| //===----------------------------------------------------------------------===// |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "RISCVISelLowering.h" |
| #include "RISCVSelectionDAGInfo.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/AsmParser/Parser.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/MC/TargetRegistry.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/SourceMgr.h" |
| #include "llvm/Support/TargetSelect.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "gtest/gtest.h" |
| |
| namespace llvm { |
| |
| class RISCVSelectionDAGTest : public testing::Test { |
| |
| protected: |
| static void SetUpTestCase() { |
| LLVMInitializeRISCVTargetInfo(); |
| LLVMInitializeRISCVTarget(); |
| LLVMInitializeRISCVTargetMC(); |
| } |
| |
| void SetUp() override { |
| StringRef Assembly = "define void @f() { ret void }"; |
| |
| Triple TargetTriple("riscv64", "unknown", "linux"); |
| |
| std::string Error; |
| const Target *T = TargetRegistry::lookupTarget("", TargetTriple, Error); |
| |
| TargetOptions Options; |
| TM = std::unique_ptr<TargetMachine>(T->createTargetMachine( |
| TargetTriple, "generic", "", Options, std::nullopt, std::nullopt, |
| CodeGenOptLevel::Default)); |
| |
| SMDiagnostic SMError; |
| M = parseAssemblyString(Assembly, SMError, Context); |
| if (!M) |
| report_fatal_error(SMError.getMessage()); |
| M->setDataLayout(TM->createDataLayout()); |
| |
| F = M->getFunction("f"); |
| if (!F) |
| report_fatal_error("Function 'f' not found"); |
| |
| MachineModuleInfo MMI(TM.get()); |
| |
| MF = std::make_unique<MachineFunction>(*F, *TM, *TM->getSubtargetImpl(*F), |
| MMI.getContext(), /*FunctionNum*/ 0); |
| |
| DAG = std::make_unique<SelectionDAG>(*TM, CodeGenOptLevel::None); |
| if (!DAG) |
| report_fatal_error("SelectionDAG allocation failed"); |
| |
| OptimizationRemarkEmitter ORE(F); |
| DAG->init(*MF, ORE, /*LibInfo*/ nullptr, /*AA*/ nullptr, |
| /*AC*/ nullptr, /*MDT*/ nullptr, /*MSDT*/ nullptr, MMI, nullptr); |
| } |
| |
| LLVMContext Context; |
| std::unique_ptr<TargetMachine> TM; |
| std::unique_ptr<Module> M; |
| Function *F = nullptr; |
| std::unique_ptr<MachineFunction> MF; |
| std::unique_ptr<SelectionDAG> DAG; |
| }; |
| |
| /// SRLW: Logical Shift Right |
| TEST_F(RISCVSelectionDAGTest, computeKnownBits_SRLW) { |
| // Given the following IR snippet: |
| // define i64 @f(i32 %x, i32 %y) { |
| // %a = and i32 %x, 2147483647 ; zeros the MSB for %x |
| // %b = lshr i32 %a, %y |
| // %c = zext i32 %b to i64 ; makes the most significant 32 bits 0 |
| // ret i64 %c |
| // } |
| // The Optimized SelectionDAG as show by llc -mtriple="riscv64" |
| // -debug-only=isel-dump is: |
| // t0: ch,glue = EntryToken |
| // t2: i64,ch = CopyFromReg t0, Register:i64 %0 |
| // t18: i64 = and t2, Constant:i64<2147483647> |
| // t4: i64,ch = CopyFromReg t0, Register:i64 %1 |
| // t20: i64 = RISCVISD::SRLW t18, t4 |
| // t22: i64 = and t20, Constant:i64<4294967295> |
| // t13: ch,glue = CopyToReg t0, Register:i64 $x10, t22 |
| // t14: ch = RISCVISD::RET_GLUE t13, Register:i64 $x10, t13:1 |
| // |
| // The DAG created below is derived from this |
| SDLoc Loc; |
| auto Int64VT = EVT::getIntegerVT(Context, 64); |
| auto Px = DAG->getRegister(0, Int64VT); |
| auto Py = DAG->getConstant(2147483647, Loc, Int64VT); |
| auto N1 = DAG->getNode(ISD::AND, Loc, Int64VT, Px, Py); |
| auto Qx = DAG->getRegister(0, Int64VT); |
| auto N2 = DAG->getNode(RISCVISD::SRLW, Loc, Int64VT, N1, Qx); |
| auto Py2 = DAG->getConstant(4294967295, Loc, Int64VT); |
| auto N3 = DAG->getNode(ISD::AND, Loc, Int64VT, N2, Py2); |
| // N1 = Px & 0x7FFFFFFF |
| // The first AND ensures that the input to the shift has bit 31 cleared. |
| // This means bits [63:31] of N1 are known to be zero. |
| // |
| // N2 = SRLW N1, Qx |
| // SRLW performs a 32-bit logical right shift and then sign-extends the |
| // 32-bit result to 64 bits. Because we know N1's bit 31 is 0, the |
| // 32-bit result of the shift will also have its sign bit (bit 31) as 0. |
| // Therefore, the sign-extension is guaranteed to be a zero-extension. |
| // |
| // N3 = N2 & 0xFFFFFFFF |
| // This second AND is part of the canonical pattern to clear the upper |
| // 32 bits, explicitly performing the zero-extension. From a KnownBits |
| // perspective, it's redundant, as N2's upper bits are already known zero. |
| // |
| // As a result, for N3, we know the upper 32 bits are zero (from the effective |
| // zero-extension) and we also know bit 31 is zero (from the initial AND). |
| // This gives us 33 known most-significant zero bits. |
| KnownBits Known = DAG->computeKnownBits(N3); |
| EXPECT_EQ(Known.Zero, APInt(64, -2147483648)); |
| EXPECT_EQ(Known.One, APInt(64, 0)); |
| } |
| |
| } // end namespace llvm |