|  | //===-------- llvm/unittest/CodeGen/ScalableVectorMVTsTest.cpp ------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/ValueTypes.h" | 
|  | #include "llvm/CodeGenTypes/MachineValueType.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/Support/TypeSize.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | TEST(ScalableVectorMVTsTest, IntegerMVTs) { | 
|  | for (MVT VecTy : MVT::integer_scalable_vector_valuetypes()) { | 
|  | ASSERT_TRUE(VecTy.isValid()); | 
|  | ASSERT_TRUE(VecTy.isInteger()); | 
|  | ASSERT_TRUE(VecTy.isVector()); | 
|  | ASSERT_TRUE(VecTy.isScalableVector()); | 
|  | ASSERT_TRUE(VecTy.getScalarType().isValid()); | 
|  |  | 
|  | ASSERT_FALSE(VecTy.isFloatingPoint()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ScalableVectorMVTsTest, FloatMVTs) { | 
|  | for (MVT VecTy : MVT::fp_scalable_vector_valuetypes()) { | 
|  | ASSERT_TRUE(VecTy.isValid()); | 
|  | ASSERT_TRUE(VecTy.isFloatingPoint()); | 
|  | ASSERT_TRUE(VecTy.isVector()); | 
|  | ASSERT_TRUE(VecTy.isScalableVector()); | 
|  | ASSERT_TRUE(VecTy.getScalarType().isValid()); | 
|  |  | 
|  | ASSERT_FALSE(VecTy.isInteger()); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(ScalableVectorMVTsTest, HelperFuncs) { | 
|  | LLVMContext Ctx; | 
|  |  | 
|  | // Create with scalable flag | 
|  | EVT Vnx4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/true); | 
|  | ASSERT_TRUE(Vnx4i32.isScalableVector()); | 
|  |  | 
|  | // Create with separate llvm::ElementCount | 
|  | auto EltCnt = ElementCount::getScalable(2); | 
|  | EVT Vnx2i32 = EVT::getVectorVT(Ctx, MVT::i32, EltCnt); | 
|  | ASSERT_TRUE(Vnx2i32.isScalableVector()); | 
|  |  | 
|  | // Create with inline llvm::ElementCount | 
|  | EVT Vnx2i64 = EVT::getVectorVT(Ctx, MVT::i64, ElementCount::getScalable(2)); | 
|  | ASSERT_TRUE(Vnx2i64.isScalableVector()); | 
|  |  | 
|  | // Check that changing scalar types/element count works | 
|  | EXPECT_EQ(Vnx2i32.widenIntegerVectorElementType(Ctx), Vnx2i64); | 
|  | EXPECT_EQ(Vnx4i32.getHalfNumVectorElementsVT(Ctx), Vnx2i32); | 
|  |  | 
|  | // Check that operators work | 
|  | EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt * 2), MVT::nxv4i64); | 
|  | EXPECT_EQ(EVT::getVectorVT(Ctx, MVT::i64, EltCnt.divideCoefficientBy(2)), | 
|  | MVT::nxv1i64); | 
|  |  | 
|  | // Check that float->int conversion works | 
|  | EVT Vnx2f64 = EVT::getVectorVT(Ctx, MVT::f64, ElementCount::getScalable(2)); | 
|  | EXPECT_EQ(Vnx2f64.changeTypeToInteger(), Vnx2i64); | 
|  |  | 
|  | // Check fields inside llvm::ElementCount | 
|  | EltCnt = Vnx4i32.getVectorElementCount(); | 
|  | EXPECT_EQ(EltCnt.getKnownMinValue(), 4U); | 
|  | ASSERT_TRUE(EltCnt.isScalable()); | 
|  |  | 
|  | // Check that fixed-length vector types aren't scalable. | 
|  | EVT V8i32 = EVT::getVectorVT(Ctx, MVT::i32, 8); | 
|  | ASSERT_FALSE(V8i32.isScalableVector()); | 
