctionTypeArmAttributes, FunctionType::ExceptionType, | 
|  | Expr *, FunctionDecl *, FunctionProtoType::ExtParameterInfo, Qualifiers, | 
|  | FunctionEffect, EffectConditionExpr>( | 
|  | NumArgs, EPI.Variadic, EPI.requiresFunctionProtoTypeExtraBitfields(), | 
|  | EPI.requiresFunctionProtoTypeExtraAttributeInfo(), | 
|  | EPI.requiresFunctionProtoTypeArmAttributes(), ESH.NumExceptionType, | 
|  | ESH.NumExprPtr, ESH.NumFunctionDeclPtr, | 
|  | EPI.ExtParameterInfos ? NumArgs : 0, | 
|  | EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0, EPI.FunctionEffects.size(), | 
|  | EPI.FunctionEffects.conditions().size()); | 
|  |  | 
|  | auto *FTP = (FunctionProtoType *)Allocate(Size, alignof(FunctionProtoType)); | 
|  | FunctionProtoType::ExtProtoInfo newEPI = EPI; | 
|  | new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI); | 
|  | Types.push_back(FTP); | 
|  | if (!Unique) | 
|  | FunctionProtoTypes.InsertNode(FTP, InsertPos); | 
|  | if (!EPI.FunctionEffects.empty()) | 
|  | AnyFunctionEffects = true; | 
|  | return QualType(FTP, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | PipeType::Profile(ID, T, ReadOnly); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(PT, 0); | 
|  |  | 
|  | // If the pipe element type isn't canonical, this won't be a canonical type | 
|  | // either, so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (!T.isCanonical()) { | 
|  | Canonical = getPipeType(getCanonicalType(T), ReadOnly); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); | 
|  | (void)NewIP; | 
|  | } | 
|  | auto *New = new (*this, alignof(PipeType)) PipeType(T, Canonical, ReadOnly); | 
|  | Types.push_back(New); | 
|  | PipeTypes.InsertNode(New, InsertPos); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const { | 
|  | // OpenCL v1.1 s6.5.3: a string literal is in the constant address space. | 
|  | return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant) | 
|  | : Ty; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getReadPipeType(QualType T) const { | 
|  | return getPipeType(T, true); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getWritePipeType(QualType T) const { | 
|  | return getPipeType(T, false); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getBitIntType(bool IsUnsigned, unsigned NumBits) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | BitIntType::Profile(ID, IsUnsigned, NumBits); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (BitIntType *EIT = BitIntTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(EIT, 0); | 
|  |  | 
|  | auto *New = new (*this, alignof(BitIntType)) BitIntType(IsUnsigned, NumBits); | 
|  | BitIntTypes.InsertNode(New, InsertPos); | 
|  | Types.push_back(New); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getDependentBitIntType(bool IsUnsigned, | 
|  | Expr *NumBitsExpr) const { | 
|  | assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent"); | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DependentBitIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (DependentBitIntType *Existing = | 
|  | DependentBitIntTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(Existing, 0); | 
|  |  | 
|  | auto *New = new (*this, alignof(DependentBitIntType)) | 
|  | DependentBitIntType(IsUnsigned, NumBitsExpr); | 
|  | DependentBitIntTypes.InsertNode(New, InsertPos); | 
|  |  | 
|  | Types.push_back(New); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ASTContext::getPredefinedSugarType(PredefinedSugarType::Kind KD) const { | 
|  | using Kind = PredefinedSugarType::Kind; | 
|  |  | 
|  | if (auto *Target = PredefinedSugarTypes[llvm::to_underlying(KD)]; | 
|  | Target != nullptr) | 
|  | return QualType(Target, 0); | 
|  |  | 
|  | auto getCanonicalType = [](const ASTContext &Ctx, Kind KDI) -> QualType { | 
|  | switch (KDI) { | 
|  | // size_t (C99TC3 6.5.3.4), signed size_t (C++23 5.13.2) and | 
|  | // ptrdiff_t (C99TC3 6.5.6) Although these types are not built-in, they | 
|  | // are part of the core language and are widely used. Using | 
|  | // PredefinedSugarType makes these types as named sugar types rather than | 
|  | // standard integer types, enabling better hints and diagnostics. | 
|  | case Kind::SizeT: | 
|  | return Ctx.getFromTargetType(Ctx.Target->getSizeType()); | 
|  | case Kind::SignedSizeT: | 
|  | return Ctx.getFromTargetType(Ctx.Target->getSignedSizeType()); | 
|  | case Kind::PtrdiffT: | 
|  | return Ctx.getFromTargetType(Ctx.Target->getPtrDiffType(LangAS::Default)); | 
|  | } | 
|  | llvm_unreachable("unexpected kind"); | 
|  | }; | 
|  | auto *New = new (*this, alignof(PredefinedSugarType)) | 
|  | PredefinedSugarType(KD, &Idents.get(PredefinedSugarType::getName(KD)), | 
|  | getCanonicalType(*this, static_cast<Kind>(KD))); | 
|  | Types.push_back(New); | 
|  | PredefinedSugarTypes[llvm::to_underlying(KD)] = New; | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getTypeDeclType(ElaboratedTypeKeyword Keyword, | 
|  | NestedNameSpecifier Qualifier, | 
|  | const TypeDecl *Decl) const { | 
|  | if (auto *Tag = dyn_cast<TagDecl>(Decl)) | 
|  | return getTagType(Keyword, Qualifier, Tag, | 
|  | /*OwnsTag=*/false); | 
|  | if (auto *Typedef = dyn_cast<TypedefNameDecl>(Decl)) | 
|  | return getTypedefType(Keyword, Qualifier, Typedef); | 
|  | if (auto *UD = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) | 
|  | return getUnresolvedUsingType(Keyword, Qualifier, UD); | 
|  |  | 
|  | assert(Keyword == ElaboratedTypeKeyword::None); | 
|  | assert(!Qualifier); | 
|  | return QualType(Decl->TypeForDecl, 0); | 
|  | } | 
|  |  | 
|  | CanQualType ASTContext::getCanonicalTypeDeclType(const TypeDecl *TD) const { | 
|  | if (auto *Tag = dyn_cast<TagDecl>(TD)) | 
|  | return getCanonicalTagType(Tag); | 
|  | if (auto *TN = dyn_cast<TypedefNameDecl>(TD)) | 
|  | return getCanonicalType(TN->getUnderlyingType()); | 
|  | if (const auto *UD = dyn_cast<UnresolvedUsingTypenameDecl>(TD)) | 
|  | return getCanonicalUnresolvedUsingType(UD); | 
|  | assert(TD->TypeForDecl); | 
|  | return TD->TypeForDecl->getCanonicalTypeUnqualified(); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getTypeDeclType(const TypeDecl *Decl) const { | 
|  | if (const auto *TD = dyn_cast<TagDecl>(Decl)) | 
|  | return getCanonicalTagType(TD); | 
|  | if (const auto *TD = dyn_cast<TypedefNameDecl>(Decl); | 
|  | isa_and_nonnull<TypedefDecl, TypeAliasDecl>(TD)) | 
|  | return getTypedefType(ElaboratedTypeKeyword::None, | 
|  | /*Qualifier=*/std::nullopt, TD); | 
|  | if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) | 
|  | return getCanonicalUnresolvedUsingType(Using); | 
|  |  | 
|  | assert(Decl->TypeForDecl); | 
|  | return QualType(Decl->TypeForDecl, 0); | 
|  | } | 
|  |  | 
|  | /// getTypedefType - Return the unique reference to the type for the | 
|  | /// specified typedef name decl. | 
|  | QualType | 
|  | ASTContext::getTypedefType(ElaboratedTypeKeyword Keyword, | 
|  | NestedNameSpecifier Qualifier, | 
|  | const TypedefNameDecl *Decl, QualType UnderlyingType, | 
|  | std::optional<bool> TypeMatchesDeclOrNone) const { | 
|  | if (!TypeMatchesDeclOrNone) { | 
|  | QualType DeclUnderlyingType = Decl->getUnderlyingType(); | 
|  | assert(!DeclUnderlyingType.isNull()); | 
|  | if (UnderlyingType.isNull()) | 
|  | UnderlyingType = DeclUnderlyingType; | 
|  | else | 
|  | assert(hasSameType(UnderlyingType, DeclUnderlyingType)); | 
|  | TypeMatchesDeclOrNone = UnderlyingType == DeclUnderlyingType; | 
|  | } else { | 
|  | // FIXME: This is a workaround for a serialization cycle: assume the decl | 
|  | // underlying type is not available; don't touch it. | 
|  | assert(!UnderlyingType.isNull()); | 
|  | } | 
|  |  | 
|  | if (Keyword == ElaboratedTypeKeyword::None && !Qualifier && | 
|  | *TypeMatchesDeclOrNone) { | 
|  | if (Decl->TypeForDecl) | 
|  | return QualType(Decl->TypeForDecl, 0); | 
|  |  | 
|  | auto *NewType = new (*this, alignof(TypedefType)) | 
|  | TypedefType(Type::Typedef, Keyword, Qualifier, Decl, UnderlyingType, | 
|  | !*TypeMatchesDeclOrNone); | 
|  |  | 
|  | Types.push_back(NewType); | 
|  | Decl->TypeForDecl = NewType; | 
|  | return QualType(NewType, 0); | 
|  | } | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | TypedefType::Profile(ID, Keyword, Qualifier, Decl, | 
|  | *TypeMatchesDeclOrNone ? QualType() : UnderlyingType); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (FoldingSetPlaceholder<TypedefType> *Placeholder = | 
|  | TypedefTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(Placeholder->getType(), 0); | 
|  |  | 
|  | void *Mem = | 
|  | Allocate(TypedefType::totalSizeToAlloc<FoldingSetPlaceholder<TypedefType>, | 
|  | NestedNameSpecifier, QualType>( | 
|  | 1, !!Qualifier, !*TypeMatchesDeclOrNone), | 
|  | alignof(TypedefType)); | 
|  | auto *NewType = | 
|  | new (Mem) TypedefType(Type::Typedef, Keyword, Qualifier, Decl, | 
|  | UnderlyingType, !*TypeMatchesDeclOrNone); | 
|  | auto *Placeholder = new (NewType->getFoldingSetPlaceholder()) | 
|  | FoldingSetPlaceholder<TypedefType>(); | 
|  | TypedefTypes.InsertNode(Placeholder, InsertPos); | 
|  | Types.push_back(NewType); | 
|  | return QualType(NewType, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getUsingType(ElaboratedTypeKeyword Keyword, | 
|  | NestedNameSpecifier Qualifier, | 
|  | const UsingShadowDecl *D, | 
|  | QualType UnderlyingType) const { | 
|  | // FIXME: This is expensive to compute every time! | 
|  | if (UnderlyingType.isNull()) { | 
|  | const auto *UD = cast<UsingDecl>(D->getIntroducer()); | 
|  | UnderlyingType = | 
|  | getTypeDeclType(UD->hasTypename() ? ElaboratedTypeKeyword::Typename | 
|  | : ElaboratedTypeKeyword::None, | 
|  | UD->getQualifier(), cast<TypeDecl>(D->getTargetDecl())); | 
|  | } | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | UsingType::Profile(ID, Keyword, Qualifier, D, UnderlyingType); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (const UsingType *T = UsingTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | assert(!UnderlyingType.hasLocalQualifiers()); | 
|  |  | 
|  | assert( | 
|  | hasSameType(getCanonicalTypeDeclType(cast<TypeDecl>(D->getTargetDecl())), | 
|  | UnderlyingType)); | 
|  |  | 
|  | void *Mem = | 
|  | Allocate(UsingType::totalSizeToAlloc<NestedNameSpecifier>(!!Qualifier), | 
|  | alignof(UsingType)); | 
|  | UsingType *T = new (Mem) UsingType(Keyword, Qualifier, D, UnderlyingType); | 
|  | Types.push_back(T); | 
|  | UsingTypes.InsertNode(T, InsertPos); | 
|  | return QualType(T, 0); | 
|  | } | 
|  |  | 
|  | TagType *ASTContext::getTagTypeInternal(ElaboratedTypeKeyword Keyword, | 
|  | NestedNameSpecifier Qualifier, | 
|  | const TagDecl *TD, bool OwnsTag, | 
|  | bool IsInjected, | 
|  | const Type *CanonicalType, | 
|  | bool WithFoldingSetNode) const { | 
|  | auto [TC, Size] = [&] { | 
|  | switch (TD->getDeclKind()) { | 
|  | case Decl::Enum: | 
|  | static_assert(alignof(EnumType) == alignof(TagType)); | 
|  | return std::make_tuple(Type::Enum, sizeof(EnumType)); | 
|  | case Decl::ClassTemplatePartialSpecialization: | 
|  | case Decl::ClassTemplateSpecialization: | 
|  | case Decl::CXXRecord: | 
|  | static_assert(alignof(RecordType) == alignof(TagType)); | 
|  | static_assert(alignof(InjectedClassNameType) == alignof(TagType)); | 
|  | if (cast<CXXRecordDecl>(TD)->hasInjectedClassType()) | 
|  | return std::make_tuple(Type::InjectedClassName, | 
|  | sizeof(InjectedClassNameType)); | 
|  | [[fallthrough]]; | 
|  | case Decl::Record: | 
|  | return std::make_tuple(Type::Record, sizeof(RecordType)); | 
|  | default: | 
|  | llvm_unreachable("unexpected decl kind"); | 
|  | } | 
|  | }(); | 
|  |  | 
|  | if (Qualifier) { | 
|  | static_assert(alignof(NestedNameSpecifier) <= alignof(TagType)); | 
|  | Size = llvm::alignTo(Size, alignof(NestedNameSpecifier)) + | 
|  | sizeof(NestedNameSpecifier); | 
|  | } | 
|  | void *Mem; | 
|  | if (WithFoldingSetNode) { | 
|  | // FIXME: It would be more profitable to tail allocate the folding set node | 
|  | // from the type, instead of the other way around, due to the greater | 
|  | // alignment requirements of the type. But this makes it harder to deal with | 
|  | // the different type node sizes. This would require either uniquing from | 
|  | // different folding sets, or having the folding setaccept a | 
|  | // contextual parameter which is not fixed at construction. | 
|  | Mem = Allocate( | 
|  | sizeof(TagTypeFoldingSetPlaceholder) + | 
|  | TagTypeFoldingSetPlaceholder::getOffset() + Size, | 
|  | std::max(alignof(TagTypeFoldingSetPlaceholder), alignof(TagType))); | 
|  | auto *T = new (Mem) TagTypeFoldingSetPlaceholder(); | 
|  | Mem = T->getTagType(); | 
|  | } else { | 
|  | Mem = Allocate(Size, alignof(TagType)); | 
|  | } | 
|  |  | 
|  | auto *T = [&, TC = TC]() -> TagType * { | 
|  | switch (TC) { | 
|  | case Type::Enum: { | 
|  | assert(isa<EnumDecl>(TD)); | 
|  | auto *T = new (Mem) EnumType(TC, Keyword, Qualifier, TD, OwnsTag, | 
|  | IsInjected, CanonicalType); | 
|  | assert(reinterpret_cast<void *>(T) == | 
|  | reinterpret_cast<void *>(static_cast<TagType *>(T)) && | 
|  | "TagType must be the first base of EnumType"); | 
|  | return T; | 
|  | } | 
|  | case Type::Record: { | 
|  | assert(isa<RecordDecl>(TD)); | 
|  | auto *T = new (Mem) RecordType(TC, Keyword, Qualifier, TD, OwnsTag, | 
|  | IsInjected, CanonicalType); | 
|  | assert(reinterpret_cast<void *>(T) == | 
|  | reinterpret_cast<void *>(static_cast<TagType *>(T)) && | 
|  | "TagType must be the first base of RecordType"); | 
|  | return T; | 
|  | } | 
|  | case Type::InjectedClassName: { | 
|  | auto *T = new (Mem) InjectedClassNameType(Keyword, Qualifier, TD, | 
|  | IsInjected, CanonicalType); | 
|  | assert(reinterpret_cast<void *>(T) == | 
|  | reinterpret_cast<void *>(static_cast<TagType *>(T)) && | 
|  | "TagType must be the first base of InjectedClassNameType"); | 
|  | return T; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("unexpected type class"); | 
|  | } | 
|  | }(); | 
|  | assert(T->getKeyword() == Keyword); | 
|  | assert(T->getQualifier() == Qualifier); | 
|  | assert(T->getOriginalDecl() == TD); | 
|  | assert(T->isInjected() == IsInjected); | 
|  | assert(T->isTagOwned() == OwnsTag); | 
|  | assert((T->isCanonicalUnqualified() | 
|  | ? QualType() | 
|  | : T->getCanonicalTypeInternal()) == QualType(CanonicalType, 0)); | 
|  | Types.push_back(T); | 
|  | return T; | 
|  | } | 
|  |  | 
|  | static const TagDecl *getNonInjectedClassName(const TagDecl *TD) { | 
|  | if (const auto *RD = dyn_cast<CXXRecordDecl>(TD); | 
|  | RD && RD->isInjectedClassName()) | 
|  | return cast<TagDecl>(RD->getDeclContext()); | 
|  | return TD; | 
|  | } | 
|  |  | 
|  | CanQualType ASTContext::getCanonicalTagType(const TagDecl *TD) const { | 
|  | TD = ::getNonInjectedClassName(TD)->getCanonicalDecl(); | 
|  | if (TD->TypeForDecl) | 
|  | return TD->TypeForDecl->getCanonicalTypeUnqualified(); | 
|  |  | 
|  | const Type *CanonicalType = getTagTypeInternal( | 
|  | ElaboratedTypeKeyword::None, | 
|  | /*Qualifier=*/std::nullopt, TD, | 
|  | /*OwnsTag=*/false, /*IsInjected=*/false, /*CanonicalType=*/nullptr, | 
|  | /*WithFoldingSetNode=*/false); | 
|  | TD->TypeForDecl = CanonicalType; | 
|  | return CanQualType::CreateUnsafe(QualType(CanonicalType, 0)); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getTagType(ElaboratedTypeKeyword Keyword, | 
|  | NestedNameSpecifier Qualifier, | 
|  | const TagDecl *TD, bool OwnsTag) const { | 
|  |  | 
|  | const TagDecl *NonInjectedTD = ::getNonInjectedClassName(TD); | 
|  | bool IsInjected = TD != NonInjectedTD; | 
|  |  | 
|  | ElaboratedTypeKeyword PreferredKeyword = | 
|  | getLangOpts().CPlusPlus ? ElaboratedTypeKeyword::None | 
|  | : KeywordHelpers::getKeywordForTagTypeKind( | 
|  | NonInjectedTD->getTagKind()); | 
|  |  | 
|  | if (Keyword == PreferredKeyword && !Qualifier && !OwnsTag) { | 
|  | if (const Type *T = TD->TypeForDecl; T && !T->isCanonicalUnqualified()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | const Type *CanonicalType = getCanonicalTagType(NonInjectedTD).getTypePtr(); | 
|  | const Type *T = | 
|  | getTagTypeInternal(Keyword, | 
|  | /*Qualifier=*/std::nullopt, NonInjectedTD, | 
|  | /*OwnsTag=*/false, IsInjected, CanonicalType, | 
|  | /*WithFoldingSetNode=*/false); | 
|  | TD->TypeForDecl = T; | 
|  | return QualType(T, 0); | 
|  | } | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | TagTypeFoldingSetPlaceholder::Profile(ID, Keyword, Qualifier, NonInjectedTD, | 
|  | OwnsTag, IsInjected); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (TagTypeFoldingSetPlaceholder *T = | 
|  | TagTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(T->getTagType(), 0); | 
|  |  | 
|  | const Type *CanonicalType = getCanonicalTagType(NonInjectedTD).getTypePtr(); | 
|  | TagType *T = | 
|  | getTagTypeInternal(Keyword, Qualifier, NonInjectedTD, OwnsTag, IsInjected, | 
|  | CanonicalType, /*WithFoldingSetNode=*/true); | 
|  | TagTypes.InsertNode(TagTypeFoldingSetPlaceholder::fromTagType(T), InsertPos); | 
|  | return QualType(T, 0); | 
|  | } | 
|  |  | 
|  | bool ASTContext::computeBestEnumTypes(bool IsPacked, unsigned NumNegativeBits, | 
|  | unsigned NumPositiveBits, | 
|  | QualType &BestType, | 
|  | QualType &BestPromotionType) { | 
|  | unsigned IntWidth = Target->getIntWidth(); | 
|  | unsigned CharWidth = Target->getCharWidth(); | 
|  | unsigned ShortWidth = Target->getShortWidth(); | 
|  | bool EnumTooLarge = false; | 
|  | unsigned BestWidth; | 
|  | if (NumNegativeBits) { | 
|  | // If there is a negative value, figure out the smallest integer type (of | 
|  | // int/long/longlong) that fits. | 
|  | // If it's packed, check also if it fits a char or a short. | 
|  | if (IsPacked && NumNegativeBits <= CharWidth && | 
|  | NumPositiveBits < CharWidth) { | 
|  | BestType = SignedCharTy; | 
|  | BestWidth = CharWidth; | 
|  | } else if (IsPacked && NumNegativeBits <= ShortWidth && | 
|  | NumPositiveBits < ShortWidth) { | 
|  | BestType = ShortTy; | 
|  | BestWidth = ShortWidth; | 
|  | } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { | 
|  | BestType = IntTy; | 
|  | BestWidth = IntWidth; | 
|  | } else { | 
|  | BestWidth = Target->getLongWidth(); | 
|  |  | 
|  | if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { | 
|  | BestType = LongTy; | 
|  | } else { | 
|  | BestWidth = Target->getLongLongWidth(); | 
|  |  | 
|  | if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) | 
|  | EnumTooLarge = true; | 
|  | BestType = LongLongTy; | 
|  | } | 
|  | } | 
|  | BestPromotionType = (BestWidth <= IntWidth ? IntTy : BestType); | 
|  | } else { | 
|  | // If there is no negative value, figure out the smallest type that fits | 
|  | // all of the enumerator values. | 
|  | // If it's packed, check also if it fits a char or a short. | 
|  | if (IsPacked && NumPositiveBits <= CharWidth) { | 
|  | BestType = UnsignedCharTy; | 
|  | BestPromotionType = IntTy; | 
|  | BestWidth = CharWidth; | 
|  | } else if (IsPacked && NumPositiveBits <= ShortWidth) { | 
|  | BestType = UnsignedShortTy; | 
|  | BestPromotionType = IntTy; | 
|  | BestWidth = ShortWidth; | 
|  | } else if (NumPositiveBits <= IntWidth) { | 
|  | BestType = UnsignedIntTy; | 
|  | BestWidth = IntWidth; | 
|  | BestPromotionType = (NumPositiveBits == BestWidth || !LangOpts.CPlusPlus) | 
|  | ? UnsignedIntTy | 
|  | : IntTy; | 
|  | } else if (NumPositiveBits <= (BestWidth = Target->getLongWidth())) { | 
|  | BestType = UnsignedLongTy; | 
|  | BestPromotionType = (NumPositiveBits == BestWidth || !LangOpts.CPlusPlus) | 
|  | ? UnsignedLongTy | 
|  | : LongTy; | 
|  | } else { | 
|  | BestWidth = Target->getLongLongWidth(); | 
|  | if (NumPositiveBits > BestWidth) { | 
|  | // This can happen with bit-precise integer types, but those are not | 
|  | // allowed as the type for an enumerator per C23 6.7.2.2p4 and p12. | 
|  | // FIXME: GCC uses __int128_t and __uint128_t for cases that fit within | 
|  | // a 128-bit integer, we should consider doing the same. | 
|  | EnumTooLarge = true; | 
|  | } | 
|  | BestType = UnsignedLongLongTy; | 
|  | BestPromotionType = (NumPositiveBits == BestWidth || !LangOpts.CPlusPlus) | 
|  | ? UnsignedLongLongTy | 
|  | : LongLongTy; | 
|  | } | 
|  | } | 
|  | return EnumTooLarge; | 
|  | } | 
|  |  | 
|  | bool ASTContext::isRepresentableIntegerValue(llvm::APSInt &Value, QualType T) { | 
|  | assert((T->isIntegralType(*this) || T->isEnumeralType()) && | 
|  | "Integral type required!"); | 
|  | unsigned BitWidth = getIntWidth(T); | 
|  |  | 
|  | if (Value.isUnsigned() || Value.isNonNegative()) { | 
|  | if (T->isSignedIntegerOrEnumerationType()) | 
|  | --BitWidth; | 
|  | return Value.getActiveBits() <= BitWidth; | 
|  | } | 
|  | return Value.getSignificantBits() <= BitWidth; | 
|  | } | 
|  |  | 
|  | UnresolvedUsingType *ASTContext::getUnresolvedUsingTypeInternal( | 
|  | ElaboratedTypeKeyword Keyword, NestedNameSpecifier Qualifier, | 
|  | const UnresolvedUsingTypenameDecl *D, void *InsertPos, | 
|  | const Type *CanonicalType) const { | 
|  | void *Mem = Allocate( | 
|  | UnresolvedUsingType::totalSizeToAlloc< | 
|  | FoldingSetPlaceholder<UnresolvedUsingType>, NestedNameSpecifier>( | 
|  | !!InsertPos, !!Qualifier), | 
|  | alignof(UnresolvedUsingType)); | 
|  | auto *T = new (Mem) UnresolvedUsingType(Keyword, Qualifier, D, CanonicalType); | 
|  | if (InsertPos) { | 
|  | auto *Placeholder = new (T->getFoldingSetPlaceholder()) | 
|  | FoldingSetPlaceholder<TypedefType>(); | 
|  | TypedefTypes.InsertNode(Placeholder, InsertPos); | 
|  | } | 
|  | Types.push_back(T); | 
|  | return T; | 
|  | } | 
|  |  | 
|  | CanQualType ASTContext::getCanonicalUnresolvedUsingType( | 
|  | const UnresolvedUsingTypenameDecl *D) const { | 
|  | D = D->getCanonicalDecl(); | 
|  | if (D->TypeForDecl) | 
|  | return D->TypeForDecl->getCanonicalTypeUnqualified(); | 
|  |  | 
|  | const Type *CanonicalType = getUnresolvedUsingTypeInternal( | 
|  | ElaboratedTypeKeyword::None, | 
|  | /*Qualifier=*/std::nullopt, D, | 
|  | /*InsertPos=*/nullptr, /*CanonicalType=*/nullptr); | 
|  | D->TypeForDecl = CanonicalType; | 
|  | return CanQualType::CreateUnsafe(QualType(CanonicalType, 0)); | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ASTContext::getUnresolvedUsingType(ElaboratedTypeKeyword Keyword, | 
|  | NestedNameSpecifier Qualifier, | 
|  | const UnresolvedUsingTypenameDecl *D) const { | 
|  | if (Keyword == ElaboratedTypeKeyword::None && !Qualifier) { | 
|  | if (const Type *T = D->TypeForDecl; T && !T->isCanonicalUnqualified()) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | const Type *CanonicalType = getCanonicalUnresolvedUsingType(D).getTypePtr(); | 
|  | const Type *T = | 
|  | getUnresolvedUsingTypeInternal(ElaboratedTypeKeyword::None, | 
|  | /*Qualifier=*/std::nullopt, D, | 
|  | /*InsertPos=*/nullptr, CanonicalType); | 
|  | D->TypeForDecl = T; | 
|  | return QualType(T, 0); | 
|  | } | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | UnresolvedUsingType::Profile(ID, Keyword, Qualifier, D); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (FoldingSetPlaceholder<UnresolvedUsingType> *Placeholder = | 
|  | UnresolvedUsingTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(Placeholder->getType(), 0); | 
|  | assert(InsertPos); | 
|  |  | 
|  | const Type *CanonicalType = getCanonicalUnresolvedUsingType(D).getTypePtr(); | 
|  | const Type *T = getUnresolvedUsingTypeInternal(Keyword, Qualifier, D, | 
|  | InsertPos, CanonicalType); | 
|  | return QualType(T, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getAttributedType(attr::Kind attrKind, | 
|  | QualType modifiedType, | 
|  | QualType equivalentType, | 
|  | const Attr *attr) const { | 
|  | llvm::FoldingSetNodeID id; | 
|  | AttributedType::Profile(id, attrKind, modifiedType, equivalentType, attr); | 
|  |  | 
|  | void *insertPos = nullptr; | 
|  | AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos); | 
|  | if (type) return QualType(type, 0); | 
|  |  | 
|  | assert(!attr || attr->getKind() == attrKind); | 
|  |  | 
|  | QualType canon = getCanonicalType(equivalentType); | 
|  | type = new (*this, alignof(AttributedType)) | 
|  | AttributedType(canon, attrKind, attr, modifiedType, equivalentType); | 
|  |  | 
|  | Types.push_back(type); | 
|  | AttributedTypes.InsertNode(type, insertPos); | 
|  |  | 
|  | return QualType(type, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getAttributedType(const Attr *attr, QualType modifiedType, | 
|  | QualType equivalentType) const { | 
|  | return getAttributedType(attr->getKind(), modifiedType, equivalentType, attr); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getAttributedType(NullabilityKind nullability, | 
|  | QualType modifiedType, | 
|  | QualType equivalentType) { | 
|  | switch (nullability) { | 
|  | case NullabilityKind::NonNull: | 
|  | return getAttributedType(attr::TypeNonNull, modifiedType, equivalentType); | 
|  |  | 
|  | case NullabilityKind::Nullable: | 
|  | return getAttributedType(attr::TypeNullable, modifiedType, equivalentType); | 
|  |  | 
|  | case NullabilityKind::NullableResult: | 
|  | return getAttributedType(attr::TypeNullableResult, modifiedType, | 
|  | equivalentType); | 
|  |  | 
|  | case NullabilityKind::Unspecified: | 
|  | return getAttributedType(attr::TypeNullUnspecified, modifiedType, | 
|  | equivalentType); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unknown nullability kind"); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr, | 
|  | QualType Wrapped) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | BTFTagAttributedType::Profile(ID, Wrapped, BTFAttr); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | BTFTagAttributedType *Ty = | 
|  | BTFTagAttributedTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (Ty) | 
|  | return QualType(Ty, 0); | 
|  |  | 
|  | QualType Canon = getCanonicalType(Wrapped); | 
|  | Ty = new (*this, alignof(BTFTagAttributedType)) | 
|  | BTFTagAttributedType(Canon, Wrapped, BTFAttr); | 
|  |  | 
|  | Types.push_back(Ty); | 
|  | BTFTagAttributedTypes.InsertNode(Ty, InsertPos); | 
|  |  | 
|  | return QualType(Ty, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getHLSLAttributedResourceType( | 
|  | QualType Wrapped, QualType Contained, | 
|  | const HLSLAttributedResourceType::Attributes &Attrs) { | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | HLSLAttributedResourceType::Profile(ID, Wrapped, Contained, Attrs); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | HLSLAttributedResourceType *Ty = | 
|  | HLSLAttributedResourceTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (Ty) | 
|  | return QualType(Ty, 0); | 
|  |  | 
|  | Ty = new (*this, alignof(HLSLAttributedResourceType)) | 
|  | HLSLAttributedResourceType(Wrapped, Contained, Attrs); | 
|  |  | 
|  | Types.push_back(Ty); | 
|  | HLSLAttributedResourceTypes.InsertNode(Ty, InsertPos); | 
|  |  | 
|  | return QualType(Ty, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getHLSLInlineSpirvType(uint32_t Opcode, uint32_t Size, | 
|  | uint32_t Alignment, | 
|  | ArrayRef<SpirvOperand> Operands) { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | HLSLInlineSpirvType::Profile(ID, Opcode, Size, Alignment, Operands); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | HLSLInlineSpirvType *Ty = | 
|  | HLSLInlineSpirvTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (Ty) | 
|  | return QualType(Ty, 0); | 
|  |  | 
|  | void *Mem = Allocate( | 
|  | HLSLInlineSpirvType::totalSizeToAlloc<SpirvOperand>(Operands.size()), | 
|  | alignof(HLSLInlineSpirvType)); | 
|  |  | 
|  | Ty = new (Mem) HLSLInlineSpirvType(Opcode, Size, Alignment, Operands); | 
|  |  | 
|  | Types.push_back(Ty); | 
|  | HLSLInlineSpirvTypes.InsertNode(Ty, InsertPos); | 
|  |  | 
|  | return QualType(Ty, 0); | 
|  | } | 
|  |  | 
|  | /// Retrieve a substitution-result type. | 
|  | QualType ASTContext::getSubstTemplateTypeParmType(QualType Replacement, | 
|  | Decl *AssociatedDecl, | 
|  | unsigned Index, | 
|  | UnsignedOrNone PackIndex, | 
|  | bool Final) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | SubstTemplateTypeParmType::Profile(ID, Replacement, AssociatedDecl, Index, | 
|  | PackIndex, Final); | 
|  | void *InsertPos = nullptr; | 
|  | SubstTemplateTypeParmType *SubstParm = | 
|  | SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  |  | 
|  | if (!SubstParm) { | 
|  | void *Mem = Allocate(SubstTemplateTypeParmType::totalSizeToAlloc<QualType>( | 
|  | !Replacement.isCanonical()), | 
|  | alignof(SubstTemplateTypeParmType)); | 
|  | SubstParm = new (Mem) SubstTemplateTypeParmType(Replacement, AssociatedDecl, | 
|  | Index, PackIndex, Final); | 
|  | Types.push_back(SubstParm); | 
|  | SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos); | 
|  | } | 
|  |  | 
|  | return QualType(SubstParm, 0); | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ASTContext::getSubstTemplateTypeParmPackType(Decl *AssociatedDecl, | 
|  | unsigned Index, bool Final, | 
|  | const TemplateArgument &ArgPack) { | 
|  | #ifndef NDEBUG | 
|  | for (const auto &P : ArgPack.pack_elements()) | 
|  | assert(P.getKind() == TemplateArgument::Type && "Pack contains a non-type"); | 
|  | #endif | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | SubstTemplateTypeParmPackType::Profile(ID, AssociatedDecl, Index, Final, | 
|  | ArgPack); | 
|  | void *InsertPos = nullptr; | 
|  | if (SubstTemplateTypeParmPackType *SubstParm = | 
|  | SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(SubstParm, 0); | 
|  |  | 
|  | QualType Canon; | 
|  | { | 
|  | TemplateArgument CanonArgPack = getCanonicalTemplateArgument(ArgPack); | 
|  | if (!AssociatedDecl->isCanonicalDecl() || | 
|  | !CanonArgPack.structurallyEquals(ArgPack)) { | 
|  | Canon = getSubstTemplateTypeParmPackType( | 
|  | AssociatedDecl->getCanonicalDecl(), Index, Final, CanonArgPack); | 
|  | [[maybe_unused]] const auto *Nothing = | 
|  | SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!Nothing); | 
|  | } | 
|  | } | 
|  |  | 
|  | auto *SubstParm = new (*this, alignof(SubstTemplateTypeParmPackType)) | 
|  | SubstTemplateTypeParmPackType(Canon, AssociatedDecl, Index, Final, | 
|  | ArgPack); | 
|  | Types.push_back(SubstParm); | 
|  | SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos); | 
|  | return QualType(SubstParm, 0); | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ASTContext::getSubstBuiltinTemplatePack(const TemplateArgument &ArgPack) { | 
|  | assert(llvm::all_of(ArgPack.pack_elements(), | 
|  | [](const auto &P) { | 
|  | return P.getKind() == TemplateArgument::Type; | 
|  | }) && | 
|  | "Pack contains a non-type"); | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | SubstBuiltinTemplatePackType::Profile(ID, ArgPack); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (auto *T = | 
|  | SubstBuiltinTemplatePackTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | QualType Canon; | 
|  | TemplateArgument CanonArgPack = getCanonicalTemplateArgument(ArgPack); | 
|  | if (!CanonArgPack.structurallyEquals(ArgPack)) { | 
|  | Canon = getSubstBuiltinTemplatePack(CanonArgPack); | 
|  | // Refresh InsertPos, in case the recursive call above caused rehashing, | 
|  | // which would invalidate the bucket pointer. | 
|  | [[maybe_unused]] const auto *Nothing = | 
|  | SubstBuiltinTemplatePackTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!Nothing); | 
|  | } | 
|  |  | 
|  | auto *PackType = new (*this, alignof(SubstBuiltinTemplatePackType)) | 
|  | SubstBuiltinTemplatePackType(Canon, ArgPack); | 
|  | Types.push_back(PackType); | 
|  | SubstBuiltinTemplatePackTypes.InsertNode(PackType, InsertPos); | 
|  | return QualType(PackType, 0); | 
|  | } | 
|  |  | 
|  | /// Retrieve the template type parameter type for a template | 
|  | /// parameter or parameter pack with the given depth, index, and (optionally) | 
|  | /// name. | 
|  | QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index, | 
|  | bool ParameterPack, | 
|  | TemplateTypeParmDecl *TTPDecl) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl); | 
|  | void *InsertPos = nullptr; | 
|  | TemplateTypeParmType *TypeParm | 
|  | = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  |  | 
|  | if (TypeParm) | 
|  | return QualType(TypeParm, 0); | 
|  |  | 
|  | if (TTPDecl) { | 
|  | QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack); | 
|  | TypeParm = new (*this, alignof(TemplateTypeParmType)) | 
|  | TemplateTypeParmType(Depth, Index, ParameterPack, TTPDecl, Canon); | 
|  |  | 
|  | TemplateTypeParmType *TypeCheck | 
|  | = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!TypeCheck && "Template type parameter canonical type broken"); | 
|  | (void)TypeCheck; | 
|  | } else | 
|  | TypeParm = new (*this, alignof(TemplateTypeParmType)) TemplateTypeParmType( | 
|  | Depth, Index, ParameterPack, /*TTPDecl=*/nullptr, /*Canon=*/QualType()); | 
|  |  | 
|  | Types.push_back(TypeParm); | 
|  | TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos); | 
|  |  | 
|  | return QualType(TypeParm, 0); | 
|  | } | 
|  |  | 
|  | static ElaboratedTypeKeyword | 
|  | getCanonicalElaboratedTypeKeyword(ElaboratedTypeKeyword Keyword) { | 
|  | switch (Keyword) { | 
|  | // These are just themselves. | 
|  | case ElaboratedTypeKeyword::None: | 
|  | case ElaboratedTypeKeyword::Struct: | 
|  | case ElaboratedTypeKeyword::Union: | 
|  | case ElaboratedTypeKeyword::Enum: | 
|  | case ElaboratedTypeKeyword::Interface: | 
|  | return Keyword; | 
|  |  | 
|  | // These are equivalent. | 
|  | case ElaboratedTypeKeyword::Typename: | 
|  | return ElaboratedTypeKeyword::None; | 
|  |  | 
|  | // These are functionally equivalent, so relying on their equivalence is | 
|  | // IFNDR. By making them equivalent, we disallow overloading, which at least | 
|  | // can produce a diagnostic. | 
|  | case ElaboratedTypeKeyword::Class: | 
|  | return ElaboratedTypeKeyword::Struct; | 
|  | } | 
|  | llvm_unreachable("unexpected keyword kind"); | 
|  | } | 
|  |  | 
|  | TypeSourceInfo *ASTContext::getTemplateSpecializationTypeInfo( | 
|  | ElaboratedTypeKeyword Keyword, SourceLocation ElaboratedKeywordLoc, | 
|  | NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKeywordLoc, | 
|  | TemplateName Name, SourceLocation NameLoc, | 
|  | const TemplateArgumentListInfo &SpecifiedArgs, | 
|  | ArrayRef<TemplateArgument> CanonicalArgs, QualType Underlying) const { | 
|  | QualType TST = getTemplateSpecializationType( | 
|  | Keyword, Name, SpecifiedArgs.arguments(), CanonicalArgs, Underlying); | 
|  |  | 
|  | TypeSourceInfo *DI = CreateTypeSourceInfo(TST); | 
|  | DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>().set( | 
|  | ElaboratedKeywordLoc, QualifierLoc, TemplateKeywordLoc, NameLoc, | 
|  | SpecifiedArgs); | 
|  | return DI; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getTemplateSpecializationType( | 
|  | ElaboratedTypeKeyword Keyword, TemplateName Template, | 
|  | ArrayRef<TemplateArgumentLoc> SpecifiedArgs, | 
|  | ArrayRef<TemplateArgument> CanonicalArgs, QualType Underlying) const { | 
|  | SmallVector<TemplateArgument, 4> SpecifiedArgVec; | 
|  | SpecifiedArgVec.reserve(SpecifiedArgs.size()); | 
|  | for (const TemplateArgumentLoc &Arg : SpecifiedArgs) | 
|  | SpecifiedArgVec.push_back(Arg.getArgument()); | 
|  |  | 
|  | return getTemplateSpecializationType(Keyword, Template, SpecifiedArgVec, | 
|  | CanonicalArgs, Underlying); | 
|  | } | 
|  |  | 
|  | [[maybe_unused]] static bool | 
|  | hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) { | 
|  | for (const TemplateArgument &Arg : Args) | 
|  | if (Arg.isPackExpansion()) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getCanonicalTemplateSpecializationType( | 
|  | ElaboratedTypeKeyword Keyword, TemplateName Template, | 
|  | ArrayRef<TemplateArgument> Args) const { | 
|  | assert(Template == | 
|  | getCanonicalTemplateName(Template, /*IgnoreDeduced=*/true)); | 
|  | assert((Keyword == ElaboratedTypeKeyword::None || | 
|  | Template.getAsDependentTemplateName())); | 
|  | #ifndef NDEBUG | 
|  | for (const auto &Arg : Args) | 
|  | assert(Arg.structurallyEquals(getCanonicalTemplateArgument(Arg))); | 
|  | #endif | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | TemplateSpecializationType::Profile(ID, Keyword, Template, Args, QualType(), | 
|  | *this); | 
|  | void *InsertPos = nullptr; | 
|  | if (auto *T = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | void *Mem = Allocate(sizeof(TemplateSpecializationType) + | 
|  | sizeof(TemplateArgument) * Args.size(), | 
|  | alignof(TemplateSpecializationType)); | 
|  | auto *Spec = | 
|  | new (Mem) TemplateSpecializationType(Keyword, Template, | 
|  | /*IsAlias=*/false, Args, QualType()); | 
|  | assert(Spec->isDependentType() && | 
|  | "canonical template specialization must be dependent"); | 
|  | Types.push_back(Spec); | 
|  | TemplateSpecializationTypes.InsertNode(Spec, InsertPos); | 
|  | return QualType(Spec, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getTemplateSpecializationType( | 
|  | ElaboratedTypeKeyword Keyword, TemplateName Template, | 
|  | ArrayRef<TemplateArgument> SpecifiedArgs, | 
|  | ArrayRef<TemplateArgument> CanonicalArgs, QualType Underlying) const { | 
|  | const auto *TD = Template.getAsTemplateDecl(/*IgnoreDeduced=*/true); | 
|  | bool IsTypeAlias = TD && TD->isTypeAlias(); | 
|  | if (Underlying.isNull()) { | 
|  | TemplateName CanonTemplate = | 
|  | getCanonicalTemplateName(Template, /*IgnoreDeduced=*/true); | 
|  | ElaboratedTypeKeyword CanonKeyword = | 
|  | CanonTemplate.getAsDependentTemplateName() | 
|  | ? getCanonicalElaboratedTypeKeyword(Keyword) | 
|  | : ElaboratedTypeKeyword::None; | 
|  | bool NonCanonical = Template != CanonTemplate || Keyword != CanonKeyword; | 
|  | SmallVector<TemplateArgument, 4> CanonArgsVec; | 
|  | if (CanonicalArgs.empty()) { | 
|  | CanonArgsVec = SmallVector<TemplateArgument, 4>(SpecifiedArgs); | 
|  | NonCanonical |= canonicalizeTemplateArguments(CanonArgsVec); | 
|  | CanonicalArgs = CanonArgsVec; | 
|  | } else { | 
|  | NonCanonical |= !llvm::equal( | 
|  | SpecifiedArgs, CanonicalArgs, | 
|  | [](const TemplateArgument &A, const TemplateArgument &B) { | 
|  | return A.structurallyEquals(B); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // We can get here with an alias template when the specialization | 
|  | // contains a pack expansion that does not match up with a parameter | 
|  | // pack, or a builtin template which cannot be resolved due to dependency. | 
|  | assert((!isa_and_nonnull<TypeAliasTemplateDecl>(TD) || | 
|  | hasAnyPackExpansions(CanonicalArgs)) && | 
|  | "Caller must compute aliased type"); | 
|  | IsTypeAlias = false; | 
|  |  | 
|  | Underlying = getCanonicalTemplateSpecializationType( | 
|  | CanonKeyword, CanonTemplate, CanonicalArgs); | 
|  | if (!NonCanonical) | 
|  | return Underlying; | 
|  | } | 
|  | void *Mem = Allocate(sizeof(TemplateSpecializationType) + | 
|  | sizeof(TemplateArgument) * SpecifiedArgs.size() + | 
|  | (IsTypeAlias ? sizeof(QualType) : 0), | 
|  | alignof(TemplateSpecializationType)); | 
|  | auto *Spec = new (Mem) TemplateSpecializationType( | 
|  | Keyword, Template, IsTypeAlias, SpecifiedArgs, Underlying); | 
|  | Types.push_back(Spec); | 
|  | return QualType(Spec, 0); | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ASTContext::getParenType(QualType InnerType) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ParenType::Profile(ID, InnerType); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (T) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | QualType Canon = InnerType; | 
|  | if (!Canon.isCanonical()) { | 
|  | Canon = getCanonicalType(InnerType); | 
|  | ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!CheckT && "Paren canonical type broken"); | 
|  | (void)CheckT; | 
|  | } | 
|  |  | 
|  | T = new (*this, alignof(ParenType)) ParenType(InnerType, Canon); | 
|  | Types.push_back(T); | 
|  | ParenTypes.InsertNode(T, InsertPos); | 
|  | return QualType(T, 0); | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ASTContext::getMacroQualifiedType(QualType UnderlyingTy, | 
|  | const IdentifierInfo *MacroII) const { | 
|  | QualType Canon = UnderlyingTy; | 
|  | if (!Canon.isCanonical()) | 
|  | Canon = getCanonicalType(UnderlyingTy); | 
|  |  | 
|  | auto *newType = new (*this, alignof(MacroQualifiedType)) | 
|  | MacroQualifiedType(UnderlyingTy, Canon, MacroII); | 
|  | Types.push_back(newType); | 
|  | return QualType(newType, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword, | 
|  | NestedNameSpecifier NNS, | 
|  | const IdentifierInfo *Name) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DependentNameType::Profile(ID, Keyword, NNS, Name); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (DependentNameType *T = | 
|  | DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | ElaboratedTypeKeyword CanonKeyword = | 
|  | getCanonicalElaboratedTypeKeyword(Keyword); | 
|  | NestedNameSpecifier CanonNNS = NNS.getCanonical(); | 
|  |  | 
|  | QualType Canon; | 
|  | if (CanonKeyword != Keyword || CanonNNS != NNS) { | 
|  | Canon = getDependentNameType(CanonKeyword, CanonNNS, Name); | 
|  | [[maybe_unused]] DependentNameType *T = | 
|  | DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!T && "broken canonicalization"); | 
|  | assert(Canon.isCanonical()); | 
|  | } | 
|  |  | 
|  | DependentNameType *T = new (*this, alignof(DependentNameType)) | 
|  | DependentNameType(Keyword, NNS, Name, Canon); | 
|  | Types.push_back(T); | 
|  | DependentNameTypes.InsertNode(T, InsertPos); | 
|  | return QualType(T, 0); | 
|  | } | 
|  |  | 
|  | TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) const { | 
|  | TemplateArgument Arg; | 
|  | if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) { | 
|  | QualType ArgType = getTypeDeclType(TTP); | 
|  | if (TTP->isParameterPack()) | 
|  | ArgType = getPackExpansionType(ArgType, std::nullopt); | 
|  |  | 
|  | Arg = TemplateArgument(ArgType); | 
|  | } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) { | 
|  | QualType T = | 
|  | NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this); | 
|  | // For class NTTPs, ensure we include the 'const' so the type matches that | 
|  | // of a real template argument. | 
|  | // FIXME: It would be more faithful to model this as something like an | 
|  | // lvalue-to-rvalue conversion applied to a const-qualified lvalue. | 
|  | ExprValueKind VK; | 
|  | if (T->isRecordType()) { | 
|  | // C++ [temp.param]p8: An id-expression naming a non-type | 
|  | // template-parameter of class type T denotes a static storage duration | 
|  | // object of type const T. | 
|  | T.addConst(); | 
|  | VK = VK_LValue; | 
|  | } else { | 
|  | VK = Expr::getValueKindForType(NTTP->getType()); | 
|  | } | 
|  | Expr *E = new (*this) | 
|  | DeclRefExpr(*this, NTTP, /*RefersToEnclosingVariableOrCapture=*/false, | 
|  | T, VK, NTTP->getLocation()); | 
|  |  | 
|  | if (NTTP->isParameterPack()) | 
|  | E = new (*this) PackExpansionExpr(E, NTTP->getLocation(), std::nullopt); | 
|  | Arg = TemplateArgument(E, /*IsCanonical=*/false); | 
|  | } else { | 
|  | auto *TTP = cast<TemplateTemplateParmDecl>(Param); | 
|  | TemplateName Name = getQualifiedTemplateName( | 
|  | /*Qualifier=*/std::nullopt, /*TemplateKeyword=*/false, | 
|  | TemplateName(TTP)); | 
|  | if (TTP->isParameterPack()) | 
|  | Arg = TemplateArgument(Name, /*NumExpansions=*/std::nullopt); | 
|  | else | 
|  | Arg = TemplateArgument(Name); | 
|  | } | 
|  |  | 
|  | if (Param->isTemplateParameterPack()) | 
|  | Arg = | 
|  | TemplateArgument::CreatePackCopy(const_cast<ASTContext &>(*this), Arg); | 
|  |  | 
|  | return Arg; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getPackExpansionType(QualType Pattern, | 
|  | UnsignedOrNone NumExpansions, | 
|  | bool ExpectPackInType) const { | 
|  | assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) && | 
|  | "Pack expansions must expand one or more parameter packs"); | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | PackExpansionType::Profile(ID, Pattern, NumExpansions); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (T) | 
|  | return QualType(T, 0); | 
|  |  | 
|  | QualType Canon; | 
|  | if (!Pattern.isCanonical()) { | 
|  | Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions, | 
|  | /*ExpectPackInType=*/false); | 
|  |  | 
|  | // Find the insert position again, in case we inserted an element into | 
|  | // PackExpansionTypes and invalidated our insert position. | 
|  | PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | } | 
|  |  | 
|  | T = new (*this, alignof(PackExpansionType)) | 
|  | PackExpansionType(Pattern, Canon, NumExpansions); | 
|  | Types.push_back(T); | 
|  | PackExpansionTypes.InsertNode(T, InsertPos); | 
|  | return QualType(T, 0); | 
|  | } | 
|  |  | 
|  | /// CmpProtocolNames - Comparison predicate for sorting protocols | 
|  | /// alphabetically. | 
|  | static int CmpProtocolNames(ObjCProtocolDecl *const *LHS, | 
|  | ObjCProtocolDecl *const *RHS) { | 
|  | return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName()); | 
|  | } | 
|  |  | 
|  | static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) { | 
|  | if (Protocols.empty()) return true; | 
|  |  | 
|  | if (Protocols[0]->getCanonicalDecl() != Protocols[0]) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 1; i != Protocols.size(); ++i) | 
|  | if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 || | 
|  | Protocols[i]->getCanonicalDecl() != Protocols[i]) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void | 
|  | SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) { | 
|  | // Sort protocols, keyed by name. | 
|  | llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames); | 
|  |  | 
|  | // Canonicalize. | 
|  | for (ObjCProtocolDecl *&P : Protocols) | 
|  | P = P->getCanonicalDecl(); | 
|  |  | 
|  | // Remove duplicates. | 
|  | auto ProtocolsEnd = llvm::unique(Protocols); | 
|  | Protocols.erase(ProtocolsEnd, Protocols.end()); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getObjCObjectType(QualType BaseType, | 
|  | ObjCProtocolDecl * const *Protocols, | 
|  | unsigned NumProtocols) const { | 
|  | return getObjCObjectType(BaseType, {}, ArrayRef(Protocols, NumProtocols), | 
|  | /*isKindOf=*/false); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getObjCObjectType( | 
|  | QualType baseType, | 
|  | ArrayRef<QualType> typeArgs, | 
|  | ArrayRef<ObjCProtocolDecl *> protocols, | 
|  | bool isKindOf) const { | 
|  | // If the base type is an interface and there aren't any protocols or | 
|  | // type arguments to add, then the interface type will do just fine. | 
|  | if (typeArgs.empty() && protocols.empty() && !isKindOf && | 
|  | isa<ObjCInterfaceType>(baseType)) | 
|  | return baseType; | 
|  |  | 
|  | // Look in the folding set for an existing type. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf); | 
|  | void *InsertPos = nullptr; | 
|  | if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(QT, 0); | 
|  |  | 
|  | // Determine the type arguments to be used for canonicalization, | 
|  | // which may be explicitly specified here or written on the base | 
|  | // type. | 
|  | ArrayRef<QualType> effectiveTypeArgs = typeArgs; | 
|  | if (effectiveTypeArgs.empty()) { | 
|  | if (const auto *baseObject = baseType->getAs<ObjCObjectType>()) | 
|  | effectiveTypeArgs = baseObject->getTypeArgs(); | 
|  | } | 
|  |  | 
|  | // Build the canonical type, which has the canonical base type and a | 
|  | // sorted-and-uniqued list of protocols and the type arguments | 
|  | // canonicalized. | 
|  | QualType canonical; | 
|  | bool typeArgsAreCanonical = llvm::all_of( | 
|  | effectiveTypeArgs, [&](QualType type) { return type.isCanonical(); }); | 
|  | bool protocolsSorted = areSortedAndUniqued(protocols); | 
|  | if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) { | 
|  | // Determine the canonical type arguments. | 
|  | ArrayRef<QualType> canonTypeArgs; | 
|  | SmallVector<QualType, 4> canonTypeArgsVec; | 
|  | if (!typeArgsAreCanonical) { | 
|  | canonTypeArgsVec.reserve(effectiveTypeArgs.size()); | 
|  | for (auto typeArg : effectiveTypeArgs) | 
|  | canonTypeArgsVec.push_back(getCanonicalType(typeArg)); | 
|  | canonTypeArgs = canonTypeArgsVec; | 
|  | } else { | 
|  | canonTypeArgs = effectiveTypeArgs; | 
|  | } | 
|  |  | 
|  | ArrayRef<ObjCProtocolDecl *> canonProtocols; | 
|  | SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec; | 
|  | if (!protocolsSorted) { | 
|  | canonProtocolsVec.append(protocols.begin(), protocols.end()); | 
|  | SortAndUniqueProtocols(canonProtocolsVec); | 
|  | canonProtocols = canonProtocolsVec; | 
|  | } else { | 
|  | canonProtocols = protocols; | 
|  | } | 
|  |  | 
|  | canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs, | 
|  | canonProtocols, isKindOf); | 
|  |  | 
|  | // Regenerate InsertPos. | 
|  | ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | } | 
|  |  | 
|  | unsigned size = sizeof(ObjCObjectTypeImpl); | 
|  | size += typeArgs.size() * sizeof(QualType); | 
|  | size += protocols.size() * sizeof(ObjCProtocolDecl *); | 
|  | void *mem = Allocate(size, alignof(ObjCObjectTypeImpl)); | 
|  | auto *T = | 
|  | new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols, | 
|  | isKindOf); | 
|  |  | 
|  | Types.push_back(T); | 
|  | ObjCObjectTypes.InsertNode(T, InsertPos); | 
|  | return QualType(T, 0); | 
|  | } | 
|  |  | 
|  | /// Apply Objective-C protocol qualifiers to the given type. | 
|  | /// If this is for the canonical type of a type parameter, we can apply | 
|  | /// protocol qualifiers on the ObjCObjectPointerType. | 
|  | QualType | 
|  | ASTContext::applyObjCProtocolQualifiers(QualType type, | 
|  | ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError, | 
|  | bool allowOnPointerType) const { | 
|  | hasError = false; | 
|  |  | 
|  | if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) { | 
|  | return getObjCTypeParamType(objT->getDecl(), protocols); | 
|  | } | 
|  |  | 
|  | // Apply protocol qualifiers to ObjCObjectPointerType. | 
|  | if (allowOnPointerType) { | 
|  | if (const auto *objPtr = | 
|  | dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) { | 
|  | const ObjCObjectType *objT = objPtr->getObjectType(); | 
|  | // Merge protocol lists and construct ObjCObjectType. | 
