| //===----------------------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Emit OpenACC clause nodes as CIR code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include <type_traits> |
| |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/OpenACC/OpenACC.h" |
| namespace clang { |
| // Simple type-trait to see if the first template arg is one of the list, so we |
| // can tell whether to `if-constexpr` a bunch of stuff. |
| template <typename ToTest, typename T, typename... Tys> |
| constexpr bool isOneOfTypes = |
| std::is_same_v<ToTest, T> || isOneOfTypes<ToTest, Tys...>; |
| template <typename ToTest, typename T> |
| constexpr bool isOneOfTypes<ToTest, T> = std::is_same_v<ToTest, T>; |
| |
| // Holds information for emitting clauses for a combined construct. We |
| // instantiate the clause emitter with this type so that it can use |
| // if-constexpr to specially handle these. |
| template <typename CompOpTy> struct CombinedConstructClauseInfo { |
| using ComputeOpTy = CompOpTy; |
| ComputeOpTy computeOp; |
| mlir::acc::LoopOp loopOp; |
| }; |
| |
| template <typename ToTest> constexpr bool isCombinedType = false; |
| template <typename T> |
| constexpr bool isCombinedType<CombinedConstructClauseInfo<T>> = true; |
| |
| template <typename OpTy> |
| class OpenACCClauseCIREmitter final |
| : public OpenACCClauseVisitor<OpenACCClauseCIREmitter<OpTy>> { |
| // Necessary for combined constructs. |
| template <typename FriendOpTy> friend class OpenACCClauseCIREmitter; |
| |
| OpTy &operation; |
| CIRGen::CIRGenFunction &cgf; |
| CIRGen::CIRGenBuilderTy &builder; |
| |
| // This is necessary since a few of the clauses emit differently based on the |
| // directive kind they are attached to. |
| OpenACCDirectiveKind dirKind; |
| // TODO(cir): This source location should be able to go away once the NYI |
| // diagnostics are gone. |
| SourceLocation dirLoc; |
| |
| llvm::SmallVector<mlir::acc::DeviceType> lastDeviceTypeValues; |
| |
| void setLastDeviceTypeClause(const OpenACCDeviceTypeClause &clause) { |
| lastDeviceTypeValues.clear(); |
| |
| llvm::for_each(clause.getArchitectures(), |
| [this](const DeviceTypeArgument &arg) { |
| lastDeviceTypeValues.push_back( |
| decodeDeviceType(arg.getIdentifierInfo())); |
| }); |
| } |
| |
| void clauseNotImplemented(const OpenACCClause &c) { |
| cgf.cgm.errorNYI(c.getSourceRange(), "OpenACC Clause", c.getClauseKind()); |
| } |
| |
| mlir::Value createIntExpr(const Expr *intExpr) { |
| mlir::Value expr = cgf.emitScalarExpr(intExpr); |
| mlir::Location exprLoc = cgf.cgm.getLoc(intExpr->getBeginLoc()); |
| |
| mlir::IntegerType targetType = mlir::IntegerType::get( |
| &cgf.getMLIRContext(), cgf.getContext().getIntWidth(intExpr->getType()), |
| intExpr->getType()->isSignedIntegerOrEnumerationType() |
| ? mlir::IntegerType::SignednessSemantics::Signed |
| : mlir::IntegerType::SignednessSemantics::Unsigned); |
| |
| auto conversionOp = builder.create<mlir::UnrealizedConversionCastOp>( |
| exprLoc, targetType, expr); |
| return conversionOp.getResult(0); |
| } |
| |
| // 'condition' as an OpenACC grammar production is used for 'if' and (some |
| // variants of) 'self'. It needs to be emitted as a signless-1-bit value, so |
| // this function emits the expression, then sets the unrealized conversion |
| // cast correctly, and returns the completed value. |
| mlir::Value createCondition(const Expr *condExpr) { |