|  | EVT V4f64 = EVT::getVectorVT(Ctx, MVT::f64, ElementCount::getFixed(4)); | 
|  | ASSERT_FALSE(V4f64.isScalableVector()); | 
|  |  | 
|  | // Check that llvm::ElementCount works for fixed-length types. | 
|  | EltCnt = V8i32.getVectorElementCount(); | 
|  | EXPECT_EQ(EltCnt.getKnownMinValue(), 8U); | 
|  | ASSERT_FALSE(EltCnt.isScalable()); | 
|  | } | 
|  |  | 
|  | TEST(ScalableVectorMVTsTest, IRToVTTranslation) { | 
|  | LLVMContext Ctx; | 
|  |  | 
|  | Type *Int64Ty = Type::getInt64Ty(Ctx); | 
|  | VectorType *ScV8Int64Ty = | 
|  | VectorType::get(Int64Ty, ElementCount::getScalable(8)); | 
|  |  | 
|  | // Check that we can map a scalable IR type to an MVT | 
|  | MVT Mnxv8i64 = MVT::getVT(ScV8Int64Ty); | 
|  | ASSERT_TRUE(Mnxv8i64.isScalableVector()); | 
|  | ASSERT_EQ(ScV8Int64Ty->getElementCount(), Mnxv8i64.getVectorElementCount()); | 
|  | ASSERT_EQ(MVT::getVT(ScV8Int64Ty->getElementType()), | 
|  | Mnxv8i64.getScalarType()); | 
|  |  | 
|  | // Check that we can map a scalable IR type to an EVT | 
|  | EVT Enxv8i64 = EVT::getEVT(ScV8Int64Ty); | 
|  | ASSERT_TRUE(Enxv8i64.isScalableVector()); | 
|  | ASSERT_EQ(ScV8Int64Ty->getElementCount(), Enxv8i64.getVectorElementCount()); | 
|  | ASSERT_EQ(EVT::getEVT(ScV8Int64Ty->getElementType()), | 
|  | Enxv8i64.getScalarType()); | 
|  | } | 
|  |  | 
|  | TEST(ScalableVectorMVTsTest, VTToIRTranslation) { | 
|  | LLVMContext Ctx; | 
|  |  | 
|  | EVT Enxv4f64 = EVT::getVectorVT(Ctx, MVT::f64, ElementCount::getScalable(4)); | 
|  |  | 
|  | Type *Ty = Enxv4f64.getTypeForEVT(Ctx); | 
|  | VectorType *ScV4Float64Ty = cast<VectorType>(Ty); | 
|  | ASSERT_TRUE(isa<ScalableVectorType>(ScV4Float64Ty)); | 
|  | ASSERT_EQ(Enxv4f64.getVectorElementCount(), ScV4Float64Ty->getElementCount()); | 
|  | ASSERT_EQ(Enxv4f64.getScalarType().getTypeForEVT(Ctx), | 
|  | ScV4Float64Ty->getElementType()); | 
|  | } | 
|  |  | 
|  | TEST(ScalableVectorMVTsTest, SizeQueries) { | 
|  | LLVMContext Ctx; | 
|  |  | 
|  | EVT nxv4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4, /*Scalable=*/ true); | 
|  | EVT nxv2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2, /*Scalable=*/ true); | 
|  | EVT nxv2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2, /*Scalable=*/ true); | 
|  | EVT nxv2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2, /*Scalable=*/ true); | 
|  |  | 
|  | EVT v4i32 = EVT::getVectorVT(Ctx, MVT::i32, 4); | 
|  | EVT v2i32 = EVT::getVectorVT(Ctx, MVT::i32, 2); | 
|  | EVT v2i64 = EVT::getVectorVT(Ctx, MVT::i64, 2); | 
|  | EVT v2f64 = EVT::getVectorVT(Ctx, MVT::f64, 2); | 
|  |  | 
|  | EVT nxv5i32 = EVT::getVectorVT(Ctx, MVT::i32, 5, /*Scalable=*/true); | 
|  | ASSERT_FALSE(nxv5i32.is16BitVector()); | 
|  | ASSERT_FALSE(nxv5i32.is32BitVector()); | 
|  | ASSERT_FALSE(nxv5i32.is64BitVector()); | 
|  | ASSERT_FALSE(nxv5i32.is128BitVector()); | 