|  | SmallVector<ObjCProtocolDecl*, 8> protocolsVec; | 
|  | protocolsVec.append(objT->qual_begin(), | 
|  | objT->qual_end()); | 
|  | protocolsVec.append(protocols.begin(), protocols.end()); | 
|  | ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec; | 
|  | type = getObjCObjectType( | 
|  | objT->getBaseType(), | 
|  | objT->getTypeArgsAsWritten(), | 
|  | protocols, | 
|  | objT->isKindOfTypeAsWritten()); | 
|  | return getObjCObjectPointerType(type); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Apply protocol qualifiers to ObjCObjectType. | 
|  | if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){ | 
|  | // FIXME: Check for protocols to which the class type is already | 
|  | // known to conform. | 
|  |  | 
|  | return getObjCObjectType(objT->getBaseType(), | 
|  | objT->getTypeArgsAsWritten(), | 
|  | protocols, | 
|  | objT->isKindOfTypeAsWritten()); | 
|  | } | 
|  |  | 
|  | // If the canonical type is ObjCObjectType, ... | 
|  | if (type->isObjCObjectType()) { | 
|  | // Silently overwrite any existing protocol qualifiers. | 
|  | // TODO: determine whether that's the right thing to do. | 
|  |  | 
|  | // FIXME: Check for protocols to which the class type is already | 
|  | // known to conform. | 
|  | return getObjCObjectType(type, {}, protocols, false); | 
|  | } | 
|  |  | 
|  | // id<protocol-list> | 
|  | if (type->isObjCIdType()) { | 
|  | const auto *objPtr = type->castAs<ObjCObjectPointerType>(); | 
|  | type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols, | 
|  | objPtr->isKindOfType()); | 
|  | return getObjCObjectPointerType(type); | 
|  | } | 
|  |  | 
|  | // Class<protocol-list> | 
|  | if (type->isObjCClassType()) { | 
|  | const auto *objPtr = type->castAs<ObjCObjectPointerType>(); | 
|  | type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols, | 
|  | objPtr->isKindOfType()); | 
|  | return getObjCObjectPointerType(type); | 
|  | } | 
|  |  | 
|  | hasError = true; | 
|  | return type; | 
|  | } | 
|  |  | 
|  | QualType | 
|  | ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl, | 
|  | ArrayRef<ObjCProtocolDecl *> protocols) const { | 
|  | // Look in the folding set for an existing type. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols); | 
|  | void *InsertPos = nullptr; | 
|  | if (ObjCTypeParamType *TypeParam = | 
|  | ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(TypeParam, 0); | 
|  |  | 
|  | // We canonicalize to the underlying type. | 
|  | QualType Canonical = getCanonicalType(Decl->getUnderlyingType()); | 
|  | if (!protocols.empty()) { | 
|  | // Apply the protocol qualifers. | 
|  | bool hasError; | 
|  | Canonical = getCanonicalType(applyObjCProtocolQualifiers( | 
|  | Canonical, protocols, hasError, true /*allowOnPointerType*/)); | 
|  | assert(!hasError && "Error when apply protocol qualifier to bound type"); | 
|  | } | 
|  |  | 
|  | unsigned size = sizeof(ObjCTypeParamType); | 
|  | size += protocols.size() * sizeof(ObjCProtocolDecl *); | 
|  | void *mem = Allocate(size, alignof(ObjCTypeParamType)); | 
|  | auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols); | 
|  |  | 
|  | Types.push_back(newType); | 
|  | ObjCTypeParamTypes.InsertNode(newType, InsertPos); | 
|  | return QualType(newType, 0); | 
|  | } | 
|  |  | 
|  | void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig, | 
|  | ObjCTypeParamDecl *New) const { | 
|  | New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType())); | 
|  | // Update TypeForDecl after updating TypeSourceInfo. | 
|  | auto *NewTypeParamTy = cast<ObjCTypeParamType>(New->TypeForDecl); | 
|  | SmallVector<ObjCProtocolDecl *, 8> protocols; | 
|  | protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end()); | 
|  | QualType UpdatedTy = getObjCTypeParamType(New, protocols); | 
|  | New->TypeForDecl = UpdatedTy.getTypePtr(); | 
|  | } | 
|  |  | 
|  | /// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's | 
|  | /// protocol list adopt all protocols in QT's qualified-id protocol | 
|  | /// list. | 
|  | bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT, | 
|  | ObjCInterfaceDecl *IC) { | 
|  | if (!QT->isObjCQualifiedIdType()) | 
|  | return false; | 
|  |  | 
|  | if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) { | 
|  | // If both the right and left sides have qualifiers. | 
|  | for (auto *Proto : OPT->quals()) { | 
|  | if (!IC->ClassImplementsProtocol(Proto, false)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in | 
|  | /// QT's qualified-id protocol list adopt all protocols in IDecl's list | 
|  | /// of protocols. | 
|  | bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT, | 
|  | ObjCInterfaceDecl *IDecl) { | 
|  | if (!QT->isObjCQualifiedIdType()) | 
|  | return false; | 
|  | const auto *OPT = QT->getAs<ObjCObjectPointerType>(); | 
|  | if (!OPT) | 
|  | return false; | 
|  | if (!IDecl->hasDefinition()) | 
|  | return false; | 
|  | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols; | 
|  | CollectInheritedProtocols(IDecl, InheritedProtocols); | 
|  | if (InheritedProtocols.empty()) | 
|  | return false; | 
|  | // Check that if every protocol in list of id<plist> conforms to a protocol | 
|  | // of IDecl's, then bridge casting is ok. | 
|  | bool Conforms = false; | 
|  | for (auto *Proto : OPT->quals()) { | 
|  | Conforms = false; | 
|  | for (auto *PI : InheritedProtocols) { | 
|  | if (ProtocolCompatibleWithProtocol(Proto, PI)) { | 
|  | Conforms = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!Conforms) | 
|  | break; | 
|  | } | 
|  | if (Conforms) | 
|  | return true; | 
|  |  | 
|  | for (auto *PI : InheritedProtocols) { | 
|  | // If both the right and left sides have qualifiers. | 
|  | bool Adopts = false; | 
|  | for (auto *Proto : OPT->quals()) { | 
|  | // return 'true' if 'PI' is in the inheritance hierarchy of Proto | 
|  | if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto))) | 
|  | break; | 
|  | } | 
|  | if (!Adopts) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getObjCObjectPointerType - Return a ObjCObjectPointerType type for | 
|  | /// the given object type. | 
|  | QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | ObjCObjectPointerType::Profile(ID, ObjectT); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (ObjCObjectPointerType *QT = | 
|  | ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(QT, 0); | 
|  |  | 
|  | // Find the canonical object type. | 
|  | QualType Canonical; | 
|  | if (!ObjectT.isCanonical()) { | 
|  | Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT)); | 
|  |  | 
|  | // Regenerate InsertPos. | 
|  | ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | } | 
|  |  | 
|  | // No match. | 
|  | void *Mem = | 
|  | Allocate(sizeof(ObjCObjectPointerType), alignof(ObjCObjectPointerType)); | 
|  | auto *QType = | 
|  | new (Mem) ObjCObjectPointerType(Canonical, ObjectT); | 
|  |  | 
|  | Types.push_back(QType); | 
|  | ObjCObjectPointerTypes.InsertNode(QType, InsertPos); | 
|  | return QualType(QType, 0); | 
|  | } | 
|  |  | 
|  | /// getObjCInterfaceType - Return the unique reference to the type for the | 
|  | /// specified ObjC interface decl. The list of protocols is optional. | 
|  | QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl, | 
|  | ObjCInterfaceDecl *PrevDecl) const { | 
|  | if (Decl->TypeForDecl) | 
|  | return QualType(Decl->TypeForDecl, 0); | 
|  |  | 
|  | if (PrevDecl) { | 
|  | assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl"); | 
|  | Decl->TypeForDecl = PrevDecl->TypeForDecl; | 
|  | return QualType(PrevDecl->TypeForDecl, 0); | 
|  | } | 
|  |  | 
|  | // Prefer the definition, if there is one. | 
|  | if (const ObjCInterfaceDecl *Def = Decl->getDefinition()) | 
|  | Decl = Def; | 
|  |  | 
|  | void *Mem = Allocate(sizeof(ObjCInterfaceType), alignof(ObjCInterfaceType)); | 
|  | auto *T = new (Mem) ObjCInterfaceType(Decl); | 
|  | Decl->TypeForDecl = T; | 
|  | Types.push_back(T); | 
|  | return QualType(T, 0); | 
|  | } | 
|  |  | 
|  | /// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique | 
|  | /// TypeOfExprType AST's (since expression's are never shared). For example, | 
|  | /// multiple declarations that refer to "typeof(x)" all contain different | 
|  | /// DeclRefExpr's. This doesn't effect the type checker, since it operates | 
|  | /// on canonical type's (which are always unique). | 
|  | QualType ASTContext::getTypeOfExprType(Expr *tofExpr, TypeOfKind Kind) const { | 
|  | TypeOfExprType *toe; | 
|  | if (tofExpr->isTypeDependent()) { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DependentTypeOfExprType::Profile(ID, *this, tofExpr, | 
|  | Kind == TypeOfKind::Unqualified); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | DependentTypeOfExprType *Canon = | 
|  | DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (Canon) { | 
|  | // We already have a "canonical" version of an identical, dependent | 
|  | // typeof(expr) type. Use that as our canonical type. | 
|  | toe = new (*this, alignof(TypeOfExprType)) TypeOfExprType( | 
|  | *this, tofExpr, Kind, QualType((TypeOfExprType *)Canon, 0)); | 
|  | } else { | 
|  | // Build a new, canonical typeof(expr) type. | 
|  | Canon = new (*this, alignof(DependentTypeOfExprType)) | 
|  | DependentTypeOfExprType(*this, tofExpr, Kind); | 
|  | DependentTypeOfExprTypes.InsertNode(Canon, InsertPos); | 
|  | toe = Canon; | 
|  | } | 
|  | } else { | 
|  | QualType Canonical = getCanonicalType(tofExpr->getType()); | 
|  | toe = new (*this, alignof(TypeOfExprType)) | 
|  | TypeOfExprType(*this, tofExpr, Kind, Canonical); | 
|  | } | 
|  | Types.push_back(toe); | 
|  | return QualType(toe, 0); | 
|  | } | 
|  |  | 
|  | /// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique | 
|  | /// TypeOfType nodes. The only motivation to unique these nodes would be | 
|  | /// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be | 
|  | /// an issue. This doesn't affect the type checker, since it operates | 
|  | /// on canonical types (which are always unique). | 
|  | QualType ASTContext::getTypeOfType(QualType tofType, TypeOfKind Kind) const { | 
|  | QualType Canonical = getCanonicalType(tofType); | 
|  | auto *tot = new (*this, alignof(TypeOfType)) | 
|  | TypeOfType(*this, tofType, Canonical, Kind); | 
|  | Types.push_back(tot); | 
|  | return QualType(tot, 0); | 
|  | } | 
|  |  | 
|  | /// getReferenceQualifiedType - Given an expr, will return the type for | 
|  | /// that expression, as in [dcl.type.simple]p4 but without taking id-expressions | 
|  | /// and class member access into account. | 
|  | QualType ASTContext::getReferenceQualifiedType(const Expr *E) const { | 
|  | // C++11 [dcl.type.simple]p4: | 
|  | //   [...] | 
|  | QualType T = E->getType(); | 
|  | switch (E->getValueKind()) { | 
|  | //     - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the | 
|  | //       type of e; | 
|  | case VK_XValue: | 
|  | return getRValueReferenceType(T); | 
|  | //     - otherwise, if e is an lvalue, decltype(e) is T&, where T is the | 
|  | //       type of e; | 
|  | case VK_LValue: | 
|  | return getLValueReferenceType(T); | 
|  | //  - otherwise, decltype(e) is the type of e. | 
|  | case VK_PRValue: | 
|  | return T; | 
|  | } | 
|  | llvm_unreachable("Unknown value kind"); | 
|  | } | 
|  |  | 
|  | /// Unlike many "get<Type>" functions, we don't unique DecltypeType | 
|  | /// nodes. This would never be helpful, since each such type has its own | 
|  | /// expression, and would not give a significant memory saving, since there | 
|  | /// is an Expr tree under each such type. | 
|  | QualType ASTContext::getDecltypeType(Expr *E, QualType UnderlyingType) const { | 
|  | // C++11 [temp.type]p2: | 
|  | //   If an expression e involves a template parameter, decltype(e) denotes a | 
|  | //   unique dependent type. Two such decltype-specifiers refer to the same | 
|  | //   type only if their expressions are equivalent (14.5.6.1). | 
|  | QualType CanonType; | 
|  | if (!E->isInstantiationDependent()) { | 
|  | CanonType = getCanonicalType(UnderlyingType); | 
|  | } else if (!UnderlyingType.isNull()) { | 
|  | CanonType = getDecltypeType(E, QualType()); | 
|  | } else { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DependentDecltypeType::Profile(ID, *this, E); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (DependentDecltypeType *Canon = | 
|  | DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(Canon, 0); | 
|  |  | 
|  | // Build a new, canonical decltype(expr) type. | 
|  | auto *DT = | 
|  | new (*this, alignof(DependentDecltypeType)) DependentDecltypeType(E); | 
|  | DependentDecltypeTypes.InsertNode(DT, InsertPos); | 
|  | Types.push_back(DT); | 
|  | return QualType(DT, 0); | 
|  | } | 
|  | auto *DT = new (*this, alignof(DecltypeType)) | 
|  | DecltypeType(E, UnderlyingType, CanonType); | 
|  | Types.push_back(DT); | 
|  | return QualType(DT, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getPackIndexingType(QualType Pattern, Expr *IndexExpr, | 
|  | bool FullySubstituted, | 
|  | ArrayRef<QualType> Expansions, | 
|  | UnsignedOrNone Index) const { | 
|  | QualType Canonical; | 
|  | if (FullySubstituted && Index) { | 
|  | Canonical = getCanonicalType(Expansions[*Index]); | 
|  | } else { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | PackIndexingType::Profile(ID, *this, Pattern.getCanonicalType(), IndexExpr, | 
|  | FullySubstituted, Expansions); | 
|  | void *InsertPos = nullptr; | 
|  | PackIndexingType *Canon = | 
|  | DependentPackIndexingTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (!Canon) { | 
|  | void *Mem = Allocate( | 
|  | PackIndexingType::totalSizeToAlloc<QualType>(Expansions.size()), | 
|  | TypeAlignment); | 
|  | Canon = | 
|  | new (Mem) PackIndexingType(QualType(), Pattern.getCanonicalType(), | 
|  | IndexExpr, FullySubstituted, Expansions); | 
|  | DependentPackIndexingTypes.InsertNode(Canon, InsertPos); | 
|  | } | 
|  | Canonical = QualType(Canon, 0); | 
|  | } | 
|  |  | 
|  | void *Mem = | 
|  | Allocate(PackIndexingType::totalSizeToAlloc<QualType>(Expansions.size()), | 
|  | TypeAlignment); | 
|  | auto *T = new (Mem) PackIndexingType(Canonical, Pattern, IndexExpr, | 
|  | FullySubstituted, Expansions); | 
|  | Types.push_back(T); | 
|  | return QualType(T, 0); | 
|  | } | 
|  |  | 
|  | /// getUnaryTransformationType - We don't unique these, since the memory | 
|  | /// savings are minimal and these are rare. | 
|  | QualType | 
|  | ASTContext::getUnaryTransformType(QualType BaseType, QualType UnderlyingType, | 
|  | UnaryTransformType::UTTKind Kind) const { | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | UnaryTransformType::Profile(ID, BaseType, UnderlyingType, Kind); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (UnaryTransformType *UT = | 
|  | UnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(UT, 0); | 
|  |  | 
|  | QualType CanonType; | 
|  | if (!BaseType->isDependentType()) { | 
|  | CanonType = UnderlyingType.getCanonicalType(); | 
|  | } else { | 
|  | assert(UnderlyingType.isNull() || BaseType == UnderlyingType); | 
|  | UnderlyingType = QualType(); | 
|  | if (QualType CanonBase = BaseType.getCanonicalType(); | 
|  | BaseType != CanonBase) { | 
|  | CanonType = getUnaryTransformType(CanonBase, QualType(), Kind); | 
|  | assert(CanonType.isCanonical()); | 
|  |  | 
|  | // Find the insertion position again. | 
|  | [[maybe_unused]] UnaryTransformType *UT = | 
|  | UnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!UT && "broken canonicalization"); | 
|  | } | 
|  | } | 
|  |  | 
|  | auto *UT = new (*this, alignof(UnaryTransformType)) | 
|  | UnaryTransformType(BaseType, UnderlyingType, Kind, CanonType); | 
|  | UnaryTransformTypes.InsertNode(UT, InsertPos); | 
|  | Types.push_back(UT); | 
|  | return QualType(UT, 0); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getAutoTypeInternal( | 
|  | QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent, | 
|  | bool IsPack, TemplateDecl *TypeConstraintConcept, | 
|  | ArrayRef<TemplateArgument> TypeConstraintArgs, bool IsCanon) const { | 
|  | if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto && | 
|  | !TypeConstraintConcept && !IsDependent) | 
|  | return getAutoDeductType(); | 
|  |  | 
|  | // Look in the folding set for an existing type. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | bool IsDeducedDependent = | 
|  | isa_and_nonnull<TemplateTemplateParmDecl>(TypeConstraintConcept) || | 
|  | (!DeducedType.isNull() && DeducedType->isDependentType()); | 
|  | AutoType::Profile(ID, *this, DeducedType, Keyword, | 
|  | IsDependent || IsDeducedDependent, TypeConstraintConcept, | 
|  | TypeConstraintArgs); | 
|  | if (auto const AT_iter = AutoTypes.find(ID); AT_iter != AutoTypes.end()) | 
|  | return QualType(AT_iter->getSecond(), 0); | 
|  |  | 
|  | QualType Canon; | 
|  | if (!IsCanon) { | 
|  | if (!DeducedType.isNull()) { | 
|  | Canon = DeducedType.getCanonicalType(); | 
|  | } else if (TypeConstraintConcept) { | 
|  | bool AnyNonCanonArgs = false; | 
|  | auto *CanonicalConcept = | 
|  | cast<TemplateDecl>(TypeConstraintConcept->getCanonicalDecl()); | 
|  | auto CanonicalConceptArgs = ::getCanonicalTemplateArguments( | 
|  | *this, TypeConstraintArgs, AnyNonCanonArgs); | 
|  | if (CanonicalConcept != TypeConstraintConcept || AnyNonCanonArgs) { | 
|  | Canon = getAutoTypeInternal(QualType(), Keyword, IsDependent, IsPack, | 
|  | CanonicalConcept, CanonicalConceptArgs, | 
|  | /*IsCanon=*/true); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void *Mem = Allocate(sizeof(AutoType) + | 
|  | sizeof(TemplateArgument) * TypeConstraintArgs.size(), | 
|  | alignof(AutoType)); | 
|  | auto *AT = new (Mem) AutoType( | 
|  | DeducedType, Keyword, | 
|  | (IsDependent ? TypeDependence::DependentInstantiation | 
|  | : TypeDependence::None) | | 
|  | (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None), | 
|  | Canon, TypeConstraintConcept, TypeConstraintArgs); | 
|  | #ifndef NDEBUG | 
|  | llvm::FoldingSetNodeID InsertedID; | 
|  | AT->Profile(InsertedID, *this); | 
|  | assert(InsertedID == ID && "ID does not match"); | 
|  | #endif | 
|  | Types.push_back(AT); | 
|  | AutoTypes.try_emplace(ID, AT); | 
|  | return QualType(AT, 0); | 
|  | } | 
|  |  | 
|  | /// getAutoType - Return the uniqued reference to the 'auto' type which has been | 
|  | /// deduced to the given type, or to the canonical undeduced 'auto' type, or the | 
|  | /// canonical deduced-but-dependent 'auto' type. | 
|  | QualType | 
|  | ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword, | 
|  | bool IsDependent, bool IsPack, | 
|  | TemplateDecl *TypeConstraintConcept, | 
|  | ArrayRef<TemplateArgument> TypeConstraintArgs) const { | 
|  | assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack"); | 
|  | assert((!IsDependent || DeducedType.isNull()) && | 
|  | "A dependent auto should be undeduced"); | 
|  | return getAutoTypeInternal(DeducedType, Keyword, IsDependent, IsPack, | 
|  | TypeConstraintConcept, TypeConstraintArgs); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getUnconstrainedType(QualType T) const { | 
|  | QualType CanonT = T.getNonPackExpansionType().getCanonicalType(); | 
|  |  | 
|  | // Remove a type-constraint from a top-level auto or decltype(auto). | 
|  | if (auto *AT = CanonT->getAs<AutoType>()) { | 
|  | if (!AT->isConstrained()) | 
|  | return T; | 
|  | return getQualifiedType(getAutoType(QualType(), AT->getKeyword(), | 
|  | AT->isDependentType(), | 
|  | AT->containsUnexpandedParameterPack()), | 
|  | T.getQualifiers()); | 
|  | } | 
|  |  | 
|  | // FIXME: We only support constrained auto at the top level in the type of a | 
|  | // non-type template parameter at the moment. Once we lift that restriction, | 
|  | // we'll need to recursively build types containing auto here. | 
|  | assert(!CanonT->getContainedAutoType() || | 
|  | !CanonT->getContainedAutoType()->isConstrained()); | 
|  | return T; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getDeducedTemplateSpecializationTypeInternal( | 
|  | ElaboratedTypeKeyword Keyword, TemplateName Template, QualType DeducedType, | 
|  | bool IsDependent, QualType Canon) const { | 
|  | // Look in the folding set for an existing type. | 
|  | void *InsertPos = nullptr; | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DeducedTemplateSpecializationType::Profile(ID, Keyword, Template, DeducedType, | 
|  | IsDependent); | 
|  | if (DeducedTemplateSpecializationType *DTST = | 
|  | DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(DTST, 0); | 
|  |  | 
|  | auto *DTST = new (*this, alignof(DeducedTemplateSpecializationType)) | 
|  | DeducedTemplateSpecializationType(Keyword, Template, DeducedType, | 
|  | IsDependent, Canon); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | llvm::FoldingSetNodeID TempID; | 
|  | DTST->Profile(TempID); | 
|  | assert(ID == TempID && "ID does not match"); | 
|  | #endif | 
|  | Types.push_back(DTST); | 
|  | DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos); | 
|  | return QualType(DTST, 0); | 
|  | } | 
|  |  | 
|  | /// Return the uniqued reference to the deduced template specialization type | 
|  | /// which has been deduced to the given type, or to the canonical undeduced | 
|  | /// such type, or the canonical deduced-but-dependent such type. | 
|  | QualType ASTContext::getDeducedTemplateSpecializationType( | 
|  | ElaboratedTypeKeyword Keyword, TemplateName Template, QualType DeducedType, | 
|  | bool IsDependent) const { | 
|  | // FIXME: This could save an extra hash table lookup if it handled all the | 
|  | // parameters already being canonical. | 
|  | // FIXME: Can this be formed from a DependentTemplateName, such that the | 
|  | // keyword should be part of the canonical type? | 
|  | QualType Canon = | 
|  | DeducedType.isNull() | 
|  | ? getDeducedTemplateSpecializationTypeInternal( | 
|  | ElaboratedTypeKeyword::None, getCanonicalTemplateName(Template), | 
|  | QualType(), IsDependent, QualType()) | 
|  | : DeducedType.getCanonicalType(); | 
|  | return getDeducedTemplateSpecializationTypeInternal( | 
|  | Keyword, Template, DeducedType, IsDependent, Canon); | 
|  | } | 
|  |  | 
|  | /// getAtomicType - Return the uniqued reference to the atomic type for | 
|  | /// the given value type. | 
|  | QualType ASTContext::getAtomicType(QualType T) const { | 
|  | // Unique pointers, to guarantee there is only one pointer of a particular | 
|  | // structure. | 
|  | llvm::FoldingSetNodeID ID; | 
|  | AtomicType::Profile(ID, T); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return QualType(AT, 0); | 
|  |  | 
|  | // If the atomic value type isn't canonical, this won't be a canonical type | 
|  | // either, so fill in the canonical type field. | 
|  | QualType Canonical; | 
|  | if (!T.isCanonical()) { | 
|  | Canonical = getAtomicType(getCanonicalType(T)); | 
|  |  | 
|  | // Get the new insert position for the node we care about. | 
|  | AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos); | 
|  | assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP; | 
|  | } | 
|  | auto *New = new (*this, alignof(AtomicType)) AtomicType(T, Canonical); | 
|  | Types.push_back(New); | 
|  | AtomicTypes.InsertNode(New, InsertPos); | 
|  | return QualType(New, 0); | 
|  | } | 
|  |  | 
|  | /// getAutoDeductType - Get type pattern for deducing against 'auto'. | 
|  | QualType ASTContext::getAutoDeductType() const { | 
|  | if (AutoDeductTy.isNull()) | 
|  | AutoDeductTy = QualType(new (*this, alignof(AutoType)) | 
|  | AutoType(QualType(), AutoTypeKeyword::Auto, | 
|  | TypeDependence::None, QualType(), | 
|  | /*concept*/ nullptr, /*args*/ {}), | 
|  | 0); | 
|  | return AutoDeductTy; | 
|  | } | 
|  |  | 
|  | /// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'. | 
|  | QualType ASTContext::getAutoRRefDeductType() const { | 
|  | if (AutoRRefDeductTy.isNull()) | 
|  | AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType()); | 
|  | assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern"); | 
|  | return AutoRRefDeductTy; | 
|  | } | 
|  |  | 
|  | /// getSizeType - Return the unique type for "size_t" (C99 7.17), the result | 
|  | /// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and | 
|  | /// needs to agree with the definition in <stddef.h>. | 
|  | QualType ASTContext::getSizeType() const { | 
|  | return getPredefinedSugarType(PredefinedSugarType::Kind::SizeT); | 
|  | } | 
|  |  | 
|  | CanQualType ASTContext::getCanonicalSizeType() const { | 
|  | return getFromTargetType(Target->getSizeType()); | 
|  | } | 
|  |  | 
|  | /// Return the unique signed counterpart of the integer type | 
|  | /// corresponding to size_t. | 
|  | QualType ASTContext::getSignedSizeType() const { | 
|  | return getPredefinedSugarType(PredefinedSugarType::Kind::SignedSizeT); | 
|  | } | 
|  |  | 
|  | /// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17) | 
|  | /// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9). | 
|  | QualType ASTContext::getPointerDiffType() const { | 
|  | return getPredefinedSugarType(PredefinedSugarType::Kind::PtrdiffT); | 
|  | } | 
|  |  | 
|  | /// Return the unique unsigned counterpart of "ptrdiff_t" | 
|  | /// integer type. The standard (C11 7.21.6.1p7) refers to this type | 
|  | /// in the definition of %tu format specifier. | 
|  | QualType ASTContext::getUnsignedPointerDiffType() const { | 
|  | return getFromTargetType(Target->getUnsignedPtrDiffType(LangAS::Default)); | 
|  | } | 
|  |  | 
|  | /// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5). | 
|  | CanQualType ASTContext::getIntMaxType() const { | 
|  | return getFromTargetType(Target->getIntMaxType()); | 
|  | } | 
|  |  | 
|  | /// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5). | 
|  | CanQualType ASTContext::getUIntMaxType() const { | 
|  | return getFromTargetType(Target->getUIntMaxType()); | 
|  | } | 
|  |  | 
|  | /// getSignedWCharType - Return the type of "signed wchar_t". | 
|  | /// Used when in C++, as a GCC extension. | 
|  | QualType ASTContext::getSignedWCharType() const { | 
|  | // FIXME: derive from "Target" ? | 
|  | return WCharTy; | 
|  | } | 
|  |  | 
|  | /// getUnsignedWCharType - Return the type of "unsigned wchar_t". | 
|  | /// Used when in C++, as a GCC extension. | 
|  | QualType ASTContext::getUnsignedWCharType() const { | 
|  | // FIXME: derive from "Target" ? | 
|  | return UnsignedIntTy; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getIntPtrType() const { | 
|  | return getFromTargetType(Target->getIntPtrType()); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getUIntPtrType() const { | 
|  | return getCorrespondingUnsignedType(getIntPtrType()); | 
|  | } | 
|  |  | 
|  | /// Return the unique type for "pid_t" defined in | 
|  | /// <sys/types.h>. We need this to compute the correct type for vfork(). | 
|  | QualType ASTContext::getProcessIDType() const { | 
|  | return getFromTargetType(Target->getProcessIDType()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                              Type Operators | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | CanQualType ASTContext::getCanonicalParamType(QualType T) const { | 
|  | // Push qualifiers into arrays, and then discard any remaining | 
|  | // qualifiers. | 
|  | T = getCanonicalType(T); | 
|  | T = getVariableArrayDecayedType(T); | 
|  | const Type *Ty = T.getTypePtr(); | 
|  | QualType Result; | 
|  | if (getLangOpts().HLSL && isa<ConstantArrayType>(Ty)) { | 
|  | Result = getArrayParameterType(QualType(Ty, 0)); | 
|  | } else if (isa<ArrayType>(Ty)) { | 
|  | Result = getArrayDecayedType(QualType(Ty,0)); | 
|  | } else if (isa<FunctionType>(Ty)) { | 
|  | Result = getPointerType(QualType(Ty, 0)); | 
|  | } else { | 
|  | Result = QualType(Ty, 0); | 
|  | } | 
|  |  | 
|  | return CanQualType::CreateUnsafe(Result); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getUnqualifiedArrayType(QualType type, | 
|  | Qualifiers &quals) const { | 
|  | SplitQualType splitType = type.getSplitUnqualifiedType(); | 
|  |  | 
|  | // FIXME: getSplitUnqualifiedType() actually walks all the way to | 
|  | // the unqualified desugared type and then drops it on the floor. | 
|  | // We then have to strip that sugar back off with | 
|  | // getUnqualifiedDesugaredType(), which is silly. | 
|  | const auto *AT = | 
|  | dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType()); | 
|  |  | 
|  | // If we don't have an array, just use the results in splitType. | 
|  | if (!AT) { | 
|  | quals = splitType.Quals; | 
|  | return QualType(splitType.Ty, 0); | 
|  | } | 
|  |  | 
|  | // Otherwise, recurse on the array's element type. | 
|  | QualType elementType = AT->getElementType(); | 
|  | QualType unqualElementType = getUnqualifiedArrayType(elementType, quals); | 
|  |  | 
|  | // If that didn't change the element type, AT has no qualifiers, so we | 
|  | // can just use the results in splitType. | 
|  | if (elementType == unqualElementType) { | 
|  | assert(quals.empty()); // from the recursive call | 
|  | quals = splitType.Quals; | 
|  | return QualType(splitType.Ty, 0); | 
|  | } | 
|  |  | 
|  | // Otherwise, add in the qualifiers from the outermost type, then | 
|  | // build the type back up. | 
|  | quals.addConsistentQualifiers(splitType.Quals); | 
|  |  | 
|  | if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) { | 
|  | return getConstantArrayType(unqualElementType, CAT->getSize(), | 
|  | CAT->getSizeExpr(), CAT->getSizeModifier(), 0); | 
|  | } | 
|  |  | 
|  | if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) { | 
|  | return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0); | 
|  | } | 
|  |  | 
|  | if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) { | 
|  | return getVariableArrayType(unqualElementType, VAT->getSizeExpr(), | 
|  | VAT->getSizeModifier(), | 
|  | VAT->getIndexTypeCVRQualifiers()); | 
|  | } | 
|  |  | 
|  | const auto *DSAT = cast<DependentSizedArrayType>(AT); | 
|  | return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(), | 
|  | DSAT->getSizeModifier(), 0); | 
|  | } | 
|  |  | 
|  | /// Attempt to unwrap two types that may both be array types with the same bound | 
|  | /// (or both be array types of unknown bound) for the purpose of comparing the | 
|  | /// cv-decomposition of two types per C++ [conv.qual]. | 
|  | /// | 
|  | /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in | 
|  | ///        C++20 [conv.qual], if permitted by the current language mode. | 
|  | void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2, | 
|  | bool AllowPiMismatch) const { | 
|  | while (true) { | 
|  | auto *AT1 = getAsArrayType(T1); | 
|  | if (!AT1) | 
|  | return; | 
|  |  | 
|  | auto *AT2 = getAsArrayType(T2); | 
|  | if (!AT2) | 
|  | return; | 
|  |  | 
|  | // If we don't have two array types with the same constant bound nor two | 
|  | // incomplete array types, we've unwrapped everything we can. | 
|  | // C++20 also permits one type to be a constant array type and the other | 
|  | // to be an incomplete array type. | 
|  | // FIXME: Consider also unwrapping array of unknown bound and VLA. | 
|  | if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) { | 
|  | auto *CAT2 = dyn_cast<ConstantArrayType>(AT2); | 
|  | if (!((CAT2 && CAT1->getSize() == CAT2->getSize()) || | 
|  | (AllowPiMismatch && getLangOpts().CPlusPlus20 && | 
|  | isa<IncompleteArrayType>(AT2)))) | 
|  | return; | 
|  | } else if (isa<IncompleteArrayType>(AT1)) { | 
|  | if (!(isa<IncompleteArrayType>(AT2) || | 
|  | (AllowPiMismatch && getLangOpts().CPlusPlus20 && | 
|  | isa<ConstantArrayType>(AT2)))) | 
|  | return; | 
|  | } else { | 
|  | return; | 
|  | } | 
|  |  | 
|  | T1 = AT1->getElementType(); | 
|  | T2 = AT2->getElementType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Attempt to unwrap two types that may be similar (C++ [conv.qual]). | 
|  | /// | 
|  | /// If T1 and T2 are both pointer types of the same kind, or both array types | 
|  | /// with the same bound, unwraps layers from T1 and T2 until a pointer type is | 
|  | /// unwrapped. Top-level qualifiers on T1 and T2 are ignored. | 
|  | /// | 
|  | /// This function will typically be called in a loop that successively | 
|  | /// "unwraps" pointer and pointer-to-member types to compare them at each | 
|  | /// level. | 
|  | /// | 
|  | /// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in | 
|  | ///        C++20 [conv.qual], if permitted by the current language mode. | 
|  | /// | 
|  | /// \return \c true if a pointer type was unwrapped, \c false if we reached a | 
|  | /// pair of types that can't be unwrapped further. | 
|  | bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2, | 
|  | bool AllowPiMismatch) const { | 
|  | UnwrapSimilarArrayTypes(T1, T2, AllowPiMismatch); | 
|  |  | 
|  | const auto *T1PtrType = T1->getAs<PointerType>(); | 
|  | const auto *T2PtrType = T2->getAs<PointerType>(); | 
|  | if (T1PtrType && T2PtrType) { | 
|  | T1 = T1PtrType->getPointeeType(); | 
|  | T2 = T2PtrType->getPointeeType(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (const auto *T1MPType = T1->getAs<MemberPointerType>(), | 
|  | *T2MPType = T2->getAs<MemberPointerType>(); | 
|  | T1MPType && T2MPType) { | 
|  | if (auto *RD1 = T1MPType->getMostRecentCXXRecordDecl(), | 
|  | *RD2 = T2MPType->getMostRecentCXXRecordDecl(); | 
|  | RD1 != RD2 && RD1->getCanonicalDecl() != RD2->getCanonicalDecl()) | 
|  | return false; | 
|  | if (T1MPType->getQualifier().getCanonical() != | 
|  | T2MPType->getQualifier().getCanonical()) | 
|  | return false; | 
|  | T1 = T1MPType->getPointeeType(); | 
|  | T2 = T2MPType->getPointeeType(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (getLangOpts().ObjC) { | 
|  | const auto *T1OPType = T1->getAs<ObjCObjectPointerType>(); | 
|  | const auto *T2OPType = T2->getAs<ObjCObjectPointerType>(); | 
|  | if (T1OPType && T2OPType) { | 
|  | T1 = T1OPType->getPointeeType(); | 
|  | T2 = T2OPType->getPointeeType(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: Block pointers, too? | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ASTContext::hasSimilarType(QualType T1, QualType T2) const { | 
|  | while (true) { | 
|  | Qualifiers Quals; | 
|  | T1 = getUnqualifiedArrayType(T1, Quals); | 
|  | T2 = getUnqualifiedArrayType(T2, Quals); | 
|  | if (hasSameType(T1, T2)) | 
|  | return true; | 
|  | if (!UnwrapSimilarTypes(T1, T2)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) { | 
|  | while (true) { | 
|  | Qualifiers Quals1, Quals2; | 
|  | T1 = getUnqualifiedArrayType(T1, Quals1); | 
|  | T2 = getUnqualifiedArrayType(T2, Quals2); | 
|  |  | 
|  | Quals1.removeCVRQualifiers(); | 
|  | Quals2.removeCVRQualifiers(); | 
|  | if (Quals1 != Quals2) | 
|  | return false; | 
|  |  | 
|  | if (hasSameType(T1, T2)) | 
|  | return true; | 
|  |  | 
|  | if (!UnwrapSimilarTypes(T1, T2, /*AllowPiMismatch*/ false)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | DeclarationNameInfo | 
|  | ASTContext::getNameForTemplate(TemplateName Name, | 
|  | SourceLocation NameLoc) const { | 
|  | switch (Name.getKind()) { | 
|  | case TemplateName::QualifiedTemplate: | 
|  | case TemplateName::Template: | 
|  | // DNInfo work in progress: CHECKME: what about DNLoc? | 
|  | return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(), | 
|  | NameLoc); | 
|  |  | 
|  | case TemplateName::OverloadedTemplate: { | 
|  | OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate(); | 
|  | // DNInfo work in progress: CHECKME: what about DNLoc? | 
|  | return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc); | 
|  | } | 
|  |  | 
|  | case TemplateName::AssumedTemplate: { | 
|  | AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName(); | 
|  | return DeclarationNameInfo(Storage->getDeclName(), NameLoc); | 
|  | } | 
|  |  | 
|  | case TemplateName::DependentTemplate: { | 
|  | DependentTemplateName *DTN = Name.getAsDependentTemplateName(); | 
|  | IdentifierOrOverloadedOperator TN = DTN->getName(); | 
|  | DeclarationName DName; | 
|  | if (const IdentifierInfo *II = TN.getIdentifier()) { | 
|  | DName = DeclarationNames.getIdentifier(II); | 
|  | return DeclarationNameInfo(DName, NameLoc); | 
|  | } else { | 
|  | DName = DeclarationNames.getCXXOperatorName(TN.getOperator()); | 
|  | // DNInfo work in progress: FIXME: source locations? | 
|  | DeclarationNameLoc DNLoc = | 
|  | DeclarationNameLoc::makeCXXOperatorNameLoc(SourceRange()); | 
|  | return DeclarationNameInfo(DName, NameLoc, DNLoc); | 
|  | } | 
|  | } | 
|  |  | 
|  | case TemplateName::SubstTemplateTemplateParm: { | 
|  | SubstTemplateTemplateParmStorage *subst | 
|  | = Name.getAsSubstTemplateTemplateParm(); | 
|  | return DeclarationNameInfo(subst->getParameter()->getDeclName(), | 
|  | NameLoc); | 
|  | } | 
|  |  | 
|  | case TemplateName::SubstTemplateTemplateParmPack: { | 
|  | SubstTemplateTemplateParmPackStorage *subst | 
|  | = Name.getAsSubstTemplateTemplateParmPack(); | 
|  | return DeclarationNameInfo(subst->getParameterPack()->getDeclName(), | 
|  | NameLoc); | 
|  | } | 
|  | case TemplateName::UsingTemplate: | 
|  | return DeclarationNameInfo(Name.getAsUsingShadowDecl()->getDeclName(), | 
|  | NameLoc); | 
|  | case TemplateName::DeducedTemplate: { | 
|  | DeducedTemplateStorage *DTS = Name.getAsDeducedTemplateName(); | 
|  | return getNameForTemplate(DTS->getUnderlying(), NameLoc); | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("bad template name kind!"); | 
|  | } | 
|  |  | 
|  | static const TemplateArgument * | 
|  | getDefaultTemplateArgumentOrNone(const NamedDecl *P) { | 
|  | auto handleParam = [](auto *TP) -> const TemplateArgument * { | 
|  | if (!TP->hasDefaultArgument()) | 
|  | return nullptr; | 
|  | return &TP->getDefaultArgument().getArgument(); | 
|  | }; | 
|  | switch (P->getKind()) { | 
|  | case NamedDecl::TemplateTypeParm: | 
|  | return handleParam(cast<TemplateTypeParmDecl>(P)); | 
|  | case NamedDecl::NonTypeTemplateParm: | 
|  | return handleParam(cast<NonTypeTemplateParmDecl>(P)); | 
|  | case NamedDecl::TemplateTemplateParm: | 
|  | return handleParam(cast<TemplateTemplateParmDecl>(P)); | 
|  | default: | 
|  | llvm_unreachable("Unexpected template parameter kind"); | 
|  | } | 
|  | } | 
|  |  | 
|  | TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name, | 
|  | bool IgnoreDeduced) const { | 
|  | while (std::optional<TemplateName> UnderlyingOrNone = | 
|  | Name.desugar(IgnoreDeduced)) | 
|  | Name = *UnderlyingOrNone; | 
|  |  | 
|  | switch (Name.getKind()) { | 
|  | case TemplateName::Template: { | 
|  | TemplateDecl *Template = Name.getAsTemplateDecl(); | 
|  | if (auto *TTP  = dyn_cast<TemplateTemplateParmDecl>(Template)) | 
|  | Template = getCanonicalTemplateTemplateParmDecl(TTP); | 
|  |  | 
|  | // The canonical template name is the canonical template declaration. | 
|  | return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl())); | 
|  | } | 
|  |  | 
|  | case TemplateName::OverloadedTemplate: | 
|  | case TemplateName::AssumedTemplate: | 
|  | llvm_unreachable("cannot canonicalize unresolved template"); | 
|  |  | 
|  | case TemplateName::DependentTemplate: { | 
|  | DependentTemplateName *DTN = Name.getAsDependentTemplateName(); | 
|  | assert(DTN && "Non-dependent template names must refer to template decls."); | 
|  | NestedNameSpecifier Qualifier = DTN->getQualifier(); | 
|  | NestedNameSpecifier CanonQualifier = Qualifier.getCanonical(); | 
|  | if (Qualifier != CanonQualifier || !DTN->hasTemplateKeyword()) | 
|  | return getDependentTemplateName({CanonQualifier, DTN->getName(), | 
|  | /*HasTemplateKeyword=*/true}); | 
|  | return Name; | 
|  | } | 
|  |  | 
|  | case TemplateName::SubstTemplateTemplateParmPack: { | 
|  | SubstTemplateTemplateParmPackStorage *subst = | 
|  | Name.getAsSubstTemplateTemplateParmPack(); | 
|  | TemplateArgument canonArgPack = | 
|  | getCanonicalTemplateArgument(subst->getArgumentPack()); | 
|  | return getSubstTemplateTemplateParmPack( | 
|  | canonArgPack, subst->getAssociatedDecl()->getCanonicalDecl(), | 
|  | subst->getIndex(), subst->getFinal()); | 
|  | } | 
|  | case TemplateName::DeducedTemplate: { | 
|  | assert(IgnoreDeduced == false); | 
|  | DeducedTemplateStorage *DTS = Name.getAsDeducedTemplateName(); | 
|  | DefaultArguments DefArgs = DTS->getDefaultArguments(); | 
|  | TemplateName Underlying = DTS->getUnderlying(); | 
|  |  | 
|  | TemplateName CanonUnderlying = | 
|  | getCanonicalTemplateName(Underlying, /*IgnoreDeduced=*/true); | 
|  | bool NonCanonical = CanonUnderlying != Underlying; | 
|  | auto CanonArgs = | 
|  | getCanonicalTemplateArguments(*this, DefArgs.Args, NonCanonical); | 
|  |  | 
|  | ArrayRef<NamedDecl *> Params = | 
|  | CanonUnderlying.getAsTemplateDecl()->getTemplateParameters()->asArray(); | 
|  | assert(CanonArgs.size() <= Params.size()); | 
|  | // A deduced template name which deduces the same default arguments already | 
|  | // declared in the underlying template is the same template as the | 
|  | // underlying template. We need need to note any arguments which differ from | 
|  | // the corresponding declaration. If any argument differs, we must build a | 
|  | // deduced template name. | 
|  | for (int I = CanonArgs.size() - 1; I >= 0; --I) { | 
|  | const TemplateArgument *A = getDefaultTemplateArgumentOrNone(Params[I]); | 
|  | if (!A) | 
|  | break; | 
|  | auto CanonParamDefArg = getCanonicalTemplateArgument(*A); | 
|  | TemplateArgument &CanonDefArg = CanonArgs[I]; | 
|  | if (CanonDefArg.structurallyEquals(CanonParamDefArg)) | 
|  | continue; | 
|  | // Keep popping from the back any deault arguments which are the same. | 
|  | if (I == int(CanonArgs.size() - 1)) | 
|  | CanonArgs.pop_back(); | 
|  | NonCanonical = true; | 
|  | } | 
|  | return NonCanonical ? getDeducedTemplateName( | 
|  | CanonUnderlying, | 
|  | /*DefaultArgs=*/{DefArgs.StartPos, CanonArgs}) | 
|  | : Name; | 
|  | } | 
|  | case TemplateName::UsingTemplate: | 
|  | case TemplateName::QualifiedTemplate: | 
|  | case TemplateName::SubstTemplateTemplateParm: | 
|  | llvm_unreachable("always sugar node"); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("bad template name!"); | 
|  | } | 
|  |  | 
|  | bool ASTContext::hasSameTemplateName(const TemplateName &X, | 
|  | const TemplateName &Y, | 
|  | bool IgnoreDeduced) const { | 
|  | return getCanonicalTemplateName(X, IgnoreDeduced) == | 
|  | getCanonicalTemplateName(Y, IgnoreDeduced); | 
|  | } | 
|  |  | 
|  | bool ASTContext::isSameAssociatedConstraint( | 
|  | const AssociatedConstraint &ACX, const AssociatedConstraint &ACY) const { | 
|  | if (ACX.ArgPackSubstIndex != ACY.ArgPackSubstIndex) | 
|  | return false; | 
|  | if (!isSameConstraintExpr(ACX.ConstraintExpr, ACY.ConstraintExpr)) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ASTContext::isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const { | 
|  | if (!XCE != !YCE) | 
|  | return false; | 
|  |  | 
|  | if (!XCE) | 
|  | return true; | 
|  |  | 
|  | llvm::FoldingSetNodeID XCEID, YCEID; | 
|  | XCE->Profile(XCEID, *this, /*Canonical=*/true, /*ProfileLambdaExpr=*/true); | 
|  | YCE->Profile(YCEID, *this, /*Canonical=*/true, /*ProfileLambdaExpr=*/true); | 
|  | return XCEID == YCEID; | 
|  | } | 
|  |  | 
|  | bool ASTContext::isSameTypeConstraint(const TypeConstraint *XTC, | 
|  | const TypeConstraint *YTC) const { | 
|  | if (!XTC != !YTC) | 
|  | return false; | 
|  |  | 
|  | if (!XTC) | 
|  | return true; | 
|  |  | 
|  | auto *NCX = XTC->getNamedConcept(); | 
|  | auto *NCY = YTC->getNamedConcept(); | 
|  | if (!NCX || !NCY || !isSameEntity(NCX, NCY)) | 
|  | return false; | 
|  | if (XTC->getConceptReference()->hasExplicitTemplateArgs() != | 
|  | YTC->getConceptReference()->hasExplicitTemplateArgs()) | 
|  | return false; | 
|  | if (XTC->getConceptReference()->hasExplicitTemplateArgs()) | 
|  | if (XTC->getConceptReference() | 
|  | ->getTemplateArgsAsWritten() | 
|  | ->NumTemplateArgs != | 
|  | YTC->getConceptReference()->getTemplateArgsAsWritten()->NumTemplateArgs) | 
|  | return false; | 
|  |  | 
|  | // Compare slowly by profiling. | 
|  | // | 
|  | // We couldn't compare the profiling result for the template | 
|  | // args here. Consider the following example in different modules: | 
|  | // | 
|  | // template <__integer_like _Tp, C<_Tp> Sentinel> | 
|  | // constexpr _Tp operator()(_Tp &&__t, Sentinel &&last) const { | 
|  | //   return __t; | 
|  | // } | 
|  | // | 
|  | // When we compare the profiling result for `C<_Tp>` in different | 
|  | // modules, it will compare the type of `_Tp` in different modules. | 
|  | // However, the type of `_Tp` in different modules refer to different | 
|  | // types here naturally. So we couldn't compare the profiling result | 
|  | // for the template args directly. | 
|  | return isSameConstraintExpr(XTC->getImmediatelyDeclaredConstraint(), | 
|  | YTC->getImmediatelyDeclaredConstraint()); | 
|  | } | 
|  |  | 
|  | bool ASTContext::isSameTemplateParameter(const NamedDecl *X, | 
|  | const NamedDecl *Y) const { | 
|  | if (X->getKind() != Y->getKind()) | 
|  | return false; | 
|  |  | 
|  | if (auto *TX = dyn_cast<TemplateTypeParmDecl>(X)) { | 
|  | auto *TY = cast<TemplateTypeParmDecl>(Y); | 
|  | if (TX->isParameterPack() != TY->isParameterPack()) | 
|  | return false; | 
|  | if (TX->hasTypeConstraint() != TY->hasTypeConstraint()) | 
|  | return false; | 
|  | return isSameTypeConstraint(TX->getTypeConstraint(), | 
|  | TY->getTypeConstraint()); | 
|  | } | 
|  |  | 
|  | if (auto *TX = dyn_cast<NonTypeTemplateParmDecl>(X)) { | 
|  | auto *TY = cast<NonTypeTemplateParmDecl>(Y); | 
|  | return TX->isParameterPack() == TY->isParameterPack() && | 
|  | TX->getASTContext().hasSameType(TX->getType(), TY->getType()) && | 
|  | isSameConstraintExpr(TX->getPlaceholderTypeConstraint(), | 
|  | TY->getPlaceholderTypeConstraint()); | 
|  | } | 
|  |  | 
|  | auto *TX = cast<TemplateTemplateParmDecl>(X); | 
|  | auto *TY = cast<TemplateTemplateParmDecl>(Y); | 
|  | return TX->isParameterPack() == TY->isParameterPack() && | 
|  | isSameTemplateParameterList(TX->getTemplateParameters(), | 
|  | TY->getTemplateParameters()); | 
|  | } | 
|  |  | 
|  | bool ASTContext::isSameTemplateParameterList( | 
|  | const TemplateParameterList *X, const TemplateParameterList *Y) const { | 
|  | if (X->size() != Y->size()) | 
|  | return false; | 
|  |  | 
|  | for (unsigned I = 0, N = X->size(); I != N; ++I) | 
|  | if (!isSameTemplateParameter(X->getParam(I), Y->getParam(I))) | 
|  | return false; | 
|  |  | 
|  | return isSameConstraintExpr(X->getRequiresClause(), Y->getRequiresClause()); | 
|  | } | 
|  |  | 
|  | bool ASTContext::isSameDefaultTemplateArgument(const NamedDecl *X, | 
|  | const NamedDecl *Y) const { | 
|  | // If the type parameter isn't the same already, we don't need to check the | 
|  | // default argument further. | 
|  | if (!isSameTemplateParameter(X, Y)) | 
|  | return false; | 
|  |  | 
|  | if (auto *TTPX = dyn_cast<TemplateTypeParmDecl>(X)) { | 
|  | auto *TTPY = cast<TemplateTypeParmDecl>(Y); | 
|  | if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument()) | 
|  | return false; | 
|  |  | 
|  | return hasSameType(TTPX->getDefaultArgument().getArgument().getAsType(), | 
|  | TTPY->getDefaultArgument().getArgument().getAsType()); | 
|  | } | 
|  |  | 
|  | if (auto *NTTPX = dyn_cast<NonTypeTemplateParmDecl>(X)) { | 
|  | auto *NTTPY = cast<NonTypeTemplateParmDecl>(Y); | 
|  | if (!NTTPX->hasDefaultArgument() || !NTTPY->hasDefaultArgument()) | 
|  | return false; | 
|  |  | 
|  | Expr *DefaultArgumentX = | 
|  | NTTPX->getDefaultArgument().getArgument().getAsExpr()->IgnoreImpCasts(); | 
|  | Expr *DefaultArgumentY = | 
|  | NTTPY->getDefaultArgument().getArgument().getAsExpr()->IgnoreImpCasts(); | 
|  | llvm::FoldingSetNodeID XID, YID; | 
|  | DefaultArgumentX->Profile(XID, *this, /*Canonical=*/true); | 
|  | DefaultArgumentY->Profile(YID, *this, /*Canonical=*/true); | 
|  | return XID == YID; | 
|  | } | 
|  |  | 
|  | auto *TTPX = cast<TemplateTemplateParmDecl>(X); | 
|  | auto *TTPY = cast<TemplateTemplateParmDecl>(Y); | 
|  |  | 
|  | if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument()) | 
|  | return false; | 
|  |  | 
|  | const TemplateArgument &TAX = TTPX->getDefaultArgument().getArgument(); | 
|  | const TemplateArgument &TAY = TTPY->getDefaultArgument().getArgument(); | 
|  | return hasSameTemplateName(TAX.getAsTemplate(), TAY.getAsTemplate()); | 
|  | } | 
|  |  | 
|  | static bool isSameQualifier(const NestedNameSpecifier X, | 
|  | const NestedNameSpecifier Y) { | 
|  | if (X == Y) | 
|  | return true; | 
|  | if (!X || !Y) | 
|  | return false; | 
|  |  | 
|  | auto Kind = X.getKind(); | 
|  | if (Kind != Y.getKind()) | 
|  | return false; | 
|  |  | 
|  | // FIXME: For namespaces and types, we're permitted to check that the entity | 
|  | // is named via the same tokens. We should probably do so. | 
|  | switch (Kind) { | 
|  | case NestedNameSpecifier::Kind::Namespace: { | 
|  | auto [NamespaceX, PrefixX] = X.getAsNamespaceAndPrefix(); | 
|  | auto [NamespaceY, PrefixY] = Y.getAsNamespaceAndPrefix(); | 
|  | if (!declaresSameEntity(NamespaceX->getNamespace(), | 
|  | NamespaceY->getNamespace())) | 
|  | return false; | 
|  | return isSameQualifier(PrefixX, PrefixY); | 
|  | } | 
|  | case NestedNameSpecifier::Kind::Type: { | 
|  | const auto *TX = X.getAsType(), *TY = Y.getAsType(); | 
|  | if (TX->getCanonicalTypeInternal() != TY->getCanonicalTypeInternal()) | 
|  | return false; | 
|  | return isSameQualifier(TX->getPrefix(), TY->getPrefix()); | 
|  | } | 
|  | case NestedNameSpecifier::Kind::Null: | 
|  | case NestedNameSpecifier::Kind::Global: | 
|  | case NestedNameSpecifier::Kind::MicrosoftSuper: | 
|  | return true; | 
|  | } | 
|  | llvm_unreachable("unhandled qualifier kind"); | 
|  | } | 
|  |  | 
|  | static bool hasSameCudaAttrs(const FunctionDecl *A, const FunctionDecl *B) { | 
|  | if (!A->getASTContext().getLangOpts().CUDA) | 
|  | return true; // Target attributes are overloadable in CUDA compilation only. | 
|  | if (A->hasAttr<CUDADeviceAttr>() != B->hasAttr<CUDADeviceAttr>()) | 
|  | return false; | 
|  | if (A->hasAttr<CUDADeviceAttr>() && B->hasAttr<CUDADeviceAttr>()) | 
|  | return A->hasAttr<CUDAHostAttr>() == B->hasAttr<CUDAHostAttr>(); | 