| mlir::Value condition = cgf.evaluateExprAsBool(condExpr); |
| mlir::Location exprLoc = cgf.cgm.getLoc(condExpr->getBeginLoc()); |
| mlir::IntegerType targetType = mlir::IntegerType::get( |
| &cgf.getMLIRContext(), /*width=*/1, |
| mlir::IntegerType::SignednessSemantics::Signless); |
| auto conversionOp = builder.create<mlir::UnrealizedConversionCastOp>( |
| exprLoc, targetType, condition); |
| return conversionOp.getResult(0); |
| } |
| |
| mlir::Value createConstantInt(mlir::Location loc, unsigned width, |
| int64_t value) { |
| mlir::IntegerType ty = mlir::IntegerType::get( |
| &cgf.getMLIRContext(), width, |
| mlir::IntegerType::SignednessSemantics::Signless); |
| auto constOp = builder.create<mlir::arith::ConstantOp>( |
| loc, builder.getIntegerAttr(ty, value)); |
| |
| return constOp.getResult(); |
| } |
| |
| mlir::acc::DeviceType decodeDeviceType(const IdentifierInfo *ii) { |
| // '*' case leaves no identifier-info, just a nullptr. |
| if (!ii) |
| return mlir::acc::DeviceType::Star; |
| return llvm::StringSwitch<mlir::acc::DeviceType>(ii->getName()) |
| .CaseLower("default", mlir::acc::DeviceType::Default) |
| .CaseLower("host", mlir::acc::DeviceType::Host) |
| .CaseLower("multicore", mlir::acc::DeviceType::Multicore) |
| .CasesLower("nvidia", "acc_device_nvidia", |
| mlir::acc::DeviceType::Nvidia) |
| .CaseLower("radeon", mlir::acc::DeviceType::Radeon); |
| } |
| |
| mlir::acc::GangArgType decodeGangType(OpenACCGangKind gk) { |
| switch (gk) { |
| case OpenACCGangKind::Num: |
| return mlir::acc::GangArgType::Num; |
| case OpenACCGangKind::Dim: |
| return mlir::acc::GangArgType::Dim; |
| case OpenACCGangKind::Static: |
| return mlir::acc::GangArgType::Static; |
| } |
| llvm_unreachable("unknown gang kind"); |
| } |
| |
| template <typename U = void, |
| typename = std::enable_if_t<isCombinedType<OpTy>, U>> |
| void applyToLoopOp(const OpenACCClause &c) { |
| mlir::OpBuilder::InsertionGuard guardCase(builder); |
| builder.setInsertionPoint(operation.loopOp); |
| OpenACCClauseCIREmitter<mlir::acc::LoopOp> loopEmitter{ |
| operation.loopOp, cgf, builder, dirKind, dirLoc}; |
| loopEmitter.lastDeviceTypeValues = lastDeviceTypeValues; |
| loopEmitter.Visit(&c); |
| } |
| |
| template <typename U = void, |
| typename = std::enable_if_t<isCombinedType<OpTy>, U>> |
| void applyToComputeOp(const OpenACCClause &c) { |
| mlir::OpBuilder::InsertionGuard guardCase(builder); |
| builder.setInsertionPoint(operation.computeOp); |
| OpenACCClauseCIREmitter<typename OpTy::ComputeOpTy> computeEmitter{ |
| operation.computeOp, cgf, builder, dirKind, dirLoc}; |
| computeEmitter.lastDeviceTypeValues = lastDeviceTypeValues; |
| computeEmitter.Visit(&c); |
| } |
| |
| public: |
| OpenACCClauseCIREmitter(OpTy &operation, CIRGen::CIRGenFunction &cgf, |
| CIRGen::CIRGenBuilderTy &builder, |
| OpenACCDirectiveKind dirKind, SourceLocation dirLoc) |
| : operation(operation), cgf(cgf), builder(builder), dirKind(dirKind), |
| dirLoc(dirLoc) {} |
| |
| void VisitClause(const OpenACCClause &clause) { |
| clauseNotImplemented(clause); |
| } |
| |
| void VisitDefaultClause(const OpenACCDefaultClause &clause) { |
| // This type-trait checks if 'op'(the first arg) is one of the mlir::acc |
| // operations listed in the rest of the arguments. |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, mlir::acc::SerialOp, |
| mlir::acc::KernelsOp, mlir::acc::DataOp>) { |
| switch (clause.getDefaultClauseKind()) { |
