| //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the Expr constant evaluator. |
| // |
| // Constant expression evaluation produces four main results: |
| // |
| // * A success/failure flag indicating whether constant folding was successful. |
| // This is the 'bool' return value used by most of the code in this file. A |
| // 'false' return value indicates that constant folding has failed, and any |
| // appropriate diagnostic has already been produced. |
| // |
| // * An evaluated result, valid only if constant folding has not failed. |
| // |
| // * A flag indicating if evaluation encountered (unevaluated) side-effects. |
| // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1), |
| // where it is possible to determine the evaluated result regardless. |
| // |
| // * A set of notes indicating why the evaluation was not a constant expression |
| // (under the C++11 / C++1y rules only, at the moment), or, if folding failed |
| // too, why the expression could not be folded. |
| // |
| // If we are checking for a potential constant expression, failure to constant |
| // fold a potential constant sub-expression will be indicated by a 'false' |
| // return value (the expression could not be folded) and no diagnostic (the |
| // expression is not necessarily non-constant). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ByteCode/Context.h" |
| #include "ByteCode/Frame.h" |
| #include "ByteCode/State.h" |
| #include "ExprConstShared.h" |
| #include "clang/AST/APValue.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTDiagnostic.h" |
| #include "clang/AST/ASTLambda.h" |
| #include "clang/AST/Attr.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/CurrentSourceLocExprScope.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/OSLog.h" |
| #include "clang/AST/OptionalDiagnostic.h" |
| #include "clang/AST/RecordLayout.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/DiagnosticSema.h" |
| #include "clang/Basic/TargetBuiltins.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/APFixedPoint.h" |
| #include "llvm/ADT/Sequence.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/SaveAndRestore.h" |
| #include "llvm/Support/SipHash.h" |
| #include "llvm/Support/TimeProfiler.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cstring> |
| #include <functional> |
| #include <optional> |
| |
| #define DEBUG_TYPE "exprconstant" |
| |
| using namespace clang; |
| using llvm::APFixedPoint; |
| using llvm::APInt; |
| using llvm::APSInt; |
| using llvm::APFloat; |
| using llvm::FixedPointSemantics; |
| |
| namespace { |
| struct LValue; |
| class CallStackFrame; |
| class EvalInfo; |
| |
| using SourceLocExprScopeGuard = |
| CurrentSourceLocExprScope::SourceLocExprScopeGuard; |
| |
| static QualType getType(APValue::LValueBase B) { |
| return B.getType(); |
| } |
| |
| /// Get an LValue path entry, which is known to not be an array index, as a |
| /// field declaration. |
| static const FieldDecl *getAsField(APValue::LValuePathEntry E) { |
| return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer()); |
| } |
| /// Get an LValue path entry, which is known to not be an array index, as a |
| /// base class declaration. |
| static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) { |
| return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()); |
| } |
| /// Determine whether this LValue path entry for a base class names a virtual |
| /// base class. |
| static bool isVirtualBaseClass(APValue::LValuePathEntry E) { |
| return E.getAsBaseOrMember().getInt(); |
| } |
| |
| /// Given an expression, determine the type used to store the result of |
| /// evaluating that expression. |
| static QualType getStorageType(const ASTContext &Ctx, const Expr *E) { |
| if (E->isPRValue()) |
| return E->getType(); |
| return Ctx.getLValueReferenceType(E->getType()); |
| } |
| |
| /// Given a CallExpr, try to get the alloc_size attribute. May return null. |
| static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) { |
| if (const FunctionDecl *DirectCallee = CE->getDirectCallee()) |
| return DirectCallee->getAttr<AllocSizeAttr>(); |
| if (const Decl *IndirectCallee = CE->getCalleeDecl()) |
| return IndirectCallee->getAttr<AllocSizeAttr>(); |
| return nullptr; |
| } |
| |
| /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr. |
| /// This will look through a single cast. |
| /// |
| /// Returns null if we couldn't unwrap a function with alloc_size. |
| static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) { |
| if (!E->getType()->isPointerType()) |
| return nullptr; |
| |
| E = E->IgnoreParens(); |
| // If we're doing a variable assignment from e.g. malloc(N), there will |
| // probably be a cast of some kind. In exotic cases, we might also see a |
| // top-level ExprWithCleanups. Ignore them either way. |
| if (const auto *FE = dyn_cast<FullExpr>(E)) |
| E = FE->getSubExpr()->IgnoreParens(); |
| |
| if (const auto *Cast = dyn_cast<CastExpr>(E)) |
| E = Cast->getSubExpr()->IgnoreParens(); |
| |
| if (const auto *CE = dyn_cast<CallExpr>(E)) |
| return getAllocSizeAttr(CE) ? CE : nullptr; |
| return nullptr; |
| } |
| |
| /// Determines whether or not the given Base contains a call to a function |
| /// with the alloc_size attribute. |
| static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) { |
| const auto *E = Base.dyn_cast<const Expr *>(); |
| return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E); |
| } |
| |
| /// Determines whether the given kind of constant expression is only ever |
| /// used for name mangling. If so, it's permitted to reference things that we |
| /// can't generate code for (in particular, dllimported functions). |
| static bool isForManglingOnly(ConstantExprKind Kind) { |
| switch (Kind) { |
| case ConstantExprKind::Normal: |
| case ConstantExprKind::ClassTemplateArgument: |
| case ConstantExprKind::ImmediateInvocation: |
| // Note that non-type template arguments of class type are emitted as |
| // template parameter objects. |
| return false; |
| |
| case ConstantExprKind::NonClassTemplateArgument: |
| return true; |
| } |
| llvm_unreachable("unknown ConstantExprKind"); |
| } |
| |
| static bool isTemplateArgument(ConstantExprKind Kind) { |
| switch (Kind) { |
| case ConstantExprKind::Normal: |
| case ConstantExprKind::ImmediateInvocation: |
| return false; |
| |
| case ConstantExprKind::ClassTemplateArgument: |
| case ConstantExprKind::NonClassTemplateArgument: |
| return true; |
| } |
| llvm_unreachable("unknown ConstantExprKind"); |
| } |
| |
| /// The bound to claim that an array of unknown bound has. |
| /// The value in MostDerivedArraySize is undefined in this case. So, set it |
| /// to an arbitrary value that's likely to loudly break things if it's used. |
| static const uint64_t AssumedSizeForUnsizedArray = |
| std::numeric_limits<uint64_t>::max() / 2; |
| |
| /// Determines if an LValue with the given LValueBase will have an unsized |
| /// array in its designator. |
| /// Find the path length and type of the most-derived subobject in the given |
| /// path, and find the size of the containing array, if any. |
| static unsigned |
| findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base, |
| ArrayRef<APValue::LValuePathEntry> Path, |
| uint64_t &ArraySize, QualType &Type, bool &IsArray, |
| bool &FirstEntryIsUnsizedArray) { |
| // This only accepts LValueBases from APValues, and APValues don't support |
| // arrays that lack size info. |
| assert(!isBaseAnAllocSizeCall(Base) && |
| "Unsized arrays shouldn't appear here"); |
| unsigned MostDerivedLength = 0; |
| Type = getType(Base); |
| |
| for (unsigned I = 0, N = Path.size(); I != N; ++I) { |
| if (Type->isArrayType()) { |
| const ArrayType *AT = Ctx.getAsArrayType(Type); |
| Type = AT->getElementType(); |
| MostDerivedLength = I + 1; |
| IsArray = true; |
| |
| if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) { |
| ArraySize = CAT->getZExtSize(); |
| } else { |
| assert(I == 0 && "unexpected unsized array designator"); |
| FirstEntryIsUnsizedArray = true; |
| ArraySize = AssumedSizeForUnsizedArray; |
| } |
| } else if (Type->isAnyComplexType()) { |
| const ComplexType *CT = Type->castAs<ComplexType>(); |
| Type = CT->getElementType(); |
| ArraySize = 2; |
| MostDerivedLength = I + 1; |
| IsArray = true; |
| } else if (const auto *VT = Type->getAs<VectorType>()) { |
| Type = VT->getElementType(); |
| ArraySize = VT->getNumElements(); |
| MostDerivedLength = I + 1; |
| IsArray = true; |
| } else if (const FieldDecl *FD = getAsField(Path[I])) { |
| Type = FD->getType(); |
| ArraySize = 0; |
| MostDerivedLength = I + 1; |
| IsArray = false; |
| } else { |
| // Path[I] describes a base class. |
| ArraySize = 0; |
| IsArray = false; |
| } |
| } |
| return MostDerivedLength; |
| } |
| |
| /// A path from a glvalue to a subobject of that glvalue. |
| struct SubobjectDesignator { |
| /// True if the subobject was named in a manner not supported by C++11. Such |
| /// lvalues can still be folded, but they are not core constant expressions |
| /// and we cannot perform lvalue-to-rvalue conversions on them. |
| LLVM_PREFERRED_TYPE(bool) |
| unsigned Invalid : 1; |
| |
| /// Is this a pointer one past the end of an object? |
| LLVM_PREFERRED_TYPE(bool) |
| unsigned IsOnePastTheEnd : 1; |
| |
| /// Indicator of whether the first entry is an unsized array. |
| LLVM_PREFERRED_TYPE(bool) |
| unsigned FirstEntryIsAnUnsizedArray : 1; |
| |
| /// Indicator of whether the most-derived object is an array element. |
| LLVM_PREFERRED_TYPE(bool) |
| unsigned MostDerivedIsArrayElement : 1; |
| |
| /// The length of the path to the most-derived object of which this is a |
| /// subobject. |
| unsigned MostDerivedPathLength : 28; |
| |
| /// The size of the array of which the most-derived object is an element. |
| /// This will always be 0 if the most-derived object is not an array |
| /// element. 0 is not an indicator of whether or not the most-derived object |
| /// is an array, however, because 0-length arrays are allowed. |
| /// |
| /// If the current array is an unsized array, the value of this is |
| /// undefined. |
| uint64_t MostDerivedArraySize; |
| /// The type of the most derived object referred to by this address. |
| QualType MostDerivedType; |
| |
| typedef APValue::LValuePathEntry PathEntry; |
| |
| /// The entries on the path from the glvalue to the designated subobject. |
| SmallVector<PathEntry, 8> Entries; |
| |
| SubobjectDesignator() : Invalid(true) {} |
| |
| explicit SubobjectDesignator(QualType T) |
| : Invalid(false), IsOnePastTheEnd(false), |
| FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), |
| MostDerivedPathLength(0), MostDerivedArraySize(0), |
| MostDerivedType(T) {} |
| |
| SubobjectDesignator(ASTContext &Ctx, const APValue &V) |
| : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false), |
| FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), |
| MostDerivedPathLength(0), MostDerivedArraySize(0) { |
| assert(V.isLValue() && "Non-LValue used to make an LValue designator?"); |
| if (!Invalid) { |
| IsOnePastTheEnd = V.isLValueOnePastTheEnd(); |
| ArrayRef<PathEntry> VEntries = V.getLValuePath(); |
| Entries.insert(Entries.end(), VEntries.begin(), VEntries.end()); |
| if (V.getLValueBase()) { |
| bool IsArray = false; |
| bool FirstIsUnsizedArray = false; |
| MostDerivedPathLength = findMostDerivedSubobject( |
| Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize, |
| MostDerivedType, IsArray, FirstIsUnsizedArray); |
| MostDerivedIsArrayElement = IsArray; |
| FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; |
| } |
| } |
| } |
| |
| void truncate(ASTContext &Ctx, APValue::LValueBase Base, |
| unsigned NewLength) { |
| if (Invalid) |
| return; |
| |
| assert(Base && "cannot truncate path for null pointer"); |
| assert(NewLength <= Entries.size() && "not a truncation"); |
| |
| if (NewLength == Entries.size()) |
| return; |
| Entries.resize(NewLength); |
| |
| bool IsArray = false; |
| bool FirstIsUnsizedArray = false; |
| MostDerivedPathLength = findMostDerivedSubobject( |
| Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray, |
| FirstIsUnsizedArray); |
| MostDerivedIsArrayElement = IsArray; |
| FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; |
| } |
| |
| void setInvalid() { |
| Invalid = true; |
| Entries.clear(); |
| } |
| |
| /// Determine whether the most derived subobject is an array without a |
| /// known bound. |
| bool isMostDerivedAnUnsizedArray() const { |
| assert(!Invalid && "Calling this makes no sense on invalid designators"); |
| return Entries.size() == 1 && FirstEntryIsAnUnsizedArray; |
| } |
| |
| /// Determine what the most derived array's size is. Results in an assertion |
| /// failure if the most derived array lacks a size. |
| uint64_t getMostDerivedArraySize() const { |
| assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size"); |
| return MostDerivedArraySize; |
| } |
| |
| /// Determine whether this is a one-past-the-end pointer. |
| bool isOnePastTheEnd() const { |
| assert(!Invalid); |
| if (IsOnePastTheEnd) |
| return true; |
| if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement && |
| Entries[MostDerivedPathLength - 1].getAsArrayIndex() == |
| MostDerivedArraySize) |
| return true; |
| return false; |
| } |
| |
| /// Get the range of valid index adjustments in the form |
| /// {maximum value that can be subtracted from this pointer, |
| /// maximum value that can be added to this pointer} |
| std::pair<uint64_t, uint64_t> validIndexAdjustments() { |
| if (Invalid || isMostDerivedAnUnsizedArray()) |
| return {0, 0}; |
| |
| // [expr.add]p4: For the purposes of these operators, a pointer to a |
| // nonarray object behaves the same as a pointer to the first element of |
| // an array of length one with the type of the object as its element type. |
| bool IsArray = MostDerivedPathLength == Entries.size() && |
| MostDerivedIsArrayElement; |
| uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() |
| : (uint64_t)IsOnePastTheEnd; |
| uint64_t ArraySize = |
| IsArray ? getMostDerivedArraySize() : (uint64_t)1; |
| return {ArrayIndex, ArraySize - ArrayIndex}; |
| } |
| |
| /// Check that this refers to a valid subobject. |
| bool isValidSubobject() const { |
| if (Invalid) |
| return false; |
| return !isOnePastTheEnd(); |
| } |
| /// Check that this refers to a valid subobject, and if not, produce a |
| /// relevant diagnostic and set the designator as invalid. |
| bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK); |
| |
| /// Get the type of the designated object. |
| QualType getType(ASTContext &Ctx) const { |
| assert(!Invalid && "invalid designator has no subobject type"); |
| return MostDerivedPathLength == Entries.size() |
| ? MostDerivedType |
| : Ctx.getRecordType(getAsBaseClass(Entries.back())); |
| } |
| |
| /// Update this designator to refer to the first element within this array. |
| void addArrayUnchecked(const ConstantArrayType *CAT) { |
| Entries.push_back(PathEntry::ArrayIndex(0)); |
| |
| // This is a most-derived object. |
| MostDerivedType = CAT->getElementType(); |
| MostDerivedIsArrayElement = true; |
| MostDerivedArraySize = CAT->getZExtSize(); |
| MostDerivedPathLength = Entries.size(); |
| } |
| /// Update this designator to refer to the first element within the array of |
| /// elements of type T. This is an array of unknown size. |
| void addUnsizedArrayUnchecked(QualType ElemTy) { |
| Entries.push_back(PathEntry::ArrayIndex(0)); |
| |
| MostDerivedType = ElemTy; |
| MostDerivedIsArrayElement = true; |
| // The value in MostDerivedArraySize is undefined in this case. So, set it |
| // to an arbitrary value that's likely to loudly break things if it's |
| // used. |
| MostDerivedArraySize = AssumedSizeForUnsizedArray; |
| MostDerivedPathLength = Entries.size(); |
| } |
| /// Update this designator to refer to the given base or member of this |
| /// object. |
| void addDeclUnchecked(const Decl *D, bool Virtual = false) { |
| Entries.push_back(APValue::BaseOrMemberType(D, Virtual)); |
| |
| // If this isn't a base class, it's a new most-derived object. |
| if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) { |
| MostDerivedType = FD->getType(); |
| MostDerivedIsArrayElement = false; |
| MostDerivedArraySize = 0; |
| MostDerivedPathLength = Entries.size(); |
| } |
| } |
| /// Update this designator to refer to the given complex component. |
| void addComplexUnchecked(QualType EltTy, bool Imag) { |
| Entries.push_back(PathEntry::ArrayIndex(Imag)); |
| |
| // This is technically a most-derived object, though in practice this |
| // is unlikely to matter. |
| MostDerivedType = EltTy; |
| MostDerivedIsArrayElement = true; |
| MostDerivedArraySize = 2; |
| MostDerivedPathLength = Entries.size(); |
| } |
| |
| void addVectorElementUnchecked(QualType EltTy, uint64_t Size, |
| uint64_t Idx) { |
| Entries.push_back(PathEntry::ArrayIndex(Idx)); |
| MostDerivedType = EltTy; |
| MostDerivedPathLength = Entries.size(); |
| MostDerivedArraySize = 0; |
| MostDerivedIsArrayElement = false; |
| } |
| |
| void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E); |
| void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, |
| const APSInt &N); |
| /// Add N to the address of this subobject. |
| void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) { |
| if (Invalid || !N) return; |
| uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue(); |
| if (isMostDerivedAnUnsizedArray()) { |
| diagnoseUnsizedArrayPointerArithmetic(Info, E); |
| // Can't verify -- trust that the user is doing the right thing (or if |
| // not, trust that the caller will catch the bad behavior). |
| // FIXME: Should we reject if this overflows, at least? |
| Entries.back() = PathEntry::ArrayIndex( |
| Entries.back().getAsArrayIndex() + TruncatedN); |
| return; |
| } |
| |
| // [expr.add]p4: For the purposes of these operators, a pointer to a |
| // nonarray object behaves the same as a pointer to the first element of |
| // an array of length one with the type of the object as its element type. |
| bool IsArray = MostDerivedPathLength == Entries.size() && |
| MostDerivedIsArrayElement; |
| uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() |
| : (uint64_t)IsOnePastTheEnd; |
| uint64_t ArraySize = |
| IsArray ? getMostDerivedArraySize() : (uint64_t)1; |
| |
| if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) { |
| // Calculate the actual index in a wide enough type, so we can include |
| // it in the note. |
| N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65)); |
| (llvm::APInt&)N += ArrayIndex; |
| assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index"); |
| diagnosePointerArithmetic(Info, E, N); |
| setInvalid(); |
| return; |
| } |
| |
| ArrayIndex += TruncatedN; |
| assert(ArrayIndex <= ArraySize && |
| "bounds check succeeded for out-of-bounds index"); |
| |
| if (IsArray) |
| Entries.back() = PathEntry::ArrayIndex(ArrayIndex); |
| else |
| IsOnePastTheEnd = (ArrayIndex != 0); |
| } |
| }; |
| |
| /// A scope at the end of which an object can need to be destroyed. |
| enum class ScopeKind { |
| Block, |
| FullExpression, |
| Call |
| }; |
| |
| /// A reference to a particular call and its arguments. |
| struct CallRef { |
| CallRef() : OrigCallee(), CallIndex(0), Version() {} |
| CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version) |
| : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {} |
| |
| explicit operator bool() const { return OrigCallee; } |
| |
| /// Get the parameter that the caller initialized, corresponding to the |
| /// given parameter in the callee. |
| const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const { |
| return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex()) |
| : PVD; |
| } |
| |
| /// The callee at the point where the arguments were evaluated. This might |
| /// be different from the actual callee (a different redeclaration, or a |
| /// virtual override), but this function's parameters are the ones that |
| /// appear in the parameter map. |
| const FunctionDecl *OrigCallee; |
| /// The call index of the frame that holds the argument values. |
| unsigned CallIndex; |
| /// The version of the parameters corresponding to this call. |
| unsigned Version; |
| }; |
| |
| /// A stack frame in the constexpr call stack. |
| class CallStackFrame : public interp::Frame { |
| public: |
| EvalInfo &Info; |
| |
| /// Parent - The caller of this stack frame. |
| CallStackFrame *Caller; |
| |
| /// Callee - The function which was called. |
| const FunctionDecl *Callee; |
| |
| /// This - The binding for the this pointer in this call, if any. |
| const LValue *This; |
| |
| /// CallExpr - The syntactical structure of member function calls |
| const Expr *CallExpr; |
| |
| /// Information on how to find the arguments to this call. Our arguments |
| /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a |
| /// key and this value as the version. |
| CallRef Arguments; |
| |
| /// Source location information about the default argument or default |
| /// initializer expression we're evaluating, if any. |
| CurrentSourceLocExprScope CurSourceLocExprScope; |
| |
| // Note that we intentionally use std::map here so that references to |
| // values are stable. |
| typedef std::pair<const void *, unsigned> MapKeyTy; |
| typedef std::map<MapKeyTy, APValue> MapTy; |
| /// Temporaries - Temporary lvalues materialized within this stack frame. |
| MapTy Temporaries; |
| |
| /// CallRange - The source range of the call expression for this call. |
| SourceRange CallRange; |
| |
| /// Index - The call index of this call. |
| unsigned Index; |
| |
| /// The stack of integers for tracking version numbers for temporaries. |
| SmallVector<unsigned, 2> TempVersionStack = {1}; |
| unsigned CurTempVersion = TempVersionStack.back(); |
| |
| unsigned getTempVersion() const { return TempVersionStack.back(); } |
| |
| void pushTempVersion() { |
| TempVersionStack.push_back(++CurTempVersion); |
| } |
| |
| void popTempVersion() { |
| TempVersionStack.pop_back(); |
| } |
| |
| CallRef createCall(const FunctionDecl *Callee) { |
| return {Callee, Index, ++CurTempVersion}; |
| } |
| |
| // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact |
| // on the overall stack usage of deeply-recursing constexpr evaluations. |
| // (We should cache this map rather than recomputing it repeatedly.) |
| // But let's try this and see how it goes; we can look into caching the map |
| // as a later change. |
| |
| /// LambdaCaptureFields - Mapping from captured variables/this to |
| /// corresponding data members in the closure class. |
| llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; |
| FieldDecl *LambdaThisCaptureField = nullptr; |
| |
| CallStackFrame(EvalInfo &Info, SourceRange CallRange, |
| const FunctionDecl *Callee, const LValue *This, |
| const Expr *CallExpr, CallRef Arguments); |
| ~CallStackFrame(); |
| |
| // Return the temporary for Key whose version number is Version. |
| APValue *getTemporary(const void *Key, unsigned Version) { |
| MapKeyTy KV(Key, Version); |
| auto LB = Temporaries.lower_bound(KV); |
| if (LB != Temporaries.end() && LB->first == KV) |
| return &LB->second; |
| return nullptr; |
| } |
| |
| // Return the current temporary for Key in the map. |
| APValue *getCurrentTemporary(const void *Key) { |
| auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); |
| if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) |
| return &std::prev(UB)->second; |
| return nullptr; |
| } |
| |
| // Return the version number of the current temporary for Key. |
| unsigned getCurrentTemporaryVersion(const void *Key) const { |
| auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); |
| if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) |
| return std::prev(UB)->first.second; |
| return 0; |
| } |
| |
| /// Allocate storage for an object of type T in this stack frame. |
| /// Populates LV with a handle to the created object. Key identifies |
| /// the temporary within the stack frame, and must not be reused without |
| /// bumping the temporary version number. |
| template<typename KeyT> |
| APValue &createTemporary(const KeyT *Key, QualType T, |
| ScopeKind Scope, LValue &LV); |
| |
| /// Allocate storage for a parameter of a function call made in this frame. |
| APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV); |
| |
| void describe(llvm::raw_ostream &OS) const override; |
| |
| Frame *getCaller() const override { return Caller; } |
| SourceRange getCallRange() const override { return CallRange; } |
| const FunctionDecl *getCallee() const override { return Callee; } |
| |
| bool isStdFunction() const { |
| for (const DeclContext *DC = Callee; DC; DC = DC->getParent()) |
| if (DC->isStdNamespace()) |
| return true; |
| return false; |
| } |
| |
| /// Whether we're in a context where [[msvc::constexpr]] evaluation is |
| /// permitted. See MSConstexprDocs for description of permitted contexts. |
| bool CanEvalMSConstexpr = false; |
| |
| private: |
| APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T, |
| ScopeKind Scope); |
| }; |
| |
| /// Temporarily override 'this'. |
| class ThisOverrideRAII { |
| public: |
| ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable) |
| : Frame(Frame), OldThis(Frame.This) { |
| if (Enable) |
| Frame.This = NewThis; |
| } |
| ~ThisOverrideRAII() { |
| Frame.This = OldThis; |
| } |
| private: |
| CallStackFrame &Frame; |
| const LValue *OldThis; |
| }; |
| |
| // A shorthand time trace scope struct, prints source range, for example |
| // {"name":"EvaluateAsRValue","args":{"detail":"<test.cc:8:21, col:25>"}}} |
| class ExprTimeTraceScope { |
| public: |
| ExprTimeTraceScope(const Expr *E, const ASTContext &Ctx, StringRef Name) |
| : TimeScope(Name, [E, &Ctx] { |
| return E->getSourceRange().printToString(Ctx.getSourceManager()); |
| }) {} |
| |
| private: |
| llvm::TimeTraceScope TimeScope; |
| }; |
| |
| /// RAII object used to change the current ability of |
| /// [[msvc::constexpr]] evaulation. |
| struct MSConstexprContextRAII { |
| CallStackFrame &Frame; |
| bool OldValue; |
| explicit MSConstexprContextRAII(CallStackFrame &Frame, bool Value) |
| : Frame(Frame), OldValue(Frame.CanEvalMSConstexpr) { |
| Frame.CanEvalMSConstexpr = Value; |
| } |
| |
| ~MSConstexprContextRAII() { Frame.CanEvalMSConstexpr = OldValue; } |
| }; |
| } |
| |
| static bool HandleDestruction(EvalInfo &Info, const Expr *E, |
| const LValue &This, QualType ThisType); |
| static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, |
| APValue::LValueBase LVBase, APValue &Value, |
| QualType T); |
| |
| namespace { |
| /// A cleanup, and a flag indicating whether it is lifetime-extended. |
| class Cleanup { |
| llvm::PointerIntPair<APValue*, 2, ScopeKind> Value; |
| APValue::LValueBase Base; |
| QualType T; |
| |
| public: |
| Cleanup(APValue *Val, APValue::LValueBase Base, QualType T, |
| ScopeKind Scope) |
| : Value(Val, Scope), Base(Base), T(T) {} |
| |
| /// Determine whether this cleanup should be performed at the end of the |
| /// given kind of scope. |
| bool isDestroyedAtEndOf(ScopeKind K) const { |
| return (int)Value.getInt() >= (int)K; |
| } |
| bool endLifetime(EvalInfo &Info, bool RunDestructors) { |
| if (RunDestructors) { |
| SourceLocation Loc; |
| if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) |
| Loc = VD->getLocation(); |
| else if (const Expr *E = Base.dyn_cast<const Expr*>()) |
| Loc = E->getExprLoc(); |
| return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T); |
| } |
| *Value.getPointer() = APValue(); |
| return true; |
| } |
| |
| bool hasSideEffect() { |
| return T.isDestructedType(); |
| } |
| }; |
| |
| /// A reference to an object whose construction we are currently evaluating. |
| struct ObjectUnderConstruction { |
| APValue::LValueBase Base; |
| ArrayRef<APValue::LValuePathEntry> Path; |
| friend bool operator==(const ObjectUnderConstruction &LHS, |
| const ObjectUnderConstruction &RHS) { |
| return LHS.Base == RHS.Base && LHS.Path == RHS.Path; |
| } |
| friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) { |
| return llvm::hash_combine(Obj.Base, Obj.Path); |
| } |
| }; |
| enum class ConstructionPhase { |
| None, |
| Bases, |
| AfterBases, |
| AfterFields, |
| Destroying, |
| DestroyingBases |
| }; |
| } |
| |
| namespace llvm { |
| template<> struct DenseMapInfo<ObjectUnderConstruction> { |
| using Base = DenseMapInfo<APValue::LValueBase>; |
| static ObjectUnderConstruction getEmptyKey() { |
| return {Base::getEmptyKey(), {}}; } |
| static ObjectUnderConstruction getTombstoneKey() { |
| return {Base::getTombstoneKey(), {}}; |
| } |
| static unsigned getHashValue(const ObjectUnderConstruction &Object) { |
| return hash_value(Object); |
| } |
| static bool isEqual(const ObjectUnderConstruction &LHS, |
| const ObjectUnderConstruction &RHS) { |
| return LHS == RHS; |
| } |
| }; |
| } |
| |
| namespace { |
| /// A dynamically-allocated heap object. |
| struct DynAlloc { |
| /// The value of this heap-allocated object. |
| APValue Value; |
| /// The allocating expression; used for diagnostics. Either a CXXNewExpr |
| /// or a CallExpr (the latter is for direct calls to operator new inside |
| /// std::allocator<T>::allocate). |
| const Expr *AllocExpr = nullptr; |
| |
| enum Kind { |
| New, |
| ArrayNew, |
| StdAllocator |
| }; |
| |
| /// Get the kind of the allocation. This must match between allocation |
| /// and deallocation. |
| Kind getKind() const { |
| if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr)) |
| return NE->isArray() ? ArrayNew : New; |
| assert(isa<CallExpr>(AllocExpr)); |
| return StdAllocator; |
| } |
| }; |
| |
| struct DynAllocOrder { |
| bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const { |
| return L.getIndex() < R.getIndex(); |
| } |
| }; |
| |
| /// EvalInfo - This is a private struct used by the evaluator to capture |
| /// information about a subexpression as it is folded. It retains information |
| /// about the AST context, but also maintains information about the folded |
| /// expression. |
| /// |
| /// If an expression could be evaluated, it is still possible it is not a C |
| /// "integer constant expression" or constant expression. If not, this struct |
| /// captures information about how and why not. |
| /// |
| /// One bit of information passed *into* the request for constant folding |
| /// indicates whether the subexpression is "evaluated" or not according to C |
| /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can |
| /// evaluate the expression regardless of what the RHS is, but C only allows |
| /// certain things in certain situations. |
| class EvalInfo : public interp::State { |
| public: |
| ASTContext &Ctx; |
| |
| /// EvalStatus - Contains information about the evaluation. |
| Expr::EvalStatus &EvalStatus; |
| |
| /// CurrentCall - The top of the constexpr call stack. |
| CallStackFrame *CurrentCall; |
| |
| /// CallStackDepth - The number of calls in the call stack right now. |
| unsigned CallStackDepth; |
| |
| /// NextCallIndex - The next call index to assign. |
| unsigned NextCallIndex; |
| |
| /// StepsLeft - The remaining number of evaluation steps we're permitted |
| /// to perform. This is essentially a limit for the number of statements |
| /// we will evaluate. |
| unsigned StepsLeft; |
| |
| /// Enable the experimental new constant interpreter. If an expression is |
| /// not supported by the interpreter, an error is triggered. |
| bool EnableNewConstInterp; |
| |
| /// BottomFrame - The frame in which evaluation started. This must be |
| /// initialized after CurrentCall and CallStackDepth. |
| CallStackFrame BottomFrame; |
| |
| /// A stack of values whose lifetimes end at the end of some surrounding |
| /// evaluation frame. |
| llvm::SmallVector<Cleanup, 16> CleanupStack; |
| |
| /// EvaluatingDecl - This is the declaration whose initializer is being |
| /// evaluated, if any. |
| APValue::LValueBase EvaluatingDecl; |
| |
| enum class EvaluatingDeclKind { |
| None, |
| /// We're evaluating the construction of EvaluatingDecl. |
| Ctor, |
| /// We're evaluating the destruction of EvaluatingDecl. |
| Dtor, |
| }; |
| EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None; |
| |
| /// EvaluatingDeclValue - This is the value being constructed for the |
| /// declaration whose initializer is being evaluated, if any. |
| APValue *EvaluatingDeclValue; |
| |
| /// Set of objects that are currently being constructed. |
| llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase> |
| ObjectsUnderConstruction; |
| |
| /// Current heap allocations, along with the location where each was |
| /// allocated. We use std::map here because we need stable addresses |
| /// for the stored APValues. |
| std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs; |
| |
| /// The number of heap allocations performed so far in this evaluation. |
| unsigned NumHeapAllocs = 0; |
| |
| struct EvaluatingConstructorRAII { |
| EvalInfo &EI; |
| ObjectUnderConstruction Object; |
| bool DidInsert; |
| EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object, |
| bool HasBases) |
| : EI(EI), Object(Object) { |
| DidInsert = |
| EI.ObjectsUnderConstruction |
| .insert({Object, HasBases ? ConstructionPhase::Bases |
| : ConstructionPhase::AfterBases}) |
| .second; |
| } |
| void finishedConstructingBases() { |
| EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases; |
| } |
| void finishedConstructingFields() { |
| EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields; |
| } |
| ~EvaluatingConstructorRAII() { |
| if (DidInsert) EI.ObjectsUnderConstruction.erase(Object); |
| } |
| }; |
| |
| struct EvaluatingDestructorRAII { |
| EvalInfo &EI; |
| ObjectUnderConstruction Object; |
| bool DidInsert; |
| EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object) |
| : EI(EI), Object(Object) { |
| DidInsert = EI.ObjectsUnderConstruction |
| .insert({Object, ConstructionPhase::Destroying}) |
| .second; |
| } |
| void startedDestroyingBases() { |
| EI.ObjectsUnderConstruction[Object] = |
| ConstructionPhase::DestroyingBases; |
| } |
| ~EvaluatingDestructorRAII() { |
| if (DidInsert) |
| EI.ObjectsUnderConstruction.erase(Object); |
| } |
| }; |
| |
| ConstructionPhase |
| isEvaluatingCtorDtor(APValue::LValueBase Base, |
| ArrayRef<APValue::LValuePathEntry> Path) { |
| return ObjectsUnderConstruction.lookup({Base, Path}); |
| } |
| |
| /// If we're currently speculatively evaluating, the outermost call stack |
| /// depth at which we can mutate state, otherwise 0. |
| unsigned SpeculativeEvaluationDepth = 0; |
| |
| /// The current array initialization index, if we're performing array |
| /// initialization. |
| uint64_t ArrayInitIndex = -1; |
| |
| /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further |
| /// notes attached to it will also be stored, otherwise they will not be. |
| bool HasActiveDiagnostic; |
| |
| /// Have we emitted a diagnostic explaining why we couldn't constant |
| /// fold (not just why it's not strictly a constant expression)? |
| bool HasFoldFailureDiagnostic; |
| |
| /// Whether we're checking that an expression is a potential constant |
| /// expression. If so, do not fail on constructs that could become constant |
| /// later on (such as a use of an undefined global). |
| bool CheckingPotentialConstantExpression = false; |
| |
| /// Whether we're checking for an expression that has undefined behavior. |
| /// If so, we will produce warnings if we encounter an operation that is |
| /// always undefined. |
| /// |
| /// Note that we still need to evaluate the expression normally when this |
| /// is set; this is used when evaluating ICEs in C. |
| bool CheckingForUndefinedBehavior = false; |
| |
| enum EvaluationMode { |
| /// Evaluate as a constant expression. Stop if we find that the expression |
| /// is not a constant expression. |
| EM_ConstantExpression, |
| |
| /// Evaluate as a constant expression. Stop if we find that the expression |
| /// is not a constant expression. Some expressions can be retried in the |
| /// optimizer if we don't constant fold them here, but in an unevaluated |
| /// context we try to fold them immediately since the optimizer never |
| /// gets a chance to look at it. |
| EM_ConstantExpressionUnevaluated, |
| |
| /// Fold the expression to a constant. Stop if we hit a side-effect that |
| /// we can't model. |
| EM_ConstantFold, |
| |
| /// Evaluate in any way we know how. Don't worry about side-effects that |
| /// can't be modeled. |
| EM_IgnoreSideEffects, |
| } EvalMode; |
| |
| /// Are we checking whether the expression is a potential constant |
| /// expression? |
| bool checkingPotentialConstantExpression() const override { |
| return CheckingPotentialConstantExpression; |
| } |
| |
| /// Are we checking an expression for overflow? |
| // FIXME: We should check for any kind of undefined or suspicious behavior |
| // in such constructs, not just overflow. |
| bool checkingForUndefinedBehavior() const override { |
| return CheckingForUndefinedBehavior; |
| } |
| |
| EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode) |
| : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr), |
| CallStackDepth(0), NextCallIndex(1), |
| StepsLeft(C.getLangOpts().ConstexprStepLimit), |
| EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp), |
| BottomFrame(*this, SourceLocation(), /*Callee=*/nullptr, |
| /*This=*/nullptr, |
| /*CallExpr=*/nullptr, CallRef()), |
| EvaluatingDecl((const ValueDecl *)nullptr), |
| EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false), |
| HasFoldFailureDiagnostic(false), EvalMode(Mode) {} |
| |
| ~EvalInfo() { |
| discardCleanups(); |
| } |
| |
| ASTContext &getASTContext() const override { return Ctx; } |
| |
| void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value, |
| EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) { |
| EvaluatingDecl = Base; |
| IsEvaluatingDecl = EDK; |
| EvaluatingDeclValue = &Value; |
| } |
| |
| bool CheckCallLimit(SourceLocation Loc) { |
| // Don't perform any constexpr calls (other than the call we're checking) |
| // when checking a potential constant expression. |
| if (checkingPotentialConstantExpression() && CallStackDepth > 1) |
| return false; |
| if (NextCallIndex == 0) { |
| // NextCallIndex has wrapped around. |
| FFDiag(Loc, diag::note_constexpr_call_limit_exceeded); |
| return false; |
| } |
| if (CallStackDepth <= getLangOpts().ConstexprCallDepth) |
| return true; |
| FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded) |
| << getLangOpts().ConstexprCallDepth; |
| return false; |
| } |
| |
| bool CheckArraySize(SourceLocation Loc, unsigned BitWidth, |
| uint64_t ElemCount, bool Diag) { |
| // FIXME: GH63562 |
| // APValue stores array extents as unsigned, |
| // so anything that is greater that unsigned would overflow when |
| // constructing the array, we catch this here. |
| if (BitWidth > ConstantArrayType::getMaxSizeBits(Ctx) || |
| ElemCount > uint64_t(std::numeric_limits<unsigned>::max())) { |
| if (Diag) |
| FFDiag(Loc, diag::note_constexpr_new_too_large) << ElemCount; |
| return false; |
| } |
| |
| // FIXME: GH63562 |
| // Arrays allocate an APValue per element. |
| // We use the number of constexpr steps as a proxy for the maximum size |
| // of arrays to avoid exhausting the system resources, as initialization |
| // of each element is likely to take some number of steps anyway. |
| uint64_t Limit = Ctx.getLangOpts().ConstexprStepLimit; |
| if (ElemCount > Limit) { |
| if (Diag) |
| FFDiag(Loc, diag::note_constexpr_new_exceeds_limits) |
| << ElemCount << Limit; |
| return false; |
| } |
| return true; |
| } |
| |
| std::pair<CallStackFrame *, unsigned> |
| getCallFrameAndDepth(unsigned CallIndex) { |
| assert(CallIndex && "no call index in getCallFrameAndDepth"); |
| // We will eventually hit BottomFrame, which has Index 1, so Frame can't |
| // be null in this loop. |
| unsigned Depth = CallStackDepth; |
| CallStackFrame *Frame = CurrentCall; |
| while (Frame->Index > CallIndex) { |
| Frame = Frame->Caller; |
| --Depth; |
| } |
| if (Frame->Index == CallIndex) |
| return {Frame, Depth}; |
| return {nullptr, 0}; |
| } |
| |
| bool nextStep(const Stmt *S) { |
| if (!StepsLeft) { |
| FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded); |
| return false; |
| } |
| --StepsLeft; |
| return true; |
| } |
| |
| APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV); |
| |
| std::optional<DynAlloc *> lookupDynamicAlloc(DynamicAllocLValue DA) { |
| std::optional<DynAlloc *> Result; |
| auto It = HeapAllocs.find(DA); |
| if (It != HeapAllocs.end()) |
| Result = &It->second; |
| return Result; |
| } |
| |
| /// Get the allocated storage for the given parameter of the given call. |
| APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) { |
| CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first; |
| return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version) |
| : nullptr; |
| } |
| |
| /// Information about a stack frame for std::allocator<T>::[de]allocate. |
| struct StdAllocatorCaller { |
| unsigned FrameIndex; |
| QualType ElemType; |
| explicit operator bool() const { return FrameIndex != 0; }; |
| }; |
| |
| StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const { |
| for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame; |
| Call = Call->Caller) { |
| const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee); |
| if (!MD) |
| continue; |
| const IdentifierInfo *FnII = MD->getIdentifier(); |
| if (!FnII || !FnII->isStr(FnName)) |
| continue; |
| |
| const auto *CTSD = |
| dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent()); |
| if (!CTSD) |
| continue; |
| |
| const IdentifierInfo *ClassII = CTSD->getIdentifier(); |
| const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); |
| if (CTSD->isInStdNamespace() && ClassII && |
| ClassII->isStr("allocator") && TAL.size() >= 1 && |
| TAL[0].getKind() == TemplateArgument::Type) |
| return {Call->Index, TAL[0].getAsType()}; |
| } |
| |
| return {}; |
| } |
| |
| void performLifetimeExtension() { |
| // Disable the cleanups for lifetime-extended temporaries. |
| llvm::erase_if(CleanupStack, [](Cleanup &C) { |
| return !C.isDestroyedAtEndOf(ScopeKind::FullExpression); |
| }); |
| } |
| |
| /// Throw away any remaining cleanups at the end of evaluation. If any |
| /// cleanups would have had a side-effect, note that as an unmodeled |
| /// side-effect and return false. Otherwise, return true. |
| bool discardCleanups() { |
| for (Cleanup &C : CleanupStack) { |
| if (C.hasSideEffect() && !noteSideEffect()) { |
| CleanupStack.clear(); |
| return false; |
| } |
| } |
| CleanupStack.clear(); |
| return true; |
| } |
| |
| private: |
| interp::Frame *getCurrentFrame() override { return CurrentCall; } |
| const interp::Frame *getBottomFrame() const override { return &BottomFrame; } |
| |
| bool hasActiveDiagnostic() override { return HasActiveDiagnostic; } |
| void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; } |
| |
| void setFoldFailureDiagnostic(bool Flag) override { |
| HasFoldFailureDiagnostic = Flag; |
| } |
| |
| Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; } |
| |
| // If we have a prior diagnostic, it will be noting that the expression |
| // isn't a constant expression. This diagnostic is more important, |
| // unless we require this evaluation to produce a constant expression. |
| // |
| // FIXME: We might want to show both diagnostics to the user in |
| // EM_ConstantFold mode. |
| bool hasPriorDiagnostic() override { |
| if (!EvalStatus.Diag->empty()) { |
| switch (EvalMode) { |
| case EM_ConstantFold: |
| case EM_IgnoreSideEffects: |
| if (!HasFoldFailureDiagnostic) |
| break; |
| // We've already failed to fold something. Keep that diagnostic. |
| [[fallthrough]]; |
| case EM_ConstantExpression: |
| case EM_ConstantExpressionUnevaluated: |
| setActiveDiagnostic(false); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| unsigned getCallStackDepth() override { return CallStackDepth; } |
| |
| public: |
| /// Should we continue evaluation after encountering a side-effect that we |
| /// couldn't model? |
| bool keepEvaluatingAfterSideEffect() const override { |
| switch (EvalMode) { |
| case EM_IgnoreSideEffects: |
| return true; |
| |
| case EM_ConstantExpression: |
| case EM_ConstantExpressionUnevaluated: |
| case EM_ConstantFold: |
| // By default, assume any side effect might be valid in some other |
| // evaluation of this expression from a different context. |
| return checkingPotentialConstantExpression() || |
| checkingForUndefinedBehavior(); |
| } |
| llvm_unreachable("Missed EvalMode case"); |
| } |
| |
| /// Note that we have had a side-effect, and determine whether we should |
| /// keep evaluating. |
| bool noteSideEffect() override { |
| EvalStatus.HasSideEffects = true; |
| return keepEvaluatingAfterSideEffect(); |
| } |
| |
| /// Should we continue evaluation after encountering undefined behavior? |
| bool keepEvaluatingAfterUndefinedBehavior() { |
| switch (EvalMode) { |
| case EM_IgnoreSideEffects: |
| case EM_ConstantFold: |
| return true; |
| |
| case EM_ConstantExpression: |
| case EM_ConstantExpressionUnevaluated: |
| return checkingForUndefinedBehavior(); |
| } |
| llvm_unreachable("Missed EvalMode case"); |
| } |
| |
| /// Note that we hit something that was technically undefined behavior, but |
| /// that we can evaluate past it (such as signed overflow or floating-point |
| /// division by zero.) |
| bool noteUndefinedBehavior() override { |
| EvalStatus.HasUndefinedBehavior = true; |
| return keepEvaluatingAfterUndefinedBehavior(); |
| } |
| |
| /// Should we continue evaluation as much as possible after encountering a |
| /// construct which can't be reduced to a value? |
| bool keepEvaluatingAfterFailure() const override { |
| if (!StepsLeft) |
| return false; |
| |
| switch (EvalMode) { |
| case EM_ConstantExpression: |
| case EM_ConstantExpressionUnevaluated: |
| case EM_ConstantFold: |
| case EM_IgnoreSideEffects: |
| return checkingPotentialConstantExpression() || |
| checkingForUndefinedBehavior(); |
| } |
| llvm_unreachable("Missed EvalMode case"); |
| } |
| |
| /// Notes that we failed to evaluate an expression that other expressions |
| /// directly depend on, and determine if we should keep evaluating. This |
| /// should only be called if we actually intend to keep evaluating. |
| /// |
| /// Call noteSideEffect() instead if we may be able to ignore the value that |
| /// we failed to evaluate, e.g. if we failed to evaluate Foo() in: |
| /// |
| /// (Foo(), 1) // use noteSideEffect |
| /// (Foo() || true) // use noteSideEffect |
| /// Foo() + 1 // use noteFailure |
| [[nodiscard]] bool noteFailure() { |
| // Failure when evaluating some expression often means there is some |
| // subexpression whose evaluation was skipped. Therefore, (because we |
| // don't track whether we skipped an expression when unwinding after an |
| // evaluation failure) every evaluation failure that bubbles up from a |
| // subexpression implies that a side-effect has potentially happened. We |
| // skip setting the HasSideEffects flag to true until we decide to |
| // continue evaluating after that point, which happens here. |
| bool KeepGoing = keepEvaluatingAfterFailure(); |
| EvalStatus.HasSideEffects |= KeepGoing; |
| return KeepGoing; |
| } |
| |
| class ArrayInitLoopIndex { |
| EvalInfo &Info; |
| uint64_t OuterIndex; |
| |
| public: |
| ArrayInitLoopIndex(EvalInfo &Info) |
| : Info(Info), OuterIndex(Info.ArrayInitIndex) { |
| Info.ArrayInitIndex = 0; |
| } |
| ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; } |
| |
| operator uint64_t&() { return Info.ArrayInitIndex; } |
| }; |
| }; |
| |
| /// Object used to treat all foldable expressions as constant expressions. |
| struct FoldConstant { |
| EvalInfo &Info; |
| bool Enabled; |
| bool HadNoPriorDiags; |
| EvalInfo::EvaluationMode OldMode; |
| |
| explicit FoldConstant(EvalInfo &Info, bool Enabled) |
| : Info(Info), |
| Enabled(Enabled), |
| HadNoPriorDiags(Info.EvalStatus.Diag && |
| Info.EvalStatus.Diag->empty() && |
| !Info.EvalStatus.HasSideEffects), |
| OldMode(Info.EvalMode) { |
| if (Enabled) |
| Info.EvalMode = EvalInfo::EM_ConstantFold; |
| } |
| void keepDiagnostics() { Enabled = false; } |
| ~FoldConstant() { |
| if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() && |
| !Info.EvalStatus.HasSideEffects) |
| Info.EvalStatus.Diag->clear(); |
| Info.EvalMode = OldMode; |
| } |
| }; |
| |
| /// RAII object used to set the current evaluation mode to ignore |
| /// side-effects. |
| struct IgnoreSideEffectsRAII { |
| EvalInfo &Info; |
| EvalInfo::EvaluationMode OldMode; |
| explicit IgnoreSideEffectsRAII(EvalInfo &Info) |
| : Info(Info), OldMode(Info.EvalMode) { |
| Info.EvalMode = EvalInfo::EM_IgnoreSideEffects; |
| } |
| |
| ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; } |
| }; |
| |
| /// RAII object used to optionally suppress diagnostics and side-effects from |
| /// a speculative evaluation. |
| class SpeculativeEvaluationRAII { |
| EvalInfo *Info = nullptr; |
| Expr::EvalStatus OldStatus; |
| unsigned OldSpeculativeEvaluationDepth = 0; |
| |
| void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) { |
| Info = Other.Info; |
| OldStatus = Other.OldStatus; |
| OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth; |
| Other.Info = nullptr; |
| } |
| |
| void maybeRestoreState() { |
| if (!Info) |
| return; |
| |
| Info->EvalStatus = OldStatus; |
| Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth; |
| } |
| |
| public: |
| SpeculativeEvaluationRAII() = default; |
| |
| SpeculativeEvaluationRAII( |
| EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr) |
| : Info(&Info), OldStatus(Info.EvalStatus), |
| OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) { |
| Info.EvalStatus.Diag = NewDiag; |
| Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1; |
| } |
| |
| SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete; |
| SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) { |
| moveFromAndCancel(std::move(Other)); |
| } |
| |
| SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) { |
| maybeRestoreState(); |
| moveFromAndCancel(std::move(Other)); |
| return *this; |
| } |
| |
| ~SpeculativeEvaluationRAII() { maybeRestoreState(); } |
| }; |
| |
| /// RAII object wrapping a full-expression or block scope, and handling |
| /// the ending of the lifetime of temporaries created within it. |
| template<ScopeKind Kind> |
| class ScopeRAII { |
| EvalInfo &Info; |
| unsigned OldStackSize; |
| public: |
| ScopeRAII(EvalInfo &Info) |
| : Info(Info), OldStackSize(Info.CleanupStack.size()) { |
| // Push a new temporary version. This is needed to distinguish between |
| // temporaries created in different iterations of a loop. |
| Info.CurrentCall->pushTempVersion(); |
| } |
| bool destroy(bool RunDestructors = true) { |
| bool OK = cleanup(Info, RunDestructors, OldStackSize); |
| OldStackSize = -1U; |
| return OK; |
| } |
| ~ScopeRAII() { |
| if (OldStackSize != -1U) |
| destroy(false); |
| // Body moved to a static method to encourage the compiler to inline away |
| // instances of this class. |
| Info.CurrentCall->popTempVersion(); |
| } |
| private: |
| static bool cleanup(EvalInfo &Info, bool RunDestructors, |
| unsigned OldStackSize) { |
| assert(OldStackSize <= Info.CleanupStack.size() && |
| "running cleanups out of order?"); |
| |
| // Run all cleanups for a block scope, and non-lifetime-extended cleanups |
| // for a full-expression scope. |
| bool Success = true; |
| for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) { |
| if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) { |
| if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) { |
| Success = false; |
| break; |
| } |
| } |
| } |
| |
| // Compact any retained cleanups. |
| auto NewEnd = Info.CleanupStack.begin() + OldStackSize; |
| if (Kind != ScopeKind::Block) |
| NewEnd = |
| std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) { |
| return C.isDestroyedAtEndOf(Kind); |
| }); |
| Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end()); |
| return Success; |
| } |
| }; |
| typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII; |
| typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII; |
| typedef ScopeRAII<ScopeKind::Call> CallScopeRAII; |
| } |
| |
| bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E, |
| CheckSubobjectKind CSK) { |
| if (Invalid) |
| return false; |
| if (isOnePastTheEnd()) { |
| Info.CCEDiag(E, diag::note_constexpr_past_end_subobject) |
| << CSK; |
| setInvalid(); |
| return false; |
| } |
| // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there |
| // must actually be at least one array element; even a VLA cannot have a |
| // bound of zero. And if our index is nonzero, we already had a CCEDiag. |
| return true; |
| } |
| |
| void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, |
| const Expr *E) { |
| Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed); |
| // Do not set the designator as invalid: we can represent this situation, |
| // and correct handling of __builtin_object_size requires us to do so. |
| } |
| |
| void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info, |
| const Expr *E, |
| const APSInt &N) { |
| // If we're complaining, we must be able to statically determine the size of |
| // the most derived array. |
| if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement) |
| Info.CCEDiag(E, diag::note_constexpr_array_index) |
| << N << /*array*/ 0 |
| << static_cast<unsigned>(getMostDerivedArraySize()); |
| else |
| Info.CCEDiag(E, diag::note_constexpr_array_index) |
| << N << /*non-array*/ 1; |
| setInvalid(); |
| } |
| |
| CallStackFrame::CallStackFrame(EvalInfo &Info, SourceRange CallRange, |
| const FunctionDecl *Callee, const LValue *This, |
| const Expr *CallExpr, CallRef Call) |
| : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This), |
| CallExpr(CallExpr), Arguments(Call), CallRange(CallRange), |
| Index(Info.NextCallIndex++) { |
| Info.CurrentCall = this; |
| ++Info.CallStackDepth; |
| } |
| |
| CallStackFrame::~CallStackFrame() { |
| assert(Info.CurrentCall == this && "calls retired out of order"); |
| --Info.CallStackDepth; |
| Info.CurrentCall = Caller; |
| } |
| |
| static bool isRead(AccessKinds AK) { |
| return AK == AK_Read || AK == AK_ReadObjectRepresentation || |
| AK == AK_IsWithinLifetime; |
| } |
| |
| static bool isModification(AccessKinds AK) { |
| switch (AK) { |
| case AK_Read: |
| case AK_ReadObjectRepresentation: |
| case AK_MemberCall: |
| case AK_DynamicCast: |
| case AK_TypeId: |
| case AK_IsWithinLifetime: |
| return false; |
| case AK_Assign: |
| case AK_Increment: |
| case AK_Decrement: |
| case AK_Construct: |
| case AK_Destroy: |
| return true; |
| } |
| llvm_unreachable("unknown access kind"); |
| } |
| |
| static bool isAnyAccess(AccessKinds AK) { |
| return isRead(AK) || isModification(AK); |
| } |
| |
| /// Is this an access per the C++ definition? |
| static bool isFormalAccess(AccessKinds AK) { |
| return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy && |
| AK != AK_IsWithinLifetime; |
| } |
| |
| /// Is this kind of axcess valid on an indeterminate object value? |
| static bool isValidIndeterminateAccess(AccessKinds AK) { |
| switch (AK) { |
| case AK_Read: |
| case AK_Increment: |
| case AK_Decrement: |
| // These need the object's value. |
| return false; |
| |
| case AK_IsWithinLifetime: |
| case AK_ReadObjectRepresentation: |
| case AK_Assign: |
| case AK_Construct: |
| case AK_Destroy: |
| // Construction and destruction don't need the value. |
| return true; |
| |
| case AK_MemberCall: |
| case AK_DynamicCast: |
| case AK_TypeId: |
| // These aren't really meaningful on scalars. |
| return true; |
| } |
| llvm_unreachable("unknown access kind"); |
| } |
| |
| namespace { |
| struct ComplexValue { |
| private: |
| bool IsInt; |
| |
| public: |
| APSInt IntReal, IntImag; |
| APFloat FloatReal, FloatImag; |
| |
| ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {} |
| |
| void makeComplexFloat() { IsInt = false; } |
| bool isComplexFloat() const { return !IsInt; } |
| APFloat &getComplexFloatReal() { return FloatReal; } |
| APFloat &getComplexFloatImag() { return FloatImag; } |
| |
| void makeComplexInt() { IsInt = true; } |
| bool isComplexInt() const { return IsInt; } |
| APSInt &getComplexIntReal() { return IntReal; } |
| APSInt &getComplexIntImag() { return IntImag; } |
| |
| void moveInto(APValue &v) const { |
| if (isComplexFloat()) |
| v = APValue(FloatReal, FloatImag); |
| else |
| v = APValue(IntReal, IntImag); |
| } |
| void setFrom(const APValue &v) { |
| assert(v.isComplexFloat() || v.isComplexInt()); |
| if (v.isComplexFloat()) { |
| makeComplexFloat(); |
| FloatReal = v.getComplexFloatReal(); |
| FloatImag = v.getComplexFloatImag(); |
| } else { |
| makeComplexInt(); |
| IntReal = v.getComplexIntReal(); |
| IntImag = v.getComplexIntImag(); |
| } |
| } |
| }; |
| |
| struct LValue { |
| APValue::LValueBase Base; |
| CharUnits Offset; |
| SubobjectDesignator Designator; |
| bool IsNullPtr : 1; |
| bool InvalidBase : 1; |
| |
| const APValue::LValueBase getLValueBase() const { return Base; } |
| CharUnits &getLValueOffset() { return Offset; } |
| const CharUnits &getLValueOffset() const { return Offset; } |
| SubobjectDesignator &getLValueDesignator() { return Designator; } |
| const SubobjectDesignator &getLValueDesignator() const { return Designator;} |
| bool isNullPointer() const { return IsNullPtr;} |
| |
| unsigned getLValueCallIndex() const { return Base.getCallIndex(); } |
| unsigned getLValueVersion() const { return Base.getVersion(); } |
| |
| void moveInto(APValue &V) const { |
| if (Designator.Invalid) |
| V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr); |
| else { |
| assert(!InvalidBase && "APValues can't handle invalid LValue bases"); |
| V = APValue(Base, Offset, Designator.Entries, |
| Designator.IsOnePastTheEnd, IsNullPtr); |
| } |
| } |
| void setFrom(ASTContext &Ctx, const APValue &V) { |
| assert(V.isLValue() && "Setting LValue from a non-LValue?"); |
| Base = V.getLValueBase(); |
| Offset = V.getLValueOffset(); |
| InvalidBase = false; |
| Designator = SubobjectDesignator(Ctx, V); |
| IsNullPtr = V.isNullPointer(); |
| } |
| |
| void set(APValue::LValueBase B, bool BInvalid = false) { |
| #ifndef NDEBUG |
| // We only allow a few types of invalid bases. Enforce that here. |
| if (BInvalid) { |
| const auto *E = B.get<const Expr *>(); |
| assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && |
| "Unexpected type of invalid base"); |
| } |
| #endif |
| |
| Base = B; |
| Offset = CharUnits::fromQuantity(0); |
| InvalidBase = BInvalid; |
| Designator = SubobjectDesignator(getType(B)); |
| IsNullPtr = false; |
| } |
| |
| void setNull(ASTContext &Ctx, QualType PointerTy) { |
| Base = (const ValueDecl *)nullptr; |
| Offset = |
| CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy)); |
| InvalidBase = false; |
| Designator = SubobjectDesignator(PointerTy->getPointeeType()); |
| IsNullPtr = true; |
| } |
| |
| void setInvalid(APValue::LValueBase B, unsigned I = 0) { |
| set(B, true); |
| } |
| |
| std::string toString(ASTContext &Ctx, QualType T) const { |
| APValue Printable; |
| moveInto(Printable); |
| return Printable.getAsString(Ctx, T); |
| } |
| |
| private: |
| // Check that this LValue is not based on a null pointer. If it is, produce |
| // a diagnostic and mark the designator as invalid. |
| template <typename GenDiagType> |
| bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) { |
| if (Designator.Invalid) |
| return false; |
| if (IsNullPtr) { |
| GenDiag(); |
| Designator.setInvalid(); |
| return false; |
| } |
| return true; |
| } |
| |
| public: |
| bool checkNullPointer(EvalInfo &Info, const Expr *E, |
| CheckSubobjectKind CSK) { |
| return checkNullPointerDiagnosingWith([&Info, E, CSK] { |
| Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK; |
| }); |
| } |
| |
| bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E, |
| AccessKinds AK) { |
| return checkNullPointerDiagnosingWith([&Info, E, AK] { |
| Info.FFDiag(E, diag::note_constexpr_access_null) << AK; |
| }); |
| } |
| |
| // Check this LValue refers to an object. If not, set the designator to be |
| // invalid and emit a diagnostic. |
| bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) { |
| return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) && |
| Designator.checkSubobject(Info, E, CSK); |
| } |
| |
| void addDecl(EvalInfo &Info, const Expr *E, |
| const Decl *D, bool Virtual = false) { |
| if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base)) |
| Designator.addDeclUnchecked(D, Virtual); |
| } |
| void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) { |
| if (!Designator.Entries.empty()) { |
| Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array); |
| Designator.setInvalid(); |
| return; |
| } |
| if (checkSubobject(Info, E, CSK_ArrayToPointer)) { |
| assert(getType(Base)->isPointerType() || getType(Base)->isArrayType()); |
| Designator.FirstEntryIsAnUnsizedArray = true; |
| Designator.addUnsizedArrayUnchecked(ElemTy); |
| } |
| } |
| void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) { |
| if (checkSubobject(Info, E, CSK_ArrayToPointer)) |
| Designator.addArrayUnchecked(CAT); |
| } |
| void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) { |
| if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real)) |
| Designator.addComplexUnchecked(EltTy, Imag); |
| } |
| void addVectorElement(EvalInfo &Info, const Expr *E, QualType EltTy, |
| uint64_t Size, uint64_t Idx) { |
| if (checkSubobject(Info, E, CSK_VectorElement)) |
| Designator.addVectorElementUnchecked(EltTy, Size, Idx); |
| } |
| void clearIsNullPointer() { |
| IsNullPtr = false; |
| } |
| void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E, |
| const APSInt &Index, CharUnits ElementSize) { |
| // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB, |
| // but we're not required to diagnose it and it's valid in C++.) |
| if (!Index) |
| return; |
| |
| // Compute the new offset in the appropriate width, wrapping at 64 bits. |
| // FIXME: When compiling for a 32-bit target, we should use 32-bit |
| // offsets. |
| uint64_t Offset64 = Offset.getQuantity(); |
| uint64_t ElemSize64 = ElementSize.getQuantity(); |
| uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); |
| Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64); |
| |
| if (checkNullPointer(Info, E, CSK_ArrayIndex)) |
| Designator.adjustIndex(Info, E, Index); |
| clearIsNullPointer(); |
| } |
| void adjustOffset(CharUnits N) { |
| Offset += N; |
| if (N.getQuantity()) |
| clearIsNullPointer(); |
| } |
| }; |
| |
| struct MemberPtr { |
| MemberPtr() {} |
| explicit MemberPtr(const ValueDecl *Decl) |
| : DeclAndIsDerivedMember(Decl, false) {} |
| |
| /// The member or (direct or indirect) field referred to by this member |
| /// pointer, or 0 if this is a null member pointer. |
| const ValueDecl *getDecl() const { |
| return DeclAndIsDerivedMember.getPointer(); |
| } |
| /// Is this actually a member of some type derived from the relevant class? |
| bool isDerivedMember() const { |
| return DeclAndIsDerivedMember.getInt(); |
| } |
| /// Get the class which the declaration actually lives in. |
| const CXXRecordDecl *getContainingRecord() const { |
| return cast<CXXRecordDecl>( |
| DeclAndIsDerivedMember.getPointer()->getDeclContext()); |
| } |
| |
| void moveInto(APValue &V) const { |
| V = APValue(getDecl(), isDerivedMember(), Path); |
| } |
| void setFrom(const APValue &V) { |
| assert(V.isMemberPointer()); |
| DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl()); |
| DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember()); |
| Path.clear(); |
| ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath(); |
| Path.insert(Path.end(), P.begin(), P.end()); |
| } |
| |
| /// DeclAndIsDerivedMember - The member declaration, and a flag indicating |
| /// whether the member is a member of some class derived from the class type |
| /// of the member pointer. |
| llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember; |
| /// Path - The path of base/derived classes from the member declaration's |
| /// class (exclusive) to the class type of the member pointer (inclusive). |
| SmallVector<const CXXRecordDecl*, 4> Path; |
| |
| /// Perform a cast towards the class of the Decl (either up or down the |
| /// hierarchy). |
| bool castBack(const CXXRecordDecl *Class) { |
| assert(!Path.empty()); |
| const CXXRecordDecl *Expected; |
| if (Path.size() >= 2) |
| Expected = Path[Path.size() - 2]; |
| else |
| Expected = getContainingRecord(); |
| if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) { |
| // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*), |
| // if B does not contain the original member and is not a base or |
| // derived class of the class containing the original member, the result |
| // of the cast is undefined. |
| // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to |
| // (D::*). We consider that to be a language defect. |
| return false; |
| } |
| Path.pop_back(); |
| return true; |
| } |
| /// Perform a base-to-derived member pointer cast. |
| bool castToDerived(const CXXRecordDecl *Derived) { |
| if (!getDecl()) |
| return true; |
| if (!isDerivedMember()) { |
| Path.push_back(Derived); |
| return true; |
| } |
| if (!castBack(Derived)) |
| return false; |
| if (Path.empty()) |
| DeclAndIsDerivedMember.setInt(false); |
| return true; |
| } |
| /// Perform a derived-to-base member pointer cast. |
| bool castToBase(const CXXRecordDecl *Base) { |
| if (!getDecl()) |
| return true; |
| if (Path.empty()) |
| DeclAndIsDerivedMember.setInt(true); |
| if (isDerivedMember()) { |
| Path.push_back(Base); |
| return true; |
| } |
| return castBack(Base); |
| } |
| }; |
| |
| /// Compare two member pointers, which are assumed to be of the same type. |
| static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) { |
| if (!LHS.getDecl() || !RHS.getDecl()) |
| return !LHS.getDecl() && !RHS.getDecl(); |
| if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl()) |
| return false; |
| return LHS.Path == RHS.Path; |
| } |
| } |
| |
| static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E); |
| static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, |
| const LValue &This, const Expr *E, |
| bool AllowNonLiteralTypes = false); |
| static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, |
| bool InvalidBaseOK = false); |
| static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info, |
| bool InvalidBaseOK = false); |
| static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, |
| EvalInfo &Info); |
| static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info); |
| static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); |
| static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, |
| EvalInfo &Info); |
| static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); |
| static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info); |
| static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, |
| EvalInfo &Info); |
| static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result); |
| static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result, |
| EvalInfo &Info, |
| std::string *StringResult = nullptr); |
| |
| /// Evaluate an integer or fixed point expression into an APResult. |
| static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, |
| EvalInfo &Info); |
| |
| /// Evaluate only a fixed point expression into an APResult. |
| static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, |
| EvalInfo &Info); |
| |
| //===----------------------------------------------------------------------===// |
| // Misc utilities |
| //===----------------------------------------------------------------------===// |
| |
| /// Negate an APSInt in place, converting it to a signed form if necessary, and |
| /// preserving its value (by extending by up to one bit as needed). |
| static void negateAsSigned(APSInt &Int) { |
| if (Int.isUnsigned() || Int.isMinSignedValue()) { |
| Int = Int.extend(Int.getBitWidth() + 1); |
| Int.setIsSigned(true); |
| } |
| Int = -Int; |
| } |
| |
| template<typename KeyT> |
| APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T, |
| ScopeKind Scope, LValue &LV) { |
| unsigned Version = getTempVersion(); |
| APValue::LValueBase Base(Key, Index, Version); |
| LV.set(Base); |
| return createLocal(Base, Key, T, Scope); |
| } |
| |
| /// Allocate storage for a parameter of a function call made in this frame. |
| APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD, |
| LValue &LV) { |
| assert(Args.CallIndex == Index && "creating parameter in wrong frame"); |
| APValue::LValueBase Base(PVD, Index, Args.Version); |
| LV.set(Base); |
| // We always destroy parameters at the end of the call, even if we'd allow |
| // them to live to the end of the full-expression at runtime, in order to |
| // give portable results and match other compilers. |
| return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call); |
| } |
| |
| APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key, |
| QualType T, ScopeKind Scope) { |
| assert(Base.getCallIndex() == Index && "lvalue for wrong frame"); |
| unsigned Version = Base.getVersion(); |
| APValue &Result = Temporaries[MapKeyTy(Key, Version)]; |
| assert(Result.isAbsent() && "local created multiple times"); |
| |
| // If we're creating a local immediately in the operand of a speculative |
| // evaluation, don't register a cleanup to be run outside the speculative |
| // evaluation context, since we won't actually be able to initialize this |
| // object. |
| if (Index <= Info.SpeculativeEvaluationDepth) { |
| if (T.isDestructedType()) |
| Info.noteSideEffect(); |
| } else { |
| Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope)); |
| } |
| return Result; |
| } |
| |
| APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) { |
| if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) { |
| FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded); |
| return nullptr; |
| } |
| |
| DynamicAllocLValue DA(NumHeapAllocs++); |
| LV.set(APValue::LValueBase::getDynamicAlloc(DA, T)); |
| auto Result = HeapAllocs.emplace(std::piecewise_construct, |
| std::forward_as_tuple(DA), std::tuple<>()); |
| assert(Result.second && "reused a heap alloc index?"); |
| Result.first->second.AllocExpr = E; |
| return &Result.first->second.Value; |
| } |
| |
| /// Produce a string describing the given constexpr call. |
| void CallStackFrame::describe(raw_ostream &Out) const { |
| unsigned ArgIndex = 0; |
| bool IsMemberCall = |
| isa<CXXMethodDecl>(Callee) && !isa<CXXConstructorDecl>(Callee) && |
| cast<CXXMethodDecl>(Callee)->isImplicitObjectMemberFunction(); |
| |
| if (!IsMemberCall) |
| Callee->getNameForDiagnostic(Out, Info.Ctx.getPrintingPolicy(), |
| /*Qualified=*/false); |
| |
| if (This && IsMemberCall) { |
| if (const auto *MCE = dyn_cast_if_present<CXXMemberCallExpr>(CallExpr)) { |
| const Expr *Object = MCE->getImplicitObjectArgument(); |
| Object->printPretty(Out, /*Helper=*/nullptr, Info.Ctx.getPrintingPolicy(), |
| /*Indentation=*/0); |
| if (Object->getType()->isPointerType()) |
| Out << "->"; |
| else |
| Out << "."; |
| } else if (const auto *OCE = |
| dyn_cast_if_present<CXXOperatorCallExpr>(CallExpr)) { |
| OCE->getArg(0)->printPretty(Out, /*Helper=*/nullptr, |
| Info.Ctx.getPrintingPolicy(), |
| /*Indentation=*/0); |
| Out << "."; |
| } else { |
| APValue Val; |
| This->moveInto(Val); |
| Val.printPretty( |
| Out, Info.Ctx, |
| Info.Ctx.getLValueReferenceType(This->Designator.MostDerivedType)); |
| Out << "."; |
| } |
| Callee->getNameForDiagnostic(Out, Info.Ctx.getPrintingPolicy(), |
| /*Qualified=*/false); |
| IsMemberCall = false; |
| } |
| |
| Out << '('; |
| |
| for (FunctionDecl::param_const_iterator I = Callee->param_begin(), |
| E = Callee->param_end(); I != E; ++I, ++ArgIndex) { |
| if (ArgIndex > (unsigned)IsMemberCall) |
| Out << ", "; |
| |
| const ParmVarDecl *Param = *I; |
| APValue *V = Info.getParamSlot(Arguments, Param); |
| if (V) |
| V->printPretty(Out, Info.Ctx, Param->getType()); |
| else |
| Out << "<...>"; |
| |
| if (ArgIndex == 0 && IsMemberCall) |
| Out << "->" << *Callee << '('; |
| } |
| |
| Out << ')'; |
| } |
| |
| /// Evaluate an expression to see if it had side-effects, and discard its |
| /// result. |
| /// \return \c true if the caller should keep evaluating. |
| static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) { |
| assert(!E->isValueDependent()); |
| APValue Scratch; |
| if (!Evaluate(Scratch, Info, E)) |
| // We don't need the value, but we might have skipped a side effect here. |
| return Info.noteSideEffect(); |
| return true; |
| } |
| |
| /// Should this call expression be treated as forming an opaque constant? |
| static bool IsOpaqueConstantCall(const CallExpr *E) { |
| unsigned Builtin = E->getBuiltinCallee(); |
| return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || |
| Builtin == Builtin::BI__builtin___NSStringMakeConstantString || |
| Builtin == Builtin::BI__builtin_ptrauth_sign_constant || |
| Builtin == Builtin::BI__builtin_function_start); |
| } |
| |
| static bool IsOpaqueConstantCall(const LValue &LVal) { |
| const auto *BaseExpr = |
| llvm::dyn_cast_if_present<CallExpr>(LVal.Base.dyn_cast<const Expr *>()); |
| return BaseExpr && IsOpaqueConstantCall(BaseExpr); |
| } |
| |
| static bool IsGlobalLValue(APValue::LValueBase B) { |
| // C++11 [expr.const]p3 An address constant expression is a prvalue core |
| // constant expression of pointer type that evaluates to... |
| |
| // ... a null pointer value, or a prvalue core constant expression of type |
| // std::nullptr_t. |
| if (!B) |
| return true; |
| |
| if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { |
| // ... the address of an object with static storage duration, |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
| return VD->hasGlobalStorage(); |
| if (isa<TemplateParamObjectDecl>(D)) |
| return true; |
| // ... the address of a function, |
| // ... the address of a GUID [MS extension], |
| // ... the address of an unnamed global constant |
