blob: c27885aadc02874f69377cc2624247dab099ec69 [file] [log] [blame]
//===-- Utilities for double-double data type. ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_DOUBLE_DOUBLE_H
#define LLVM_LIBC_SRC___SUPPORT_FPUTIL_DOUBLE_DOUBLE_H
#include "multiply_add.h"
#include "src/__support/common.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
#include "src/__support/number_pair.h"
namespace LIBC_NAMESPACE_DECL {
namespace fputil {
template <typename T> struct DefaultSplit;
template <> struct DefaultSplit<float> {
static constexpr size_t VALUE = 12;
};
template <> struct DefaultSplit<double> {
static constexpr size_t VALUE = 27;
};
using DoubleDouble = NumberPair<double>;
using FloatFloat = NumberPair<float>;
// The output of Dekker's FastTwoSum algorithm is correct, i.e.:
// r.hi + r.lo = a + b exactly
// and |r.lo| < eps(r.lo)
// Assumption: |a| >= |b|, or a = 0.
template <bool FAST2SUM = true, typename T = double>
LIBC_INLINE constexpr NumberPair<T> exact_add(T a, T b) {
NumberPair<T> r{0.0, 0.0};
if constexpr (FAST2SUM) {
r.hi = a + b;
T t = r.hi - a;
r.lo = b - t;
} else {
r.hi = a + b;
T t1 = r.hi - a;
T t2 = r.hi - t1;
T t3 = b - t1;
T t4 = a - t2;
r.lo = t3 + t4;
}
return r;
}
// Assumption: |a.hi| >= |b.hi|
template <typename T>
LIBC_INLINE constexpr NumberPair<T> add(const NumberPair<T> &a,
const NumberPair<T> &b) {
NumberPair<T> r = exact_add(a.hi, b.hi);
T lo = a.lo + b.lo;
return exact_add(r.hi, r.lo + lo);
}
// Assumption: |a.hi| >= |b|
template <typename T>
LIBC_INLINE constexpr NumberPair<T> add(const NumberPair<T> &a, T b) {
NumberPair<T> r = exact_add<false>(a.hi, b);
return exact_add(r.hi, r.lo + a.lo);
}
// Veltkamp's Splitting for double precision.
// Note: This is proved to be correct for all rounding modes:
// Zimmermann, P., "Note on the Veltkamp/Dekker Algorithms with Directed
// Roundings," https://inria.hal.science/hal-04480440.
// Default splitting constant = 2^ceil(prec(double)/2) + 1 = 2^27 + 1.
template <typename T = double, size_t N = DefaultSplit<T>::VALUE>
LIBC_INLINE constexpr NumberPair<T> split(T a) {
NumberPair<T> r{0.0, 0.0};
// CN = 2^N.
constexpr T CN = static_cast<T>(1 << N);
constexpr T C = CN + 1.0;
double t1 = C * a;
double t2 = a - t1;
r.hi = t1 + t2;
r.lo = a - r.hi;
return r;
}
// Helper for non-fma exact mult where the first number is already split.
template <typename T = double, size_t SPLIT_B = DefaultSplit<T>::VALUE>
LIBC_INLINE NumberPair<T> exact_mult(const NumberPair<T> &as, T a, T b) {
NumberPair<T> bs = split<T, SPLIT_B>(b);
NumberPair<T> r{0.0, 0.0};
r.hi = a * b;
T t1 = as.hi * bs.hi - r.hi;
T t2 = as.hi * bs.lo + t1;
T t3 = as.lo * bs.hi + t2;
r.lo = as.lo * bs.lo + t3;
return r;
}
// The templated exact multiplication needs template version of
// LIBC_TARGET_CPU_HAS_FMA_* macro to correctly select the implementation.
// These can be moved to "src/__support/macros/properties/cpu_features.h" if
// other part of libc needed.
template <typename T> struct TargetHasFmaInstruction {
static constexpr bool VALUE = false;
};
#ifdef LIBC_TARGET_CPU_HAS_FMA_FLOAT
template <> struct TargetHasFmaInstruction<float> {
static constexpr bool VALUE = true;
};
#endif // LIBC_TARGET_CPU_HAS_FMA_FLOAT
#ifdef LIBC_TARGET_CPU_HAS_FMA_DOUBLE
template <> struct TargetHasFmaInstruction<double> {
static constexpr bool VALUE = true;
};
#endif // LIBC_TARGET_CPU_HAS_FMA_DOUBLE
// Note: When FMA instruction is not available, the `exact_mult` function is
// only correct for round-to-nearest mode. See:
// Zimmermann, P., "Note on the Veltkamp/Dekker Algorithms with Directed
// Roundings," https://inria.hal.science/hal-04480440.