| case OpenACCDefaultClauseKind::None: |
| operation.setDefaultAttr(mlir::acc::ClauseDefaultValue::None); |
| break; |
| case OpenACCDefaultClauseKind::Present: |
| operation.setDefaultAttr(mlir::acc::ClauseDefaultValue::Present); |
| break; |
| case OpenACCDefaultClauseKind::Invalid: |
| break; |
| } |
| } else if constexpr (isCombinedType<OpTy>) { |
| applyToComputeOp(clause); |
| } else { |
| llvm_unreachable("Unknown construct kind in VisitDefaultClause"); |
| } |
| } |
| |
| void VisitDeviceTypeClause(const OpenACCDeviceTypeClause &clause) { |
| setLastDeviceTypeClause(clause); |
| |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::InitOp, |
| mlir::acc::ShutdownOp>) { |
| llvm::for_each( |
| clause.getArchitectures(), [this](const DeviceTypeArgument &arg) { |
| operation.addDeviceType(builder.getContext(), |
| decodeDeviceType(arg.getIdentifierInfo())); |
| }); |
| } else if constexpr (isOneOfTypes<OpTy, mlir::acc::SetOp>) { |
| assert(!operation.getDeviceTypeAttr() && "already have device-type?"); |
| assert(clause.getArchitectures().size() <= 1); |
| |
| if (!clause.getArchitectures().empty()) |
| operation.setDeviceType( |
| decodeDeviceType(clause.getArchitectures()[0].getIdentifierInfo())); |
| } else if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, |
| mlir::acc::SerialOp, mlir::acc::KernelsOp, |
| mlir::acc::DataOp, mlir::acc::LoopOp>) { |
| // Nothing to do here, these constructs don't have any IR for these, as |
| // they just modify the other clauses IR. So setting of |
| // `lastDeviceTypeValues` (done above) is all we need. |
| } else if constexpr (isCombinedType<OpTy>) { |
| // Nothing to do here either, combined constructs are just going to use |
| // 'lastDeviceTypeValues' to set the value for the child visitor. |
| } else { |
| // TODO: When we've implemented this for everything, switch this to an |
| // unreachable. update, data, routine constructs remain. |
| return clauseNotImplemented(clause); |
| } |
| } |
| |
| void VisitNumWorkersClause(const OpenACCNumWorkersClause &clause) { |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, |
| mlir::acc::KernelsOp>) { |
| operation.addNumWorkersOperand(builder.getContext(), |
| createIntExpr(clause.getIntExpr()), |
| lastDeviceTypeValues); |
| } else if constexpr (isCombinedType<OpTy>) { |
| applyToComputeOp(clause); |
| } else { |
| llvm_unreachable("Unknown construct kind in VisitNumGangsClause"); |
| } |
| } |
| |
| void VisitVectorLengthClause(const OpenACCVectorLengthClause &clause) { |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, |
| mlir::acc::KernelsOp>) { |
| operation.addVectorLengthOperand(builder.getContext(), |
| createIntExpr(clause.getIntExpr()), |
| lastDeviceTypeValues); |
| } else if constexpr (isCombinedType<OpTy>) { |
| applyToComputeOp(clause); |
| } else { |
| llvm_unreachable("Unknown construct kind in VisitVectorLengthClause"); |
| } |
| } |
| |
| void VisitAsyncClause(const OpenACCAsyncClause &clause) { |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, mlir::acc::SerialOp, |
| mlir::acc::KernelsOp, mlir::acc::DataOp>) { |
| if (!clause.hasIntExpr()) |
| operation.addAsyncOnly(builder.getContext(), lastDeviceTypeValues); |
| else |
| operation.addAsyncOperand(builder.getContext(), |
| createIntExpr(clause.getIntExpr()), |
| lastDeviceTypeValues); |
| } else if constexpr (isOneOfTypes<OpTy, mlir::acc::WaitOp>) { |
| // Wait doesn't have a device_type, so its handling here is slightly |