| return isa<FunctionDecl, MSGuidDecl, UnnamedGlobalConstantDecl>(D); |
| } |
| |
| if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>()) |
| return true; |
| |
| const Expr *E = B.get<const Expr*>(); |
| switch (E->getStmtClass()) { |
| default: |
| return false; |
| case Expr::CompoundLiteralExprClass: { |
| const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); |
| return CLE->isFileScope() && CLE->isLValue(); |
| } |
| case Expr::MaterializeTemporaryExprClass: |
| // A materialized temporary might have been lifetime-extended to static |
| // storage duration. |
| return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static; |
| // A string literal has static storage duration. |
| case Expr::StringLiteralClass: |
| case Expr::PredefinedExprClass: |
| case Expr::ObjCStringLiteralClass: |
| case Expr::ObjCEncodeExprClass: |
| return true; |
| case Expr::ObjCBoxedExprClass: |
| return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer(); |
| case Expr::CallExprClass: |
| return IsOpaqueConstantCall(cast<CallExpr>(E)); |
| // For GCC compatibility, &&label has static storage duration. |
| case Expr::AddrLabelExprClass: |
| return true; |
| // A Block literal expression may be used as the initialization value for |
| // Block variables at global or local static scope. |
| case Expr::BlockExprClass: |
| return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures(); |
| // The APValue generated from a __builtin_source_location will be emitted as a |
| // literal. |
| case Expr::SourceLocExprClass: |
| return true; |
| case Expr::ImplicitValueInitExprClass: |
| // FIXME: |
| // We can never form an lvalue with an implicit value initialization as its |
| // base through expression evaluation, so these only appear in one case: the |
| // implicit variable declaration we invent when checking whether a constexpr |
| // constructor can produce a constant expression. We must assume that such |
| // an expression might be a global lvalue. |
| return true; |
| } |
| } |
| |
| static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) { |
| return LVal.Base.dyn_cast<const ValueDecl*>(); |
| } |
| |
| // Information about an LValueBase that is some kind of string. |
| struct LValueBaseString { |
| std::string ObjCEncodeStorage; |
| StringRef Bytes; |
| int CharWidth; |
| }; |
| |
| // Gets the lvalue base of LVal as a string. |
| static bool GetLValueBaseAsString(const EvalInfo &Info, const LValue &LVal, |
| LValueBaseString &AsString) { |
| const auto *BaseExpr = LVal.Base.dyn_cast<const Expr *>(); |
| if (!BaseExpr) |
| return false; |
| |
| // For ObjCEncodeExpr, we need to compute and store the string. |
| if (const auto *EE = dyn_cast<ObjCEncodeExpr>(BaseExpr)) { |
| Info.Ctx.getObjCEncodingForType(EE->getEncodedType(), |
| AsString.ObjCEncodeStorage); |
| AsString.Bytes = AsString.ObjCEncodeStorage; |
| AsString.CharWidth = 1; |
| return true; |
| } |
| |
| // Otherwise, we have a StringLiteral. |
| const auto *Lit = dyn_cast<StringLiteral>(BaseExpr); |
| if (const auto *PE = dyn_cast<PredefinedExpr>(BaseExpr)) |
| Lit = PE->getFunctionName(); |
| |
| if (!Lit) |
| return false; |
| |
| AsString.Bytes = Lit->getBytes(); |
| AsString.CharWidth = Lit->getCharByteWidth(); |
| return true; |
| } |
| |
| // Determine whether two string literals potentially overlap. This will be the |
| // case if they agree on the values of all the bytes on the overlapping region |
| // between them. |
| // |
| // The overlapping region is the portion of the two string literals that must |
| // overlap in memory if the pointers actually point to the same address at |
| // runtime. For example, if LHS is "abcdef" + 3 and RHS is "cdef\0gh" + 1 then |
| // the overlapping region is "cdef\0", which in this case does agree, so the |
| // strings are potentially overlapping. Conversely, for "foobar" + 3 versus |
| // "bazbar" + 3, the overlapping region contains all of both strings, so they |
| // are not potentially overlapping, even though they agree from the given |
| // addresses onwards. |
| // |
| // See open core issue CWG2765 which is discussing the desired rule here. |
| static bool ArePotentiallyOverlappingStringLiterals(const EvalInfo &Info, |
| const LValue &LHS, |
| const LValue &RHS) { |
| LValueBaseString LHSString, RHSString; |
| if (!GetLValueBaseAsString(Info, LHS, LHSString) || |
| !GetLValueBaseAsString(Info, RHS, RHSString)) |
| return false; |
| |
| // This is the byte offset to the location of the first character of LHS |
| // within RHS. We don't need to look at the characters of one string that |
| // would appear before the start of the other string if they were merged. |
| CharUnits Offset = RHS.Offset - LHS.Offset; |
| if (Offset.isNegative()) |
| LHSString.Bytes = LHSString.Bytes.drop_front(-Offset.getQuantity()); |
| else |
| RHSString.Bytes = RHSString.Bytes.drop_front(Offset.getQuantity()); |
| |
| bool LHSIsLonger = LHSString.Bytes.size() > RHSString.Bytes.size(); |
| StringRef Longer = LHSIsLonger ? LHSString.Bytes : RHSString.Bytes; |
| StringRef Shorter = LHSIsLonger ? RHSString.Bytes : LHSString.Bytes; |
| int ShorterCharWidth = (LHSIsLonger ? RHSString : LHSString).CharWidth; |
| |
| // The null terminator isn't included in the string data, so check for it |
| // manually. If the longer string doesn't have a null terminator where the |
| // shorter string ends, they aren't potentially overlapping. |
| for (int NullByte : llvm::seq(ShorterCharWidth)) { |
| if (Shorter.size() + NullByte >= Longer.size()) |
| break; |
| if (Longer[Shorter.size() + NullByte]) |
| return false; |
| } |
| |
| // Otherwise, they're potentially overlapping if and only if the overlapping |
| // region is the same. |
| return Shorter == Longer.take_front(Shorter.size()); |
| } |
| |
| static bool IsWeakLValue(const LValue &Value) { |
| const ValueDecl *Decl = GetLValueBaseDecl(Value); |
| return Decl && Decl->isWeak(); |
| } |
| |
| static bool isZeroSized(const LValue &Value) { |
| const ValueDecl *Decl = GetLValueBaseDecl(Value); |
| if (isa_and_nonnull<VarDecl>(Decl)) { |
| QualType Ty = Decl->getType(); |
| if (Ty->isArrayType()) |
| return Ty->isIncompleteType() || |
| Decl->getASTContext().getTypeSize(Ty) == 0; |
| } |
| return false; |
| } |
| |
| static bool HasSameBase(const LValue &A, const LValue &B) { |
| if (!A.getLValueBase()) |
| return !B.getLValueBase(); |
| if (!B.getLValueBase()) |
| return false; |
| |
| if (A.getLValueBase().getOpaqueValue() != |
| B.getLValueBase().getOpaqueValue()) |
| return false; |
| |
| return A.getLValueCallIndex() == B.getLValueCallIndex() && |
| A.getLValueVersion() == B.getLValueVersion(); |
| } |
| |
| static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) { |
| assert(Base && "no location for a null lvalue"); |
| const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); |
| |
| // For a parameter, find the corresponding call stack frame (if it still |
| // exists), and point at the parameter of the function definition we actually |
| // invoked. |
| if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) { |
| unsigned Idx = PVD->getFunctionScopeIndex(); |
| for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) { |
| if (F->Arguments.CallIndex == Base.getCallIndex() && |
| F->Arguments.Version == Base.getVersion() && F->Callee && |
| Idx < F->Callee->getNumParams()) { |
| VD = F->Callee->getParamDecl(Idx); |
| break; |
| } |
| } |
| } |
| |
| if (VD) |
| Info.Note(VD->getLocation(), diag::note_declared_at); |
| else if (const Expr *E = Base.dyn_cast<const Expr*>()) |
| Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here); |
| else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { |
| // FIXME: Produce a note for dangling pointers too. |
| if (std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA)) |
| Info.Note((*Alloc)->AllocExpr->getExprLoc(), |
| diag::note_constexpr_dynamic_alloc_here); |
| } |
| |
| // We have no information to show for a typeid(T) object. |
| } |
| |
| enum class CheckEvaluationResultKind { |
| ConstantExpression, |
| FullyInitialized, |
| }; |
| |
| /// Materialized temporaries that we've already checked to determine if they're |
| /// initializsed by a constant expression. |
| using CheckedTemporaries = |
| llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>; |
| |
| static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, |
| EvalInfo &Info, SourceLocation DiagLoc, |
| QualType Type, const APValue &Value, |
| ConstantExprKind Kind, |
| const FieldDecl *SubobjectDecl, |
| CheckedTemporaries &CheckedTemps); |
| |
| /// Check that this reference or pointer core constant expression is a valid |
| /// value for an address or reference constant expression. Return true if we |
| /// can fold this expression, whether or not it's a constant expression. |
| static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc, |
| QualType Type, const LValue &LVal, |
| ConstantExprKind Kind, |
| CheckedTemporaries &CheckedTemps) { |
| bool IsReferenceType = Type->isReferenceType(); |
| |
| APValue::LValueBase Base = LVal.getLValueBase(); |
| const SubobjectDesignator &Designator = LVal.getLValueDesignator(); |
| |
| const Expr *BaseE = Base.dyn_cast<const Expr *>(); |
| const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>(); |
| |
| // Additional restrictions apply in a template argument. We only enforce the |
| // C++20 restrictions here; additional syntactic and semantic restrictions |
| // are applied elsewhere. |
| if (isTemplateArgument(Kind)) { |
| int InvalidBaseKind = -1; |
| StringRef Ident; |
| if (Base.is<TypeInfoLValue>()) |
| InvalidBaseKind = 0; |
| else if (isa_and_nonnull<StringLiteral>(BaseE)) |
| InvalidBaseKind = 1; |
| else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) || |
| isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD)) |
| InvalidBaseKind = 2; |
| else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) { |
| InvalidBaseKind = 3; |
| Ident = PE->getIdentKindName(); |
| } |
| |
| if (InvalidBaseKind != -1) { |
| Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg) |
| << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind |
| << Ident; |
| return false; |
| } |
| } |
| |
| if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD); |
| FD && FD->isImmediateFunction()) { |
| Info.FFDiag(Loc, diag::note_consteval_address_accessible) |
| << !Type->isAnyPointerType(); |
| Info.Note(FD->getLocation(), diag::note_declared_at); |
| return false; |
| } |
| |
| // Check that the object is a global. Note that the fake 'this' object we |
| // manufacture when checking potential constant expressions is conservatively |
| // assumed to be global here. |
| if (!IsGlobalLValue(Base)) { |
| if (Info.getLangOpts().CPlusPlus11) { |
| Info.FFDiag(Loc, diag::note_constexpr_non_global, 1) |
| << IsReferenceType << !Designator.Entries.empty() << !!BaseVD |
| << BaseVD; |
| auto *VarD = dyn_cast_or_null<VarDecl>(BaseVD); |
| if (VarD && VarD->isConstexpr()) { |
| // Non-static local constexpr variables have unintuitive semantics: |
| // constexpr int a = 1; |
| // constexpr const int *p = &a; |
| // ... is invalid because the address of 'a' is not constant. Suggest |
| // adding a 'static' in this case. |
| Info.Note(VarD->getLocation(), diag::note_constexpr_not_static) |
| << VarD |
| << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static "); |
| } else { |
| NoteLValueLocation(Info, Base); |
| } |
| } else { |
| Info.FFDiag(Loc); |
| } |
| // Don't allow references to temporaries to escape. |
| return false; |
| } |
| assert((Info.checkingPotentialConstantExpression() || |
| LVal.getLValueCallIndex() == 0) && |
| "have call index for global lvalue"); |
| |
| if (Base.is<DynamicAllocLValue>()) { |
| Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc) |
| << IsReferenceType << !Designator.Entries.empty(); |
| NoteLValueLocation(Info, Base); |
| return false; |
| } |
| |
| if (BaseVD) { |
| if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) { |
| // Check if this is a thread-local variable. |
| if (Var->getTLSKind()) |
| // FIXME: Diagnostic! |
| return false; |
| |
| // A dllimport variable never acts like a constant, unless we're |
| // evaluating a value for use only in name mangling. |
| if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>()) |
| // FIXME: Diagnostic! |
| return false; |
| |
| // In CUDA/HIP device compilation, only device side variables have |
| // constant addresses. |
| if (Info.getASTContext().getLangOpts().CUDA && |
| Info.getASTContext().getLangOpts().CUDAIsDevice && |
| Info.getASTContext().CUDAConstantEvalCtx.NoWrongSidedVars) { |
| if ((!Var->hasAttr<CUDADeviceAttr>() && |
| !Var->hasAttr<CUDAConstantAttr>() && |
| !Var->getType()->isCUDADeviceBuiltinSurfaceType() && |
| !Var->getType()->isCUDADeviceBuiltinTextureType()) || |
| Var->hasAttr<HIPManagedAttr>()) |
| return false; |
| } |
| } |
| if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) { |
| // __declspec(dllimport) must be handled very carefully: |
| // We must never initialize an expression with the thunk in C++. |
| // Doing otherwise would allow the same id-expression to yield |
| // different addresses for the same function in different translation |
| // units. However, this means that we must dynamically initialize the |
| // expression with the contents of the import address table at runtime. |
| // |
| // The C language has no notion of ODR; furthermore, it has no notion of |
| // dynamic initialization. This means that we are permitted to |
| // perform initialization with the address of the thunk. |
| if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) && |
| FD->hasAttr<DLLImportAttr>()) |
| // FIXME: Diagnostic! |
| return false; |
| } |
| } else if (const auto *MTE = |
| dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) { |
| if (CheckedTemps.insert(MTE).second) { |
| QualType TempType = getType(Base); |
| if (TempType.isDestructedType()) { |
| Info.FFDiag(MTE->getExprLoc(), |
| diag::note_constexpr_unsupported_temporary_nontrivial_dtor) |
| << TempType; |
| return false; |
| } |
| |
| APValue *V = MTE->getOrCreateValue(false); |
| assert(V && "evasluation result refers to uninitialised temporary"); |
| if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, |
| Info, MTE->getExprLoc(), TempType, *V, Kind, |
| /*SubobjectDecl=*/nullptr, CheckedTemps)) |
| return false; |
| } |
| } |
| |
| // Allow address constant expressions to be past-the-end pointers. This is |
| // an extension: the standard requires them to point to an object. |
| if (!IsReferenceType) |
| return true; |
| |
| // A reference constant expression must refer to an object. |
| if (!Base) { |
| // FIXME: diagnostic |
| Info.CCEDiag(Loc); |
| return true; |
| } |
| |
| // Does this refer one past the end of some object? |
| if (!Designator.Invalid && Designator.isOnePastTheEnd()) { |
| Info.FFDiag(Loc, diag::note_constexpr_past_end, 1) |
| << !Designator.Entries.empty() << !!BaseVD << BaseVD; |
| NoteLValueLocation(Info, Base); |
| } |
| |
| return true; |
| } |
| |
| /// Member pointers are constant expressions unless they point to a |
| /// non-virtual dllimport member function. |
| static bool CheckMemberPointerConstantExpression(EvalInfo &Info, |
| SourceLocation Loc, |
| QualType Type, |
| const APValue &Value, |
| ConstantExprKind Kind) { |
| const ValueDecl *Member = Value.getMemberPointerDecl(); |
| const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member); |
| if (!FD) |
| return true; |
| if (FD->isImmediateFunction()) { |
| Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0; |
| Info.Note(FD->getLocation(), diag::note_declared_at); |
| return false; |
| } |
| return isForManglingOnly(Kind) || FD->isVirtual() || |
| !FD->hasAttr<DLLImportAttr>(); |
| } |
| |
| /// Check that this core constant expression is of literal type, and if not, |
| /// produce an appropriate diagnostic. |
| static bool CheckLiteralType(EvalInfo &Info, const Expr *E, |
| const LValue *This = nullptr) { |
| // The restriction to literal types does not exist in C++23 anymore. |
| if (Info.getLangOpts().CPlusPlus23) |
| return true; |
| |
| if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx)) |
| return true; |
| |
| // C++1y: A constant initializer for an object o [...] may also invoke |
| // constexpr constructors for o and its subobjects even if those objects |
| // are of non-literal class types. |
| // |
| // C++11 missed this detail for aggregates, so classes like this: |
| // struct foo_t { union { int i; volatile int j; } u; }; |
| // are not (obviously) initializable like so: |
| // __attribute__((__require_constant_initialization__)) |
| // static const foo_t x = {{0}}; |
| // because "i" is a subobject with non-literal initialization (due to the |
| // volatile member of the union). See: |
| // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677 |
| // Therefore, we use the C++1y behavior. |
| if (This && Info.EvaluatingDecl == This->getLValueBase()) |
| return true; |
| |
| // Prvalue constant expressions must be of literal types. |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.FFDiag(E, diag::note_constexpr_nonliteral) |
| << E->getType(); |
| else |
| Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| return false; |
| } |
| |
| static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, |
| EvalInfo &Info, SourceLocation DiagLoc, |
| QualType Type, const APValue &Value, |
| ConstantExprKind Kind, |
| const FieldDecl *SubobjectDecl, |
| CheckedTemporaries &CheckedTemps) { |
| if (!Value.hasValue()) { |
| if (SubobjectDecl) { |
| Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) |
| << /*(name)*/ 1 << SubobjectDecl; |
| Info.Note(SubobjectDecl->getLocation(), |
| diag::note_constexpr_subobject_declared_here); |
| } else { |
| Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) |
| << /*of type*/ 0 << Type; |
| } |
| return false; |
| } |
| |
| // We allow _Atomic(T) to be initialized from anything that T can be |
| // initialized from. |
| if (const AtomicType *AT = Type->getAs<AtomicType>()) |
| Type = AT->getValueType(); |
| |
| // Core issue 1454: For a literal constant expression of array or class type, |
| // each subobject of its value shall have been initialized by a constant |
| // expression. |
| if (Value.isArray()) { |
| QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType(); |
| for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) { |
| if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, |
| Value.getArrayInitializedElt(I), Kind, |
| SubobjectDecl, CheckedTemps)) |
| return false; |
| } |
| if (!Value.hasArrayFiller()) |
| return true; |
| return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, |
| Value.getArrayFiller(), Kind, SubobjectDecl, |
| CheckedTemps); |
| } |
| if (Value.isUnion() && Value.getUnionField()) { |
| return CheckEvaluationResult( |
| CERK, Info, DiagLoc, Value.getUnionField()->getType(), |
| Value.getUnionValue(), Kind, Value.getUnionField(), CheckedTemps); |
| } |
| if (Value.isStruct()) { |
| RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); |
| if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { |
| unsigned BaseIndex = 0; |
| for (const CXXBaseSpecifier &BS : CD->bases()) { |
| const APValue &BaseValue = Value.getStructBase(BaseIndex); |
| if (!BaseValue.hasValue()) { |
| SourceLocation TypeBeginLoc = BS.getBaseTypeLoc(); |
| Info.FFDiag(TypeBeginLoc, diag::note_constexpr_uninitialized_base) |
| << BS.getType() << SourceRange(TypeBeginLoc, BS.getEndLoc()); |
| return false; |
| } |
| if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(), BaseValue, |
| Kind, /*SubobjectDecl=*/nullptr, |
| CheckedTemps)) |
| return false; |
| ++BaseIndex; |
| } |
| } |
| for (const auto *I : RD->fields()) { |
| if (I->isUnnamedBitField()) |
| continue; |
| |
| if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(), |
| Value.getStructField(I->getFieldIndex()), Kind, |
| I, CheckedTemps)) |
| return false; |
| } |
| } |
| |
| if (Value.isLValue() && |
| CERK == CheckEvaluationResultKind::ConstantExpression) { |
| LValue LVal; |
| LVal.setFrom(Info.Ctx, Value); |
| return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind, |
| CheckedTemps); |
| } |
| |
| if (Value.isMemberPointer() && |
| CERK == CheckEvaluationResultKind::ConstantExpression) |
| return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind); |
| |
| // Everything else is fine. |
| return true; |
| } |
| |
| /// Check that this core constant expression value is a valid value for a |
| /// constant expression. If not, report an appropriate diagnostic. Does not |
| /// check that the expression is of literal type. |
| static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, |
| QualType Type, const APValue &Value, |
| ConstantExprKind Kind) { |
| // Nothing to check for a constant expression of type 'cv void'. |
| if (Type->isVoidType()) |
| return true; |
| |
| CheckedTemporaries CheckedTemps; |
| return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, |
| Info, DiagLoc, Type, Value, Kind, |
| /*SubobjectDecl=*/nullptr, CheckedTemps); |
| } |
| |
| /// Check that this evaluated value is fully-initialized and can be loaded by |
| /// an lvalue-to-rvalue conversion. |
| static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc, |
| QualType Type, const APValue &Value) { |
| CheckedTemporaries CheckedTemps; |
| return CheckEvaluationResult( |
| CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value, |
| ConstantExprKind::Normal, /*SubobjectDecl=*/nullptr, CheckedTemps); |
| } |
| |
| /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless |
| /// "the allocated storage is deallocated within the evaluation". |
| static bool CheckMemoryLeaks(EvalInfo &Info) { |
| if (!Info.HeapAllocs.empty()) { |
| // We can still fold to a constant despite a compile-time memory leak, |
| // so long as the heap allocation isn't referenced in the result (we check |
| // that in CheckConstantExpression). |
| Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr, |
| diag::note_constexpr_memory_leak) |
| << unsigned(Info.HeapAllocs.size() - 1); |
| } |
| return true; |
| } |
| |
| static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) { |
| // A null base expression indicates a null pointer. These are always |
| // evaluatable, and they are false unless the offset is zero. |
| if (!Value.getLValueBase()) { |
| // TODO: Should a non-null pointer with an offset of zero evaluate to true? |
| Result = !Value.getLValueOffset().isZero(); |
| return true; |
| } |
| |
| // We have a non-null base. These are generally known to be true, but if it's |
| // a weak declaration it can be null at runtime. |
| Result = true; |
| const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>(); |
| return !Decl || !Decl->isWeak(); |
| } |
| |
| static bool HandleConversionToBool(const APValue &Val, bool &Result) { |
| // TODO: This function should produce notes if it fails. |
| switch (Val.getKind()) { |
| case APValue::None: |
| case APValue::Indeterminate: |
| return false; |
| case APValue::Int: |
| Result = Val.getInt().getBoolValue(); |
| return true; |
| case APValue::FixedPoint: |
| Result = Val.getFixedPoint().getBoolValue(); |
| return true; |
| case APValue::Float: |
| Result = !Val.getFloat().isZero(); |
| return true; |
| case APValue::ComplexInt: |
| Result = Val.getComplexIntReal().getBoolValue() || |
| Val.getComplexIntImag().getBoolValue(); |
| return true; |
| case APValue::ComplexFloat: |
| Result = !Val.getComplexFloatReal().isZero() || |
| !Val.getComplexFloatImag().isZero(); |
| return true; |
| case APValue::LValue: |
| return EvalPointerValueAsBool(Val, Result); |
| case APValue::MemberPointer: |
| if (Val.getMemberPointerDecl() && Val.getMemberPointerDecl()->isWeak()) { |
| return false; |
| } |
| Result = Val.getMemberPointerDecl(); |
| return true; |
| case APValue::Vector: |
| case APValue::Array: |
| case APValue::Struct: |
| case APValue::Union: |
| case APValue::AddrLabelDiff: |
| return false; |
| } |
| |
| llvm_unreachable("unknown APValue kind"); |
| } |
| |
| static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result, |
| EvalInfo &Info) { |
| assert(!E->isValueDependent()); |
| assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition"); |
| APValue Val; |
| if (!Evaluate(Val, Info, E)) |
| return false; |
| return HandleConversionToBool(Val, Result); |
| } |
| |
| template<typename T> |
| static bool HandleOverflow(EvalInfo &Info, const Expr *E, |
| const T &SrcValue, QualType DestType) { |
| Info.CCEDiag(E, diag::note_constexpr_overflow) |
| << SrcValue << DestType; |
| return Info.noteUndefinedBehavior(); |
| } |
| |
| static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E, |
| QualType SrcType, const APFloat &Value, |
| QualType DestType, APSInt &Result) { |
| unsigned DestWidth = Info.Ctx.getIntWidth(DestType); |
| // Determine whether we are converting to unsigned or signed. |
| bool DestSigned = DestType->isSignedIntegerOrEnumerationType(); |
| |
| Result = APSInt(DestWidth, !DestSigned); |
| bool ignored; |
| if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored) |
| & APFloat::opInvalidOp) |
| return HandleOverflow(Info, E, Value, DestType); |
| return true; |
| } |
| |
| /// Get rounding mode to use in evaluation of the specified expression. |
| /// |
| /// If rounding mode is unknown at compile time, still try to evaluate the |
| /// expression. If the result is exact, it does not depend on rounding mode. |
| /// So return "tonearest" mode instead of "dynamic". |
| static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E) { |
| llvm::RoundingMode RM = |
| E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode(); |
| if (RM == llvm::RoundingMode::Dynamic) |
| RM = llvm::RoundingMode::NearestTiesToEven; |
| return RM; |
| } |
| |
| /// Check if the given evaluation result is allowed for constant evaluation. |
| static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E, |
| APFloat::opStatus St) { |
| // In a constant context, assume that any dynamic rounding mode or FP |
| // exception state matches the default floating-point environment. |
| if (Info.InConstantContext) |
| return true; |
| |
| FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()); |
| if ((St & APFloat::opInexact) && |
| FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) { |
| // Inexact result means that it depends on rounding mode. If the requested |
| // mode is dynamic, the evaluation cannot be made in compile time. |
| Info.FFDiag(E, diag::note_constexpr_dynamic_rounding); |
| return false; |
| } |
| |
| if ((St != APFloat::opOK) && |
| (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic || |
| FPO.getExceptionMode() != LangOptions::FPE_Ignore || |
| FPO.getAllowFEnvAccess())) { |
| Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); |
| return false; |
| } |
| |
| if ((St & APFloat::opStatus::opInvalidOp) && |
| FPO.getExceptionMode() != LangOptions::FPE_Ignore) { |
| // There is no usefully definable result. |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| // FIXME: if: |
| // - evaluation triggered other FP exception, and |
| // - exception mode is not "ignore", and |
| // - the expression being evaluated is not a part of global variable |
| // initializer, |
| // the evaluation probably need to be rejected. |
| return true; |
| } |
| |
| static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E, |
| QualType SrcType, QualType DestType, |
| APFloat &Result) { |
| assert((isa<CastExpr>(E) || isa<CompoundAssignOperator>(E) || |
| isa<ConvertVectorExpr>(E)) && |
| "HandleFloatToFloatCast has been checked with only CastExpr, " |
| "CompoundAssignOperator and ConvertVectorExpr. Please either validate " |
| "the new expression or address the root cause of this usage."); |
| llvm::RoundingMode RM = getActiveRoundingMode(Info, E); |
| APFloat::opStatus St; |
| APFloat Value = Result; |
| bool ignored; |
| St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored); |
| return checkFloatingPointResult(Info, E, St); |
| } |
| |
| static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E, |
| QualType DestType, QualType SrcType, |
| const APSInt &Value) { |
| unsigned DestWidth = Info.Ctx.getIntWidth(DestType); |
| // Figure out if this is a truncate, extend or noop cast. |
| // If the input is signed, do a sign extend, noop, or truncate. |
| APSInt Result = Value.extOrTrunc(DestWidth); |
| Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType()); |
| if (DestType->isBooleanType()) |
| Result = Value.getBoolValue(); |
| return Result; |
| } |
| |
| static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E, |
| const FPOptions FPO, |
| QualType SrcType, const APSInt &Value, |
| QualType DestType, APFloat &Result) { |
| Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1); |
| llvm::RoundingMode RM = getActiveRoundingMode(Info, E); |
| APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(), RM); |
| return checkFloatingPointResult(Info, E, St); |
| } |
| |
| static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E, |
| APValue &Value, const FieldDecl *FD) { |
| assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield"); |
| |
| if (!Value.isInt()) { |
| // Trying to store a pointer-cast-to-integer into a bitfield. |
| // FIXME: In this case, we should provide the diagnostic for casting |
| // a pointer to an integer. |
| assert(Value.isLValue() && "integral value neither int nor lvalue?"); |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| APSInt &Int = Value.getInt(); |
| unsigned OldBitWidth = Int.getBitWidth(); |
| unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx); |
| if (NewBitWidth < OldBitWidth) |
| Int = Int.trunc(NewBitWidth).extend(OldBitWidth); |
| return true; |
| } |
| |
| /// Perform the given integer operation, which is known to need at most BitWidth |
| /// bits, and check for overflow in the original type (if that type was not an |
| /// unsigned type). |
| template<typename Operation> |
| static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E, |
| const APSInt &LHS, const APSInt &RHS, |
| unsigned BitWidth, Operation Op, |
| APSInt &Result) { |
| if (LHS.isUnsigned()) { |
| Result = Op(LHS, RHS); |
| return true; |
| } |
| |
| APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false); |
| Result = Value.trunc(LHS.getBitWidth()); |
| if (Result.extend(BitWidth) != Value) { |
| if (Info.checkingForUndefinedBehavior()) |
| Info.Ctx.getDiagnostics().Report(E->getExprLoc(), |
| diag::warn_integer_constant_overflow) |
| << toString(Result, 10, Result.isSigned(), /*formatAsCLiteral=*/false, |
| /*UpperCase=*/true, /*InsertSeparators=*/true) |
| << E->getType() << E->getSourceRange(); |
| return HandleOverflow(Info, E, Value, E->getType()); |
| } |
| return true; |
| } |
| |
| /// Perform the given binary integer operation. |
| static bool handleIntIntBinOp(EvalInfo &Info, const BinaryOperator *E, |
| const APSInt &LHS, BinaryOperatorKind Opcode, |
| APSInt RHS, APSInt &Result) { |
| bool HandleOverflowResult = true; |
| switch (Opcode) { |
| default: |
| Info.FFDiag(E); |
| return false; |
| case BO_Mul: |
| return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2, |
| std::multiplies<APSInt>(), Result); |
| case BO_Add: |
| return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, |
| std::plus<APSInt>(), Result); |
| case BO_Sub: |
| return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, |
| std::minus<APSInt>(), Result); |
| case BO_And: Result = LHS & RHS; return true; |
| case BO_Xor: Result = LHS ^ RHS; return true; |
| case BO_Or: Result = LHS | RHS; return true; |
| case BO_Div: |
| case BO_Rem: |
| if (RHS == 0) { |
| Info.FFDiag(E, diag::note_expr_divide_by_zero) |
| << E->getRHS()->getSourceRange(); |
| return false; |
| } |
| // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports |
| // this operation and gives the two's complement result. |
| if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() && |
| LHS.isMinSignedValue()) |
| HandleOverflowResult = HandleOverflow( |
| Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType()); |
| Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS); |
| return HandleOverflowResult; |
| case BO_Shl: { |
| if (Info.getLangOpts().OpenCL) |
| // OpenCL 6.3j: shift values are effectively % word size of LHS. |
| RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), |
| static_cast<uint64_t>(LHS.getBitWidth() - 1)), |
| RHS.isUnsigned()); |
| else if (RHS.isSigned() && RHS.isNegative()) { |
| // During constant-folding, a negative shift is an opposite shift. Such |
| // a shift is not a constant expression. |
| Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; |
| if (!Info.noteUndefinedBehavior()) |
| return false; |
| RHS = -RHS; |
| goto shift_right; |
| } |
| shift_left: |
| // C++11 [expr.shift]p1: Shift width must be less than the bit width of |
| // the shifted type. |
| unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); |
| if (SA != RHS) { |
| Info.CCEDiag(E, diag::note_constexpr_large_shift) |
| << RHS << E->getType() << LHS.getBitWidth(); |
| if (!Info.noteUndefinedBehavior()) |
| return false; |
| } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) { |
| // C++11 [expr.shift]p2: A signed left shift must have a non-negative |
| // operand, and must not overflow the corresponding unsigned type. |
| // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to |
| // E1 x 2^E2 module 2^N. |
| if (LHS.isNegative()) { |
| Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS; |
| if (!Info.noteUndefinedBehavior()) |
| return false; |
| } else if (LHS.countl_zero() < SA) { |
| Info.CCEDiag(E, diag::note_constexpr_lshift_discards); |
| if (!Info.noteUndefinedBehavior()) |
| return false; |
| } |
| } |
| Result = LHS << SA; |
| return true; |
| } |
| case BO_Shr: { |
| if (Info.getLangOpts().OpenCL) |
| // OpenCL 6.3j: shift values are effectively % word size of LHS. |
| RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), |
| static_cast<uint64_t>(LHS.getBitWidth() - 1)), |
| RHS.isUnsigned()); |
| else if (RHS.isSigned() && RHS.isNegative()) { |
| // During constant-folding, a negative shift is an opposite shift. Such a |
| // shift is not a constant expression. |
| Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; |
| if (!Info.noteUndefinedBehavior()) |
| return false; |
| RHS = -RHS; |
| goto shift_left; |
| } |
| shift_right: |
| // C++11 [expr.shift]p1: Shift width must be less than the bit width of the |
| // shifted type. |
| unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); |
| if (SA != RHS) { |
| Info.CCEDiag(E, diag::note_constexpr_large_shift) |
| << RHS << E->getType() << LHS.getBitWidth(); |
| if (!Info.noteUndefinedBehavior()) |
| return false; |
| } |
| |
| Result = LHS >> SA; |
| return true; |
| } |
| |
| case BO_LT: Result = LHS < RHS; return true; |
| case BO_GT: Result = LHS > RHS; return true; |
| case BO_LE: Result = LHS <= RHS; return true; |
| case BO_GE: Result = LHS >= RHS; return true; |
| case BO_EQ: Result = LHS == RHS; return true; |
| case BO_NE: Result = LHS != RHS; return true; |
| case BO_Cmp: |
| llvm_unreachable("BO_Cmp should be handled elsewhere"); |
| } |
| } |
| |
| /// Perform the given binary floating-point operation, in-place, on LHS. |
| static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E, |
| APFloat &LHS, BinaryOperatorKind Opcode, |
| const APFloat &RHS) { |
| llvm::RoundingMode RM = getActiveRoundingMode(Info, E); |
| APFloat::opStatus St; |
| switch (Opcode) { |
| default: |
| Info.FFDiag(E); |
| return false; |
| case BO_Mul: |
| St = LHS.multiply(RHS, RM); |
| break; |
| case BO_Add: |
| St = LHS.add(RHS, RM); |
| break; |
| case BO_Sub: |
| St = LHS.subtract(RHS, RM); |
| break; |
| case BO_Div: |
| // [expr.mul]p4: |
| // If the second operand of / or % is zero the behavior is undefined. |
| if (RHS.isZero()) |
| Info.CCEDiag(E, diag::note_expr_divide_by_zero); |
| St = LHS.divide(RHS, RM); |
| break; |
| } |
| |
| // [expr.pre]p4: |
| // If during the evaluation of an expression, the result is not |
| // mathematically defined [...], the behavior is undefined. |
| // FIXME: C++ rules require us to not conform to IEEE 754 here. |
| if (LHS.isNaN()) { |
| Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN(); |
| return Info.noteUndefinedBehavior(); |
| } |
| |
| return checkFloatingPointResult(Info, E, St); |
| } |
| |
| static bool handleLogicalOpForVector(const APInt &LHSValue, |
| BinaryOperatorKind Opcode, |
| const APInt &RHSValue, APInt &Result) { |
| bool LHS = (LHSValue != 0); |
| bool RHS = (RHSValue != 0); |
| |
| if (Opcode == BO_LAnd) |
| Result = LHS && RHS; |
| else |
| Result = LHS || RHS; |
| return true; |
| } |
| static bool handleLogicalOpForVector(const APFloat &LHSValue, |
| BinaryOperatorKind Opcode, |
| const APFloat &RHSValue, APInt &Result) { |
| bool LHS = !LHSValue.isZero(); |
| bool RHS = !RHSValue.isZero(); |
| |
| if (Opcode == BO_LAnd) |
| Result = LHS && RHS; |
| else |
| Result = LHS || RHS; |
| return true; |
| } |
| |