// Using Theorem 1 in the paper above, without FMA instruction, if we restrict
// the generated constants to precision <= 51, and splitting it by 2^28 + 1,
// then a * b = r.hi + r.lo is exact for all rounding modes.
template <typename T = double, size_t SPLIT_B = DefaultSplit<T>::VALUE>
LIBC_INLINE NumberPair<T> exact_mult(T a, T b) {
NumberPair<T> r{0.0, 0.0};
if constexpr (TargetHasFmaInstruction<T>::VALUE) {
r.hi = a * b;
r.lo = fputil::multiply_add(a, b, -r.hi);
} else {
// Dekker's Product.
NumberPair<T> as = split(a);
r = exact_mult<T, SPLIT_B>(as, a, b);
}
return r;
}
LIBC_INLINE DoubleDouble quick_mult(double a, const DoubleDouble &b) {
DoubleDouble r = exact_mult(a, b.hi);
r.lo = multiply_add(a, b.lo, r.lo);
return r;
}
template <size_t SPLIT_B = 27>
LIBC_INLINE DoubleDouble quick_mult(const DoubleDouble &a,
const DoubleDouble &b) {
DoubleDouble r = exact_mult<double, SPLIT_B>(a.hi, b.hi);
double t1 = multiply_add(a.hi, b.lo, r.lo);
double t2 = multiply_add(a.lo, b.hi, t1);
r.lo = t2;
return r;
}
// Assuming |c| >= |a * b|.
template <>
LIBC_INLINE DoubleDouble multiply_add<DoubleDouble>(const DoubleDouble &a,
const DoubleDouble &b,
const DoubleDouble &c) {
return add(c, quick_mult(a, b));
}
// Accurate double-double division, following Karp-Markstein's trick for
// division, implemented in the CORE-MATH project at:
// https://gitlab.inria.fr/core-math/core-math/-/blob/master/src/binary64/tan/tan.c#L1855
//
// Error bounds:
// Let a = ah + al, b = bh + bl.
// Let r = rh + rl be the approximation of (ah + al) / (bh + bl).
// Then:
// (ah + al) / (bh + bl) - rh =
// = ((ah - bh * rh) + (al - bl * rh)) / (bh + bl)
// = (1 + O(bl/bh)) * ((ah - bh * rh) + (al - bl * rh)) / bh
// Let q = round(1/bh), then the above expressions are approximately:
// = (1 + O(bl / bh)) * (1 + O(2^-52)) * q * ((ah - bh * rh) + (al - bl * rh))
// So we can compute:
// rl = q * (ah - bh * rh) + q * (al - bl * rh)
// as accurate as possible, then the error is bounded by:
// |(ah + al) / (bh + bl) - (rh + rl)| < O(bl/bh) * (2^-52 + al/ah + bl/bh)
template <typename T>
LIBC_INLINE NumberPair<T> div(const NumberPair<T> &a, const NumberPair<T> &b) {
NumberPair<T> r;
T q = T(1) / b.hi;
r.hi = a.hi * q;
#ifdef LIBC_TARGET_CPU_HAS_FMA
T e_hi = fputil::multiply_add(b.hi, -r.hi, a.hi);
T e_lo = fputil::multiply_add(b.lo, -r.hi, a.lo);
#else
NumberPair<T> b_hi_r_hi = fputil::exact_mult(b.hi, -r.hi);
NumberPair<T> b_lo_r_hi = fputil::exact_mult(b.lo, -r.hi);
T e_hi = (a.hi + b_hi_r_hi.hi) + b_hi_r_hi.lo;
T e_lo = (a.lo + b_lo_r_hi.hi) + b_lo_r_hi.lo;
#endif // LIBC_TARGET_CPU_HAS_FMA
r.lo = q * (e_hi + e_lo);
return r;
}
} // namespace fputil
} // namespace LIBC_NAMESPACE_DECL
#endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_DOUBLE_DOUBLE_H