| // different. |
| if (!clause.hasIntExpr()) |
| operation.setAsync(true); |
| else |
| operation.getAsyncOperandMutable().append( |
| createIntExpr(clause.getIntExpr())); |
| } else if constexpr (isCombinedType<OpTy>) { |
| applyToComputeOp(clause); |
| } else { |
| // TODO: When we've implemented this for everything, switch this to an |
| // unreachable. Combined constructs remain. Data, enter data, exit data, |
| // update constructs remain. |
| return clauseNotImplemented(clause); |
| } |
| } |
| |
| void VisitSelfClause(const OpenACCSelfClause &clause) { |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, mlir::acc::SerialOp, |
| mlir::acc::KernelsOp>) { |
| if (clause.isEmptySelfClause()) { |
| operation.setSelfAttr(true); |
| } else if (clause.isConditionExprClause()) { |
| assert(clause.hasConditionExpr()); |
| operation.getSelfCondMutable().append( |
| createCondition(clause.getConditionExpr())); |
| } else { |
| llvm_unreachable("var-list version of self shouldn't get here"); |
| } |
| } else if constexpr (isCombinedType<OpTy>) { |
| applyToComputeOp(clause); |
| } else { |
| // TODO: When we've implemented this for everything, switch this to an |
| // unreachable. update construct remains. |
| return clauseNotImplemented(clause); |
| } |
| } |
| |
| void VisitIfClause(const OpenACCIfClause &clause) { |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, mlir::acc::SerialOp, |
| mlir::acc::KernelsOp, mlir::acc::InitOp, |
| mlir::acc::ShutdownOp, mlir::acc::SetOp, |
| mlir::acc::DataOp, mlir::acc::WaitOp>) { |
| operation.getIfCondMutable().append( |
| createCondition(clause.getConditionExpr())); |
| } else if constexpr (isCombinedType<OpTy>) { |
| applyToComputeOp(clause); |
| } else { |
| // 'if' applies to most of the constructs, but hold off on lowering them |
| // until we can write tests/know what we're doing with codegen to make |
| // sure we get it right. |
| // TODO: When we've implemented this for everything, switch this to an |
| // unreachable. Enter data, exit data, host_data, update constructs |
| // remain. |
| return clauseNotImplemented(clause); |
| } |
| } |
| |
| void VisitDeviceNumClause(const OpenACCDeviceNumClause &clause) { |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::InitOp, mlir::acc::ShutdownOp, |
| mlir::acc::SetOp>) { |
| operation.getDeviceNumMutable().append( |
| createIntExpr(clause.getIntExpr())); |
| } else { |
| llvm_unreachable( |
| "init, shutdown, set, are only valid device_num constructs"); |
| } |
| } |
| |
| void VisitNumGangsClause(const OpenACCNumGangsClause &clause) { |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, |
| mlir::acc::KernelsOp>) { |
| llvm::SmallVector<mlir::Value> values; |
| for (const Expr *E : clause.getIntExprs()) |
| values.push_back(createIntExpr(E)); |
| |
| operation.addNumGangsOperands(builder.getContext(), values, |
| lastDeviceTypeValues); |
| } else if constexpr (isCombinedType<OpTy>) { |
| applyToComputeOp(clause); |
| } else { |
| llvm_unreachable("Unknown construct kind in VisitNumGangsClause"); |
| } |
| } |
| |
| void VisitWaitClause(const OpenACCWaitClause &clause) { |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::ParallelOp, mlir::acc::SerialOp, |
| mlir::acc::KernelsOp, mlir::acc::DataOp>) { |
| if (!clause.hasExprs()) { |
| operation.addWaitOnly(builder.getContext(), lastDeviceTypeValues); |
| } else { |
| llvm::SmallVector<mlir::Value> values; |