| static bool handleLogicalOpForVector(const APValue &LHSValue, |
| BinaryOperatorKind Opcode, |
| const APValue &RHSValue, APInt &Result) { |
| // The result is always an int type, however operands match the first. |
| if (LHSValue.getKind() == APValue::Int) |
| return handleLogicalOpForVector(LHSValue.getInt(), Opcode, |
| RHSValue.getInt(), Result); |
| assert(LHSValue.getKind() == APValue::Float && "Should be no other options"); |
| return handleLogicalOpForVector(LHSValue.getFloat(), Opcode, |
| RHSValue.getFloat(), Result); |
| } |
| |
| template <typename APTy> |
| static bool |
| handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode, |
| const APTy &RHSValue, APInt &Result) { |
| switch (Opcode) { |
| default: |
| llvm_unreachable("unsupported binary operator"); |
| case BO_EQ: |
| Result = (LHSValue == RHSValue); |
| break; |
| case BO_NE: |
| Result = (LHSValue != RHSValue); |
| break; |
| case BO_LT: |
| Result = (LHSValue < RHSValue); |
| break; |
| case BO_GT: |
| Result = (LHSValue > RHSValue); |
| break; |
| case BO_LE: |
| Result = (LHSValue <= RHSValue); |
| break; |
| case BO_GE: |
| Result = (LHSValue >= RHSValue); |
| break; |
| } |
| |
| // The boolean operations on these vector types use an instruction that |
| // results in a mask of '-1' for the 'truth' value. Ensure that we negate 1 |
| // to -1 to make sure that we produce the correct value. |
| Result.negate(); |
| |
| return true; |
| } |
| |
| static bool handleCompareOpForVector(const APValue &LHSValue, |
| BinaryOperatorKind Opcode, |
| const APValue &RHSValue, APInt &Result) { |
| // The result is always an int type, however operands match the first. |
| if (LHSValue.getKind() == APValue::Int) |
| return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode, |
| RHSValue.getInt(), Result); |
| assert(LHSValue.getKind() == APValue::Float && "Should be no other options"); |
| return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode, |
| RHSValue.getFloat(), Result); |
| } |
| |
| // Perform binary operations for vector types, in place on the LHS. |
| static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E, |
| BinaryOperatorKind Opcode, |
| APValue &LHSValue, |
| const APValue &RHSValue) { |
| assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI && |
| "Operation not supported on vector types"); |
| |
| const auto *VT = E->getType()->castAs<VectorType>(); |
| unsigned NumElements = VT->getNumElements(); |
| QualType EltTy = VT->getElementType(); |
| |
| // In the cases (typically C as I've observed) where we aren't evaluating |
| // constexpr but are checking for cases where the LHS isn't yet evaluatable, |
| // just give up. |
| if (!LHSValue.isVector()) { |
| assert(LHSValue.isLValue() && |
| "A vector result that isn't a vector OR uncalculated LValue"); |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| assert(LHSValue.getVectorLength() == NumElements && |
| RHSValue.getVectorLength() == NumElements && "Different vector sizes"); |
| |
| SmallVector<APValue, 4> ResultElements; |
| |
| for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) { |
| APValue LHSElt = LHSValue.getVectorElt(EltNum); |
| APValue RHSElt = RHSValue.getVectorElt(EltNum); |
| |
| if (EltTy->isIntegerType()) { |
| APSInt EltResult{Info.Ctx.getIntWidth(EltTy), |
| EltTy->isUnsignedIntegerType()}; |
| bool Success = true; |
| |
| if (BinaryOperator::isLogicalOp(Opcode)) |
| Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult); |
| else if (BinaryOperator::isComparisonOp(Opcode)) |
| Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult); |
| else |
| Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode, |
| RHSElt.getInt(), EltResult); |
| |
| if (!Success) { |
| Info.FFDiag(E); |
| return false; |
| } |
| ResultElements.emplace_back(EltResult); |
| |
| } else if (EltTy->isFloatingType()) { |
| assert(LHSElt.getKind() == APValue::Float && |
| RHSElt.getKind() == APValue::Float && |
| "Mismatched LHS/RHS/Result Type"); |
| APFloat LHSFloat = LHSElt.getFloat(); |
| |
| if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode, |
| RHSElt.getFloat())) { |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| ResultElements.emplace_back(LHSFloat); |
| } |
| } |
| |
| LHSValue = APValue(ResultElements.data(), ResultElements.size()); |
| return true; |
| } |
| |
| /// Cast an lvalue referring to a base subobject to a derived class, by |
| /// truncating the lvalue's path to the given length. |
| static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result, |
| const RecordDecl *TruncatedType, |
| unsigned TruncatedElements) { |
| SubobjectDesignator &D = Result.Designator; |
| |
| // Check we actually point to a derived class object. |
| if (TruncatedElements == D.Entries.size()) |
| return true; |
| assert(TruncatedElements >= D.MostDerivedPathLength && |
| "not casting to a derived class"); |
| if (!Result.checkSubobject(Info, E, CSK_Derived)) |
| return false; |
| |
| // Truncate the path to the subobject, and remove any derived-to-base offsets. |
| const RecordDecl *RD = TruncatedType; |
| for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) { |
| if (RD->isInvalidDecl()) return false; |
| const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
| const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]); |
| if (isVirtualBaseClass(D.Entries[I])) |
| Result.Offset -= Layout.getVBaseClassOffset(Base); |
| else |
| Result.Offset -= Layout.getBaseClassOffset(Base); |
| RD = Base; |
| } |
| D.Entries.resize(TruncatedElements); |
| return true; |
| } |
| |
| static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj, |
| const CXXRecordDecl *Derived, |
| const CXXRecordDecl *Base, |
| const ASTRecordLayout *RL = nullptr) { |
| if (!RL) { |
| if (Derived->isInvalidDecl()) return false; |
| RL = &Info.Ctx.getASTRecordLayout(Derived); |
| } |
| |
| Obj.getLValueOffset() += RL->getBaseClassOffset(Base); |
| Obj.addDecl(Info, E, Base, /*Virtual*/ false); |
| return true; |
| } |
| |
| static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj, |
| const CXXRecordDecl *DerivedDecl, |
| const CXXBaseSpecifier *Base) { |
| const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); |
| |
| if (!Base->isVirtual()) |
| return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl); |
| |
| SubobjectDesignator &D = Obj.Designator; |
| if (D.Invalid) |
| return false; |
| |
| // Extract most-derived object and corresponding type. |
| DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl(); |
| if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength)) |
| return false; |
| |
| // Find the virtual base class. |
| if (DerivedDecl->isInvalidDecl()) return false; |
| const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl); |
| Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl); |
| Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true); |
| return true; |
| } |
| |
| static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E, |
| QualType Type, LValue &Result) { |
| for (CastExpr::path_const_iterator PathI = E->path_begin(), |
| PathE = E->path_end(); |
| PathI != PathE; ++PathI) { |
| if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(), |
| *PathI)) |
| return false; |
| Type = (*PathI)->getType(); |
| } |
| return true; |
| } |
| |
| /// Cast an lvalue referring to a derived class to a known base subobject. |
| static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result, |
| const CXXRecordDecl *DerivedRD, |
| const CXXRecordDecl *BaseRD) { |
| CXXBasePaths Paths(/*FindAmbiguities=*/false, |
| /*RecordPaths=*/true, /*DetectVirtual=*/false); |
| if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) |
| llvm_unreachable("Class must be derived from the passed in base class!"); |
| |
| for (CXXBasePathElement &Elem : Paths.front()) |
| if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base)) |
| return false; |
| return true; |
| } |
| |
| /// Update LVal to refer to the given field, which must be a member of the type |
| /// currently described by LVal. |
| static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal, |
| const FieldDecl *FD, |
| const ASTRecordLayout *RL = nullptr) { |
| if (!RL) { |
| if (FD->getParent()->isInvalidDecl()) return false; |
| RL = &Info.Ctx.getASTRecordLayout(FD->getParent()); |
| } |
| |
| unsigned I = FD->getFieldIndex(); |
| LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I))); |
| LVal.addDecl(Info, E, FD); |
| return true; |
| } |
| |
| /// Update LVal to refer to the given indirect field. |
| static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E, |
| LValue &LVal, |
| const IndirectFieldDecl *IFD) { |
| for (const auto *C : IFD->chain()) |
| if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C))) |
| return false; |
| return true; |
| } |
| |
| enum class SizeOfType { |
| SizeOf, |
| DataSizeOf, |
| }; |
| |
| /// Get the size of the given type in char units. |
| static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, QualType Type, |
| CharUnits &Size, SizeOfType SOT = SizeOfType::SizeOf) { |
| // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc |
| // extension. |
| if (Type->isVoidType() || Type->isFunctionType()) { |
| Size = CharUnits::One(); |
| return true; |
| } |
| |
| if (Type->isDependentType()) { |
| Info.FFDiag(Loc); |
| return false; |
| } |
| |
| if (!Type->isConstantSizeType()) { |
| // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. |
| // FIXME: Better diagnostic. |
| Info.FFDiag(Loc); |
| return false; |
| } |
| |
| if (SOT == SizeOfType::SizeOf) |
| Size = Info.Ctx.getTypeSizeInChars(Type); |
| else |
| Size = Info.Ctx.getTypeInfoDataSizeInChars(Type).Width; |
| return true; |
| } |
| |
| /// Update a pointer value to model pointer arithmetic. |
| /// \param Info - Information about the ongoing evaluation. |
| /// \param E - The expression being evaluated, for diagnostic purposes. |
| /// \param LVal - The pointer value to be updated. |
| /// \param EltTy - The pointee type represented by LVal. |
| /// \param Adjustment - The adjustment, in objects of type EltTy, to add. |
| static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, |
| LValue &LVal, QualType EltTy, |
| APSInt Adjustment) { |
| CharUnits SizeOfPointee; |
| if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee)) |
| return false; |
| |
| LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee); |
| return true; |
| } |
| |
| static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, |
| LValue &LVal, QualType EltTy, |
| int64_t Adjustment) { |
| return HandleLValueArrayAdjustment(Info, E, LVal, EltTy, |
| APSInt::get(Adjustment)); |
| } |
| |
| /// Update an lvalue to refer to a component of a complex number. |
| /// \param Info - Information about the ongoing evaluation. |
| /// \param LVal - The lvalue to be updated. |
| /// \param EltTy - The complex number's component type. |
| /// \param Imag - False for the real component, true for the imaginary. |
| static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E, |
| LValue &LVal, QualType EltTy, |
| bool Imag) { |
| if (Imag) { |
| CharUnits SizeOfComponent; |
| if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent)) |
| return false; |
| LVal.Offset += SizeOfComponent; |
| } |
| LVal.addComplex(Info, E, EltTy, Imag); |
| return true; |
| } |
| |
| static bool HandleLValueVectorElement(EvalInfo &Info, const Expr *E, |
| LValue &LVal, QualType EltTy, |
| uint64_t Size, uint64_t Idx) { |
| if (Idx) { |
| CharUnits SizeOfElement; |
| if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfElement)) |
| return false; |
| LVal.Offset += SizeOfElement * Idx; |
| } |
| LVal.addVectorElement(Info, E, EltTy, Size, Idx); |
| return true; |
| } |
| |
| /// Try to evaluate the initializer for a variable declaration. |
| /// |
| /// \param Info Information about the ongoing evaluation. |
| /// \param E An expression to be used when printing diagnostics. |
| /// \param VD The variable whose initializer should be obtained. |
| /// \param Version The version of the variable within the frame. |
| /// \param Frame The frame in which the variable was created. Must be null |
| /// if this variable is not local to the evaluation. |
| /// \param Result Filled in with a pointer to the value of the variable. |
| static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E, |
| const VarDecl *VD, CallStackFrame *Frame, |
| unsigned Version, APValue *&Result) { |
| APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version); |
| |
| // If this is a local variable, dig out its value. |
| if (Frame) { |
| Result = Frame->getTemporary(VD, Version); |
| if (Result) |
| return true; |
| |
| if (!isa<ParmVarDecl>(VD)) { |
| // Assume variables referenced within a lambda's call operator that were |
| // not declared within the call operator are captures and during checking |
| // of a potential constant expression, assume they are unknown constant |
| // expressions. |
| assert(isLambdaCallOperator(Frame->Callee) && |
| (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && |
| "missing value for local variable"); |
| if (Info.checkingPotentialConstantExpression()) |
| return false; |
| // FIXME: This diagnostic is bogus; we do support captures. Is this code |
| // still reachable at all? |
| Info.FFDiag(E->getBeginLoc(), |
| diag::note_unimplemented_constexpr_lambda_feature_ast) |
| << "captures not currently allowed"; |
| return false; |
| } |
| } |
| |
| // If we're currently evaluating the initializer of this declaration, use that |
| // in-flight value. |
| if (Info.EvaluatingDecl == Base) { |
| Result = Info.EvaluatingDeclValue; |
| return true; |
| } |
| |
| if (isa<ParmVarDecl>(VD)) { |
| // Assume parameters of a potential constant expression are usable in |
| // constant expressions. |
| if (!Info.checkingPotentialConstantExpression() || |
| !Info.CurrentCall->Callee || |
| !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) { |
| if (Info.getLangOpts().CPlusPlus11) { |
| Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown) |
| << VD; |
| NoteLValueLocation(Info, Base); |
| } else { |
| Info.FFDiag(E); |
| } |
| } |
| return false; |
| } |
| |
| if (E->isValueDependent()) |
| return false; |
| |
| // Dig out the initializer, and use the declaration which it's attached to. |
| // FIXME: We should eventually check whether the variable has a reachable |
| // initializing declaration. |
| const Expr *Init = VD->getAnyInitializer(VD); |
| if (!Init) { |
| // Don't diagnose during potential constant expression checking; an |
| // initializer might be added later. |
| if (!Info.checkingPotentialConstantExpression()) { |
| Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1) |
| << VD; |
| NoteLValueLocation(Info, Base); |
| } |
| return false; |
| } |
| |
| if (Init->isValueDependent()) { |
| // The DeclRefExpr is not value-dependent, but the variable it refers to |
| // has a value-dependent initializer. This should only happen in |
| // constant-folding cases, where the variable is not actually of a suitable |
| // type for use in a constant expression (otherwise the DeclRefExpr would |
| // have been value-dependent too), so diagnose that. |
| assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx)); |
| if (!Info.checkingPotentialConstantExpression()) { |
| Info.FFDiag(E, Info.getLangOpts().CPlusPlus11 |
| ? diag::note_constexpr_ltor_non_constexpr |
| : diag::note_constexpr_ltor_non_integral, 1) |
| << VD << VD->getType(); |
| NoteLValueLocation(Info, Base); |
| } |
| return false; |
| } |
| |
| // Check that we can fold the initializer. In C++, we will have already done |
| // this in the cases where it matters for conformance. |
| if (!VD->evaluateValue()) { |
| Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD; |
| NoteLValueLocation(Info, Base); |
| return false; |
| } |
| |
| // Check that the variable is actually usable in constant expressions. For a |
| // const integral variable or a reference, we might have a non-constant |
| // initializer that we can nonetheless evaluate the initializer for. Such |
| // variables are not usable in constant expressions. In C++98, the |
| // initializer also syntactically needs to be an ICE. |
| // |
| // FIXME: We don't diagnose cases that aren't potentially usable in constant |
| // expressions here; doing so would regress diagnostics for things like |
| // reading from a volatile constexpr variable. |
| if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() && |
| VD->mightBeUsableInConstantExpressions(Info.Ctx)) || |
| ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) && |
| !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) { |
| Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD; |
| NoteLValueLocation(Info, Base); |
| } |
| |
| // Never use the initializer of a weak variable, not even for constant |
| // folding. We can't be sure that this is the definition that will be used. |
| if (VD->isWeak()) { |
| Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD; |
| NoteLValueLocation(Info, Base); |
| return false; |
| } |
| |
| Result = VD->getEvaluatedValue(); |
| return true; |
| } |
| |
| /// Get the base index of the given base class within an APValue representing |
| /// the given derived class. |
| static unsigned getBaseIndex(const CXXRecordDecl *Derived, |
| const CXXRecordDecl *Base) { |
| Base = Base->getCanonicalDecl(); |
| unsigned Index = 0; |
| for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(), |
| E = Derived->bases_end(); I != E; ++I, ++Index) { |
| if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base) |
| return Index; |
| } |
| |
| llvm_unreachable("base class missing from derived class's bases list"); |
| } |
| |
| /// Extract the value of a character from a string literal. |
| static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit, |
| uint64_t Index) { |
| assert(!isa<SourceLocExpr>(Lit) && |
| "SourceLocExpr should have already been converted to a StringLiteral"); |
| |
| // FIXME: Support MakeStringConstant |
| if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) { |
| std::string Str; |
| Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str); |
| assert(Index <= Str.size() && "Index too large"); |
| return APSInt::getUnsigned(Str.c_str()[Index]); |
| } |
| |
| if (auto PE = dyn_cast<PredefinedExpr>(Lit)) |
| Lit = PE->getFunctionName(); |
| const StringLiteral *S = cast<StringLiteral>(Lit); |
| const ConstantArrayType *CAT = |
| Info.Ctx.getAsConstantArrayType(S->getType()); |
| assert(CAT && "string literal isn't an array"); |
| QualType CharType = CAT->getElementType(); |
| assert(CharType->isIntegerType() && "unexpected character type"); |
| APSInt Value(Info.Ctx.getTypeSize(CharType), |
| CharType->isUnsignedIntegerType()); |
| if (Index < S->getLength()) |
| Value = S->getCodeUnit(Index); |
| return Value; |
| } |
| |
| // Expand a string literal into an array of characters. |
| // |
| // FIXME: This is inefficient; we should probably introduce something similar |
| // to the LLVM ConstantDataArray to make this cheaper. |
| static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S, |
| APValue &Result, |
| QualType AllocType = QualType()) { |
| const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( |
| AllocType.isNull() ? S->getType() : AllocType); |
| assert(CAT && "string literal isn't an array"); |
| QualType CharType = CAT->getElementType(); |
| assert(CharType->isIntegerType() && "unexpected character type"); |
| |
| unsigned Elts = CAT->getZExtSize(); |
| Result = APValue(APValue::UninitArray(), |
| std::min(S->getLength(), Elts), Elts); |
| APSInt Value(Info.Ctx.getTypeSize(CharType), |
| CharType->isUnsignedIntegerType()); |
| if (Result.hasArrayFiller()) |
| Result.getArrayFiller() = APValue(Value); |
| for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) { |
| Value = S->getCodeUnit(I); |
| Result.getArrayInitializedElt(I) = APValue(Value); |
| } |
| } |
| |
| // Expand an array so that it has more than Index filled elements. |
| static void expandArray(APValue &Array, unsigned Index) { |
| unsigned Size = Array.getArraySize(); |
| assert(Index < Size); |
| |
| // Always at least double the number of elements for which we store a value. |
| unsigned OldElts = Array.getArrayInitializedElts(); |
| unsigned NewElts = std::max(Index+1, OldElts * 2); |
| NewElts = std::min(Size, std::max(NewElts, 8u)); |
| |
| // Copy the data across. |
| APValue NewValue(APValue::UninitArray(), NewElts, Size); |
| for (unsigned I = 0; I != OldElts; ++I) |
| NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I)); |
| for (unsigned I = OldElts; I != NewElts; ++I) |
| NewValue.getArrayInitializedElt(I) = Array.getArrayFiller(); |
| if (NewValue.hasArrayFiller()) |
| NewValue.getArrayFiller() = Array.getArrayFiller(); |
| Array.swap(NewValue); |
| } |
| |
| /// Determine whether a type would actually be read by an lvalue-to-rvalue |
| /// conversion. If it's of class type, we may assume that the copy operation |
| /// is trivial. Note that this is never true for a union type with fields |
| /// (because the copy always "reads" the active member) and always true for |
| /// a non-class type. |
| static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD); |
| static bool isReadByLvalueToRvalueConversion(QualType T) { |
| CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
| return !RD || isReadByLvalueToRvalueConversion(RD); |
| } |
| static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) { |
| // FIXME: A trivial copy of a union copies the object representation, even if |
| // the union is empty. |
| if (RD->isUnion()) |
| return !RD->field_empty(); |
| if (RD->isEmpty()) |
| return false; |
| |
| for (auto *Field : RD->fields()) |
| if (!Field->isUnnamedBitField() && |
| isReadByLvalueToRvalueConversion(Field->getType())) |
| return true; |
| |
| for (auto &BaseSpec : RD->bases()) |
| if (isReadByLvalueToRvalueConversion(BaseSpec.getType())) |
| return true; |
| |
| return false; |
| } |
| |
| /// Diagnose an attempt to read from any unreadable field within the specified |
| /// type, which might be a class type. |
| static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK, |
| QualType T) { |
| CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
| if (!RD) |
| return false; |
| |
| if (!RD->hasMutableFields()) |
| return false; |
| |
| for (auto *Field : RD->fields()) { |
| // If we're actually going to read this field in some way, then it can't |
| // be mutable. If we're in a union, then assigning to a mutable field |
| // (even an empty one) can change the active member, so that's not OK. |
| // FIXME: Add core issue number for the union case. |
| if (Field->isMutable() && |
| (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) { |
| Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field; |
| Info.Note(Field->getLocation(), diag::note_declared_at); |
| return true; |
| } |
| |
| if (diagnoseMutableFields(Info, E, AK, Field->getType())) |
| return true; |
| } |
| |
| for (auto &BaseSpec : RD->bases()) |
| if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType())) |
| return true; |
| |
| // All mutable fields were empty, and thus not actually read. |
| return false; |
| } |
| |
| static bool lifetimeStartedInEvaluation(EvalInfo &Info, |
| APValue::LValueBase Base, |
| bool MutableSubobject = false) { |
| // A temporary or transient heap allocation we created. |
| if (Base.getCallIndex() || Base.is<DynamicAllocLValue>()) |
| return true; |
| |
| switch (Info.IsEvaluatingDecl) { |
| case EvalInfo::EvaluatingDeclKind::None: |
| return false; |
| |
| case EvalInfo::EvaluatingDeclKind::Ctor: |
| // The variable whose initializer we're evaluating. |
| if (Info.EvaluatingDecl == Base) |
| return true; |
| |
| // A temporary lifetime-extended by the variable whose initializer we're |
| // evaluating. |
| if (auto *BaseE = Base.dyn_cast<const Expr *>()) |
| if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE)) |
| return Info.EvaluatingDecl == BaseMTE->getExtendingDecl(); |
| return false; |
| |
| case EvalInfo::EvaluatingDeclKind::Dtor: |
| // C++2a [expr.const]p6: |
| // [during constant destruction] the lifetime of a and its non-mutable |
| // subobjects (but not its mutable subobjects) [are] considered to start |
| // within e. |
| if (MutableSubobject || Base != Info.EvaluatingDecl) |
| return false; |
| // FIXME: We can meaningfully extend this to cover non-const objects, but |
| // we will need special handling: we should be able to access only |
| // subobjects of such objects that are themselves declared const. |
| QualType T = getType(Base); |
| return T.isConstQualified() || T->isReferenceType(); |
| } |
| |
| llvm_unreachable("unknown evaluating decl kind"); |
| } |
| |
| static bool CheckArraySize(EvalInfo &Info, const ConstantArrayType *CAT, |
| SourceLocation CallLoc = {}) { |
| return Info.CheckArraySize( |
| CAT->getSizeExpr() ? CAT->getSizeExpr()->getBeginLoc() : CallLoc, |
| CAT->getNumAddressingBits(Info.Ctx), CAT->getZExtSize(), |
| /*Diag=*/true); |
| } |
| |
| namespace { |
| /// A handle to a complete object (an object that is not a subobject of |
| /// another object). |
| struct CompleteObject { |
| /// The identity of the object. |
| APValue::LValueBase Base; |
| /// The value of the complete object. |
| APValue *Value; |
| /// The type of the complete object. |
| QualType Type; |
| |
| CompleteObject() : Value(nullptr) {} |
| CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type) |
| : Base(Base), Value(Value), Type(Type) {} |
| |
| bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const { |
| // If this isn't a "real" access (eg, if it's just accessing the type |
| // info), allow it. We assume the type doesn't change dynamically for |
| // subobjects of constexpr objects (even though we'd hit UB here if it |
| // did). FIXME: Is this right? |
| if (!isAnyAccess(AK)) |
| return true; |
| |
| // In C++14 onwards, it is permitted to read a mutable member whose |
| // lifetime began within the evaluation. |
| // FIXME: Should we also allow this in C++11? |
| if (!Info.getLangOpts().CPlusPlus14 && |
| AK != AccessKinds::AK_IsWithinLifetime) |
| return false; |
| return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true); |
| } |
| |
| explicit operator bool() const { return !Type.isNull(); } |
| }; |
| } // end anonymous namespace |
| |
| static QualType getSubobjectType(QualType ObjType, QualType SubobjType, |
| bool IsMutable = false) { |
| // C++ [basic.type.qualifier]p1: |
| // - A const object is an object of type const T or a non-mutable subobject |
| // of a const object. |
| if (ObjType.isConstQualified() && !IsMutable) |
| SubobjType.addConst(); |
| // - A volatile object is an object of type const T or a subobject of a |
| // volatile object. |
| if (ObjType.isVolatileQualified()) |
| SubobjType.addVolatile(); |
| return SubobjType; |
| } |
| |
| /// Find the designated sub-object of an rvalue. |
| template<typename SubobjectHandler> |
| typename SubobjectHandler::result_type |
| findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj, |
| const SubobjectDesignator &Sub, SubobjectHandler &handler) { |
| if (Sub.Invalid) |
| // A diagnostic will have already been produced. |
| return handler.failed(); |
| if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) { |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.FFDiag(E, Sub.isOnePastTheEnd() |
| ? diag::note_constexpr_access_past_end |
| : diag::note_constexpr_access_unsized_array) |
| << handler.AccessKind; |
| else |
| Info.FFDiag(E); |
| return handler.failed(); |
| } |
| |
| APValue *O = Obj.Value; |
| QualType ObjType = Obj.Type; |
| const FieldDecl *LastField = nullptr; |
| const FieldDecl *VolatileField = nullptr; |
| |
| // Walk the designator's path to find the subobject. |
| for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) { |
| // Reading an indeterminate value is undefined, but assigning over one is OK. |
| if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) || |
| (O->isIndeterminate() && |
| !isValidIndeterminateAccess(handler.AccessKind))) { |
| // Object has ended lifetime. |
| // If I is non-zero, some subobject (member or array element) of a |
| // complete object has ended its lifetime, so this is valid for |
| // IsWithinLifetime, resulting in false. |
| if (I != 0 && handler.AccessKind == AK_IsWithinLifetime) |
| return false; |
| if (!Info.checkingPotentialConstantExpression()) |
| Info.FFDiag(E, diag::note_constexpr_access_uninit) |
| << handler.AccessKind << O->isIndeterminate() |
| << E->getSourceRange(); |
| return handler.failed(); |
| } |
| |
| // C++ [class.ctor]p5, C++ [class.dtor]p5: |
| // const and volatile semantics are not applied on an object under |
| // {con,de}struction. |
| if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) && |
| ObjType->isRecordType() && |
| Info.isEvaluatingCtorDtor( |
| Obj.Base, |
| llvm::ArrayRef(Sub.Entries.begin(), Sub.Entries.begin() + I)) != |
| ConstructionPhase::None) { |
| ObjType = Info.Ctx.getCanonicalType(ObjType); |
| ObjType.removeLocalConst(); |
| ObjType.removeLocalVolatile(); |
| } |
| |
| // If this is our last pass, check that the final object type is OK. |
| if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) { |
| // Accesses to volatile objects are prohibited. |
| if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) { |
| if (Info.getLangOpts().CPlusPlus) { |
| int DiagKind; |
| SourceLocation Loc; |
| const NamedDecl *Decl = nullptr; |
| if (VolatileField) { |
| DiagKind = 2; |
| Loc = VolatileField->getLocation(); |
| Decl = VolatileField; |
| } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) { |
| DiagKind = 1; |
| Loc = VD->getLocation(); |
| Decl = VD; |
| } else { |
| DiagKind = 0; |
| if (auto *E = Obj.Base.dyn_cast<const Expr *>()) |
| Loc = E->getExprLoc(); |
| } |
| Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) |
| << handler.AccessKind << DiagKind << Decl; |
| Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind; |
| } else { |
| Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| } |
| return handler.failed(); |
| } |
| |
| // If we are reading an object of class type, there may still be more |
| // things we need to check: if there are any mutable subobjects, we |
| // cannot perform this read. (This only happens when performing a trivial |
| // copy or assignment.) |
| if (ObjType->isRecordType() && |
| !Obj.mayAccessMutableMembers(Info, handler.AccessKind) && |
| diagnoseMutableFields(Info, E, handler.AccessKind, ObjType)) |
| return handler.failed(); |
| } |
| |
| if (I == N) { |
| if (!handler.found(*O, ObjType)) |
| return false; |
| |
| // If we modified a bit-field, truncate it to the right width. |
| if (isModification(handler.AccessKind) && |
| LastField && LastField->isBitField() && |
| !truncateBitfieldValue(Info, E, *O, LastField)) |
| return false; |
| |
| return true; |
| } |
| |
| LastField = nullptr; |
| if (ObjType->isArrayType()) { |
| // Next subobject is an array element. |
| const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType); |
| assert(CAT && "vla in literal type?"); |
| uint64_t Index = Sub.Entries[I].getAsArrayIndex(); |
| if (CAT->getSize().ule(Index)) { |
| // Note, it should not be possible to form a pointer with a valid |
| // designator which points more than one past the end of the array. |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.FFDiag(E, diag::note_constexpr_access_past_end) |
| << handler.AccessKind; |
| else |
| Info.FFDiag(E); |
| return handler.failed(); |
| } |
| |
| ObjType = CAT->getElementType(); |
| |
| if (O->getArrayInitializedElts() > Index) |
| O = &O->getArrayInitializedElt(Index); |
| else if (!isRead(handler.AccessKind)) { |
| if (!CheckArraySize(Info, CAT, E->getExprLoc())) |
| return handler.failed(); |
| |
| expandArray(*O, Index); |
| O = &O->getArrayInitializedElt(Index); |
| } else |
| O = &O->getArrayFiller(); |
| } else if (ObjType->isAnyComplexType()) { |
| // Next subobject is a complex number. |
| uint64_t Index = Sub.Entries[I].getAsArrayIndex(); |
| if (Index > 1) { |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.FFDiag(E, diag::note_constexpr_access_past_end) |
| << handler.AccessKind; |
| else |
| Info.FFDiag(E); |
| return handler.failed(); |
| } |
| |
| ObjType = getSubobjectType( |
| ObjType, ObjType->castAs<ComplexType>()->getElementType()); |
| |
| assert(I == N - 1 && "extracting subobject of scalar?"); |
| if (O->isComplexInt()) { |
| return handler.found(Index ? O->getComplexIntImag() |
| : O->getComplexIntReal(), ObjType); |
| } else { |
| assert(O->isComplexFloat()); |
| return handler.found(Index ? O->getComplexFloatImag() |
| : O->getComplexFloatReal(), ObjType); |
| } |
| } else if (const auto *VT = ObjType->getAs<VectorType>()) { |
| uint64_t Index = Sub.Entries[I].getAsArrayIndex(); |
| unsigned NumElements = VT->getNumElements(); |
| if (Index == NumElements) { |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.FFDiag(E, diag::note_constexpr_access_past_end) |
| << handler.AccessKind; |
| else |
| Info.FFDiag(E); |
| return handler.failed(); |
| } |
| |
| if (Index > NumElements) { |
| Info.CCEDiag(E, diag::note_constexpr_array_index) |
| << Index << /*array*/ 0 << NumElements; |
| return handler.failed(); |
| } |
| |
| ObjType = VT->getElementType(); |
| assert(I == N - 1 && "extracting subobject of scalar?"); |
| return handler.found(O->getVectorElt(Index), ObjType); |
| } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) { |
| if (Field->isMutable() && |
| !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) { |
| Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) |
| << handler.AccessKind << Field; |
| Info.Note(Field->getLocation(), diag::note_declared_at); |
| return handler.failed(); |
| } |
| |
| // Next subobject is a class, struct or union field. |
| RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl(); |
| if (RD->isUnion()) { |
| const FieldDecl *UnionField = O->getUnionField(); |
| if (!UnionField || |
| UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) { |
| if (I == N - 1 && handler.AccessKind == AK_Construct) { |
| // Placement new onto an inactive union member makes it active. |
| O->setUnion(Field, APValue()); |
| } else { |
| // Pointer to/into inactive union member: Not within lifetime |
| if (handler.AccessKind == AK_IsWithinLifetime) |
| return false; |
| // FIXME: If O->getUnionValue() is absent, report that there's no |
| // active union member rather than reporting the prior active union |
| // member. We'll need to fix nullptr_t to not use APValue() as its |
| // representation first. |
| Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member) |
| << handler.AccessKind << Field << !UnionField << UnionField; |
| return handler.failed(); |
| } |
| } |
| O = &O->getUnionValue(); |
| } else |
| O = &O->getStructField(Field->getFieldIndex()); |
| |
| ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable()); |
| LastField = Field; |
| if (Field->getType().isVolatileQualified()) |
| VolatileField = Field; |
| } else { |
| // Next subobject is a base class. |
| const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl(); |
| const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]); |
| O = &O->getStructBase(getBaseIndex(Derived, Base)); |
| |
| ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base)); |
| } |
| } |
| } |
| |
| namespace { |
| struct ExtractSubobjectHandler { |
| EvalInfo &Info; |
| const Expr *E; |
| APValue &Result; |
| const AccessKinds AccessKind; |
| |
| typedef bool result_type; |
| bool failed() { return false; } |
| bool found(APValue &Subobj, QualType SubobjType) { |
| Result = Subobj; |
| if (AccessKind == AK_ReadObjectRepresentation) |
| return true; |
| return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result); |
| } |
| bool found(APSInt &Value, QualType SubobjType) { |
| Result = APValue(Value); |
| return true; |
| } |
| bool found(APFloat &Value, QualType SubobjType) { |
| Result = APValue(Value); |
| return true; |
| } |
| }; |
| } // end anonymous namespace |
| |
| /// Extract the designated sub-object of an rvalue. |
| static bool extractSubobject(EvalInfo &Info, const Expr *E, |
| const CompleteObject &Obj, |
| const SubobjectDesignator &Sub, APValue &Result, |
| AccessKinds AK = AK_Read) { |
| assert(AK == AK_Read || AK == AK_ReadObjectRepresentation); |
| ExtractSubobjectHandler Handler = {Info, E, Result, AK}; |
| return findSubobject(Info, E, Obj, Sub, Handler); |
| } |
| |
| namespace { |
| struct ModifySubobjectHandler { |
| EvalInfo &Info; |
| APValue &NewVal; |
| const Expr *E; |
| |
| typedef bool result_type; |
| static const AccessKinds AccessKind = AK_Assign; |
| |
| bool checkConst(QualType QT) { |
| // Assigning to a const object has undefined behavior. |
| if (QT.isConstQualified()) { |
| Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; |
| return false; |
| } |
| return true; |
| } |
| |
| bool failed() { return false; } |
| bool found(APValue &Subobj, QualType SubobjType) { |
| if (!checkConst(SubobjType)) |
| return false; |
| // We've been given ownership of NewVal, so just swap it in. |