|  | ASSERT_FALSE(nxv5i32.is256BitVector()); | 
|  | ASSERT_FALSE(nxv5i32.is512BitVector()); | 
|  | ASSERT_FALSE(nxv5i32.is1024BitVector()); | 
|  | ASSERT_FALSE(nxv5i32.is2048BitVector()); | 
|  |  | 
|  | // Check equivalence and ordering on scalable types. | 
|  | EXPECT_EQ(nxv4i32.getSizeInBits(), nxv2i64.getSizeInBits()); | 
|  | EXPECT_EQ(nxv2f64.getSizeInBits(), nxv2i64.getSizeInBits()); | 
|  | EXPECT_NE(nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits()); | 
|  | EXPECT_LT(nxv2i32.getSizeInBits().getKnownMinValue(), | 
|  | nxv2i64.getSizeInBits().getKnownMinValue()); | 
|  | EXPECT_LE(nxv4i32.getSizeInBits().getKnownMinValue(), | 
|  | nxv2i64.getSizeInBits().getKnownMinValue()); | 
|  | EXPECT_GT(nxv4i32.getSizeInBits().getKnownMinValue(), | 
|  | nxv2i32.getSizeInBits().getKnownMinValue()); | 
|  | EXPECT_GE(nxv2i64.getSizeInBits().getKnownMinValue(), | 
|  | nxv4i32.getSizeInBits().getKnownMinValue()); | 
|  |  | 
|  | // Check equivalence and ordering on fixed types. | 
|  | EXPECT_EQ(v4i32.getSizeInBits(), v2i64.getSizeInBits()); | 
|  | EXPECT_EQ(v2f64.getSizeInBits(), v2i64.getSizeInBits()); | 
|  | EXPECT_NE(v2i32.getSizeInBits(), v4i32.getSizeInBits()); | 
|  | EXPECT_LT(v2i32.getFixedSizeInBits(), v2i64.getFixedSizeInBits()); | 
|  | EXPECT_LE(v4i32.getFixedSizeInBits(), v2i64.getFixedSizeInBits()); | 
|  | EXPECT_GT(v4i32.getFixedSizeInBits(), v2i32.getFixedSizeInBits()); | 
|  | EXPECT_GE(v2i64.getFixedSizeInBits(), v4i32.getFixedSizeInBits()); | 
|  |  | 
|  | // Check that scalable and non-scalable types with the same minimum size | 
|  | // are not considered equal. | 
|  | ASSERT_TRUE(v4i32.getSizeInBits() != nxv4i32.getSizeInBits()); | 
|  | ASSERT_FALSE(v2i64.getSizeInBits() == nxv2f64.getSizeInBits()); | 
|  |  | 
|  | // Check that we can obtain a known-exact size from a non-scalable type. | 
|  | EXPECT_EQ(v4i32.getFixedSizeInBits(), 128U); | 
|  | EXPECT_EQ(v2i64.getFixedSizeInBits(), 128U); | 
|  |  | 
|  | // Check that we can query the known minimum size for both scalable and | 
|  | // fixed length types. | 
|  | EXPECT_EQ(nxv2i32.getSizeInBits().getKnownMinValue(), 64U); | 
|  | EXPECT_EQ(nxv2f64.getSizeInBits().getKnownMinValue(), 128U); | 
|  | EXPECT_EQ(v2i32.getSizeInBits().getKnownMinValue(), | 
|  | nxv2i32.getSizeInBits().getKnownMinValue()); | 
|  |  | 
|  | // Check scalable property. | 
|  | ASSERT_FALSE(v4i32.getSizeInBits().isScalable()); | 
|  | ASSERT_TRUE(nxv4i32.getSizeInBits().isScalable()); | 
|  |  | 
|  | // Check convenience size scaling methods. | 
|  | EXPECT_EQ(v2i32.getSizeInBits() * 2, v4i32.getSizeInBits()); | 
|  | EXPECT_EQ(2 * nxv2i32.getSizeInBits(), nxv4i32.getSizeInBits()); | 
|  | EXPECT_EQ(nxv2f64.getSizeInBits().divideCoefficientBy(2), | 
|  | nxv2i32.getSizeInBits()); | 
|  | } | 
|  |  | 
|  | } // end anonymous namespace |