| if (clause.hasDevNumExpr()) |
| values.push_back(createIntExpr(clause.getDevNumExpr())); |
| for (const Expr *E : clause.getQueueIdExprs()) |
| values.push_back(createIntExpr(E)); |
| operation.addWaitOperands(builder.getContext(), clause.hasDevNumExpr(), |
| values, lastDeviceTypeValues); |
| } |
| } else if constexpr (isCombinedType<OpTy>) { |
| applyToComputeOp(clause); |
| } else { |
| // TODO: When we've implemented this for everything, switch this to an |
| // unreachable. Enter data, exit data, update constructs remain. |
| return clauseNotImplemented(clause); |
| } |
| } |
| |
| void VisitDefaultAsyncClause(const OpenACCDefaultAsyncClause &clause) { |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::SetOp>) { |
| operation.getDefaultAsyncMutable().append( |
| createIntExpr(clause.getIntExpr())); |
| } else { |
| llvm_unreachable("set, is only valid device_num constructs"); |
| } |
| } |
| |
| void VisitSeqClause(const OpenACCSeqClause &clause) { |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::LoopOp>) { |
| operation.addSeq(builder.getContext(), lastDeviceTypeValues); |
| } else if constexpr (isCombinedType<OpTy>) { |
| applyToLoopOp(clause); |
| } else { |
| // TODO: When we've implemented this for everything, switch this to an |
| // unreachable. Routine construct remains. |
| return clauseNotImplemented(clause); |
| } |
| } |
| |
| void VisitAutoClause(const OpenACCAutoClause &clause) { |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::LoopOp>) { |
| operation.addAuto(builder.getContext(), lastDeviceTypeValues); |
| } else if constexpr (isCombinedType<OpTy>) { |
| applyToLoopOp(clause); |
| } else { |
| // TODO: When we've implemented this for everything, switch this to an |
| // unreachable. Routine, construct remains. |
| return clauseNotImplemented(clause); |
| } |
| } |
| |
| void VisitIndependentClause(const OpenACCIndependentClause &clause) { |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::LoopOp>) { |
| operation.addIndependent(builder.getContext(), lastDeviceTypeValues); |
| } else if constexpr (isCombinedType<OpTy>) { |
| applyToLoopOp(clause); |
| } else { |
| // TODO: When we've implemented this for everything, switch this to an |
| // unreachable. Routine construct remains. |
| return clauseNotImplemented(clause); |
| } |
| } |
| |
| void VisitCollapseClause(const OpenACCCollapseClause &clause) { |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::LoopOp>) { |
| llvm::APInt value = |
| clause.getIntExpr()->EvaluateKnownConstInt(cgf.cgm.getASTContext()); |
| |
| value = value.sextOrTrunc(64); |
| operation.setCollapseForDeviceTypes(builder.getContext(), |
| lastDeviceTypeValues, value); |
| } else if constexpr (isCombinedType<OpTy>) { |
| applyToLoopOp(clause); |
| } else { |
| llvm_unreachable("Unknown construct kind in VisitCollapseClause"); |
| } |
| } |
| |
| void VisitTileClause(const OpenACCTileClause &clause) { |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::LoopOp>) { |
| llvm::SmallVector<mlir::Value> values; |
| |
| for (const Expr *e : clause.getSizeExprs()) { |
| mlir::Location exprLoc = cgf.cgm.getLoc(e->getBeginLoc()); |
| |
| // We represent the * as -1. Additionally, this is a constant, so we |
| // can always just emit it as 64 bits to avoid having to do any more |
| // work to determine signedness or size. |
| if (isa<OpenACCAsteriskSizeExpr>(e)) { |
| values.push_back(createConstantInt(exprLoc, 64, -1)); |