|  | return true; // unattributed and __host__ functions are the same. | 
|  | } | 
|  |  | 
|  | /// Determine whether the attributes we can overload on are identical for A and | 
|  | /// B. Will ignore any overloadable attrs represented in the type of A and B. | 
|  | static bool hasSameOverloadableAttrs(const FunctionDecl *A, | 
|  | const FunctionDecl *B) { | 
|  | // Note that pass_object_size attributes are represented in the function's | 
|  | // ExtParameterInfo, so we don't need to check them here. | 
|  |  | 
|  | llvm::FoldingSetNodeID Cand1ID, Cand2ID; | 
|  | auto AEnableIfAttrs = A->specific_attrs<EnableIfAttr>(); | 
|  | auto BEnableIfAttrs = B->specific_attrs<EnableIfAttr>(); | 
|  |  | 
|  | for (auto Pair : zip_longest(AEnableIfAttrs, BEnableIfAttrs)) { | 
|  | std::optional<EnableIfAttr *> Cand1A = std::get<0>(Pair); | 
|  | std::optional<EnableIfAttr *> Cand2A = std::get<1>(Pair); | 
|  |  | 
|  | // Return false if the number of enable_if attributes is different. | 
|  | if (!Cand1A || !Cand2A) | 
|  | return false; | 
|  |  | 
|  | Cand1ID.clear(); | 
|  | Cand2ID.clear(); | 
|  |  | 
|  | (*Cand1A)->getCond()->Profile(Cand1ID, A->getASTContext(), true); | 
|  | (*Cand2A)->getCond()->Profile(Cand2ID, B->getASTContext(), true); | 
|  |  | 
|  | // Return false if any of the enable_if expressions of A and B are | 
|  | // different. | 
|  | if (Cand1ID != Cand2ID) | 
|  | return false; | 
|  | } | 
|  | return hasSameCudaAttrs(A, B); | 
|  | } | 
|  |  | 
|  | bool ASTContext::isSameEntity(const NamedDecl *X, const NamedDecl *Y) const { | 
|  | // Caution: this function is called by the AST reader during deserialization, | 
|  | // so it cannot rely on AST invariants being met. Non-trivial accessors | 
|  | // should be avoided, along with any traversal of redeclaration chains. | 
|  |  | 
|  | if (X == Y) | 
|  | return true; | 
|  |  | 
|  | if (X->getDeclName() != Y->getDeclName()) | 
|  | return false; | 
|  |  | 
|  | // Must be in the same context. | 
|  | // | 
|  | // Note that we can't use DeclContext::Equals here, because the DeclContexts | 
|  | // could be two different declarations of the same function. (We will fix the | 
|  | // semantic DC to refer to the primary definition after merging.) | 
|  | if (!declaresSameEntity(cast<Decl>(X->getDeclContext()->getRedeclContext()), | 
|  | cast<Decl>(Y->getDeclContext()->getRedeclContext()))) | 
|  | return false; | 
|  |  | 
|  | // If either X or Y are local to the owning module, they are only possible to | 
|  | // be the same entity if they are in the same module. | 
|  | if (X->isModuleLocal() || Y->isModuleLocal()) | 
|  | if (!isInSameModule(X->getOwningModule(), Y->getOwningModule())) | 
|  | return false; | 
|  |  | 
|  | // Two typedefs refer to the same entity if they have the same underlying | 
|  | // type. | 
|  | if (const auto *TypedefX = dyn_cast<TypedefNameDecl>(X)) | 
|  | if (const auto *TypedefY = dyn_cast<TypedefNameDecl>(Y)) | 
|  | return hasSameType(TypedefX->getUnderlyingType(), | 
|  | TypedefY->getUnderlyingType()); | 
|  |  | 
|  | // Must have the same kind. | 
|  | if (X->getKind() != Y->getKind()) | 
|  | return false; | 
|  |  | 
|  | // Objective-C classes and protocols with the same name always match. | 
|  | if (isa<ObjCInterfaceDecl>(X) || isa<ObjCProtocolDecl>(X)) | 
|  | return true; | 
|  |  | 
|  | if (isa<ClassTemplateSpecializationDecl>(X)) { | 
|  | // No need to handle these here: we merge them when adding them to the | 
|  | // template. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Compatible tags match. | 
|  | if (const auto *TagX = dyn_cast<TagDecl>(X)) { | 
|  | const auto *TagY = cast<TagDecl>(Y); | 
|  | return (TagX->getTagKind() == TagY->getTagKind()) || | 
|  | ((TagX->getTagKind() == TagTypeKind::Struct || | 
|  | TagX->getTagKind() == TagTypeKind::Class || | 
|  | TagX->getTagKind() == TagTypeKind::Interface) && | 
|  | (TagY->getTagKind() == TagTypeKind::Struct || | 
|  | TagY->getTagKind() == TagTypeKind::Class || | 
|  | TagY->getTagKind() == TagTypeKind::Interface)); | 
|  | } | 
|  |  | 
|  | // Functions with the same type and linkage match. | 
|  | // FIXME: This needs to cope with merging of prototyped/non-prototyped | 
|  | // functions, etc. | 
|  | if (const auto *FuncX = dyn_cast<FunctionDecl>(X)) { | 
|  | const auto *FuncY = cast<FunctionDecl>(Y); | 
|  | if (const auto *CtorX = dyn_cast<CXXConstructorDecl>(X)) { | 
|  | const auto *CtorY = cast<CXXConstructorDecl>(Y); | 
|  | if (CtorX->getInheritedConstructor() && | 
|  | !isSameEntity(CtorX->getInheritedConstructor().getConstructor(), | 
|  | CtorY->getInheritedConstructor().getConstructor())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (FuncX->isMultiVersion() != FuncY->isMultiVersion()) | 
|  | return false; | 
|  |  | 
|  | // Multiversioned functions with different feature strings are represented | 
|  | // as separate declarations. | 
|  | if (FuncX->isMultiVersion()) { | 
|  | const auto *TAX = FuncX->getAttr<TargetAttr>(); | 
|  | const auto *TAY = FuncY->getAttr<TargetAttr>(); | 
|  | assert(TAX && TAY && "Multiversion Function without target attribute"); | 
|  |  | 
|  | if (TAX->getFeaturesStr() != TAY->getFeaturesStr()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Per C++20 [temp.over.link]/4, friends in different classes are sometimes | 
|  | // not the same entity if they are constrained. | 
|  | if ((FuncX->isMemberLikeConstrainedFriend() || | 
|  | FuncY->isMemberLikeConstrainedFriend()) && | 
|  | !FuncX->getLexicalDeclContext()->Equals( | 
|  | FuncY->getLexicalDeclContext())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!isSameAssociatedConstraint(FuncX->getTrailingRequiresClause(), | 
|  | FuncY->getTrailingRequiresClause())) | 
|  | return false; | 
|  |  | 
|  | auto GetTypeAsWritten = [](const FunctionDecl *FD) { | 
|  | // Map to the first declaration that we've already merged into this one. | 
|  | // The TSI of redeclarations might not match (due to calling conventions | 
|  | // being inherited onto the type but not the TSI), but the TSI type of | 
|  | // the first declaration of the function should match across modules. | 
|  | FD = FD->getCanonicalDecl(); | 
|  | return FD->getTypeSourceInfo() ? FD->getTypeSourceInfo()->getType() | 
|  | : FD->getType(); | 
|  | }; | 
|  | QualType XT = GetTypeAsWritten(FuncX), YT = GetTypeAsWritten(FuncY); | 
|  | if (!hasSameType(XT, YT)) { | 
|  | // We can get functions with different types on the redecl chain in C++17 | 
|  | // if they have differing exception specifications and at least one of | 
|  | // the excpetion specs is unresolved. | 
|  | auto *XFPT = XT->getAs<FunctionProtoType>(); | 
|  | auto *YFPT = YT->getAs<FunctionProtoType>(); | 
|  | if (getLangOpts().CPlusPlus17 && XFPT && YFPT && | 
|  | (isUnresolvedExceptionSpec(XFPT->getExceptionSpecType()) || | 
|  | isUnresolvedExceptionSpec(YFPT->getExceptionSpecType())) && | 
|  | hasSameFunctionTypeIgnoringExceptionSpec(XT, YT)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return FuncX->getLinkageInternal() == FuncY->getLinkageInternal() && | 
|  | hasSameOverloadableAttrs(FuncX, FuncY); | 
|  | } | 
|  |  | 
|  | // Variables with the same type and linkage match. | 
|  | if (const auto *VarX = dyn_cast<VarDecl>(X)) { | 
|  | const auto *VarY = cast<VarDecl>(Y); | 
|  | if (VarX->getLinkageInternal() == VarY->getLinkageInternal()) { | 
|  | // During deserialization, we might compare variables before we load | 
|  | // their types. Assume the types will end up being the same. | 
|  | if (VarX->getType().isNull() || VarY->getType().isNull()) | 
|  | return true; | 
|  |  | 
|  | if (hasSameType(VarX->getType(), VarY->getType())) | 
|  | return true; | 
|  |  | 
|  | // We can get decls with different types on the redecl chain. Eg. | 
|  | // template <typename T> struct S { static T Var[]; }; // #1 | 
|  | // template <typename T> T S<T>::Var[sizeof(T)]; // #2 | 
|  | // Only? happens when completing an incomplete array type. In this case | 
|  | // when comparing #1 and #2 we should go through their element type. | 
|  | const ArrayType *VarXTy = getAsArrayType(VarX->getType()); | 
|  | const ArrayType *VarYTy = getAsArrayType(VarY->getType()); | 
|  | if (!VarXTy || !VarYTy) | 
|  | return false; | 
|  | if (VarXTy->isIncompleteArrayType() || VarYTy->isIncompleteArrayType()) | 
|  | return hasSameType(VarXTy->getElementType(), VarYTy->getElementType()); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Namespaces with the same name and inlinedness match. | 
|  | if (const auto *NamespaceX = dyn_cast<NamespaceDecl>(X)) { | 
|  | const auto *NamespaceY = cast<NamespaceDecl>(Y); | 
|  | return NamespaceX->isInline() == NamespaceY->isInline(); | 
|  | } | 
|  |  | 
|  | // Identical template names and kinds match if their template parameter lists | 
|  | // and patterns match. | 
|  | if (const auto *TemplateX = dyn_cast<TemplateDecl>(X)) { | 
|  | const auto *TemplateY = cast<TemplateDecl>(Y); | 
|  |  | 
|  | // ConceptDecl wouldn't be the same if their constraint expression differs. | 
|  | if (const auto *ConceptX = dyn_cast<ConceptDecl>(X)) { | 
|  | const auto *ConceptY = cast<ConceptDecl>(Y); | 
|  | if (!isSameConstraintExpr(ConceptX->getConstraintExpr(), | 
|  | ConceptY->getConstraintExpr())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return isSameEntity(TemplateX->getTemplatedDecl(), | 
|  | TemplateY->getTemplatedDecl()) && | 
|  | isSameTemplateParameterList(TemplateX->getTemplateParameters(), | 
|  | TemplateY->getTemplateParameters()); | 
|  | } | 
|  |  | 
|  | // Fields with the same name and the same type match. | 
|  | if (const auto *FDX = dyn_cast<FieldDecl>(X)) { | 
|  | const auto *FDY = cast<FieldDecl>(Y); | 
|  | // FIXME: Also check the bitwidth is odr-equivalent, if any. | 
|  | return hasSameType(FDX->getType(), FDY->getType()); | 
|  | } | 
|  |  | 
|  | // Indirect fields with the same target field match. | 
|  | if (const auto *IFDX = dyn_cast<IndirectFieldDecl>(X)) { | 
|  | const auto *IFDY = cast<IndirectFieldDecl>(Y); | 
|  | return IFDX->getAnonField()->getCanonicalDecl() == | 
|  | IFDY->getAnonField()->getCanonicalDecl(); | 
|  | } | 
|  |  | 
|  | // Enumerators with the same name match. | 
|  | if (isa<EnumConstantDecl>(X)) | 
|  | // FIXME: Also check the value is odr-equivalent. | 
|  | return true; | 
|  |  | 
|  | // Using shadow declarations with the same target match. | 
|  | if (const auto *USX = dyn_cast<UsingShadowDecl>(X)) { | 
|  | const auto *USY = cast<UsingShadowDecl>(Y); | 
|  | return declaresSameEntity(USX->getTargetDecl(), USY->getTargetDecl()); | 
|  | } | 
|  |  | 
|  | // Using declarations with the same qualifier match. (We already know that | 
|  | // the name matches.) | 
|  | if (const auto *UX = dyn_cast<UsingDecl>(X)) { | 
|  | const auto *UY = cast<UsingDecl>(Y); | 
|  | return isSameQualifier(UX->getQualifier(), UY->getQualifier()) && | 
|  | UX->hasTypename() == UY->hasTypename() && | 
|  | UX->isAccessDeclaration() == UY->isAccessDeclaration(); | 
|  | } | 
|  | if (const auto *UX = dyn_cast<UnresolvedUsingValueDecl>(X)) { | 
|  | const auto *UY = cast<UnresolvedUsingValueDecl>(Y); | 
|  | return isSameQualifier(UX->getQualifier(), UY->getQualifier()) && | 
|  | UX->isAccessDeclaration() == UY->isAccessDeclaration(); | 
|  | } | 
|  | if (const auto *UX = dyn_cast<UnresolvedUsingTypenameDecl>(X)) { | 
|  | return isSameQualifier( | 
|  | UX->getQualifier(), | 
|  | cast<UnresolvedUsingTypenameDecl>(Y)->getQualifier()); | 
|  | } | 
|  |  | 
|  | // Using-pack declarations are only created by instantiation, and match if | 
|  | // they're instantiated from matching UnresolvedUsing...Decls. | 
|  | if (const auto *UX = dyn_cast<UsingPackDecl>(X)) { | 
|  | return declaresSameEntity( | 
|  | UX->getInstantiatedFromUsingDecl(), | 
|  | cast<UsingPackDecl>(Y)->getInstantiatedFromUsingDecl()); | 
|  | } | 
|  |  | 
|  | // Namespace alias definitions with the same target match. | 
|  | if (const auto *NAX = dyn_cast<NamespaceAliasDecl>(X)) { | 
|  | const auto *NAY = cast<NamespaceAliasDecl>(Y); | 
|  | return NAX->getNamespace()->Equals(NAY->getNamespace()); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | TemplateArgument | 
|  | ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const { | 
|  | switch (Arg.getKind()) { | 
|  | case TemplateArgument::Null: | 
|  | return Arg; | 
|  |  | 
|  | case TemplateArgument::Expression: | 
|  | return TemplateArgument(Arg.getAsExpr(), /*IsCanonical=*/true, | 
|  | Arg.getIsDefaulted()); | 
|  |  | 
|  | case TemplateArgument::Declaration: { | 
|  | auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl()); | 
|  | return TemplateArgument(D, getCanonicalType(Arg.getParamTypeForDecl()), | 
|  | Arg.getIsDefaulted()); | 
|  | } | 
|  |  | 
|  | case TemplateArgument::NullPtr: | 
|  | return TemplateArgument(getCanonicalType(Arg.getNullPtrType()), | 
|  | /*isNullPtr*/ true, Arg.getIsDefaulted()); | 
|  |  | 
|  | case TemplateArgument::Template: | 
|  | return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()), | 
|  | Arg.getIsDefaulted()); | 
|  |  | 
|  | case TemplateArgument::TemplateExpansion: | 
|  | return TemplateArgument( | 
|  | getCanonicalTemplateName(Arg.getAsTemplateOrTemplatePattern()), | 
|  | Arg.getNumTemplateExpansions(), Arg.getIsDefaulted()); | 
|  |  | 
|  | case TemplateArgument::Integral: | 
|  | return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType())); | 
|  |  | 
|  | case TemplateArgument::StructuralValue: | 
|  | return TemplateArgument(*this, | 
|  | getCanonicalType(Arg.getStructuralValueType()), | 
|  | Arg.getAsStructuralValue(), Arg.getIsDefaulted()); | 
|  |  | 
|  | case TemplateArgument::Type: | 
|  | return TemplateArgument(getCanonicalType(Arg.getAsType()), | 
|  | /*isNullPtr*/ false, Arg.getIsDefaulted()); | 
|  |  | 
|  | case TemplateArgument::Pack: { | 
|  | bool AnyNonCanonArgs = false; | 
|  | auto CanonArgs = ::getCanonicalTemplateArguments( | 
|  | *this, Arg.pack_elements(), AnyNonCanonArgs); | 
|  | if (!AnyNonCanonArgs) | 
|  | return Arg; | 
|  | auto NewArg = TemplateArgument::CreatePackCopy( | 
|  | const_cast<ASTContext &>(*this), CanonArgs); | 
|  | NewArg.setIsDefaulted(Arg.getIsDefaulted()); | 
|  | return NewArg; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Silence GCC warning | 
|  | llvm_unreachable("Unhandled template argument kind"); | 
|  | } | 
|  |  | 
|  | bool ASTContext::isSameTemplateArgument(const TemplateArgument &Arg1, | 
|  | const TemplateArgument &Arg2) const { | 
|  | if (Arg1.getKind() != Arg2.getKind()) | 
|  | return false; | 
|  |  | 
|  | switch (Arg1.getKind()) { | 
|  | case TemplateArgument::Null: | 
|  | llvm_unreachable("Comparing NULL template argument"); | 
|  |  | 
|  | case TemplateArgument::Type: | 
|  | return hasSameType(Arg1.getAsType(), Arg2.getAsType()); | 
|  |  | 
|  | case TemplateArgument::Declaration: | 
|  | return Arg1.getAsDecl()->getUnderlyingDecl()->getCanonicalDecl() == | 
|  | Arg2.getAsDecl()->getUnderlyingDecl()->getCanonicalDecl(); | 
|  |  | 
|  | case TemplateArgument::NullPtr: | 
|  | return hasSameType(Arg1.getNullPtrType(), Arg2.getNullPtrType()); | 
|  |  | 
|  | case TemplateArgument::Template: | 
|  | case TemplateArgument::TemplateExpansion: | 
|  | return getCanonicalTemplateName(Arg1.getAsTemplateOrTemplatePattern()) == | 
|  | getCanonicalTemplateName(Arg2.getAsTemplateOrTemplatePattern()); | 
|  |  | 
|  | case TemplateArgument::Integral: | 
|  | return llvm::APSInt::isSameValue(Arg1.getAsIntegral(), | 
|  | Arg2.getAsIntegral()); | 
|  |  | 
|  | case TemplateArgument::StructuralValue: | 
|  | return Arg1.structurallyEquals(Arg2); | 
|  |  | 
|  | case TemplateArgument::Expression: { | 
|  | llvm::FoldingSetNodeID ID1, ID2; | 
|  | Arg1.getAsExpr()->Profile(ID1, *this, /*Canonical=*/true); | 
|  | Arg2.getAsExpr()->Profile(ID2, *this, /*Canonical=*/true); | 
|  | return ID1 == ID2; | 
|  | } | 
|  |  | 
|  | case TemplateArgument::Pack: | 
|  | return llvm::equal( | 
|  | Arg1.getPackAsArray(), Arg2.getPackAsArray(), | 
|  | [&](const TemplateArgument &Arg1, const TemplateArgument &Arg2) { | 
|  | return isSameTemplateArgument(Arg1, Arg2); | 
|  | }); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unhandled template argument kind"); | 
|  | } | 
|  |  | 
|  | const ArrayType *ASTContext::getAsArrayType(QualType T) const { | 
|  | // Handle the non-qualified case efficiently. | 
|  | if (!T.hasLocalQualifiers()) { | 
|  | // Handle the common positive case fast. | 
|  | if (const auto *AT = dyn_cast<ArrayType>(T)) | 
|  | return AT; | 
|  | } | 
|  |  | 
|  | // Handle the common negative case fast. | 
|  | if (!isa<ArrayType>(T.getCanonicalType())) | 
|  | return nullptr; | 
|  |  | 
|  | // Apply any qualifiers from the array type to the element type.  This | 
|  | // implements C99 6.7.3p8: "If the specification of an array type includes | 
|  | // any type qualifiers, the element type is so qualified, not the array type." | 
|  |  | 
|  | // If we get here, we either have type qualifiers on the type, or we have | 
|  | // sugar such as a typedef in the way.  If we have type qualifiers on the type | 
|  | // we must propagate them down into the element type. | 
|  |  | 
|  | SplitQualType split = T.getSplitDesugaredType(); | 
|  | Qualifiers qs = split.Quals; | 
|  |  | 
|  | // If we have a simple case, just return now. | 
|  | const auto *ATy = dyn_cast<ArrayType>(split.Ty); | 
|  | if (!ATy || qs.empty()) | 
|  | return ATy; | 
|  |  | 
|  | // Otherwise, we have an array and we have qualifiers on it.  Push the | 
|  | // qualifiers into the array element type and return a new array type. | 
|  | QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs); | 
|  |  | 
|  | if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy)) | 
|  | return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(), | 
|  | CAT->getSizeExpr(), | 
|  | CAT->getSizeModifier(), | 
|  | CAT->getIndexTypeCVRQualifiers())); | 
|  | if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy)) | 
|  | return cast<ArrayType>(getIncompleteArrayType(NewEltTy, | 
|  | IAT->getSizeModifier(), | 
|  | IAT->getIndexTypeCVRQualifiers())); | 
|  |  | 
|  | if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy)) | 
|  | return cast<ArrayType>(getDependentSizedArrayType( | 
|  | NewEltTy, DSAT->getSizeExpr(), DSAT->getSizeModifier(), | 
|  | DSAT->getIndexTypeCVRQualifiers())); | 
|  |  | 
|  | const auto *VAT = cast<VariableArrayType>(ATy); | 
|  | return cast<ArrayType>( | 
|  | getVariableArrayType(NewEltTy, VAT->getSizeExpr(), VAT->getSizeModifier(), | 
|  | VAT->getIndexTypeCVRQualifiers())); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getAdjustedParameterType(QualType T) const { | 
|  | if (getLangOpts().HLSL && T->isConstantArrayType()) | 
|  | return getArrayParameterType(T); | 
|  | if (T->isArrayType() || T->isFunctionType()) | 
|  | return getDecayedType(T); | 
|  | return T; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getSignatureParameterType(QualType T) const { | 
|  | T = getVariableArrayDecayedType(T); | 
|  | T = getAdjustedParameterType(T); | 
|  | return T.getUnqualifiedType(); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getExceptionObjectType(QualType T) const { | 
|  | // C++ [except.throw]p3: | 
|  | //   A throw-expression initializes a temporary object, called the exception | 
|  | //   object, the type of which is determined by removing any top-level | 
|  | //   cv-qualifiers from the static type of the operand of throw and adjusting | 
|  | //   the type from "array of T" or "function returning T" to "pointer to T" | 
|  | //   or "pointer to function returning T", [...] | 
|  | T = getVariableArrayDecayedType(T); | 
|  | if (T->isArrayType() || T->isFunctionType()) | 
|  | T = getDecayedType(T); | 
|  | return T.getUnqualifiedType(); | 
|  | } | 
|  |  | 
|  | /// getArrayDecayedType - Return the properly qualified result of decaying the | 
|  | /// specified array type to a pointer.  This operation is non-trivial when | 
|  | /// handling typedefs etc.  The canonical type of "T" must be an array type, | 
|  | /// this returns a pointer to a properly qualified element of the array. | 
|  | /// | 
|  | /// See C99 6.7.5.3p7 and C99 6.3.2.1p3. | 
|  | QualType ASTContext::getArrayDecayedType(QualType Ty) const { | 
|  | // Get the element type with 'getAsArrayType' so that we don't lose any | 
|  | // typedefs in the element type of the array.  This also handles propagation | 
|  | // of type qualifiers from the array type into the element type if present | 
|  | // (C99 6.7.3p8). | 
|  | const ArrayType *PrettyArrayType = getAsArrayType(Ty); | 
|  | assert(PrettyArrayType && "Not an array type!"); | 
|  |  | 
|  | QualType PtrTy = getPointerType(PrettyArrayType->getElementType()); | 
|  |  | 
|  | // int x[restrict 4] ->  int *restrict | 
|  | QualType Result = getQualifiedType(PtrTy, | 
|  | PrettyArrayType->getIndexTypeQualifiers()); | 
|  |  | 
|  | // int x[_Nullable] -> int * _Nullable | 
|  | if (auto Nullability = Ty->getNullability()) { | 
|  | Result = const_cast<ASTContext *>(this)->getAttributedType(*Nullability, | 
|  | Result, Result); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getBaseElementType(const ArrayType *array) const { | 
|  | return getBaseElementType(array->getElementType()); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getBaseElementType(QualType type) const { | 
|  | Qualifiers qs; | 
|  | while (true) { | 
|  | SplitQualType split = type.getSplitDesugaredType(); | 
|  | const ArrayType *array = split.Ty->getAsArrayTypeUnsafe(); | 
|  | if (!array) break; | 
|  |  | 
|  | type = array->getElementType(); | 
|  | qs.addConsistentQualifiers(split.Quals); | 
|  | } | 
|  |  | 
|  | return getQualifiedType(type, qs); | 
|  | } | 
|  |  | 
|  | /// getConstantArrayElementCount - Returns number of constant array elements. | 
|  | uint64_t | 
|  | ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const { | 
|  | uint64_t ElementCount = 1; | 
|  | do { | 
|  | ElementCount *= CA->getZExtSize(); | 
|  | CA = dyn_cast_or_null<ConstantArrayType>( | 
|  | CA->getElementType()->getAsArrayTypeUnsafe()); | 
|  | } while (CA); | 
|  | return ElementCount; | 
|  | } | 
|  |  | 
|  | uint64_t ASTContext::getArrayInitLoopExprElementCount( | 
|  | const ArrayInitLoopExpr *AILE) const { | 
|  | if (!AILE) | 
|  | return 0; | 
|  |  | 
|  | uint64_t ElementCount = 1; | 
|  |  | 
|  | do { | 
|  | ElementCount *= AILE->getArraySize().getZExtValue(); | 
|  | AILE = dyn_cast<ArrayInitLoopExpr>(AILE->getSubExpr()); | 
|  | } while (AILE); | 
|  |  | 
|  | return ElementCount; | 
|  | } | 
|  |  | 
|  | /// getFloatingRank - Return a relative rank for floating point types. | 
|  | /// This routine will assert if passed a built-in type that isn't a float. | 
|  | static FloatingRank getFloatingRank(QualType T) { | 
|  | if (const auto *CT = T->getAs<ComplexType>()) | 
|  | return getFloatingRank(CT->getElementType()); | 
|  |  | 
|  | switch (T->castAs<BuiltinType>()->getKind()) { | 
|  | default: llvm_unreachable("getFloatingRank(): not a floating type"); | 
|  | case BuiltinType::Float16:    return Float16Rank; | 
|  | case BuiltinType::Half:       return HalfRank; | 
|  | case BuiltinType::Float:      return FloatRank; | 
|  | case BuiltinType::Double:     return DoubleRank; | 
|  | case BuiltinType::LongDouble: return LongDoubleRank; | 
|  | case BuiltinType::Float128:   return Float128Rank; | 
|  | case BuiltinType::BFloat16:   return BFloat16Rank; | 
|  | case BuiltinType::Ibm128:     return Ibm128Rank; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getFloatingTypeOrder - Compare the rank of the two specified floating | 
|  | /// point types, ignoring the domain of the type (i.e. 'double' == | 
|  | /// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If | 
|  | /// LHS < RHS, return -1. | 
|  | int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const { | 
|  | FloatingRank LHSR = getFloatingRank(LHS); | 
|  | FloatingRank RHSR = getFloatingRank(RHS); | 
|  |  | 
|  | if (LHSR == RHSR) | 
|  | return 0; | 
|  | if (LHSR > RHSR) | 
|  | return 1; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const { | 
|  | if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS)) | 
|  | return 0; | 
|  | return getFloatingTypeOrder(LHS, RHS); | 
|  | } | 
|  |  | 
|  | /// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This | 
|  | /// routine will assert if passed a built-in type that isn't an integer or enum, | 
|  | /// or if it is not canonicalized. | 
|  | unsigned ASTContext::getIntegerRank(const Type *T) const { | 
|  | assert(T->isCanonicalUnqualified() && "T should be canonicalized"); | 
|  |  | 
|  | // Results in this 'losing' to any type of the same size, but winning if | 
|  | // larger. | 
|  | if (const auto *EIT = dyn_cast<BitIntType>(T)) | 
|  | return 0 + (EIT->getNumBits() << 3); | 
|  |  | 
|  | switch (cast<BuiltinType>(T)->getKind()) { | 
|  | default: llvm_unreachable("getIntegerRank(): not a built-in integer"); | 
|  | case BuiltinType::Bool: | 
|  | return 1 + (getIntWidth(BoolTy) << 3); | 
|  | case BuiltinType::Char_S: | 
|  | case BuiltinType::Char_U: | 
|  | case BuiltinType::SChar: | 
|  | case BuiltinType::UChar: | 
|  | return 2 + (getIntWidth(CharTy) << 3); | 
|  | case BuiltinType::Short: | 
|  | case BuiltinType::UShort: | 
|  | return 3 + (getIntWidth(ShortTy) << 3); | 
|  | case BuiltinType::Int: | 
|  | case BuiltinType::UInt: | 
|  | return 4 + (getIntWidth(IntTy) << 3); | 
|  | case BuiltinType::Long: | 
|  | case BuiltinType::ULong: | 
|  | return 5 + (getIntWidth(LongTy) << 3); | 
|  | case BuiltinType::LongLong: | 
|  | case BuiltinType::ULongLong: | 
|  | return 6 + (getIntWidth(LongLongTy) << 3); | 
|  | case BuiltinType::Int128: | 
|  | case BuiltinType::UInt128: | 
|  | return 7 + (getIntWidth(Int128Ty) << 3); | 
|  |  | 
|  | // "The ranks of char8_t, char16_t, char32_t, and wchar_t equal the ranks of | 
|  | // their underlying types" [c++20 conv.rank] | 
|  | case BuiltinType::Char8: | 
|  | return getIntegerRank(UnsignedCharTy.getTypePtr()); | 
|  | case BuiltinType::Char16: | 
|  | return getIntegerRank( | 
|  | getFromTargetType(Target->getChar16Type()).getTypePtr()); | 
|  | case BuiltinType::Char32: | 
|  | return getIntegerRank( | 
|  | getFromTargetType(Target->getChar32Type()).getTypePtr()); | 
|  | case BuiltinType::WChar_S: | 
|  | case BuiltinType::WChar_U: | 
|  | return getIntegerRank( | 
|  | getFromTargetType(Target->getWCharType()).getTypePtr()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Whether this is a promotable bitfield reference according | 
|  | /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions). | 
|  | /// | 
|  | /// \returns the type this bit-field will promote to, or NULL if no | 
|  | /// promotion occurs. | 
|  | QualType ASTContext::isPromotableBitField(Expr *E) const { | 
|  | if (E->isTypeDependent() || E->isValueDependent()) | 
|  | return {}; | 
|  |  | 
|  | // C++ [conv.prom]p5: | 
|  | //    If the bit-field has an enumerated type, it is treated as any other | 
|  | //    value of that type for promotion purposes. | 
|  | if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType()) | 
|  | return {}; | 
|  |  | 
|  | // FIXME: We should not do this unless E->refersToBitField() is true. This | 
|  | // matters in C where getSourceBitField() will find bit-fields for various | 
|  | // cases where the source expression is not a bit-field designator. | 
|  |  | 
|  | FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields? | 
|  | if (!Field) | 
|  | return {}; | 
|  |  | 
|  | QualType FT = Field->getType(); | 
|  |  | 
|  | uint64_t BitWidth = Field->getBitWidthValue(); | 
|  | uint64_t IntSize = getTypeSize(IntTy); | 
|  | // C++ [conv.prom]p5: | 
|  | //   A prvalue for an integral bit-field can be converted to a prvalue of type | 
|  | //   int if int can represent all the values of the bit-field; otherwise, it | 
|  | //   can be converted to unsigned int if unsigned int can represent all the | 
|  | //   values of the bit-field. If the bit-field is larger yet, no integral | 
|  | //   promotion applies to it. | 
|  | // C11 6.3.1.1/2: | 
|  | //   [For a bit-field of type _Bool, int, signed int, or unsigned int:] | 
|  | //   If an int can represent all values of the original type (as restricted by | 
|  | //   the width, for a bit-field), the value is converted to an int; otherwise, | 
|  | //   it is converted to an unsigned int. | 
|  | // | 
|  | // FIXME: C does not permit promotion of a 'long : 3' bitfield to int. | 
|  | //        We perform that promotion here to match GCC and C++. | 
|  | // FIXME: C does not permit promotion of an enum bit-field whose rank is | 
|  | //        greater than that of 'int'. We perform that promotion to match GCC. | 
|  | // | 
|  | // C23 6.3.1.1p2: | 
|  | //   The value from a bit-field of a bit-precise integer type is converted to | 
|  | //   the corresponding bit-precise integer type. (The rest is the same as in | 
|  | //   C11.) | 
|  | if (QualType QT = Field->getType(); QT->isBitIntType()) | 
|  | return QT; | 
|  |  | 
|  | if (BitWidth < IntSize) | 
|  | return IntTy; | 
|  |  | 
|  | if (BitWidth == IntSize) | 
|  | return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy; | 
|  |  | 
|  | // Bit-fields wider than int are not subject to promotions, and therefore act | 
|  | // like the base type. GCC has some weird bugs in this area that we | 
|  | // deliberately do not follow (GCC follows a pre-standard resolution to | 
|  | // C's DR315 which treats bit-width as being part of the type, and this leaks | 
|  | // into their semantics in some cases). | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | /// getPromotedIntegerType - Returns the type that Promotable will | 
|  | /// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable | 
|  | /// integer type. | 
|  | QualType ASTContext::getPromotedIntegerType(QualType Promotable) const { | 
|  | assert(!Promotable.isNull()); | 
|  | assert(isPromotableIntegerType(Promotable)); | 
|  | if (const auto *ED = Promotable->getAsEnumDecl()) | 
|  | return ED->getPromotionType(); | 
|  |  | 
|  | if (const auto *BT = Promotable->getAs<BuiltinType>()) { | 
|  | // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t | 
|  | // (3.9.1) can be converted to a prvalue of the first of the following | 
|  | // types that can represent all the values of its underlying type: | 
|  | // int, unsigned int, long int, unsigned long int, long long int, or | 
|  | // unsigned long long int [...] | 
|  | // FIXME: Is there some better way to compute this? | 
|  | if (BT->getKind() == BuiltinType::WChar_S || | 
|  | BT->getKind() == BuiltinType::WChar_U || | 
|  | BT->getKind() == BuiltinType::Char8 || | 
|  | BT->getKind() == BuiltinType::Char16 || | 
|  | BT->getKind() == BuiltinType::Char32) { | 
|  | bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S; | 
|  | uint64_t FromSize = getTypeSize(BT); | 
|  | QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy, | 
|  | LongLongTy, UnsignedLongLongTy }; | 
|  | for (const auto &PT : PromoteTypes) { | 
|  | uint64_t ToSize = getTypeSize(PT); | 
|  | if (FromSize < ToSize || | 
|  | (FromSize == ToSize && FromIsSigned == PT->isSignedIntegerType())) | 
|  | return PT; | 
|  | } | 
|  | llvm_unreachable("char type should fit into long long"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // At this point, we should have a signed or unsigned integer type. | 
|  | if (Promotable->isSignedIntegerType()) | 
|  | return IntTy; | 
|  | uint64_t PromotableSize = getIntWidth(Promotable); | 
|  | uint64_t IntSize = getIntWidth(IntTy); | 
|  | assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize); | 
|  | return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy; | 
|  | } | 
|  |  | 
|  | /// Recurses in pointer/array types until it finds an objc retainable | 
|  | /// type and returns its ownership. | 
|  | Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const { | 
|  | while (!T.isNull()) { | 
|  | if (T.getObjCLifetime() != Qualifiers::OCL_None) | 
|  | return T.getObjCLifetime(); | 
|  | if (T->isArrayType()) | 
|  | T = getBaseElementType(T); | 
|  | else if (const auto *PT = T->getAs<PointerType>()) | 
|  | T = PT->getPointeeType(); | 
|  | else if (const auto *RT = T->getAs<ReferenceType>()) | 
|  | T = RT->getPointeeType(); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | return Qualifiers::OCL_None; | 
|  | } | 
|  |  | 
|  | static const Type *getIntegerTypeForEnum(const EnumType *ET) { | 
|  | // Incomplete enum types are not treated as integer types. | 
|  | // FIXME: In C++, enum types are never integer types. | 
|  | const EnumDecl *ED = ET->getOriginalDecl()->getDefinitionOrSelf(); | 
|  | if (ED->isComplete() && !ED->isScoped()) | 
|  | return ED->getIntegerType().getTypePtr(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// getIntegerTypeOrder - Returns the highest ranked integer type: | 
|  | /// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If | 
|  | /// LHS < RHS, return -1. | 
|  | int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const { | 
|  | const Type *LHSC = getCanonicalType(LHS).getTypePtr(); | 
|  | const Type *RHSC = getCanonicalType(RHS).getTypePtr(); | 
|  |  | 
|  | // Unwrap enums to their underlying type. | 
|  | if (const auto *ET = dyn_cast<EnumType>(LHSC)) | 
|  | LHSC = getIntegerTypeForEnum(ET); | 
|  | if (const auto *ET = dyn_cast<EnumType>(RHSC)) | 
|  | RHSC = getIntegerTypeForEnum(ET); | 
|  |  | 
|  | if (LHSC == RHSC) return 0; | 
|  |  | 
|  | bool LHSUnsigned = LHSC->isUnsignedIntegerType(); | 
|  | bool RHSUnsigned = RHSC->isUnsignedIntegerType(); | 
|  |  | 
|  | unsigned LHSRank = getIntegerRank(LHSC); | 
|  | unsigned RHSRank = getIntegerRank(RHSC); | 
|  |  | 
|  | if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned. | 
|  | if (LHSRank == RHSRank) return 0; | 
|  | return LHSRank > RHSRank ? 1 : -1; | 
|  | } | 
|  |  | 
|  | // Otherwise, the LHS is signed and the RHS is unsigned or visa versa. | 
|  | if (LHSUnsigned) { | 
|  | // If the unsigned [LHS] type is larger, return it. | 
|  | if (LHSRank >= RHSRank) | 
|  | return 1; | 
|  |  | 
|  | // If the signed type can represent all values of the unsigned type, it | 
|  | // wins.  Because we are dealing with 2's complement and types that are | 
|  | // powers of two larger than each other, this is always safe. | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // If the unsigned [RHS] type is larger, return it. | 
|  | if (RHSRank >= LHSRank) | 
|  | return -1; | 
|  |  | 
|  | // If the signed type can represent all values of the unsigned type, it | 
|  | // wins.  Because we are dealing with 2's complement and types that are | 
|  | // powers of two larger than each other, this is always safe. | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | TypedefDecl *ASTContext::getCFConstantStringDecl() const { | 
|  | if (CFConstantStringTypeDecl) | 
|  | return CFConstantStringTypeDecl; | 
|  |  | 
|  | assert(!CFConstantStringTagDecl && | 
|  | "tag and typedef should be initialized together"); | 
|  | CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag"); | 
|  | CFConstantStringTagDecl->startDefinition(); | 
|  |  | 
|  | struct { | 
|  | QualType Type; | 
|  | const char *Name; | 
|  | } Fields[5]; | 
|  | unsigned Count = 0; | 
|  |  | 
|  | /// Objective-C ABI | 
|  | /// | 
|  | ///    typedef struct __NSConstantString_tag { | 
|  | ///      const int *isa; | 
|  | ///      int flags; | 
|  | ///      const char *str; | 
|  | ///      long length; | 
|  | ///    } __NSConstantString; | 
|  | /// | 
|  | /// Swift ABI (4.1, 4.2) | 
|  | /// | 
|  | ///    typedef struct __NSConstantString_tag { | 
|  | ///      uintptr_t _cfisa; | 
|  | ///      uintptr_t _swift_rc; | 
|  | ///      _Atomic(uint64_t) _cfinfoa; | 
|  | ///      const char *_ptr; | 
|  | ///      uint32_t _length; | 
|  | ///    } __NSConstantString; | 
|  | /// | 
|  | /// Swift ABI (5.0) | 
|  | /// | 
|  | ///    typedef struct __NSConstantString_tag { | 
|  | ///      uintptr_t _cfisa; | 
|  | ///      uintptr_t _swift_rc; | 
|  | ///      _Atomic(uint64_t) _cfinfoa; | 
|  | ///      const char *_ptr; | 
|  | ///      uintptr_t _length; | 
|  | ///    } __NSConstantString; | 
|  |  | 
|  | const auto CFRuntime = getLangOpts().CFRuntime; | 
|  | if (static_cast<unsigned>(CFRuntime) < | 
|  | static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) { | 
|  | Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" }; | 
|  | Fields[Count++] = { IntTy, "flags" }; | 
|  | Fields[Count++] = { getPointerType(CharTy.withConst()), "str" }; | 
|  | Fields[Count++] = { LongTy, "length" }; | 
|  | } else { | 
|  | Fields[Count++] = { getUIntPtrType(), "_cfisa" }; | 
|  | Fields[Count++] = { getUIntPtrType(), "_swift_rc" }; | 
|  | Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" }; | 
|  | Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" }; | 
|  | if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || | 
|  | CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) | 
|  | Fields[Count++] = { IntTy, "_ptr" }; | 
|  | else | 
|  | Fields[Count++] = { getUIntPtrType(), "_ptr" }; | 
|  | } | 
|  |  | 
|  | // Create fields | 
|  | for (unsigned i = 0; i < Count; ++i) { | 
|  | FieldDecl *Field = | 
|  | FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(), | 
|  | SourceLocation(), &Idents.get(Fields[i].Name), | 
|  | Fields[i].Type, /*TInfo=*/nullptr, | 
|  | /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); | 
|  | Field->setAccess(AS_public); | 
|  | CFConstantStringTagDecl->addDecl(Field); | 
|  | } | 
|  |  | 
|  | CFConstantStringTagDecl->completeDefinition(); | 
|  | // This type is designed to be compatible with NSConstantString, but cannot | 
|  | // use the same name, since NSConstantString is an interface. | 
|  | CanQualType tagType = getCanonicalTagType(CFConstantStringTagDecl); | 
|  | CFConstantStringTypeDecl = | 
|  | buildImplicitTypedef(tagType, "__NSConstantString"); | 
|  |  | 
|  | return CFConstantStringTypeDecl; | 
|  | } | 
|  |  | 
|  | RecordDecl *ASTContext::getCFConstantStringTagDecl() const { | 
|  | if (!CFConstantStringTagDecl) | 
|  | getCFConstantStringDecl(); // Build the tag and the typedef. | 
|  | return CFConstantStringTagDecl; | 
|  | } | 
|  |  | 
|  | // getCFConstantStringType - Return the type used for constant CFStrings. | 
|  | QualType ASTContext::getCFConstantStringType() const { | 
|  | return getTypedefType(ElaboratedTypeKeyword::None, /*Qualifier=*/std::nullopt, | 
|  | getCFConstantStringDecl()); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getObjCSuperType() const { | 
|  | if (ObjCSuperType.isNull()) { | 
|  | RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super"); | 
|  | getTranslationUnitDecl()->addDecl(ObjCSuperTypeDecl); | 
|  | ObjCSuperType = getCanonicalTagType(ObjCSuperTypeDecl); | 
|  | } | 
|  | return ObjCSuperType; | 
|  | } | 
|  |  | 
|  | void ASTContext::setCFConstantStringType(QualType T) { | 
|  | const auto *TT = T->castAs<TypedefType>(); | 
|  | CFConstantStringTypeDecl = cast<TypedefDecl>(TT->getDecl()); | 
|  | CFConstantStringTagDecl = TT->castAsRecordDecl(); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getBlockDescriptorType() const { | 
|  | if (BlockDescriptorType) | 
|  | return getCanonicalTagType(BlockDescriptorType); | 
|  |  | 
|  | RecordDecl *RD; | 
|  | // FIXME: Needs the FlagAppleBlock bit. | 
|  | RD = buildImplicitRecord("__block_descriptor"); | 
|  | RD->startDefinition(); | 
|  |  | 
|  | QualType FieldTypes[] = { | 
|  | UnsignedLongTy, | 
|  | UnsignedLongTy, | 
|  | }; | 
|  |  | 
|  | static const char *const FieldNames[] = { | 
|  | "reserved", | 
|  | "Size" | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < 2; ++i) { | 
|  | FieldDecl *Field = FieldDecl::Create( | 
|  | *this, RD, SourceLocation(), SourceLocation(), | 
|  | &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, | 
|  | /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); | 
|  | Field->setAccess(AS_public); | 
|  | RD->addDecl(Field); | 
|  | } | 
|  |  | 
|  | RD->completeDefinition(); | 
|  |  | 
|  | BlockDescriptorType = RD; | 
|  |  | 
|  | return getCanonicalTagType(BlockDescriptorType); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getBlockDescriptorExtendedType() const { | 
|  | if (BlockDescriptorExtendedType) | 
|  | return getCanonicalTagType(BlockDescriptorExtendedType); | 
|  |  | 
|  | RecordDecl *RD; | 
|  | // FIXME: Needs the FlagAppleBlock bit. | 
|  | RD = buildImplicitRecord("__block_descriptor_withcopydispose"); | 
|  | RD->startDefinition(); | 
|  |  | 
|  | QualType FieldTypes[] = { | 
|  | UnsignedLongTy, | 
|  | UnsignedLongTy, | 
|  | getPointerType(VoidPtrTy), | 
|  | getPointerType(VoidPtrTy) | 
|  | }; | 
|  |  | 
|  | static const char *const FieldNames[] = { | 
|  | "reserved", | 
|  | "Size", | 
|  | "CopyFuncPtr", | 
|  | "DestroyFuncPtr" | 
|  | }; | 
|  |  | 
|  | for (size_t i = 0; i < 4; ++i) { | 
|  | FieldDecl *Field = FieldDecl::Create( | 
|  | *this, RD, SourceLocation(), SourceLocation(), | 
|  | &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, | 
|  | /*BitWidth=*/nullptr, | 
|  | /*Mutable=*/false, ICIS_NoInit); | 
|  | Field->setAccess(AS_public); | 
|  | RD->addDecl(Field); | 
|  | } | 
|  |  | 
|  | RD->completeDefinition(); | 
|  |  | 
|  | BlockDescriptorExtendedType = RD; | 
|  | return getCanonicalTagType(BlockDescriptorExtendedType); | 
|  | } | 
|  |  | 
|  | OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const { | 
|  | const auto *BT = dyn_cast<BuiltinType>(T); | 
|  |  | 
|  | if (!BT) { | 
|  | if (isa<PipeType>(T)) | 
|  | return OCLTK_Pipe; | 
|  |  | 
|  | return OCLTK_Default; | 
|  | } | 
|  |  | 
|  | switch (BT->getKind()) { | 
|  | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix)                   \ | 
|  | case BuiltinType::Id:                                                        \ | 
|  | return OCLTK_Image; | 
|  | #include "clang/Basic/OpenCLImageTypes.def" | 
|  |  | 
|  | case BuiltinType::OCLClkEvent: | 
|  | return OCLTK_ClkEvent; | 
|  |  | 
|  | case BuiltinType::OCLEvent: | 
|  | return OCLTK_Event; | 
|  |  | 
|  | case BuiltinType::OCLQueue: | 
|  | return OCLTK_Queue; | 
|  |  | 
|  | case BuiltinType::OCLReserveID: | 
|  | return OCLTK_ReserveID; | 
|  |  | 
|  | case BuiltinType::OCLSampler: | 
|  | return OCLTK_Sampler; | 
|  |  | 
|  | default: | 
|  | return OCLTK_Default; | 
|  | } | 
|  | } | 
|  |  | 
|  | LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const { | 
|  | return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)); | 
|  | } | 
|  |  | 
|  | /// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty" | 
|  | /// requires copy/dispose. Note that this must match the logic | 
|  | /// in buildByrefHelpers. | 
|  | bool ASTContext::BlockRequiresCopying(QualType Ty, | 
|  | const VarDecl *D) { | 
|  | if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) { | 
|  | const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr(); | 
|  | if (!copyExpr && record->hasTrivialDestructor()) return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (Ty.hasAddressDiscriminatedPointerAuth()) | 
|  | return true; | 
|  |  | 
|  | // The block needs copy/destroy helpers if Ty is non-trivial to destructively | 
|  | // move or destroy. | 
|  | if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType()) | 
|  | return true; | 
|  |  | 
|  | if (!Ty->isObjCRetainableType()) return false; | 
|  |  | 
|  | Qualifiers qs = Ty.getQualifiers(); | 
|  |  | 
|  | // If we have lifetime, that dominates. | 
|  | if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) { | 
|  | switch (lifetime) { | 
|  | case Qualifiers::OCL_None: llvm_unreachable("impossible"); | 
|  |  | 
|  | // These are just bits as far as the runtime is concerned. | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | return false; | 
|  |  | 
|  | // These cases should have been taken care of when checking the type's | 
|  | // non-triviality. | 
|  | case Qualifiers::OCL_Weak: | 
|  | case Qualifiers::OCL_Strong: | 
|  | llvm_unreachable("impossible"); | 
|  | } | 
|  | llvm_unreachable("fell out of lifetime switch!"); | 
|  | } | 
|  | return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) || | 
|  | Ty->isObjCObjectPointerType()); | 
|  | } | 
|  |  | 
|  | bool ASTContext::getByrefLifetime(QualType Ty, | 
|  | Qualifiers::ObjCLifetime &LifeTime, | 
|  | bool &HasByrefExtendedLayout) const { | 
|  | if (!getLangOpts().ObjC || | 
|  | getLangOpts().getGC() != LangOptions::NonGC) | 
|  | return false; | 
|  |  | 
|  | HasByrefExtendedLayout = false; | 
|  | if (Ty->isRecordType()) { | 
|  | HasByrefExtendedLayout = true; | 
|  | LifeTime = Qualifiers::OCL_None; | 
|  | } else if ((LifeTime = Ty.getObjCLifetime())) { | 
|  | // Honor the ARC qualifiers. | 
|  | } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) { | 
|  | // The MRR rule. | 
|  | LifeTime = Qualifiers::OCL_ExplicitNone; | 
|  | } else { | 
|  | LifeTime = Qualifiers::OCL_None; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | CanQualType ASTContext::getNSUIntegerType() const { | 
|  | assert(Target && "Expected target to be initialized"); | 
|  | const llvm::Triple &T = Target->getTriple(); | 
|  | // Windows is LLP64 rather than LP64 | 
|  | if (T.isOSWindows() && T.isArch64Bit()) | 
|  | return UnsignedLongLongTy; | 
|  | return UnsignedLongTy; | 
|  | } | 
|  |  | 
|  | CanQualType ASTContext::getNSIntegerType() const { | 
|  | assert(Target && "Expected target to be initialized"); | 
|  | const llvm::Triple &T = Target->getTriple(); | 
|  | // Windows is LLP64 rather than LP64 | 
|  | if (T.isOSWindows() && T.isArch64Bit()) | 
|  | return LongLongTy; | 
|  | return LongTy; | 
|  | } | 
|  |  | 
|  | TypedefDecl *ASTContext::getObjCInstanceTypeDecl() { | 
|  | if (!ObjCInstanceTypeDecl) | 
|  | ObjCInstanceTypeDecl = | 
|  | buildImplicitTypedef(getObjCIdType(), "instancetype"); | 
|  | return ObjCInstanceTypeDecl; | 
|  | } | 
|  |  | 
|  | // This returns true if a type has been typedefed to BOOL: | 
|  | // typedef <type> BOOL; | 
|  | static bool isTypeTypedefedAsBOOL(QualType T) { | 
|  | if (const auto *TT = dyn_cast<TypedefType>(T)) | 
|  | if (IdentifierInfo *II = TT->getDecl()->getIdentifier()) | 
|  | return II->isStr("BOOL"); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getObjCEncodingTypeSize returns size of type for objective-c encoding | 
|  | /// purpose. | 
|  | CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const { | 
|  | if (!type->isIncompleteArrayType() && type->isIncompleteType()) | 
|  | return CharUnits::Zero(); | 
|  |  | 
|  | CharUnits sz = getTypeSizeInChars(type); | 
|  |  | 
|  | // Make all integer and enum types at least as large as an int | 
|  | if (sz.isPositive() && type->isIntegralOrEnumerationType()) | 
|  | sz = std::max(sz, getTypeSizeInChars(IntTy)); | 
|  | // Treat arrays as pointers, since that's how they're passed in. | 
|  | else if (type->isArrayType()) | 
|  | sz = getTypeSizeInChars(VoidPtrTy); | 
|  | return sz; | 
|  | } | 
|  |  | 
|  | bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const { | 
|  | return getTargetInfo().getCXXABI().isMicrosoft() && | 
|  | VD->isStaticDataMember() && | 
|  | VD->getType()->isIntegralOrEnumerationType() && | 
|  | !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit(); | 
|  | } | 
|  |  | 
|  | ASTContext::InlineVariableDefinitionKind | 
|  | ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const { | 
|  | if (!VD->isInline()) | 
|  | return InlineVariableDefinitionKind::None; | 
|  |  | 
|  | // In almost all cases, it's a weak definition. | 
|  | auto *First = VD->getFirstDecl(); | 
|  | if (First->isInlineSpecified() || !First->isStaticDataMember()) | 
|  | return InlineVariableDefinitionKind::Weak; | 
|  |  | 
|  | // If there's a file-context declaration in this translation unit, it's a | 
|  | // non-discardable definition. | 
|  | for (auto *D : VD->redecls()) | 
|  | if (D->getLexicalDeclContext()->isFileContext() && | 
|  | !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr())) | 
|  | return InlineVariableDefinitionKind::Strong; | 
|  |  | 
|  | // If we've not seen one yet, we don't know. | 
|  | return InlineVariableDefinitionKind::WeakUnknown; | 
|  | } | 
|  |  | 
|  | static std::string charUnitsToString(const CharUnits &CU) { | 
|  | return llvm::itostr(CU.getQuantity()); | 
|  | } | 
|  |  | 
|  | /// getObjCEncodingForBlock - Return the encoded type for this block | 
|  | /// declaration. | 
|  | std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const { | 
|  | std::string S; | 
|  |  | 
|  | const BlockDecl *Decl = Expr->getBlockDecl(); | 
|  | QualType BlockTy = | 
|  | Expr->getType()->castAs<BlockPointerType>()->getPointeeType(); | 
|  | QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType(); | 
|  | // Encode result type. | 
|  | if (getLangOpts().EncodeExtendedBlockSig) | 
|  | getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S, | 
|  | true /*Extended*/); | 
|  | else | 
|  | getObjCEncodingForType(BlockReturnTy, S); | 
|  | // Compute size of all parameters. | 
|  | // Start with computing size of a pointer in number of bytes. | 
|  | // FIXME: There might(should) be a better way of doing this computation! | 
|  | CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); | 
|  | CharUnits ParmOffset = PtrSize; | 
|  | for (auto *PI : Decl->parameters()) { | 
|  | QualType PType = PI->getType(); | 
|  | CharUnits sz = getObjCEncodingTypeSize(PType); | 
|  | if (sz.isZero()) | 
|  | continue; | 
|  | assert(sz.isPositive() && "BlockExpr - Incomplete param type"); | 
|  | ParmOffset += sz; | 
|  | } | 
|  | // Size of the argument frame | 
|  | S += charUnitsToString(ParmOffset); | 
|  | // Block pointer and offset. | 
|  | S += "@?0"; | 
|  |  | 
|  | // Argument types. | 
|  | ParmOffset = PtrSize; | 
|  | for (auto *PVDecl : Decl->parameters()) { | 
|  | QualType PType = PVDecl->getOriginalType(); | 
|  | if (const auto *AT = | 
|  | dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { | 