| Subobj.swap(NewVal); |
| return true; |
| } |
| bool found(APSInt &Value, QualType SubobjType) { |
| if (!checkConst(SubobjType)) |
| return false; |
| if (!NewVal.isInt()) { |
| // Maybe trying to write a cast pointer value into a complex? |
| Info.FFDiag(E); |
| return false; |
| } |
| Value = NewVal.getInt(); |
| return true; |
| } |
| bool found(APFloat &Value, QualType SubobjType) { |
| if (!checkConst(SubobjType)) |
| return false; |
| Value = NewVal.getFloat(); |
| return true; |
| } |
| }; |
| } // end anonymous namespace |
| |
| const AccessKinds ModifySubobjectHandler::AccessKind; |
| |
| /// Update the designated sub-object of an rvalue to the given value. |
| static bool modifySubobject(EvalInfo &Info, const Expr *E, |
| const CompleteObject &Obj, |
| const SubobjectDesignator &Sub, |
| APValue &NewVal) { |
| ModifySubobjectHandler Handler = { Info, NewVal, E }; |
| return findSubobject(Info, E, Obj, Sub, Handler); |
| } |
| |
| /// Find the position where two subobject designators diverge, or equivalently |
| /// the length of the common initial subsequence. |
| static unsigned FindDesignatorMismatch(QualType ObjType, |
| const SubobjectDesignator &A, |
| const SubobjectDesignator &B, |
| bool &WasArrayIndex) { |
| unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size()); |
| for (/**/; I != N; ++I) { |
| if (!ObjType.isNull() && |
| (ObjType->isArrayType() || ObjType->isAnyComplexType())) { |
| // Next subobject is an array element. |
| if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) { |
| WasArrayIndex = true; |
| return I; |
| } |
| if (ObjType->isAnyComplexType()) |
| ObjType = ObjType->castAs<ComplexType>()->getElementType(); |
| else |
| ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType(); |
| } else { |
| if (A.Entries[I].getAsBaseOrMember() != |
| B.Entries[I].getAsBaseOrMember()) { |
| WasArrayIndex = false; |
| return I; |
| } |
| if (const FieldDecl *FD = getAsField(A.Entries[I])) |
| // Next subobject is a field. |
| ObjType = FD->getType(); |
| else |
| // Next subobject is a base class. |
| ObjType = QualType(); |
| } |
| } |
| WasArrayIndex = false; |
| return I; |
| } |
| |
| /// Determine whether the given subobject designators refer to elements of the |
| /// same array object. |
| static bool AreElementsOfSameArray(QualType ObjType, |
| const SubobjectDesignator &A, |
| const SubobjectDesignator &B) { |
| if (A.Entries.size() != B.Entries.size()) |
| return false; |
| |
| bool IsArray = A.MostDerivedIsArrayElement; |
| if (IsArray && A.MostDerivedPathLength != A.Entries.size()) |
| // A is a subobject of the array element. |
| return false; |
| |
| // If A (and B) designates an array element, the last entry will be the array |
| // index. That doesn't have to match. Otherwise, we're in the 'implicit array |
| // of length 1' case, and the entire path must match. |
| bool WasArrayIndex; |
| unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex); |
| return CommonLength >= A.Entries.size() - IsArray; |
| } |
| |
| /// Find the complete object to which an LValue refers. |
| static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, |
| AccessKinds AK, const LValue &LVal, |
| QualType LValType) { |
| if (LVal.InvalidBase) { |
| Info.FFDiag(E); |
| return CompleteObject(); |
| } |
| |
| if (!LVal.Base) { |
| Info.FFDiag(E, diag::note_constexpr_access_null) << AK; |
| return CompleteObject(); |
| } |
| |
| CallStackFrame *Frame = nullptr; |
| unsigned Depth = 0; |
| if (LVal.getLValueCallIndex()) { |
| std::tie(Frame, Depth) = |
| Info.getCallFrameAndDepth(LVal.getLValueCallIndex()); |
| if (!Frame) { |
| Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1) |
| << AK << LVal.Base.is<const ValueDecl*>(); |
| NoteLValueLocation(Info, LVal.Base); |
| return CompleteObject(); |
| } |
| } |
| |
| bool IsAccess = isAnyAccess(AK); |
| |
| // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type |
| // is not a constant expression (even if the object is non-volatile). We also |
| // apply this rule to C++98, in order to conform to the expected 'volatile' |
| // semantics. |
| if (isFormalAccess(AK) && LValType.isVolatileQualified()) { |
| if (Info.getLangOpts().CPlusPlus) |
| Info.FFDiag(E, diag::note_constexpr_access_volatile_type) |
| << AK << LValType; |
| else |
| Info.FFDiag(E); |
| return CompleteObject(); |
| } |
| |
| // Compute value storage location and type of base object. |
| APValue *BaseVal = nullptr; |
| QualType BaseType = getType(LVal.Base); |
| |
| if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl && |
| lifetimeStartedInEvaluation(Info, LVal.Base)) { |
| // This is the object whose initializer we're evaluating, so its lifetime |
| // started in the current evaluation. |
| BaseVal = Info.EvaluatingDeclValue; |
| } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) { |
| // Allow reading from a GUID declaration. |
| if (auto *GD = dyn_cast<MSGuidDecl>(D)) { |
| if (isModification(AK)) { |
| // All the remaining cases do not permit modification of the object. |
| Info.FFDiag(E, diag::note_constexpr_modify_global); |
| return CompleteObject(); |
| } |
| APValue &V = GD->getAsAPValue(); |
| if (V.isAbsent()) { |
| Info.FFDiag(E, diag::note_constexpr_unsupported_layout) |
| << GD->getType(); |
| return CompleteObject(); |
| } |
| return CompleteObject(LVal.Base, &V, GD->getType()); |
| } |
| |
| // Allow reading the APValue from an UnnamedGlobalConstantDecl. |
| if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D)) { |
| if (isModification(AK)) { |
| Info.FFDiag(E, diag::note_constexpr_modify_global); |
| return CompleteObject(); |
| } |
| return CompleteObject(LVal.Base, const_cast<APValue *>(&GCD->getValue()), |
| GCD->getType()); |
| } |
| |
| // Allow reading from template parameter objects. |
| if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) { |
| if (isModification(AK)) { |
| Info.FFDiag(E, diag::note_constexpr_modify_global); |
| return CompleteObject(); |
| } |
| return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()), |
| TPO->getType()); |
| } |
| |
| // In C++98, const, non-volatile integers initialized with ICEs are ICEs. |
| // In C++11, constexpr, non-volatile variables initialized with constant |
| // expressions are constant expressions too. Inside constexpr functions, |
| // parameters are constant expressions even if they're non-const. |
| // In C++1y, objects local to a constant expression (those with a Frame) are |
| // both readable and writable inside constant expressions. |
| // In C, such things can also be folded, although they are not ICEs. |
| const VarDecl *VD = dyn_cast<VarDecl>(D); |
| if (VD) { |
| if (const VarDecl *VDef = VD->getDefinition(Info.Ctx)) |
| VD = VDef; |
| } |
| if (!VD || VD->isInvalidDecl()) { |
| Info.FFDiag(E); |
| return CompleteObject(); |
| } |
| |
| bool IsConstant = BaseType.isConstant(Info.Ctx); |
| bool ConstexprVar = false; |
| if (const auto *VD = dyn_cast_if_present<VarDecl>( |
| Info.EvaluatingDecl.dyn_cast<const ValueDecl *>())) |
| ConstexprVar = VD->isConstexpr(); |
| |
| // Unless we're looking at a local variable or argument in a constexpr call, |
| // the variable we're reading must be const. |
| if (!Frame) { |
| if (IsAccess && isa<ParmVarDecl>(VD)) { |
| // Access of a parameter that's not associated with a frame isn't going |
| // to work out, but we can leave it to evaluateVarDeclInit to provide a |
| // suitable diagnostic. |
| } else if (Info.getLangOpts().CPlusPlus14 && |
| lifetimeStartedInEvaluation(Info, LVal.Base)) { |
| // OK, we can read and modify an object if we're in the process of |
| // evaluating its initializer, because its lifetime began in this |
| // evaluation. |
| } else if (isModification(AK)) { |
| // All the remaining cases do not permit modification of the object. |
| Info.FFDiag(E, diag::note_constexpr_modify_global); |
| return CompleteObject(); |
| } else if (VD->isConstexpr()) { |
| // OK, we can read this variable. |
| } else if (Info.getLangOpts().C23 && ConstexprVar) { |
| Info.FFDiag(E); |
| return CompleteObject(); |
| } else if (BaseType->isIntegralOrEnumerationType()) { |
| if (!IsConstant) { |
| if (!IsAccess) |
| return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); |
| if (Info.getLangOpts().CPlusPlus) { |
| Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD; |
| Info.Note(VD->getLocation(), diag::note_declared_at); |
| } else { |
| Info.FFDiag(E); |
| } |
| return CompleteObject(); |
| } |
| } else if (!IsAccess) { |
| return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); |
| } else if (IsConstant && Info.checkingPotentialConstantExpression() && |
| BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) { |
| // This variable might end up being constexpr. Don't diagnose it yet. |
| } else if (IsConstant) { |
| // Keep evaluating to see what we can do. In particular, we support |
| // folding of const floating-point types, in order to make static const |
| // data members of such types (supported as an extension) more useful. |
| if (Info.getLangOpts().CPlusPlus) { |
| Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11 |
| ? diag::note_constexpr_ltor_non_constexpr |
| : diag::note_constexpr_ltor_non_integral, 1) |
| << VD << BaseType; |
| Info.Note(VD->getLocation(), diag::note_declared_at); |
| } else { |
| Info.CCEDiag(E); |
| } |
| } else { |
| // Never allow reading a non-const value. |
| if (Info.getLangOpts().CPlusPlus) { |
| Info.FFDiag(E, Info.getLangOpts().CPlusPlus11 |
| ? diag::note_constexpr_ltor_non_constexpr |
| : diag::note_constexpr_ltor_non_integral, 1) |
| << VD << BaseType; |
| Info.Note(VD->getLocation(), diag::note_declared_at); |
| } else { |
| Info.FFDiag(E); |
| } |
| return CompleteObject(); |
| } |
| } |
| |
| if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal)) |
| return CompleteObject(); |
| } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) { |
| std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA); |
| if (!Alloc) { |
| Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK; |
| return CompleteObject(); |
| } |
| return CompleteObject(LVal.Base, &(*Alloc)->Value, |
| LVal.Base.getDynamicAllocType()); |
| } else { |
| const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); |
| |
| if (!Frame) { |
| if (const MaterializeTemporaryExpr *MTE = |
| dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) { |
| assert(MTE->getStorageDuration() == SD_Static && |
| "should have a frame for a non-global materialized temporary"); |
| |
| // C++20 [expr.const]p4: [DR2126] |
| // An object or reference is usable in constant expressions if it is |
| // - a temporary object of non-volatile const-qualified literal type |
| // whose lifetime is extended to that of a variable that is usable |
| // in constant expressions |
| // |
| // C++20 [expr.const]p5: |
| // an lvalue-to-rvalue conversion [is not allowed unless it applies to] |
| // - a non-volatile glvalue that refers to an object that is usable |
| // in constant expressions, or |
| // - a non-volatile glvalue of literal type that refers to a |
| // non-volatile object whose lifetime began within the evaluation |
| // of E; |
| // |
| // C++11 misses the 'began within the evaluation of e' check and |
| // instead allows all temporaries, including things like: |
| // int &&r = 1; |
| // int x = ++r; |
| // constexpr int k = r; |
| // Therefore we use the C++14-onwards rules in C++11 too. |
| // |
| // Note that temporaries whose lifetimes began while evaluating a |
| // variable's constructor are not usable while evaluating the |
| // corresponding destructor, not even if they're of const-qualified |
| // types. |
| if (!MTE->isUsableInConstantExpressions(Info.Ctx) && |
| !lifetimeStartedInEvaluation(Info, LVal.Base)) { |
| if (!IsAccess) |
| return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); |
| Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK; |
| Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here); |
| return CompleteObject(); |
| } |
| |
| BaseVal = MTE->getOrCreateValue(false); |
| assert(BaseVal && "got reference to unevaluated temporary"); |
| } else { |
| if (!IsAccess) |
| return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); |
| APValue Val; |
| LVal.moveInto(Val); |
| Info.FFDiag(E, diag::note_constexpr_access_unreadable_object) |
| << AK |
| << Val.getAsString(Info.Ctx, |
| Info.Ctx.getLValueReferenceType(LValType)); |
| NoteLValueLocation(Info, LVal.Base); |
| return CompleteObject(); |
| } |
| } else { |
| BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion()); |
| assert(BaseVal && "missing value for temporary"); |
| } |
| } |
| |
| // In C++14, we can't safely access any mutable state when we might be |
| // evaluating after an unmodeled side effect. Parameters are modeled as state |
| // in the caller, but aren't visible once the call returns, so they can be |
| // modified in a speculatively-evaluated call. |
| // |
| // FIXME: Not all local state is mutable. Allow local constant subobjects |
| // to be read here (but take care with 'mutable' fields). |
| unsigned VisibleDepth = Depth; |
| if (llvm::isa_and_nonnull<ParmVarDecl>( |
| LVal.Base.dyn_cast<const ValueDecl *>())) |
| ++VisibleDepth; |
| if ((Frame && Info.getLangOpts().CPlusPlus14 && |
| Info.EvalStatus.HasSideEffects) || |
| (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth)) |
| return CompleteObject(); |
| |
| return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType); |
| } |
| |
| /// Perform an lvalue-to-rvalue conversion on the given glvalue. This |
| /// can also be used for 'lvalue-to-lvalue' conversions for looking up the |
| /// glvalue referred to by an entity of reference type. |
| /// |
| /// \param Info - Information about the ongoing evaluation. |
| /// \param Conv - The expression for which we are performing the conversion. |
| /// Used for diagnostics. |
| /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the |
| /// case of a non-class type). |
| /// \param LVal - The glvalue on which we are attempting to perform this action. |
| /// \param RVal - The produced value will be placed here. |
| /// \param WantObjectRepresentation - If true, we're looking for the object |
| /// representation rather than the value, and in particular, |
| /// there is no requirement that the result be fully initialized. |
| static bool |
| handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type, |
| const LValue &LVal, APValue &RVal, |
| bool WantObjectRepresentation = false) { |
| if (LVal.Designator.Invalid) |
| return false; |
| |
| // Check for special cases where there is no existing APValue to look at. |
| const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); |
| |
| AccessKinds AK = |
| WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read; |
| |
| if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) { |
| if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) { |
| // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the |
| // initializer until now for such expressions. Such an expression can't be |
| // an ICE in C, so this only matters for fold. |
| if (Type.isVolatileQualified()) { |
| Info.FFDiag(Conv); |
| return false; |
| } |
| |
| APValue Lit; |
| if (!Evaluate(Lit, Info, CLE->getInitializer())) |
| return false; |
| |
| // According to GCC info page: |
| // |
| // 6.28 Compound Literals |
| // |
| // As an optimization, G++ sometimes gives array compound literals longer |
| // lifetimes: when the array either appears outside a function or has a |
| // const-qualified type. If foo and its initializer had elements of type |
| // char *const rather than char *, or if foo were a global variable, the |
| // array would have static storage duration. But it is probably safest |
| // just to avoid the use of array compound literals in C++ code. |
| // |
| // Obey that rule by checking constness for converted array types. |
| |
| QualType CLETy = CLE->getType(); |
| if (CLETy->isArrayType() && !Type->isArrayType()) { |
| if (!CLETy.isConstant(Info.Ctx)) { |
| Info.FFDiag(Conv); |
| Info.Note(CLE->getExprLoc(), diag::note_declared_at); |
| return false; |
| } |
| } |
| |
| CompleteObject LitObj(LVal.Base, &Lit, Base->getType()); |
| return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK); |
| } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) { |
| // Special-case character extraction so we don't have to construct an |
| // APValue for the whole string. |
| assert(LVal.Designator.Entries.size() <= 1 && |
| "Can only read characters from string literals"); |
| if (LVal.Designator.Entries.empty()) { |
| // Fail for now for LValue to RValue conversion of an array. |
| // (This shouldn't show up in C/C++, but it could be triggered by a |
| // weird EvaluateAsRValue call from a tool.) |
| Info.FFDiag(Conv); |
| return false; |
| } |
| if (LVal.Designator.isOnePastTheEnd()) { |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK; |
| else |
| Info.FFDiag(Conv); |
| return false; |
| } |
| uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex(); |
| RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex)); |
| return true; |
| } |
| } |
| |
| CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type); |
| return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK); |
| } |
| |
| /// Perform an assignment of Val to LVal. Takes ownership of Val. |
| static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal, |
| QualType LValType, APValue &Val) { |
| if (LVal.Designator.Invalid) |
| return false; |
| |
| if (!Info.getLangOpts().CPlusPlus14) { |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); |
| return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val); |
| } |
| |
| namespace { |
| struct CompoundAssignSubobjectHandler { |
| EvalInfo &Info; |
| const CompoundAssignOperator *E; |
| QualType PromotedLHSType; |
| BinaryOperatorKind Opcode; |
| const APValue &RHS; |
| |
| static const AccessKinds AccessKind = AK_Assign; |
| |
| typedef bool result_type; |
| |
| bool checkConst(QualType QT) { |
| // Assigning to a const object has undefined behavior. |
| if (QT.isConstQualified()) { |
| Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; |
| return false; |
| } |
| return true; |
| } |
| |
| bool failed() { return false; } |
| bool found(APValue &Subobj, QualType SubobjType) { |
| switch (Subobj.getKind()) { |
| case APValue::Int: |
| return found(Subobj.getInt(), SubobjType); |
| case APValue::Float: |
| return found(Subobj.getFloat(), SubobjType); |
| case APValue::ComplexInt: |
| case APValue::ComplexFloat: |
| // FIXME: Implement complex compound assignment. |
| Info.FFDiag(E); |
| return false; |
| case APValue::LValue: |
| return foundPointer(Subobj, SubobjType); |
| case APValue::Vector: |
| return foundVector(Subobj, SubobjType); |
| case APValue::Indeterminate: |
| Info.FFDiag(E, diag::note_constexpr_access_uninit) |
| << /*read of=*/0 << /*uninitialized object=*/1 |
| << E->getLHS()->getSourceRange(); |
| return false; |
| default: |
| // FIXME: can this happen? |
| Info.FFDiag(E); |
| return false; |
| } |
| } |
| |
| bool foundVector(APValue &Value, QualType SubobjType) { |
| if (!checkConst(SubobjType)) |
| return false; |
| |
| if (!SubobjType->isVectorType()) { |
| Info.FFDiag(E); |
| return false; |
| } |
| return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS); |
| } |
| |
| bool found(APSInt &Value, QualType SubobjType) { |
| if (!checkConst(SubobjType)) |
| return false; |
| |
| if (!SubobjType->isIntegerType()) { |
| // We don't support compound assignment on integer-cast-to-pointer |
| // values. |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| if (RHS.isInt()) { |
| APSInt LHS = |
| HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value); |
| if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS)) |
| return false; |
| Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS); |
| return true; |
| } else if (RHS.isFloat()) { |
| const FPOptions FPO = E->getFPFeaturesInEffect( |
| Info.Ctx.getLangOpts()); |
| APFloat FValue(0.0); |
| return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value, |
| PromotedLHSType, FValue) && |
| handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) && |
| HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType, |
| Value); |
| } |
| |
| Info.FFDiag(E); |
| return false; |
| } |
| bool found(APFloat &Value, QualType SubobjType) { |
| return checkConst(SubobjType) && |
| HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType, |
| Value) && |
| handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) && |
| HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value); |
| } |
| bool foundPointer(APValue &Subobj, QualType SubobjType) { |
| if (!checkConst(SubobjType)) |
| return false; |
| |
| QualType PointeeType; |
| if (const PointerType *PT = SubobjType->getAs<PointerType>()) |
| PointeeType = PT->getPointeeType(); |
| |
| if (PointeeType.isNull() || !RHS.isInt() || |
| (Opcode != BO_Add && Opcode != BO_Sub)) { |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| APSInt Offset = RHS.getInt(); |
| if (Opcode == BO_Sub) |
| negateAsSigned(Offset); |
| |
| LValue LVal; |
| LVal.setFrom(Info.Ctx, Subobj); |
| if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset)) |
| return false; |
| LVal.moveInto(Subobj); |
| return true; |
| } |
| }; |
| } // end anonymous namespace |
| |
| const AccessKinds CompoundAssignSubobjectHandler::AccessKind; |
| |
| /// Perform a compound assignment of LVal <op>= RVal. |
| static bool handleCompoundAssignment(EvalInfo &Info, |
| const CompoundAssignOperator *E, |
| const LValue &LVal, QualType LValType, |
| QualType PromotedLValType, |
| BinaryOperatorKind Opcode, |
| const APValue &RVal) { |
| if (LVal.Designator.Invalid) |
| return false; |
| |
| if (!Info.getLangOpts().CPlusPlus14) { |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); |
| CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode, |
| RVal }; |
| return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); |
| } |
| |
| namespace { |
| struct IncDecSubobjectHandler { |
| EvalInfo &Info; |
| const UnaryOperator *E; |
| AccessKinds AccessKind; |
| APValue *Old; |
| |
| typedef bool result_type; |
| |
| bool checkConst(QualType QT) { |
| // Assigning to a const object has undefined behavior. |
| if (QT.isConstQualified()) { |
| Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; |
| return false; |
| } |
| return true; |
| } |
| |
| bool failed() { return false; } |
| bool found(APValue &Subobj, QualType SubobjType) { |
| // Stash the old value. Also clear Old, so we don't clobber it later |
| // if we're post-incrementing a complex. |
| if (Old) { |
| *Old = Subobj; |
| Old = nullptr; |
| } |
| |
| switch (Subobj.getKind()) { |
| case APValue::Int: |
| return found(Subobj.getInt(), SubobjType); |
| case APValue::Float: |
| return found(Subobj.getFloat(), SubobjType); |
| case APValue::ComplexInt: |
| return found(Subobj.getComplexIntReal(), |
| SubobjType->castAs<ComplexType>()->getElementType() |
| .withCVRQualifiers(SubobjType.getCVRQualifiers())); |
| case APValue::ComplexFloat: |
| return found(Subobj.getComplexFloatReal(), |
| SubobjType->castAs<ComplexType>()->getElementType() |
| .withCVRQualifiers(SubobjType.getCVRQualifiers())); |
| case APValue::LValue: |
| return foundPointer(Subobj, SubobjType); |
| default: |
| // FIXME: can this happen? |
| Info.FFDiag(E); |
| return false; |
| } |
| } |
| bool found(APSInt &Value, QualType SubobjType) { |
| if (!checkConst(SubobjType)) |
| return false; |
| |
| if (!SubobjType->isIntegerType()) { |
| // We don't support increment / decrement on integer-cast-to-pointer |
| // values. |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| if (Old) *Old = APValue(Value); |
| |
| // bool arithmetic promotes to int, and the conversion back to bool |
| // doesn't reduce mod 2^n, so special-case it. |
| if (SubobjType->isBooleanType()) { |
| if (AccessKind == AK_Increment) |
| Value = 1; |
| else |
| Value = !Value; |
| return true; |
| } |
| |
| bool WasNegative = Value.isNegative(); |
| if (AccessKind == AK_Increment) { |
| ++Value; |
| |
| if (!WasNegative && Value.isNegative() && E->canOverflow()) { |
| APSInt ActualValue(Value, /*IsUnsigned*/true); |
| return HandleOverflow(Info, E, ActualValue, SubobjType); |
| } |
| } else { |
| --Value; |
| |
| if (WasNegative && !Value.isNegative() && E->canOverflow()) { |
| unsigned BitWidth = Value.getBitWidth(); |
| APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false); |
| ActualValue.setBit(BitWidth); |
| return HandleOverflow(Info, E, ActualValue, SubobjType); |
| } |
| } |
| return true; |
| } |
| bool found(APFloat &Value, QualType SubobjType) { |
| if (!checkConst(SubobjType)) |
| return false; |
| |
| if (Old) *Old = APValue(Value); |
| |
| APFloat One(Value.getSemantics(), 1); |
| llvm::RoundingMode RM = getActiveRoundingMode(Info, E); |
| APFloat::opStatus St; |
| if (AccessKind == AK_Increment) |
| St = Value.add(One, RM); |
| else |
| St = Value.subtract(One, RM); |
| return checkFloatingPointResult(Info, E, St); |
| } |
| bool foundPointer(APValue &Subobj, QualType SubobjType) { |
| if (!checkConst(SubobjType)) |
| return false; |
| |
| QualType PointeeType; |
| if (const PointerType *PT = SubobjType->getAs<PointerType>()) |
| PointeeType = PT->getPointeeType(); |
| else { |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| LValue LVal; |
| LVal.setFrom(Info.Ctx, Subobj); |
| if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, |
| AccessKind == AK_Increment ? 1 : -1)) |
| return false; |
| LVal.moveInto(Subobj); |
| return true; |
| } |
| }; |
| } // end anonymous namespace |
| |
| /// Perform an increment or decrement on LVal. |
| static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal, |
| QualType LValType, bool IsIncrement, APValue *Old) { |
| if (LVal.Designator.Invalid) |
| return false; |
| |
| if (!Info.getLangOpts().CPlusPlus14) { |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement; |
| CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType); |
| IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old}; |
| return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); |
| } |
| |
| /// Build an lvalue for the object argument of a member function call. |
| static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object, |
| LValue &This) { |
| if (Object->getType()->isPointerType() && Object->isPRValue()) |
| return EvaluatePointer(Object, This, Info); |
| |
| if (Object->isGLValue()) |
| return EvaluateLValue(Object, This, Info); |
| |
| if (Object->getType()->isLiteralType(Info.Ctx)) |
| return EvaluateTemporary(Object, This, Info); |
| |
| if (Object->getType()->isRecordType() && Object->isPRValue()) |
| return EvaluateTemporary(Object, This, Info); |
| |
| Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType(); |
| return false; |
| } |
| |
| /// HandleMemberPointerAccess - Evaluate a member access operation and build an |
| /// lvalue referring to the result. |
| /// |
| /// \param Info - Information about the ongoing evaluation. |
| /// \param LV - An lvalue referring to the base of the member pointer. |
| /// \param RHS - The member pointer expression. |
| /// \param IncludeMember - Specifies whether the member itself is included in |
| /// the resulting LValue subobject designator. This is not possible when |
| /// creating a bound member function. |
| /// \return The field or method declaration to which the member pointer refers, |
| /// or 0 if evaluation fails. |
| static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, |
| QualType LVType, |
| LValue &LV, |
| const Expr *RHS, |
| bool IncludeMember = true) { |
| MemberPtr MemPtr; |
| if (!EvaluateMemberPointer(RHS, MemPtr, Info)) |
| return nullptr; |
| |
| // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to |
| // member value, the behavior is undefined. |
| if (!MemPtr.getDecl()) { |
| // FIXME: Specific diagnostic. |
| Info.FFDiag(RHS); |
| return nullptr; |
| } |
| |
| if (MemPtr.isDerivedMember()) { |
| // This is a member of some derived class. Truncate LV appropriately. |
| // The end of the derived-to-base path for the base object must match the |
| // derived-to-base path for the member pointer. |
| if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() > |
| LV.Designator.Entries.size()) { |
| Info.FFDiag(RHS); |
| return nullptr; |
| } |
| unsigned PathLengthToMember = |
| LV.Designator.Entries.size() - MemPtr.Path.size(); |
| for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) { |
| const CXXRecordDecl *LVDecl = getAsBaseClass( |
| LV.Designator.Entries[PathLengthToMember + I]); |
| const CXXRecordDecl *MPDecl = MemPtr.Path[I]; |
| if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) { |
| Info.FFDiag(RHS); |
| return nullptr; |
| } |
| } |
| |
| // Truncate the lvalue to the appropriate derived class. |
| if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(), |
| PathLengthToMember)) |
| return nullptr; |
| } else if (!MemPtr.Path.empty()) { |
| // Extend the LValue path with the member pointer's path. |
| LV.Designator.Entries.reserve(LV.Designator.Entries.size() + |
| MemPtr.Path.size() + IncludeMember); |
| |
| // Walk down to the appropriate base class. |
| if (const PointerType *PT = LVType->getAs<PointerType>()) |
| LVType = PT->getPointeeType(); |
| const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl(); |
| assert(RD && "member pointer access on non-class-type expression"); |
| // The first class in the path is that of the lvalue. |
| for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) { |
| const CXXRecordDecl *Base = MemPtr.Path[N - I - 1]; |
| if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base)) |
| return nullptr; |
| RD = Base; |
| } |
| // Finally cast to the class containing the member. |
| if (!HandleLValueDirectBase(Info, RHS, LV, RD, |
| MemPtr.getContainingRecord())) |
| return nullptr; |
| } |
| |
| // Add the member. Note that we cannot build bound member functions here. |
| if (IncludeMember) { |
| if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) { |
| if (!HandleLValueMember(Info, RHS, LV, FD)) |
| return nullptr; |
| } else if (const IndirectFieldDecl *IFD = |
| dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) { |
| if (!HandleLValueIndirectMember(Info, RHS, LV, IFD)) |
| return nullptr; |
| } else { |
| llvm_unreachable("can't construct reference to bound member function"); |
| } |
| } |
| |
| return MemPtr.getDecl(); |
| } |
| |
| static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, |
| const BinaryOperator *BO, |
| LValue &LV, |
| bool IncludeMember = true) { |
| assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI); |
| |
| if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) { |
| if (Info.noteFailure()) { |
| MemberPtr MemPtr; |
| EvaluateMemberPointer(BO->getRHS(), MemPtr, Info); |
| } |
| return nullptr; |
| } |
| |
| return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV, |
| BO->getRHS(), IncludeMember); |
| } |
| |
| /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on |
| /// the provided lvalue, which currently refers to the base object. |
| static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E, |
| LValue &Result) { |
| SubobjectDesignator &D = Result.Designator; |
| if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived)) |
| return false; |
| |
| QualType TargetQT = E->getType(); |
| if (const PointerType *PT = TargetQT->getAs<PointerType>()) |
| TargetQT = PT->getPointeeType(); |
| |
| // Check this cast lands within the final derived-to-base subobject path. |
| if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) { |
| Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) |
| << D.MostDerivedType << TargetQT; |
| return false; |
| } |
| |
| // Check the type of the final cast. We don't need to check the path, |
| // since a cast can only be formed if the path is unique. |
| unsigned NewEntriesSize = D.Entries.size() - E->path_size(); |
| const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl(); |
| const CXXRecordDecl *FinalType; |
| if (NewEntriesSize == D.MostDerivedPathLength) |
| FinalType = D.MostDerivedType->getAsCXXRecordDecl(); |
| else |
| FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]); |
| if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) { |
| Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) |
| << D.MostDerivedType << TargetQT; |
| return false; |
| } |
| |
| // Truncate the lvalue to the appropriate derived class. |
| return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize); |
| } |
| |
| /// Get the value to use for a default-initialized object of type T. |
| /// Return false if it encounters something invalid. |
| static bool handleDefaultInitValue(QualType T, APValue &Result) { |
| bool Success = true; |
| |
| // If there is already a value present don't overwrite it. |
| if (!Result.isAbsent()) |
| return true; |
| |
| if (auto *RD = T->getAsCXXRecordDecl()) { |
| if (RD->isInvalidDecl()) { |
| Result = APValue(); |
| return false; |
| } |
| if (RD->isUnion()) { |
| Result = APValue((const FieldDecl *)nullptr); |
| return true; |
| } |
| Result = APValue(APValue::UninitStruct(), RD->getNumBases(), |
| std::distance(RD->field_begin(), RD->field_end())); |
| |
| unsigned Index = 0; |
| for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), |
| End = RD->bases_end(); |
| I != End; ++I, ++Index) |
| Success &= |
| handleDefaultInitValue(I->getType(), Result.getStructBase(Index)); |
| |
| for (const auto *I : RD->fields()) { |
| if (I->isUnnamedBitField()) |
| continue; |
| Success &= handleDefaultInitValue( |
| I->getType(), Result.getStructField(I->getFieldIndex())); |
| } |
| return Success; |
| } |
| |
| if (auto *AT = |
| dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) { |
| Result = APValue(APValue::UninitArray(), 0, AT->getZExtSize()); |
| if (Result.hasArrayFiller()) |
| Success &= |
| handleDefaultInitValue(AT->getElementType(), Result.getArrayFiller()); |
| |
| return Success; |
| } |
| |
| Result = APValue::IndeterminateValue(); |
| return true; |
| } |
| |
| namespace { |
| enum EvalStmtResult { |
| /// Evaluation failed. |
| ESR_Failed, |
| /// Hit a 'return' statement. |
| ESR_Returned, |
| /// Evaluation succeeded. |
| ESR_Succeeded, |
| /// Hit a 'continue' statement. |
| ESR_Continue, |
| /// Hit a 'break' statement. |
| ESR_Break, |
| /// Still scanning for 'case' or 'default' statement. |
| ESR_CaseNotFound |
| }; |
| } |
| |
| static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) { |
| if (VD->isInvalidDecl()) |
| return false; |
| // We don't need to evaluate the initializer for a static local. |
| if (!VD->hasLocalStorage()) |
| return true; |
| |
| LValue Result; |
| APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(), |
| ScopeKind::Block, Result); |
| |
| const Expr *InitE = VD->getInit(); |
| if (!InitE) { |
| if (VD->getType()->isDependentType()) |
| return Info.noteSideEffect(); |
| return handleDefaultInitValue(VD->getType(), Val); |
| } |
| if (InitE->isValueDependent()) |
| return false; |
| |
| if (!EvaluateInPlace(Val, Info, Result, InitE)) { |
| // Wipe out any partially-computed value, to allow tracking that this |
| // evaluation failed. |
| Val = APValue(); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool EvaluateDecl(EvalInfo &Info, const Decl *D) { |
| bool OK = true; |
| |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
| OK &= EvaluateVarDecl(Info, VD); |
| |
| if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D)) |
| for (auto *BD : DD->bindings()) |
| if (auto *VD = BD->getHoldingVar()) |
| OK &= EvaluateDecl(Info, VD); |
| |
| return OK; |
| } |
| |
| static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) { |
| assert(E->isValueDependent()); |
| if (Info.noteSideEffect()) |
| return true; |
| assert(E->containsErrors() && "valid value-dependent expression should never " |
| "reach invalid code path."); |
| return false; |
| } |
| |
| /// Evaluate a condition (either a variable declaration or an expression). |
| static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl, |
| const Expr *Cond, bool &Result) { |
| if (Cond->isValueDependent()) |
| return false; |
| FullExpressionRAII Scope(Info); |
| if (CondDecl && !EvaluateDecl(Info, CondDecl)) |
| return false; |
| if (!EvaluateAsBooleanCondition(Cond, Result, Info)) |
| return false; |
| return Scope.destroy(); |
| } |
| |
| namespace { |
| /// A location where the result (returned value) of evaluating a |
| /// statement should be stored. |
| struct StmtResult { |
| /// The APValue that should be filled in with the returned value. |
| APValue &Value; |
| /// The location containing the result, if any (used to support RVO). |
| const LValue *Slot; |
| }; |
| |
| struct TempVersionRAII { |
| CallStackFrame &Frame; |
| |
| TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) { |
| Frame.pushTempVersion(); |
| } |
| |
| ~TempVersionRAII() { |
| Frame.popTempVersion(); |
| } |
| }; |
| |
| } |
| |
| static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, |
| const Stmt *S, |