| } else { |
| llvm::APInt curValue = |
| e->EvaluateKnownConstInt(cgf.cgm.getASTContext()); |
| values.push_back(createConstantInt( |
| exprLoc, 64, curValue.sextOrTrunc(64).getSExtValue())); |
| } |
| } |
| |
| operation.setTileForDeviceTypes(builder.getContext(), |
| lastDeviceTypeValues, values); |
| } else if constexpr (isCombinedType<OpTy>) { |
| applyToLoopOp(clause); |
| } else { |
| llvm_unreachable("Unknown construct kind in VisitTileClause"); |
| } |
| } |
| |
| void VisitWorkerClause(const OpenACCWorkerClause &clause) { |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::LoopOp>) { |
| if (clause.hasIntExpr()) |
| operation.addWorkerNumOperand(builder.getContext(), |
| createIntExpr(clause.getIntExpr()), |
| lastDeviceTypeValues); |
| else |
| operation.addEmptyWorker(builder.getContext(), lastDeviceTypeValues); |
| |
| } else if constexpr (isCombinedType<OpTy>) { |
| applyToLoopOp(clause); |
| } else { |
| // TODO: When we've implemented this for everything, switch this to an |
| // unreachable. Combined constructs remain. |
| return clauseNotImplemented(clause); |
| } |
| } |
| |
| void VisitVectorClause(const OpenACCVectorClause &clause) { |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::LoopOp>) { |
| if (clause.hasIntExpr()) |
| operation.addVectorOperand(builder.getContext(), |
| createIntExpr(clause.getIntExpr()), |
| lastDeviceTypeValues); |
| else |
| operation.addEmptyVector(builder.getContext(), lastDeviceTypeValues); |
| |
| } else if constexpr (isCombinedType<OpTy>) { |
| applyToLoopOp(clause); |
| } else { |
| // TODO: When we've implemented this for everything, switch this to an |
| // unreachable. Combined constructs remain. |
| return clauseNotImplemented(clause); |
| } |
| } |
| |
| void VisitGangClause(const OpenACCGangClause &clause) { |
| if constexpr (isOneOfTypes<OpTy, mlir::acc::LoopOp>) { |
| if (clause.getNumExprs() == 0) { |
| operation.addEmptyGang(builder.getContext(), lastDeviceTypeValues); |
| } else { |
| llvm::SmallVector<mlir::Value> values; |
| llvm::SmallVector<mlir::acc::GangArgType> argTypes; |
| for (unsigned i : llvm::index_range(0u, clause.getNumExprs())) { |
| auto [kind, expr] = clause.getExpr(i); |
| mlir::Location exprLoc = cgf.cgm.getLoc(expr->getBeginLoc()); |
| argTypes.push_back(decodeGangType(kind)); |
| if (kind == OpenACCGangKind::Dim) { |
| llvm::APInt curValue = |
| expr->EvaluateKnownConstInt(cgf.cgm.getASTContext()); |
| // The value is 1, 2, or 3, but the type isn't necessarily smaller |
| // than 64. |
| curValue = curValue.sextOrTrunc(64); |
| values.push_back( |
| createConstantInt(exprLoc, 64, curValue.getSExtValue())); |
| } else if (isa<OpenACCAsteriskSizeExpr>(expr)) { |
| values.push_back(createConstantInt(exprLoc, 64, -1)); |
| } else { |
| values.push_back(createIntExpr(expr)); |
| } |
| } |
| |
| operation.addGangOperands(builder.getContext(), lastDeviceTypeValues, |
| argTypes, values); |
| } |
| } else if constexpr (isCombinedType<OpTy>) { |
| applyToLoopOp(clause); |
| } else { |
| llvm_unreachable("Unknown construct kind in VisitGangClause"); |
| } |
| } |
| }; |
| |
| template <typename OpTy> |
| auto makeClauseEmitter(OpTy &op, CIRGen::CIRGenFunction &cgf, |
| CIRGen::CIRGenBuilderTy &builder, |
| OpenACCDirectiveKind dirKind, SourceLocation dirLoc) { |
| return OpenACCClauseCIREmitter<OpTy>(op, cgf, builder, dirKind, dirLoc); |
| } |
| |
| } // namespace clang |