|  | // Use array's original type only if it has known number of | 
|  | // elements. | 
|  | if (!isa<ConstantArrayType>(AT)) | 
|  | PType = PVDecl->getType(); | 
|  | } else if (PType->isFunctionType()) | 
|  | PType = PVDecl->getType(); | 
|  | if (getLangOpts().EncodeExtendedBlockSig) | 
|  | getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType, | 
|  | S, true /*Extended*/); | 
|  | else | 
|  | getObjCEncodingForType(PType, S); | 
|  | S += charUnitsToString(ParmOffset); | 
|  | ParmOffset += getObjCEncodingTypeSize(PType); | 
|  | } | 
|  |  | 
|  | return S; | 
|  | } | 
|  |  | 
|  | std::string | 
|  | ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const { | 
|  | std::string S; | 
|  | // Encode result type. | 
|  | getObjCEncodingForType(Decl->getReturnType(), S); | 
|  | CharUnits ParmOffset; | 
|  | // Compute size of all parameters. | 
|  | for (auto *PI : Decl->parameters()) { | 
|  | QualType PType = PI->getType(); | 
|  | CharUnits sz = getObjCEncodingTypeSize(PType); | 
|  | if (sz.isZero()) | 
|  | continue; | 
|  |  | 
|  | assert(sz.isPositive() && | 
|  | "getObjCEncodingForFunctionDecl - Incomplete param type"); | 
|  | ParmOffset += sz; | 
|  | } | 
|  | S += charUnitsToString(ParmOffset); | 
|  | ParmOffset = CharUnits::Zero(); | 
|  |  | 
|  | // Argument types. | 
|  | for (auto *PVDecl : Decl->parameters()) { | 
|  | QualType PType = PVDecl->getOriginalType(); | 
|  | if (const auto *AT = | 
|  | dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { | 
|  | // Use array's original type only if it has known number of | 
|  | // elements. | 
|  | if (!isa<ConstantArrayType>(AT)) | 
|  | PType = PVDecl->getType(); | 
|  | } else if (PType->isFunctionType()) | 
|  | PType = PVDecl->getType(); | 
|  | getObjCEncodingForType(PType, S); | 
|  | S += charUnitsToString(ParmOffset); | 
|  | ParmOffset += getObjCEncodingTypeSize(PType); | 
|  | } | 
|  |  | 
|  | return S; | 
|  | } | 
|  |  | 
|  | /// getObjCEncodingForMethodParameter - Return the encoded type for a single | 
|  | /// method parameter or return type. If Extended, include class names and | 
|  | /// block object types. | 
|  | void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT, | 
|  | QualType T, std::string& S, | 
|  | bool Extended) const { | 
|  | // Encode type qualifier, 'in', 'inout', etc. for the parameter. | 
|  | getObjCEncodingForTypeQualifier(QT, S); | 
|  | // Encode parameter type. | 
|  | ObjCEncOptions Options = ObjCEncOptions() | 
|  | .setExpandPointedToStructures() | 
|  | .setExpandStructures() | 
|  | .setIsOutermostType(); | 
|  | if (Extended) | 
|  | Options.setEncodeBlockParameters().setEncodeClassNames(); | 
|  | getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr); | 
|  | } | 
|  |  | 
|  | /// getObjCEncodingForMethodDecl - Return the encoded type for this method | 
|  | /// declaration. | 
|  | std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl, | 
|  | bool Extended) const { | 
|  | // FIXME: This is not very efficient. | 
|  | // Encode return type. | 
|  | std::string S; | 
|  | getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(), | 
|  | Decl->getReturnType(), S, Extended); | 
|  | // Compute size of all parameters. | 
|  | // Start with computing size of a pointer in number of bytes. | 
|  | // FIXME: There might(should) be a better way of doing this computation! | 
|  | CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy); | 
|  | // The first two arguments (self and _cmd) are pointers; account for | 
|  | // their size. | 
|  | CharUnits ParmOffset = 2 * PtrSize; | 
|  | for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), | 
|  | E = Decl->sel_param_end(); PI != E; ++PI) { | 
|  | QualType PType = (*PI)->getType(); | 
|  | CharUnits sz = getObjCEncodingTypeSize(PType); | 
|  | if (sz.isZero()) | 
|  | continue; | 
|  |  | 
|  | assert(sz.isPositive() && | 
|  | "getObjCEncodingForMethodDecl - Incomplete param type"); | 
|  | ParmOffset += sz; | 
|  | } | 
|  | S += charUnitsToString(ParmOffset); | 
|  | S += "@0:"; | 
|  | S += charUnitsToString(PtrSize); | 
|  |  | 
|  | // Argument types. | 
|  | ParmOffset = 2 * PtrSize; | 
|  | for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(), | 
|  | E = Decl->sel_param_end(); PI != E; ++PI) { | 
|  | const ParmVarDecl *PVDecl = *PI; | 
|  | QualType PType = PVDecl->getOriginalType(); | 
|  | if (const auto *AT = | 
|  | dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) { | 
|  | // Use array's original type only if it has known number of | 
|  | // elements. | 
|  | if (!isa<ConstantArrayType>(AT)) | 
|  | PType = PVDecl->getType(); | 
|  | } else if (PType->isFunctionType()) | 
|  | PType = PVDecl->getType(); | 
|  | getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(), | 
|  | PType, S, Extended); | 
|  | S += charUnitsToString(ParmOffset); | 
|  | ParmOffset += getObjCEncodingTypeSize(PType); | 
|  | } | 
|  |  | 
|  | return S; | 
|  | } | 
|  |  | 
|  | ObjCPropertyImplDecl * | 
|  | ASTContext::getObjCPropertyImplDeclForPropertyDecl( | 
|  | const ObjCPropertyDecl *PD, | 
|  | const Decl *Container) const { | 
|  | if (!Container) | 
|  | return nullptr; | 
|  | if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) { | 
|  | for (auto *PID : CID->property_impls()) | 
|  | if (PID->getPropertyDecl() == PD) | 
|  | return PID; | 
|  | } else { | 
|  | const auto *OID = cast<ObjCImplementationDecl>(Container); | 
|  | for (auto *PID : OID->property_impls()) | 
|  | if (PID->getPropertyDecl() == PD) | 
|  | return PID; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// getObjCEncodingForPropertyDecl - Return the encoded type for this | 
|  | /// property declaration. If non-NULL, Container must be either an | 
|  | /// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be | 
|  | /// NULL when getting encodings for protocol properties. | 
|  | /// Property attributes are stored as a comma-delimited C string. The simple | 
|  | /// attributes readonly and bycopy are encoded as single characters. The | 
|  | /// parametrized attributes, getter=name, setter=name, and ivar=name, are | 
|  | /// encoded as single characters, followed by an identifier. Property types | 
|  | /// are also encoded as a parametrized attribute. The characters used to encode | 
|  | /// these attributes are defined by the following enumeration: | 
|  | /// @code | 
|  | /// enum PropertyAttributes { | 
|  | /// kPropertyReadOnly = 'R',   // property is read-only. | 
|  | /// kPropertyBycopy = 'C',     // property is a copy of the value last assigned | 
|  | /// kPropertyByref = '&',  // property is a reference to the value last assigned | 
|  | /// kPropertyDynamic = 'D',    // property is dynamic | 
|  | /// kPropertyGetter = 'G',     // followed by getter selector name | 
|  | /// kPropertySetter = 'S',     // followed by setter selector name | 
|  | /// kPropertyInstanceVariable = 'V'  // followed by instance variable  name | 
|  | /// kPropertyType = 'T'              // followed by old-style type encoding. | 
|  | /// kPropertyWeak = 'W'              // 'weak' property | 
|  | /// kPropertyStrong = 'P'            // property GC'able | 
|  | /// kPropertyNonAtomic = 'N'         // property non-atomic | 
|  | /// kPropertyOptional = '?'          // property optional | 
|  | /// }; | 
|  | /// @endcode | 
|  | std::string | 
|  | ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD, | 
|  | const Decl *Container) const { | 
|  | // Collect information from the property implementation decl(s). | 
|  | bool Dynamic = false; | 
|  | ObjCPropertyImplDecl *SynthesizePID = nullptr; | 
|  |  | 
|  | if (ObjCPropertyImplDecl *PropertyImpDecl = | 
|  | getObjCPropertyImplDeclForPropertyDecl(PD, Container)) { | 
|  | if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic) | 
|  | Dynamic = true; | 
|  | else | 
|  | SynthesizePID = PropertyImpDecl; | 
|  | } | 
|  |  | 
|  | // FIXME: This is not very efficient. | 
|  | std::string S = "T"; | 
|  |  | 
|  | // Encode result type. | 
|  | // GCC has some special rules regarding encoding of properties which | 
|  | // closely resembles encoding of ivars. | 
|  | getObjCEncodingForPropertyType(PD->getType(), S); | 
|  |  | 
|  | if (PD->isOptional()) | 
|  | S += ",?"; | 
|  |  | 
|  | if (PD->isReadOnly()) { | 
|  | S += ",R"; | 
|  | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy) | 
|  | S += ",C"; | 
|  | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain) | 
|  | S += ",&"; | 
|  | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak) | 
|  | S += ",W"; | 
|  | } else { | 
|  | switch (PD->getSetterKind()) { | 
|  | case ObjCPropertyDecl::Assign: break; | 
|  | case ObjCPropertyDecl::Copy:   S += ",C"; break; | 
|  | case ObjCPropertyDecl::Retain: S += ",&"; break; | 
|  | case ObjCPropertyDecl::Weak:   S += ",W"; break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // It really isn't clear at all what this means, since properties | 
|  | // are "dynamic by default". | 
|  | if (Dynamic) | 
|  | S += ",D"; | 
|  |  | 
|  | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic) | 
|  | S += ",N"; | 
|  |  | 
|  | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) { | 
|  | S += ",G"; | 
|  | S += PD->getGetterName().getAsString(); | 
|  | } | 
|  |  | 
|  | if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) { | 
|  | S += ",S"; | 
|  | S += PD->getSetterName().getAsString(); | 
|  | } | 
|  |  | 
|  | if (SynthesizePID) { | 
|  | const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl(); | 
|  | S += ",V"; | 
|  | S += OID->getNameAsString(); | 
|  | } | 
|  |  | 
|  | // FIXME: OBJCGC: weak & strong | 
|  | return S; | 
|  | } | 
|  |  | 
|  | /// getLegacyIntegralTypeEncoding - | 
|  | /// Another legacy compatibility encoding: 32-bit longs are encoded as | 
|  | /// 'l' or 'L' , but not always.  For typedefs, we need to use | 
|  | /// 'i' or 'I' instead if encoding a struct field, or a pointer! | 
|  | void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const { | 
|  | if (PointeeTy->getAs<TypedefType>()) { | 
|  | if (const auto *BT = PointeeTy->getAs<BuiltinType>()) { | 
|  | if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32) | 
|  | PointeeTy = UnsignedIntTy; | 
|  | else | 
|  | if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32) | 
|  | PointeeTy = IntTy; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ASTContext::getObjCEncodingForType(QualType T, std::string& S, | 
|  | const FieldDecl *Field, | 
|  | QualType *NotEncodedT) const { | 
|  | // We follow the behavior of gcc, expanding structures which are | 
|  | // directly pointed to, and expanding embedded structures. Note that | 
|  | // these rules are sufficient to prevent recursive encoding of the | 
|  | // same type. | 
|  | getObjCEncodingForTypeImpl(T, S, | 
|  | ObjCEncOptions() | 
|  | .setExpandPointedToStructures() | 
|  | .setExpandStructures() | 
|  | .setIsOutermostType(), | 
|  | Field, NotEncodedT); | 
|  | } | 
|  |  | 
|  | void ASTContext::getObjCEncodingForPropertyType(QualType T, | 
|  | std::string& S) const { | 
|  | // Encode result type. | 
|  | // GCC has some special rules regarding encoding of properties which | 
|  | // closely resembles encoding of ivars. | 
|  | getObjCEncodingForTypeImpl(T, S, | 
|  | ObjCEncOptions() | 
|  | .setExpandPointedToStructures() | 
|  | .setExpandStructures() | 
|  | .setIsOutermostType() | 
|  | .setEncodingProperty(), | 
|  | /*Field=*/nullptr); | 
|  | } | 
|  |  | 
|  | static char getObjCEncodingForPrimitiveType(const ASTContext *C, | 
|  | const BuiltinType *BT) { | 
|  | BuiltinType::Kind kind = BT->getKind(); | 
|  | switch (kind) { | 
|  | case BuiltinType::Void:       return 'v'; | 
|  | case BuiltinType::Bool:       return 'B'; | 
|  | case BuiltinType::Char8: | 
|  | case BuiltinType::Char_U: | 
|  | case BuiltinType::UChar:      return 'C'; | 
|  | case BuiltinType::Char16: | 
|  | case BuiltinType::UShort:     return 'S'; | 
|  | case BuiltinType::Char32: | 
|  | case BuiltinType::UInt:       return 'I'; | 
|  | case BuiltinType::ULong: | 
|  | return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q'; | 
|  | case BuiltinType::UInt128:    return 'T'; | 
|  | case BuiltinType::ULongLong:  return 'Q'; | 
|  | case BuiltinType::Char_S: | 
|  | case BuiltinType::SChar:      return 'c'; | 
|  | case BuiltinType::Short:      return 's'; | 
|  | case BuiltinType::WChar_S: | 
|  | case BuiltinType::WChar_U: | 
|  | case BuiltinType::Int:        return 'i'; | 
|  | case BuiltinType::Long: | 
|  | return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q'; | 
|  | case BuiltinType::LongLong:   return 'q'; | 
|  | case BuiltinType::Int128:     return 't'; | 
|  | case BuiltinType::Float:      return 'f'; | 
|  | case BuiltinType::Double:     return 'd'; | 
|  | case BuiltinType::LongDouble: return 'D'; | 
|  | case BuiltinType::NullPtr:    return '*'; // like char* | 
|  |  | 
|  | case BuiltinType::BFloat16: | 
|  | case BuiltinType::Float16: | 
|  | case BuiltinType::Float128: | 
|  | case BuiltinType::Ibm128: | 
|  | case BuiltinType::Half: | 
|  | case BuiltinType::ShortAccum: | 
|  | case BuiltinType::Accum: | 
|  | case BuiltinType::LongAccum: | 
|  | case BuiltinType::UShortAccum: | 
|  | case BuiltinType::UAccum: | 
|  | case BuiltinType::ULongAccum: | 
|  | case BuiltinType::ShortFract: | 
|  | case BuiltinType::Fract: | 
|  | case BuiltinType::LongFract: | 
|  | case BuiltinType::UShortFract: | 
|  | case BuiltinType::UFract: | 
|  | case BuiltinType::ULongFract: | 
|  | case BuiltinType::SatShortAccum: | 
|  | case BuiltinType::SatAccum: | 
|  | case BuiltinType::SatLongAccum: | 
|  | case BuiltinType::SatUShortAccum: | 
|  | case BuiltinType::SatUAccum: | 
|  | case BuiltinType::SatULongAccum: | 
|  | case BuiltinType::SatShortFract: | 
|  | case BuiltinType::SatFract: | 
|  | case BuiltinType::SatLongFract: | 
|  | case BuiltinType::SatUShortFract: | 
|  | case BuiltinType::SatUFract: | 
|  | case BuiltinType::SatULongFract: | 
|  | // FIXME: potentially need @encodes for these! | 
|  | return ' '; | 
|  |  | 
|  | #define SVE_TYPE(Name, Id, SingletonId) \ | 
|  | case BuiltinType::Id: | 
|  | #include "clang/Basic/AArch64ACLETypes.def" | 
|  | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | 
|  | #include "clang/Basic/RISCVVTypes.def" | 
|  | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | 
|  | #include "clang/Basic/WebAssemblyReferenceTypes.def" | 
|  | #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id: | 
|  | #include "clang/Basic/AMDGPUTypes.def" | 
|  | { | 
|  | DiagnosticsEngine &Diags = C->getDiagnostics(); | 
|  | unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, | 
|  | "cannot yet @encode type %0"); | 
|  | Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy()); | 
|  | return ' '; | 
|  | } | 
|  |  | 
|  | case BuiltinType::ObjCId: | 
|  | case BuiltinType::ObjCClass: | 
|  | case BuiltinType::ObjCSel: | 
|  | llvm_unreachable("@encoding ObjC primitive type"); | 
|  |  | 
|  | // OpenCL and placeholder types don't need @encodings. | 
|  | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | 
|  | case BuiltinType::Id: | 
|  | #include "clang/Basic/OpenCLImageTypes.def" | 
|  | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ | 
|  | case BuiltinType::Id: | 
|  | #include "clang/Basic/OpenCLExtensionTypes.def" | 
|  | case BuiltinType::OCLEvent: | 
|  | case BuiltinType::OCLClkEvent: | 
|  | case BuiltinType::OCLQueue: | 
|  | case BuiltinType::OCLReserveID: | 
|  | case BuiltinType::OCLSampler: | 
|  | case BuiltinType::Dependent: | 
|  | #define PPC_VECTOR_TYPE(Name, Id, Size) \ | 
|  | case BuiltinType::Id: | 
|  | #include "clang/Basic/PPCTypes.def" | 
|  | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: | 
|  | #include "clang/Basic/HLSLIntangibleTypes.def" | 
|  | #define BUILTIN_TYPE(KIND, ID) | 
|  | #define PLACEHOLDER_TYPE(KIND, ID) \ | 
|  | case BuiltinType::KIND: | 
|  | #include "clang/AST/BuiltinTypes.def" | 
|  | llvm_unreachable("invalid builtin type for @encode"); | 
|  | } | 
|  | llvm_unreachable("invalid BuiltinType::Kind value"); | 
|  | } | 
|  |  | 
|  | static char ObjCEncodingForEnumDecl(const ASTContext *C, const EnumDecl *ED) { | 
|  | EnumDecl *Enum = ED->getDefinitionOrSelf(); | 
|  |  | 
|  | // The encoding of an non-fixed enum type is always 'i', regardless of size. | 
|  | if (!Enum->isFixed()) | 
|  | return 'i'; | 
|  |  | 
|  | // The encoding of a fixed enum type matches its fixed underlying type. | 
|  | const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>(); | 
|  | return getObjCEncodingForPrimitiveType(C, BT); | 
|  | } | 
|  |  | 
|  | static void EncodeBitField(const ASTContext *Ctx, std::string& S, | 
|  | QualType T, const FieldDecl *FD) { | 
|  | assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl"); | 
|  | S += 'b'; | 
|  | // The NeXT runtime encodes bit fields as b followed by the number of bits. | 
|  | // The GNU runtime requires more information; bitfields are encoded as b, | 
|  | // then the offset (in bits) of the first element, then the type of the | 
|  | // bitfield, then the size in bits.  For example, in this structure: | 
|  | // | 
|  | // struct | 
|  | // { | 
|  | //    int integer; | 
|  | //    int flags:2; | 
|  | // }; | 
|  | // On a 32-bit system, the encoding for flags would be b2 for the NeXT | 
|  | // runtime, but b32i2 for the GNU runtime.  The reason for this extra | 
|  | // information is not especially sensible, but we're stuck with it for | 
|  | // compatibility with GCC, although providing it breaks anything that | 
|  | // actually uses runtime introspection and wants to work on both runtimes... | 
|  | if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) { | 
|  | uint64_t Offset; | 
|  |  | 
|  | if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) { | 
|  | Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), IVD); | 
|  | } else { | 
|  | const RecordDecl *RD = FD->getParent(); | 
|  | const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD); | 
|  | Offset = RL.getFieldOffset(FD->getFieldIndex()); | 
|  | } | 
|  |  | 
|  | S += llvm::utostr(Offset); | 
|  |  | 
|  | if (const auto *ET = T->getAsCanonical<EnumType>()) | 
|  | S += ObjCEncodingForEnumDecl(Ctx, ET->getOriginalDecl()); | 
|  | else { | 
|  | const auto *BT = T->castAs<BuiltinType>(); | 
|  | S += getObjCEncodingForPrimitiveType(Ctx, BT); | 
|  | } | 
|  | } | 
|  | S += llvm::utostr(FD->getBitWidthValue()); | 
|  | } | 
|  |  | 
|  | // Helper function for determining whether the encoded type string would include | 
|  | // a template specialization type. | 
|  | static bool hasTemplateSpecializationInEncodedString(const Type *T, | 
|  | bool VisitBasesAndFields) { | 
|  | T = T->getBaseElementTypeUnsafe(); | 
|  |  | 
|  | if (auto *PT = T->getAs<PointerType>()) | 
|  | return hasTemplateSpecializationInEncodedString( | 
|  | PT->getPointeeType().getTypePtr(), false); | 
|  |  | 
|  | auto *CXXRD = T->getAsCXXRecordDecl(); | 
|  |  | 
|  | if (!CXXRD) | 
|  | return false; | 
|  |  | 
|  | if (isa<ClassTemplateSpecializationDecl>(CXXRD)) | 
|  | return true; | 
|  |  | 
|  | if (!CXXRD->hasDefinition() || !VisitBasesAndFields) | 
|  | return false; | 
|  |  | 
|  | for (const auto &B : CXXRD->bases()) | 
|  | if (hasTemplateSpecializationInEncodedString(B.getType().getTypePtr(), | 
|  | true)) | 
|  | return true; | 
|  |  | 
|  | for (auto *FD : CXXRD->fields()) | 
|  | if (hasTemplateSpecializationInEncodedString(FD->getType().getTypePtr(), | 
|  | true)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // FIXME: Use SmallString for accumulating string. | 
|  | void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S, | 
|  | const ObjCEncOptions Options, | 
|  | const FieldDecl *FD, | 
|  | QualType *NotEncodedT) const { | 
|  | CanQualType CT = getCanonicalType(T); | 
|  | switch (CT->getTypeClass()) { | 
|  | case Type::Builtin: | 
|  | case Type::Enum: | 
|  | if (FD && FD->isBitField()) | 
|  | return EncodeBitField(this, S, T, FD); | 
|  | if (const auto *BT = dyn_cast<BuiltinType>(CT)) | 
|  | S += getObjCEncodingForPrimitiveType(this, BT); | 
|  | else | 
|  | S += ObjCEncodingForEnumDecl(this, cast<EnumType>(CT)->getOriginalDecl()); | 
|  | return; | 
|  |  | 
|  | case Type::Complex: | 
|  | S += 'j'; | 
|  | getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S, | 
|  | ObjCEncOptions(), | 
|  | /*Field=*/nullptr); | 
|  | return; | 
|  |  | 
|  | case Type::Atomic: | 
|  | S += 'A'; | 
|  | getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S, | 
|  | ObjCEncOptions(), | 
|  | /*Field=*/nullptr); | 
|  | return; | 
|  |  | 
|  | // encoding for pointer or reference types. | 
|  | case Type::Pointer: | 
|  | case Type::LValueReference: | 
|  | case Type::RValueReference: { | 
|  | QualType PointeeTy; | 
|  | if (isa<PointerType>(CT)) { | 
|  | const auto *PT = T->castAs<PointerType>(); | 
|  | if (PT->isObjCSelType()) { | 
|  | S += ':'; | 
|  | return; | 
|  | } | 
|  | PointeeTy = PT->getPointeeType(); | 
|  | } else { | 
|  | PointeeTy = T->castAs<ReferenceType>()->getPointeeType(); | 
|  | } | 
|  |  | 
|  | bool isReadOnly = false; | 
|  | // For historical/compatibility reasons, the read-only qualifier of the | 
|  | // pointee gets emitted _before_ the '^'.  The read-only qualifier of | 
|  | // the pointer itself gets ignored, _unless_ we are looking at a typedef! | 
|  | // Also, do not emit the 'r' for anything but the outermost type! | 
|  | if (T->getAs<TypedefType>()) { | 
|  | if (Options.IsOutermostType() && T.isConstQualified()) { | 
|  | isReadOnly = true; | 
|  | S += 'r'; | 
|  | } | 
|  | } else if (Options.IsOutermostType()) { | 
|  | QualType P = PointeeTy; | 
|  | while (auto PT = P->getAs<PointerType>()) | 
|  | P = PT->getPointeeType(); | 
|  | if (P.isConstQualified()) { | 
|  | isReadOnly = true; | 
|  | S += 'r'; | 
|  | } | 
|  | } | 
|  | if (isReadOnly) { | 
|  | // Another legacy compatibility encoding. Some ObjC qualifier and type | 
|  | // combinations need to be rearranged. | 
|  | // Rewrite "in const" from "nr" to "rn" | 
|  | if (StringRef(S).ends_with("nr")) | 
|  | S.replace(S.end()-2, S.end(), "rn"); | 
|  | } | 
|  |  | 
|  | if (PointeeTy->isCharType()) { | 
|  | // char pointer types should be encoded as '*' unless it is a | 
|  | // type that has been typedef'd to 'BOOL'. | 
|  | if (!isTypeTypedefedAsBOOL(PointeeTy)) { | 
|  | S += '*'; | 
|  | return; | 
|  | } | 
|  | } else if (const auto *RTy = PointeeTy->getAsCanonical<RecordType>()) { | 
|  | const IdentifierInfo *II = RTy->getOriginalDecl()->getIdentifier(); | 
|  | // GCC binary compat: Need to convert "struct objc_class *" to "#". | 
|  | if (II == &Idents.get("objc_class")) { | 
|  | S += '#'; | 
|  | return; | 
|  | } | 
|  | // GCC binary compat: Need to convert "struct objc_object *" to "@". | 
|  | if (II == &Idents.get("objc_object")) { | 
|  | S += '@'; | 
|  | return; | 
|  | } | 
|  | // If the encoded string for the class includes template names, just emit | 
|  | // "^v" for pointers to the class. | 
|  | if (getLangOpts().CPlusPlus && | 
|  | (!getLangOpts().EncodeCXXClassTemplateSpec && | 
|  | hasTemplateSpecializationInEncodedString( | 
|  | RTy, Options.ExpandPointedToStructures()))) { | 
|  | S += "^v"; | 
|  | return; | 
|  | } | 
|  | // fall through... | 
|  | } | 
|  | S += '^'; | 
|  | getLegacyIntegralTypeEncoding(PointeeTy); | 
|  |  | 
|  | ObjCEncOptions NewOptions; | 
|  | if (Options.ExpandPointedToStructures()) | 
|  | NewOptions.setExpandStructures(); | 
|  | getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions, | 
|  | /*Field=*/nullptr, NotEncodedT); | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Type::ConstantArray: | 
|  | case Type::IncompleteArray: | 
|  | case Type::VariableArray: { | 
|  | const auto *AT = cast<ArrayType>(CT); | 
|  |  | 
|  | if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) { | 
|  | // Incomplete arrays are encoded as a pointer to the array element. | 
|  | S += '^'; | 
|  |  | 
|  | getObjCEncodingForTypeImpl( | 
|  | AT->getElementType(), S, | 
|  | Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD); | 
|  | } else { | 
|  | S += '['; | 
|  |  | 
|  | if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) | 
|  | S += llvm::utostr(CAT->getZExtSize()); | 
|  | else { | 
|  | //Variable length arrays are encoded as a regular array with 0 elements. | 
|  | assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && | 
|  | "Unknown array type!"); | 
|  | S += '0'; | 
|  | } | 
|  |  | 
|  | getObjCEncodingForTypeImpl( | 
|  | AT->getElementType(), S, | 
|  | Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD, | 
|  | NotEncodedT); | 
|  | S += ']'; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Type::FunctionNoProto: | 
|  | case Type::FunctionProto: | 
|  | S += '?'; | 
|  | return; | 
|  |  | 
|  | case Type::Record: { | 
|  | RecordDecl *RDecl = cast<RecordType>(CT)->getOriginalDecl(); | 
|  | S += RDecl->isUnion() ? '(' : '{'; | 
|  | // Anonymous structures print as '?' | 
|  | if (const IdentifierInfo *II = RDecl->getIdentifier()) { | 
|  | S += II->getName(); | 
|  | if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) { | 
|  | const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); | 
|  | llvm::raw_string_ostream OS(S); | 
|  | printTemplateArgumentList(OS, TemplateArgs.asArray(), | 
|  | getPrintingPolicy()); | 
|  | } | 
|  | } else { | 
|  | S += '?'; | 
|  | } | 
|  | if (Options.ExpandStructures()) { | 
|  | S += '='; | 
|  | if (!RDecl->isUnion()) { | 
|  | getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT); | 
|  | } else { | 
|  | for (const auto *Field : RDecl->fields()) { | 
|  | if (FD) { | 
|  | S += '"'; | 
|  | S += Field->getNameAsString(); | 
|  | S += '"'; | 
|  | } | 
|  |  | 
|  | // Special case bit-fields. | 
|  | if (Field->isBitField()) { | 
|  | getObjCEncodingForTypeImpl(Field->getType(), S, | 
|  | ObjCEncOptions().setExpandStructures(), | 
|  | Field); | 
|  | } else { | 
|  | QualType qt = Field->getType(); | 
|  | getLegacyIntegralTypeEncoding(qt); | 
|  | getObjCEncodingForTypeImpl( | 
|  | qt, S, | 
|  | ObjCEncOptions().setExpandStructures().setIsStructField(), FD, | 
|  | NotEncodedT); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | S += RDecl->isUnion() ? ')' : '}'; | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Type::BlockPointer: { | 
|  | const auto *BT = T->castAs<BlockPointerType>(); | 
|  | S += "@?"; // Unlike a pointer-to-function, which is "^?". | 
|  | if (Options.EncodeBlockParameters()) { | 
|  | const auto *FT = BT->getPointeeType()->castAs<FunctionType>(); | 
|  |  | 
|  | S += '<'; | 
|  | // Block return type | 
|  | getObjCEncodingForTypeImpl(FT->getReturnType(), S, | 
|  | Options.forComponentType(), FD, NotEncodedT); | 
|  | // Block self | 
|  | S += "@?"; | 
|  | // Block parameters | 
|  | if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) { | 
|  | for (const auto &I : FPT->param_types()) | 
|  | getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD, | 
|  | NotEncodedT); | 
|  | } | 
|  | S += '>'; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Type::ObjCObject: { | 
|  | // hack to match legacy encoding of *id and *Class | 
|  | QualType Ty = getObjCObjectPointerType(CT); | 
|  | if (Ty->isObjCIdType()) { | 
|  | S += "{objc_object=}"; | 
|  | return; | 
|  | } | 
|  | else if (Ty->isObjCClassType()) { | 
|  | S += "{objc_class=}"; | 
|  | return; | 
|  | } | 
|  | // TODO: Double check to make sure this intentionally falls through. | 
|  | [[fallthrough]]; | 
|  | } | 
|  |  | 
|  | case Type::ObjCInterface: { | 
|  | // Ignore protocol qualifiers when mangling at this level. | 
|  | // @encode(class_name) | 
|  | ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface(); | 
|  | S += '{'; | 
|  | S += OI->getObjCRuntimeNameAsString(); | 
|  | if (Options.ExpandStructures()) { | 
|  | S += '='; | 
|  | SmallVector<const ObjCIvarDecl*, 32> Ivars; | 
|  | DeepCollectObjCIvars(OI, true, Ivars); | 
|  | for (unsigned i = 0, e = Ivars.size(); i != e; ++i) { | 
|  | const FieldDecl *Field = Ivars[i]; | 
|  | if (Field->isBitField()) | 
|  | getObjCEncodingForTypeImpl(Field->getType(), S, | 
|  | ObjCEncOptions().setExpandStructures(), | 
|  | Field); | 
|  | else | 
|  | getObjCEncodingForTypeImpl(Field->getType(), S, | 
|  | ObjCEncOptions().setExpandStructures(), FD, | 
|  | NotEncodedT); | 
|  | } | 
|  | } | 
|  | S += '}'; | 
|  | return; | 
|  | } | 
|  |  | 
|  | case Type::ObjCObjectPointer: { | 
|  | const auto *OPT = T->castAs<ObjCObjectPointerType>(); | 
|  | if (OPT->isObjCIdType()) { | 
|  | S += '@'; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) { | 
|  | // FIXME: Consider if we need to output qualifiers for 'Class<p>'. | 
|  | // Since this is a binary compatibility issue, need to consult with | 
|  | // runtime folks. Fortunately, this is a *very* obscure construct. | 
|  | S += '#'; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (OPT->isObjCQualifiedIdType()) { | 
|  | getObjCEncodingForTypeImpl( | 
|  | getObjCIdType(), S, | 
|  | Options.keepingOnly(ObjCEncOptions() | 
|  | .setExpandPointedToStructures() | 
|  | .setExpandStructures()), | 
|  | FD); | 
|  | if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) { | 
|  | // Note that we do extended encoding of protocol qualifier list | 
|  | // Only when doing ivar or property encoding. | 
|  | S += '"'; | 
|  | for (const auto *I : OPT->quals()) { | 
|  | S += '<'; | 
|  | S += I->getObjCRuntimeNameAsString(); | 
|  | S += '>'; | 
|  | } | 
|  | S += '"'; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | S += '@'; | 
|  | if (OPT->getInterfaceDecl() && | 
|  | (FD || Options.EncodingProperty() || Options.EncodeClassNames())) { | 
|  | S += '"'; | 
|  | S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString(); | 
|  | for (const auto *I : OPT->quals()) { | 
|  | S += '<'; | 
|  | S += I->getObjCRuntimeNameAsString(); | 
|  | S += '>'; | 
|  | } | 
|  | S += '"'; | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // gcc just blithely ignores member pointers. | 
|  | // FIXME: we should do better than that.  'M' is available. | 
|  | case Type::MemberPointer: | 
|  | // This matches gcc's encoding, even though technically it is insufficient. | 
|  | //FIXME. We should do a better job than gcc. | 
|  | case Type::Vector: | 
|  | case Type::ExtVector: | 
|  | // Until we have a coherent encoding of these three types, issue warning. | 
|  | if (NotEncodedT) | 
|  | *NotEncodedT = T; | 
|  | return; | 
|  |  | 
|  | case Type::ConstantMatrix: | 
|  | if (NotEncodedT) | 
|  | *NotEncodedT = T; | 
|  | return; | 
|  |  | 
|  | case Type::BitInt: | 
|  | if (NotEncodedT) | 
|  | *NotEncodedT = T; | 
|  | return; | 
|  |  | 
|  | // We could see an undeduced auto type here during error recovery. | 
|  | // Just ignore it. | 
|  | case Type::Auto: | 
|  | case Type::DeducedTemplateSpecialization: | 
|  | return; | 
|  |  | 
|  | case Type::HLSLAttributedResource: | 
|  | case Type::HLSLInlineSpirv: | 
|  | llvm_unreachable("unexpected type"); | 
|  |  | 
|  | case Type::ArrayParameter: | 
|  | case Type::Pipe: | 
|  | #define ABSTRACT_TYPE(KIND, BASE) | 
|  | #define TYPE(KIND, BASE) | 
|  | #define DEPENDENT_TYPE(KIND, BASE) \ | 
|  | case Type::KIND: | 
|  | #define NON_CANONICAL_TYPE(KIND, BASE) \ | 
|  | case Type::KIND: | 
|  | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \ | 
|  | case Type::KIND: | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  | llvm_unreachable("@encode for dependent type!"); | 
|  | } | 
|  | llvm_unreachable("bad type kind!"); | 
|  | } | 
|  |  | 
|  | void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl, | 
|  | std::string &S, | 
|  | const FieldDecl *FD, | 
|  | bool includeVBases, | 
|  | QualType *NotEncodedT) const { | 
|  | assert(RDecl && "Expected non-null RecordDecl"); | 
|  | assert(!RDecl->isUnion() && "Should not be called for unions"); | 
|  | if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl); | 
|  | std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets; | 
|  | const ASTRecordLayout &layout = getASTRecordLayout(RDecl); | 
|  |  | 
|  | if (CXXRec) { | 
|  | for (const auto &BI : CXXRec->bases()) { | 
|  | if (!BI.isVirtual()) { | 
|  | CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); | 
|  | if (base->isEmpty()) | 
|  | continue; | 
|  | uint64_t offs = toBits(layout.getBaseClassOffset(base)); | 
|  | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), | 
|  | std::make_pair(offs, base)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (FieldDecl *Field : RDecl->fields()) { | 
|  | if (!Field->isZeroLengthBitField() && Field->isZeroSize(*this)) | 
|  | continue; | 
|  | uint64_t offs = layout.getFieldOffset(Field->getFieldIndex()); | 
|  | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), | 
|  | std::make_pair(offs, Field)); | 
|  | } | 
|  |  | 
|  | if (CXXRec && includeVBases) { | 
|  | for (const auto &BI : CXXRec->vbases()) { | 
|  | CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl(); | 
|  | if (base->isEmpty()) | 
|  | continue; | 
|  | uint64_t offs = toBits(layout.getVBaseClassOffset(base)); | 
|  | if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) && | 
|  | FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end()) | 
|  | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(), | 
|  | std::make_pair(offs, base)); | 
|  | } | 
|  | } | 
|  |  | 
|  | CharUnits size; | 
|  | if (CXXRec) { | 
|  | size = includeVBases ? layout.getSize() : layout.getNonVirtualSize(); | 
|  | } else { | 
|  | size = layout.getSize(); | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | uint64_t CurOffs = 0; | 
|  | #endif | 
|  | std::multimap<uint64_t, NamedDecl *>::iterator | 
|  | CurLayObj = FieldOrBaseOffsets.begin(); | 
|  |  | 
|  | if (CXXRec && CXXRec->isDynamicClass() && | 
|  | (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) { | 
|  | if (FD) { | 
|  | S += "\"_vptr$"; | 
|  | std::string recname = CXXRec->getNameAsString(); | 
|  | if (recname.empty()) recname = "?"; | 
|  | S += recname; | 
|  | S += '"'; | 
|  | } | 
|  | S += "^^?"; | 
|  | #ifndef NDEBUG | 
|  | CurOffs += getTypeSize(VoidPtrTy); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (!RDecl->hasFlexibleArrayMember()) { | 
|  | // Mark the end of the structure. | 
|  | uint64_t offs = toBits(size); | 
|  | FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs), | 
|  | std::make_pair(offs, nullptr)); | 
|  | } | 
|  |  | 
|  | for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) { | 
|  | #ifndef NDEBUG | 
|  | assert(CurOffs <= CurLayObj->first); | 
|  | if (CurOffs < CurLayObj->first) { | 
|  | uint64_t padding = CurLayObj->first - CurOffs; | 
|  | // FIXME: There doesn't seem to be a way to indicate in the encoding that | 
|  | // packing/alignment of members is different that normal, in which case | 
|  | // the encoding will be out-of-sync with the real layout. | 
|  | // If the runtime switches to just consider the size of types without | 
|  | // taking into account alignment, we could make padding explicit in the | 
|  | // encoding (e.g. using arrays of chars). The encoding strings would be | 
|  | // longer then though. | 
|  | CurOffs += padding; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | NamedDecl *dcl = CurLayObj->second; | 
|  | if (!dcl) | 
|  | break; // reached end of structure. | 
|  |  | 
|  | if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) { | 
|  | // We expand the bases without their virtual bases since those are going | 
|  | // in the initial structure. Note that this differs from gcc which | 
|  | // expands virtual bases each time one is encountered in the hierarchy, | 
|  | // making the encoding type bigger than it really is. | 
|  | getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false, | 
|  | NotEncodedT); | 
|  | assert(!base->isEmpty()); | 
|  | #ifndef NDEBUG | 
|  | CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize()); | 
|  | #endif | 
|  | } else { | 
|  | const auto *field = cast<FieldDecl>(dcl); | 
|  | if (FD) { | 
|  | S += '"'; | 
|  | S += field->getNameAsString(); | 
|  | S += '"'; | 
|  | } | 
|  |  | 
|  | if (field->isBitField()) { | 
|  | EncodeBitField(this, S, field->getType(), field); | 
|  | #ifndef NDEBUG | 
|  | CurOffs += field->getBitWidthValue(); | 
|  | #endif | 
|  | } else { | 
|  | QualType qt = field->getType(); | 
|  | getLegacyIntegralTypeEncoding(qt); | 
|  | getObjCEncodingForTypeImpl( | 
|  | qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(), | 
|  | FD, NotEncodedT); | 
|  | #ifndef NDEBUG | 
|  | CurOffs += getTypeSize(field->getType()); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT, | 
|  | std::string& S) const { | 
|  | if (QT & Decl::OBJC_TQ_In) | 
|  | S += 'n'; | 
|  | if (QT & Decl::OBJC_TQ_Inout) | 
|  | S += 'N'; | 
|  | if (QT & Decl::OBJC_TQ_Out) | 
|  | S += 'o'; | 
|  | if (QT & Decl::OBJC_TQ_Bycopy) | 
|  | S += 'O'; | 
|  | if (QT & Decl::OBJC_TQ_Byref) | 
|  | S += 'R'; | 
|  | if (QT & Decl::OBJC_TQ_Oneway) | 
|  | S += 'V'; | 
|  | } | 
|  |  | 
|  | TypedefDecl *ASTContext::getObjCIdDecl() const { | 
|  | if (!ObjCIdDecl) { | 
|  | QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {}); | 
|  | T = getObjCObjectPointerType(T); | 
|  | ObjCIdDecl = buildImplicitTypedef(T, "id"); | 
|  | } | 
|  | return ObjCIdDecl; | 
|  | } | 
|  |  | 
|  | TypedefDecl *ASTContext::getObjCSelDecl() const { | 
|  | if (!ObjCSelDecl) { | 
|  | QualType T = getPointerType(ObjCBuiltinSelTy); | 
|  | ObjCSelDecl = buildImplicitTypedef(T, "SEL"); | 
|  | } | 
|  | return ObjCSelDecl; | 
|  | } | 
|  |  | 
|  | TypedefDecl *ASTContext::getObjCClassDecl() const { | 
|  | if (!ObjCClassDecl) { | 
|  | QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {}); | 
|  | T = getObjCObjectPointerType(T); | 
|  | ObjCClassDecl = buildImplicitTypedef(T, "Class"); | 
|  | } | 
|  | return ObjCClassDecl; | 
|  | } | 
|  |  | 
|  | ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const { | 
|  | if (!ObjCProtocolClassDecl) { | 
|  | ObjCProtocolClassDecl | 
|  | = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(), | 
|  | SourceLocation(), | 
|  | &Idents.get("Protocol"), | 
|  | /*typeParamList=*/nullptr, | 
|  | /*PrevDecl=*/nullptr, | 
|  | SourceLocation(), true); | 
|  | } | 
|  |  | 
|  | return ObjCProtocolClassDecl; | 
|  | } | 
|  |  | 
|  | PointerAuthQualifier ASTContext::getObjCMemberSelTypePtrAuth() { | 
|  | if (!getLangOpts().PointerAuthObjcInterfaceSel) | 
|  | return PointerAuthQualifier(); | 
|  | return PointerAuthQualifier::Create( | 
|  | getLangOpts().PointerAuthObjcInterfaceSelKey, | 
|  | /*isAddressDiscriminated=*/true, SelPointerConstantDiscriminator, | 
|  | PointerAuthenticationMode::SignAndAuth, | 
|  | /*isIsaPointer=*/false, | 
|  | /*authenticatesNullValues=*/false); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // __builtin_va_list Construction Functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context, | 
|  | StringRef Name) { | 
|  | // typedef char* __builtin[_ms]_va_list; | 
|  | QualType T = Context->getPointerType(Context->CharTy); | 
|  | return Context->buildImplicitTypedef(T, Name); | 
|  | } | 
|  |  | 
|  | static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) { | 
|  | return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list"); | 
|  | } | 
|  |  | 
|  | static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) { | 
|  | return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list"); | 
|  | } | 
|  |  | 
|  | static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) { | 
|  | // typedef void* __builtin_va_list; | 
|  | QualType T = Context->getPointerType(Context->VoidTy); | 
|  | return Context->buildImplicitTypedef(T, "__builtin_va_list"); | 
|  | } | 
|  |  | 
|  | static TypedefDecl * | 
|  | CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) { | 
|  | // struct __va_list | 
|  | RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list"); | 
|  | if (Context->getLangOpts().CPlusPlus) { | 
|  | // namespace std { struct __va_list { | 
|  | auto *NS = NamespaceDecl::Create( | 
|  | const_cast<ASTContext &>(*Context), Context->getTranslationUnitDecl(), | 
|  | /*Inline=*/false, SourceLocation(), SourceLocation(), | 
|  | &Context->Idents.get("std"), | 
|  | /*PrevDecl=*/nullptr, /*Nested=*/false); | 
|  | NS->setImplicit(); | 
|  | VaListTagDecl->setDeclContext(NS); | 
|  | } | 
|  |  | 
|  | VaListTagDecl->startDefinition(); | 
|  |  | 
|  | const size_t NumFields = 5; | 
|  | QualType FieldTypes[NumFields]; | 
|  | const char *FieldNames[NumFields]; | 
|  |  | 
|  | // void *__stack; | 
|  | FieldTypes[0] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[0] = "__stack"; | 
|  |  | 
|  | // void *__gr_top; | 
|  | FieldTypes[1] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[1] = "__gr_top"; | 
|  |  | 
|  | // void *__vr_top; | 
|  | FieldTypes[2] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[2] = "__vr_top"; | 
|  |  | 
|  | // int __gr_offs; | 
|  | FieldTypes[3] = Context->IntTy; | 
|  | FieldNames[3] = "__gr_offs"; | 
|  |  | 
|  | // int __vr_offs; | 
|  | FieldTypes[4] = Context->IntTy; | 
|  | FieldNames[4] = "__vr_offs"; | 
|  |  | 
|  | // Create fields | 
|  | for (unsigned i = 0; i < NumFields; ++i) { | 
|  | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), | 
|  | VaListTagDecl, | 
|  | SourceLocation(), | 
|  | SourceLocation(), | 
|  | &Context->Idents.get(FieldNames[i]), | 
|  | FieldTypes[i], /*TInfo=*/nullptr, | 
|  | /*BitWidth=*/nullptr, | 
|  | /*Mutable=*/false, | 
|  | ICIS_NoInit); | 
|  | Field->setAccess(AS_public); | 
|  | VaListTagDecl->addDecl(Field); | 
|  | } | 
|  | VaListTagDecl->completeDefinition(); | 
|  | Context->VaListTagDecl = VaListTagDecl; | 
|  | CanQualType VaListTagType = Context->getCanonicalTagType(VaListTagDecl); | 
|  |  | 
|  | // } __builtin_va_list; | 
|  | return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list"); | 
|  | } | 
|  |  | 
|  | static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) { | 
|  | // typedef struct __va_list_tag { | 
|  | RecordDecl *VaListTagDecl; | 
|  |  | 
|  | VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); | 
|  | VaListTagDecl->startDefinition(); | 
|  |  | 
|  | const size_t NumFields = 5; | 
|  | QualType FieldTypes[NumFields]; | 
|  | const char *FieldNames[NumFields]; | 
|  |  | 
|  | //   unsigned char gpr; | 
|  | FieldTypes[0] = Context->UnsignedCharTy; | 
|  | FieldNames[0] = "gpr"; | 
|  |  | 
|  | //   unsigned char fpr; | 
|  | FieldTypes[1] = Context->UnsignedCharTy; | 
|  | FieldNames[1] = "fpr"; | 
|  |  | 
|  | //   unsigned short reserved; | 
|  | FieldTypes[2] = Context->UnsignedShortTy; | 
|  | FieldNames[2] = "reserved"; | 
|  |  | 
|  | //   void* overflow_arg_area; | 
|  | FieldTypes[3] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[3] = "overflow_arg_area"; | 
|  |  | 
|  | //   void* reg_save_area; | 
|  | FieldTypes[4] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[4] = "reg_save_area"; | 
|  |  | 
|  | // Create fields | 
|  | for (unsigned i = 0; i < NumFields; ++i) { | 
|  | FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl, | 
|  | SourceLocation(), | 
|  | SourceLocation(), | 
|  | &Context->Idents.get(FieldNames[i]), | 
|  | FieldTypes[i], /*TInfo=*/nullptr, | 
|  | /*BitWidth=*/nullptr, | 
|  | /*Mutable=*/false, | 
|  | ICIS_NoInit); | 
|  | Field->setAccess(AS_public); | 
|  | VaListTagDecl->addDecl(Field); | 
|  | } | 
|  | VaListTagDecl->completeDefinition(); | 
|  | Context->VaListTagDecl = VaListTagDecl; | 
|  | CanQualType VaListTagType = Context->getCanonicalTagType(VaListTagDecl); | 
|  |  | 
|  | // } __va_list_tag; | 
|  | TypedefDecl *VaListTagTypedefDecl = | 
|  | Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); | 
|  |  | 
|  | QualType VaListTagTypedefType = | 
|  | Context->getTypedefType(ElaboratedTypeKeyword::None, | 
|  | /*Qualifier=*/std::nullopt, VaListTagTypedefDecl); | 
|  |  | 
|  | // typedef __va_list_tag __builtin_va_list[1]; | 
|  | llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); | 
|  | QualType VaListTagArrayType = Context->getConstantArrayType( | 
|  | VaListTagTypedefType, Size, nullptr, ArraySizeModifier::Normal, 0); | 
|  | return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); | 
|  | } | 
|  |  | 
|  | static TypedefDecl * | 
|  | CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) { | 
|  | // struct __va_list_tag { | 
|  | RecordDecl *VaListTagDecl; | 
|  | VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); | 
|  | VaListTagDecl->startDefinition(); | 
|  |  | 
|  | const size_t NumFields = 4; | 
|  | QualType FieldTypes[NumFields]; | 
|  | const char *FieldNames[NumFields]; | 
|  |  | 
|  | //   unsigned gp_offset; | 
|  | FieldTypes[0] = Context->UnsignedIntTy; | 
|  | FieldNames[0] = "gp_offset"; | 
|  |  | 
|  | //   unsigned fp_offset; | 
|  | FieldTypes[1] = Context->UnsignedIntTy; | 
|  | FieldNames[1] = "fp_offset"; | 
|  |  | 
|  | //   void* overflow_arg_area; | 
|  | FieldTypes[2] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[2] = "overflow_arg_area"; | 
|  |  | 
|  | //   void* reg_save_area; | 
|  | FieldTypes[3] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[3] = "reg_save_area"; | 
|  |  | 
|  | // Create fields | 
|  | for (unsigned i = 0; i < NumFields; ++i) { | 
|  | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), | 
|  | VaListTagDecl, | 
|  | SourceLocation(), | 
|  | SourceLocation(), | 
|  | &Context->Idents.get(FieldNames[i]), | 
|  | FieldTypes[i], /*TInfo=*/nullptr, | 
|  | /*BitWidth=*/nullptr, | 
|  | /*Mutable=*/false, | 
|  | ICIS_NoInit); | 
|  | Field->setAccess(AS_public); | 
|  | VaListTagDecl->addDecl(Field); | 
|  | } | 
|  | VaListTagDecl->completeDefinition(); | 
|  | Context->VaListTagDecl = VaListTagDecl; | 
|  | CanQualType VaListTagType = Context->getCanonicalTagType(VaListTagDecl); | 
|  |  | 
|  | // }; | 
|  |  | 
|  | // typedef struct __va_list_tag __builtin_va_list[1]; | 
|  | llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); | 
|  | QualType VaListTagArrayType = Context->getConstantArrayType( | 
|  | VaListTagType, Size, nullptr, ArraySizeModifier::Normal, 0); | 
|  | return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); | 
|  | } | 
|  |  | 
|  | static TypedefDecl * | 
|  | CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) { | 
|  | // struct __va_list | 
|  | RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list"); | 
|  | if (Context->getLangOpts().CPlusPlus) { | 
|  | // namespace std { struct __va_list { | 
|  | NamespaceDecl *NS; | 
|  | NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context), | 
|  | Context->getTranslationUnitDecl(), | 
|  | /*Inline=*/false, SourceLocation(), | 
|  | SourceLocation(), &Context->Idents.get("std"), | 
|  | /*PrevDecl=*/nullptr, /*Nested=*/false); | 
|  | NS->setImplicit(); | 
|  | VaListDecl->setDeclContext(NS); | 
|  | } | 
|  |  | 
|  | VaListDecl->startDefinition(); | 
|  |  | 
|  | // void * __ap; | 
|  | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), | 
|  | VaListDecl, | 
|  | SourceLocation(), | 
|  | SourceLocation(), | 
|  | &Context->Idents.get("__ap"), | 
|  | Context->getPointerType(Context->VoidTy), | 
|  | /*TInfo=*/nullptr, | 
|  | /*BitWidth=*/nullptr, | 
|  | /*Mutable=*/false, | 
|  | ICIS_NoInit); | 
|  | Field->setAccess(AS_public); | 
|  | VaListDecl->addDecl(Field); | 
|  |  | 
|  | // }; | 
|  | VaListDecl->completeDefinition(); | 
|  | Context->VaListTagDecl = VaListDecl; | 
|  |  | 
|  | // typedef struct __va_list __builtin_va_list; | 
|  | CanQualType T = Context->getCanonicalTagType(VaListDecl); | 
|  | return Context->buildImplicitTypedef(T, "__builtin_va_list"); | 
|  | } | 
|  |  | 
|  | static TypedefDecl * | 
|  | CreateSystemZBuiltinVaListDecl(const ASTContext *Context) { | 
|  | // struct __va_list_tag { | 
|  | RecordDecl *VaListTagDecl; | 
|  | VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); | 
|  | VaListTagDecl->startDefinition(); | 
|  |  | 
|  | const size_t NumFields = 4; | 
|  | QualType FieldTypes[NumFields]; | 
|  | const char *FieldNames[NumFields]; | 
|  |  | 
|  | //   long __gpr; | 
|  | FieldTypes[0] = Context->LongTy; | 
|  | FieldNames[0] = "__gpr"; | 
|  |  | 
|  | //   long __fpr; | 
|  | FieldTypes[1] = Context->LongTy; | 
|  | FieldNames[1] = "__fpr"; | 
|  |  | 
|  | //   void *__overflow_arg_area; | 
|  | FieldTypes[2] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[2] = "__overflow_arg_area"; | 
|  |  | 
|  | //   void *__reg_save_area; | 
|  | FieldTypes[3] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[3] = "__reg_save_area"; | 
|  |  | 
|  | // Create fields | 
|  | for (unsigned i = 0; i < NumFields; ++i) { | 
|  | FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context), | 
|  | VaListTagDecl, | 
|  | SourceLocation(), | 
|  | SourceLocation(), | 
|  | &Context->Idents.get(FieldNames[i]), | 
|  | FieldTypes[i], /*TInfo=*/nullptr, | 
|  | /*BitWidth=*/nullptr, | 
|  | /*Mutable=*/false, | 
|  | ICIS_NoInit); | 
|  | Field->setAccess(AS_public); | 
|  | VaListTagDecl->addDecl(Field); | 
|  | } | 
|  | VaListTagDecl->completeDefinition(); | 
|  | Context->VaListTagDecl = VaListTagDecl; | 
|  | CanQualType VaListTagType = Context->getCanonicalTagType(VaListTagDecl); | 
|  |  | 
|  | // }; | 
|  |  | 
|  | // typedef __va_list_tag __builtin_va_list[1]; | 
|  | llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); | 
|  | QualType VaListTagArrayType = Context->getConstantArrayType( | 
|  | VaListTagType, Size, nullptr, ArraySizeModifier::Normal, 0); | 
|  |  | 
|  | return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); | 
|  | } | 
|  |  | 
|  | static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) { | 
|  | // typedef struct __va_list_tag { | 
|  | RecordDecl *VaListTagDecl; | 
|  | VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); | 
|  | VaListTagDecl->startDefinition(); | 
|  |  | 
|  | const size_t NumFields = 3; | 
|  | QualType FieldTypes[NumFields]; | 
|  | const char *FieldNames[NumFields]; | 
|  |  | 