| const SwitchCase *SC = nullptr); |
| |
| /// Evaluate the body of a loop, and translate the result as appropriate. |
| static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info, |
| const Stmt *Body, |
| const SwitchCase *Case = nullptr) { |
| BlockScopeRAII Scope(Info); |
| |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case); |
| if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) |
| ESR = ESR_Failed; |
| |
| switch (ESR) { |
| case ESR_Break: |
| return ESR_Succeeded; |
| case ESR_Succeeded: |
| case ESR_Continue: |
| return ESR_Continue; |
| case ESR_Failed: |
| case ESR_Returned: |
| case ESR_CaseNotFound: |
| return ESR; |
| } |
| llvm_unreachable("Invalid EvalStmtResult!"); |
| } |
| |
| /// Evaluate a switch statement. |
| static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info, |
| const SwitchStmt *SS) { |
| BlockScopeRAII Scope(Info); |
| |
| // Evaluate the switch condition. |
| APSInt Value; |
| { |
| if (const Stmt *Init = SS->getInit()) { |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); |
| if (ESR != ESR_Succeeded) { |
| if (ESR != ESR_Failed && !Scope.destroy()) |
| ESR = ESR_Failed; |
| return ESR; |
| } |
| } |
| |
| FullExpressionRAII CondScope(Info); |
| if (SS->getConditionVariable() && |
| !EvaluateDecl(Info, SS->getConditionVariable())) |
| return ESR_Failed; |
| if (SS->getCond()->isValueDependent()) { |
| // We don't know what the value is, and which branch should jump to. |
| EvaluateDependentExpr(SS->getCond(), Info); |
| return ESR_Failed; |
| } |
| if (!EvaluateInteger(SS->getCond(), Value, Info)) |
| return ESR_Failed; |
| |
| if (!CondScope.destroy()) |
| return ESR_Failed; |
| } |
| |
| // Find the switch case corresponding to the value of the condition. |
| // FIXME: Cache this lookup. |
| const SwitchCase *Found = nullptr; |
| for (const SwitchCase *SC = SS->getSwitchCaseList(); SC; |
| SC = SC->getNextSwitchCase()) { |
| if (isa<DefaultStmt>(SC)) { |
| Found = SC; |
| continue; |
| } |
| |
| const CaseStmt *CS = cast<CaseStmt>(SC); |
| APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx); |
| APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx) |
| : LHS; |
| if (LHS <= Value && Value <= RHS) { |
| Found = SC; |
| break; |
| } |
| } |
| |
| if (!Found) |
| return Scope.destroy() ? ESR_Succeeded : ESR_Failed; |
| |
| // Search the switch body for the switch case and evaluate it from there. |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found); |
| if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) |
| return ESR_Failed; |
| |
| switch (ESR) { |
| case ESR_Break: |
| return ESR_Succeeded; |
| case ESR_Succeeded: |
| case ESR_Continue: |
| case ESR_Failed: |
| case ESR_Returned: |
| return ESR; |
| case ESR_CaseNotFound: |
| // This can only happen if the switch case is nested within a statement |
| // expression. We have no intention of supporting that. |
| Info.FFDiag(Found->getBeginLoc(), |
| diag::note_constexpr_stmt_expr_unsupported); |
| return ESR_Failed; |
| } |
| llvm_unreachable("Invalid EvalStmtResult!"); |
| } |
| |
| static bool CheckLocalVariableDeclaration(EvalInfo &Info, const VarDecl *VD) { |
| // An expression E is a core constant expression unless the evaluation of E |
| // would evaluate one of the following: [C++23] - a control flow that passes |
| // through a declaration of a variable with static or thread storage duration |
| // unless that variable is usable in constant expressions. |
| if (VD->isLocalVarDecl() && VD->isStaticLocal() && |
| !VD->isUsableInConstantExpressions(Info.Ctx)) { |
| Info.CCEDiag(VD->getLocation(), diag::note_constexpr_static_local) |
| << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD; |
| return false; |
| } |
| return true; |
| } |
| |
| // Evaluate a statement. |
| static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, |
| const Stmt *S, const SwitchCase *Case) { |
| if (!Info.nextStep(S)) |
| return ESR_Failed; |
| |
| // If we're hunting down a 'case' or 'default' label, recurse through |
| // substatements until we hit the label. |
| if (Case) { |
| switch (S->getStmtClass()) { |
| case Stmt::CompoundStmtClass: |
| // FIXME: Precompute which substatement of a compound statement we |
| // would jump to, and go straight there rather than performing a |
| // linear scan each time. |
| case Stmt::LabelStmtClass: |
| case Stmt::AttributedStmtClass: |
| case Stmt::DoStmtClass: |
| break; |
| |
| case Stmt::CaseStmtClass: |
| case Stmt::DefaultStmtClass: |
| if (Case == S) |
| Case = nullptr; |
| break; |
| |
| case Stmt::IfStmtClass: { |
| // FIXME: Precompute which side of an 'if' we would jump to, and go |
| // straight there rather than scanning both sides. |
| const IfStmt *IS = cast<IfStmt>(S); |
| |
| // Wrap the evaluation in a block scope, in case it's a DeclStmt |
| // preceded by our switch label. |
| BlockScopeRAII Scope(Info); |
| |
| // Step into the init statement in case it brings an (uninitialized) |
| // variable into scope. |
| if (const Stmt *Init = IS->getInit()) { |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case); |
| if (ESR != ESR_CaseNotFound) { |
| assert(ESR != ESR_Succeeded); |
| return ESR; |
| } |
| } |
| |
| // Condition variable must be initialized if it exists. |
| // FIXME: We can skip evaluating the body if there's a condition |
| // variable, as there can't be any case labels within it. |
| // (The same is true for 'for' statements.) |
| |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case); |
| if (ESR == ESR_Failed) |
| return ESR; |
| if (ESR != ESR_CaseNotFound) |
| return Scope.destroy() ? ESR : ESR_Failed; |
| if (!IS->getElse()) |
| return ESR_CaseNotFound; |
| |
| ESR = EvaluateStmt(Result, Info, IS->getElse(), Case); |
| if (ESR == ESR_Failed) |
| return ESR; |
| if (ESR != ESR_CaseNotFound) |
| return Scope.destroy() ? ESR : ESR_Failed; |
| return ESR_CaseNotFound; |
| } |
| |
| case Stmt::WhileStmtClass: { |
| EvalStmtResult ESR = |
| EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case); |
| if (ESR != ESR_Continue) |
| return ESR; |
| break; |
| } |
| |
| case Stmt::ForStmtClass: { |
| const ForStmt *FS = cast<ForStmt>(S); |
| BlockScopeRAII Scope(Info); |
| |
| // Step into the init statement in case it brings an (uninitialized) |
| // variable into scope. |
| if (const Stmt *Init = FS->getInit()) { |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case); |
| if (ESR != ESR_CaseNotFound) { |
| assert(ESR != ESR_Succeeded); |
| return ESR; |
| } |
| } |
| |
| EvalStmtResult ESR = |
| EvaluateLoopBody(Result, Info, FS->getBody(), Case); |
| if (ESR != ESR_Continue) |
| return ESR; |
| if (const auto *Inc = FS->getInc()) { |
| if (Inc->isValueDependent()) { |
| if (!EvaluateDependentExpr(Inc, Info)) |
| return ESR_Failed; |
| } else { |
| FullExpressionRAII IncScope(Info); |
| if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy()) |
| return ESR_Failed; |
| } |
| } |
| break; |
| } |
| |
| case Stmt::DeclStmtClass: { |
| // Start the lifetime of any uninitialized variables we encounter. They |
| // might be used by the selected branch of the switch. |
| const DeclStmt *DS = cast<DeclStmt>(S); |
| for (const auto *D : DS->decls()) { |
| if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| if (!CheckLocalVariableDeclaration(Info, VD)) |
| return ESR_Failed; |
| if (VD->hasLocalStorage() && !VD->getInit()) |
| if (!EvaluateVarDecl(Info, VD)) |
| return ESR_Failed; |
| // FIXME: If the variable has initialization that can't be jumped |
| // over, bail out of any immediately-surrounding compound-statement |
| // too. There can't be any case labels here. |
| } |
| } |
| return ESR_CaseNotFound; |
| } |
| |
| default: |
| return ESR_CaseNotFound; |
| } |
| } |
| |
| switch (S->getStmtClass()) { |
| default: |
| if (const Expr *E = dyn_cast<Expr>(S)) { |
| if (E->isValueDependent()) { |
| if (!EvaluateDependentExpr(E, Info)) |
| return ESR_Failed; |
| } else { |
| // Don't bother evaluating beyond an expression-statement which couldn't |
| // be evaluated. |
| // FIXME: Do we need the FullExpressionRAII object here? |
| // VisitExprWithCleanups should create one when necessary. |
| FullExpressionRAII Scope(Info); |
| if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy()) |
| return ESR_Failed; |
| } |
| return ESR_Succeeded; |
| } |
| |
| Info.FFDiag(S->getBeginLoc()) << S->getSourceRange(); |
| return ESR_Failed; |
| |
| case Stmt::NullStmtClass: |
| return ESR_Succeeded; |
| |
| case Stmt::DeclStmtClass: { |
| const DeclStmt *DS = cast<DeclStmt>(S); |
| for (const auto *D : DS->decls()) { |
| const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); |
| if (VD && !CheckLocalVariableDeclaration(Info, VD)) |
| return ESR_Failed; |
| // Each declaration initialization is its own full-expression. |
| FullExpressionRAII Scope(Info); |
| if (!EvaluateDecl(Info, D) && !Info.noteFailure()) |
| return ESR_Failed; |
| if (!Scope.destroy()) |
| return ESR_Failed; |
| } |
| return ESR_Succeeded; |
| } |
| |
| case Stmt::ReturnStmtClass: { |
| const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue(); |
| FullExpressionRAII Scope(Info); |
| if (RetExpr && RetExpr->isValueDependent()) { |
| EvaluateDependentExpr(RetExpr, Info); |
| // We know we returned, but we don't know what the value is. |
| return ESR_Failed; |
| } |
| if (RetExpr && |
| !(Result.Slot |
| ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr) |
| : Evaluate(Result.Value, Info, RetExpr))) |
| return ESR_Failed; |
| return Scope.destroy() ? ESR_Returned : ESR_Failed; |
| } |
| |
| case Stmt::CompoundStmtClass: { |
| BlockScopeRAII Scope(Info); |
| |
| const CompoundStmt *CS = cast<CompoundStmt>(S); |
| for (const auto *BI : CS->body()) { |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case); |
| if (ESR == ESR_Succeeded) |
| Case = nullptr; |
| else if (ESR != ESR_CaseNotFound) { |
| if (ESR != ESR_Failed && !Scope.destroy()) |
| return ESR_Failed; |
| return ESR; |
| } |
| } |
| if (Case) |
| return ESR_CaseNotFound; |
| return Scope.destroy() ? ESR_Succeeded : ESR_Failed; |
| } |
| |
| case Stmt::IfStmtClass: { |
| const IfStmt *IS = cast<IfStmt>(S); |
| |
| // Evaluate the condition, as either a var decl or as an expression. |
| BlockScopeRAII Scope(Info); |
| if (const Stmt *Init = IS->getInit()) { |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); |
| if (ESR != ESR_Succeeded) { |
| if (ESR != ESR_Failed && !Scope.destroy()) |
| return ESR_Failed; |
| return ESR; |
| } |
| } |
| bool Cond; |
| if (IS->isConsteval()) { |
| Cond = IS->isNonNegatedConsteval(); |
| // If we are not in a constant context, if consteval should not evaluate |
| // to true. |
| if (!Info.InConstantContext) |
| Cond = !Cond; |
| } else if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), |
| Cond)) |
| return ESR_Failed; |
| |
| if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) { |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt); |
| if (ESR != ESR_Succeeded) { |
| if (ESR != ESR_Failed && !Scope.destroy()) |
| return ESR_Failed; |
| return ESR; |
| } |
| } |
| return Scope.destroy() ? ESR_Succeeded : ESR_Failed; |
| } |
| |
| case Stmt::WhileStmtClass: { |
| const WhileStmt *WS = cast<WhileStmt>(S); |
| while (true) { |
| BlockScopeRAII Scope(Info); |
| bool Continue; |
| if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(), |
| Continue)) |
| return ESR_Failed; |
| if (!Continue) |
| break; |
| |
| EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody()); |
| if (ESR != ESR_Continue) { |
| if (ESR != ESR_Failed && !Scope.destroy()) |
| return ESR_Failed; |
| return ESR; |
| } |
| if (!Scope.destroy()) |
| return ESR_Failed; |
| } |
| return ESR_Succeeded; |
| } |
| |
| case Stmt::DoStmtClass: { |
| const DoStmt *DS = cast<DoStmt>(S); |
| bool Continue; |
| do { |
| EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case); |
| if (ESR != ESR_Continue) |
| return ESR; |
| Case = nullptr; |
| |
| if (DS->getCond()->isValueDependent()) { |
| EvaluateDependentExpr(DS->getCond(), Info); |
| // Bailout as we don't know whether to keep going or terminate the loop. |
| return ESR_Failed; |
| } |
| FullExpressionRAII CondScope(Info); |
| if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) || |
| !CondScope.destroy()) |
| return ESR_Failed; |
| } while (Continue); |
| return ESR_Succeeded; |
| } |
| |
| case Stmt::ForStmtClass: { |
| const ForStmt *FS = cast<ForStmt>(S); |
| BlockScopeRAII ForScope(Info); |
| if (FS->getInit()) { |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); |
| if (ESR != ESR_Succeeded) { |
| if (ESR != ESR_Failed && !ForScope.destroy()) |
| return ESR_Failed; |
| return ESR; |
| } |
| } |
| while (true) { |
| BlockScopeRAII IterScope(Info); |
| bool Continue = true; |
| if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(), |
| FS->getCond(), Continue)) |
| return ESR_Failed; |
| if (!Continue) |
| break; |
| |
| EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody()); |
| if (ESR != ESR_Continue) { |
| if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy())) |
| return ESR_Failed; |
| return ESR; |
| } |
| |
| if (const auto *Inc = FS->getInc()) { |
| if (Inc->isValueDependent()) { |
| if (!EvaluateDependentExpr(Inc, Info)) |
| return ESR_Failed; |
| } else { |
| FullExpressionRAII IncScope(Info); |
| if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy()) |
| return ESR_Failed; |
| } |
| } |
| |
| if (!IterScope.destroy()) |
| return ESR_Failed; |
| } |
| return ForScope.destroy() ? ESR_Succeeded : ESR_Failed; |
| } |
| |
| case Stmt::CXXForRangeStmtClass: { |
| const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S); |
| BlockScopeRAII Scope(Info); |
| |
| // Evaluate the init-statement if present. |
| if (FS->getInit()) { |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); |
| if (ESR != ESR_Succeeded) { |
| if (ESR != ESR_Failed && !Scope.destroy()) |
| return ESR_Failed; |
| return ESR; |
| } |
| } |
| |
| // Initialize the __range variable. |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt()); |
| if (ESR != ESR_Succeeded) { |
| if (ESR != ESR_Failed && !Scope.destroy()) |
| return ESR_Failed; |
| return ESR; |
| } |
| |
| // In error-recovery cases it's possible to get here even if we failed to |
| // synthesize the __begin and __end variables. |
| if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond()) |
| return ESR_Failed; |
| |
| // Create the __begin and __end iterators. |
| ESR = EvaluateStmt(Result, Info, FS->getBeginStmt()); |
| if (ESR != ESR_Succeeded) { |
| if (ESR != ESR_Failed && !Scope.destroy()) |
| return ESR_Failed; |
| return ESR; |
| } |
| ESR = EvaluateStmt(Result, Info, FS->getEndStmt()); |
| if (ESR != ESR_Succeeded) { |
| if (ESR != ESR_Failed && !Scope.destroy()) |
| return ESR_Failed; |
| return ESR; |
| } |
| |
| while (true) { |
| // Condition: __begin != __end. |
| { |
| if (FS->getCond()->isValueDependent()) { |
| EvaluateDependentExpr(FS->getCond(), Info); |
| // We don't know whether to keep going or terminate the loop. |
| return ESR_Failed; |
| } |
| bool Continue = true; |
| FullExpressionRAII CondExpr(Info); |
| if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info)) |
| return ESR_Failed; |
| if (!Continue) |
| break; |
| } |
| |
| // User's variable declaration, initialized by *__begin. |
| BlockScopeRAII InnerScope(Info); |
| ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt()); |
| if (ESR != ESR_Succeeded) { |
| if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) |
| return ESR_Failed; |
| return ESR; |
| } |
| |
| // Loop body. |
| ESR = EvaluateLoopBody(Result, Info, FS->getBody()); |
| if (ESR != ESR_Continue) { |
| if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) |
| return ESR_Failed; |
| return ESR; |
| } |
| if (FS->getInc()->isValueDependent()) { |
| if (!EvaluateDependentExpr(FS->getInc(), Info)) |
| return ESR_Failed; |
| } else { |
| // Increment: ++__begin |
| if (!EvaluateIgnoredValue(Info, FS->getInc())) |
| return ESR_Failed; |
| } |
| |
| if (!InnerScope.destroy()) |
| return ESR_Failed; |
| } |
| |
| return Scope.destroy() ? ESR_Succeeded : ESR_Failed; |
| } |
| |
| case Stmt::SwitchStmtClass: |
| return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S)); |
| |
| case Stmt::ContinueStmtClass: |
| return ESR_Continue; |
| |
| case Stmt::BreakStmtClass: |
| return ESR_Break; |
| |
| case Stmt::LabelStmtClass: |
| return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case); |
| |
| case Stmt::AttributedStmtClass: { |
| const auto *AS = cast<AttributedStmt>(S); |
| const auto *SS = AS->getSubStmt(); |
| MSConstexprContextRAII ConstexprContext( |
| *Info.CurrentCall, hasSpecificAttr<MSConstexprAttr>(AS->getAttrs()) && |
| isa<ReturnStmt>(SS)); |
| |
| auto LO = Info.getASTContext().getLangOpts(); |
| if (LO.CXXAssumptions && !LO.MSVCCompat) { |
| for (auto *Attr : AS->getAttrs()) { |
| auto *AA = dyn_cast<CXXAssumeAttr>(Attr); |
| if (!AA) |
| continue; |
| |
| auto *Assumption = AA->getAssumption(); |
| if (Assumption->isValueDependent()) |
| return ESR_Failed; |
| |
| if (Assumption->HasSideEffects(Info.getASTContext())) |
| continue; |
| |
| bool Value; |
| if (!EvaluateAsBooleanCondition(Assumption, Value, Info)) |
| return ESR_Failed; |
| if (!Value) { |
| Info.CCEDiag(Assumption->getExprLoc(), |
| diag::note_constexpr_assumption_failed); |
| return ESR_Failed; |
| } |
| } |
| } |
| |
| return EvaluateStmt(Result, Info, SS, Case); |
| } |
| |
| case Stmt::CaseStmtClass: |
| case Stmt::DefaultStmtClass: |
| return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case); |
| case Stmt::CXXTryStmtClass: |
| // Evaluate try blocks by evaluating all sub statements. |
| return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case); |
| } |
| } |
| |
| /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial |
| /// default constructor. If so, we'll fold it whether or not it's marked as |
| /// constexpr. If it is marked as constexpr, we will never implicitly define it, |
| /// so we need special handling. |
| static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc, |
| const CXXConstructorDecl *CD, |
| bool IsValueInitialization) { |
| if (!CD->isTrivial() || !CD->isDefaultConstructor()) |
| return false; |
| |
| // Value-initialization does not call a trivial default constructor, so such a |
| // call is a core constant expression whether or not the constructor is |
| // constexpr. |
| if (!CD->isConstexpr() && !IsValueInitialization) { |
| if (Info.getLangOpts().CPlusPlus11) { |
| // FIXME: If DiagDecl is an implicitly-declared special member function, |
| // we should be much more explicit about why it's not constexpr. |
| Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1) |
| << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD; |
| Info.Note(CD->getLocation(), diag::note_declared_at); |
| } else { |
| Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr); |
| } |
| } |
| return true; |
| } |
| |
| /// CheckConstexprFunction - Check that a function can be called in a constant |
| /// expression. |
| static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc, |
| const FunctionDecl *Declaration, |
| const FunctionDecl *Definition, |
| const Stmt *Body) { |
| // Potential constant expressions can contain calls to declared, but not yet |
| // defined, constexpr functions. |
| if (Info.checkingPotentialConstantExpression() && !Definition && |
| Declaration->isConstexpr()) |
| return false; |
| |
| // Bail out if the function declaration itself is invalid. We will |
| // have produced a relevant diagnostic while parsing it, so just |
| // note the problematic sub-expression. |
| if (Declaration->isInvalidDecl()) { |
| Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); |
| return false; |
| } |
| |
| // DR1872: An instantiated virtual constexpr function can't be called in a |
| // constant expression (prior to C++20). We can still constant-fold such a |
| // call. |
| if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) && |
| cast<CXXMethodDecl>(Declaration)->isVirtual()) |
| Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call); |
| |
| if (Definition && Definition->isInvalidDecl()) { |
| Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); |
| return false; |
| } |
| |
| // Can we evaluate this function call? |
| if (Definition && Body && |
| (Definition->isConstexpr() || (Info.CurrentCall->CanEvalMSConstexpr && |
| Definition->hasAttr<MSConstexprAttr>()))) |
| return true; |
| |
| if (Info.getLangOpts().CPlusPlus11) { |
| const FunctionDecl *DiagDecl = Definition ? Definition : Declaration; |
| |
| // If this function is not constexpr because it is an inherited |
| // non-constexpr constructor, diagnose that directly. |
| auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl); |
| if (CD && CD->isInheritingConstructor()) { |
| auto *Inherited = CD->getInheritedConstructor().getConstructor(); |
| if (!Inherited->isConstexpr()) |
| DiagDecl = CD = Inherited; |
| } |
| |
| // FIXME: If DiagDecl is an implicitly-declared special member function |
| // or an inheriting constructor, we should be much more explicit about why |
| // it's not constexpr. |
| if (CD && CD->isInheritingConstructor()) |
| Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1) |
| << CD->getInheritedConstructor().getConstructor()->getParent(); |
| else |
| Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1) |
| << DiagDecl->isConstexpr() << (bool)CD << DiagDecl; |
| Info.Note(DiagDecl->getLocation(), diag::note_declared_at); |
| } else { |
| Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); |
| } |
| return false; |
| } |
| |
| namespace { |
| struct CheckDynamicTypeHandler { |
| AccessKinds AccessKind; |
| typedef bool result_type; |
| bool failed() { return false; } |
| bool found(APValue &Subobj, QualType SubobjType) { return true; } |
| bool found(APSInt &Value, QualType SubobjType) { return true; } |
| bool found(APFloat &Value, QualType SubobjType) { return true; } |
| }; |
| } // end anonymous namespace |
| |
| /// Check that we can access the notional vptr of an object / determine its |
| /// dynamic type. |
| static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This, |
| AccessKinds AK, bool Polymorphic) { |
| if (This.Designator.Invalid) |
| return false; |
| |
| CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType()); |
| |
| if (!Obj) |
| return false; |
| |
| if (!Obj.Value) { |
| // The object is not usable in constant expressions, so we can't inspect |
| // its value to see if it's in-lifetime or what the active union members |
| // are. We can still check for a one-past-the-end lvalue. |
| if (This.Designator.isOnePastTheEnd() || |
| This.Designator.isMostDerivedAnUnsizedArray()) { |
| Info.FFDiag(E, This.Designator.isOnePastTheEnd() |
| ? diag::note_constexpr_access_past_end |
| : diag::note_constexpr_access_unsized_array) |
| << AK; |
| return false; |
| } else if (Polymorphic) { |
| // Conservatively refuse to perform a polymorphic operation if we would |
| // not be able to read a notional 'vptr' value. |
| APValue Val; |
| This.moveInto(Val); |
| QualType StarThisType = |
| Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx)); |
| Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type) |
| << AK << Val.getAsString(Info.Ctx, StarThisType); |
| return false; |
| } |
| return true; |
| } |
| |
| CheckDynamicTypeHandler Handler{AK}; |
| return Obj && findSubobject(Info, E, Obj, This.Designator, Handler); |
| } |
| |
| /// Check that the pointee of the 'this' pointer in a member function call is |
| /// either within its lifetime or in its period of construction or destruction. |
| static bool |
| checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E, |
| const LValue &This, |
| const CXXMethodDecl *NamedMember) { |
| return checkDynamicType( |
| Info, E, This, |
| isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false); |
| } |
| |
| struct DynamicType { |
| /// The dynamic class type of the object. |
| const CXXRecordDecl *Type; |
| /// The corresponding path length in the lvalue. |
| unsigned PathLength; |
| }; |
| |
| static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator, |
| unsigned PathLength) { |
| assert(PathLength >= Designator.MostDerivedPathLength && PathLength <= |
| Designator.Entries.size() && "invalid path length"); |
| return (PathLength == Designator.MostDerivedPathLength) |
| ? Designator.MostDerivedType->getAsCXXRecordDecl() |
| : getAsBaseClass(Designator.Entries[PathLength - 1]); |
| } |
| |
| /// Determine the dynamic type of an object. |
| static std::optional<DynamicType> ComputeDynamicType(EvalInfo &Info, |
| const Expr *E, |
| LValue &This, |
| AccessKinds AK) { |
| // If we don't have an lvalue denoting an object of class type, there is no |
| // meaningful dynamic type. (We consider objects of non-class type to have no |
| // dynamic type.) |
| if (!checkDynamicType(Info, E, This, AK, true)) |
| return std::nullopt; |
| |
| // Refuse to compute a dynamic type in the presence of virtual bases. This |
| // shouldn't happen other than in constant-folding situations, since literal |
| // types can't have virtual bases. |
| // |
| // Note that consumers of DynamicType assume that the type has no virtual |
| // bases, and will need modifications if this restriction is relaxed. |
| const CXXRecordDecl *Class = |
| This.Designator.MostDerivedType->getAsCXXRecordDecl(); |
| if (!Class || Class->getNumVBases()) { |
| Info.FFDiag(E); |
| return std::nullopt; |
| } |
| |
| // FIXME: For very deep class hierarchies, it might be beneficial to use a |
| // binary search here instead. But the overwhelmingly common case is that |
| // we're not in the middle of a constructor, so it probably doesn't matter |
| // in practice. |
| ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries; |
| for (unsigned PathLength = This.Designator.MostDerivedPathLength; |
| PathLength <= Path.size(); ++PathLength) { |
| switch (Info.isEvaluatingCtorDtor(This.getLValueBase(), |
| Path.slice(0, PathLength))) { |
| case ConstructionPhase::Bases: |
| case ConstructionPhase::DestroyingBases: |
| // We're constructing or destroying a base class. This is not the dynamic |
| // type. |
| break; |
| |
| case ConstructionPhase::None: |
| case ConstructionPhase::AfterBases: |
| case ConstructionPhase::AfterFields: |
| case ConstructionPhase::Destroying: |
| // We've finished constructing the base classes and not yet started |
| // destroying them again, so this is the dynamic type. |
| return DynamicType{getBaseClassType(This.Designator, PathLength), |
| PathLength}; |
| } |
| } |
| |
| // CWG issue 1517: we're constructing a base class of the object described by |
| // 'This', so that object has not yet begun its period of construction and |
| // any polymorphic operation on it results in undefined behavior. |
| Info.FFDiag(E); |
| return std::nullopt; |
| } |
| |
| /// Perform virtual dispatch. |
| static const CXXMethodDecl *HandleVirtualDispatch( |
| EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found, |
| llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) { |
| std::optional<DynamicType> DynType = ComputeDynamicType( |
| Info, E, This, |
| isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall); |
| if (!DynType) |
| return nullptr; |
| |
| // Find the final overrider. It must be declared in one of the classes on the |
| // path from the dynamic type to the static type. |
| // FIXME: If we ever allow literal types to have virtual base classes, that |
| // won't be true. |
| const CXXMethodDecl *Callee = Found; |
| unsigned PathLength = DynType->PathLength; |
| for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) { |
| const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength); |
| const CXXMethodDecl *Overrider = |
| Found->getCorrespondingMethodDeclaredInClass(Class, false); |
| if (Overrider) { |
| Callee = Overrider; |
| break; |
| } |
| } |
| |
| // C++2a [class.abstract]p6: |
| // the effect of making a virtual call to a pure virtual function [...] is |
| // undefined |
| if (Callee->isPureVirtual()) { |
| Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee; |
| Info.Note(Callee->getLocation(), diag::note_declared_at); |
| return nullptr; |
| } |
| |
| // If necessary, walk the rest of the path to determine the sequence of |
| // covariant adjustment steps to apply. |
| if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(), |
| Found->getReturnType())) { |
| CovariantAdjustmentPath.push_back(Callee->getReturnType()); |
| for (unsigned CovariantPathLength = PathLength + 1; |
| CovariantPathLength != This.Designator.Entries.size(); |
| ++CovariantPathLength) { |
| const CXXRecordDecl *NextClass = |
| getBaseClassType(This.Designator, CovariantPathLength); |
| const CXXMethodDecl *Next = |
| Found->getCorrespondingMethodDeclaredInClass(NextClass, false); |
| if (Next && !Info.Ctx.hasSameUnqualifiedType( |
| Next->getReturnType(), CovariantAdjustmentPath.back())) |
| CovariantAdjustmentPath.push_back(Next->getReturnType()); |
| } |
| if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(), |
| CovariantAdjustmentPath.back())) |
| CovariantAdjustmentPath.push_back(Found->getReturnType()); |
| } |
| |
| // Perform 'this' adjustment. |
| if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength)) |
| return nullptr; |
| |
| return Callee; |
| } |
| |
| /// Perform the adjustment from a value returned by a virtual function to |
| /// a value of the statically expected type, which may be a pointer or |
| /// reference to a base class of the returned type. |
| static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E, |
| APValue &Result, |
| ArrayRef<QualType> Path) { |
| assert(Result.isLValue() && |
| "unexpected kind of APValue for covariant return"); |
| if (Result.isNullPointer()) |
| return true; |
| |
| LValue LVal; |
| LVal.setFrom(Info.Ctx, Result); |
| |
| const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl(); |
| for (unsigned I = 1; I != Path.size(); ++I) { |
| const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl(); |
| assert(OldClass && NewClass && "unexpected kind of covariant return"); |
| if (OldClass != NewClass && |
| !CastToBaseClass(Info, E, LVal, OldClass, NewClass)) |
| return false; |
| OldClass = NewClass; |
| } |
| |
| LVal.moveInto(Result); |
| return true; |
| } |
| |
| /// Determine whether \p Base, which is known to be a direct base class of |
| /// \p Derived, is a public base class. |
| static bool isBaseClassPublic(const CXXRecordDecl *Derived, |
| const CXXRecordDecl *Base) { |
| for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) { |
| auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl(); |
| if (BaseClass && declaresSameEntity(BaseClass, Base)) |
| return BaseSpec.getAccessSpecifier() == AS_public; |
| } |
| llvm_unreachable("Base is not a direct base of Derived"); |
| } |
| |
| /// Apply the given dynamic cast operation on the provided lvalue. |
| /// |
| /// This implements the hard case of dynamic_cast, requiring a "runtime check" |
| /// to find a suitable target subobject. |
| static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E, |
| LValue &Ptr) { |
| // We can't do anything with a non-symbolic pointer value. |
| SubobjectDesignator &D = Ptr.Designator; |
| if (D.Invalid) |
| return false; |
| |
| // C++ [expr.dynamic.cast]p6: |
| // If v is a null pointer value, the result is a null pointer value. |
| if (Ptr.isNullPointer() && !E->isGLValue()) |
| return true; |
| |
| // For all the other cases, we need the pointer to point to an object within |
| // its lifetime / period of construction / destruction, and we need to know |
| // its dynamic type. |
| std::optional<DynamicType> DynType = |
| ComputeDynamicType(Info, E, Ptr, AK_DynamicCast); |
| if (!DynType) |
| return false; |
| |
| // C++ [expr.dynamic.cast]p7: |
| // If T is "pointer to cv void", then the result is a pointer to the most |
| // derived object |
| if (E->getType()->isVoidPointerType()) |
| return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength); |
| |
| const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl(); |
| assert(C && "dynamic_cast target is not void pointer nor class"); |
| CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C)); |
| |
| auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) { |
| // C++ [expr.dynamic.cast]p9: |
| if (!E->isGLValue()) { |
| // The value of a failed cast to pointer type is the null pointer value |
| // of the required result type. |
| Ptr.setNull(Info.Ctx, E->getType()); |
| return true; |
| } |
| |
| // A failed cast to reference type throws [...] std::bad_cast. |
| unsigned DiagKind; |
| if (!Paths && (declaresSameEntity(DynType->Type, C) || |
| DynType->Type->isDerivedFrom(C))) |
| DiagKind = 0; |
| else if (!Paths || Paths->begin() == Paths->end()) |
| DiagKind = 1; |
| else if (Paths->isAmbiguous(CQT)) |
| DiagKind = 2; |
| else { |
| assert(Paths->front().Access != AS_public && "why did the cast fail?"); |
| DiagKind = 3; |
| } |
| Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed) |
| << DiagKind << Ptr.Designator.getType(Info.Ctx) |
| << Info.Ctx.getRecordType(DynType->Type) |
| << E->getType().getUnqualifiedType(); |
| return false; |
| }; |
| |
| // Runtime check, phase 1: |
| // Walk from the base subobject towards the derived object looking for the |
| // target type. |
| for (int PathLength = Ptr.Designator.Entries.size(); |
| PathLength >= (int)DynType->PathLength; --PathLength) { |
| const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength); |
| if (declaresSameEntity(Class, C)) |
| return CastToDerivedClass(Info, E, Ptr, Class, PathLength); |
| // We can only walk across public inheritance edges. |
| if (PathLength > (int)DynType->PathLength && |
| !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1), |
| Class)) |
| return RuntimeCheckFailed(nullptr); |
| } |
| |
| // Runtime check, phase 2: |
| // Search the dynamic type for an unambiguous public base of type C. |
| CXXBasePaths Paths(/*FindAmbiguities=*/true, |
| /*RecordPaths=*/true, /*DetectVirtual=*/false); |
| if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) && |
| Paths.front().Access == AS_public) { |
| // Downcast to the dynamic type... |
| if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength)) |
| return false; |
| // ... then upcast to the chosen base class subobject. |
| for (CXXBasePathElement &Elem : Paths.front()) |
| if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base)) |
| return false; |
| return true; |
| } |
| |
| // Otherwise, the runtime check fails. |
| return RuntimeCheckFailed(&Paths); |
| } |
| |
| namespace { |
| struct StartLifetimeOfUnionMemberHandler { |
| EvalInfo &Info; |
| const Expr *LHSExpr; |
| const FieldDecl *Field; |
| bool DuringInit; |
| bool Failed = false; |
| static const AccessKinds AccessKind = AK_Assign; |
| |
| typedef bool result_type; |
| bool failed() { return Failed; } |
| bool found(APValue &Subobj, QualType SubobjType) { |
| // We are supposed to perform no initialization but begin the lifetime of |
| // the object. We interpret that as meaning to do what default |
| // initialization of the object would do if all constructors involved were |
| // trivial: |
| // * All base, non-variant member, and array element subobjects' lifetimes |
| // begin |
| // * No variant members' lifetimes begin |
| // * All scalar subobjects whose lifetimes begin have indeterminate values |
| assert(SubobjType->isUnionType()); |
| if (declaresSameEntity(Subobj.getUnionField(), Field)) { |
| // This union member is already active. If it's also in-lifetime, there's |
| // nothing to do. |
| if (Subobj.getUnionValue().hasValue()) |
| return true; |
| } else if (DuringInit) { |
| // We're currently in the process of initializing a different union |
| // member. If we carried on, that initialization would attempt to |
| // store to an inactive union member, resulting in undefined behavior. |
| Info.FFDiag(LHSExpr, |
| diag::note_constexpr_union_member_change_during_init); |
| return false; |
| } |
| APValue Result; |
| Failed = !handleDefaultInitValue(Field->getType(), Result); |
| Subobj.setUnion(Field, Result); |
| return true; |
| } |
| bool found(APSInt &Value, QualType SubobjType) { |
| llvm_unreachable("wrong value kind for union object"); |
| } |
| bool found(APFloat &Value, QualType SubobjType) { |
| llvm_unreachable("wrong value kind for union object"); |
| } |
| }; |
| } // end anonymous namespace |
| |
| const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind; |
| |
| /// Handle a builtin simple-assignment or a call to a trivial assignment |
| /// operator whose left-hand side might involve a union member access. If it |
| /// does, implicitly start the lifetime of any accessed union elements per |
| /// C++20 [class.union]5. |
| static bool MaybeHandleUnionActiveMemberChange(EvalInfo &Info, |
| const Expr *LHSExpr, |
| const LValue &LHS) { |
| if (LHS.InvalidBase || LHS.Designator.Invalid) |
| return false; |
| |
| llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths; |
| // C++ [class.union]p5: |