|  | //   void *CurrentSavedRegisterArea; | 
|  | FieldTypes[0] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[0] = "__current_saved_reg_area_pointer"; | 
|  |  | 
|  | //   void *SavedRegAreaEnd; | 
|  | FieldTypes[1] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[1] = "__saved_reg_area_end_pointer"; | 
|  |  | 
|  | //   void *OverflowArea; | 
|  | FieldTypes[2] = Context->getPointerType(Context->VoidTy); | 
|  | FieldNames[2] = "__overflow_area_pointer"; | 
|  |  | 
|  | // Create fields | 
|  | for (unsigned i = 0; i < NumFields; ++i) { | 
|  | FieldDecl *Field = FieldDecl::Create( | 
|  | const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(), | 
|  | SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i], | 
|  | /*TInfo=*/nullptr, | 
|  | /*BitWidth=*/nullptr, | 
|  | /*Mutable=*/false, ICIS_NoInit); | 
|  | Field->setAccess(AS_public); | 
|  | VaListTagDecl->addDecl(Field); | 
|  | } | 
|  | VaListTagDecl->completeDefinition(); | 
|  | Context->VaListTagDecl = VaListTagDecl; | 
|  | CanQualType VaListTagType = Context->getCanonicalTagType(VaListTagDecl); | 
|  |  | 
|  | // } __va_list_tag; | 
|  | TypedefDecl *VaListTagTypedefDecl = | 
|  | Context->buildImplicitTypedef(VaListTagType, "__va_list_tag"); | 
|  |  | 
|  | QualType VaListTagTypedefType = | 
|  | Context->getTypedefType(ElaboratedTypeKeyword::None, | 
|  | /*Qualifier=*/std::nullopt, VaListTagTypedefDecl); | 
|  |  | 
|  | // typedef __va_list_tag __builtin_va_list[1]; | 
|  | llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1); | 
|  | QualType VaListTagArrayType = Context->getConstantArrayType( | 
|  | VaListTagTypedefType, Size, nullptr, ArraySizeModifier::Normal, 0); | 
|  |  | 
|  | return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list"); | 
|  | } | 
|  |  | 
|  | static TypedefDecl * | 
|  | CreateXtensaABIBuiltinVaListDecl(const ASTContext *Context) { | 
|  | // typedef struct __va_list_tag { | 
|  | RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list_tag"); | 
|  |  | 
|  | VaListTagDecl->startDefinition(); | 
|  |  | 
|  | // int* __va_stk; | 
|  | // int* __va_reg; | 
|  | // int __va_ndx; | 
|  | constexpr size_t NumFields = 3; | 
|  | QualType FieldTypes[NumFields] = {Context->getPointerType(Context->IntTy), | 
|  | Context->getPointerType(Context->IntTy), | 
|  | Context->IntTy}; | 
|  | const char *FieldNames[NumFields] = {"__va_stk", "__va_reg", "__va_ndx"}; | 
|  |  | 
|  | // Create fields | 
|  | for (unsigned i = 0; i < NumFields; ++i) { | 
|  | FieldDecl *Field = FieldDecl::Create( | 
|  | *Context, VaListTagDecl, SourceLocation(), SourceLocation(), | 
|  | &Context->Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr, | 
|  | /*BitWidth=*/nullptr, | 
|  | /*Mutable=*/false, ICIS_NoInit); | 
|  | Field->setAccess(AS_public); | 
|  | VaListTagDecl->addDecl(Field); | 
|  | } | 
|  | VaListTagDecl->completeDefinition(); | 
|  | Context->VaListTagDecl = VaListTagDecl; | 
|  | CanQualType VaListTagType = Context->getCanonicalTagType(VaListTagDecl); | 
|  |  | 
|  | // } __va_list_tag; | 
|  | TypedefDecl *VaListTagTypedefDecl = | 
|  | Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list"); | 
|  |  | 
|  | return VaListTagTypedefDecl; | 
|  | } | 
|  |  | 
|  | static TypedefDecl *CreateVaListDecl(const ASTContext *Context, | 
|  | TargetInfo::BuiltinVaListKind Kind) { | 
|  | switch (Kind) { | 
|  | case TargetInfo::CharPtrBuiltinVaList: | 
|  | return CreateCharPtrBuiltinVaListDecl(Context); | 
|  | case TargetInfo::VoidPtrBuiltinVaList: | 
|  | return CreateVoidPtrBuiltinVaListDecl(Context); | 
|  | case TargetInfo::AArch64ABIBuiltinVaList: | 
|  | return CreateAArch64ABIBuiltinVaListDecl(Context); | 
|  | case TargetInfo::PowerABIBuiltinVaList: | 
|  | return CreatePowerABIBuiltinVaListDecl(Context); | 
|  | case TargetInfo::X86_64ABIBuiltinVaList: | 
|  | return CreateX86_64ABIBuiltinVaListDecl(Context); | 
|  | case TargetInfo::AAPCSABIBuiltinVaList: | 
|  | return CreateAAPCSABIBuiltinVaListDecl(Context); | 
|  | case TargetInfo::SystemZBuiltinVaList: | 
|  | return CreateSystemZBuiltinVaListDecl(Context); | 
|  | case TargetInfo::HexagonBuiltinVaList: | 
|  | return CreateHexagonBuiltinVaListDecl(Context); | 
|  | case TargetInfo::XtensaABIBuiltinVaList: | 
|  | return CreateXtensaABIBuiltinVaListDecl(Context); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unhandled __builtin_va_list type kind"); | 
|  | } | 
|  |  | 
|  | TypedefDecl *ASTContext::getBuiltinVaListDecl() const { | 
|  | if (!BuiltinVaListDecl) { | 
|  | BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind()); | 
|  | assert(BuiltinVaListDecl->isImplicit()); | 
|  | } | 
|  |  | 
|  | return BuiltinVaListDecl; | 
|  | } | 
|  |  | 
|  | Decl *ASTContext::getVaListTagDecl() const { | 
|  | // Force the creation of VaListTagDecl by building the __builtin_va_list | 
|  | // declaration. | 
|  | if (!VaListTagDecl) | 
|  | (void)getBuiltinVaListDecl(); | 
|  |  | 
|  | return VaListTagDecl; | 
|  | } | 
|  |  | 
|  | TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const { | 
|  | if (!BuiltinMSVaListDecl) | 
|  | BuiltinMSVaListDecl = CreateMSVaListDecl(this); | 
|  |  | 
|  | return BuiltinMSVaListDecl; | 
|  | } | 
|  |  | 
|  | bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const { | 
|  | // Allow redecl custom type checking builtin for HLSL. | 
|  | if (LangOpts.HLSL && FD->getBuiltinID() != Builtin::NotBuiltin && | 
|  | BuiltinInfo.hasCustomTypechecking(FD->getBuiltinID())) | 
|  | return true; | 
|  | // Allow redecl custom type checking builtin for SPIR-V. | 
|  | if (getTargetInfo().getTriple().isSPIROrSPIRV() && | 
|  | BuiltinInfo.isTSBuiltin(FD->getBuiltinID()) && | 
|  | BuiltinInfo.hasCustomTypechecking(FD->getBuiltinID())) | 
|  | return true; | 
|  | return BuiltinInfo.canBeRedeclared(FD->getBuiltinID()); | 
|  | } | 
|  |  | 
|  | void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) { | 
|  | assert(ObjCConstantStringType.isNull() && | 
|  | "'NSConstantString' type already set!"); | 
|  |  | 
|  | ObjCConstantStringType = getObjCInterfaceType(Decl); | 
|  | } | 
|  |  | 
|  | /// Retrieve the template name that corresponds to a non-empty | 
|  | /// lookup. | 
|  | TemplateName | 
|  | ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin, | 
|  | UnresolvedSetIterator End) const { | 
|  | unsigned size = End - Begin; | 
|  | assert(size > 1 && "set is not overloaded!"); | 
|  |  | 
|  | void *memory = Allocate(sizeof(OverloadedTemplateStorage) + | 
|  | size * sizeof(FunctionTemplateDecl*)); | 
|  | auto *OT = new (memory) OverloadedTemplateStorage(size); | 
|  |  | 
|  | NamedDecl **Storage = OT->getStorage(); | 
|  | for (UnresolvedSetIterator I = Begin; I != End; ++I) { | 
|  | NamedDecl *D = *I; | 
|  | assert(isa<FunctionTemplateDecl>(D) || | 
|  | isa<UnresolvedUsingValueDecl>(D) || | 
|  | (isa<UsingShadowDecl>(D) && | 
|  | isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))); | 
|  | *Storage++ = D; | 
|  | } | 
|  |  | 
|  | return TemplateName(OT); | 
|  | } | 
|  |  | 
|  | /// Retrieve a template name representing an unqualified-id that has been | 
|  | /// assumed to name a template for ADL purposes. | 
|  | TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const { | 
|  | auto *OT = new (*this) AssumedTemplateStorage(Name); | 
|  | return TemplateName(OT); | 
|  | } | 
|  |  | 
|  | /// Retrieve the template name that represents a qualified | 
|  | /// template name such as \c std::vector. | 
|  | TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier Qualifier, | 
|  | bool TemplateKeyword, | 
|  | TemplateName Template) const { | 
|  | assert(Template.getKind() == TemplateName::Template || | 
|  | Template.getKind() == TemplateName::UsingTemplate); | 
|  |  | 
|  | if (Template.getAsTemplateDecl()->getKind() == Decl::TemplateTemplateParm) { | 
|  | assert(!Qualifier && "unexpected qualified template template parameter"); | 
|  | assert(TemplateKeyword == false); | 
|  | return Template; | 
|  | } | 
|  |  | 
|  | // FIXME: Canonicalization? | 
|  | llvm::FoldingSetNodeID ID; | 
|  | QualifiedTemplateName::Profile(ID, Qualifier, TemplateKeyword, Template); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | QualifiedTemplateName *QTN = | 
|  | QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (!QTN) { | 
|  | QTN = new (*this, alignof(QualifiedTemplateName)) | 
|  | QualifiedTemplateName(Qualifier, TemplateKeyword, Template); | 
|  | QualifiedTemplateNames.InsertNode(QTN, InsertPos); | 
|  | } | 
|  |  | 
|  | return TemplateName(QTN); | 
|  | } | 
|  |  | 
|  | /// Retrieve the template name that represents a dependent | 
|  | /// template name such as \c MetaFun::template operator+. | 
|  | TemplateName | 
|  | ASTContext::getDependentTemplateName(const DependentTemplateStorage &S) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | S.Profile(ID); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | if (DependentTemplateName *QTN = | 
|  | DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return TemplateName(QTN); | 
|  |  | 
|  | DependentTemplateName *QTN = | 
|  | new (*this, alignof(DependentTemplateName)) DependentTemplateName(S); | 
|  | DependentTemplateNames.InsertNode(QTN, InsertPos); | 
|  | return TemplateName(QTN); | 
|  | } | 
|  |  | 
|  | TemplateName ASTContext::getSubstTemplateTemplateParm(TemplateName Replacement, | 
|  | Decl *AssociatedDecl, | 
|  | unsigned Index, | 
|  | UnsignedOrNone PackIndex, | 
|  | bool Final) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | SubstTemplateTemplateParmStorage::Profile(ID, Replacement, AssociatedDecl, | 
|  | Index, PackIndex, Final); | 
|  |  | 
|  | void *insertPos = nullptr; | 
|  | SubstTemplateTemplateParmStorage *subst | 
|  | = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos); | 
|  |  | 
|  | if (!subst) { | 
|  | subst = new (*this) SubstTemplateTemplateParmStorage( | 
|  | Replacement, AssociatedDecl, Index, PackIndex, Final); | 
|  | SubstTemplateTemplateParms.InsertNode(subst, insertPos); | 
|  | } | 
|  |  | 
|  | return TemplateName(subst); | 
|  | } | 
|  |  | 
|  | TemplateName | 
|  | ASTContext::getSubstTemplateTemplateParmPack(const TemplateArgument &ArgPack, | 
|  | Decl *AssociatedDecl, | 
|  | unsigned Index, bool Final) const { | 
|  | auto &Self = const_cast<ASTContext &>(*this); | 
|  | llvm::FoldingSetNodeID ID; | 
|  | SubstTemplateTemplateParmPackStorage::Profile(ID, Self, ArgPack, | 
|  | AssociatedDecl, Index, Final); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | SubstTemplateTemplateParmPackStorage *Subst | 
|  | = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos); | 
|  |  | 
|  | if (!Subst) { | 
|  | Subst = new (*this) SubstTemplateTemplateParmPackStorage( | 
|  | ArgPack.pack_elements(), AssociatedDecl, Index, Final); | 
|  | SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos); | 
|  | } | 
|  |  | 
|  | return TemplateName(Subst); | 
|  | } | 
|  |  | 
|  | /// Retrieve the template name that represents a template name | 
|  | /// deduced from a specialization. | 
|  | TemplateName | 
|  | ASTContext::getDeducedTemplateName(TemplateName Underlying, | 
|  | DefaultArguments DefaultArgs) const { | 
|  | if (!DefaultArgs) | 
|  | return Underlying; | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | DeducedTemplateStorage::Profile(ID, *this, Underlying, DefaultArgs); | 
|  |  | 
|  | void *InsertPos = nullptr; | 
|  | DeducedTemplateStorage *DTS = | 
|  | DeducedTemplates.FindNodeOrInsertPos(ID, InsertPos); | 
|  | if (!DTS) { | 
|  | void *Mem = Allocate(sizeof(DeducedTemplateStorage) + | 
|  | sizeof(TemplateArgument) * DefaultArgs.Args.size(), | 
|  | alignof(DeducedTemplateStorage)); | 
|  | DTS = new (Mem) DeducedTemplateStorage(Underlying, DefaultArgs); | 
|  | DeducedTemplates.InsertNode(DTS, InsertPos); | 
|  | } | 
|  | return TemplateName(DTS); | 
|  | } | 
|  |  | 
|  | /// getFromTargetType - Given one of the integer types provided by | 
|  | /// TargetInfo, produce the corresponding type. The unsigned @p Type | 
|  | /// is actually a value of type @c TargetInfo::IntType. | 
|  | CanQualType ASTContext::getFromTargetType(unsigned Type) const { | 
|  | switch (Type) { | 
|  | case TargetInfo::NoInt: return {}; | 
|  | case TargetInfo::SignedChar: return SignedCharTy; | 
|  | case TargetInfo::UnsignedChar: return UnsignedCharTy; | 
|  | case TargetInfo::SignedShort: return ShortTy; | 
|  | case TargetInfo::UnsignedShort: return UnsignedShortTy; | 
|  | case TargetInfo::SignedInt: return IntTy; | 
|  | case TargetInfo::UnsignedInt: return UnsignedIntTy; | 
|  | case TargetInfo::SignedLong: return LongTy; | 
|  | case TargetInfo::UnsignedLong: return UnsignedLongTy; | 
|  | case TargetInfo::SignedLongLong: return LongLongTy; | 
|  | case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unhandled TargetInfo::IntType value"); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        Type Predicates. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's | 
|  | /// garbage collection attribute. | 
|  | /// | 
|  | Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const { | 
|  | if (getLangOpts().getGC() == LangOptions::NonGC) | 
|  | return Qualifiers::GCNone; | 
|  |  | 
|  | assert(getLangOpts().ObjC); | 
|  | Qualifiers::GC GCAttrs = Ty.getObjCGCAttr(); | 
|  |  | 
|  | // Default behaviour under objective-C's gc is for ObjC pointers | 
|  | // (or pointers to them) be treated as though they were declared | 
|  | // as __strong. | 
|  | if (GCAttrs == Qualifiers::GCNone) { | 
|  | if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) | 
|  | return Qualifiers::Strong; | 
|  | else if (Ty->isPointerType()) | 
|  | return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType()); | 
|  | } else { | 
|  | // It's not valid to set GC attributes on anything that isn't a | 
|  | // pointer. | 
|  | #ifndef NDEBUG | 
|  | QualType CT = Ty->getCanonicalTypeInternal(); | 
|  | while (const auto *AT = dyn_cast<ArrayType>(CT)) | 
|  | CT = AT->getElementType(); | 
|  | assert(CT->isAnyPointerType() || CT->isBlockPointerType()); | 
|  | #endif | 
|  | } | 
|  | return GCAttrs; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                        Type Compatibility Testing | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// areCompatVectorTypes - Return true if the two specified vector types are | 
|  | /// compatible. | 
|  | static bool areCompatVectorTypes(const VectorType *LHS, | 
|  | const VectorType *RHS) { | 
|  | assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); | 
|  | return LHS->getElementType() == RHS->getElementType() && | 
|  | LHS->getNumElements() == RHS->getNumElements(); | 
|  | } | 
|  |  | 
|  | /// areCompatMatrixTypes - Return true if the two specified matrix types are | 
|  | /// compatible. | 
|  | static bool areCompatMatrixTypes(const ConstantMatrixType *LHS, | 
|  | const ConstantMatrixType *RHS) { | 
|  | assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()); | 
|  | return LHS->getElementType() == RHS->getElementType() && | 
|  | LHS->getNumRows() == RHS->getNumRows() && | 
|  | LHS->getNumColumns() == RHS->getNumColumns(); | 
|  | } | 
|  |  | 
|  | bool ASTContext::areCompatibleVectorTypes(QualType FirstVec, | 
|  | QualType SecondVec) { | 
|  | assert(FirstVec->isVectorType() && "FirstVec should be a vector type"); | 
|  | assert(SecondVec->isVectorType() && "SecondVec should be a vector type"); | 
|  |  | 
|  | if (hasSameUnqualifiedType(FirstVec, SecondVec)) | 
|  | return true; | 
|  |  | 
|  | // Treat Neon vector types and most AltiVec vector types as if they are the | 
|  | // equivalent GCC vector types. | 
|  | const auto *First = FirstVec->castAs<VectorType>(); | 
|  | const auto *Second = SecondVec->castAs<VectorType>(); | 
|  | if (First->getNumElements() == Second->getNumElements() && | 
|  | hasSameType(First->getElementType(), Second->getElementType()) && | 
|  | First->getVectorKind() != VectorKind::AltiVecPixel && | 
|  | First->getVectorKind() != VectorKind::AltiVecBool && | 
|  | Second->getVectorKind() != VectorKind::AltiVecPixel && | 
|  | Second->getVectorKind() != VectorKind::AltiVecBool && | 
|  | First->getVectorKind() != VectorKind::SveFixedLengthData && | 
|  | First->getVectorKind() != VectorKind::SveFixedLengthPredicate && | 
|  | Second->getVectorKind() != VectorKind::SveFixedLengthData && | 
|  | Second->getVectorKind() != VectorKind::SveFixedLengthPredicate && | 
|  | First->getVectorKind() != VectorKind::RVVFixedLengthData && | 
|  | Second->getVectorKind() != VectorKind::RVVFixedLengthData && | 
|  | First->getVectorKind() != VectorKind::RVVFixedLengthMask && | 
|  | Second->getVectorKind() != VectorKind::RVVFixedLengthMask && | 
|  | First->getVectorKind() != VectorKind::RVVFixedLengthMask_1 && | 
|  | Second->getVectorKind() != VectorKind::RVVFixedLengthMask_1 && | 
|  | First->getVectorKind() != VectorKind::RVVFixedLengthMask_2 && | 
|  | Second->getVectorKind() != VectorKind::RVVFixedLengthMask_2 && | 
|  | First->getVectorKind() != VectorKind::RVVFixedLengthMask_4 && | 
|  | Second->getVectorKind() != VectorKind::RVVFixedLengthMask_4) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getRVVTypeSize - Return RVV vector register size. | 
|  | static uint64_t getRVVTypeSize(ASTContext &Context, const BuiltinType *Ty) { | 
|  | assert(Ty->isRVVVLSBuiltinType() && "Invalid RVV Type"); | 
|  | auto VScale = Context.getTargetInfo().getVScaleRange( | 
|  | Context.getLangOpts(), TargetInfo::ArmStreamingKind::NotStreaming); | 
|  | if (!VScale) | 
|  | return 0; | 
|  |  | 
|  | ASTContext::BuiltinVectorTypeInfo Info = Context.getBuiltinVectorTypeInfo(Ty); | 
|  |  | 
|  | uint64_t EltSize = Context.getTypeSize(Info.ElementType); | 
|  | if (Info.ElementType == Context.BoolTy) | 
|  | EltSize = 1; | 
|  |  | 
|  | uint64_t MinElts = Info.EC.getKnownMinValue(); | 
|  | return VScale->first * MinElts * EltSize; | 
|  | } | 
|  |  | 
|  | bool ASTContext::areCompatibleRVVTypes(QualType FirstType, | 
|  | QualType SecondType) { | 
|  | assert( | 
|  | ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || | 
|  | (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && | 
|  | "Expected RVV builtin type and vector type!"); | 
|  |  | 
|  | auto IsValidCast = [this](QualType FirstType, QualType SecondType) { | 
|  | if (const auto *BT = FirstType->getAs<BuiltinType>()) { | 
|  | if (const auto *VT = SecondType->getAs<VectorType>()) { | 
|  | if (VT->getVectorKind() == VectorKind::RVVFixedLengthMask) { | 
|  | BuiltinVectorTypeInfo Info = getBuiltinVectorTypeInfo(BT); | 
|  | return FirstType->isRVVVLSBuiltinType() && | 
|  | Info.ElementType == BoolTy && | 
|  | getTypeSize(SecondType) == ((getRVVTypeSize(*this, BT))); | 
|  | } | 
|  | if (VT->getVectorKind() == VectorKind::RVVFixedLengthMask_1) { | 
|  | BuiltinVectorTypeInfo Info = getBuiltinVectorTypeInfo(BT); | 
|  | return FirstType->isRVVVLSBuiltinType() && | 
|  | Info.ElementType == BoolTy && | 
|  | getTypeSize(SecondType) == ((getRVVTypeSize(*this, BT) * 8)); | 
|  | } | 
|  | if (VT->getVectorKind() == VectorKind::RVVFixedLengthMask_2) { | 
|  | BuiltinVectorTypeInfo Info = getBuiltinVectorTypeInfo(BT); | 
|  | return FirstType->isRVVVLSBuiltinType() && | 
|  | Info.ElementType == BoolTy && | 
|  | getTypeSize(SecondType) == ((getRVVTypeSize(*this, BT)) * 4); | 
|  | } | 
|  | if (VT->getVectorKind() == VectorKind::RVVFixedLengthMask_4) { | 
|  | BuiltinVectorTypeInfo Info = getBuiltinVectorTypeInfo(BT); | 
|  | return FirstType->isRVVVLSBuiltinType() && | 
|  | Info.ElementType == BoolTy && | 
|  | getTypeSize(SecondType) == ((getRVVTypeSize(*this, BT)) * 2); | 
|  | } | 
|  | if (VT->getVectorKind() == VectorKind::RVVFixedLengthData || | 
|  | VT->getVectorKind() == VectorKind::Generic) | 
|  | return FirstType->isRVVVLSBuiltinType() && | 
|  | getTypeSize(SecondType) == getRVVTypeSize(*this, BT) && | 
|  | hasSameType(VT->getElementType(), | 
|  | getBuiltinVectorTypeInfo(BT).ElementType); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | return IsValidCast(FirstType, SecondType) || | 
|  | IsValidCast(SecondType, FirstType); | 
|  | } | 
|  |  | 
|  | bool ASTContext::areLaxCompatibleRVVTypes(QualType FirstType, | 
|  | QualType SecondType) { | 
|  | assert( | 
|  | ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || | 
|  | (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && | 
|  | "Expected RVV builtin type and vector type!"); | 
|  |  | 
|  | auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) { | 
|  | const auto *BT = FirstType->getAs<BuiltinType>(); | 
|  | if (!BT) | 
|  | return false; | 
|  |  | 
|  | if (!BT->isRVVVLSBuiltinType()) | 
|  | return false; | 
|  |  | 
|  | const auto *VecTy = SecondType->getAs<VectorType>(); | 
|  | if (VecTy && VecTy->getVectorKind() == VectorKind::Generic) { | 
|  | const LangOptions::LaxVectorConversionKind LVCKind = | 
|  | getLangOpts().getLaxVectorConversions(); | 
|  |  | 
|  | // If __riscv_v_fixed_vlen != N do not allow vector lax conversion. | 
|  | if (getTypeSize(SecondType) != getRVVTypeSize(*this, BT)) | 
|  | return false; | 
|  |  | 
|  | // If -flax-vector-conversions=all is specified, the types are | 
|  | // certainly compatible. | 
|  | if (LVCKind == LangOptions::LaxVectorConversionKind::All) | 
|  | return true; | 
|  |  | 
|  | // If -flax-vector-conversions=integer is specified, the types are | 
|  | // compatible if the elements are integer types. | 
|  | if (LVCKind == LangOptions::LaxVectorConversionKind::Integer) | 
|  | return VecTy->getElementType().getCanonicalType()->isIntegerType() && | 
|  | FirstType->getRVVEltType(*this)->isIntegerType(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | return IsLaxCompatible(FirstType, SecondType) || | 
|  | IsLaxCompatible(SecondType, FirstType); | 
|  | } | 
|  |  | 
|  | bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const { | 
|  | while (true) { | 
|  | // __strong id | 
|  | if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) { | 
|  | if (Attr->getAttrKind() == attr::ObjCOwnership) | 
|  | return true; | 
|  |  | 
|  | Ty = Attr->getModifiedType(); | 
|  |  | 
|  | // X *__strong (...) | 
|  | } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) { | 
|  | Ty = Paren->getInnerType(); | 
|  |  | 
|  | // We do not want to look through typedefs, typeof(expr), | 
|  | // typeof(type), or any other way that the type is somehow | 
|  | // abstracted. | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the | 
|  | /// inheritance hierarchy of 'rProto'. | 
|  | bool | 
|  | ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto, | 
|  | ObjCProtocolDecl *rProto) const { | 
|  | if (declaresSameEntity(lProto, rProto)) | 
|  | return true; | 
|  | for (auto *PI : rProto->protocols()) | 
|  | if (ProtocolCompatibleWithProtocol(lProto, PI)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ObjCQualifiedClassTypesAreCompatible - compare  Class<pr,...> and | 
|  | /// Class<pr1, ...>. | 
|  | bool ASTContext::ObjCQualifiedClassTypesAreCompatible( | 
|  | const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) { | 
|  | for (auto *lhsProto : lhs->quals()) { | 
|  | bool match = false; | 
|  | for (auto *rhsProto : rhs->quals()) { | 
|  | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) { | 
|  | match = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!match) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an | 
|  | /// ObjCQualifiedIDType. | 
|  | bool ASTContext::ObjCQualifiedIdTypesAreCompatible( | 
|  | const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs, | 
|  | bool compare) { | 
|  | // Allow id<P..> and an 'id' in all cases. | 
|  | if (lhs->isObjCIdType() || rhs->isObjCIdType()) | 
|  | return true; | 
|  |  | 
|  | // Don't allow id<P..> to convert to Class or Class<P..> in either direction. | 
|  | if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() || | 
|  | rhs->isObjCClassType() || rhs->isObjCQualifiedClassType()) | 
|  | return false; | 
|  |  | 
|  | if (lhs->isObjCQualifiedIdType()) { | 
|  | if (rhs->qual_empty()) { | 
|  | // If the RHS is a unqualified interface pointer "NSString*", | 
|  | // make sure we check the class hierarchy. | 
|  | if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) { | 
|  | for (auto *I : lhs->quals()) { | 
|  | // when comparing an id<P> on lhs with a static type on rhs, | 
|  | // see if static class implements all of id's protocols, directly or | 
|  | // through its super class and categories. | 
|  | if (!rhsID->ClassImplementsProtocol(I, true)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | // If there are no qualifiers and no interface, we have an 'id'. | 
|  | return true; | 
|  | } | 
|  | // Both the right and left sides have qualifiers. | 
|  | for (auto *lhsProto : lhs->quals()) { | 
|  | bool match = false; | 
|  |  | 
|  | // when comparing an id<P> on lhs with a static type on rhs, | 
|  | // see if static class implements all of id's protocols, directly or | 
|  | // through its super class and categories. | 
|  | for (auto *rhsProto : rhs->quals()) { | 
|  | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || | 
|  | (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { | 
|  | match = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // If the RHS is a qualified interface pointer "NSString<P>*", | 
|  | // make sure we check the class hierarchy. | 
|  | if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) { | 
|  | for (auto *I : lhs->quals()) { | 
|  | // when comparing an id<P> on lhs with a static type on rhs, | 
|  | // see if static class implements all of id's protocols, directly or | 
|  | // through its super class and categories. | 
|  | if (rhsID->ClassImplementsProtocol(I, true)) { | 
|  | match = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!match) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>"); | 
|  |  | 
|  | if (lhs->getInterfaceType()) { | 
|  | // If both the right and left sides have qualifiers. | 
|  | for (auto *lhsProto : lhs->quals()) { | 
|  | bool match = false; | 
|  |  | 
|  | // when comparing an id<P> on rhs with a static type on lhs, | 
|  | // see if static class implements all of id's protocols, directly or | 
|  | // through its super class and categories. | 
|  | // First, lhs protocols in the qualifier list must be found, direct | 
|  | // or indirect in rhs's qualifier list or it is a mismatch. | 
|  | for (auto *rhsProto : rhs->quals()) { | 
|  | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || | 
|  | (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { | 
|  | match = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!match) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Static class's protocols, or its super class or category protocols | 
|  | // must be found, direct or indirect in rhs's qualifier list or it is a mismatch. | 
|  | if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) { | 
|  | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols; | 
|  | CollectInheritedProtocols(lhsID, LHSInheritedProtocols); | 
|  | // This is rather dubious but matches gcc's behavior. If lhs has | 
|  | // no type qualifier and its class has no static protocol(s) | 
|  | // assume that it is mismatch. | 
|  | if (LHSInheritedProtocols.empty() && lhs->qual_empty()) | 
|  | return false; | 
|  | for (auto *lhsProto : LHSInheritedProtocols) { | 
|  | bool match = false; | 
|  | for (auto *rhsProto : rhs->quals()) { | 
|  | if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) || | 
|  | (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) { | 
|  | match = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!match) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// canAssignObjCInterfaces - Return true if the two interface types are | 
|  | /// compatible for assignment from RHS to LHS.  This handles validation of any | 
|  | /// protocol qualifiers on the LHS or RHS. | 
|  | bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT, | 
|  | const ObjCObjectPointerType *RHSOPT) { | 
|  | const ObjCObjectType* LHS = LHSOPT->getObjectType(); | 
|  | const ObjCObjectType* RHS = RHSOPT->getObjectType(); | 
|  |  | 
|  | // If either type represents the built-in 'id' type, return true. | 
|  | if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId()) | 
|  | return true; | 
|  |  | 
|  | // Function object that propagates a successful result or handles | 
|  | // __kindof types. | 
|  | auto finish = [&](bool succeeded) -> bool { | 
|  | if (succeeded) | 
|  | return true; | 
|  |  | 
|  | if (!RHS->isKindOfType()) | 
|  | return false; | 
|  |  | 
|  | // Strip off __kindof and protocol qualifiers, then check whether | 
|  | // we can assign the other way. | 
|  | return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this), | 
|  | LHSOPT->stripObjCKindOfTypeAndQuals(*this)); | 
|  | }; | 
|  |  | 
|  | // Casts from or to id<P> are allowed when the other side has compatible | 
|  | // protocols. | 
|  | if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) { | 
|  | return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false)); | 
|  | } | 
|  |  | 
|  | // Verify protocol compatibility for casts from Class<P1> to Class<P2>. | 
|  | if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) { | 
|  | return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT)); | 
|  | } | 
|  |  | 
|  | // Casts from Class to Class<Foo>, or vice-versa, are allowed. | 
|  | if (LHS->isObjCClass() && RHS->isObjCClass()) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If we have 2 user-defined types, fall into that path. | 
|  | if (LHS->getInterface() && RHS->getInterface()) { | 
|  | return finish(canAssignObjCInterfaces(LHS, RHS)); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// canAssignObjCInterfacesInBlockPointer - This routine is specifically written | 
|  | /// for providing type-safety for objective-c pointers used to pass/return | 
|  | /// arguments in block literals. When passed as arguments, passing 'A*' where | 
|  | /// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is | 
|  | /// not OK. For the return type, the opposite is not OK. | 
|  | bool ASTContext::canAssignObjCInterfacesInBlockPointer( | 
|  | const ObjCObjectPointerType *LHSOPT, | 
|  | const ObjCObjectPointerType *RHSOPT, | 
|  | bool BlockReturnType) { | 
|  |  | 
|  | // Function object that propagates a successful result or handles | 
|  | // __kindof types. | 
|  | auto finish = [&](bool succeeded) -> bool { | 
|  | if (succeeded) | 
|  | return true; | 
|  |  | 
|  | const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT; | 
|  | if (!Expected->isKindOfType()) | 
|  | return false; | 
|  |  | 
|  | // Strip off __kindof and protocol qualifiers, then check whether | 
|  | // we can assign the other way. | 
|  | return canAssignObjCInterfacesInBlockPointer( | 
|  | RHSOPT->stripObjCKindOfTypeAndQuals(*this), | 
|  | LHSOPT->stripObjCKindOfTypeAndQuals(*this), | 
|  | BlockReturnType); | 
|  | }; | 
|  |  | 
|  | if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType()) | 
|  | return true; | 
|  |  | 
|  | if (LHSOPT->isObjCBuiltinType()) { | 
|  | return finish(RHSOPT->isObjCBuiltinType() || | 
|  | RHSOPT->isObjCQualifiedIdType()); | 
|  | } | 
|  |  | 
|  | if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) { | 
|  | if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking) | 
|  | // Use for block parameters previous type checking for compatibility. | 
|  | return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) || | 
|  | // Or corrected type checking as in non-compat mode. | 
|  | (!BlockReturnType && | 
|  | ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false))); | 
|  | else | 
|  | return finish(ObjCQualifiedIdTypesAreCompatible( | 
|  | (BlockReturnType ? LHSOPT : RHSOPT), | 
|  | (BlockReturnType ? RHSOPT : LHSOPT), false)); | 
|  | } | 
|  |  | 
|  | const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType(); | 
|  | const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType(); | 
|  | if (LHS && RHS)  { // We have 2 user-defined types. | 
|  | if (LHS != RHS) { | 
|  | if (LHS->getDecl()->isSuperClassOf(RHS->getDecl())) | 
|  | return finish(BlockReturnType); | 
|  | if (RHS->getDecl()->isSuperClassOf(LHS->getDecl())) | 
|  | return finish(!BlockReturnType); | 
|  | } | 
|  | else | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Comparison routine for Objective-C protocols to be used with | 
|  | /// llvm::array_pod_sort. | 
|  | static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs, | 
|  | ObjCProtocolDecl * const *rhs) { | 
|  | return (*lhs)->getName().compare((*rhs)->getName()); | 
|  | } | 
|  |  | 
|  | /// getIntersectionOfProtocols - This routine finds the intersection of set | 
|  | /// of protocols inherited from two distinct objective-c pointer objects with | 
|  | /// the given common base. | 
|  | /// It is used to build composite qualifier list of the composite type of | 
|  | /// the conditional expression involving two objective-c pointer objects. | 
|  | static | 
|  | void getIntersectionOfProtocols(ASTContext &Context, | 
|  | const ObjCInterfaceDecl *CommonBase, | 
|  | const ObjCObjectPointerType *LHSOPT, | 
|  | const ObjCObjectPointerType *RHSOPT, | 
|  | SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) { | 
|  |  | 
|  | const ObjCObjectType* LHS = LHSOPT->getObjectType(); | 
|  | const ObjCObjectType* RHS = RHSOPT->getObjectType(); | 
|  | assert(LHS->getInterface() && "LHS must have an interface base"); | 
|  | assert(RHS->getInterface() && "RHS must have an interface base"); | 
|  |  | 
|  | // Add all of the protocols for the LHS. | 
|  | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet; | 
|  |  | 
|  | // Start with the protocol qualifiers. | 
|  | for (auto *proto : LHS->quals()) { | 
|  | Context.CollectInheritedProtocols(proto, LHSProtocolSet); | 
|  | } | 
|  |  | 
|  | // Also add the protocols associated with the LHS interface. | 
|  | Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet); | 
|  |  | 
|  | // Add all of the protocols for the RHS. | 
|  | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet; | 
|  |  | 
|  | // Start with the protocol qualifiers. | 
|  | for (auto *proto : RHS->quals()) { | 
|  | Context.CollectInheritedProtocols(proto, RHSProtocolSet); | 
|  | } | 
|  |  | 
|  | // Also add the protocols associated with the RHS interface. | 
|  | Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet); | 
|  |  | 
|  | // Compute the intersection of the collected protocol sets. | 
|  | for (auto *proto : LHSProtocolSet) { | 
|  | if (RHSProtocolSet.count(proto)) | 
|  | IntersectionSet.push_back(proto); | 
|  | } | 
|  |  | 
|  | // Compute the set of protocols that is implied by either the common type or | 
|  | // the protocols within the intersection. | 
|  | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols; | 
|  | Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols); | 
|  |  | 
|  | // Remove any implied protocols from the list of inherited protocols. | 
|  | if (!ImpliedProtocols.empty()) { | 
|  | llvm::erase_if(IntersectionSet, [&](ObjCProtocolDecl *proto) -> bool { | 
|  | return ImpliedProtocols.contains(proto); | 
|  | }); | 
|  | } | 
|  |  | 
|  | // Sort the remaining protocols by name. | 
|  | llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(), | 
|  | compareObjCProtocolsByName); | 
|  | } | 
|  |  | 
|  | /// Determine whether the first type is a subtype of the second. | 
|  | static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs, | 
|  | QualType rhs) { | 
|  | // Common case: two object pointers. | 
|  | const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>(); | 
|  | const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>(); | 
|  | if (lhsOPT && rhsOPT) | 
|  | return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT); | 
|  |  | 
|  | // Two block pointers. | 
|  | const auto *lhsBlock = lhs->getAs<BlockPointerType>(); | 
|  | const auto *rhsBlock = rhs->getAs<BlockPointerType>(); | 
|  | if (lhsBlock && rhsBlock) | 
|  | return ctx.typesAreBlockPointerCompatible(lhs, rhs); | 
|  |  | 
|  | // If either is an unqualified 'id' and the other is a block, it's | 
|  | // acceptable. | 
|  | if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) || | 
|  | (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check that the given Objective-C type argument lists are equivalent. | 
|  | static bool sameObjCTypeArgs(ASTContext &ctx, | 
|  | const ObjCInterfaceDecl *iface, | 
|  | ArrayRef<QualType> lhsArgs, | 
|  | ArrayRef<QualType> rhsArgs, | 
|  | bool stripKindOf) { | 
|  | if (lhsArgs.size() != rhsArgs.size()) | 
|  | return false; | 
|  |  | 
|  | ObjCTypeParamList *typeParams = iface->getTypeParamList(); | 
|  | if (!typeParams) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) { | 
|  | if (ctx.hasSameType(lhsArgs[i], rhsArgs[i])) | 
|  | continue; | 
|  |  | 
|  | switch (typeParams->begin()[i]->getVariance()) { | 
|  | case ObjCTypeParamVariance::Invariant: | 
|  | if (!stripKindOf || | 
|  | !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx), | 
|  | rhsArgs[i].stripObjCKindOfType(ctx))) { | 
|  | return false; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ObjCTypeParamVariance::Covariant: | 
|  | if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i])) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case ObjCTypeParamVariance::Contravariant: | 
|  | if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i])) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::areCommonBaseCompatible( | 
|  | const ObjCObjectPointerType *Lptr, | 
|  | const ObjCObjectPointerType *Rptr) { | 
|  | const ObjCObjectType *LHS = Lptr->getObjectType(); | 
|  | const ObjCObjectType *RHS = Rptr->getObjectType(); | 
|  | const ObjCInterfaceDecl* LDecl = LHS->getInterface(); | 
|  | const ObjCInterfaceDecl* RDecl = RHS->getInterface(); | 
|  |  | 
|  | if (!LDecl || !RDecl) | 
|  | return {}; | 
|  |  | 
|  | // When either LHS or RHS is a kindof type, we should return a kindof type. | 
|  | // For example, for common base of kindof(ASub1) and kindof(ASub2), we return | 
|  | // kindof(A). | 
|  | bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType(); | 
|  |  | 
|  | // Follow the left-hand side up the class hierarchy until we either hit a | 
|  | // root or find the RHS. Record the ancestors in case we don't find it. | 
|  | llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4> | 
|  | LHSAncestors; | 
|  | while (true) { | 
|  | // Record this ancestor. We'll need this if the common type isn't in the | 
|  | // path from the LHS to the root. | 
|  | LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS; | 
|  |  | 
|  | if (declaresSameEntity(LHS->getInterface(), RDecl)) { | 
|  | // Get the type arguments. | 
|  | ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten(); | 
|  | bool anyChanges = false; | 
|  | if (LHS->isSpecialized() && RHS->isSpecialized()) { | 
|  | // Both have type arguments, compare them. | 
|  | if (!sameObjCTypeArgs(*this, LHS->getInterface(), | 
|  | LHS->getTypeArgs(), RHS->getTypeArgs(), | 
|  | /*stripKindOf=*/true)) | 
|  | return {}; | 
|  | } else if (LHS->isSpecialized() != RHS->isSpecialized()) { | 
|  | // If only one has type arguments, the result will not have type | 
|  | // arguments. | 
|  | LHSTypeArgs = {}; | 
|  | anyChanges = true; | 
|  | } | 
|  |  | 
|  | // Compute the intersection of protocols. | 
|  | SmallVector<ObjCProtocolDecl *, 8> Protocols; | 
|  | getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr, | 
|  | Protocols); | 
|  | if (!Protocols.empty()) | 
|  | anyChanges = true; | 
|  |  | 
|  | // If anything in the LHS will have changed, build a new result type. | 
|  | // If we need to return a kindof type but LHS is not a kindof type, we | 
|  | // build a new result type. | 
|  | if (anyChanges || LHS->isKindOfType() != anyKindOf) { | 
|  | QualType Result = getObjCInterfaceType(LHS->getInterface()); | 
|  | Result = getObjCObjectType(Result, LHSTypeArgs, Protocols, | 
|  | anyKindOf || LHS->isKindOfType()); | 
|  | return getObjCObjectPointerType(Result); | 
|  | } | 
|  |  | 
|  | return getObjCObjectPointerType(QualType(LHS, 0)); | 
|  | } | 
|  |  | 
|  | // Find the superclass. | 
|  | QualType LHSSuperType = LHS->getSuperClassType(); | 
|  | if (LHSSuperType.isNull()) | 
|  | break; | 
|  |  | 
|  | LHS = LHSSuperType->castAs<ObjCObjectType>(); | 
|  | } | 
|  |  | 
|  | // We didn't find anything by following the LHS to its root; now check | 
|  | // the RHS against the cached set of ancestors. | 
|  | while (true) { | 
|  | auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl()); | 
|  | if (KnownLHS != LHSAncestors.end()) { | 
|  | LHS = KnownLHS->second; | 
|  |  | 
|  | // Get the type arguments. | 
|  | ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten(); | 
|  | bool anyChanges = false; | 
|  | if (LHS->isSpecialized() && RHS->isSpecialized()) { | 
|  | // Both have type arguments, compare them. | 
|  | if (!sameObjCTypeArgs(*this, LHS->getInterface(), | 
|  | LHS->getTypeArgs(), RHS->getTypeArgs(), | 
|  | /*stripKindOf=*/true)) | 
|  | return {}; | 
|  | } else if (LHS->isSpecialized() != RHS->isSpecialized()) { | 
|  | // If only one has type arguments, the result will not have type | 
|  | // arguments. | 
|  | RHSTypeArgs = {}; | 
|  | anyChanges = true; | 
|  | } | 
|  |  | 
|  | // Compute the intersection of protocols. | 
|  | SmallVector<ObjCProtocolDecl *, 8> Protocols; | 
|  | getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr, | 
|  | Protocols); | 
|  | if (!Protocols.empty()) | 
|  | anyChanges = true; | 
|  |  | 
|  | // If we need to return a kindof type but RHS is not a kindof type, we | 
|  | // build a new result type. | 
|  | if (anyChanges || RHS->isKindOfType() != anyKindOf) { | 
|  | QualType Result = getObjCInterfaceType(RHS->getInterface()); | 
|  | Result = getObjCObjectType(Result, RHSTypeArgs, Protocols, | 
|  | anyKindOf || RHS->isKindOfType()); | 
|  | return getObjCObjectPointerType(Result); | 
|  | } | 
|  |  | 
|  | return getObjCObjectPointerType(QualType(RHS, 0)); | 
|  | } | 
|  |  | 
|  | // Find the superclass of the RHS. | 
|  | QualType RHSSuperType = RHS->getSuperClassType(); | 
|  | if (RHSSuperType.isNull()) | 
|  | break; | 
|  |  | 
|  | RHS = RHSSuperType->castAs<ObjCObjectType>(); | 
|  | } | 
|  |  | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS, | 
|  | const ObjCObjectType *RHS) { | 
|  | assert(LHS->getInterface() && "LHS is not an interface type"); | 
|  | assert(RHS->getInterface() && "RHS is not an interface type"); | 
|  |  | 
|  | // Verify that the base decls are compatible: the RHS must be a subclass of | 
|  | // the LHS. | 
|  | ObjCInterfaceDecl *LHSInterface = LHS->getInterface(); | 
|  | bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface()); | 
|  | if (!IsSuperClass) | 
|  | return false; | 
|  |  | 
|  | // If the LHS has protocol qualifiers, determine whether all of them are | 
|  | // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the | 
|  | // LHS). | 
|  | if (LHS->getNumProtocols() > 0) { | 
|  | // OK if conversion of LHS to SuperClass results in narrowing of types | 
|  | // ; i.e., SuperClass may implement at least one of the protocols | 
|  | // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok. | 
|  | // But not SuperObj<P1,P2,P3> = lhs<P1,P2>. | 
|  | llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols; | 
|  | CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols); | 
|  | // Also, if RHS has explicit quelifiers, include them for comparing with LHS's | 
|  | // qualifiers. | 
|  | for (auto *RHSPI : RHS->quals()) | 
|  | CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols); | 
|  | // If there is no protocols associated with RHS, it is not a match. | 
|  | if (SuperClassInheritedProtocols.empty()) | 
|  | return false; | 
|  |  | 
|  | for (const auto *LHSProto : LHS->quals()) { | 
|  | bool SuperImplementsProtocol = false; | 
|  | for (auto *SuperClassProto : SuperClassInheritedProtocols) | 
|  | if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) { | 
|  | SuperImplementsProtocol = true; | 
|  | break; | 
|  | } | 
|  | if (!SuperImplementsProtocol) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the LHS is specialized, we may need to check type arguments. | 
|  | if (LHS->isSpecialized()) { | 
|  | // Follow the superclass chain until we've matched the LHS class in the | 
|  | // hierarchy. This substitutes type arguments through. | 
|  | const ObjCObjectType *RHSSuper = RHS; | 
|  | while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface)) | 
|  | RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>(); | 
|  |  | 
|  | // If the RHS is specializd, compare type arguments. | 
|  | if (RHSSuper->isSpecialized() && | 
|  | !sameObjCTypeArgs(*this, LHS->getInterface(), | 
|  | LHS->getTypeArgs(), RHSSuper->getTypeArgs(), | 
|  | /*stripKindOf=*/true)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) { | 
|  | // get the "pointed to" types | 
|  | const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>(); | 
|  | const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>(); | 
|  |  | 
|  | if (!LHSOPT || !RHSOPT) | 
|  | return false; | 
|  |  | 
|  | return canAssignObjCInterfaces(LHSOPT, RHSOPT) || | 
|  | canAssignObjCInterfaces(RHSOPT, LHSOPT); | 
|  | } | 
|  |  | 
|  | bool ASTContext::canBindObjCObjectType(QualType To, QualType From) { | 
|  | return canAssignObjCInterfaces( | 
|  | getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(), | 
|  | getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>()); | 
|  | } | 
|  |  | 
|  | /// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible, | 
|  | /// both shall have the identically qualified version of a compatible type. | 
|  | /// C99 6.2.7p1: Two types have compatible types if their types are the | 
|  | /// same. See 6.7.[2,3,5] for additional rules. | 
|  | bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS, | 
|  | bool CompareUnqualified) { | 
|  | if (getLangOpts().CPlusPlus) | 
|  | return hasSameType(LHS, RHS); | 
|  |  | 
|  | return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull(); | 
|  | } | 
|  |  | 
|  | bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) { | 
|  | return typesAreCompatible(LHS, RHS); | 
|  | } | 
|  |  | 
|  | bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) { | 
|  | return !mergeTypes(LHS, RHS, true).isNull(); | 
|  | } | 
|  |  | 
|  | /// mergeTransparentUnionType - if T is a transparent union type and a member | 
|  | /// of T is compatible with SubType, return the merged type, else return | 
|  | /// QualType() | 
|  | QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType, | 
|  | bool OfBlockPointer, | 
|  | bool Unqualified) { | 
|  | if (const RecordType *UT = T->getAsUnionType()) { | 
|  | RecordDecl *UD = UT->getOriginalDecl()->getMostRecentDecl(); | 
|  | if (UD->hasAttr<TransparentUnionAttr>()) { | 
|  | for (const auto *I : UD->fields()) { | 
|  | QualType ET = I->getType().getUnqualifiedType(); | 
|  | QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified); | 
|  | if (!MT.isNull()) | 
|  | return MT; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | /// mergeFunctionParameterTypes - merge two types which appear as function | 
|  | /// parameter types | 
|  | QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs, | 
|  | bool OfBlockPointer, | 
|  | bool Unqualified) { | 
|  | // GNU extension: two types are compatible if they appear as a function | 
|  | // argument, one of the types is a transparent union type and the other | 
|  | // type is compatible with a union member | 
|  | QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer, | 
|  | Unqualified); | 
|  | if (!lmerge.isNull()) | 
|  | return lmerge; | 
|  |  | 
|  | QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer, | 
|  | Unqualified); | 
|  | if (!rmerge.isNull()) | 
|  | return rmerge; | 
|  |  | 
|  | return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs, | 
|  | bool OfBlockPointer, bool Unqualified, | 
|  | bool AllowCXX, | 
|  | bool IsConditionalOperator) { | 
|  | const auto *lbase = lhs->castAs<FunctionType>(); | 
|  | const auto *rbase = rhs->castAs<FunctionType>(); | 
|  | const auto *lproto = dyn_cast<FunctionProtoType>(lbase); | 
|  | const auto *rproto = dyn_cast<FunctionProtoType>(rbase); | 
|  | bool allLTypes = true; | 
|  | bool allRTypes = true; | 
|  |  | 
|  | // Check return type | 
|  | QualType retType; | 
|  | if (OfBlockPointer) { | 
|  | QualType RHS = rbase->getReturnType(); | 
|  | QualType LHS = lbase->getReturnType(); | 
|  | bool UnqualifiedResult = Unqualified; | 
|  | if (!UnqualifiedResult) | 
|  | UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers()); | 
|  | retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true); | 
|  | } | 
|  | else | 
|  | retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false, | 
|  | Unqualified); | 
|  | if (retType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (Unqualified) | 
|  | retType = retType.getUnqualifiedType(); | 
|  |  | 
|  | CanQualType LRetType = getCanonicalType(lbase->getReturnType()); | 
|  | CanQualType RRetType = getCanonicalType(rbase->getReturnType()); | 
|  | if (Unqualified) { | 
|  | LRetType = LRetType.getUnqualifiedType(); | 
|  | RRetType = RRetType.getUnqualifiedType(); | 
|  | } | 
|  |  | 
|  | if (getCanonicalType(retType) != LRetType) | 
|  | allLTypes = false; | 
|  | if (getCanonicalType(retType) != RRetType) | 
|  | allRTypes = false; | 
|  |  | 
|  | // FIXME: double check this | 
|  | // FIXME: should we error if lbase->getRegParmAttr() != 0 && | 
|  | //                           rbase->getRegParmAttr() != 0 && | 
|  | //                           lbase->getRegParmAttr() != rbase->getRegParmAttr()? | 
|  | FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo(); | 
|  | FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo(); | 
|  |  | 
|  | // Compatible functions must have compatible calling conventions | 
|  | if (lbaseInfo.getCC() != rbaseInfo.getCC()) | 
|  | return {}; | 
|  |  | 
|  | // Regparm is part of the calling convention. | 
|  | if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm()) | 
|  | return {}; | 
|  | if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm()) | 
|  | return {}; | 
|  |  | 
|  | if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult()) | 
|  | return {}; | 
|  | if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs()) | 
|  | return {}; | 
|  | if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck()) | 
|  | return {}; | 
|  |  | 
|  | // When merging declarations, it's common for supplemental information like | 
|  | // attributes to only be present in one of the declarations, and we generally | 
|  | // want type merging to preserve the union of information.  So a merged | 
|  | // function type should be noreturn if it was noreturn in *either* operand | 
|  | // type. | 
|  | // | 
|  | // But for the conditional operator, this is backwards.  The result of the | 
|  | // operator could be either operand, and its type should conservatively | 
|  | // reflect that.  So a function type in a composite type is noreturn only | 
|  | // if it's noreturn in *both* operand types. | 
|  | // | 
|  | // Arguably, noreturn is a kind of subtype, and the conditional operator | 
|  | // ought to produce the most specific common supertype of its operand types. | 
|  | // That would differ from this rule in contravariant positions.  However, | 
|  | // neither C nor C++ generally uses this kind of subtype reasoning.  Also, | 
|  | // as a practical matter, it would only affect C code that does abstraction of | 
|  | // higher-order functions (taking noreturn callbacks!), which is uncommon to | 
|  | // say the least.  So we use the simpler rule. | 
|  | bool NoReturn = IsConditionalOperator | 
|  | ? lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn() | 
|  | : lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn(); | 
|  | if (lbaseInfo.getNoReturn() != NoReturn) | 
|  | allLTypes = false; | 
|  | if (rbaseInfo.getNoReturn() != NoReturn) | 
|  | allRTypes = false; | 
|  |  | 
|  | FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn); | 
|  |  | 
|  | std::optional<FunctionEffectSet> MergedFX; | 
|  |  | 
|  | if (lproto && rproto) { // two C99 style function prototypes | 
|  | assert((AllowCXX || | 
|  | (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) && | 
|  | "C++ shouldn't be here"); | 
|  | // Compatible functions must have the same number of parameters | 
|  | if (lproto->getNumParams() != rproto->getNumParams()) | 
|  | return {}; | 
|  |  | 
|  | // Variadic and non-variadic functions aren't compatible | 
|  | if (lproto->isVariadic() != rproto->isVariadic()) | 
|  | return {}; | 
|  |  | 
|  | if (lproto->getMethodQuals() != rproto->getMethodQuals()) | 
|  | return {}; | 
|  |  | 
|  | // Function protos with different 'cfi_salt' values aren't compatible. | 
|  | if (lproto->getExtraAttributeInfo().CFISalt != | 
|  | rproto->getExtraAttributeInfo().CFISalt) | 
|  | return {}; | 
|  |  | 
|  | // Function effects are handled similarly to noreturn, see above. | 
|  | FunctionEffectsRef LHSFX = lproto->getFunctionEffects(); | 
|  | FunctionEffectsRef RHSFX = rproto->getFunctionEffects(); | 
|  | if (LHSFX != RHSFX) { | 
|  | if (IsConditionalOperator) | 
|  | MergedFX = FunctionEffectSet::getIntersection(LHSFX, RHSFX); | 
|  | else { | 
|  | FunctionEffectSet::Conflicts Errs; | 
|  | MergedFX = FunctionEffectSet::getUnion(LHSFX, RHSFX, Errs); | 
|  | // Here we're discarding a possible error due to conflicts in the effect | 
|  | // sets. But we're not in a context where we can report it. The | 
|  | // operation does however guarantee maintenance of invariants. | 
|  | } | 
|  | if (*MergedFX != LHSFX) | 
|  | allLTypes = false; | 
|  | if (*MergedFX != RHSFX) | 
|  | allRTypes = false; | 
|  | } | 
|  |  | 
|  | SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos; | 
|  | bool canUseLeft, canUseRight; | 
|  | if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight, | 
|  | newParamInfos)) | 
|  | return {}; | 
|  |  | 
|  | if (!canUseLeft) | 
|  | allLTypes = false; | 
|  | if (!canUseRight) | 
|  | allRTypes = false; | 
|  |  | 
|  | // Check parameter type compatibility | 
|  | SmallVector<QualType, 10> types; | 
|  | for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) { | 
|  | QualType lParamType = lproto->getParamType(i).getUnqualifiedType(); | 
|  | QualType rParamType = rproto->getParamType(i).getUnqualifiedType(); | 
|  | QualType paramType = mergeFunctionParameterTypes( | 
|  | lParamType, rParamType, OfBlockPointer, Unqualified); | 
|  | if (paramType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | if (Unqualified) | 
|  | paramType = paramType.getUnqualifiedType(); | 
|  |  | 
|  | types.push_back(paramType); | 
|  | if (Unqualified) { | 
|  | lParamType = lParamType.getUnqualifiedType(); | 
|  | rParamType = rParamType.getUnqualifiedType(); | 
|  | } | 
|  |  | 
|  | if (getCanonicalType(paramType) != getCanonicalType(lParamType)) | 
|  | allLTypes = false; | 
|  | if (getCanonicalType(paramType) != getCanonicalType(rParamType)) | 
|  | allRTypes = false; | 
|  | } | 
|  |  | 
|  | if (allLTypes) return lhs; | 
|  | if (allRTypes) return rhs; | 
|  |  | 
|  | FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo(); | 
|  | EPI.ExtInfo = einfo; | 
|  | EPI.ExtParameterInfos = | 
|  | newParamInfos.empty() ? nullptr : newParamInfos.data(); | 
|  | if (MergedFX) | 
|  | EPI.FunctionEffects = *MergedFX; | 
|  | return getFunctionType(retType, types, EPI); | 
|  | } | 
|  |  | 
|  | if (lproto) allRTypes = false; | 
|  | if (rproto) allLTypes = false; | 
|  |  | 
|  | const FunctionProtoType *proto = lproto ? lproto : rproto; | 
|  | if (proto) { | 
|  | assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here"); | 
|  | if (proto->isVariadic()) | 
|  | return {}; | 
|  | // Check that the types are compatible with the types that | 
|  | // would result from default argument promotions (C99 6.7.5.3p15). | 
|  | // The only types actually affected are promotable integer | 
|  | // types and floats, which would be passed as a different | 
|  | // type depending on whether the prototype is visible. | 
|  | for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) { | 
|  | QualType paramTy = proto->getParamType(i); | 
|  |  | 
|  | // Look at the converted type of enum types, since that is the type used | 
|  | // to pass enum values. | 
|  | if (const auto *ED = paramTy->getAsEnumDecl()) { | 
|  | paramTy = ED->getIntegerType(); | 
|  | if (paramTy.isNull()) | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | if (isPromotableIntegerType(paramTy) || | 
|  | getCanonicalType(paramTy).getUnqualifiedType() == FloatTy) | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | if (allLTypes) return lhs; | 
|  | if (allRTypes) return rhs; | 
|  |  | 
|  | FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo(); | 
|  | EPI.ExtInfo = einfo; | 
|  | if (MergedFX) | 
|  | EPI.FunctionEffects = *MergedFX; | 
|  | return getFunctionType(retType, proto->getParamTypes(), EPI); | 
|  | } | 
|  |  | 
|  | if (allLTypes) return lhs; | 
|  | if (allRTypes) return rhs; | 
|  | return getFunctionNoProtoType(retType, einfo); | 
|  | } | 
|  |  | 
|  | /// Given that we have an enum type and a non-enum type, try to merge them. | 
|  | static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET, | 
|  | QualType other, bool isBlockReturnType) { | 
|  | // C99 6.7.2.2p4: Each enumerated type shall be compatible with char, | 
|  | // a signed integer type, or an unsigned integer type. | 
|  | // Compatibility is based on the underlying type, not the promotion | 
|  | // type. | 
|  | QualType underlyingType = | 
|  | ET->getOriginalDecl()->getDefinitionOrSelf()->getIntegerType(); | 
|  | if (underlyingType.isNull()) | 
|  | return {}; | 
|  | if (Context.hasSameType(underlyingType, other)) | 
|  | return other; | 
|  |  | 
|  | // In block return types, we're more permissive and accept any | 
|  | // integral type of the same size. | 
|  | if (isBlockReturnType && other->isIntegerType() && | 
|  | Context.getTypeSize(underlyingType) == Context.getTypeSize(other)) | 
|  | return other; | 
|  |  | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::mergeTagDefinitions(QualType LHS, QualType RHS) { | 
|  | // C17 and earlier and C++ disallow two tag definitions within the same TU | 
|  | // from being compatible. | 
|  | if (LangOpts.CPlusPlus || !LangOpts.C23) | 
|  | return {}; | 
|  |  | 
|  | // C23, on the other hand, requires the members to be "the same enough", so | 
|  | // we use a structural equivalence check. | 
|  | StructuralEquivalenceContext::NonEquivalentDeclSet NonEquivalentDecls; | 
|  | StructuralEquivalenceContext Ctx( | 
|  | getLangOpts(), *this, *this, NonEquivalentDecls, | 
|  | StructuralEquivalenceKind::Default, /*StrictTypeSpelling=*/false, | 
|  | /*Complain=*/false, /*ErrorOnTagTypeMismatch=*/true); | 
|  | return Ctx.IsEquivalent(LHS, RHS) ? LHS : QualType{}; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, bool OfBlockPointer, | 
|  | bool Unqualified, bool BlockReturnType, | 
|  | bool IsConditionalOperator) { | 
|  | // For C++ we will not reach this code with reference types (see below), | 
|  | // for OpenMP variant call overloading we might. | 
|  | // | 
|  | // C++ [expr]: If an expression initially has the type "reference to T", the | 
|  | // type is adjusted to "T" prior to any further analysis, the expression | 
|  | // designates the object or function denoted by the reference, and the | 
|  | // expression is an lvalue unless the reference is an rvalue reference and | 
|  | // the expression is a function call (possibly inside parentheses). | 
|  | auto *LHSRefTy = LHS->getAs<ReferenceType>(); | 
|  | auto *RHSRefTy = RHS->getAs<ReferenceType>(); | 
|  | if (LangOpts.OpenMP && LHSRefTy && RHSRefTy && | 
|  | LHS->getTypeClass() == RHS->getTypeClass()) | 
|  | return mergeTypes(LHSRefTy->getPointeeType(), RHSRefTy->getPointeeType(), | 
|  | OfBlockPointer, Unqualified, BlockReturnType); | 
|  | if (LHSRefTy || RHSRefTy) | 
|  | return {}; | 
|  |  | 
|  | if (Unqualified) { | 
|  | LHS = LHS.getUnqualifiedType(); | 
|  | RHS = RHS.getUnqualifiedType(); | 
|  | } | 
|  |  | 
|  | QualType LHSCan = getCanonicalType(LHS), | 
|  | RHSCan = getCanonicalType(RHS); | 
|  |  | 
|  | // If two types are identical, they are compatible. | 
|  | if (LHSCan == RHSCan) | 
|  | return LHS; | 
|  |  | 
|  | // If the qualifiers are different, the types aren't compatible... mostly. | 
|  | Qualifiers LQuals = LHSCan.getLocalQualifiers(); | 
|  | Qualifiers RQuals = RHSCan.getLocalQualifiers(); | 
|  | if (LQuals != RQuals) { | 
|  | // If any of these qualifiers are different, we have a type | 
|  | // mismatch. | 
|  | if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || | 
|  | LQuals.getAddressSpace() != RQuals.getAddressSpace() || | 
|  | LQuals.getObjCLifetime() != RQuals.getObjCLifetime() || | 
|  | !LQuals.getPointerAuth().isEquivalent(RQuals.getPointerAuth()) || | 
|  | LQuals.hasUnaligned() != RQuals.hasUnaligned()) | 
|  | return {}; | 
|  |  | 
|  | // Exactly one GC qualifier difference is allowed: __strong is | 
|  | // okay if the other type has no GC qualifier but is an Objective | 
|  | // C object pointer (i.e. implicitly strong by default).  We fix | 
|  | // this by pretending that the unqualified type was actually | 
|  | // qualified __strong. | 
|  | Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); | 
|  | Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); | 
|  | assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); | 
|  |  | 
|  | if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) | 
|  | return {}; | 
|  |  | 
|  | if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) { | 
|  | return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong)); | 
|  | } | 
|  | if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) { | 
|  | return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS); | 
|  | } | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | // Okay, qualifiers are equal. | 
|  |  | 
|  | Type::TypeClass LHSClass = LHSCan->getTypeClass(); | 
|  | Type::TypeClass RHSClass = RHSCan->getTypeClass(); | 
|  |  | 
|  | // We want to consider the two function types to be the same for these | 
|  | // comparisons, just force one to the other. | 
|  | if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto; | 
|  | if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto; | 
|  |  | 
|  | // Same as above for arrays | 
|  | if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray) | 
|  | LHSClass = Type::ConstantArray; | 
|  | if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray) | 
|  | RHSClass = Type::ConstantArray; | 
|  |  | 
|  | // ObjCInterfaces are just specialized ObjCObjects. | 
|  | if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject; | 
|  | if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject; | 
|  |  | 
|  | // Canonicalize ExtVector -> Vector. | 
|  | if (LHSClass == Type::ExtVector) LHSClass = Type::Vector; | 
|  | if (RHSClass == Type::ExtVector) RHSClass = Type::Vector; | 
|  |  | 
|  | // If the canonical type classes don't match. | 
|  | if (LHSClass != RHSClass) { | 
|  | // Note that we only have special rules for turning block enum | 
|  | // returns into block int returns, not vice-versa. | 
|  | if (const auto *ETy = LHS->getAsCanonical<EnumType>()) { | 
|  | return mergeEnumWithInteger(*this, ETy, RHS, false); | 
|  | } | 
|  | if (const EnumType *ETy = RHS->getAsCanonical<EnumType>()) { | 
|  | return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType); | 
|  | } | 
|  | // allow block pointer type to match an 'id' type. | 
|  | if (OfBlockPointer && !BlockReturnType) { | 
|  | if (LHS->isObjCIdType() && RHS->isBlockPointerType()) | 
|  | return LHS; | 
|  | if (RHS->isObjCIdType() && LHS->isBlockPointerType()) | 
|  | return RHS; | 
|  | } | 
|  | // Allow __auto_type to match anything; it merges to the type with more | 
|  | // information. | 
|  | if (const auto *AT = LHS->getAs<AutoType>()) { | 
|  | if (!AT->isDeduced() && AT->isGNUAutoType()) | 
|  | return RHS; | 
|  | } | 
|  | if (const auto *AT = RHS->getAs<AutoType>()) { | 
|  | if (!AT->isDeduced() && AT->isGNUAutoType()) | 
|  | return LHS; | 
|  | } | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | // The canonical type classes match. | 
|  | switch (LHSClass) { | 
|  | #define TYPE(Class, Base) | 
|  | #define ABSTRACT_TYPE(Class, Base) | 
|  | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: | 
|  | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  | llvm_unreachable("Non-canonical and dependent types shouldn't get here"); | 
|  |  | 
|  | case Type::Auto: | 
|  | case Type::DeducedTemplateSpecialization: | 
|  | case Type::LValueReference: | 
|  | case Type::RValueReference: | 
|  | case Type::MemberPointer: | 
|  | llvm_unreachable("C++ should never be in mergeTypes"); | 
|  |  | 
|  | case Type::ObjCInterface: | 
|  | case Type::IncompleteArray: | 
|  | case Type::VariableArray: | 
|  | case Type::FunctionProto: | 
|  | case Type::ExtVector: | 
|  | llvm_unreachable("Types are eliminated above"); | 
|  |  | 
|  | case Type::Pointer: | 
|  | { | 
|  | // Merge two pointer types, while trying to preserve typedef info | 
|  | QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType(); | 
|  | QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType(); | 
|  | if (Unqualified) { | 
|  | LHSPointee = LHSPointee.getUnqualifiedType(); | 
|  | RHSPointee = RHSPointee.getUnqualifiedType(); | 
|  | } | 
|  | QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false, | 
|  | Unqualified); | 
|  | if (ResultType.isNull()) | 
|  | return {}; | 
|  | if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) | 
|  | return LHS; | 
|  | if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) | 
|  | return RHS; | 
|  | return getPointerType(ResultType); | 
|  | } | 
|  | case Type::BlockPointer: | 
|  | { | 
|  | // Merge two block pointer types, while trying to preserve typedef info | 
|  | QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType(); | 
|  | QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType(); | 
|  | if (Unqualified) { | 
|  | LHSPointee = LHSPointee.getUnqualifiedType(); | 
|  | RHSPointee = RHSPointee.getUnqualifiedType(); | 
|  | } | 
|  | if (getLangOpts().OpenCL) { | 
|  | Qualifiers LHSPteeQual = LHSPointee.getQualifiers(); | 
|  | Qualifiers RHSPteeQual = RHSPointee.getQualifiers(); | 
|  | // Blocks can't be an expression in a ternary operator (OpenCL v2.0 | 
|  | // 6.12.5) thus the following check is asymmetric. | 
|  | if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual, *this)) | 
|  | return {}; | 
|  | LHSPteeQual.removeAddressSpace(); | 
|  | RHSPteeQual.removeAddressSpace(); | 
|  | LHSPointee = | 
|  | QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue()); | 
|  | RHSPointee = | 
|  | QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue()); | 
|  | } | 
|  | QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer, | 
|  | Unqualified); | 
|  | if (ResultType.isNull()) | 
|  | return {}; | 
|  | if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType)) | 
|  | return LHS; | 
|  | if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType)) | 
|  | return RHS; | 
|  | return getBlockPointerType(ResultType); | 
|  | } | 
|  | case Type::Atomic: | 
|  | { | 
|  | // Merge two pointer types, while trying to preserve typedef info | 
|  | QualType LHSValue = LHS->castAs<AtomicType>()->getValueType(); | 
|  | QualType RHSValue = RHS->castAs<AtomicType>()->getValueType(); | 
|  | if (Unqualified) { | 
|  | LHSValue = LHSValue.getUnqualifiedType(); | 
|  | RHSValue = RHSValue.getUnqualifiedType(); | 
|  | } | 
|  | QualType ResultType = mergeTypes(LHSValue, RHSValue, false, | 
|  | Unqualified); | 
|  | if (ResultType.isNull()) | 
|  | return {}; | 
|  | if (getCanonicalType(LHSValue) == getCanonicalType(ResultType)) | 
|  | return LHS; | 
|  | if (getCanonicalType(RHSValue) == getCanonicalType(ResultType)) | 
|  | return RHS; | 
|  | return getAtomicType(ResultType); | 
|  | } | 
|  | case Type::ConstantArray: | 
|  | { | 
|  | const ConstantArrayType* LCAT = getAsConstantArrayType(LHS); | 
|  | const ConstantArrayType* RCAT = getAsConstantArrayType(RHS); | 
|  | if (LCAT && RCAT && RCAT->getZExtSize() != LCAT->getZExtSize()) | 
|  | return {}; | 
|  |  | 
|  | QualType LHSElem = getAsArrayType(LHS)->getElementType(); | 
|  | QualType RHSElem = getAsArrayType(RHS)->getElementType(); | 
|  | if (Unqualified) { | 
|  | LHSElem = LHSElem.getUnqualifiedType(); | 
|  | RHSElem = RHSElem.getUnqualifiedType(); | 
|  | } | 
|  |  | 
|  | QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified); | 
|  | if (ResultType.isNull()) | 
|  | return {}; | 
|  |  | 
|  | const VariableArrayType* LVAT = getAsVariableArrayType(LHS); | 
|  | const VariableArrayType* RVAT = getAsVariableArrayType(RHS); | 
|  |  | 
|  | // If either side is a variable array, and both are complete, check whether | 
|  | // the current dimension is definite. | 
|  | if (LVAT || RVAT) { | 
|  | auto SizeFetch = [this](const VariableArrayType* VAT, | 
|  | const ConstantArrayType* CAT) | 
|  | -> std::pair<bool,llvm::APInt> { | 
|  | if (VAT) { | 
|  | std::optional<llvm::APSInt> TheInt; | 
|  | Expr *E = VAT->getSizeExpr(); | 
|  | if (E && (TheInt = E->getIntegerConstantExpr(*this))) | 
|  | return std::make_pair(true, *TheInt); | 
|  | return std::make_pair(false, llvm::APSInt()); | 
|  | } | 
|  | if (CAT) | 
|  | return std::make_pair(true, CAT->getSize()); | 
|  | return std::make_pair(false, llvm::APInt()); | 
|  | }; | 
|  |  | 
|  | bool HaveLSize, HaveRSize; | 
|  | llvm::APInt LSize, RSize; | 
|  | std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT); | 
|  | std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT); | 
|  | if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize)) | 
|  | return {}; // Definite, but unequal, array dimension | 
|  | } | 
|  |  | 
|  | if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) | 
|  | return LHS; | 
|  | if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) | 
|  | return RHS; | 
|  | if (LCAT) | 
|  | return getConstantArrayType(ResultType, LCAT->getSize(), | 
|  | LCAT->getSizeExpr(), ArraySizeModifier(), 0); | 
|  | if (RCAT) | 
|  | return getConstantArrayType(ResultType, RCAT->getSize(), | 
|  | RCAT->getSizeExpr(), ArraySizeModifier(), 0); | 
|  | if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType)) | 
|  | return LHS; | 
|  | if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType)) | 
|  | return RHS; | 
|  | if (LVAT) { | 
|  | // FIXME: This isn't correct! But tricky to implement because | 
|  | // the array's size has to be the size of LHS, but the type | 
|  | // has to be different. | 
|  | return LHS; | 
|  | } | 
|  | if (RVAT) { | 
|  | // FIXME: This isn't correct! But tricky to implement because | 
|  | // the array's size has to be the size of RHS, but the type | 
|  | // has to be different. | 
|  | return RHS; | 
|  | } | 
|  | if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS; | 
|  | if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS; | 
|  | return getIncompleteArrayType(ResultType, ArraySizeModifier(), 0); | 
|  | } | 
|  | case Type::FunctionNoProto: | 
|  | return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified, | 
|  | /*AllowCXX=*/false, IsConditionalOperator); | 
|  | case Type::Record: | 
|  | case Type::Enum: | 
|  | return mergeTagDefinitions(LHS, RHS); | 
|  | case Type::Builtin: | 
|  | // Only exactly equal builtin types are compatible, which is tested above. | 
|  | return {}; | 
|  | case Type::Complex: | 
|  | // Distinct complex types are incompatible. | 
|  | return {}; | 
|  | case Type::Vector: | 
|  | // FIXME: The merged type should be an ExtVector! | 
|  | if (areCompatVectorTypes(LHSCan->castAs<VectorType>(), | 
|  | RHSCan->castAs<VectorType>())) | 
|  | return LHS; | 
|  | return {}; | 
|  | case Type::ConstantMatrix: | 
|  | if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(), | 
|  | RHSCan->castAs<ConstantMatrixType>())) | 
|  | return LHS; | 
|  | return {}; | 
|  | case Type::ObjCObject: { | 
|  | // Check if the types are assignment compatible. | 
|  | // FIXME: This should be type compatibility, e.g. whether | 
|  | // "LHS x; RHS x;" at global scope is legal. | 
|  | if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(), | 
|  | RHS->castAs<ObjCObjectType>())) | 
|  | return LHS; | 
|  | return {}; | 
|  | } | 
|  | case Type::ObjCObjectPointer: | 
|  | if (OfBlockPointer) { | 
|  | if (canAssignObjCInterfacesInBlockPointer( | 
|  | LHS->castAs<ObjCObjectPointerType>(), | 
|  | RHS->castAs<ObjCObjectPointerType>(), BlockReturnType)) | 
|  | return LHS; | 
|  | return {}; | 
|  | } | 
|  | if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(), | 
|  | RHS->castAs<ObjCObjectPointerType>())) | 
|  | return LHS; | 
|  | return {}; | 
|  | case Type::Pipe: | 
|  | assert(LHS != RHS && | 
|  | "Equivalent pipe types should have already been handled!"); | 
|  | return {}; | 
|  | case Type::ArrayParameter: | 
|  | assert(LHS != RHS && | 
|  | "Equivalent ArrayParameter types should have already been handled!"); | 
|  | return {}; | 
|  | case Type::BitInt: { | 
|  | // Merge two bit-precise int types, while trying to preserve typedef info. | 
|  | bool LHSUnsigned = LHS->castAs<BitIntType>()->isUnsigned(); | 
|  | bool RHSUnsigned = RHS->castAs<BitIntType>()->isUnsigned(); | 
|  | unsigned LHSBits = LHS->castAs<BitIntType>()->getNumBits(); | 
|  | unsigned RHSBits = RHS->castAs<BitIntType>()->getNumBits(); | 
|  |  | 
|  | // Like unsigned/int, shouldn't have a type if they don't match. | 
|  | if (LHSUnsigned != RHSUnsigned) | 
|  | return {}; | 
|  |  | 
|  | if (LHSBits != RHSBits) | 
|  | return {}; | 
|  | return LHS; | 
|  | } | 
|  | case Type::HLSLAttributedResource: { | 
|  | const HLSLAttributedResourceType *LHSTy = | 
|  | LHS->castAs<HLSLAttributedResourceType>(); | 
|  | const HLSLAttributedResourceType *RHSTy = | 
|  | RHS->castAs<HLSLAttributedResourceType>(); | 
|  | assert(LHSTy->getWrappedType() == RHSTy->getWrappedType() && | 
|  | LHSTy->getWrappedType()->isHLSLResourceType() && | 
|  | "HLSLAttributedResourceType should always wrap __hlsl_resource_t"); | 
|  |  | 
|  | if (LHSTy->getAttrs() == RHSTy->getAttrs() && | 
|  | LHSTy->getContainedType() == RHSTy->getContainedType()) | 
|  | return LHS; | 
|  | return {}; | 
|  | } | 
|  | case Type::HLSLInlineSpirv: | 
|  | const HLSLInlineSpirvType *LHSTy = LHS->castAs<HLSLInlineSpirvType>(); | 
|  | const HLSLInlineSpirvType *RHSTy = RHS->castAs<HLSLInlineSpirvType>(); | 
|  |  | 
|  | if (LHSTy->getOpcode() == RHSTy->getOpcode() && | 
|  | LHSTy->getSize() == RHSTy->getSize() && | 
|  | LHSTy->getAlignment() == RHSTy->getAlignment()) { | 
|  | for (size_t I = 0; I < LHSTy->getOperands().size(); I++) | 
|  | if (LHSTy->getOperands()[I] != RHSTy->getOperands()[I]) | 
|  | return {}; | 
|  |  | 
|  | return LHS; | 
|  | } | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid Type::Class!"); | 
|  | } | 
|  |  | 
|  | bool ASTContext::mergeExtParameterInfo( | 
|  | const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType, | 
|  | bool &CanUseFirst, bool &CanUseSecond, | 
|  | SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) { | 
|  | assert(NewParamInfos.empty() && "param info list not empty"); | 
|  | CanUseFirst = CanUseSecond = true; | 
|  | bool FirstHasInfo = FirstFnType->hasExtParameterInfos(); | 
|  | bool SecondHasInfo = SecondFnType->hasExtParameterInfos(); | 
|  |  | 
|  | // Fast path: if the first type doesn't have ext parameter infos, | 
|  | // we match if and only if the second type also doesn't have them. | 
|  | if (!FirstHasInfo && !SecondHasInfo) | 
|  | return true; | 
|  |  | 
|  | bool NeedParamInfo = false; | 
|  | size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size() | 
|  | : SecondFnType->getExtParameterInfos().size(); | 
|  |  | 
|  | for (size_t I = 0; I < E; ++I) { | 
|  | FunctionProtoType::ExtParameterInfo FirstParam, SecondParam; | 
|  | if (FirstHasInfo) | 
|  | FirstParam = FirstFnType->getExtParameterInfo(I); | 
|  | if (SecondHasInfo) | 
|  | SecondParam = SecondFnType->getExtParameterInfo(I); | 
|  |  | 
|  | // Cannot merge unless everything except the noescape flag matches. | 
|  | if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false)) | 
|  | return false; | 
|  |  | 
|  | bool FirstNoEscape = FirstParam.isNoEscape(); | 
|  | bool SecondNoEscape = SecondParam.isNoEscape(); | 
|  | bool IsNoEscape = FirstNoEscape && SecondNoEscape; | 
|  | NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape)); | 
|  | if (NewParamInfos.back().getOpaqueValue()) | 
|  | NeedParamInfo = true; | 
|  | if (FirstNoEscape != IsNoEscape) | 
|  | CanUseFirst = false; | 
|  | if (SecondNoEscape != IsNoEscape) | 
|  | CanUseSecond = false; | 
|  | } | 
|  |  | 
|  | if (!NeedParamInfo) | 
|  | NewParamInfos.clear(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void ASTContext::ResetObjCLayout(const ObjCInterfaceDecl *D) { | 
|  | if (auto It = ObjCLayouts.find(D); It != ObjCLayouts.end()) { | 
|  | It->second = nullptr; | 
|  | for (auto *SubClass : ObjCSubClasses[D]) | 
|  | ResetObjCLayout(SubClass); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and | 
|  | /// 'RHS' attributes and returns the merged version; including for function | 
|  | /// return types. | 
|  | QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) { | 
|  | QualType LHSCan = getCanonicalType(LHS), | 
|  | RHSCan = getCanonicalType(RHS); | 
|  | // If two types are identical, they are compatible. | 
|  | if (LHSCan == RHSCan) | 
|  | return LHS; | 
|  | if (RHSCan->isFunctionType()) { | 
|  | if (!LHSCan->isFunctionType()) | 
|  | return {}; | 
|  | QualType OldReturnType = | 
|  | cast<FunctionType>(RHSCan.getTypePtr())->getReturnType(); | 
|  | QualType NewReturnType = | 
|  | cast<FunctionType>(LHSCan.getTypePtr())->getReturnType(); | 
|  | QualType ResReturnType = | 
|  | mergeObjCGCQualifiers(NewReturnType, OldReturnType); | 
|  | if (ResReturnType.isNull()) | 
|  | return {}; | 
|  | if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) { | 
|  | // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo(); | 
|  | // In either case, use OldReturnType to build the new function type. | 
|  | const auto *F = LHS->castAs<FunctionType>(); | 
|  | if (const auto *FPT = cast<FunctionProtoType>(F)) { | 
|  | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); | 
|  | EPI.ExtInfo = getFunctionExtInfo(LHS); | 
|  | QualType ResultType = | 
|  | getFunctionType(OldReturnType, FPT->getParamTypes(), EPI); | 
|  | return ResultType; | 
|  | } | 
|  | } | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | // If the qualifiers are different, the types can still be merged. | 
|  | Qualifiers LQuals = LHSCan.getLocalQualifiers(); | 
|  | Qualifiers RQuals = RHSCan.getLocalQualifiers(); | 
|  | if (LQuals != RQuals) { | 
|  | // If any of these qualifiers are different, we have a type mismatch. | 
|  | if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() || | 
|  | LQuals.getAddressSpace() != RQuals.getAddressSpace()) | 
|  | return {}; | 
|  |  | 
|  | // Exactly one GC qualifier difference is allowed: __strong is | 
|  | // okay if the other type has no GC qualifier but is an Objective | 
|  | // C object pointer (i.e. implicitly strong by default).  We fix | 
|  | // this by pretending that the unqualified type was actually | 
|  | // qualified __strong. | 
|  | Qualifiers::GC GC_L = LQuals.getObjCGCAttr(); | 
|  | Qualifiers::GC GC_R = RQuals.getObjCGCAttr(); | 
|  | assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements"); | 
|  |  | 
|  | if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak) | 
|  | return {}; | 
|  |  | 
|  | if (GC_L == Qualifiers::Strong) | 
|  | return LHS; | 
|  | if (GC_R == Qualifiers::Strong) | 
|  | return RHS; | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) { | 
|  | QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType(); | 
|  | QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType(); | 
|  | QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT); | 
|  | if (ResQT == LHSBaseQT) | 
|  | return LHS; | 
|  | if (ResQT == RHSBaseQT) | 
|  | return RHS; | 
|  | } | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         Integer Predicates | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | unsigned ASTContext::getIntWidth(QualType T) const { | 
|  | if (const auto *ED = T->getAsEnumDecl()) | 
|  | T = ED->getIntegerType(); | 
|  | if (T->isBooleanType()) | 
|  | return 1; | 
|  | if (const auto *EIT = T->getAs<BitIntType>()) | 
|  | return EIT->getNumBits(); | 
|  | // For builtin types, just use the standard type sizing method | 
|  | return (unsigned)getTypeSize(T); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getCorrespondingUnsignedType(QualType T) const { | 
|  | assert((T->hasIntegerRepresentation() || T->isEnumeralType() || | 
|  | T->isFixedPointType()) && | 
|  | "Unexpected type"); | 
|  |  | 
|  | // Turn <4 x signed int> -> <4 x unsigned int> | 
|  | if (const auto *VTy = T->getAs<VectorType>()) | 
|  | return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()), | 
|  | VTy->getNumElements(), VTy->getVectorKind()); | 
|  |  | 
|  | // For _BitInt, return an unsigned _BitInt with same width. | 
|  | if (const auto *EITy = T->getAs<BitIntType>()) | 
|  | return getBitIntType(/*Unsigned=*/true, EITy->getNumBits()); | 
|  |  | 
|  | // For enums, get the underlying integer type of the enum, and let the general | 
|  | // integer type signchanging code handle it. | 
|  | if (const auto *ED = T->getAsEnumDecl()) | 
|  | T = ED->getIntegerType(); | 
|  |  | 
|  | switch (T->castAs<BuiltinType>()->getKind()) { | 
|  | case BuiltinType::Char_U: | 
|  | // Plain `char` is mapped to `unsigned char` even if it's already unsigned | 
|  | case BuiltinType::Char_S: | 
|  | case BuiltinType::SChar: | 
|  | case BuiltinType::Char8: | 
|  | return UnsignedCharTy; | 
|  | case BuiltinType::Short: | 
|  | return UnsignedShortTy; | 
|  | case BuiltinType::Int: | 
|  | return UnsignedIntTy; | 
|  | case BuiltinType::Long: | 
|  | return UnsignedLongTy; | 
|  | case BuiltinType::LongLong: | 
|  | return UnsignedLongLongTy; | 
|  | case BuiltinType::Int128: | 
|  | return UnsignedInt128Ty; | 
|  | // wchar_t is special. It is either signed or not, but when it's signed, | 
|  | // there's no matching "unsigned wchar_t". Therefore we return the unsigned | 
|  | // version of its underlying type instead. | 
|  | case BuiltinType::WChar_S: | 
|  | return getUnsignedWCharType(); | 
|  |  | 
|  | case BuiltinType::ShortAccum: | 
|  | return UnsignedShortAccumTy; | 
|  | case BuiltinType::Accum: | 
|  | return UnsignedAccumTy; | 
|  | case BuiltinType::LongAccum: | 
|  | return UnsignedLongAccumTy; | 
|  | case BuiltinType::SatShortAccum: | 
|  | return SatUnsignedShortAccumTy; | 
|  | case BuiltinType::SatAccum: | 
|  | return SatUnsignedAccumTy; | 
|  | case BuiltinType::SatLongAccum: | 
|  | return SatUnsignedLongAccumTy; | 
|  | case BuiltinType::ShortFract: | 
|  | return UnsignedShortFractTy; | 
|  | case BuiltinType::Fract: | 
|  | return UnsignedFractTy; | 
|  | case BuiltinType::LongFract: | 
|  | return UnsignedLongFractTy; | 
|  | case BuiltinType::SatShortFract: | 
|  | return SatUnsignedShortFractTy; | 
|  | case BuiltinType::SatFract: | 
|  | return SatUnsignedFractTy; | 
|  | case BuiltinType::SatLongFract: | 
|  | return SatUnsignedLongFractTy; | 
|  | default: | 
|  | assert((T->hasUnsignedIntegerRepresentation() || | 
|  | T->isUnsignedFixedPointType()) && | 
|  | "Unexpected signed integer or fixed point type"); | 
|  | return T; | 
|  | } | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getCorrespondingSignedType(QualType T) const { | 
|  | assert((T->hasIntegerRepresentation() || T->isEnumeralType() || | 
|  | T->isFixedPointType()) && | 
|  | "Unexpected type"); | 
|  |  | 
|  | // Turn <4 x unsigned int> -> <4 x signed int> | 
|  | if (const auto *VTy = T->getAs<VectorType>()) | 
|  | return getVectorType(getCorrespondingSignedType(VTy->getElementType()), | 
|  | VTy->getNumElements(), VTy->getVectorKind()); | 
|  |  | 
|  | // For _BitInt, return a signed _BitInt with same width. | 
|  | if (const auto *EITy = T->getAs<BitIntType>()) | 
|  | return getBitIntType(/*Unsigned=*/false, EITy->getNumBits()); | 
|  |  | 
|  | // For enums, get the underlying integer type of the enum, and let the general | 
|  | // integer type signchanging code handle it. | 
|  | if (const auto *ED = T->getAsEnumDecl()) | 
|  | T = ED->getIntegerType(); | 
|  |  | 
|  | switch (T->castAs<BuiltinType>()->getKind()) { | 
|  | case BuiltinType::Char_S: | 
|  | // Plain `char` is mapped to `signed char` even if it's already signed | 
|  | case BuiltinType::Char_U: | 
|  | case BuiltinType::UChar: | 
|  | case BuiltinType::Char8: | 
|  | return SignedCharTy; | 
|  | case BuiltinType::UShort: | 
|  | return ShortTy; | 
|  | case BuiltinType::UInt: | 
|  | return IntTy; | 
|  | case BuiltinType::ULong: | 
|  | return LongTy; | 
|  | case BuiltinType::ULongLong: | 
|  | return LongLongTy; | 
|  | case BuiltinType::UInt128: | 
|  | return Int128Ty; | 
|  | // wchar_t is special. It is either unsigned or not, but when it's unsigned, | 
|  | // there's no matching "signed wchar_t". Therefore we return the signed | 
|  | // version of its underlying type instead. | 
|  | case BuiltinType::WChar_U: | 
|  | return getSignedWCharType(); | 
|  |  | 
|  | case BuiltinType::UShortAccum: | 
|  | return ShortAccumTy; | 
|  | case BuiltinType::UAccum: | 
|  | return AccumTy; | 
|  | case BuiltinType::ULongAccum: | 
|  | return LongAccumTy; | 
|  | case BuiltinType::SatUShortAccum: | 
|  | return SatShortAccumTy; | 
|  | case BuiltinType::SatUAccum: | 
|  | return SatAccumTy; | 
|  | case BuiltinType::SatULongAccum: | 
|  | return SatLongAccumTy; | 
|  | case BuiltinType::UShortFract: | 
|  | return ShortFractTy; | 
|  | case BuiltinType::UFract: | 
|  | return FractTy; | 
|  | case BuiltinType::ULongFract: | 
|  | return LongFractTy; | 
|  | case BuiltinType::SatUShortFract: | 
|  | return SatShortFractTy; | 
|  | case BuiltinType::SatUFract: | 
|  | return SatFractTy; | 
|  | case BuiltinType::SatULongFract: | 
|  | return SatLongFractTy; | 
|  | default: | 
|  | assert( | 
|  | (T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) && | 
|  | "Unexpected signed integer or fixed point type"); | 
|  | return T; | 
|  | } | 
|  | } | 
|  |  | 
|  | ASTMutationListener::~ASTMutationListener() = default; | 
|  |  | 
|  | void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD, | 
|  | QualType ReturnType) {} | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                          Builtin Type Computation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the | 
|  | /// pointer over the consumed characters.  This returns the resultant type.  If | 
|  | /// AllowTypeModifiers is false then modifier like * are not parsed, just basic | 
|  | /// types.  This allows "v2i*" to be parsed as a pointer to a v2i instead of | 
|  | /// a vector of "i*". | 
|  | /// | 
|  | /// RequiresICE is filled in on return to indicate whether the value is required | 
|  | /// to be an Integer Constant Expression. | 
|  | static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context, | 
|  | ASTContext::GetBuiltinTypeError &Error, | 
|  | bool &RequiresICE, | 
|  | bool AllowTypeModifiers) { | 
|  | // Modifiers. | 
|  | int HowLong = 0; | 
|  | bool Signed = false, Unsigned = false; | 
|  | RequiresICE = false; | 
|  |  | 
|  | // Read the prefixed modifiers first. | 
|  | bool Done = false; | 
|  | #ifndef NDEBUG | 
|  | bool IsSpecial = false; | 
|  | #endif | 
|  | while (!Done) { | 
|  | switch (*Str++) { | 
|  | default: Done = true; --Str; break; | 
|  | case 'I': | 
|  | RequiresICE = true; | 
|  | break; | 
|  | case 'S': | 
|  | assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!"); | 
|  | assert(!Signed && "Can't use 'S' modifier multiple times!"); | 
|  | Signed = true; | 
|  | break; | 
|  | case 'U': | 
|  | assert(!Signed && "Can't use both 'S' and 'U' modifiers!"); | 
|  | assert(!Unsigned && "Can't use 'U' modifier multiple times!"); | 
|  | Unsigned = true; | 
|  | break; | 
|  | case 'L': | 
|  | assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers"); | 
|  | assert(HowLong <= 2 && "Can't have LLLL modifier"); | 
|  | ++HowLong; | 
|  | break; | 
|  | case 'N': | 
|  | // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise. | 
|  | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); | 
|  | assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!"); | 
|  | #ifndef NDEBUG | 
|  | IsSpecial = true; | 
|  | #endif | 
|  | if (Context.getTargetInfo().getLongWidth() == 32) | 
|  | ++HowLong; | 
|  | break; | 
|  | case 'W': | 
|  | // This modifier represents int64 type. | 
|  | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); | 
|  | assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!"); | 
|  | #ifndef NDEBUG | 
|  | IsSpecial = true; | 
|  | #endif | 
|  | switch (Context.getTargetInfo().getInt64Type()) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected integer type"); | 
|  | case TargetInfo::SignedLong: | 
|  | HowLong = 1; | 
|  | break; | 
|  | case TargetInfo::SignedLongLong: | 
|  | HowLong = 2; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 'Z': | 
|  | // This modifier represents int32 type. | 
|  | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); | 
|  | assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!"); | 
|  | #ifndef NDEBUG | 
|  | IsSpecial = true; | 
|  | #endif | 
|  | switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) { | 
|  | default: | 
|  | llvm_unreachable("Unexpected integer type"); | 
|  | case TargetInfo::SignedInt: | 
|  | HowLong = 0; | 
|  | break; | 
|  | case TargetInfo::SignedLong: | 
|  | HowLong = 1; | 
|  | break; | 
|  | case TargetInfo::SignedLongLong: | 
|  | HowLong = 2; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case 'O': | 
|  | assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"); | 
|  | assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!"); | 
|  | #ifndef NDEBUG | 
|  | IsSpecial = true; | 
|  | #endif | 
|  | if (Context.getLangOpts().OpenCL) | 
|  | HowLong = 1; | 
|  | else | 
|  | HowLong = 2; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | QualType Type; | 
|  |  | 
|  | // Read the base type. | 
|  | switch (*Str++) { | 
|  | default: llvm_unreachable("Unknown builtin type letter!"); | 
|  | case 'x': | 
|  | assert(HowLong == 0 && !Signed && !Unsigned && | 
|  | "Bad modifiers used with 'x'!"); | 
|  | Type = Context.Float16Ty; | 
|  | break; | 
|  | case 'y': | 
|  | assert(HowLong == 0 && !Signed && !Unsigned && | 
|  | "Bad modifiers used with 'y'!"); | 
|  | Type = Context.BFloat16Ty; | 
|  | break; | 
|  | case 'v': | 
|  | assert(HowLong == 0 && !Signed && !Unsigned && | 
|  | "Bad modifiers used with 'v'!"); | 
|  | Type = Context.VoidTy; | 
|  | break; | 
|  | case 'h': | 
|  | assert(HowLong == 0 && !Signed && !Unsigned && | 
|  | "Bad modifiers used with 'h'!"); | 
|  | Type = Context.HalfTy; | 
|  | break; | 
|  | case 'f': | 
|  | assert(HowLong == 0 && !Signed && !Unsigned && | 
|  | "Bad modifiers used with 'f'!"); | 
|  | Type = Context.FloatTy; | 
|  | break; | 
|  | case 'd': | 
|  | assert(HowLong < 3 && !Signed && !Unsigned && | 
|  | "Bad modifiers used with 'd'!"); | 
|  | if (HowLong == 1) | 
|  | Type = Context.LongDoubleTy; | 
|  | else if (HowLong == 2) | 
|  | Type = Context.Float128Ty; | 
|  | else | 
|  | Type = Context.DoubleTy; | 
|  | break; | 
|  | case 's': | 
|  | assert(HowLong == 0 && "Bad modifiers used with 's'!"); | 
|  | if (Unsigned) | 
|  | Type = Context.UnsignedShortTy; | 
|  | else | 
|  | Type = Context.ShortTy; | 
|  | break; | 
|  | case 'i': | 
|  | if (HowLong == 3) | 
|  | Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty; | 
|  | else if (HowLong == 2) | 
|  | Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy; | 
|  | else if (HowLong == 1) | 
|  | Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy; | 
|  | else | 
|  | Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy; | 
|  | break; | 
|  | case 'c': | 
|  | assert(HowLong == 0 && "Bad modifiers used with 'c'!"); | 
|  | if (Signed) | 
|  | Type = Context.SignedCharTy; | 
|  | else if (Unsigned) | 
|  | Type = Context.UnsignedCharTy; | 
|  | else | 
|  | Type = Context.CharTy; | 
|  | break; | 
|  | case 'b': // boolean | 
|  | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!"); | 
|  | Type = Context.BoolTy; | 
|  | break; | 
|  | case 'z':  // size_t. | 
|  | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!"); | 
|  | Type = Context.getSizeType(); | 
|  | break; | 
|  | case 'w':  // wchar_t. | 
|  | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!"); | 
|  | Type = Context.getWideCharType(); | 
|  | break; | 
|  | case 'F': | 
|  | Type = Context.getCFConstantStringType(); | 
|  | break; | 
|  | case 'G': | 
|  | Type = Context.getObjCIdType(); | 
|  | break; | 
|  | case 'H': | 
|  | Type = Context.getObjCSelType(); | 
|  | break; | 
|  | case 'M': | 
|  | Type = Context.getObjCSuperType(); | 
|  | break; | 
|  | case 'a': | 
|  | Type = Context.getBuiltinVaListType(); | 
|  | assert(!Type.isNull() && "builtin va list type not initialized!"); | 
|  | break; | 
|  | case 'A': | 
|  | // This is a "reference" to a va_list; however, what exactly | 
|  | // this means depends on how va_list is defined. There are two | 
|  | // different kinds of va_list: ones passed by value, and ones | 
|  | // passed by reference.  An example of a by-value va_list is | 
|  | // x86, where va_list is a char*. An example of by-ref va_list | 
|  | // is x86-64, where va_list is a __va_list_tag[1]. For x86, | 
|  | // we want this argument to be a char*&; for x86-64, we want | 
|  | // it to be a __va_list_tag*. | 
|  | Type = Context.getBuiltinVaListType(); | 
|  | assert(!Type.isNull() && "builtin va list type not initialized!"); | 
|  | if (Type->isArrayType()) | 
|  | Type = Context.getArrayDecayedType(Type); | 
|  | else | 
|  | Type = Context.getLValueReferenceType(Type); | 
|  | break; | 
|  | case 'q': { | 
|  | char *End; | 
|  | unsigned NumElements = strtoul(Str, &End, 10); | 
|  | assert(End != Str && "Missing vector size"); | 
|  | Str = End; | 
|  |  | 
|  | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, | 
|  | RequiresICE, false); | 
|  | assert(!RequiresICE && "Can't require vector ICE"); | 
|  |  | 
|  | Type = Context.getScalableVectorType(ElementType, NumElements); | 
|  | break; | 
|  | } | 
|  | case 'Q': { | 
|  | switch (*Str++) { | 
|  | case 'a': { | 
|  | Type = Context.SveCountTy; | 
|  | break; | 
|  | } | 
|  | case 'b': { | 
|  | Type = Context.AMDGPUBufferRsrcTy; | 
|  | break; | 
|  | } | 
|  | case 't': { | 
|  | Type = Context.AMDGPUTextureTy; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("Unexpected target builtin type"); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 'V': { | 
|  | char *End; | 
|  | unsigned NumElements = strtoul(Str, &End, 10); | 
|  | assert(End != Str && "Missing vector size"); | 
|  | Str = End; | 
|  |  | 
|  | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, | 
|  | RequiresICE, false); | 
|  | assert(!RequiresICE && "Can't require vector ICE"); | 
|  |  | 
|  | // TODO: No way to make AltiVec vectors in builtins yet. | 
|  | Type = Context.getVectorType(ElementType, NumElements, VectorKind::Generic); | 
|  | break; | 
|  | } | 
|  | case 'E': { | 
|  | char *End; | 
|  |  | 
|  | unsigned NumElements = strtoul(Str, &End, 10); | 
|  | assert(End != Str && "Missing vector size"); | 
|  |  | 
|  | Str = End; | 
|  |  | 
|  | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, | 
|  | false); | 
|  | Type = Context.getExtVectorType(ElementType, NumElements); | 
|  | break; | 
|  | } | 
|  | case 'X': { | 
|  | QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE, | 
|  | false); | 
|  | assert(!RequiresICE && "Can't require complex ICE"); | 
|  | Type = Context.getComplexType(ElementType); | 
|  | break; | 
|  | } | 
|  | case 'Y': | 
|  | Type = Context.getPointerDiffType(); | 
|  | break; | 
|  | case 'P': | 
|  | Type = Context.getFILEType(); | 
|  | if (Type.isNull()) { | 
|  | Error = ASTContext::GE_Missing_stdio; | 
|  | return {}; | 
|  | } | 
|  | break; | 
|  | case 'J': | 
|  | if (Signed) | 
|  | Type = Context.getsigjmp_bufType(); | 
|  | else | 
|  | Type = Context.getjmp_bufType(); | 
|  |  | 
|  | if (Type.isNull()) { | 
|  | Error = ASTContext::GE_Missing_setjmp; | 
|  | return {}; | 
|  | } | 
|  | break; | 
|  | case 'K': | 
|  | assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!"); | 
|  | Type = Context.getucontext_tType(); | 
|  |  | 
|  | if (Type.isNull()) { | 
|  | Error = ASTContext::GE_Missing_ucontext; | 
|  | return {}; | 
|  | } | 
|  | break; | 
|  | case 'p': | 
|  | Type = Context.getProcessIDType(); | 
|  | break; | 
|  | case 'm': | 
|  | Type = Context.MFloat8Ty; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If there are modifiers and if we're allowed to parse them, go for it. | 
|  | Done = !AllowTypeModifiers; | 
|  | while (!Done) { | 
|  | switch (char c = *Str++) { | 
|  | default: Done = true; --Str; break; | 
|  | case '*': | 
|  | case '&': { | 
|  | // Both pointers and references can have their pointee types | 
|  | // qualified with an address space. | 
|  | char *End; | 
|  | unsigned AddrSpace = strtoul(Str, &End, 10); | 
|  | if (End != Str) { | 
|  | // Note AddrSpace == 0 is not the same as an unspecified address space. | 
|  | Type = Context.getAddrSpaceQualType( | 
|  | Type, | 
|  | Context.getLangASForBuiltinAddressSpace(AddrSpace)); | 
|  | Str = End; | 
|  | } | 
|  | if (c == '*') | 
|  | Type = Context.getPointerType(Type); | 
|  | else | 
|  | Type = Context.getLValueReferenceType(Type); | 
|  | break; | 
|  | } | 
|  | // FIXME: There's no way to have a built-in with an rvalue ref arg. | 
|  | case 'C': | 
|  | Type = Type.withConst(); | 
|  | break; | 
|  | case 'D': | 
|  | Type = Context.getVolatileType(Type); | 
|  | break; | 
|  | case 'R': | 
|  | Type = Type.withRestrict(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert((!RequiresICE || Type->isIntegralOrEnumerationType()) && | 
|  | "Integer constant 'I' type must be an integer"); | 
|  |  | 
|  | return Type; | 
|  | } | 
|  |  | 
|  | // On some targets such as PowerPC, some of the builtins are defined with custom | 
|  | // type descriptors for target-dependent types. These descriptors are decoded in | 
|  | // other functions, but it may be useful to be able to fall back to default | 
|  | // descriptor decoding to define builtins mixing target-dependent and target- | 
|  | // independent types. This function allows decoding one type descriptor with | 
|  | // default decoding. | 
|  | QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context, | 
|  | GetBuiltinTypeError &Error, bool &RequireICE, | 
|  | bool AllowTypeModifiers) const { | 
|  | return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers); | 
|  | } | 
|  |  | 
|  | /// GetBuiltinType - Return the type for the specified builtin. | 
|  | QualType ASTContext::GetBuiltinType(unsigned Id, | 
|  | GetBuiltinTypeError &Error, | 
|  | unsigned *IntegerConstantArgs) const { | 
|  | const char *TypeStr = BuiltinInfo.getTypeString(Id); | 
|  | if (TypeStr[0] == '\0') { | 
|  | Error = GE_Missing_type; | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | SmallVector<QualType, 8> ArgTypes; | 
|  |  | 
|  | bool RequiresICE = false; | 
|  | Error = GE_None; | 
|  | QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error, | 
|  | RequiresICE, true); | 
|  | if (Error != GE_None) | 
|  | return {}; | 
|  |  | 
|  | assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE"); | 
|  |  | 
|  | while (TypeStr[0] && TypeStr[0] != '.') { | 
|  | QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true); | 
|  | if (Error != GE_None) | 