| // define the set S(E) of subexpressions of E as follows: |
| unsigned PathLength = LHS.Designator.Entries.size(); |
| for (const Expr *E = LHSExpr; E != nullptr;) { |
| // -- If E is of the form A.B, S(E) contains the elements of S(A)... |
| if (auto *ME = dyn_cast<MemberExpr>(E)) { |
| auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); |
| // Note that we can't implicitly start the lifetime of a reference, |
| // so we don't need to proceed any further if we reach one. |
| if (!FD || FD->getType()->isReferenceType()) |
| break; |
| |
| // ... and also contains A.B if B names a union member ... |
| if (FD->getParent()->isUnion()) { |
| // ... of a non-class, non-array type, or of a class type with a |
| // trivial default constructor that is not deleted, or an array of |
| // such types. |
| auto *RD = |
| FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
| if (!RD || RD->hasTrivialDefaultConstructor()) |
| UnionPathLengths.push_back({PathLength - 1, FD}); |
| } |
| |
| E = ME->getBase(); |
| --PathLength; |
| assert(declaresSameEntity(FD, |
| LHS.Designator.Entries[PathLength] |
| .getAsBaseOrMember().getPointer())); |
| |
| // -- If E is of the form A[B] and is interpreted as a built-in array |
| // subscripting operator, S(E) is [S(the array operand, if any)]. |
| } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) { |
| // Step over an ArrayToPointerDecay implicit cast. |
| auto *Base = ASE->getBase()->IgnoreImplicit(); |
| if (!Base->getType()->isArrayType()) |
| break; |
| |
| E = Base; |
| --PathLength; |
| |
| } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) { |
| // Step over a derived-to-base conversion. |
| E = ICE->getSubExpr(); |
| if (ICE->getCastKind() == CK_NoOp) |
| continue; |
| if (ICE->getCastKind() != CK_DerivedToBase && |
| ICE->getCastKind() != CK_UncheckedDerivedToBase) |
| break; |
| // Walk path backwards as we walk up from the base to the derived class. |
| for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) { |
| if (Elt->isVirtual()) { |
| // A class with virtual base classes never has a trivial default |
| // constructor, so S(E) is empty in this case. |
| E = nullptr; |
| break; |
| } |
| |
| --PathLength; |
| assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(), |
| LHS.Designator.Entries[PathLength] |
| .getAsBaseOrMember().getPointer())); |
| } |
| |
| // -- Otherwise, S(E) is empty. |
| } else { |
| break; |
| } |
| } |
| |
| // Common case: no unions' lifetimes are started. |
| if (UnionPathLengths.empty()) |
| return true; |
| |
| // if modification of X [would access an inactive union member], an object |
| // of the type of X is implicitly created |
| CompleteObject Obj = |
| findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType()); |
| if (!Obj) |
| return false; |
| for (std::pair<unsigned, const FieldDecl *> LengthAndField : |
| llvm::reverse(UnionPathLengths)) { |
| // Form a designator for the union object. |
| SubobjectDesignator D = LHS.Designator; |
| D.truncate(Info.Ctx, LHS.Base, LengthAndField.first); |
| |
| bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) == |
| ConstructionPhase::AfterBases; |
| StartLifetimeOfUnionMemberHandler StartLifetime{ |
| Info, LHSExpr, LengthAndField.second, DuringInit}; |
| if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg, |
| CallRef Call, EvalInfo &Info, |
| bool NonNull = false) { |
| LValue LV; |
| // Create the parameter slot and register its destruction. For a vararg |
| // argument, create a temporary. |
| // FIXME: For calling conventions that destroy parameters in the callee, |
| // should we consider performing destruction when the function returns |
| // instead? |
| APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV) |
| : Info.CurrentCall->createTemporary(Arg, Arg->getType(), |
| ScopeKind::Call, LV); |
| if (!EvaluateInPlace(V, Info, LV, Arg)) |
| return false; |
| |
| // Passing a null pointer to an __attribute__((nonnull)) parameter results in |
| // undefined behavior, so is non-constant. |
| if (NonNull && V.isLValue() && V.isNullPointer()) { |
| Info.CCEDiag(Arg, diag::note_non_null_attribute_failed); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Evaluate the arguments to a function call. |
| static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call, |
| EvalInfo &Info, const FunctionDecl *Callee, |
| bool RightToLeft = false) { |
| bool Success = true; |
| llvm::SmallBitVector ForbiddenNullArgs; |
| if (Callee->hasAttr<NonNullAttr>()) { |
| ForbiddenNullArgs.resize(Args.size()); |
| for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) { |
| if (!Attr->args_size()) { |
| ForbiddenNullArgs.set(); |
| break; |
| } else |
| for (auto Idx : Attr->args()) { |
| unsigned ASTIdx = Idx.getASTIndex(); |
| if (ASTIdx >= Args.size()) |
| continue; |
| ForbiddenNullArgs[ASTIdx] = true; |
| } |
| } |
| } |
| for (unsigned I = 0; I < Args.size(); I++) { |
| unsigned Idx = RightToLeft ? Args.size() - I - 1 : I; |
| const ParmVarDecl *PVD = |
| Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr; |
| bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx]; |
| if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) { |
| // If we're checking for a potential constant expression, evaluate all |
| // initializers even if some of them fail. |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| } |
| return Success; |
| } |
| |
| /// Perform a trivial copy from Param, which is the parameter of a copy or move |
| /// constructor or assignment operator. |
| static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param, |
| const Expr *E, APValue &Result, |
| bool CopyObjectRepresentation) { |
| // Find the reference argument. |
| CallStackFrame *Frame = Info.CurrentCall; |
| APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param); |
| if (!RefValue) { |
| Info.FFDiag(E); |
| return false; |
| } |
| |
| // Copy out the contents of the RHS object. |
| LValue RefLValue; |
| RefLValue.setFrom(Info.Ctx, *RefValue); |
| return handleLValueToRValueConversion( |
| Info, E, Param->getType().getNonReferenceType(), RefLValue, Result, |
| CopyObjectRepresentation); |
| } |
| |
| /// Evaluate a function call. |
| static bool HandleFunctionCall(SourceLocation CallLoc, |
| const FunctionDecl *Callee, const LValue *This, |
| const Expr *E, ArrayRef<const Expr *> Args, |
| CallRef Call, const Stmt *Body, EvalInfo &Info, |
| APValue &Result, const LValue *ResultSlot) { |
| if (!Info.CheckCallLimit(CallLoc)) |
| return false; |
| |
| CallStackFrame Frame(Info, E->getSourceRange(), Callee, This, E, Call); |
| |
| // For a trivial copy or move assignment, perform an APValue copy. This is |
| // essential for unions, where the operations performed by the assignment |
| // operator cannot be represented as statements. |
| // |
| // Skip this for non-union classes with no fields; in that case, the defaulted |
| // copy/move does not actually read the object. |
| const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee); |
| if (MD && MD->isDefaulted() && |
| (MD->getParent()->isUnion() || |
| (MD->isTrivial() && |
| isReadByLvalueToRvalueConversion(MD->getParent())))) { |
| assert(This && |
| (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())); |
| APValue RHSValue; |
| if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue, |
| MD->getParent()->isUnion())) |
| return false; |
| if (!handleAssignment(Info, Args[0], *This, MD->getThisType(), |
| RHSValue)) |
| return false; |
| This->moveInto(Result); |
| return true; |
| } else if (MD && isLambdaCallOperator(MD)) { |
| // We're in a lambda; determine the lambda capture field maps unless we're |
| // just constexpr checking a lambda's call operator. constexpr checking is |
| // done before the captures have been added to the closure object (unless |
| // we're inferring constexpr-ness), so we don't have access to them in this |
| // case. But since we don't need the captures to constexpr check, we can |
| // just ignore them. |
| if (!Info.checkingPotentialConstantExpression()) |
| MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields, |
| Frame.LambdaThisCaptureField); |
| } |
| |
| StmtResult Ret = {Result, ResultSlot}; |
| EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body); |
| if (ESR == ESR_Succeeded) { |
| if (Callee->getReturnType()->isVoidType()) |
| return true; |
| Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return); |
| } |
| return ESR == ESR_Returned; |
| } |
| |
| /// Evaluate a constructor call. |
| static bool HandleConstructorCall(const Expr *E, const LValue &This, |
| CallRef Call, |
| const CXXConstructorDecl *Definition, |
| EvalInfo &Info, APValue &Result) { |
| SourceLocation CallLoc = E->getExprLoc(); |
| if (!Info.CheckCallLimit(CallLoc)) |
| return false; |
| |
| const CXXRecordDecl *RD = Definition->getParent(); |
| if (RD->getNumVBases()) { |
| Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD; |
| return false; |
| } |
| |
| EvalInfo::EvaluatingConstructorRAII EvalObj( |
| Info, |
| ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}, |
| RD->getNumBases()); |
| CallStackFrame Frame(Info, E->getSourceRange(), Definition, &This, E, Call); |
| |
| // FIXME: Creating an APValue just to hold a nonexistent return value is |
| // wasteful. |
| APValue RetVal; |
| StmtResult Ret = {RetVal, nullptr}; |
| |
| // If it's a delegating constructor, delegate. |
| if (Definition->isDelegatingConstructor()) { |
| CXXConstructorDecl::init_const_iterator I = Definition->init_begin(); |
| if ((*I)->getInit()->isValueDependent()) { |
| if (!EvaluateDependentExpr((*I)->getInit(), Info)) |
| return false; |
| } else { |
| FullExpressionRAII InitScope(Info); |
| if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) || |
| !InitScope.destroy()) |
| return false; |
| } |
| return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed; |
| } |
| |
| // For a trivial copy or move constructor, perform an APValue copy. This is |
| // essential for unions (or classes with anonymous union members), where the |
| // operations performed by the constructor cannot be represented by |
| // ctor-initializers. |
| // |
| // Skip this for empty non-union classes; we should not perform an |
| // lvalue-to-rvalue conversion on them because their copy constructor does not |
| // actually read them. |
| if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() && |
| (Definition->getParent()->isUnion() || |
| (Definition->isTrivial() && |
| isReadByLvalueToRvalueConversion(Definition->getParent())))) { |
| return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result, |
| Definition->getParent()->isUnion()); |
| } |
| |
| // Reserve space for the struct members. |
| if (!Result.hasValue()) { |
| if (!RD->isUnion()) |
| Result = APValue(APValue::UninitStruct(), RD->getNumBases(), |
| std::distance(RD->field_begin(), RD->field_end())); |
| else |
| // A union starts with no active member. |
| Result = APValue((const FieldDecl*)nullptr); |
| } |
| |
| if (RD->isInvalidDecl()) return false; |
| const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
| |
| // A scope for temporaries lifetime-extended by reference members. |
| BlockScopeRAII LifetimeExtendedScope(Info); |
| |
| bool Success = true; |
| unsigned BasesSeen = 0; |
| #ifndef NDEBUG |
| CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin(); |
| #endif |
| CXXRecordDecl::field_iterator FieldIt = RD->field_begin(); |
| auto SkipToField = [&](FieldDecl *FD, bool Indirect) { |
| // We might be initializing the same field again if this is an indirect |
| // field initialization. |
| if (FieldIt == RD->field_end() || |
| FieldIt->getFieldIndex() > FD->getFieldIndex()) { |
| assert(Indirect && "fields out of order?"); |
| return; |
| } |
| |
| // Default-initialize any fields with no explicit initializer. |
| for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) { |
| assert(FieldIt != RD->field_end() && "missing field?"); |
| if (!FieldIt->isUnnamedBitField()) |
| Success &= handleDefaultInitValue( |
| FieldIt->getType(), |
| Result.getStructField(FieldIt->getFieldIndex())); |
| } |
| ++FieldIt; |
| }; |
| for (const auto *I : Definition->inits()) { |
| LValue Subobject = This; |
| LValue SubobjectParent = This; |
| APValue *Value = &Result; |
| |
| // Determine the subobject to initialize. |
| FieldDecl *FD = nullptr; |
| if (I->isBaseInitializer()) { |
| QualType BaseType(I->getBaseClass(), 0); |
| #ifndef NDEBUG |
| // Non-virtual base classes are initialized in the order in the class |
| // definition. We have already checked for virtual base classes. |
| assert(!BaseIt->isVirtual() && "virtual base for literal type"); |
| assert(Info.Ctx.hasSameUnqualifiedType(BaseIt->getType(), BaseType) && |
| "base class initializers not in expected order"); |
| ++BaseIt; |
| #endif |
| if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD, |
| BaseType->getAsCXXRecordDecl(), &Layout)) |
| return false; |
| Value = &Result.getStructBase(BasesSeen++); |
| } else if ((FD = I->getMember())) { |
| if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout)) |
| return false; |
| if (RD->isUnion()) { |
| Result = APValue(FD); |
| Value = &Result.getUnionValue(); |
| } else { |
| SkipToField(FD, false); |
| Value = &Result.getStructField(FD->getFieldIndex()); |
| } |
| } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) { |
| // Walk the indirect field decl's chain to find the object to initialize, |
| // and make sure we've initialized every step along it. |
| auto IndirectFieldChain = IFD->chain(); |
| for (auto *C : IndirectFieldChain) { |
| FD = cast<FieldDecl>(C); |
| CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent()); |
| // Switch the union field if it differs. This happens if we had |
| // preceding zero-initialization, and we're now initializing a union |
| // subobject other than the first. |
| // FIXME: In this case, the values of the other subobjects are |
| // specified, since zero-initialization sets all padding bits to zero. |
| if (!Value->hasValue() || |
| (Value->isUnion() && Value->getUnionField() != FD)) { |
| if (CD->isUnion()) |
| *Value = APValue(FD); |
| else |
| // FIXME: This immediately starts the lifetime of all members of |
| // an anonymous struct. It would be preferable to strictly start |
| // member lifetime in initialization order. |
| Success &= |
| handleDefaultInitValue(Info.Ctx.getRecordType(CD), *Value); |
| } |
| // Store Subobject as its parent before updating it for the last element |
| // in the chain. |
| if (C == IndirectFieldChain.back()) |
| SubobjectParent = Subobject; |
| if (!HandleLValueMember(Info, I->getInit(), Subobject, FD)) |
| return false; |
| if (CD->isUnion()) |
| Value = &Value->getUnionValue(); |
| else { |
| if (C == IndirectFieldChain.front() && !RD->isUnion()) |
| SkipToField(FD, true); |
| Value = &Value->getStructField(FD->getFieldIndex()); |
| } |
| } |
| } else { |
| llvm_unreachable("unknown base initializer kind"); |
| } |
| |
| // Need to override This for implicit field initializers as in this case |
| // This refers to innermost anonymous struct/union containing initializer, |
| // not to currently constructed class. |
| const Expr *Init = I->getInit(); |
| if (Init->isValueDependent()) { |
| if (!EvaluateDependentExpr(Init, Info)) |
| return false; |
| } else { |
| ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent, |
| isa<CXXDefaultInitExpr>(Init)); |
| FullExpressionRAII InitScope(Info); |
| if (!EvaluateInPlace(*Value, Info, Subobject, Init) || |
| (FD && FD->isBitField() && |
| !truncateBitfieldValue(Info, Init, *Value, FD))) { |
| // If we're checking for a potential constant expression, evaluate all |
| // initializers even if some of them fail. |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| } |
| |
| // This is the point at which the dynamic type of the object becomes this |
| // class type. |
| if (I->isBaseInitializer() && BasesSeen == RD->getNumBases()) |
| EvalObj.finishedConstructingBases(); |
| } |
| |
| // Default-initialize any remaining fields. |
| if (!RD->isUnion()) { |
| for (; FieldIt != RD->field_end(); ++FieldIt) { |
| if (!FieldIt->isUnnamedBitField()) |
| Success &= handleDefaultInitValue( |
| FieldIt->getType(), |
| Result.getStructField(FieldIt->getFieldIndex())); |
| } |
| } |
| |
| EvalObj.finishedConstructingFields(); |
| |
| return Success && |
| EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed && |
| LifetimeExtendedScope.destroy(); |
| } |
| |
| static bool HandleConstructorCall(const Expr *E, const LValue &This, |
| ArrayRef<const Expr*> Args, |
| const CXXConstructorDecl *Definition, |
| EvalInfo &Info, APValue &Result) { |
| CallScopeRAII CallScope(Info); |
| CallRef Call = Info.CurrentCall->createCall(Definition); |
| if (!EvaluateArgs(Args, Call, Info, Definition)) |
| return false; |
| |
| return HandleConstructorCall(E, This, Call, Definition, Info, Result) && |
| CallScope.destroy(); |
| } |
| |
| static bool HandleDestructionImpl(EvalInfo &Info, SourceRange CallRange, |
| const LValue &This, APValue &Value, |
| QualType T) { |
| // Objects can only be destroyed while they're within their lifetimes. |
| // FIXME: We have no representation for whether an object of type nullptr_t |
| // is in its lifetime; it usually doesn't matter. Perhaps we should model it |
| // as indeterminate instead? |
| if (Value.isAbsent() && !T->isNullPtrType()) { |
| APValue Printable; |
| This.moveInto(Printable); |
| Info.FFDiag(CallRange.getBegin(), |
| diag::note_constexpr_destroy_out_of_lifetime) |
| << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T)); |
| return false; |
| } |
| |
| // Invent an expression for location purposes. |
| // FIXME: We shouldn't need to do this. |
| OpaqueValueExpr LocE(CallRange.getBegin(), Info.Ctx.IntTy, VK_PRValue); |
| |
| // For arrays, destroy elements right-to-left. |
| if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) { |
| uint64_t Size = CAT->getZExtSize(); |
| QualType ElemT = CAT->getElementType(); |
| |
| if (!CheckArraySize(Info, CAT, CallRange.getBegin())) |
| return false; |
| |
| LValue ElemLV = This; |
| ElemLV.addArray(Info, &LocE, CAT); |
| if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size)) |
| return false; |
| |
| // Ensure that we have actual array elements available to destroy; the |
| // destructors might mutate the value, so we can't run them on the array |
| // filler. |
| if (Size && Size > Value.getArrayInitializedElts()) |
| expandArray(Value, Value.getArraySize() - 1); |
| |
| // The size of the array might have been reduced by |
| // a placement new. |
| for (Size = Value.getArraySize(); Size != 0; --Size) { |
| APValue &Elem = Value.getArrayInitializedElt(Size - 1); |
| if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) || |
| !HandleDestructionImpl(Info, CallRange, ElemLV, Elem, ElemT)) |
| return false; |
| } |
| |
| // End the lifetime of this array now. |
| Value = APValue(); |
| return true; |
| } |
| |
| const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
| if (!RD) { |
| if (T.isDestructedType()) { |
| Info.FFDiag(CallRange.getBegin(), |
| diag::note_constexpr_unsupported_destruction) |
| << T; |
| return false; |
| } |
| |
| Value = APValue(); |
| return true; |
| } |
| |
| if (RD->getNumVBases()) { |
| Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_virtual_base) << RD; |
| return false; |
| } |
| |
| const CXXDestructorDecl *DD = RD->getDestructor(); |
| if (!DD && !RD->hasTrivialDestructor()) { |
| Info.FFDiag(CallRange.getBegin()); |
| return false; |
| } |
| |
| if (!DD || DD->isTrivial() || |
| (RD->isAnonymousStructOrUnion() && RD->isUnion())) { |
| // A trivial destructor just ends the lifetime of the object. Check for |
| // this case before checking for a body, because we might not bother |
| // building a body for a trivial destructor. Note that it doesn't matter |
| // whether the destructor is constexpr in this case; all trivial |
| // destructors are constexpr. |
| // |
| // If an anonymous union would be destroyed, some enclosing destructor must |
| // have been explicitly defined, and the anonymous union destruction should |
| // have no effect. |
| Value = APValue(); |
| return true; |
| } |
| |
| if (!Info.CheckCallLimit(CallRange.getBegin())) |
| return false; |
| |
| const FunctionDecl *Definition = nullptr; |
| const Stmt *Body = DD->getBody(Definition); |
| |
| if (!CheckConstexprFunction(Info, CallRange.getBegin(), DD, Definition, Body)) |
| return false; |
| |
| CallStackFrame Frame(Info, CallRange, Definition, &This, /*CallExpr=*/nullptr, |
| CallRef()); |
| |
| // We're now in the period of destruction of this object. |
| unsigned BasesLeft = RD->getNumBases(); |
| EvalInfo::EvaluatingDestructorRAII EvalObj( |
| Info, |
| ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}); |
| if (!EvalObj.DidInsert) { |
| // C++2a [class.dtor]p19: |
| // the behavior is undefined if the destructor is invoked for an object |
| // whose lifetime has ended |
| // (Note that formally the lifetime ends when the period of destruction |
| // begins, even though certain uses of the object remain valid until the |
| // period of destruction ends.) |
| Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_double_destroy); |
| return false; |
| } |
| |
| // FIXME: Creating an APValue just to hold a nonexistent return value is |
| // wasteful. |
| APValue RetVal; |
| StmtResult Ret = {RetVal, nullptr}; |
| if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed) |
| return false; |
| |
| // A union destructor does not implicitly destroy its members. |
| if (RD->isUnion()) |
| return true; |
| |
| const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
| |
| // We don't have a good way to iterate fields in reverse, so collect all the |
| // fields first and then walk them backwards. |
| SmallVector<FieldDecl*, 16> Fields(RD->fields()); |
| for (const FieldDecl *FD : llvm::reverse(Fields)) { |
| if (FD->isUnnamedBitField()) |
| continue; |
| |
| LValue Subobject = This; |
| if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout)) |
| return false; |
| |
| APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex()); |
| if (!HandleDestructionImpl(Info, CallRange, Subobject, *SubobjectValue, |
| FD->getType())) |
| return false; |
| } |
| |
| if (BasesLeft != 0) |
| EvalObj.startedDestroyingBases(); |
| |
| // Destroy base classes in reverse order. |
| for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) { |
| --BasesLeft; |
| |
| QualType BaseType = Base.getType(); |
| LValue Subobject = This; |
| if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD, |
| BaseType->getAsCXXRecordDecl(), &Layout)) |
| return false; |
| |
| APValue *SubobjectValue = &Value.getStructBase(BasesLeft); |
| if (!HandleDestructionImpl(Info, CallRange, Subobject, *SubobjectValue, |
| BaseType)) |
| return false; |
| } |
| assert(BasesLeft == 0 && "NumBases was wrong?"); |
| |
| // The period of destruction ends now. The object is gone. |
| Value = APValue(); |
| return true; |
| } |
| |
| namespace { |
| struct DestroyObjectHandler { |
| EvalInfo &Info; |
| const Expr *E; |
| const LValue &This; |
| const AccessKinds AccessKind; |
| |
| typedef bool result_type; |
| bool failed() { return false; } |
| bool found(APValue &Subobj, QualType SubobjType) { |
| return HandleDestructionImpl(Info, E->getSourceRange(), This, Subobj, |
| SubobjType); |
| } |
| bool found(APSInt &Value, QualType SubobjType) { |
| Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem); |
| return false; |
| } |
| bool found(APFloat &Value, QualType SubobjType) { |
| Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem); |
| return false; |
| } |
| }; |
| } |
| |
| /// Perform a destructor or pseudo-destructor call on the given object, which |
| /// might in general not be a complete object. |
| static bool HandleDestruction(EvalInfo &Info, const Expr *E, |
| const LValue &This, QualType ThisType) { |
| CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType); |
| DestroyObjectHandler Handler = {Info, E, This, AK_Destroy}; |
| return Obj && findSubobject(Info, E, Obj, This.Designator, Handler); |
| } |
| |
| /// Destroy and end the lifetime of the given complete object. |
| static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, |
| APValue::LValueBase LVBase, APValue &Value, |
| QualType T) { |
| // If we've had an unmodeled side-effect, we can't rely on mutable state |
| // (such as the object we're about to destroy) being correct. |
| if (Info.EvalStatus.HasSideEffects) |
| return false; |
| |
| LValue LV; |
| LV.set({LVBase}); |
| return HandleDestructionImpl(Info, Loc, LV, Value, T); |
| } |
| |
| /// Perform a call to 'operator new' or to `__builtin_operator_new'. |
| static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E, |
| LValue &Result) { |
| if (Info.checkingPotentialConstantExpression() || |
| Info.SpeculativeEvaluationDepth) |
| return false; |
| |
| // This is permitted only within a call to std::allocator<T>::allocate. |
| auto Caller = Info.getStdAllocatorCaller("allocate"); |
| if (!Caller) { |
| Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20 |
| ? diag::note_constexpr_new_untyped |
| : diag::note_constexpr_new); |
| return false; |
| } |
| |
| QualType ElemType = Caller.ElemType; |
| if (ElemType->isIncompleteType() || ElemType->isFunctionType()) { |
| Info.FFDiag(E->getExprLoc(), |
| diag::note_constexpr_new_not_complete_object_type) |
| << (ElemType->isIncompleteType() ? 0 : 1) << ElemType; |
| return false; |
| } |
| |
| APSInt ByteSize; |
| if (!EvaluateInteger(E->getArg(0), ByteSize, Info)) |
| return false; |
| bool IsNothrow = false; |
| for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) { |
| EvaluateIgnoredValue(Info, E->getArg(I)); |
| IsNothrow |= E->getType()->isNothrowT(); |
| } |
| |
| CharUnits ElemSize; |
| if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize)) |
| return false; |
| APInt Size, Remainder; |
| APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity()); |
| APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder); |
| if (Remainder != 0) { |
| // This likely indicates a bug in the implementation of 'std::allocator'. |
| Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size) |
| << ByteSize << APSInt(ElemSizeAP, true) << ElemType; |
| return false; |
| } |
| |
| if (!Info.CheckArraySize(E->getBeginLoc(), ByteSize.getActiveBits(), |
| Size.getZExtValue(), /*Diag=*/!IsNothrow)) { |
| if (IsNothrow) { |
| Result.setNull(Info.Ctx, E->getType()); |
| return true; |
| } |
| return false; |
| } |
| |
| QualType AllocType = Info.Ctx.getConstantArrayType( |
| ElemType, Size, nullptr, ArraySizeModifier::Normal, 0); |
| APValue *Val = Info.createHeapAlloc(E, AllocType, Result); |
| *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue()); |
| Result.addArray(Info, E, cast<ConstantArrayType>(AllocType)); |
| return true; |
| } |
| |
| static bool hasVirtualDestructor(QualType T) { |
| if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
| if (CXXDestructorDecl *DD = RD->getDestructor()) |
| return DD->isVirtual(); |
| return false; |
| } |
| |
| static const FunctionDecl *getVirtualOperatorDelete(QualType T) { |
| if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
| if (CXXDestructorDecl *DD = RD->getDestructor()) |
| return DD->isVirtual() ? DD->getOperatorDelete() : nullptr; |
| return nullptr; |
| } |
| |
| /// Check that the given object is a suitable pointer to a heap allocation that |
| /// still exists and is of the right kind for the purpose of a deletion. |
| /// |
| /// On success, returns the heap allocation to deallocate. On failure, produces |
| /// a diagnostic and returns std::nullopt. |
| static std::optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E, |
| const LValue &Pointer, |
| DynAlloc::Kind DeallocKind) { |
| auto PointerAsString = [&] { |
| return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy); |
| }; |
| |
| DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>(); |
| if (!DA) { |
| Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc) |
| << PointerAsString(); |
| if (Pointer.Base) |
| NoteLValueLocation(Info, Pointer.Base); |
| return std::nullopt; |
| } |
| |
| std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA); |
| if (!Alloc) { |
| Info.FFDiag(E, diag::note_constexpr_double_delete); |
| return std::nullopt; |
| } |
| |
| if (DeallocKind != (*Alloc)->getKind()) { |
| QualType AllocType = Pointer.Base.getDynamicAllocType(); |
| Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch) |
| << DeallocKind << (*Alloc)->getKind() << AllocType; |
| NoteLValueLocation(Info, Pointer.Base); |
| return std::nullopt; |
| } |
| |
| bool Subobject = false; |
| if (DeallocKind == DynAlloc::New) { |
| Subobject = Pointer.Designator.MostDerivedPathLength != 0 || |
| Pointer.Designator.isOnePastTheEnd(); |
| } else { |
| Subobject = Pointer.Designator.Entries.size() != 1 || |
| Pointer.Designator.Entries[0].getAsArrayIndex() != 0; |
| } |
| if (Subobject) { |
| Info.FFDiag(E, diag::note_constexpr_delete_subobject) |
| << PointerAsString() << Pointer.Designator.isOnePastTheEnd(); |
| return std::nullopt; |
| } |
| |
| return Alloc; |
| } |
| |
| // Perform a call to 'operator delete' or '__builtin_operator_delete'. |
| bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) { |
| if (Info.checkingPotentialConstantExpression() || |
| Info.SpeculativeEvaluationDepth) |
| return false; |
| |
| // This is permitted only within a call to std::allocator<T>::deallocate. |
| if (!Info.getStdAllocatorCaller("deallocate")) { |
| Info.FFDiag(E->getExprLoc()); |
| return true; |
| } |
| |
| LValue Pointer; |
| if (!EvaluatePointer(E->getArg(0), Pointer, Info)) |
| return false; |
| for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) |
| EvaluateIgnoredValue(Info, E->getArg(I)); |
| |
| if (Pointer.Designator.Invalid) |
| return false; |
| |
| // Deleting a null pointer would have no effect, but it's not permitted by |
| // std::allocator<T>::deallocate's contract. |
| if (Pointer.isNullPointer()) { |
| Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null); |
| return true; |
| } |
| |
| if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator)) |
| return false; |
| |
| Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>()); |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Generic Evaluation |
| //===----------------------------------------------------------------------===// |
| namespace { |
| |
| class BitCastBuffer { |
| // FIXME: We're going to need bit-level granularity when we support |
| // bit-fields. |
| // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but |
| // we don't support a host or target where that is the case. Still, we should |
| // use a more generic type in case we ever do. |
| SmallVector<std::optional<unsigned char>, 32> Bytes; |
| |
| static_assert(std::numeric_limits<unsigned char>::digits >= 8, |
| "Need at least 8 bit unsigned char"); |
| |
| bool TargetIsLittleEndian; |
| |
| public: |
| BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian) |
| : Bytes(Width.getQuantity()), |
| TargetIsLittleEndian(TargetIsLittleEndian) {} |
| |
| [[nodiscard]] bool readObject(CharUnits Offset, CharUnits Width, |
| SmallVectorImpl<unsigned char> &Output) const { |
| for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) { |
| // If a byte of an integer is uninitialized, then the whole integer is |
| // uninitialized. |
| if (!Bytes[I.getQuantity()]) |
| return false; |
| Output.push_back(*Bytes[I.getQuantity()]); |
| } |
| if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) |
| std::reverse(Output.begin(), Output.end()); |
| return true; |
| } |
| |
| void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) { |
| if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) |
| std::reverse(Input.begin(), Input.end()); |
| |
| size_t Index = 0; |
| for (unsigned char Byte : Input) { |
| assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?"); |
| Bytes[Offset.getQuantity() + Index] = Byte; |
| ++Index; |
| } |
| } |
| |
| size_t size() { return Bytes.size(); } |
| }; |
| |
| /// Traverse an APValue to produce an BitCastBuffer, emulating how the current |
| /// target would represent the value at runtime. |
| class APValueToBufferConverter { |
| EvalInfo &Info; |
| BitCastBuffer Buffer; |
| const CastExpr *BCE; |
| |
| APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth, |
| const CastExpr *BCE) |
| : Info(Info), |
| Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()), |
| BCE(BCE) {} |
| |
| bool visit(const APValue &Val, QualType Ty) { |
| return visit(Val, Ty, CharUnits::fromQuantity(0)); |
| } |
| |
| // Write out Val with type Ty into Buffer starting at Offset. |
| bool visit(const APValue &Val, QualType Ty, CharUnits Offset) { |
| assert((size_t)Offset.getQuantity() <= Buffer.size()); |
| |
| // As a special case, nullptr_t has an indeterminate value. |
| if (Ty->isNullPtrType()) |
| return true; |
| |
| // Dig through Src to find the byte at SrcOffset. |
| switch (Val.getKind()) { |
| case APValue::Indeterminate: |
| case APValue::None: |
| return true; |
| |
| case APValue::Int: |
| return visitInt(Val.getInt(), Ty, Offset); |
| case APValue::Float: |
| return visitFloat(Val.getFloat(), Ty, Offset); |
| case APValue::Array: |
| return visitArray(Val, Ty, Offset); |
| case APValue::Struct: |
| return visitRecord(Val, Ty, Offset); |
| case APValue::Vector: |
| return visitVector(Val, Ty, Offset); |
| |
| case APValue::ComplexInt: |
| case APValue::ComplexFloat: |
| case APValue::FixedPoint: |
| // FIXME: We should support these. |
| |
| case APValue::Union: |
| case APValue::MemberPointer: |
| case APValue::AddrLabelDiff: { |
| Info.FFDiag(BCE->getBeginLoc(), |
| diag::note_constexpr_bit_cast_unsupported_type) |
| << Ty; |
| return false; |
| } |
| |
| case APValue::LValue: |
| llvm_unreachable("LValue subobject in bit_cast?"); |
| } |
| llvm_unreachable("Unhandled APValue::ValueKind"); |
| } |
| |
| bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) { |
| const RecordDecl *RD = Ty->getAsRecordDecl(); |
| const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
| |
| // Visit the base classes. |
| if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
| for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { |
| const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; |
| CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); |
| |
| if (!visitRecord(Val.getStructBase(I), BS.getType(), |
| Layout.getBaseClassOffset(BaseDecl) + Offset)) |
| return false; |
| } |
| } |
| |
| // Visit the fields. |
| unsigned FieldIdx = 0; |
| for (FieldDecl *FD : RD->fields()) { |
| if (FD->isBitField()) { |
| Info.FFDiag(BCE->getBeginLoc(), |
| diag::note_constexpr_bit_cast_unsupported_bitfield); |
| return false; |
| } |
| |
| uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx); |
| |
| assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 && |
| "only bit-fields can have sub-char alignment"); |
| CharUnits FieldOffset = |
| Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset; |
| QualType FieldTy = FD->getType(); |
| if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset)) |
| return false; |
| ++FieldIdx; |
| } |
| |
| return true; |
| } |
| |
| bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) { |
| const auto *CAT = |
| dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe()); |
| if (!CAT) |
| return false; |
| |
| CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType()); |
| unsigned NumInitializedElts = Val.getArrayInitializedElts(); |
| unsigned ArraySize = Val.getArraySize(); |
| // First, initialize the initialized elements. |
| for (unsigned I = 0; I != NumInitializedElts; ++I) { |
| const APValue &SubObj = Val.getArrayInitializedElt(I); |
| if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth)) |
| return false; |
| } |
| |
| // Next, initialize the rest of the array using the filler. |
| if (Val.hasArrayFiller()) { |
| const APValue &Filler = Val.getArrayFiller(); |
| for (unsigned I = NumInitializedElts; I != ArraySize; ++I) { |
| if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool visitVector(const APValue &Val, QualType Ty, CharUnits Offset) { |
| const VectorType *VTy = Ty->castAs<VectorType>(); |
| QualType EltTy = VTy->getElementType(); |
| unsigned NElts = VTy->getNumElements(); |
| unsigned EltSize = |
| VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(EltTy); |
| |
| if ((NElts * EltSize) % Info.Ctx.getCharWidth() != 0) { |
| // The vector's size in bits is not a multiple of the target's byte size, |
| // so its layout is unspecified. For now, we'll simply treat these cases |
| // as unsupported (this should only be possible with OpenCL bool vectors |
| // whose element count isn't a multiple of the byte size). |
| Info.FFDiag(BCE->getBeginLoc(), |
| diag::note_constexpr_bit_cast_invalid_vector) |
| << Ty.getCanonicalType() << EltSize << NElts |
| << Info.Ctx.getCharWidth(); |
| return false; |
| } |
| |
| if (EltTy->isRealFloatingType() && &Info.Ctx.getFloatTypeSemantics(EltTy) == |
| &APFloat::x87DoubleExtended()) { |