|  | return {}; | 
|  |  | 
|  | // If this argument is required to be an IntegerConstantExpression and the | 
|  | // caller cares, fill in the bitmask we return. | 
|  | if (RequiresICE && IntegerConstantArgs) | 
|  | *IntegerConstantArgs |= 1 << ArgTypes.size(); | 
|  |  | 
|  | // Do array -> pointer decay.  The builtin should use the decayed type. | 
|  | if (Ty->isArrayType()) | 
|  | Ty = getArrayDecayedType(Ty); | 
|  |  | 
|  | ArgTypes.push_back(Ty); | 
|  | } | 
|  |  | 
|  | if (Id == Builtin::BI__GetExceptionInfo) | 
|  | return {}; | 
|  |  | 
|  | assert((TypeStr[0] != '.' || TypeStr[1] == 0) && | 
|  | "'.' should only occur at end of builtin type list!"); | 
|  |  | 
|  | bool Variadic = (TypeStr[0] == '.'); | 
|  |  | 
|  | FunctionType::ExtInfo EI(Target->getDefaultCallingConv()); | 
|  | if (BuiltinInfo.isNoReturn(Id)) | 
|  | EI = EI.withNoReturn(true); | 
|  |  | 
|  | // We really shouldn't be making a no-proto type here. | 
|  | if (ArgTypes.empty() && Variadic && !getLangOpts().requiresStrictPrototypes()) | 
|  | return getFunctionNoProtoType(ResType, EI); | 
|  |  | 
|  | FunctionProtoType::ExtProtoInfo EPI; | 
|  | EPI.ExtInfo = EI; | 
|  | EPI.Variadic = Variadic; | 
|  | if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id)) | 
|  | EPI.ExceptionSpec.Type = | 
|  | getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; | 
|  |  | 
|  | return getFunctionType(ResType, ArgTypes, EPI); | 
|  | } | 
|  |  | 
|  | static GVALinkage basicGVALinkageForFunction(const ASTContext &Context, | 
|  | const FunctionDecl *FD) { | 
|  | if (!FD->isExternallyVisible()) | 
|  | return GVA_Internal; | 
|  |  | 
|  | // Non-user-provided functions get emitted as weak definitions with every | 
|  | // use, no matter whether they've been explicitly instantiated etc. | 
|  | if (!FD->isUserProvided()) | 
|  | return GVA_DiscardableODR; | 
|  |  | 
|  | GVALinkage External; | 
|  | switch (FD->getTemplateSpecializationKind()) { | 
|  | case TSK_Undeclared: | 
|  | case TSK_ExplicitSpecialization: | 
|  | External = GVA_StrongExternal; | 
|  | break; | 
|  |  | 
|  | case TSK_ExplicitInstantiationDefinition: | 
|  | return GVA_StrongODR; | 
|  |  | 
|  | // C++11 [temp.explicit]p10: | 
|  | //   [ Note: The intent is that an inline function that is the subject of | 
|  | //   an explicit instantiation declaration will still be implicitly | 
|  | //   instantiated when used so that the body can be considered for | 
|  | //   inlining, but that no out-of-line copy of the inline function would be | 
|  | //   generated in the translation unit. -- end note ] | 
|  | case TSK_ExplicitInstantiationDeclaration: | 
|  | return GVA_AvailableExternally; | 
|  |  | 
|  | case TSK_ImplicitInstantiation: | 
|  | External = GVA_DiscardableODR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!FD->isInlined()) | 
|  | return External; | 
|  |  | 
|  | if ((!Context.getLangOpts().CPlusPlus && | 
|  | !Context.getTargetInfo().getCXXABI().isMicrosoft() && | 
|  | !FD->hasAttr<DLLExportAttr>()) || | 
|  | FD->hasAttr<GNUInlineAttr>()) { | 
|  | // FIXME: This doesn't match gcc's behavior for dllexport inline functions. | 
|  |  | 
|  | // GNU or C99 inline semantics. Determine whether this symbol should be | 
|  | // externally visible. | 
|  | if (FD->isInlineDefinitionExternallyVisible()) | 
|  | return External; | 
|  |  | 
|  | // C99 inline semantics, where the symbol is not externally visible. | 
|  | return GVA_AvailableExternally; | 
|  | } | 
|  |  | 
|  | // Functions specified with extern and inline in -fms-compatibility mode | 
|  | // forcibly get emitted.  While the body of the function cannot be later | 
|  | // replaced, the function definition cannot be discarded. | 
|  | if (FD->isMSExternInline()) | 
|  | return GVA_StrongODR; | 
|  |  | 
|  | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && | 
|  | isa<CXXConstructorDecl>(FD) && | 
|  | cast<CXXConstructorDecl>(FD)->isInheritingConstructor()) | 
|  | // Our approach to inheriting constructors is fundamentally different from | 
|  | // that used by the MS ABI, so keep our inheriting constructor thunks | 
|  | // internal rather than trying to pick an unambiguous mangling for them. | 
|  | return GVA_Internal; | 
|  |  | 
|  | return GVA_DiscardableODR; | 
|  | } | 
|  |  | 
|  | static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context, | 
|  | const Decl *D, GVALinkage L) { | 
|  | // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx | 
|  | // dllexport/dllimport on inline functions. | 
|  | if (D->hasAttr<DLLImportAttr>()) { | 
|  | if (L == GVA_DiscardableODR || L == GVA_StrongODR) | 
|  | return GVA_AvailableExternally; | 
|  | } else if (D->hasAttr<DLLExportAttr>()) { | 
|  | if (L == GVA_DiscardableODR) | 
|  | return GVA_StrongODR; | 
|  | } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) { | 
|  | // Device-side functions with __global__ attribute must always be | 
|  | // visible externally so they can be launched from host. | 
|  | if (D->hasAttr<CUDAGlobalAttr>() && | 
|  | (L == GVA_DiscardableODR || L == GVA_Internal)) | 
|  | return GVA_StrongODR; | 
|  | // Single source offloading languages like CUDA/HIP need to be able to | 
|  | // access static device variables from host code of the same compilation | 
|  | // unit. This is done by externalizing the static variable with a shared | 
|  | // name between the host and device compilation which is the same for the | 
|  | // same compilation unit whereas different among different compilation | 
|  | // units. | 
|  | if (Context.shouldExternalize(D)) | 
|  | return GVA_StrongExternal; | 
|  | } | 
|  | return L; | 
|  | } | 
|  |  | 
|  | /// Adjust the GVALinkage for a declaration based on what an external AST source | 
|  | /// knows about whether there can be other definitions of this declaration. | 
|  | static GVALinkage | 
|  | adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D, | 
|  | GVALinkage L) { | 
|  | ExternalASTSource *Source = Ctx.getExternalSource(); | 
|  | if (!Source) | 
|  | return L; | 
|  |  | 
|  | switch (Source->hasExternalDefinitions(D)) { | 
|  | case ExternalASTSource::EK_Never: | 
|  | // Other translation units rely on us to provide the definition. | 
|  | if (L == GVA_DiscardableODR) | 
|  | return GVA_StrongODR; | 
|  | break; | 
|  |  | 
|  | case ExternalASTSource::EK_Always: | 
|  | return GVA_AvailableExternally; | 
|  |  | 
|  | case ExternalASTSource::EK_ReplyHazy: | 
|  | break; | 
|  | } | 
|  | return L; | 
|  | } | 
|  |  | 
|  | GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const { | 
|  | return adjustGVALinkageForExternalDefinitionKind(*this, FD, | 
|  | adjustGVALinkageForAttributes(*this, FD, | 
|  | basicGVALinkageForFunction(*this, FD))); | 
|  | } | 
|  |  | 
|  | static GVALinkage basicGVALinkageForVariable(const ASTContext &Context, | 
|  | const VarDecl *VD) { | 
|  | // As an extension for interactive REPLs, make sure constant variables are | 
|  | // only emitted once instead of LinkageComputer::getLVForNamespaceScopeDecl | 
|  | // marking them as internal. | 
|  | if (Context.getLangOpts().CPlusPlus && | 
|  | Context.getLangOpts().IncrementalExtensions && | 
|  | VD->getType().isConstQualified() && | 
|  | !VD->getType().isVolatileQualified() && !VD->isInline() && | 
|  | !isa<VarTemplateSpecializationDecl>(VD) && !VD->getDescribedVarTemplate()) | 
|  | return GVA_DiscardableODR; | 
|  |  | 
|  | if (!VD->isExternallyVisible()) | 
|  | return GVA_Internal; | 
|  |  | 
|  | if (VD->isStaticLocal()) { | 
|  | const DeclContext *LexicalContext = VD->getParentFunctionOrMethod(); | 
|  | while (LexicalContext && !isa<FunctionDecl>(LexicalContext)) | 
|  | LexicalContext = LexicalContext->getLexicalParent(); | 
|  |  | 
|  | // ObjC Blocks can create local variables that don't have a FunctionDecl | 
|  | // LexicalContext. | 
|  | if (!LexicalContext) | 
|  | return GVA_DiscardableODR; | 
|  |  | 
|  | // Otherwise, let the static local variable inherit its linkage from the | 
|  | // nearest enclosing function. | 
|  | auto StaticLocalLinkage = | 
|  | Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext)); | 
|  |  | 
|  | // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must | 
|  | // be emitted in any object with references to the symbol for the object it | 
|  | // contains, whether inline or out-of-line." | 
|  | // Similar behavior is observed with MSVC. An alternative ABI could use | 
|  | // StrongODR/AvailableExternally to match the function, but none are | 
|  | // known/supported currently. | 
|  | if (StaticLocalLinkage == GVA_StrongODR || | 
|  | StaticLocalLinkage == GVA_AvailableExternally) | 
|  | return GVA_DiscardableODR; | 
|  | return StaticLocalLinkage; | 
|  | } | 
|  |  | 
|  | // MSVC treats in-class initialized static data members as definitions. | 
|  | // By giving them non-strong linkage, out-of-line definitions won't | 
|  | // cause link errors. | 
|  | if (Context.isMSStaticDataMemberInlineDefinition(VD)) | 
|  | return GVA_DiscardableODR; | 
|  |  | 
|  | // Most non-template variables have strong linkage; inline variables are | 
|  | // linkonce_odr or (occasionally, for compatibility) weak_odr. | 
|  | GVALinkage StrongLinkage; | 
|  | switch (Context.getInlineVariableDefinitionKind(VD)) { | 
|  | case ASTContext::InlineVariableDefinitionKind::None: | 
|  | StrongLinkage = GVA_StrongExternal; | 
|  | break; | 
|  | case ASTContext::InlineVariableDefinitionKind::Weak: | 
|  | case ASTContext::InlineVariableDefinitionKind::WeakUnknown: | 
|  | StrongLinkage = GVA_DiscardableODR; | 
|  | break; | 
|  | case ASTContext::InlineVariableDefinitionKind::Strong: | 
|  | StrongLinkage = GVA_StrongODR; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (VD->getTemplateSpecializationKind()) { | 
|  | case TSK_Undeclared: | 
|  | return StrongLinkage; | 
|  |  | 
|  | case TSK_ExplicitSpecialization: | 
|  | return Context.getTargetInfo().getCXXABI().isMicrosoft() && | 
|  | VD->isStaticDataMember() | 
|  | ? GVA_StrongODR | 
|  | : StrongLinkage; | 
|  |  | 
|  | case TSK_ExplicitInstantiationDefinition: | 
|  | return GVA_StrongODR; | 
|  |  | 
|  | case TSK_ExplicitInstantiationDeclaration: | 
|  | return GVA_AvailableExternally; | 
|  |  | 
|  | case TSK_ImplicitInstantiation: | 
|  | return GVA_DiscardableODR; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Invalid Linkage!"); | 
|  | } | 
|  |  | 
|  | GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) const { | 
|  | return adjustGVALinkageForExternalDefinitionKind(*this, VD, | 
|  | adjustGVALinkageForAttributes(*this, VD, | 
|  | basicGVALinkageForVariable(*this, VD))); | 
|  | } | 
|  |  | 
|  | bool ASTContext::DeclMustBeEmitted(const Decl *D) { | 
|  | if (const auto *VD = dyn_cast<VarDecl>(D)) { | 
|  | if (!VD->isFileVarDecl()) | 
|  | return false; | 
|  | // Global named register variables (GNU extension) are never emitted. | 
|  | if (VD->getStorageClass() == SC_Register) | 
|  | return false; | 
|  | if (VD->getDescribedVarTemplate() || | 
|  | isa<VarTemplatePartialSpecializationDecl>(VD)) | 
|  | return false; | 
|  | } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | // We never need to emit an uninstantiated function template. | 
|  | if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) | 
|  | return false; | 
|  | } else if (isa<PragmaCommentDecl>(D)) | 
|  | return true; | 
|  | else if (isa<PragmaDetectMismatchDecl>(D)) | 
|  | return true; | 
|  | else if (isa<OMPRequiresDecl>(D)) | 
|  | return true; | 
|  | else if (isa<OMPThreadPrivateDecl>(D)) | 
|  | return !D->getDeclContext()->isDependentContext(); | 
|  | else if (isa<OMPAllocateDecl>(D)) | 
|  | return !D->getDeclContext()->isDependentContext(); | 
|  | else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D)) | 
|  | return !D->getDeclContext()->isDependentContext(); | 
|  | else if (isa<ImportDecl>(D)) | 
|  | return true; | 
|  | else | 
|  | return false; | 
|  |  | 
|  | // If this is a member of a class template, we do not need to emit it. | 
|  | if (D->getDeclContext()->isDependentContext()) | 
|  | return false; | 
|  |  | 
|  | // Weak references don't produce any output by themselves. | 
|  | if (D->hasAttr<WeakRefAttr>()) | 
|  | return false; | 
|  |  | 
|  | // SYCL device compilation requires that functions defined with the | 
|  | // sycl_kernel_entry_point or sycl_external attributes be emitted. All | 
|  | // other entities are emitted only if they are used by a function | 
|  | // defined with one of those attributes. | 
|  | if (LangOpts.SYCLIsDevice) | 
|  | return isa<FunctionDecl>(D) && (D->hasAttr<SYCLKernelEntryPointAttr>() || | 
|  | D->hasAttr<SYCLExternalAttr>()); | 
|  |  | 
|  | // Aliases and used decls are required. | 
|  | if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>()) | 
|  | return true; | 
|  |  | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | // Forward declarations aren't required. | 
|  | if (!FD->doesThisDeclarationHaveABody()) | 
|  | return FD->doesDeclarationForceExternallyVisibleDefinition(); | 
|  |  | 
|  | // Constructors and destructors are required. | 
|  | if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) | 
|  | return true; | 
|  |  | 
|  | // The key function for a class is required.  This rule only comes | 
|  | // into play when inline functions can be key functions, though. | 
|  | if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { | 
|  | if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
|  | const CXXRecordDecl *RD = MD->getParent(); | 
|  | if (MD->isOutOfLine() && RD->isDynamicClass()) { | 
|  | const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD); | 
|  | if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | GVALinkage Linkage = GetGVALinkageForFunction(FD); | 
|  |  | 
|  | // static, static inline, always_inline, and extern inline functions can | 
|  | // always be deferred.  Normal inline functions can be deferred in C99/C++. | 
|  | // Implicit template instantiations can also be deferred in C++. | 
|  | return !isDiscardableGVALinkage(Linkage); | 
|  | } | 
|  |  | 
|  | const auto *VD = cast<VarDecl>(D); | 
|  | assert(VD->isFileVarDecl() && "Expected file scoped var"); | 
|  |  | 
|  | // If the decl is marked as `declare target to`, it should be emitted for the | 
|  | // host and for the device. | 
|  | if (LangOpts.OpenMP && | 
|  | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) | 
|  | return true; | 
|  |  | 
|  | if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly && | 
|  | !isMSStaticDataMemberInlineDefinition(VD)) | 
|  | return false; | 
|  |  | 
|  | if (VD->shouldEmitInExternalSource()) | 
|  | return false; | 
|  |  | 
|  | // Variables that can be needed in other TUs are required. | 
|  | auto Linkage = GetGVALinkageForVariable(VD); | 
|  | if (!isDiscardableGVALinkage(Linkage)) | 
|  | return true; | 
|  |  | 
|  | // We never need to emit a variable that is available in another TU. | 
|  | if (Linkage == GVA_AvailableExternally) | 
|  | return false; | 
|  |  | 
|  | // Variables that have destruction with side-effects are required. | 
|  | if (VD->needsDestruction(*this)) | 
|  | return true; | 
|  |  | 
|  | // Variables that have initialization with side-effects are required. | 
|  | if (VD->hasInitWithSideEffects()) | 
|  | return true; | 
|  |  | 
|  | // Likewise, variables with tuple-like bindings are required if their | 
|  | // bindings have side-effects. | 
|  | if (const auto *DD = dyn_cast<DecompositionDecl>(VD)) { | 
|  | for (const auto *BD : DD->flat_bindings()) | 
|  | if (const auto *BindingVD = BD->getHoldingVar()) | 
|  | if (DeclMustBeEmitted(BindingVD)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void ASTContext::forEachMultiversionedFunctionVersion( | 
|  | const FunctionDecl *FD, | 
|  | llvm::function_ref<void(FunctionDecl *)> Pred) const { | 
|  | assert(FD->isMultiVersion() && "Only valid for multiversioned functions"); | 
|  | llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls; | 
|  | FD = FD->getMostRecentDecl(); | 
|  | // FIXME: The order of traversal here matters and depends on the order of | 
|  | // lookup results, which happens to be (mostly) oldest-to-newest, but we | 
|  | // shouldn't rely on that. | 
|  | for (auto *CurDecl : | 
|  | FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) { | 
|  | FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl(); | 
|  | if (CurFD && hasSameType(CurFD->getType(), FD->getType()) && | 
|  | SeenDecls.insert(CurFD).second) { | 
|  | Pred(CurFD); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic, | 
|  | bool IsCXXMethod) const { | 
|  | // Pass through to the C++ ABI object | 
|  | if (IsCXXMethod) | 
|  | return ABI->getDefaultMethodCallConv(IsVariadic); | 
|  |  | 
|  | switch (LangOpts.getDefaultCallingConv()) { | 
|  | case LangOptions::DCC_None: | 
|  | break; | 
|  | case LangOptions::DCC_CDecl: | 
|  | return CC_C; | 
|  | case LangOptions::DCC_FastCall: | 
|  | if (getTargetInfo().hasFeature("sse2") && !IsVariadic) | 
|  | return CC_X86FastCall; | 
|  | break; | 
|  | case LangOptions::DCC_StdCall: | 
|  | if (!IsVariadic) | 
|  | return CC_X86StdCall; | 
|  | break; | 
|  | case LangOptions::DCC_VectorCall: | 
|  | // __vectorcall cannot be applied to variadic functions. | 
|  | if (!IsVariadic) | 
|  | return CC_X86VectorCall; | 
|  | break; | 
|  | case LangOptions::DCC_RegCall: | 
|  | // __regcall cannot be applied to variadic functions. | 
|  | if (!IsVariadic) | 
|  | return CC_X86RegCall; | 
|  | break; | 
|  | case LangOptions::DCC_RtdCall: | 
|  | if (!IsVariadic) | 
|  | return CC_M68kRTD; | 
|  | break; | 
|  | } | 
|  | return Target->getDefaultCallingConv(); | 
|  | } | 
|  |  | 
|  | bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const { | 
|  | // Pass through to the C++ ABI object | 
|  | return ABI->isNearlyEmpty(RD); | 
|  | } | 
|  |  | 
|  | VTableContextBase *ASTContext::getVTableContext() { | 
|  | if (!VTContext) { | 
|  | auto ABI = Target->getCXXABI(); | 
|  | if (ABI.isMicrosoft()) | 
|  | VTContext.reset(new MicrosoftVTableContext(*this)); | 
|  | else { | 
|  | auto ComponentLayout = getLangOpts().RelativeCXXABIVTables | 
|  | ? ItaniumVTableContext::Relative | 
|  | : ItaniumVTableContext::Pointer; | 
|  | VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout)); | 
|  | } | 
|  | } | 
|  | return VTContext.get(); | 
|  | } | 
|  |  | 
|  | MangleContext *ASTContext::createMangleContext(const TargetInfo *T) { | 
|  | if (!T) | 
|  | T = Target; | 
|  | switch (T->getCXXABI().getKind()) { | 
|  | case TargetCXXABI::AppleARM64: | 
|  | case TargetCXXABI::Fuchsia: | 
|  | case TargetCXXABI::GenericAArch64: | 
|  | case TargetCXXABI::GenericItanium: | 
|  | case TargetCXXABI::GenericARM: | 
|  | case TargetCXXABI::GenericMIPS: | 
|  | case TargetCXXABI::iOS: | 
|  | case TargetCXXABI::WebAssembly: | 
|  | case TargetCXXABI::WatchOS: | 
|  | case TargetCXXABI::XL: | 
|  | return ItaniumMangleContext::create(*this, getDiagnostics()); | 
|  | case TargetCXXABI::Microsoft: | 
|  | return MicrosoftMangleContext::create(*this, getDiagnostics()); | 
|  | } | 
|  | llvm_unreachable("Unsupported ABI"); | 
|  | } | 
|  |  | 
|  | MangleContext *ASTContext::createDeviceMangleContext(const TargetInfo &T) { | 
|  | assert(T.getCXXABI().getKind() != TargetCXXABI::Microsoft && | 
|  | "Device mangle context does not support Microsoft mangling."); | 
|  | switch (T.getCXXABI().getKind()) { | 
|  | case TargetCXXABI::AppleARM64: | 
|  | case TargetCXXABI::Fuchsia: | 
|  | case TargetCXXABI::GenericAArch64: | 
|  | case TargetCXXABI::GenericItanium: | 
|  | case TargetCXXABI::GenericARM: | 
|  | case TargetCXXABI::GenericMIPS: | 
|  | case TargetCXXABI::iOS: | 
|  | case TargetCXXABI::WebAssembly: | 
|  | case TargetCXXABI::WatchOS: | 
|  | case TargetCXXABI::XL: | 
|  | return ItaniumMangleContext::create( | 
|  | *this, getDiagnostics(), | 
|  | [](ASTContext &, const NamedDecl *ND) -> UnsignedOrNone { | 
|  | if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) | 
|  | return RD->getDeviceLambdaManglingNumber(); | 
|  | return std::nullopt; | 
|  | }, | 
|  | /*IsAux=*/true); | 
|  | case TargetCXXABI::Microsoft: | 
|  | return MicrosoftMangleContext::create(*this, getDiagnostics(), | 
|  | /*IsAux=*/true); | 
|  | } | 
|  | llvm_unreachable("Unsupported ABI"); | 
|  | } | 
|  |  | 
|  | CXXABI::~CXXABI() = default; | 
|  |  | 
|  | size_t ASTContext::getSideTableAllocatedMemory() const { | 
|  | return ASTRecordLayouts.getMemorySize() + | 
|  | llvm::capacity_in_bytes(ObjCLayouts) + | 
|  | llvm::capacity_in_bytes(KeyFunctions) + | 
|  | llvm::capacity_in_bytes(ObjCImpls) + | 
|  | llvm::capacity_in_bytes(BlockVarCopyInits) + | 
|  | llvm::capacity_in_bytes(DeclAttrs) + | 
|  | llvm::capacity_in_bytes(TemplateOrInstantiation) + | 
|  | llvm::capacity_in_bytes(InstantiatedFromUsingDecl) + | 
|  | llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) + | 
|  | llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) + | 
|  | llvm::capacity_in_bytes(OverriddenMethods) + | 
|  | llvm::capacity_in_bytes(Types) + | 
|  | llvm::capacity_in_bytes(VariableArrayTypes); | 
|  | } | 
|  |  | 
|  | /// getIntTypeForBitwidth - | 
|  | /// sets integer QualTy according to specified details: | 
|  | /// bitwidth, signed/unsigned. | 
|  | /// Returns empty type if there is no appropriate target types. | 
|  | QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth, | 
|  | unsigned Signed) const { | 
|  | TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed); | 
|  | CanQualType QualTy = getFromTargetType(Ty); | 
|  | if (!QualTy && DestWidth == 128) | 
|  | return Signed ? Int128Ty : UnsignedInt128Ty; | 
|  | return QualTy; | 
|  | } | 
|  |  | 
|  | /// getRealTypeForBitwidth - | 
|  | /// sets floating point QualTy according to specified bitwidth. | 
|  | /// Returns empty type if there is no appropriate target types. | 
|  | QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth, | 
|  | FloatModeKind ExplicitType) const { | 
|  | FloatModeKind Ty = | 
|  | getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitType); | 
|  | switch (Ty) { | 
|  | case FloatModeKind::Half: | 
|  | return HalfTy; | 
|  | case FloatModeKind::Float: | 
|  | return FloatTy; | 
|  | case FloatModeKind::Double: | 
|  | return DoubleTy; | 
|  | case FloatModeKind::LongDouble: | 
|  | return LongDoubleTy; | 
|  | case FloatModeKind::Float128: | 
|  | return Float128Ty; | 
|  | case FloatModeKind::Ibm128: | 
|  | return Ibm128Ty; | 
|  | case FloatModeKind::NoFloat: | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unhandled TargetInfo::RealType value"); | 
|  | } | 
|  |  | 
|  | void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) { | 
|  | if (Number <= 1) | 
|  | return; | 
|  |  | 
|  | MangleNumbers[ND] = Number; | 
|  |  | 
|  | if (Listener) | 
|  | Listener->AddedManglingNumber(ND, Number); | 
|  | } | 
|  |  | 
|  | unsigned ASTContext::getManglingNumber(const NamedDecl *ND, | 
|  | bool ForAuxTarget) const { | 
|  | auto I = MangleNumbers.find(ND); | 
|  | unsigned Res = I != MangleNumbers.end() ? I->second : 1; | 
|  | // CUDA/HIP host compilation encodes host and device mangling numbers | 
|  | // as lower and upper half of 32 bit integer. | 
|  | if (LangOpts.CUDA && !LangOpts.CUDAIsDevice) { | 
|  | Res = ForAuxTarget ? Res >> 16 : Res & 0xFFFF; | 
|  | } else { | 
|  | assert(!ForAuxTarget && "Only CUDA/HIP host compilation supports mangling " | 
|  | "number for aux target"); | 
|  | } | 
|  | return Res > 1 ? Res : 1; | 
|  | } | 
|  |  | 
|  | void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) { | 
|  | if (Number <= 1) | 
|  | return; | 
|  |  | 
|  | StaticLocalNumbers[VD] = Number; | 
|  |  | 
|  | if (Listener) | 
|  | Listener->AddedStaticLocalNumbers(VD, Number); | 
|  | } | 
|  |  | 
|  | unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const { | 
|  | auto I = StaticLocalNumbers.find(VD); | 
|  | return I != StaticLocalNumbers.end() ? I->second : 1; | 
|  | } | 
|  |  | 
|  | void ASTContext::setIsDestroyingOperatorDelete(const FunctionDecl *FD, | 
|  | bool IsDestroying) { | 
|  | if (!IsDestroying) { | 
|  | assert(!DestroyingOperatorDeletes.contains(FD->getCanonicalDecl())); | 
|  | return; | 
|  | } | 
|  | DestroyingOperatorDeletes.insert(FD->getCanonicalDecl()); | 
|  | } | 
|  |  | 
|  | bool ASTContext::isDestroyingOperatorDelete(const FunctionDecl *FD) const { | 
|  | return DestroyingOperatorDeletes.contains(FD->getCanonicalDecl()); | 
|  | } | 
|  |  | 
|  | void ASTContext::setIsTypeAwareOperatorNewOrDelete(const FunctionDecl *FD, | 
|  | bool IsTypeAware) { | 
|  | if (!IsTypeAware) { | 
|  | assert(!TypeAwareOperatorNewAndDeletes.contains(FD->getCanonicalDecl())); | 
|  | return; | 
|  | } | 
|  | TypeAwareOperatorNewAndDeletes.insert(FD->getCanonicalDecl()); | 
|  | } | 
|  |  | 
|  | bool ASTContext::isTypeAwareOperatorNewOrDelete(const FunctionDecl *FD) const { | 
|  | return TypeAwareOperatorNewAndDeletes.contains(FD->getCanonicalDecl()); | 
|  | } | 
|  |  | 
|  | MangleNumberingContext & | 
|  | ASTContext::getManglingNumberContext(const DeclContext *DC) { | 
|  | assert(LangOpts.CPlusPlus);  // We don't need mangling numbers for plain C. | 
|  | std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC]; | 
|  | if (!MCtx) | 
|  | MCtx = createMangleNumberingContext(); | 
|  | return *MCtx; | 
|  | } | 
|  |  | 
|  | MangleNumberingContext & | 
|  | ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) { | 
|  | assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C. | 
|  | std::unique_ptr<MangleNumberingContext> &MCtx = | 
|  | ExtraMangleNumberingContexts[D]; | 
|  | if (!MCtx) | 
|  | MCtx = createMangleNumberingContext(); | 
|  | return *MCtx; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<MangleNumberingContext> | 
|  | ASTContext::createMangleNumberingContext() const { | 
|  | return ABI->createMangleNumberingContext(); | 
|  | } | 
|  |  | 
|  | const CXXConstructorDecl * | 
|  | ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) { | 
|  | return ABI->getCopyConstructorForExceptionObject( | 
|  | cast<CXXRecordDecl>(RD->getFirstDecl())); | 
|  | } | 
|  |  | 
|  | void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD, | 
|  | CXXConstructorDecl *CD) { | 
|  | return ABI->addCopyConstructorForExceptionObject( | 
|  | cast<CXXRecordDecl>(RD->getFirstDecl()), | 
|  | cast<CXXConstructorDecl>(CD->getFirstDecl())); | 
|  | } | 
|  |  | 
|  | void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD, | 
|  | TypedefNameDecl *DD) { | 
|  | return ABI->addTypedefNameForUnnamedTagDecl(TD, DD); | 
|  | } | 
|  |  | 
|  | TypedefNameDecl * | 
|  | ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) { | 
|  | return ABI->getTypedefNameForUnnamedTagDecl(TD); | 
|  | } | 
|  |  | 
|  | void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD, | 
|  | DeclaratorDecl *DD) { | 
|  | return ABI->addDeclaratorForUnnamedTagDecl(TD, DD); | 
|  | } | 
|  |  | 
|  | DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) { | 
|  | return ABI->getDeclaratorForUnnamedTagDecl(TD); | 
|  | } | 
|  |  | 
|  | void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) { | 
|  | ParamIndices[D] = index; | 
|  | } | 
|  |  | 
|  | unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const { | 
|  | ParameterIndexTable::const_iterator I = ParamIndices.find(D); | 
|  | assert(I != ParamIndices.end() && | 
|  | "ParmIndices lacks entry set by ParmVarDecl"); | 
|  | return I->second; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getStringLiteralArrayType(QualType EltTy, | 
|  | unsigned Length) const { | 
|  | // A C++ string literal has a const-qualified element type (C++ 2.13.4p1). | 
|  | if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings) | 
|  | EltTy = EltTy.withConst(); | 
|  |  | 
|  | EltTy = adjustStringLiteralBaseType(EltTy); | 
|  |  | 
|  | // Get an array type for the string, according to C99 6.4.5. This includes | 
|  | // the null terminator character. | 
|  | return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr, | 
|  | ArraySizeModifier::Normal, /*IndexTypeQuals*/ 0); | 
|  | } | 
|  |  | 
|  | StringLiteral * | 
|  | ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const { | 
|  | StringLiteral *&Result = StringLiteralCache[Key]; | 
|  | if (!Result) | 
|  | Result = StringLiteral::Create( | 
|  | *this, Key, StringLiteralKind::Ordinary, | 
|  | /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()), | 
|  | SourceLocation()); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | MSGuidDecl * | 
|  | ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const { | 
|  | assert(MSGuidTagDecl && "building MS GUID without MS extensions?"); | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | MSGuidDecl::Profile(ID, Parts); | 
|  |  | 
|  | void *InsertPos; | 
|  | if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return Existing; | 
|  |  | 
|  | QualType GUIDType = getMSGuidType().withConst(); | 
|  | MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts); | 
|  | MSGuidDecls.InsertNode(New, InsertPos); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | UnnamedGlobalConstantDecl * | 
|  | ASTContext::getUnnamedGlobalConstantDecl(QualType Ty, | 
|  | const APValue &APVal) const { | 
|  | llvm::FoldingSetNodeID ID; | 
|  | UnnamedGlobalConstantDecl::Profile(ID, Ty, APVal); | 
|  |  | 
|  | void *InsertPos; | 
|  | if (UnnamedGlobalConstantDecl *Existing = | 
|  | UnnamedGlobalConstantDecls.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return Existing; | 
|  |  | 
|  | UnnamedGlobalConstantDecl *New = | 
|  | UnnamedGlobalConstantDecl::Create(*this, Ty, APVal); | 
|  | UnnamedGlobalConstantDecls.InsertNode(New, InsertPos); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | TemplateParamObjectDecl * | 
|  | ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const { | 
|  | assert(T->isRecordType() && "template param object of unexpected type"); | 
|  |  | 
|  | // C++ [temp.param]p8: | 
|  | //   [...] a static storage duration object of type 'const T' [...] | 
|  | T.addConst(); | 
|  |  | 
|  | llvm::FoldingSetNodeID ID; | 
|  | TemplateParamObjectDecl::Profile(ID, T, V); | 
|  |  | 
|  | void *InsertPos; | 
|  | if (TemplateParamObjectDecl *Existing = | 
|  | TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos)) | 
|  | return Existing; | 
|  |  | 
|  | TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V); | 
|  | TemplateParamObjectDecls.InsertNode(New, InsertPos); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const { | 
|  | const llvm::Triple &T = getTargetInfo().getTriple(); | 
|  | if (!T.isOSDarwin()) | 
|  | return false; | 
|  |  | 
|  | if (!(T.isiOS() && T.isOSVersionLT(7)) && | 
|  | !(T.isMacOSX() && T.isOSVersionLT(10, 9))) | 
|  | return false; | 
|  |  | 
|  | QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); | 
|  | CharUnits sizeChars = getTypeSizeInChars(AtomicTy); | 
|  | uint64_t Size = sizeChars.getQuantity(); | 
|  | CharUnits alignChars = getTypeAlignInChars(AtomicTy); | 
|  | unsigned Align = alignChars.getQuantity(); | 
|  | unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth(); | 
|  | return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits); | 
|  | } | 
|  |  | 
|  | bool | 
|  | ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl, | 
|  | const ObjCMethodDecl *MethodImpl) { | 
|  | // No point trying to match an unavailable/deprecated mothod. | 
|  | if (MethodDecl->hasAttr<UnavailableAttr>() | 
|  | || MethodDecl->hasAttr<DeprecatedAttr>()) | 
|  | return false; | 
|  | if (MethodDecl->getObjCDeclQualifier() != | 
|  | MethodImpl->getObjCDeclQualifier()) | 
|  | return false; | 
|  | if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType())) | 
|  | return false; | 
|  |  | 
|  | if (MethodDecl->param_size() != MethodImpl->param_size()) | 
|  | return false; | 
|  |  | 
|  | for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(), | 
|  | IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(), | 
|  | EF = MethodDecl->param_end(); | 
|  | IM != EM && IF != EF; ++IM, ++IF) { | 
|  | const ParmVarDecl *DeclVar = (*IF); | 
|  | const ParmVarDecl *ImplVar = (*IM); | 
|  | if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier()) | 
|  | return false; | 
|  | if (!hasSameType(DeclVar->getType(), ImplVar->getType())) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return (MethodDecl->isVariadic() == MethodImpl->isVariadic()); | 
|  | } | 
|  |  | 
|  | uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const { | 
|  | LangAS AS; | 
|  | if (QT->getUnqualifiedDesugaredType()->isNullPtrType()) | 
|  | AS = LangAS::Default; | 
|  | else | 
|  | AS = QT->getPointeeType().getAddressSpace(); | 
|  |  | 
|  | return getTargetInfo().getNullPointerValue(AS); | 
|  | } | 
|  |  | 
|  | unsigned ASTContext::getTargetAddressSpace(LangAS AS) const { | 
|  | return getTargetInfo().getTargetAddressSpace(AS); | 
|  | } | 
|  |  | 
|  | bool ASTContext::hasSameExpr(const Expr *X, const Expr *Y) const { | 
|  | if (X == Y) | 
|  | return true; | 
|  | if (!X || !Y) | 
|  | return false; | 
|  | llvm::FoldingSetNodeID IDX, IDY; | 
|  | X->Profile(IDX, *this, /*Canonical=*/true); | 
|  | Y->Profile(IDY, *this, /*Canonical=*/true); | 
|  | return IDX == IDY; | 
|  | } | 
|  |  | 
|  | // The getCommon* helpers return, for given 'same' X and Y entities given as | 
|  | // inputs, another entity which is also the 'same' as the inputs, but which | 
|  | // is closer to the canonical form of the inputs, each according to a given | 
|  | // criteria. | 
|  | // The getCommon*Checked variants are 'null inputs not-allowed' equivalents of | 
|  | // the regular ones. | 
|  |  | 
|  | static Decl *getCommonDecl(Decl *X, Decl *Y) { | 
|  | if (!declaresSameEntity(X, Y)) | 
|  | return nullptr; | 
|  | for (const Decl *DX : X->redecls()) { | 
|  | // If we reach Y before reaching the first decl, that means X is older. | 
|  | if (DX == Y) | 
|  | return X; | 
|  | // If we reach the first decl, then Y is older. | 
|  | if (DX->isFirstDecl()) | 
|  | return Y; | 
|  | } | 
|  | llvm_unreachable("Corrupt redecls chain"); | 
|  | } | 
|  |  | 
|  | template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true> | 
|  | static T *getCommonDecl(T *X, T *Y) { | 
|  | return cast_or_null<T>( | 
|  | getCommonDecl(const_cast<Decl *>(cast_or_null<Decl>(X)), | 
|  | const_cast<Decl *>(cast_or_null<Decl>(Y)))); | 
|  | } | 
|  |  | 
|  | template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true> | 
|  | static T *getCommonDeclChecked(T *X, T *Y) { | 
|  | return cast<T>(getCommonDecl(const_cast<Decl *>(cast<Decl>(X)), | 
|  | const_cast<Decl *>(cast<Decl>(Y)))); | 
|  | } | 
|  |  | 
|  | static TemplateName getCommonTemplateName(const ASTContext &Ctx, TemplateName X, | 
|  | TemplateName Y, | 
|  | bool IgnoreDeduced = false) { | 
|  | if (X.getAsVoidPointer() == Y.getAsVoidPointer()) | 
|  | return X; | 
|  | // FIXME: There are cases here where we could find a common template name | 
|  | //        with more sugar. For example one could be a SubstTemplateTemplate* | 
|  | //        replacing the other. | 
|  | TemplateName CX = Ctx.getCanonicalTemplateName(X, IgnoreDeduced); | 
|  | if (CX.getAsVoidPointer() != | 
|  | Ctx.getCanonicalTemplateName(Y).getAsVoidPointer()) | 
|  | return TemplateName(); | 
|  | return CX; | 
|  | } | 
|  |  | 
|  | static TemplateName getCommonTemplateNameChecked(const ASTContext &Ctx, | 
|  | TemplateName X, TemplateName Y, | 
|  | bool IgnoreDeduced) { | 
|  | TemplateName R = getCommonTemplateName(Ctx, X, Y, IgnoreDeduced); | 
|  | assert(R.getAsVoidPointer() != nullptr); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | static auto getCommonTypes(const ASTContext &Ctx, ArrayRef<QualType> Xs, | 
|  | ArrayRef<QualType> Ys, bool Unqualified = false) { | 
|  | assert(Xs.size() == Ys.size()); | 
|  | SmallVector<QualType, 8> Rs(Xs.size()); | 
|  | for (size_t I = 0; I < Rs.size(); ++I) | 
|  | Rs[I] = Ctx.getCommonSugaredType(Xs[I], Ys[I], Unqualified); | 
|  | return Rs; | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | static SourceLocation getCommonAttrLoc(const T *X, const T *Y) { | 
|  | return X->getAttributeLoc() == Y->getAttributeLoc() ? X->getAttributeLoc() | 
|  | : SourceLocation(); | 
|  | } | 
|  |  | 
|  | static TemplateArgument getCommonTemplateArgument(const ASTContext &Ctx, | 
|  | const TemplateArgument &X, | 
|  | const TemplateArgument &Y) { | 
|  | if (X.getKind() != Y.getKind()) | 
|  | return TemplateArgument(); | 
|  |  | 
|  | switch (X.getKind()) { | 
|  | case TemplateArgument::ArgKind::Type: | 
|  | if (!Ctx.hasSameType(X.getAsType(), Y.getAsType())) | 
|  | return TemplateArgument(); | 
|  | return TemplateArgument( | 
|  | Ctx.getCommonSugaredType(X.getAsType(), Y.getAsType())); | 
|  | case TemplateArgument::ArgKind::NullPtr: | 
|  | if (!Ctx.hasSameType(X.getNullPtrType(), Y.getNullPtrType())) | 
|  | return TemplateArgument(); | 
|  | return TemplateArgument( | 
|  | Ctx.getCommonSugaredType(X.getNullPtrType(), Y.getNullPtrType()), | 
|  | /*Unqualified=*/true); | 
|  | case TemplateArgument::ArgKind::Expression: | 
|  | if (!Ctx.hasSameType(X.getAsExpr()->getType(), Y.getAsExpr()->getType())) | 
|  | return TemplateArgument(); | 
|  | // FIXME: Try to keep the common sugar. | 
|  | return X; | 
|  | case TemplateArgument::ArgKind::Template: { | 
|  | TemplateName TX = X.getAsTemplate(), TY = Y.getAsTemplate(); | 
|  | TemplateName CTN = ::getCommonTemplateName(Ctx, TX, TY); | 
|  | if (!CTN.getAsVoidPointer()) | 
|  | return TemplateArgument(); | 
|  | return TemplateArgument(CTN); | 
|  | } | 
|  | case TemplateArgument::ArgKind::TemplateExpansion: { | 
|  | TemplateName TX = X.getAsTemplateOrTemplatePattern(), | 
|  | TY = Y.getAsTemplateOrTemplatePattern(); | 
|  | TemplateName CTN = ::getCommonTemplateName(Ctx, TX, TY); | 
|  | if (!CTN.getAsVoidPointer()) | 
|  | return TemplateName(); | 
|  | auto NExpX = X.getNumTemplateExpansions(); | 
|  | assert(NExpX == Y.getNumTemplateExpansions()); | 
|  | return TemplateArgument(CTN, NExpX); | 
|  | } | 
|  | default: | 
|  | // FIXME: Handle the other argument kinds. | 
|  | return X; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool getCommonTemplateArguments(const ASTContext &Ctx, | 
|  | SmallVectorImpl<TemplateArgument> &R, | 
|  | ArrayRef<TemplateArgument> Xs, | 
|  | ArrayRef<TemplateArgument> Ys) { | 
|  | if (Xs.size() != Ys.size()) | 
|  | return true; | 
|  | R.resize(Xs.size()); | 
|  | for (size_t I = 0; I < R.size(); ++I) { | 
|  | R[I] = getCommonTemplateArgument(Ctx, Xs[I], Ys[I]); | 
|  | if (R[I].isNull()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static auto getCommonTemplateArguments(const ASTContext &Ctx, | 
|  | ArrayRef<TemplateArgument> Xs, | 
|  | ArrayRef<TemplateArgument> Ys) { | 
|  | SmallVector<TemplateArgument, 8> R; | 
|  | bool Different = getCommonTemplateArguments(Ctx, R, Xs, Ys); | 
|  | assert(!Different); | 
|  | (void)Different; | 
|  | return R; | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | static ElaboratedTypeKeyword getCommonTypeKeyword(const T *X, const T *Y, | 
|  | bool IsSame) { | 
|  | ElaboratedTypeKeyword KX = X->getKeyword(), KY = Y->getKeyword(); | 
|  | if (KX == KY) | 
|  | return KX; | 
|  | KX = getCanonicalElaboratedTypeKeyword(KX); | 
|  | assert(!IsSame || KX == getCanonicalElaboratedTypeKeyword(KY)); | 
|  | return KX; | 
|  | } | 
|  |  | 
|  | /// Returns a NestedNameSpecifier which has only the common sugar | 
|  | /// present in both NNS1 and NNS2. | 
|  | static NestedNameSpecifier getCommonNNS(const ASTContext &Ctx, | 
|  | NestedNameSpecifier NNS1, | 
|  | NestedNameSpecifier NNS2, bool IsSame) { | 
|  | // If they are identical, all sugar is common. | 
|  | if (NNS1 == NNS2) | 
|  | return NNS1; | 
|  |  | 
|  | // IsSame implies both Qualifiers are equivalent. | 
|  | NestedNameSpecifier Canon = NNS1.getCanonical(); | 
|  | if (Canon != NNS2.getCanonical()) { | 
|  | assert(!IsSame && "Should be the same NestedNameSpecifier"); | 
|  | // If they are not the same, there is nothing to unify. | 
|  | return std::nullopt; | 
|  | } | 
|  |  | 
|  | NestedNameSpecifier R = std::nullopt; | 
|  | NestedNameSpecifier::Kind Kind = NNS1.getKind(); | 
|  | assert(Kind == NNS2.getKind()); | 
|  | switch (Kind) { | 
|  | case NestedNameSpecifier::Kind::Namespace: { | 
|  | auto [Namespace1, Prefix1] = NNS1.getAsNamespaceAndPrefix(); | 
|  | auto [Namespace2, Prefix2] = NNS2.getAsNamespaceAndPrefix(); | 
|  | auto Kind = Namespace1->getKind(); | 
|  | if (Kind != Namespace2->getKind() || | 
|  | (Kind == Decl::NamespaceAlias && | 
|  | !declaresSameEntity(Namespace1, Namespace2))) { | 
|  | R = NestedNameSpecifier( | 
|  | Ctx, | 
|  | ::getCommonDeclChecked(Namespace1->getNamespace(), | 
|  | Namespace2->getNamespace()), | 
|  | /*Prefix=*/std::nullopt); | 
|  | break; | 
|  | } | 
|  | // The prefixes for namespaces are not significant, its declaration | 
|  | // identifies it uniquely. | 
|  | NestedNameSpecifier Prefix = ::getCommonNNS(Ctx, Prefix1, Prefix2, | 
|  | /*IsSame=*/false); | 
|  | R = NestedNameSpecifier(Ctx, ::getCommonDeclChecked(Namespace1, Namespace2), | 
|  | Prefix); | 
|  | break; | 
|  | } | 
|  | case NestedNameSpecifier::Kind::Type: { | 
|  | const Type *T1 = NNS1.getAsType(), *T2 = NNS2.getAsType(); | 
|  | const Type *T = Ctx.getCommonSugaredType(QualType(T1, 0), QualType(T2, 0), | 
|  | /*Unqualified=*/true) | 
|  | .getTypePtr(); | 
|  | R = NestedNameSpecifier(T); | 
|  | break; | 
|  | } | 
|  | case NestedNameSpecifier::Kind::MicrosoftSuper: { | 
|  | // FIXME: Can __super even be used with data members? | 
|  | // If it's only usable in functions, we will never see it here, | 
|  | // unless we save the qualifiers used in function types. | 
|  | // In that case, it might be possible NNS2 is a type, | 
|  | // in which case we should degrade the result to | 
|  | // a CXXRecordType. | 
|  | R = NestedNameSpecifier(getCommonDeclChecked(NNS1.getAsMicrosoftSuper(), | 
|  | NNS2.getAsMicrosoftSuper())); | 
|  | break; | 
|  | } | 
|  | case NestedNameSpecifier::Kind::Null: | 
|  | case NestedNameSpecifier::Kind::Global: | 
|  | // These are singletons. | 
|  | llvm_unreachable("singletons did not compare equal"); | 
|  | } | 
|  | assert(R.getCanonical() == Canon); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | static NestedNameSpecifier getCommonQualifier(const ASTContext &Ctx, const T *X, | 
|  | const T *Y, bool IsSame) { | 
|  | return ::getCommonNNS(Ctx, X->getQualifier(), Y->getQualifier(), IsSame); | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | static QualType getCommonElementType(const ASTContext &Ctx, const T *X, | 
|  | const T *Y) { | 
|  | return Ctx.getCommonSugaredType(X->getElementType(), Y->getElementType()); | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | static QualType getCommonArrayElementType(const ASTContext &Ctx, const T *X, | 
|  | Qualifiers &QX, const T *Y, | 
|  | Qualifiers &QY) { | 
|  | QualType EX = X->getElementType(), EY = Y->getElementType(); | 
|  | QualType R = Ctx.getCommonSugaredType(EX, EY, | 
|  | /*Unqualified=*/true); | 
|  | // Qualifiers common to both element types. | 
|  | Qualifiers RQ = R.getQualifiers(); | 
|  | // For each side, move to the top level any qualifiers which are not common to | 
|  | // both element types. The caller must assume top level qualifiers might | 
|  | // be different, even if they are the same type, and can be treated as sugar. | 
|  | QX += EX.getQualifiers() - RQ; | 
|  | QY += EY.getQualifiers() - RQ; | 
|  | return R; | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | static QualType getCommonPointeeType(const ASTContext &Ctx, const T *X, | 
|  | const T *Y) { | 
|  | return Ctx.getCommonSugaredType(X->getPointeeType(), Y->getPointeeType()); | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | static auto *getCommonSizeExpr(const ASTContext &Ctx, T *X, T *Y) { | 
|  | assert(Ctx.hasSameExpr(X->getSizeExpr(), Y->getSizeExpr())); | 
|  | return X->getSizeExpr(); | 
|  | } | 
|  |  | 
|  | static auto getCommonSizeModifier(const ArrayType *X, const ArrayType *Y) { | 
|  | assert(X->getSizeModifier() == Y->getSizeModifier()); | 
|  | return X->getSizeModifier(); | 
|  | } | 
|  |  | 
|  | static auto getCommonIndexTypeCVRQualifiers(const ArrayType *X, | 
|  | const ArrayType *Y) { | 
|  | assert(X->getIndexTypeCVRQualifiers() == Y->getIndexTypeCVRQualifiers()); | 
|  | return X->getIndexTypeCVRQualifiers(); | 
|  | } | 
|  |  | 
|  | // Merges two type lists such that the resulting vector will contain | 
|  | // each type (in a canonical sense) only once, in the order they appear | 
|  | // from X to Y. If they occur in both X and Y, the result will contain | 
|  | // the common sugared type between them. | 
|  | static void mergeTypeLists(const ASTContext &Ctx, | 
|  | SmallVectorImpl<QualType> &Out, ArrayRef<QualType> X, | 
|  | ArrayRef<QualType> Y) { | 
|  | llvm::DenseMap<QualType, unsigned> Found; | 
|  | for (auto Ts : {X, Y}) { | 
|  | for (QualType T : Ts) { | 
|  | auto Res = Found.try_emplace(Ctx.getCanonicalType(T), Out.size()); | 
|  | if (!Res.second) { | 
|  | QualType &U = Out[Res.first->second]; | 
|  | U = Ctx.getCommonSugaredType(U, T); | 
|  | } else { | 
|  | Out.emplace_back(T); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | FunctionProtoType::ExceptionSpecInfo | 
|  | ASTContext::mergeExceptionSpecs(FunctionProtoType::ExceptionSpecInfo ESI1, | 
|  | FunctionProtoType::ExceptionSpecInfo ESI2, | 
|  | SmallVectorImpl<QualType> &ExceptionTypeStorage, | 
|  | bool AcceptDependent) const { | 
|  | ExceptionSpecificationType EST1 = ESI1.Type, EST2 = ESI2.Type; | 
|  |  | 
|  | // If either of them can throw anything, that is the result. | 
|  | for (auto I : {EST_None, EST_MSAny, EST_NoexceptFalse}) { | 
|  | if (EST1 == I) | 
|  | return ESI1; | 
|  | if (EST2 == I) | 
|  | return ESI2; | 
|  | } | 
|  |  | 
|  | // If either of them is non-throwing, the result is the other. | 
|  | for (auto I : | 
|  | {EST_NoThrow, EST_DynamicNone, EST_BasicNoexcept, EST_NoexceptTrue}) { | 
|  | if (EST1 == I) | 
|  | return ESI2; | 
|  | if (EST2 == I) | 
|  | return ESI1; | 
|  | } | 
|  |  | 
|  | // If we're left with value-dependent computed noexcept expressions, we're | 
|  | // stuck. Before C++17, we can just drop the exception specification entirely, | 
|  | // since it's not actually part of the canonical type. And this should never | 
|  | // happen in C++17, because it would mean we were computing the composite | 
|  | // pointer type of dependent types, which should never happen. | 
|  | if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) { | 
|  | assert(AcceptDependent && | 
|  | "computing composite pointer type of dependent types"); | 
|  | return FunctionProtoType::ExceptionSpecInfo(); | 
|  | } | 
|  |  | 
|  | // Switch over the possibilities so that people adding new values know to | 
|  | // update this function. | 
|  | switch (EST1) { | 
|  | case EST_None: | 
|  | case EST_DynamicNone: | 
|  | case EST_MSAny: | 
|  | case EST_BasicNoexcept: | 
|  | case EST_DependentNoexcept: | 
|  | case EST_NoexceptFalse: | 
|  | case EST_NoexceptTrue: | 
|  | case EST_NoThrow: | 
|  | llvm_unreachable("These ESTs should be handled above"); | 
|  |  | 
|  | case EST_Dynamic: { | 
|  | // This is the fun case: both exception specifications are dynamic. Form | 
|  | // the union of the two lists. | 
|  | assert(EST2 == EST_Dynamic && "other cases should already be handled"); | 
|  | mergeTypeLists(*this, ExceptionTypeStorage, ESI1.Exceptions, | 
|  | ESI2.Exceptions); | 
|  | FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic); | 
|  | Result.Exceptions = ExceptionTypeStorage; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case EST_Unevaluated: | 
|  | case EST_Uninstantiated: | 
|  | case EST_Unparsed: | 
|  | llvm_unreachable("shouldn't see unresolved exception specifications here"); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("invalid ExceptionSpecificationType"); | 
|  | } | 
|  |  | 
|  | static QualType getCommonNonSugarTypeNode(const ASTContext &Ctx, const Type *X, | 
|  | Qualifiers &QX, const Type *Y, | 
|  | Qualifiers &QY) { | 
|  | Type::TypeClass TC = X->getTypeClass(); | 
|  | assert(TC == Y->getTypeClass()); | 
|  | switch (TC) { | 
|  | #define UNEXPECTED_TYPE(Class, Kind)                                           \ | 
|  | case Type::Class:                                                            \ | 
|  | llvm_unreachable("Unexpected " Kind ": " #Class); | 
|  |  | 
|  | #define NON_CANONICAL_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "non-canonical") | 
|  | #define TYPE(Class, Base) | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  |  | 
|  | #define SUGAR_FREE_TYPE(Class) UNEXPECTED_TYPE(Class, "sugar-free") | 
|  | SUGAR_FREE_TYPE(Builtin) | 
|  | SUGAR_FREE_TYPE(DeducedTemplateSpecialization) | 
|  | SUGAR_FREE_TYPE(DependentBitInt) | 
|  | SUGAR_FREE_TYPE(BitInt) | 
|  | SUGAR_FREE_TYPE(ObjCInterface) | 
|  | SUGAR_FREE_TYPE(SubstTemplateTypeParmPack) | 
|  | SUGAR_FREE_TYPE(SubstBuiltinTemplatePack) | 
|  | SUGAR_FREE_TYPE(UnresolvedUsing) | 
|  | SUGAR_FREE_TYPE(HLSLAttributedResource) | 
|  | SUGAR_FREE_TYPE(HLSLInlineSpirv) | 
|  | #undef SUGAR_FREE_TYPE | 
|  | #define NON_UNIQUE_TYPE(Class) UNEXPECTED_TYPE(Class, "non-unique") | 
|  | NON_UNIQUE_TYPE(TypeOfExpr) | 
|  | NON_UNIQUE_TYPE(VariableArray) | 
|  | #undef NON_UNIQUE_TYPE | 
|  |  | 
|  | UNEXPECTED_TYPE(TypeOf, "sugar") | 
|  |  | 
|  | #undef UNEXPECTED_TYPE | 
|  |  | 
|  | case Type::Auto: { | 
|  | const auto *AX = cast<AutoType>(X), *AY = cast<AutoType>(Y); | 
|  | assert(AX->getDeducedType().isNull()); | 
|  | assert(AY->getDeducedType().isNull()); | 
|  | assert(AX->getKeyword() == AY->getKeyword()); | 
|  | assert(AX->isInstantiationDependentType() == | 
|  | AY->isInstantiationDependentType()); | 
|  | auto As = getCommonTemplateArguments(Ctx, AX->getTypeConstraintArguments(), | 
|  | AY->getTypeConstraintArguments()); | 
|  | return Ctx.getAutoType(QualType(), AX->getKeyword(), | 
|  | AX->isInstantiationDependentType(), | 
|  | AX->containsUnexpandedParameterPack(), | 
|  | getCommonDeclChecked(AX->getTypeConstraintConcept(), | 
|  | AY->getTypeConstraintConcept()), | 
|  | As); | 
|  | } | 
|  | case Type::IncompleteArray: { | 
|  | const auto *AX = cast<IncompleteArrayType>(X), | 
|  | *AY = cast<IncompleteArrayType>(Y); | 
|  | return Ctx.getIncompleteArrayType( | 
|  | getCommonArrayElementType(Ctx, AX, QX, AY, QY), | 
|  | getCommonSizeModifier(AX, AY), getCommonIndexTypeCVRQualifiers(AX, AY)); | 
|  | } | 
|  | case Type::DependentSizedArray: { | 
|  | const auto *AX = cast<DependentSizedArrayType>(X), | 
|  | *AY = cast<DependentSizedArrayType>(Y); | 
|  | return Ctx.getDependentSizedArrayType( | 
|  | getCommonArrayElementType(Ctx, AX, QX, AY, QY), | 
|  | getCommonSizeExpr(Ctx, AX, AY), getCommonSizeModifier(AX, AY), | 
|  | getCommonIndexTypeCVRQualifiers(AX, AY)); | 
|  | } | 
|  | case Type::ConstantArray: { | 
|  | const auto *AX = cast<ConstantArrayType>(X), | 
|  | *AY = cast<ConstantArrayType>(Y); | 
|  | assert(AX->getSize() == AY->getSize()); | 
|  | const Expr *SizeExpr = Ctx.hasSameExpr(AX->getSizeExpr(), AY->getSizeExpr()) | 
|  | ? AX->getSizeExpr() | 
|  | : nullptr; | 
|  | return Ctx.getConstantArrayType( | 
|  | getCommonArrayElementType(Ctx, AX, QX, AY, QY), AX->getSize(), SizeExpr, | 
|  | getCommonSizeModifier(AX, AY), getCommonIndexTypeCVRQualifiers(AX, AY)); | 
|  | } | 
|  | case Type::ArrayParameter: { | 
|  | const auto *AX = cast<ArrayParameterType>(X), | 
|  | *AY = cast<ArrayParameterType>(Y); | 
|  | assert(AX->getSize() == AY->getSize()); | 
|  | const Expr *SizeExpr = Ctx.hasSameExpr(AX->getSizeExpr(), AY->getSizeExpr()) | 
|  | ? AX->getSizeExpr() | 
|  | : nullptr; | 
|  | auto ArrayTy = Ctx.getConstantArrayType( | 
|  | getCommonArrayElementType(Ctx, AX, QX, AY, QY), AX->getSize(), SizeExpr, | 
|  | getCommonSizeModifier(AX, AY), getCommonIndexTypeCVRQualifiers(AX, AY)); | 
|  | return Ctx.getArrayParameterType(ArrayTy); | 
|  | } | 
|  | case Type::Atomic: { | 
|  | const auto *AX = cast<AtomicType>(X), *AY = cast<AtomicType>(Y); | 
|  | return Ctx.getAtomicType( | 
|  | Ctx.getCommonSugaredType(AX->getValueType(), AY->getValueType())); | 
|  | } | 
|  | case Type::Complex: { | 
|  | const auto *CX = cast<ComplexType>(X), *CY = cast<ComplexType>(Y); | 
|  | return Ctx.getComplexType(getCommonArrayElementType(Ctx, CX, QX, CY, QY)); | 
|  | } | 
|  | case Type::Pointer: { | 
|  | const auto *PX = cast<PointerType>(X), *PY = cast<PointerType>(Y); | 
|  | return Ctx.getPointerType(getCommonPointeeType(Ctx, PX, PY)); | 
|  | } | 
|  | case Type::BlockPointer: { | 
|  | const auto *PX = cast<BlockPointerType>(X), *PY = cast<BlockPointerType>(Y); | 
|  | return Ctx.getBlockPointerType(getCommonPointeeType(Ctx, PX, PY)); | 
|  | } | 
|  | case Type::ObjCObjectPointer: { | 
|  | const auto *PX = cast<ObjCObjectPointerType>(X), | 
|  | *PY = cast<ObjCObjectPointerType>(Y); | 
|  | return Ctx.getObjCObjectPointerType(getCommonPointeeType(Ctx, PX, PY)); | 
|  | } | 
|  | case Type::MemberPointer: { | 
|  | const auto *PX = cast<MemberPointerType>(X), | 
|  | *PY = cast<MemberPointerType>(Y); | 
|  | assert(declaresSameEntity(PX->getMostRecentCXXRecordDecl(), | 
|  | PY->getMostRecentCXXRecordDecl())); | 
|  | return Ctx.getMemberPointerType( | 
|  | getCommonPointeeType(Ctx, PX, PY), | 
|  | getCommonQualifier(Ctx, PX, PY, /*IsSame=*/true), | 
|  | PX->getMostRecentCXXRecordDecl()); | 
|  | } | 
|  | case Type::LValueReference: { | 
|  | const auto *PX = cast<LValueReferenceType>(X), | 
|  | *PY = cast<LValueReferenceType>(Y); | 
|  | // FIXME: Preserve PointeeTypeAsWritten. | 
|  | return Ctx.getLValueReferenceType(getCommonPointeeType(Ctx, PX, PY), | 
|  | PX->isSpelledAsLValue() || | 
|  | PY->isSpelledAsLValue()); | 
|  | } | 
|  | case Type::RValueReference: { | 
|  | const auto *PX = cast<RValueReferenceType>(X), | 
|  | *PY = cast<RValueReferenceType>(Y); | 
|  | // FIXME: Preserve PointeeTypeAsWritten. | 
|  | return Ctx.getRValueReferenceType(getCommonPointeeType(Ctx, PX, PY)); | 
|  | } | 
|  | case Type::DependentAddressSpace: { | 
|  | const auto *PX = cast<DependentAddressSpaceType>(X), | 
|  | *PY = cast<DependentAddressSpaceType>(Y); | 
|  | assert(Ctx.hasSameExpr(PX->getAddrSpaceExpr(), PY->getAddrSpaceExpr())); | 
|  | return Ctx.getDependentAddressSpaceType(getCommonPointeeType(Ctx, PX, PY), | 
|  | PX->getAddrSpaceExpr(), | 
|  | getCommonAttrLoc(PX, PY)); | 
|  | } | 
|  | case Type::FunctionNoProto: { | 
|  | const auto *FX = cast<FunctionNoProtoType>(X), | 
|  | *FY = cast<FunctionNoProtoType>(Y); | 
|  | assert(FX->getExtInfo() == FY->getExtInfo()); | 
|  | return Ctx.getFunctionNoProtoType( | 
|  | Ctx.getCommonSugaredType(FX->getReturnType(), FY->getReturnType()), | 
|  | FX->getExtInfo()); | 
|  | } | 
|  | case Type::FunctionProto: { | 
|  | const auto *FX = cast<FunctionProtoType>(X), | 
|  | *FY = cast<FunctionProtoType>(Y); | 
|  | FunctionProtoType::ExtProtoInfo EPIX = FX->getExtProtoInfo(), | 
|  | EPIY = FY->getExtProtoInfo(); | 
|  | assert(EPIX.ExtInfo == EPIY.ExtInfo); | 
|  | assert(!EPIX.ExtParameterInfos == !EPIY.ExtParameterInfos); | 
|  | assert(!EPIX.ExtParameterInfos || | 
|  | llvm::equal( | 
|  | llvm::ArrayRef(EPIX.ExtParameterInfos, FX->getNumParams()), | 
|  | llvm::ArrayRef(EPIY.ExtParameterInfos, FY->getNumParams()))); | 
|  | assert(EPIX.RefQualifier == EPIY.RefQualifier); | 
|  | assert(EPIX.TypeQuals == EPIY.TypeQuals); | 
|  | assert(EPIX.Variadic == EPIY.Variadic); | 
|  |  | 
|  | // FIXME: Can we handle an empty EllipsisLoc? | 
|  | //        Use emtpy EllipsisLoc if X and Y differ. | 
|  |  | 
|  | EPIX.HasTrailingReturn = EPIX.HasTrailingReturn && EPIY.HasTrailingReturn; | 
|  |  | 
|  | QualType R = | 
|  | Ctx.getCommonSugaredType(FX->getReturnType(), FY->getReturnType()); | 
|  | auto P = getCommonTypes(Ctx, FX->param_types(), FY->param_types(), | 
|  | /*Unqualified=*/true); | 
|  |  | 
|  | SmallVector<QualType, 8> Exceptions; | 
|  | EPIX.ExceptionSpec = Ctx.mergeExceptionSpecs( | 
|  | EPIX.ExceptionSpec, EPIY.ExceptionSpec, Exceptions, true); | 
|  | return Ctx.getFunctionType(R, P, EPIX); | 
|  | } | 
|  | case Type::ObjCObject: { | 
|  | const auto *OX = cast<ObjCObjectType>(X), *OY = cast<ObjCObjectType>(Y); | 
|  | assert( | 
|  | std::equal(OX->getProtocols().begin(), OX->getProtocols().end(), | 
|  | OY->getProtocols().begin(), OY->getProtocols().end(), | 
|  | [](const ObjCProtocolDecl *P0, const ObjCProtocolDecl *P1) { | 
|  | return P0->getCanonicalDecl() == P1->getCanonicalDecl(); | 
|  | }) && | 
|  | "protocol lists must be the same"); | 
|  | auto TAs = getCommonTypes(Ctx, OX->getTypeArgsAsWritten(), | 
|  | OY->getTypeArgsAsWritten()); | 
|  | return Ctx.getObjCObjectType( | 
|  | Ctx.getCommonSugaredType(OX->getBaseType(), OY->getBaseType()), TAs, | 
|  | OX->getProtocols(), | 
|  | OX->isKindOfTypeAsWritten() && OY->isKindOfTypeAsWritten()); | 
|  | } | 
|  | case Type::ConstantMatrix: { | 
|  | const auto *MX = cast<ConstantMatrixType>(X), | 
|  | *MY = cast<ConstantMatrixType>(Y); | 
|  | assert(MX->getNumRows() == MY->getNumRows()); | 
|  | assert(MX->getNumColumns() == MY->getNumColumns()); | 
|  | return Ctx.getConstantMatrixType(getCommonElementType(Ctx, MX, MY), | 
|  | MX->getNumRows(), MX->getNumColumns()); | 
|  | } | 
|  | case Type::DependentSizedMatrix: { | 
|  | const auto *MX = cast<DependentSizedMatrixType>(X), | 
|  | *MY = cast<DependentSizedMatrixType>(Y); | 
|  | assert(Ctx.hasSameExpr(MX->getRowExpr(), MY->getRowExpr())); | 
|  | assert(Ctx.hasSameExpr(MX->getColumnExpr(), MY->getColumnExpr())); | 
|  | return Ctx.getDependentSizedMatrixType( | 
|  | getCommonElementType(Ctx, MX, MY), MX->getRowExpr(), | 
|  | MX->getColumnExpr(), getCommonAttrLoc(MX, MY)); | 
|  | } | 
|  | case Type::Vector: { | 
|  | const auto *VX = cast<VectorType>(X), *VY = cast<VectorType>(Y); | 
|  | assert(VX->getNumElements() == VY->getNumElements()); | 
|  | assert(VX->getVectorKind() == VY->getVectorKind()); | 
|  | return Ctx.getVectorType(getCommonElementType(Ctx, VX, VY), | 
|  | VX->getNumElements(), VX->getVectorKind()); | 
|  | } | 
|  | case Type::ExtVector: { | 
|  | const auto *VX = cast<ExtVectorType>(X), *VY = cast<ExtVectorType>(Y); | 
|  | assert(VX->getNumElements() == VY->getNumElements()); | 
|  | return Ctx.getExtVectorType(getCommonElementType(Ctx, VX, VY), | 
|  | VX->getNumElements()); | 
|  | } | 
|  | case Type::DependentSizedExtVector: { | 
|  | const auto *VX = cast<DependentSizedExtVectorType>(X), | 
|  | *VY = cast<DependentSizedExtVectorType>(Y); | 
|  | return Ctx.getDependentSizedExtVectorType(getCommonElementType(Ctx, VX, VY), | 
|  | getCommonSizeExpr(Ctx, VX, VY), | 
|  | getCommonAttrLoc(VX, VY)); | 
|  | } | 
|  | case Type::DependentVector: { | 
|  | const auto *VX = cast<DependentVectorType>(X), | 
|  | *VY = cast<DependentVectorType>(Y); | 
|  | assert(VX->getVectorKind() == VY->getVectorKind()); | 
|  | return Ctx.getDependentVectorType( | 
|  | getCommonElementType(Ctx, VX, VY), getCommonSizeExpr(Ctx, VX, VY), | 
|  | getCommonAttrLoc(VX, VY), VX->getVectorKind()); | 
|  | } | 
|  | case Type::Enum: | 
|  | case Type::Record: | 
|  | case Type::InjectedClassName: { | 
|  | const auto *TX = cast<TagType>(X), *TY = cast<TagType>(Y); | 
|  | return Ctx.getTagType( | 
|  | ::getCommonTypeKeyword(TX, TY, /*IsSame=*/false), | 
|  | ::getCommonQualifier(Ctx, TX, TY, /*IsSame=*/false), | 
|  | ::getCommonDeclChecked(TX->getOriginalDecl(), TY->getOriginalDecl()), | 
|  | /*OwnedTag=*/false); | 
|  | } | 
|  | case Type::TemplateSpecialization: { | 
|  | const auto *TX = cast<TemplateSpecializationType>(X), | 
|  | *TY = cast<TemplateSpecializationType>(Y); | 
|  | auto As = getCommonTemplateArguments(Ctx, TX->template_arguments(), | 
|  | TY->template_arguments()); | 
|  | return Ctx.getTemplateSpecializationType( | 
|  | getCommonTypeKeyword(TX, TY, /*IsSame=*/false), | 
|  | ::getCommonTemplateNameChecked(Ctx, TX->getTemplateName(), | 
|  | TY->getTemplateName(), | 
|  | /*IgnoreDeduced=*/true), | 
|  | As, /*CanonicalArgs=*/{}, X->getCanonicalTypeInternal()); | 
|  | } | 
|  | case Type::Decltype: { | 
|  | const auto *DX = cast<DecltypeType>(X); | 
|  | [[maybe_unused]] const auto *DY = cast<DecltypeType>(Y); | 
|  | assert(DX->isDependentType()); | 
|  | assert(DY->isDependentType()); | 
|  | assert(Ctx.hasSameExpr(DX->getUnderlyingExpr(), DY->getUnderlyingExpr())); | 
|  | // As Decltype is not uniqued, building a common type would be wasteful. | 
|  | return QualType(DX, 0); | 
|  | } | 
|  | case Type::PackIndexing: { | 
|  | const auto *DX = cast<PackIndexingType>(X); | 
|  | [[maybe_unused]] const auto *DY = cast<PackIndexingType>(Y); | 
|  | assert(DX->isDependentType()); | 
|  | assert(DY->isDependentType()); | 
|  | assert(Ctx.hasSameExpr(DX->getIndexExpr(), DY->getIndexExpr())); | 
|  | return QualType(DX, 0); | 
|  | } | 
|  | case Type::DependentName: { | 
|  | const auto *NX = cast<DependentNameType>(X), | 
|  | *NY = cast<DependentNameType>(Y); | 
|  | assert(NX->getIdentifier() == NY->getIdentifier()); | 
|  | return Ctx.getDependentNameType( | 
|  | getCommonTypeKeyword(NX, NY, /*IsSame=*/true), | 
|  | getCommonQualifier(Ctx, NX, NY, /*IsSame=*/true), NX->getIdentifier()); | 
|  | } | 
|  | case Type::UnaryTransform: { | 
|  | const auto *TX = cast<UnaryTransformType>(X), | 
|  | *TY = cast<UnaryTransformType>(Y); | 
|  | assert(TX->getUTTKind() == TY->getUTTKind()); | 
|  | return Ctx.getUnaryTransformType( | 
|  | Ctx.getCommonSugaredType(TX->getBaseType(), TY->getBaseType()), | 
|  | Ctx.getCommonSugaredType(TX->getUnderlyingType(), | 
|  | TY->getUnderlyingType()), | 
|  | TX->getUTTKind()); | 
|  | } | 
|  | case Type::PackExpansion: { | 
|  | const auto *PX = cast<PackExpansionType>(X), | 
|  | *PY = cast<PackExpansionType>(Y); | 
|  | assert(PX->getNumExpansions() == PY->getNumExpansions()); | 
|  | return Ctx.getPackExpansionType( | 
|  | Ctx.getCommonSugaredType(PX->getPattern(), PY->getPattern()), | 
|  | PX->getNumExpansions(), false); | 
|  | } | 
|  | case Type::Pipe: { | 
|  | const auto *PX = cast<PipeType>(X), *PY = cast<PipeType>(Y); | 
|  | assert(PX->isReadOnly() == PY->isReadOnly()); | 
|  | auto MP = PX->isReadOnly() ? &ASTContext::getReadPipeType | 
|  | : &ASTContext::getWritePipeType; | 
|  | return (Ctx.*MP)(getCommonElementType(Ctx, PX, PY)); | 
|  | } | 
|  | case Type::TemplateTypeParm: { | 
|  | const auto *TX = cast<TemplateTypeParmType>(X), | 
|  | *TY = cast<TemplateTypeParmType>(Y); | 
|  | assert(TX->getDepth() == TY->getDepth()); | 
|  | assert(TX->getIndex() == TY->getIndex()); | 
|  | assert(TX->isParameterPack() == TY->isParameterPack()); | 
|  | return Ctx.getTemplateTypeParmType( | 
|  | TX->getDepth(), TX->getIndex(), TX->isParameterPack(), | 
|  | getCommonDecl(TX->getDecl(), TY->getDecl())); | 
|  | } | 
|  | } | 
|  | llvm_unreachable("Unknown Type Class"); | 
|  | } | 
|  |  | 
|  | static QualType getCommonSugarTypeNode(const ASTContext &Ctx, const Type *X, | 
|  | const Type *Y, | 
|  | SplitQualType Underlying) { | 
|  | Type::TypeClass TC = X->getTypeClass(); | 
|  | if (TC != Y->getTypeClass()) | 
|  | return QualType(); | 
|  | switch (TC) { | 
|  | #define UNEXPECTED_TYPE(Class, Kind)                                           \ | 
|  | case Type::Class:                                                            \ | 
|  | llvm_unreachable("Unexpected " Kind ": " #Class); | 
|  | #define TYPE(Class, Base) | 
|  | #define DEPENDENT_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "dependent") | 
|  | #include "clang/AST/TypeNodes.inc" | 
|  |  | 
|  | #define CANONICAL_TYPE(Class) UNEXPECTED_TYPE(Class, "canonical") | 
|  | CANONICAL_TYPE(Atomic) | 
|  | CANONICAL_TYPE(BitInt) | 
|  | CANONICAL_TYPE(BlockPointer) | 
|  | CANONICAL_TYPE(Builtin) | 
|  | CANONICAL_TYPE(Complex) | 
|  | CANONICAL_TYPE(ConstantArray) | 
|  | CANONICAL_TYPE(ArrayParameter) | 
|  | CANONICAL_TYPE(ConstantMatrix) | 
|  | CANONICAL_TYPE(Enum) | 
|  | CANONICAL_TYPE(ExtVector) | 
|  | CANONICAL_TYPE(FunctionNoProto) | 
|  | CANONICAL_TYPE(FunctionProto) | 
|  | CANONICAL_TYPE(IncompleteArray) | 
|  | CANONICAL_TYPE(HLSLAttributedResource) | 
|  | CANONICAL_TYPE(HLSLInlineSpirv) | 
|  | CANONICAL_TYPE(LValueReference) | 
|  | CANONICAL_TYPE(ObjCInterface) | 
|  | CANONICAL_TYPE(ObjCObject) | 
|  | CANONICAL_TYPE(ObjCObjectPointer) | 
|  | CANONICAL_TYPE(Pipe) | 
|  | CANONICAL_TYPE(Pointer) | 
|  | CANONICAL_TYPE(Record) | 
|  | CANONICAL_TYPE(RValueReference) | 
|  | CANONICAL_TYPE(VariableArray) | 
|  | CANONICAL_TYPE(Vector) | 
|  | #undef CANONICAL_TYPE | 
|  |  | 
|  | #undef UNEXPECTED_TYPE | 
|  |  | 
|  | case Type::Adjusted: { | 
|  | const auto *AX = cast<AdjustedType>(X), *AY = cast<AdjustedType>(Y); | 
|  | QualType OX = AX->getOriginalType(), OY = AY->getOriginalType(); | 
|  | if (!Ctx.hasSameType(OX, OY)) | 
|  | return QualType(); | 
|  | // FIXME: It's inefficient to have to unify the original types. | 
|  | return Ctx.getAdjustedType(Ctx.getCommonSugaredType(OX, OY), | 
|  | Ctx.getQualifiedType(Underlying)); | 
|  | } | 
|  | case Type::Decayed: { | 
|  | const auto *DX = cast<DecayedType>(X), *DY = cast<DecayedType>(Y); | 
|  | QualType OX = DX->getOriginalType(), OY = DY->getOriginalType(); | 
|  | if (!Ctx.hasSameType(OX, OY)) | 
|  | return QualType(); | 
|  | // FIXME: It's inefficient to have to unify the original types. | 
|  | return Ctx.getDecayedType(Ctx.getCommonSugaredType(OX, OY), | 
|  | Ctx.getQualifiedType(Underlying)); | 
|  | } | 
|  | case Type::Attributed: { | 
|  | const auto *AX = cast<AttributedType>(X), *AY = cast<AttributedType>(Y); | 
|  | AttributedType::Kind Kind = AX->getAttrKind(); | 
|  | if (Kind != AY->getAttrKind()) | 
|  | return QualType(); | 
|  | QualType MX = AX->getModifiedType(), MY = AY->getModifiedType(); | 
|  | if (!Ctx.hasSameType(MX, MY)) | 
|  | return QualType(); | 
|  | // FIXME: It's inefficient to have to unify the modified types. | 
|  | return Ctx.getAttributedType(Kind, Ctx.getCommonSugaredType(MX, MY), | 
|  | Ctx.getQualifiedType(Underlying), | 
|  | AX->getAttr()); | 
|  | } | 
|  | case Type::BTFTagAttributed: { | 
|  | const auto *BX = cast<BTFTagAttributedType>(X); | 
|  | const BTFTypeTagAttr *AX = BX->getAttr(); | 
|  | // The attribute is not uniqued, so just compare the tag. | 
|  | if (AX->getBTFTypeTag() != | 
|  | cast<BTFTagAttributedType>(Y)->getAttr()->getBTFTypeTag()) | 
|  | return QualType(); | 
|  | return Ctx.getBTFTagAttributedType(AX, Ctx.getQualifiedType(Underlying)); | 
|  | } | 
|  | case Type::Auto: { | 
|  | const auto *AX = cast<AutoType>(X), *AY = cast<AutoType>(Y); | 
|  |  | 
|  | AutoTypeKeyword KW = AX->getKeyword(); | 
|  | if (KW != AY->getKeyword()) | 
|  | return QualType(); | 
|  |  | 
|  | TemplateDecl *CD = ::getCommonDecl(AX->getTypeConstraintConcept(), | 
|  | AY->getTypeConstraintConcept()); | 
|  | SmallVector<TemplateArgument, 8> As; | 
|  | if (CD && | 
|  | getCommonTemplateArguments(Ctx, As, AX->getTypeConstraintArguments(), | 
|  | AY->getTypeConstraintArguments())) { | 
|  | CD = nullptr; // The arguments differ, so make it unconstrained. | 
|  | As.clear(); | 
|  | } | 
|  |  | 
|  | // Both auto types can't be dependent, otherwise they wouldn't have been | 
|  | // sugar. This implies they can't contain unexpanded packs either. | 
|  | return Ctx.getAutoType(Ctx.getQualifiedType(Underlying), AX->getKeyword(), | 
|  | /*IsDependent=*/false, /*IsPack=*/false, CD, As); | 
|  | } | 
|  | case Type::PackIndexing: | 
|  | case Type::Decltype: | 
|  | return QualType(); | 
|  | case Type::DeducedTemplateSpecialization: | 
|  | // FIXME: Try to merge these. | 
|  | return QualType(); | 
|  | case Type::MacroQualified: { | 
|  | const auto *MX = cast<MacroQualifiedType>(X), | 
|  | *MY = cast<MacroQualifiedType>(Y); | 
|  | const IdentifierInfo *IX = MX->getMacroIdentifier(); | 
|  | if (IX != MY->getMacroIdentifier()) | 
|  | return QualType(); | 
|  | return Ctx.getMacroQualifiedType(Ctx.getQualifiedType(Underlying), IX); | 
|  | } | 
|  | case Type::SubstTemplateTypeParm: { | 
|  | const auto *SX = cast<SubstTemplateTypeParmType>(X), | 
|  | *SY = cast<SubstTemplateTypeParmType>(Y); | 
|  | Decl *CD = | 
|  | ::getCommonDecl(SX->getAssociatedDecl(), SY->getAssociatedDecl()); | 
|  | if (!CD) | 
|  | return QualType(); | 
|  | unsigned Index = SX->getIndex(); | 
|  | if (Index != SY->getIndex()) | 
|  | return QualType(); | 
|  | auto PackIndex = SX->getPackIndex(); | 
|  | if (PackIndex != SY->getPackIndex()) | 
|  | return QualType(); | 
|  | return Ctx.getSubstTemplateTypeParmType(Ctx.getQualifiedType(Underlying), | 
|  | CD, Index, PackIndex, | 
|  | SX->getFinal() && SY->getFinal()); | 
|  | } | 
|  | case Type::ObjCTypeParam: | 
|  | // FIXME: Try to merge these. | 
|  | return QualType(); | 
|  | case Type::Paren: | 
|  | return Ctx.getParenType(Ctx.getQualifiedType(Underlying)); | 
|  |  | 
|  | case Type::TemplateSpecialization: { | 
|  | const auto *TX = cast<TemplateSpecializationType>(X), | 
|  | *TY = cast<TemplateSpecializationType>(Y); | 
|  | TemplateName CTN = | 
|  | ::getCommonTemplateName(Ctx, TX->getTemplateName(), | 
|  | TY->getTemplateName(), /*IgnoreDeduced=*/true); | 
|  | if (!CTN.getAsVoidPointer()) | 
|  | return QualType(); | 
|  | SmallVector<TemplateArgument, 8> As; | 
|  | if (getCommonTemplateArguments(Ctx, As, TX->template_arguments(), | 
|  | TY->template_arguments())) | 
|  | return QualType(); | 
|  | return Ctx.getTemplateSpecializationType( | 
|  | getCommonTypeKeyword(TX, TY, /*IsSame=*/false), CTN, As, | 
|  | /*CanonicalArgs=*/{}, Ctx.getQualifiedType(Underlying)); | 
|  | } | 
|  | case Type::Typedef: { | 
|  | const auto *TX = cast<TypedefType>(X), *TY = cast<TypedefType>(Y); | 
|  | const TypedefNameDecl *CD = ::getCommonDecl(TX->getDecl(), TY->getDecl()); | 
|  | if (!CD) | 
|  | return QualType(); | 
|  | return Ctx.getTypedefType( | 
|  | ::getCommonTypeKeyword(TX, TY, /*IsSame=*/false), | 
|  | ::getCommonQualifier(Ctx, TX, TY, /*IsSame=*/false), CD, | 
|  | Ctx.getQualifiedType(Underlying)); | 
|  | } | 
|  | case Type::TypeOf: { | 
|  | // The common sugar between two typeof expressions, where one is | 
|  | // potentially a typeof_unqual and the other is not, we unify to the | 
|  | // qualified type as that retains the most information along with the type. | 
|  | // We only return a typeof_unqual type when both types are unqual types. | 
|  | TypeOfKind Kind = TypeOfKind::Qualified; | 
|  | if (cast<TypeOfType>(X)->getKind() == cast<TypeOfType>(Y)->getKind() && | 
|  | cast<TypeOfType>(X)->getKind() == TypeOfKind::Unqualified) | 
|  | Kind = TypeOfKind::Unqualified; | 
|  | return Ctx.getTypeOfType(Ctx.getQualifiedType(Underlying), Kind); | 
|  | } | 
|  | case Type::TypeOfExpr: | 
|  | return QualType(); | 
|  |  | 
|  | case Type::UnaryTransform: { | 
|  | const auto *UX = cast<UnaryTransformType>(X), | 
|  | *UY = cast<UnaryTransformType>(Y); | 
|  | UnaryTransformType::UTTKind KX = UX->getUTTKind(); | 
|  | if (KX != UY->getUTTKind()) | 
|  | return QualType(); | 
|  | QualType BX = UX->getBaseType(), BY = UY->getBaseType(); | 
|  | if (!Ctx.hasSameType(BX, BY)) | 
|  | return QualType(); | 
|  | // FIXME: It's inefficient to have to unify the base types. | 
|  | return Ctx.getUnaryTransformType(Ctx.getCommonSugaredType(BX, BY), | 
|  | Ctx.getQualifiedType(Underlying), KX); | 
|  | } | 
|  | case Type::Using: { | 
|  | const auto *UX = cast<UsingType>(X), *UY = cast<UsingType>(Y); | 
|  | const UsingShadowDecl *CD = ::getCommonDecl(UX->getDecl(), UY->getDecl()); | 
|  | if (!CD) | 
|  | return QualType(); | 
|  | return Ctx.getUsingType(::getCommonTypeKeyword(UX, UY, /*IsSame=*/false), | 
|  | ::getCommonQualifier(Ctx, UX, UY, /*IsSame=*/false), | 
|  | CD, Ctx.getQualifiedType(Underlying)); | 
|  | } | 
|  | case Type::MemberPointer: { | 
|  | const auto *PX = cast<MemberPointerType>(X), | 
|  | *PY = cast<MemberPointerType>(Y); | 
|  | CXXRecordDecl *Cls = PX->getMostRecentCXXRecordDecl(); | 
|  | assert(Cls == PY->getMostRecentCXXRecordDecl()); | 
|  | return Ctx.getMemberPointerType( | 
|  | ::getCommonPointeeType(Ctx, PX, PY), | 
|  | ::getCommonQualifier(Ctx, PX, PY, /*IsSame=*/false), Cls); | 
|  | } | 
|  | case Type::CountAttributed: { | 
|  | const auto *DX = cast<CountAttributedType>(X), | 
|  | *DY = cast<CountAttributedType>(Y); | 
|  | if (DX->isCountInBytes() != DY->isCountInBytes()) | 
|  | return QualType(); | 
|  | if (DX->isOrNull() != DY->isOrNull()) | 
|  | return QualType(); | 
|  | Expr *CEX = DX->getCountExpr(); | 
|  | Expr *CEY = DY->getCountExpr(); | 
|  | ArrayRef<clang::TypeCoupledDeclRefInfo> CDX = DX->getCoupledDecls(); | 
|  | if (Ctx.hasSameExpr(CEX, CEY)) | 
|  | return Ctx.getCountAttributedType(Ctx.getQualifiedType(Underlying), CEX, | 
|  | DX->isCountInBytes(), DX->isOrNull(), | 
|  | CDX); | 
|  | if (!CEX->isIntegerConstantExpr(Ctx) || !CEY->isIntegerConstantExpr(Ctx)) | 
|  | return QualType(); | 
|  | // Two declarations with the same integer constant may still differ in their | 
|  | // expression pointers, so we need to evaluate them. | 
|  | llvm::APSInt VX = *CEX->getIntegerConstantExpr(Ctx); | 
|  | llvm::APSInt VY = *CEY->getIntegerConstantExpr(Ctx); | 
|  | if (VX != VY) | 
|  | return QualType(); | 
|  | return Ctx.getCountAttributedType(Ctx.getQualifiedType(Underlying), CEX, | 
|  | DX->isCountInBytes(), DX->isOrNull(), | 
|  | CDX); | 
|  | } | 
|  | case Type::PredefinedSugar: | 
|  | assert(cast<PredefinedSugarType>(X)->getKind() != | 
|  | cast<PredefinedSugarType>(Y)->getKind()); | 
|  | return QualType(); | 
|  | } | 
|  | llvm_unreachable("Unhandled Type Class"); | 
|  | } | 
|  |  | 
|  | static auto unwrapSugar(SplitQualType &T, Qualifiers &QTotal) { | 
|  | SmallVector<SplitQualType, 8> R; | 
|  | while (true) { | 
|  | QTotal.addConsistentQualifiers(T.Quals); | 
|  | QualType NT = T.Ty->getLocallyUnqualifiedSingleStepDesugaredType(); | 
|  | if (NT == QualType(T.Ty, 0)) | 
|  | break; | 
|  | R.push_back(T); | 
|  | T = NT.split(); | 
|  | } | 
|  | return R; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getCommonSugaredType(QualType X, QualType Y, | 
|  | bool Unqualified) const { | 
|  | assert(Unqualified ? hasSameUnqualifiedType(X, Y) : hasSameType(X, Y)); | 
|  | if (X == Y) | 
|  | return X; | 
|  | if (!Unqualified) { | 
|  | if (X.isCanonical()) | 
|  | return X; | 
|  | if (Y.isCanonical()) | 
|  | return Y; | 
|  | } | 
|  |  | 
|  | SplitQualType SX = X.split(), SY = Y.split(); | 
|  | Qualifiers QX, QY; | 
|  | // Desugar SX and SY, setting the sugar and qualifiers aside into Xs and Ys, | 
|  | // until we reach their underlying "canonical nodes". Note these are not | 
|  | // necessarily canonical types, as they may still have sugared properties. | 
|  | // QX and QY will store the sum of all qualifiers in Xs and Ys respectively. | 
|  | auto Xs = ::unwrapSugar(SX, QX), Ys = ::unwrapSugar(SY, QY); | 
|  |  | 
|  | // If this is an ArrayType, the element qualifiers are interchangeable with | 
|  | // the top level qualifiers. | 
|  | // * In case the canonical nodes are the same, the elements types are already | 
|  | // the same. | 
|  | // * Otherwise, the element types will be made the same, and any different | 
|  | // element qualifiers will be moved up to the top level qualifiers, per | 
|  | // 'getCommonArrayElementType'. | 
|  | // In both cases, this means there may be top level qualifiers which differ | 
|  | // between X and Y. If so, these differing qualifiers are redundant with the | 
|  | // element qualifiers, and can be removed without changing the canonical type. | 
|  | // The desired behaviour is the same as for the 'Unqualified' case here: | 
|  | // treat the redundant qualifiers as sugar, remove the ones which are not | 
|  | // common to both sides. | 
|  | bool KeepCommonQualifiers = Unqualified || isa<ArrayType>(SX.Ty); | 
|  |  | 
|  | if (SX.Ty != SY.Ty) { | 
|  | // The canonical nodes differ. Build a common canonical node out of the two, | 
|  | // unifying their sugar. This may recurse back here. | 
|  | SX.Ty = | 
|  | ::getCommonNonSugarTypeNode(*this, SX.Ty, QX, SY.Ty, QY).getTypePtr(); | 
|  | } else { | 
|  | // The canonical nodes were identical: We may have desugared too much. | 
|  | // Add any common sugar back in. | 
|  | while (!Xs.empty() && !Ys.empty() && Xs.back().Ty == Ys.back().Ty) { | 
|  | QX -= SX.Quals; | 
|  | QY -= SY.Quals; | 
|  | SX = Xs.pop_back_val(); | 
|  | SY = Ys.pop_back_val(); | 
|  | } | 
|  | } | 
|  | if (KeepCommonQualifiers) | 
|  | QX = Qualifiers::removeCommonQualifiers(QX, QY); | 
|  | else | 
|  | assert(QX == QY); | 
|  |  | 
|  | // Even though the remaining sugar nodes in Xs and Ys differ, some may be | 
|  | // related. Walk up these nodes, unifying them and adding the result. | 
|  | while (!Xs.empty() && !Ys.empty()) { | 
|  | auto Underlying = SplitQualType( | 
|  | SX.Ty, Qualifiers::removeCommonQualifiers(SX.Quals, SY.Quals)); | 
|  | SX = Xs.pop_back_val(); | 
|  | SY = Ys.pop_back_val(); | 
|  | SX.Ty = ::getCommonSugarTypeNode(*this, SX.Ty, SY.Ty, Underlying) | 
|  | .getTypePtrOrNull(); | 
|  | // Stop at the first pair which is unrelated. | 
|  | if (!SX.Ty) { | 
|  | SX.Ty = Underlying.Ty; | 
|  | break; | 
|  | } | 
|  | QX -= Underlying.Quals; | 
|  | }; | 
|  |  | 
|  | // Add back the missing accumulated qualifiers, which were stripped off | 
|  | // with the sugar nodes we could not unify. | 
|  | QualType R = getQualifiedType(SX.Ty, QX); | 
|  | assert(Unqualified ? hasSameUnqualifiedType(R, X) : hasSameType(R, X)); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getCorrespondingUnsaturatedType(QualType Ty) const { | 
|  | assert(Ty->isFixedPointType()); | 
|  |  | 
|  | if (Ty->isUnsaturatedFixedPointType()) | 
|  | return Ty; | 
|  |  | 
|  | switch (Ty->castAs<BuiltinType>()->getKind()) { | 
|  | default: | 
|  | llvm_unreachable("Not a saturated fixed point type!"); | 
|  | case BuiltinType::SatShortAccum: | 
|  | return ShortAccumTy; | 
|  | case BuiltinType::SatAccum: | 
|  | return AccumTy; | 
|  | case BuiltinType::SatLongAccum: | 
|  | return LongAccumTy; | 
|  | case BuiltinType::SatUShortAccum: | 
|  | return UnsignedShortAccumTy; | 
|  | case BuiltinType::SatUAccum: | 
|  | return UnsignedAccumTy; | 
|  | case BuiltinType::SatULongAccum: | 
|  | return UnsignedLongAccumTy; | 
|  | case BuiltinType::SatShortFract: | 
|  | return ShortFractTy; | 
|  | case BuiltinType::SatFract: | 
|  | return FractTy; | 
|  | case BuiltinType::SatLongFract: | 
|  | return LongFractTy; | 
|  | case BuiltinType::SatUShortFract: | 
|  | return UnsignedShortFractTy; | 
|  | case BuiltinType::SatUFract: | 
|  | return UnsignedFractTy; | 
|  | case BuiltinType::SatULongFract: | 
|  | return UnsignedLongFractTy; | 
|  | } | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const { | 
|  | assert(Ty->isFixedPointType()); | 
|  |  | 
|  | if (Ty->isSaturatedFixedPointType()) return Ty; | 
|  |  | 
|  | switch (Ty->castAs<BuiltinType>()->getKind()) { | 
|  | default: | 
|  | llvm_unreachable("Not a fixed point type!"); | 
|  | case BuiltinType::ShortAccum: | 
|  | return SatShortAccumTy; | 
|  | case BuiltinType::Accum: | 
|  | return SatAccumTy; | 
|  | case BuiltinType::LongAccum: | 
|  | return SatLongAccumTy; | 
|  | case BuiltinType::UShortAccum: | 
|  | return SatUnsignedShortAccumTy; | 
|  | case BuiltinType::UAccum: | 
|  | return SatUnsignedAccumTy; | 
|  | case BuiltinType::ULongAccum: | 
|  | return SatUnsignedLongAccumTy; | 
|  | case BuiltinType::ShortFract: | 
|  | return SatShortFractTy; | 
|  | case BuiltinType::Fract: | 
|  | return SatFractTy; | 
|  | case BuiltinType::LongFract: | 
|  | return SatLongFractTy; | 
|  | case BuiltinType::UShortFract: | 
|  | return SatUnsignedShortFractTy; | 
|  | case BuiltinType::UFract: | 
|  | return SatUnsignedFractTy; | 
|  | case BuiltinType::ULongFract: | 
|  | return SatUnsignedLongFractTy; | 
|  | } | 
|  | } | 
|  |  | 
|  | LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const { | 
|  | if (LangOpts.OpenCL) | 
|  | return getTargetInfo().getOpenCLBuiltinAddressSpace(AS); | 
|  |  | 
|  | if (LangOpts.CUDA) | 
|  | return getTargetInfo().getCUDABuiltinAddressSpace(AS); | 
|  |  | 
|  | return getLangASFromTargetAS(AS); | 
|  | } | 
|  |  | 
|  | // Explicitly instantiate this in case a Redeclarable<T> is used from a TU that | 
|  | // doesn't include ASTContext.h | 
|  | template | 
|  | clang::LazyGenerationalUpdatePtr< | 
|  | const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType | 
|  | clang::LazyGenerationalUpdatePtr< | 
|  | const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue( | 
|  | const clang::ASTContext &Ctx, Decl *Value); | 
|  |  | 
|  | unsigned char ASTContext::getFixedPointScale(QualType Ty) const { | 
|  | assert(Ty->isFixedPointType()); | 
|  |  | 
|  | const TargetInfo &Target = getTargetInfo(); | 
|  | switch (Ty->castAs<BuiltinType>()->getKind()) { | 
|  | default: | 
|  | llvm_unreachable("Not a fixed point type!"); | 
|  | case BuiltinType::ShortAccum: | 
|  | case BuiltinType::SatShortAccum: | 
|  | return Target.getShortAccumScale(); | 
|  | case BuiltinType::Accum: | 
|  | case BuiltinType::SatAccum: | 
|  | return Target.getAccumScale(); | 
|  | case BuiltinType::LongAccum: | 
|  | case BuiltinType::SatLongAccum: | 
|  | return Target.getLongAccumScale(); | 
|  | case BuiltinType::UShortAccum: | 
|  | case BuiltinType::SatUShortAccum: | 
|  | return Target.getUnsignedShortAccumScale(); | 
|  | case BuiltinType::UAccum: | 
|  | case BuiltinType::SatUAccum: | 
|  | return Target.getUnsignedAccumScale(); | 
|  | case BuiltinType::ULongAccum: | 
|  | case BuiltinType::SatULongAccum: | 
|  | return Target.getUnsignedLongAccumScale(); | 
|  | case BuiltinType::ShortFract: | 
|  | case BuiltinType::SatShortFract: | 
|  | return Target.getShortFractScale(); | 
|  | case BuiltinType::Fract: | 
|  | case BuiltinType::SatFract: | 
|  | return Target.getFractScale(); | 
|  | case BuiltinType::LongFract: | 
|  | case BuiltinType::SatLongFract: | 
|  | return Target.getLongFractScale(); | 
|  | case BuiltinType::UShortFract: | 
|  | case BuiltinType::SatUShortFract: | 
|  | return Target.getUnsignedShortFractScale(); | 
|  | case BuiltinType::UFract: | 
|  | case BuiltinType::SatUFract: | 
|  | return Target.getUnsignedFractScale(); | 
|  | case BuiltinType::ULongFract: | 
|  | case BuiltinType::SatULongFract: | 
|  | return Target.getUnsignedLongFractScale(); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned char ASTContext::getFixedPointIBits(QualType Ty) const { | 
|  | assert(Ty->isFixedPointType()); | 
|  |  | 
|  | const TargetInfo &Target = getTargetInfo(); | 
|  | switch (Ty->castAs<BuiltinType>()->getKind()) { | 
|  | default: | 
|  | llvm_unreachable("Not a fixed point type!"); | 
|  | case BuiltinType::ShortAccum: | 
|  | case BuiltinType::SatShortAccum: | 
|  | return Target.getShortAccumIBits(); | 
|  | case BuiltinType::Accum: | 
|  | case BuiltinType::SatAccum: | 
|  | return Target.getAccumIBits(); | 
|  | case BuiltinType::LongAccum: | 
|  | case BuiltinType::SatLongAccum: | 
|  | return Target.getLongAccumIBits(); | 
|  | case BuiltinType::UShortAccum: | 
|  | case BuiltinType::SatUShortAccum: | 
|  | return Target.getUnsignedShortAccumIBits(); | 
|  | case BuiltinType::UAccum: | 
|  | case BuiltinType::SatUAccum: | 
|  | return Target.getUnsignedAccumIBits(); | 
|  | case BuiltinType::ULongAccum: | 
|  | case BuiltinType::SatULongAccum: | 
|  | return Target.getUnsignedLongAccumIBits(); | 
|  | case BuiltinType::ShortFract: | 
|  | case BuiltinType::SatShortFract: | 
|  | case BuiltinType::Fract: | 
|  | case BuiltinType::SatFract: | 
|  | case BuiltinType::LongFract: | 
|  | case BuiltinType::SatLongFract: | 
|  | case BuiltinType::UShortFract: | 
|  | case BuiltinType::SatUShortFract: | 
|  | case BuiltinType::UFract: | 
|  | case BuiltinType::SatUFract: | 
|  | case BuiltinType::ULongFract: | 
|  | case BuiltinType::SatULongFract: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm::FixedPointSemantics | 
|  | ASTContext::getFixedPointSemantics(QualType Ty) const { | 
|  | assert((Ty->isFixedPointType() || Ty->isIntegerType()) && | 
|  | "Can only get the fixed point semantics for a " | 
|  | "fixed point or integer type."); | 
|  | if (Ty->isIntegerType()) | 
|  | return llvm::FixedPointSemantics::GetIntegerSemantics( | 
|  | getIntWidth(Ty), Ty->isSignedIntegerType()); | 
|  |  | 
|  | bool isSigned = Ty->isSignedFixedPointType(); | 
|  | return llvm::FixedPointSemantics( | 
|  | static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned, | 
|  | Ty->isSaturatedFixedPointType(), | 
|  | !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding()); | 
|  | } | 
|  |  | 
|  | llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const { | 
|  | assert(Ty->isFixedPointType()); | 
|  | return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty)); | 
|  | } | 
|  |  | 
|  | llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const { | 
|  | assert(Ty->isFixedPointType()); | 
|  | return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty)); | 
|  | } | 
|  |  | 
|  | QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const { | 
|  | assert(Ty->isUnsignedFixedPointType() && | 
|  | "Expected unsigned fixed point type"); | 
|  |  | 
|  | switch (Ty->castAs<BuiltinType>()->getKind()) { | 
|  | case BuiltinType::UShortAccum: | 
|  | return ShortAccumTy; | 
|  | case BuiltinType::UAccum: | 
|  | return AccumTy; | 
|  | case BuiltinType::ULongAccum: | 
|  | return LongAccumTy; | 
|  | case BuiltinType::SatUShortAccum: | 
|  | return SatShortAccumTy; | 
|  | case BuiltinType::SatUAccum: | 
|  | return SatAccumTy; | 
|  | case BuiltinType::SatULongAccum: | 
|  | return SatLongAccumTy; | 
|  | case BuiltinType::UShortFract: | 
|  | return ShortFractTy; | 
|  | case BuiltinType::UFract: | 
|  | return FractTy; | 
|  | case BuiltinType::ULongFract: | 
|  | return LongFractTy; | 
|  | case BuiltinType::SatUShortFract: | 
|  | return SatShortFractTy; | 
|  | case BuiltinType::SatUFract: | 
|  | return SatFractTy; | 
|  | case BuiltinType::SatULongFract: | 
|  | return SatLongFractTy; | 
|  | default: | 
|  | llvm_unreachable("Unexpected unsigned fixed point type"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Given a list of FMV features, return a concatenated list of the | 
|  | // corresponding backend features (which may contain duplicates). | 
|  | static std::vector<std::string> getFMVBackendFeaturesFor( | 
|  | const llvm::SmallVectorImpl<StringRef> &FMVFeatStrings) { | 
|  | std::vector<std::string> BackendFeats; | 
|  | llvm::AArch64::ExtensionSet FeatureBits; | 
|  | for (StringRef F : FMVFeatStrings) | 
|  | if (auto FMVExt = llvm::AArch64::parseFMVExtension(F)) | 
|  | if (FMVExt->ID) | 
|  | FeatureBits.enable(*FMVExt->ID); | 
|  | FeatureBits.toLLVMFeatureList(BackendFeats); | 
|  | return BackendFeats; | 
|  | } | 
|  |  | 
|  | ParsedTargetAttr | 
|  | ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const { | 
|  | assert(TD != nullptr); | 
|  | ParsedTargetAttr ParsedAttr = Target->parseTargetAttr(TD->getFeaturesStr()); | 
|  |  | 
|  | llvm::erase_if(ParsedAttr.Features, [&](const std::string &Feat) { | 
|  | return !Target->isValidFeatureName(StringRef{Feat}.substr(1)); | 
|  | }); | 
|  | return ParsedAttr; | 
|  | } | 
|  |  | 
|  | void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, | 
|  | const FunctionDecl *FD) const { | 
|  | if (FD) | 
|  | getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD)); | 
|  | else | 
|  | Target->initFeatureMap(FeatureMap, getDiagnostics(), | 
|  | Target->getTargetOpts().CPU, | 
|  | Target->getTargetOpts().Features); | 
|  | } | 
|  |  | 
|  | // Fills in the supplied string map with the set of target features for the | 
|  | // passed in function. | 
|  | void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, | 
|  | GlobalDecl GD) const { | 
|  | StringRef TargetCPU = Target->getTargetOpts().CPU; | 
|  | const FunctionDecl *FD = GD.getDecl()->getAsFunction(); | 
|  | if (const auto *TD = FD->getAttr<TargetAttr>()) { | 
|  | ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); | 
|  |  | 
|  | // Make a copy of the features as passed on the command line into the | 
|  | // beginning of the additional features from the function to override. | 
|  | // AArch64 handles command line option features in parseTargetAttr(). | 
|  | if (!Target->getTriple().isAArch64()) | 
|  | ParsedAttr.Features.insert( | 
|  | ParsedAttr.Features.begin(), | 
|  | Target->getTargetOpts().FeaturesAsWritten.begin(), | 
|  | Target->getTargetOpts().FeaturesAsWritten.end()); | 
|  |  | 
|  | if (ParsedAttr.CPU != "" && Target->isValidCPUName(ParsedAttr.CPU)) | 
|  | TargetCPU = ParsedAttr.CPU; | 
|  |  | 
|  | // Now populate the feature map, first with the TargetCPU which is either | 
|  | // the default or a new one from the target attribute string. Then we'll use | 
|  | // the passed in features (FeaturesAsWritten) along with the new ones from | 
|  | // the attribute. | 
|  | Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, | 
|  | ParsedAttr.Features); | 
|  | } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { | 
|  | llvm::SmallVector<StringRef, 32> FeaturesTmp; | 
|  | Target->getCPUSpecificCPUDispatchFeatures( | 
|  | SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp); | 
|  | std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); | 
|  | Features.insert(Features.begin(), | 
|  | Target->getTargetOpts().FeaturesAsWritten.begin(), | 
|  | Target->getTargetOpts().FeaturesAsWritten.end()); | 
|  | Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features); | 
|  | } else if (const auto *TC = FD->getAttr<TargetClonesAttr>()) { | 
|  | if (Target->getTriple().isAArch64()) { | 
|  | llvm::SmallVector<StringRef, 8> Feats; | 
|  | TC->getFeatures(Feats, GD.getMultiVersionIndex()); | 
|  | std::vector<std::string> Features = getFMVBackendFeaturesFor(Feats); | 
|  | Features.insert(Features.begin(), | 
|  | Target->getTargetOpts().FeaturesAsWritten.begin(), | 
|  | Target->getTargetOpts().FeaturesAsWritten.end()); | 
|  | Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features); | 
|  | } else if (Target->getTriple().isRISCV()) { | 
|  | StringRef VersionStr = TC->getFeatureStr(GD.getMultiVersionIndex()); | 
|  | std::vector<std::string> Features; | 
|  | if (VersionStr != "default") { | 
|  | ParsedTargetAttr ParsedAttr = Target->parseTargetAttr(VersionStr); | 
|  | Features.insert(Features.begin(), ParsedAttr.Features.begin(), | 
|  | ParsedAttr.Features.end()); | 
|  | } | 
|  | Features.insert(Features.begin(), | 
|  | Target->getTargetOpts().FeaturesAsWritten.begin(), | 
|  | Target->getTargetOpts().FeaturesAsWritten.end()); | 
|  | Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features); | 
|  | } else { | 
|  | std::vector<std::string> Features; | 
|  | StringRef VersionStr = TC->getFeatureStr(GD.getMultiVersionIndex()); | 
|  | if (VersionStr.starts_with("arch=")) | 
|  | TargetCPU = VersionStr.drop_front(sizeof("arch=") - 1); | 
|  | else if (VersionStr != "default") | 
|  | Features.push_back((StringRef{"+"} + VersionStr).str()); | 
|  | Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features); | 
|  | } | 
|  | } else if (const auto *TV = FD->getAttr<TargetVersionAttr>()) { | 
|  | std::vector<std::string> Features; | 
|  | if (Target->getTriple().isRISCV()) { | 
|  | ParsedTargetAttr ParsedAttr = Target->parseTargetAttr(TV->getName()); | 
|  | Features.insert(Features.begin(), ParsedAttr.Features.begin(), | 
|  | ParsedAttr.Features.end()); | 
|  | } else { | 
|  | assert(Target->getTriple().isAArch64()); | 
|  | llvm::SmallVector<StringRef, 8> Feats; | 
|  | TV->getFeatures(Feats); | 
|  | Features = getFMVBackendFeaturesFor(Feats); | 
|  | } | 
|  | Features.insert(Features.begin(), | 
|  | Target->getTargetOpts().FeaturesAsWritten.begin(), | 
|  | Target->getTargetOpts().FeaturesAsWritten.end()); | 
|  | Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features); | 
|  | } else { | 
|  | FeatureMap = Target->getTargetOpts().FeatureMap; | 
|  | } | 
|  | } | 
|  |  | 
|  | static SYCLKernelInfo BuildSYCLKernelInfo(ASTContext &Context, | 
|  | CanQualType KernelNameType, | 
|  | const FunctionDecl *FD) { | 
|  | // Host and device compilation may use different ABIs and different ABIs | 
|  | // may allocate name mangling discriminators differently. A discriminator | 
|  | // override is used to ensure consistent discriminator allocation across | 
|  | // host and device compilation. | 
|  | auto DeviceDiscriminatorOverrider = | 
|  | [](ASTContext &Ctx, const NamedDecl *ND) -> UnsignedOrNone { | 
|  | if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) | 
|  | if (RD->isLambda()) | 
|  | return RD->getDeviceLambdaManglingNumber(); | 
|  | return std::nullopt; | 
|  | }; | 
|  | std::unique_ptr<MangleContext> MC{ItaniumMangleContext::create( | 
|  | Context, Context.getDiagnostics(), DeviceDiscriminatorOverrider)}; | 
|  |  | 
|  | // Construct a mangled name for the SYCL kernel caller offload entry point. | 
|  | // FIXME: The Itanium typeinfo mangling (_ZTS<type>) is currently used to | 
|  | // name the SYCL kernel caller offload entry point function. This mangling | 
|  | // does not suffice to clearly identify symbols that correspond to SYCL | 
|  | // kernel caller functions, nor is this mangling natural for targets that | 
|  | // use a non-Itanium ABI. | 
|  | std::string Buffer; | 
|  | Buffer.reserve(128); | 
|  | llvm::raw_string_ostream Out(Buffer); | 
|  | MC->mangleCanonicalTypeName(KernelNameType, Out); | 
|  | std::string KernelName = Out.str(); | 
|  |  | 
|  | return {KernelNameType, FD, KernelName}; | 
|  | } | 
|  |  | 
|  | void ASTContext::registerSYCLEntryPointFunction(FunctionDecl *FD) { | 
|  | // If the function declaration to register is invalid or dependent, the | 
|  | // registration attempt is ignored. | 
|  | if (FD->isInvalidDecl() || FD->isTemplated()) | 
|  | return; | 
|  |  | 
|  | const auto *SKEPAttr = FD->getAttr<SYCLKernelEntryPointAttr>(); | 
|  | assert(SKEPAttr && "Missing sycl_kernel_entry_point attribute"); | 
|  |  | 
|  | // Be tolerant of multiple registration attempts so long as each attempt | 
|  | // is for the same entity. Callers are obligated to detect and diagnose | 
|  | // conflicting kernel names prior to calling this function. | 
|  | CanQualType KernelNameType = getCanonicalType(SKEPAttr->getKernelName()); | 
|  | auto IT = SYCLKernels.find(KernelNameType); | 
|  | assert((IT == SYCLKernels.end() || | 
|  | declaresSameEntity(FD, IT->second.getKernelEntryPointDecl())) && | 
|  | "SYCL kernel name conflict"); | 
|  | (void)IT; | 
|  | SYCLKernels.insert(std::make_pair( | 
|  | KernelNameType, BuildSYCLKernelInfo(*this, KernelNameType, FD))); | 
|  | } | 
|  |  | 
|  | const SYCLKernelInfo &ASTContext::getSYCLKernelInfo(QualType T) const { | 
|  | CanQualType KernelNameType = getCanonicalType(T); | 
|  | return SYCLKernels.at(KernelNameType); | 
|  | } | 
|  |  | 
|  | const SYCLKernelInfo *ASTContext::findSYCLKernelInfo(QualType T) const { | 
|  | CanQualType KernelNameType = getCanonicalType(T); | 
|  | auto IT = SYCLKernels.find(KernelNameType); | 
|  | if (IT != SYCLKernels.end()) | 
|  | return &IT->second; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | OMPTraitInfo &ASTContext::getNewOMPTraitInfo() { | 
|  | OMPTraitInfoVector.emplace_back(new OMPTraitInfo()); | 
|  | return *OMPTraitInfoVector.back(); | 
|  | } | 
|  |  | 
|  | const StreamingDiagnostic &clang:: | 
|  | operator<<(const StreamingDiagnostic &DB, | 
|  | const ASTContext::SectionInfo &Section) { | 
|  | if (Section.Decl) | 
|  | return DB << Section.Decl; | 
|  | return DB << "a prior #pragma section"; | 
|  | } | 
|  |  | 
|  | bool ASTContext::mayExternalize(const Decl *D) const { | 
|  | bool IsInternalVar = | 
|  | isa<VarDecl>(D) && | 
|  | basicGVALinkageForVariable(*this, cast<VarDecl>(D)) == GVA_Internal; | 
|  | bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() && | 
|  | !D->getAttr<CUDADeviceAttr>()->isImplicit()) || | 
|  | (D->hasAttr<CUDAConstantAttr>() && | 
|  | !D->getAttr<CUDAConstantAttr>()->isImplicit()); | 
|  | // CUDA/HIP: managed variables need to be externalized since it is | 
|  | // a declaration in IR, therefore cannot have internal linkage. Kernels in | 
|  | // anonymous name space needs to be externalized to avoid duplicate symbols. | 
|  | return (IsInternalVar && | 
|  | (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar)) || | 
|  | (D->hasAttr<CUDAGlobalAttr>() && | 
|  | basicGVALinkageForFunction(*this, cast<FunctionDecl>(D)) == | 
|  | GVA_Internal); | 
|  | } | 
|  |  | 
|  | bool ASTContext::shouldExternalize(const Decl *D) const { | 
|  | return mayExternalize(D) && | 
|  | (D->hasAttr<HIPManagedAttr>() || D->hasAttr<CUDAGlobalAttr>() || | 
|  | CUDADeviceVarODRUsedByHost.count(cast<VarDecl>(D))); | 
|  | } | 
|  |  | 
|  | StringRef ASTContext::getCUIDHash() const { | 
|  | if (!CUIDHash.empty()) | 
|  | return CUIDHash; | 
|  | if (LangOpts.CUID.empty()) | 
|  | return StringRef(); | 
|  | CUIDHash = llvm::utohexstr(llvm::MD5Hash(LangOpts.CUID), /*LowerCase=*/true); | 
|  | return CUIDHash; | 
|  | } | 
|  |  | 
|  | const CXXRecordDecl * | 
|  | ASTContext::baseForVTableAuthentication(const CXXRecordDecl *ThisClass) const { | 
|  | assert(ThisClass); | 
|  | assert(ThisClass->isPolymorphic()); | 
|  | const CXXRecordDecl *PrimaryBase = ThisClass; | 
|  | while (1) { | 
|  | assert(PrimaryBase); | 
|  | assert(PrimaryBase->isPolymorphic()); | 
|  | auto &Layout = getASTRecordLayout(PrimaryBase); | 
|  | auto Base = Layout.getPrimaryBase(); | 
|  | if (!Base || Base == PrimaryBase || !Base->isPolymorphic()) | 
|  | break; | 
|  | PrimaryBase = Base; | 
|  | } | 
|  | return PrimaryBase; | 
|  | } | 
|  |  | 
|  | bool ASTContext::useAbbreviatedThunkName(GlobalDecl VirtualMethodDecl, | 
|  | StringRef MangledName) { | 
|  | auto *Method = cast<CXXMethodDecl>(VirtualMethodDecl.getDecl()); | 
|  | assert(Method->isVirtual()); | 
|  | bool DefaultIncludesPointerAuth = | 
|  | LangOpts.PointerAuthCalls || LangOpts.PointerAuthIntrinsics; | 
|  |  | 
|  | if (!DefaultIncludesPointerAuth) | 
|  | return true; | 
|  |  | 
|  | auto Existing = ThunksToBeAbbreviated.find(VirtualMethodDecl); | 
|  | if (Existing != ThunksToBeAbbreviated.end()) | 
|  | return Existing->second.contains(MangledName.str()); | 
|  |  | 
|  | std::unique_ptr<MangleContext> Mangler(createMangleContext()); | 
|  | llvm::StringMap<llvm::SmallVector<std::string, 2>> Thunks; | 
|  | auto VtableContext = getVTableContext(); | 
|  | if (const auto *ThunkInfos = VtableContext->getThunkInfo(VirtualMethodDecl)) { | 
|  | auto *Destructor = dyn_cast<CXXDestructorDecl>(Method); | 
|  | for (const auto &Thunk : *ThunkInfos) { | 
|  | SmallString<256> ElidedName; | 
|  | llvm::raw_svector_ostream ElidedNameStream(ElidedName); | 
|  | if (Destructor) | 
|  | Mangler->mangleCXXDtorThunk(Destructor, VirtualMethodDecl.getDtorType(), | 
|  | Thunk, /* elideOverrideInfo */ true, | 
|  | ElidedNameStream); | 
|  | else | 
|  | Mangler->mangleThunk(Method, Thunk, /* elideOverrideInfo */ true, | 
|  | ElidedNameStream); | 
|  | SmallString<256> MangledName; | 
|  | llvm::raw_svector_ostream mangledNameStream(MangledName); | 
|  | if (Destructor) | 
|  | Mangler->mangleCXXDtorThunk(Destructor, VirtualMethodDecl.getDtorType(), | 
|  | Thunk, /* elideOverrideInfo */ false, | 
|  | mangledNameStream); | 
|  | else | 
|  | Mangler->mangleThunk(Method, Thunk, /* elideOverrideInfo */ false, | 
|  | mangledNameStream); | 
|  |  | 
|  | Thunks[ElidedName].push_back(std::string(MangledName)); | 
|  | } | 
|  | } | 
|  | llvm::StringSet<> SimplifiedThunkNames; | 
|  | for (auto &ThunkList : Thunks) { | 
|  | llvm::sort(ThunkList.second); | 
|  | SimplifiedThunkNames.insert(ThunkList.second[0]); | 
|  | } | 
|  | bool Result = SimplifiedThunkNames.contains(MangledName); | 
|  | ThunksToBeAbbreviated[VirtualMethodDecl] = std::move(SimplifiedThunkNames); | 
|  | return Result; | 
|  | } |