| // The layout for x86_fp80 vectors seems to be handled very inconsistently |
| // by both clang and LLVM, so for now we won't allow bit_casts involving |
| // it in a constexpr context. |
| Info.FFDiag(BCE->getBeginLoc(), |
| diag::note_constexpr_bit_cast_unsupported_type) |
| << EltTy; |
| return false; |
| } |
| |
| if (VTy->isExtVectorBoolType()) { |
| // Special handling for OpenCL bool vectors: |
| // Since these vectors are stored as packed bits, but we can't write |
| // individual bits to the BitCastBuffer, we'll buffer all of the elements |
| // together into an appropriately sized APInt and write them all out at |
| // once. Because we don't accept vectors where NElts * EltSize isn't a |
| // multiple of the char size, there will be no padding space, so we don't |
| // have to worry about writing data which should have been left |
| // uninitialized. |
| bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); |
| |
| llvm::APInt Res = llvm::APInt::getZero(NElts); |
| for (unsigned I = 0; I < NElts; ++I) { |
| const llvm::APSInt &EltAsInt = Val.getVectorElt(I).getInt(); |
| assert(EltAsInt.isUnsigned() && EltAsInt.getBitWidth() == 1 && |
| "bool vector element must be 1-bit unsigned integer!"); |
| |
| Res.insertBits(EltAsInt, BigEndian ? (NElts - I - 1) : I); |
| } |
| |
| SmallVector<uint8_t, 8> Bytes(NElts / 8); |
| llvm::StoreIntToMemory(Res, &*Bytes.begin(), NElts / 8); |
| Buffer.writeObject(Offset, Bytes); |
| } else { |
| // Iterate over each of the elements and write them out to the buffer at |
| // the appropriate offset. |
| CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(EltTy); |
| for (unsigned I = 0; I < NElts; ++I) { |
| if (!visit(Val.getVectorElt(I), EltTy, Offset + I * EltSizeChars)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) { |
| APSInt AdjustedVal = Val; |
| unsigned Width = AdjustedVal.getBitWidth(); |
| if (Ty->isBooleanType()) { |
| Width = Info.Ctx.getTypeSize(Ty); |
| AdjustedVal = AdjustedVal.extend(Width); |
| } |
| |
| SmallVector<uint8_t, 8> Bytes(Width / 8); |
| llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8); |
| Buffer.writeObject(Offset, Bytes); |
| return true; |
| } |
| |
| bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) { |
| APSInt AsInt(Val.bitcastToAPInt()); |
| return visitInt(AsInt, Ty, Offset); |
| } |
| |
| public: |
| static std::optional<BitCastBuffer> |
| convert(EvalInfo &Info, const APValue &Src, const CastExpr *BCE) { |
| CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType()); |
| APValueToBufferConverter Converter(Info, DstSize, BCE); |
| if (!Converter.visit(Src, BCE->getSubExpr()->getType())) |
| return std::nullopt; |
| return Converter.Buffer; |
| } |
| }; |
| |
| /// Write an BitCastBuffer into an APValue. |
| class BufferToAPValueConverter { |
| EvalInfo &Info; |
| const BitCastBuffer &Buffer; |
| const CastExpr *BCE; |
| |
| BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer, |
| const CastExpr *BCE) |
| : Info(Info), Buffer(Buffer), BCE(BCE) {} |
| |
| // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast |
| // with an invalid type, so anything left is a deficiency on our part (FIXME). |
| // Ideally this will be unreachable. |
| std::nullopt_t unsupportedType(QualType Ty) { |
| Info.FFDiag(BCE->getBeginLoc(), |
| diag::note_constexpr_bit_cast_unsupported_type) |
| << Ty; |
| return std::nullopt; |
| } |
| |
| std::nullopt_t unrepresentableValue(QualType Ty, const APSInt &Val) { |
| Info.FFDiag(BCE->getBeginLoc(), |
| diag::note_constexpr_bit_cast_unrepresentable_value) |
| << Ty << toString(Val, /*Radix=*/10); |
| return std::nullopt; |
| } |
| |
| std::optional<APValue> visit(const BuiltinType *T, CharUnits Offset, |
| const EnumType *EnumSugar = nullptr) { |
| if (T->isNullPtrType()) { |
| uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0)); |
| return APValue((Expr *)nullptr, |
| /*Offset=*/CharUnits::fromQuantity(NullValue), |
| APValue::NoLValuePath{}, /*IsNullPtr=*/true); |
| } |
| |
| CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T); |
| |
| // Work around floating point types that contain unused padding bytes. This |
| // is really just `long double` on x86, which is the only fundamental type |
| // with padding bytes. |
| if (T->isRealFloatingType()) { |
| const llvm::fltSemantics &Semantics = |
| Info.Ctx.getFloatTypeSemantics(QualType(T, 0)); |
| unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics); |
| assert(NumBits % 8 == 0); |
| CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8); |
| if (NumBytes != SizeOf) |
| SizeOf = NumBytes; |
| } |
| |
| SmallVector<uint8_t, 8> Bytes; |
| if (!Buffer.readObject(Offset, SizeOf, Bytes)) { |
| // If this is std::byte or unsigned char, then its okay to store an |
| // indeterminate value. |
| bool IsStdByte = EnumSugar && EnumSugar->isStdByteType(); |
| bool IsUChar = |
| !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) || |
| T->isSpecificBuiltinType(BuiltinType::Char_U)); |
| if (!IsStdByte && !IsUChar) { |
| QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0); |
| Info.FFDiag(BCE->getExprLoc(), |
| diag::note_constexpr_bit_cast_indet_dest) |
| << DisplayType << Info.Ctx.getLangOpts().CharIsSigned; |
| return std::nullopt; |
| } |
| |
| return APValue::IndeterminateValue(); |
| } |
| |
| APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true); |
| llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size()); |
| |
| if (T->isIntegralOrEnumerationType()) { |
| Val.setIsSigned(T->isSignedIntegerOrEnumerationType()); |
| |
| unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0)); |
| if (IntWidth != Val.getBitWidth()) { |
| APSInt Truncated = Val.trunc(IntWidth); |
| if (Truncated.extend(Val.getBitWidth()) != Val) |
| return unrepresentableValue(QualType(T, 0), Val); |
| Val = Truncated; |
| } |
| |
| return APValue(Val); |
| } |
| |
| if (T->isRealFloatingType()) { |
| const llvm::fltSemantics &Semantics = |
| Info.Ctx.getFloatTypeSemantics(QualType(T, 0)); |
| return APValue(APFloat(Semantics, Val)); |
| } |
| |
| return unsupportedType(QualType(T, 0)); |
| } |
| |
| std::optional<APValue> visit(const RecordType *RTy, CharUnits Offset) { |
| const RecordDecl *RD = RTy->getAsRecordDecl(); |
| const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
| |
| unsigned NumBases = 0; |
| if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) |
| NumBases = CXXRD->getNumBases(); |
| |
| APValue ResultVal(APValue::UninitStruct(), NumBases, |
| std::distance(RD->field_begin(), RD->field_end())); |
| |
| // Visit the base classes. |
| if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
| for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { |
| const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; |
| CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); |
| |
| std::optional<APValue> SubObj = visitType( |
| BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset); |
| if (!SubObj) |
| return std::nullopt; |
| ResultVal.getStructBase(I) = *SubObj; |
| } |
| } |
| |
| // Visit the fields. |
| unsigned FieldIdx = 0; |
| for (FieldDecl *FD : RD->fields()) { |
| // FIXME: We don't currently support bit-fields. A lot of the logic for |
| // this is in CodeGen, so we need to factor it around. |
| if (FD->isBitField()) { |
| Info.FFDiag(BCE->getBeginLoc(), |
| diag::note_constexpr_bit_cast_unsupported_bitfield); |
| return std::nullopt; |
| } |
| |
| uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx); |
| assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0); |
| |
| CharUnits FieldOffset = |
| CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) + |
| Offset; |
| QualType FieldTy = FD->getType(); |
| std::optional<APValue> SubObj = visitType(FieldTy, FieldOffset); |
| if (!SubObj) |
| return std::nullopt; |
| ResultVal.getStructField(FieldIdx) = *SubObj; |
| ++FieldIdx; |
| } |
| |
| return ResultVal; |
| } |
| |
| std::optional<APValue> visit(const EnumType *Ty, CharUnits Offset) { |
| QualType RepresentationType = Ty->getDecl()->getIntegerType(); |
| assert(!RepresentationType.isNull() && |
| "enum forward decl should be caught by Sema"); |
| const auto *AsBuiltin = |
| RepresentationType.getCanonicalType()->castAs<BuiltinType>(); |
| // Recurse into the underlying type. Treat std::byte transparently as |
| // unsigned char. |
| return visit(AsBuiltin, Offset, /*EnumTy=*/Ty); |
| } |
| |
| std::optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) { |
| size_t Size = Ty->getLimitedSize(); |
| CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType()); |
| |
| APValue ArrayValue(APValue::UninitArray(), Size, Size); |
| for (size_t I = 0; I != Size; ++I) { |
| std::optional<APValue> ElementValue = |
| visitType(Ty->getElementType(), Offset + I * ElementWidth); |
| if (!ElementValue) |
| return std::nullopt; |
| ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue); |
| } |
| |
| return ArrayValue; |
| } |
| |
| std::optional<APValue> visit(const VectorType *VTy, CharUnits Offset) { |
| QualType EltTy = VTy->getElementType(); |
| unsigned NElts = VTy->getNumElements(); |
| unsigned EltSize = |
| VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(EltTy); |
| |
| if ((NElts * EltSize) % Info.Ctx.getCharWidth() != 0) { |
| // The vector's size in bits is not a multiple of the target's byte size, |
| // so its layout is unspecified. For now, we'll simply treat these cases |
| // as unsupported (this should only be possible with OpenCL bool vectors |
| // whose element count isn't a multiple of the byte size). |
| Info.FFDiag(BCE->getBeginLoc(), |
| diag::note_constexpr_bit_cast_invalid_vector) |
| << QualType(VTy, 0) << EltSize << NElts << Info.Ctx.getCharWidth(); |
| return std::nullopt; |
| } |
| |
| if (EltTy->isRealFloatingType() && &Info.Ctx.getFloatTypeSemantics(EltTy) == |
| &APFloat::x87DoubleExtended()) { |
| // The layout for x86_fp80 vectors seems to be handled very inconsistently |
| // by both clang and LLVM, so for now we won't allow bit_casts involving |
| // it in a constexpr context. |
| Info.FFDiag(BCE->getBeginLoc(), |
| diag::note_constexpr_bit_cast_unsupported_type) |
| << EltTy; |
| return std::nullopt; |
| } |
| |
| SmallVector<APValue, 4> Elts; |
| Elts.reserve(NElts); |
| if (VTy->isExtVectorBoolType()) { |
| // Special handling for OpenCL bool vectors: |
| // Since these vectors are stored as packed bits, but we can't read |
| // individual bits from the BitCastBuffer, we'll buffer all of the |
| // elements together into an appropriately sized APInt and write them all |
| // out at once. Because we don't accept vectors where NElts * EltSize |
| // isn't a multiple of the char size, there will be no padding space, so |
| // we don't have to worry about reading any padding data which didn't |
| // actually need to be accessed. |
| bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); |
| |
| SmallVector<uint8_t, 8> Bytes; |
| Bytes.reserve(NElts / 8); |
| if (!Buffer.readObject(Offset, CharUnits::fromQuantity(NElts / 8), Bytes)) |
| return std::nullopt; |
| |
| APSInt SValInt(NElts, true); |
| llvm::LoadIntFromMemory(SValInt, &*Bytes.begin(), Bytes.size()); |
| |
| for (unsigned I = 0; I < NElts; ++I) { |
| llvm::APInt Elt = |
| SValInt.extractBits(1, (BigEndian ? NElts - I - 1 : I) * EltSize); |
| Elts.emplace_back( |
| APSInt(std::move(Elt), !EltTy->isSignedIntegerType())); |
| } |
| } else { |
| // Iterate over each of the elements and read them from the buffer at |
| // the appropriate offset. |
| CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(EltTy); |
| for (unsigned I = 0; I < NElts; ++I) { |
| std::optional<APValue> EltValue = |
| visitType(EltTy, Offset + I * EltSizeChars); |
| if (!EltValue) |
| return std::nullopt; |
| Elts.push_back(std::move(*EltValue)); |
| } |
| } |
| |
| return APValue(Elts.data(), Elts.size()); |
| } |
| |
| std::optional<APValue> visit(const Type *Ty, CharUnits Offset) { |
| return unsupportedType(QualType(Ty, 0)); |
| } |
| |
| std::optional<APValue> visitType(QualType Ty, CharUnits Offset) { |
| QualType Can = Ty.getCanonicalType(); |
| |
| switch (Can->getTypeClass()) { |
| #define TYPE(Class, Base) \ |
| case Type::Class: \ |
| return visit(cast<Class##Type>(Can.getTypePtr()), Offset); |
| #define ABSTRACT_TYPE(Class, Base) |
| #define NON_CANONICAL_TYPE(Class, Base) \ |
| case Type::Class: \ |
| llvm_unreachable("non-canonical type should be impossible!"); |
| #define DEPENDENT_TYPE(Class, Base) \ |
| case Type::Class: \ |
| llvm_unreachable( \ |
| "dependent types aren't supported in the constant evaluator!"); |
| #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \ |
| case Type::Class: \ |
| llvm_unreachable("either dependent or not canonical!"); |
| #include "clang/AST/TypeNodes.inc" |
| } |
| llvm_unreachable("Unhandled Type::TypeClass"); |
| } |
| |
| public: |
| // Pull out a full value of type DstType. |
| static std::optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer, |
| const CastExpr *BCE) { |
| BufferToAPValueConverter Converter(Info, Buffer, BCE); |
| return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0)); |
| } |
| }; |
| |
| static bool checkBitCastConstexprEligibilityType(SourceLocation Loc, |
| QualType Ty, EvalInfo *Info, |
| const ASTContext &Ctx, |
| bool CheckingDest) { |
| Ty = Ty.getCanonicalType(); |
| |
| auto diag = [&](int Reason) { |
| if (Info) |
| Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type) |
| << CheckingDest << (Reason == 4) << Reason; |
| return false; |
| }; |
| auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) { |
| if (Info) |
| Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype) |
| << NoteTy << Construct << Ty; |
| return false; |
| }; |
| |
| if (Ty->isUnionType()) |
| return diag(0); |
| if (Ty->isPointerType()) |
| return diag(1); |
| if (Ty->isMemberPointerType()) |
| return diag(2); |
| if (Ty.isVolatileQualified()) |
| return diag(3); |
| |
| if (RecordDecl *Record = Ty->getAsRecordDecl()) { |
| if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) { |
| for (CXXBaseSpecifier &BS : CXXRD->bases()) |
| if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx, |
| CheckingDest)) |
| return note(1, BS.getType(), BS.getBeginLoc()); |
| } |
| for (FieldDecl *FD : Record->fields()) { |
| if (FD->getType()->isReferenceType()) |
| return diag(4); |
| if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx, |
| CheckingDest)) |
| return note(0, FD->getType(), FD->getBeginLoc()); |
| } |
| } |
| |
| if (Ty->isArrayType() && |
| !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty), |
| Info, Ctx, CheckingDest)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool checkBitCastConstexprEligibility(EvalInfo *Info, |
| const ASTContext &Ctx, |
| const CastExpr *BCE) { |
| bool DestOK = checkBitCastConstexprEligibilityType( |
| BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true); |
| bool SourceOK = DestOK && checkBitCastConstexprEligibilityType( |
| BCE->getBeginLoc(), |
| BCE->getSubExpr()->getType(), Info, Ctx, false); |
| return SourceOK; |
| } |
| |
| static bool handleRValueToRValueBitCast(EvalInfo &Info, APValue &DestValue, |
| const APValue &SourceRValue, |
| const CastExpr *BCE) { |
| assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && |
| "no host or target supports non 8-bit chars"); |
| |
| if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE)) |
| return false; |
| |
| // Read out SourceValue into a char buffer. |
| std::optional<BitCastBuffer> Buffer = |
| APValueToBufferConverter::convert(Info, SourceRValue, BCE); |
| if (!Buffer) |
| return false; |
| |
| // Write out the buffer into a new APValue. |
| std::optional<APValue> MaybeDestValue = |
| BufferToAPValueConverter::convert(Info, *Buffer, BCE); |
| if (!MaybeDestValue) |
| return false; |
| |
| DestValue = std::move(*MaybeDestValue); |
| return true; |
| } |
| |
| static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue, |
| APValue &SourceValue, |
| const CastExpr *BCE) { |
| assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && |
| "no host or target supports non 8-bit chars"); |
| assert(SourceValue.isLValue() && |
| "LValueToRValueBitcast requires an lvalue operand!"); |
| |
| LValue SourceLValue; |
| APValue SourceRValue; |
| SourceLValue.setFrom(Info.Ctx, SourceValue); |
| if (!handleLValueToRValueConversion( |
| Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue, |
| SourceRValue, /*WantObjectRepresentation=*/true)) |
| return false; |
| |
| return handleRValueToRValueBitCast(Info, DestValue, SourceRValue, BCE); |
| } |
| |
| template <class Derived> |
| class ExprEvaluatorBase |
| : public ConstStmtVisitor<Derived, bool> { |
| private: |
| Derived &getDerived() { return static_cast<Derived&>(*this); } |
| bool DerivedSuccess(const APValue &V, const Expr *E) { |
| return getDerived().Success(V, E); |
| } |
| bool DerivedZeroInitialization(const Expr *E) { |
| return getDerived().ZeroInitialization(E); |
| } |
| |
| // Check whether a conditional operator with a non-constant condition is a |
| // potential constant expression. If neither arm is a potential constant |
| // expression, then the conditional operator is not either. |
| template<typename ConditionalOperator> |
| void CheckPotentialConstantConditional(const ConditionalOperator *E) { |
| assert(Info.checkingPotentialConstantExpression()); |
| |
| // Speculatively evaluate both arms. |
| SmallVector<PartialDiagnosticAt, 8> Diag; |
| { |
| SpeculativeEvaluationRAII Speculate(Info, &Diag); |
| StmtVisitorTy::Visit(E->getFalseExpr()); |
| if (Diag.empty()) |
| return; |
| } |
| |
| { |
| SpeculativeEvaluationRAII Speculate(Info, &Diag); |
| Diag.clear(); |
| StmtVisitorTy::Visit(E->getTrueExpr()); |
| if (Diag.empty()) |
| return; |
| } |
| |
| Error(E, diag::note_constexpr_conditional_never_const); |
| } |
| |
| |
| template<typename ConditionalOperator> |
| bool HandleConditionalOperator(const ConditionalOperator *E) { |
| bool BoolResult; |
| if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) { |
| if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) { |
| CheckPotentialConstantConditional(E); |
| return false; |
| } |
| if (Info.noteFailure()) { |
| StmtVisitorTy::Visit(E->getTrueExpr()); |
| StmtVisitorTy::Visit(E->getFalseExpr()); |
| } |
| return false; |
| } |
| |
| Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); |
| return StmtVisitorTy::Visit(EvalExpr); |
| } |
| |
| protected: |
| EvalInfo &Info; |
| typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy; |
| typedef ExprEvaluatorBase ExprEvaluatorBaseTy; |
| |
| OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { |
| return Info.CCEDiag(E, D); |
| } |
| |
| bool ZeroInitialization(const Expr *E) { return Error(E); } |
| |
| bool IsConstantEvaluatedBuiltinCall(const CallExpr *E) { |
| unsigned BuiltinOp = E->getBuiltinCallee(); |
| return BuiltinOp != 0 && |
| Info.Ctx.BuiltinInfo.isConstantEvaluated(BuiltinOp); |
| } |
| |
| public: |
| ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {} |
| |
| EvalInfo &getEvalInfo() { return Info; } |
| |
| /// Report an evaluation error. This should only be called when an error is |
| /// first discovered. When propagating an error, just return false. |
| bool Error(const Expr *E, diag::kind D) { |
| Info.FFDiag(E, D) << E->getSourceRange(); |
| return false; |
| } |
| bool Error(const Expr *E) { |
| return Error(E, diag::note_invalid_subexpr_in_const_expr); |
| } |
| |
| bool VisitStmt(const Stmt *) { |
| llvm_unreachable("Expression evaluator should not be called on stmts"); |
| } |
| bool VisitExpr(const Expr *E) { |
| return Error(E); |
| } |
| |
| bool VisitEmbedExpr(const EmbedExpr *E) { |
| const auto It = E->begin(); |
| return StmtVisitorTy::Visit(*It); |
| } |
| |
| bool VisitPredefinedExpr(const PredefinedExpr *E) { |
| return StmtVisitorTy::Visit(E->getFunctionName()); |
| } |
| bool VisitConstantExpr(const ConstantExpr *E) { |
| if (E->hasAPValueResult()) |
| return DerivedSuccess(E->getAPValueResult(), E); |
| |
| return StmtVisitorTy::Visit(E->getSubExpr()); |
| } |
| |
| bool VisitParenExpr(const ParenExpr *E) |
| { return StmtVisitorTy::Visit(E->getSubExpr()); } |
| bool VisitUnaryExtension(const UnaryOperator *E) |
| { return StmtVisitorTy::Visit(E->getSubExpr()); } |
| bool VisitUnaryPlus(const UnaryOperator *E) |
| { return StmtVisitorTy::Visit(E->getSubExpr()); } |
| bool VisitChooseExpr(const ChooseExpr *E) |
| { return StmtVisitorTy::Visit(E->getChosenSubExpr()); } |
| bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) |
| { return StmtVisitorTy::Visit(E->getResultExpr()); } |
| bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E) |
| { return StmtVisitorTy::Visit(E->getReplacement()); } |
| bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { |
| TempVersionRAII RAII(*Info.CurrentCall); |
| SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); |
| return StmtVisitorTy::Visit(E->getExpr()); |
| } |
| bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { |
| TempVersionRAII RAII(*Info.CurrentCall); |
| // The initializer may not have been parsed yet, or might be erroneous. |
| if (!E->getExpr()) |
| return Error(E); |
| SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); |
| return StmtVisitorTy::Visit(E->getExpr()); |
| } |
| |
| bool VisitExprWithCleanups(const ExprWithCleanups *E) { |
| FullExpressionRAII Scope(Info); |
| return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy(); |
| } |
| |
| // Temporaries are registered when created, so we don't care about |
| // CXXBindTemporaryExpr. |
| bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { |
| return StmtVisitorTy::Visit(E->getSubExpr()); |
| } |
| |
| bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) { |
| CCEDiag(E, diag::note_constexpr_invalid_cast) << 0; |
| return static_cast<Derived*>(this)->VisitCastExpr(E); |
| } |
| bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) { |
| if (!Info.Ctx.getLangOpts().CPlusPlus20) |
| CCEDiag(E, diag::note_constexpr_invalid_cast) << 1; |
| return static_cast<Derived*>(this)->VisitCastExpr(E); |
| } |
| bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) { |
| return static_cast<Derived*>(this)->VisitCastExpr(E); |
| } |
| |
| bool VisitBinaryOperator(const BinaryOperator *E) { |
| switch (E->getOpcode()) { |
| default: |
| return Error(E); |
| |
| case BO_Comma: |
| VisitIgnoredValue(E->getLHS()); |
| return StmtVisitorTy::Visit(E->getRHS()); |
| |
| case BO_PtrMemD: |
| case BO_PtrMemI: { |
| LValue Obj; |
| if (!HandleMemberPointerAccess(Info, E, Obj)) |
| return false; |
| APValue Result; |
| if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result)) |
| return false; |
| return DerivedSuccess(Result, E); |
| } |
| } |
| } |
| |
| bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) { |
| return StmtVisitorTy::Visit(E->getSemanticForm()); |
| } |
| |
| bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) { |
| // Evaluate and cache the common expression. We treat it as a temporary, |
| // even though it's not quite the same thing. |
| LValue CommonLV; |
| if (!Evaluate(Info.CurrentCall->createTemporary( |
| E->getOpaqueValue(), |
| getStorageType(Info.Ctx, E->getOpaqueValue()), |
| ScopeKind::FullExpression, CommonLV), |
| Info, E->getCommon())) |
| return false; |
| |
| return HandleConditionalOperator(E); |
| } |
| |
| bool VisitConditionalOperator(const ConditionalOperator *E) { |
| bool IsBcpCall = false; |
| // If the condition (ignoring parens) is a __builtin_constant_p call, |
| // the result is a constant expression if it can be folded without |
| // side-effects. This is an important GNU extension. See GCC PR38377 |
| // for discussion. |
| if (const CallExpr *CallCE = |
| dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts())) |
| if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) |
| IsBcpCall = true; |
| |
| // Always assume __builtin_constant_p(...) ? ... : ... is a potential |
| // constant expression; we can't check whether it's potentially foldable. |
| // FIXME: We should instead treat __builtin_constant_p as non-constant if |
| // it would return 'false' in this mode. |
| if (Info.checkingPotentialConstantExpression() && IsBcpCall) |
| return false; |
| |
| FoldConstant Fold(Info, IsBcpCall); |
| if (!HandleConditionalOperator(E)) { |
| Fold.keepDiagnostics(); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) { |
| if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E); |
| Value && !Value->isAbsent()) |
| return DerivedSuccess(*Value, E); |
| |
| const Expr *Source = E->getSourceExpr(); |
| if (!Source) |
| return Error(E); |
| if (Source == E) { |
| assert(0 && "OpaqueValueExpr recursively refers to itself"); |
| return Error(E); |
| } |
| return StmtVisitorTy::Visit(Source); |
| } |
| |
| bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) { |
| for (const Expr *SemE : E->semantics()) { |
| if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { |
| // FIXME: We can't handle the case where an OpaqueValueExpr is also the |
| // result expression: there could be two different LValues that would |
| // refer to the same object in that case, and we can't model that. |
| if (SemE == E->getResultExpr()) |
| return Error(E); |
| |
| // Unique OVEs get evaluated if and when we encounter them when |
| // emitting the rest of the semantic form, rather than eagerly. |
| if (OVE->isUnique()) |
| continue; |
| |
| LValue LV; |
| if (!Evaluate(Info.CurrentCall->createTemporary( |
| OVE, getStorageType(Info.Ctx, OVE), |
| ScopeKind::FullExpression, LV), |
| Info, OVE->getSourceExpr())) |
| return false; |
| } else if (SemE == E->getResultExpr()) { |
| if (!StmtVisitorTy::Visit(SemE)) |
| return false; |
| } else { |
| if (!EvaluateIgnoredValue(Info, SemE)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool VisitCallExpr(const CallExpr *E) { |
| APValue Result; |
| if (!handleCallExpr(E, Result, nullptr)) |
| return false; |
| return DerivedSuccess(Result, E); |
| } |
| |
| bool handleCallExpr(const CallExpr *E, APValue &Result, |
| const LValue *ResultSlot) { |
| CallScopeRAII CallScope(Info); |
| |
| const Expr *Callee = E->getCallee()->IgnoreParens(); |
| QualType CalleeType = Callee->getType(); |
| |
| const FunctionDecl *FD = nullptr; |
| LValue *This = nullptr, ThisVal; |
| auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs()); |
| bool HasQualifier = false; |
| |
| CallRef Call; |
| |
| // Extract function decl and 'this' pointer from the callee. |
| if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) { |
| const CXXMethodDecl *Member = nullptr; |
| if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) { |
| // Explicit bound member calls, such as x.f() or p->g(); |
| if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal)) |
| return false; |
| Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl()); |
| if (!Member) |
| return Error(Callee); |
| This = &ThisVal; |
| HasQualifier = ME->hasQualifier(); |
| } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) { |
| // Indirect bound member calls ('.*' or '->*'). |
| const ValueDecl *D = |
| HandleMemberPointerAccess(Info, BE, ThisVal, false); |
| if (!D) |
| return false; |
| Member = dyn_cast<CXXMethodDecl>(D); |
| if (!Member) |
| return Error(Callee); |
| This = &ThisVal; |
| } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) { |
| if (!Info.getLangOpts().CPlusPlus20) |
| Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor); |
| return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) && |
| HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType()); |
| } else |
| return Error(Callee); |
| FD = Member; |
| } else if (CalleeType->isFunctionPointerType()) { |
| LValue CalleeLV; |
| if (!EvaluatePointer(Callee, CalleeLV, Info)) |
| return false; |
| |
| if (!CalleeLV.getLValueOffset().isZero()) |
| return Error(Callee); |
| if (CalleeLV.isNullPointer()) { |
| Info.FFDiag(Callee, diag::note_constexpr_null_callee) |
| << const_cast<Expr *>(Callee); |
| return false; |
| } |
| FD = dyn_cast_or_null<FunctionDecl>( |
| CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>()); |
| if (!FD) |
| return Error(Callee); |
| // Don't call function pointers which have been cast to some other type. |
| // Per DR (no number yet), the caller and callee can differ in noexcept. |
| if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec( |
| CalleeType->getPointeeType(), FD->getType())) { |
| return Error(E); |
| } |
| |
| // For an (overloaded) assignment expression, evaluate the RHS before the |
| // LHS. |
| auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); |
| if (OCE && OCE->isAssignmentOp()) { |
| assert(Args.size() == 2 && "wrong number of arguments in assignment"); |
| Call = Info.CurrentCall->createCall(FD); |
| bool HasThis = false; |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) |
| HasThis = MD->isImplicitObjectMemberFunction(); |
| if (!EvaluateArgs(HasThis ? Args.slice(1) : Args, Call, Info, FD, |
| /*RightToLeft=*/true)) |
| return false; |
| } |
| |
| // Overloaded operator calls to member functions are represented as normal |
| // calls with '*this' as the first argument. |
| const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); |
| if (MD && |
| (MD->isImplicitObjectMemberFunction() || (OCE && MD->isStatic()))) { |
| // FIXME: When selecting an implicit conversion for an overloaded |
| // operator delete, we sometimes try to evaluate calls to conversion |
| // operators without a 'this' parameter! |
| if (Args.empty()) |
| return Error(E); |
| |
| if (!EvaluateObjectArgument(Info, Args[0], ThisVal)) |
| return false; |
| |
| // If we are calling a static operator, the 'this' argument needs to be |
| // ignored after being evaluated. |
| if (MD->isInstance()) |
| This = &ThisVal; |
| |
| // If this is syntactically a simple assignment using a trivial |
| // assignment operator, start the lifetimes of union members as needed, |
| // per C++20 [class.union]5. |
| if (Info.getLangOpts().CPlusPlus20 && OCE && |
| OCE->getOperator() == OO_Equal && MD->isTrivial() && |
| !MaybeHandleUnionActiveMemberChange(Info, Args[0], ThisVal)) |
| return false; |
| |
| Args = Args.slice(1); |
| } else if (MD && MD->isLambdaStaticInvoker()) { |
| // Map the static invoker for the lambda back to the call operator. |
| // Conveniently, we don't have to slice out the 'this' argument (as is |
| // being done for the non-static case), since a static member function |
| // doesn't have an implicit argument passed in. |
| const CXXRecordDecl *ClosureClass = MD->getParent(); |
| assert( |
| ClosureClass->captures_begin() == ClosureClass->captures_end() && |
| "Number of captures must be zero for conversion to function-ptr"); |
| |
| const CXXMethodDecl *LambdaCallOp = |
| ClosureClass->getLambdaCallOperator(); |
| |
| // Set 'FD', the function that will be called below, to the call |
| // operator. If the closure object represents a generic lambda, find |
| // the corresponding specialization of the call operator. |
| |
| if (ClosureClass->isGenericLambda()) { |
| assert(MD->isFunctionTemplateSpecialization() && |
| "A generic lambda's static-invoker function must be a " |
| "template specialization"); |
| const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); |
| FunctionTemplateDecl *CallOpTemplate = |
| LambdaCallOp->getDescribedFunctionTemplate(); |
| void *InsertPos = nullptr; |
| FunctionDecl *CorrespondingCallOpSpecialization = |
| CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); |
| assert(CorrespondingCallOpSpecialization && |
| "We must always have a function call operator specialization " |
| "that corresponds to our static invoker specialization"); |
| assert(isa<CXXMethodDecl>(CorrespondingCallOpSpecialization)); |
| FD = CorrespondingCallOpSpecialization; |
| } else |
| FD = LambdaCallOp; |
| } else if (FD->isReplaceableGlobalAllocationFunction()) { |
| if (FD->getDeclName().getCXXOverloadedOperator() == OO_New || |
| FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { |
| LValue Ptr; |
| if (!HandleOperatorNewCall(Info, E, Ptr)) |
| return false; |
| Ptr.moveInto(Result); |
| return CallScope.destroy(); |
| } else { |
| return HandleOperatorDeleteCall(Info, E) && CallScope.destroy(); |
| } |
| } |
| } else |
| return Error(E); |
| |
| // Evaluate the arguments now if we've not already done so. |
| if (!Call) { |
| Call = Info.CurrentCall->createCall(FD); |
| if (!EvaluateArgs(Args, Call, Info, FD)) |
| return false; |
| } |
| |
| SmallVector<QualType, 4> CovariantAdjustmentPath; |
| if (This) { |
| auto *NamedMember = dyn_cast<CXXMethodDecl>(FD); |
| if (NamedMember && NamedMember->isVirtual() && !HasQualifier) { |
| // Perform virtual dispatch, if necessary. |
| FD = HandleVirtualDispatch(Info, E, *This, NamedMember, |
| CovariantAdjustmentPath); |
| if (!FD) |
| return false; |
| } else if (NamedMember && NamedMember->isImplicitObjectMemberFunction()) { |
| // Check that the 'this' pointer points to an object of the right type. |
| // FIXME: If this is an assignment operator call, we may need to change |
| // the active union member before we check this. |
| if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember)) |
| return false; |
| } |
| } |
| |
| // Destructor calls are different enough that they have their own codepath. |
| if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) { |
| assert(This && "no 'this' pointer for destructor call"); |
| return HandleDestruction(Info, E, *This, |
| Info.Ctx.getRecordType(DD->getParent())) && |
| CallScope.destroy(); |
| } |
| |
| const FunctionDecl *Definition = nullptr; |
| Stmt *Body = FD->getBody(Definition); |
| |
| if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) || |
| !HandleFunctionCall(E->getExprLoc(), Definition, This, E, Args, Call, |
| Body, Info, Result, ResultSlot)) |
| return false; |
| |
| if (!CovariantAdjustmentPath.empty() && |
| !HandleCovariantReturnAdjustment(Info, E, Result, |
| CovariantAdjustmentPath)) |
| return false; |
| |
| return CallScope.destroy(); |
| } |
| |
| bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { |
| return StmtVisitorTy::Visit(E->getInitializer()); |
| } |
| bool VisitInitListExpr(const InitListExpr *E) { |
| if (E->getNumInits() == 0) |
| return DerivedZeroInitialization(E); |
| if (E->getNumInits() == 1) |
| return StmtVisitorTy::Visit(E->getInit(0)); |
| return Error(E); |
| } |
| bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { |
| return DerivedZeroInitialization(E); |
| } |
| bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { |
| return DerivedZeroInitialization(E); |
| } |
| bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { |
| return DerivedZeroInitialization(E); |
| } |
| |
| /// A member expression where the object is a prvalue is itself a prvalue. |
| bool VisitMemberExpr(const MemberExpr *E) { |
| assert(!Info.Ctx.getLangOpts().CPlusPlus11 && |
| "missing temporary materialization conversion"); |
| assert(!E->isArrow() && "missing call to bound member function?"); |
| |
| APValue Val; |
| if (!Evaluate(Val, Info, E->getBase())) |
| return false; |
| |
| QualType BaseTy = E->getBase()->getType(); |
| |
| const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl()); |
| if (!FD) return Error(E); |
| assert(!FD->getType()->isReferenceType() && "prvalue reference?"); |
| assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == |
| FD->getParent()->getCanonicalDecl() && "record / field mismatch"); |
| |
| // Note: there is no lvalue base here. But this case should only ever |
| // happen in C or in C++98, where we cannot be evaluating a constexpr |
| // constructor, which is the only case the base matters. |
| CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy); |
| SubobjectDesignator Designator(BaseTy); |
| Designator.addDeclUnchecked(FD); |
| |
| APValue Result; |
| return extractSubobject(Info, E, Obj, Designator, Result) && |
| DerivedSuccess(Result, E); |
| } |
| |
| bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) { |
| APValue Val; |
| if (!Evaluate(Val, Info, E->getBase())) |
| return false; |
| |
| if (Val.isVector()) { |
| SmallVector<uint32_t, 4> Indices; |
| E->getEncodedElementAccess(Indices); |
| if (Indices.size() == 1) { |
| // Return scalar. |
| return DerivedSuccess(Val.getVectorElt(Indices[0]), E); |
| } else { |
| // Construct new APValue vector. |
| SmallVector<APValue, 4> Elts; |
| for (unsigned I = 0; I < Indices.size(); ++I) { |
| Elts.push_back(Val.getVectorElt(Indices[I])); |
| } |
| APValue VecResult(Elts.data(), Indices.size()); |
| return DerivedSuccess(VecResult, E); |
| } |
| } |
| |
| return false; |
| } |
| |
| bool VisitCastExpr(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| default: |
| break; |
| |
| case CK_AtomicToNonAtomic: { |
| APValue AtomicVal; |
| // This does not need to be done in place even for class/array types: |
| // atomic-to-non-atomic conversion implies copying the object |
| // representation. |
| if (!Evaluate(AtomicVal, Info, E->getSubExpr())) |
| return false; |
| return DerivedSuccess(AtomicVal, E); |
| } |
| |
| case CK_NoOp: |
| case CK_UserDefinedConversion: |
| return StmtVisitorTy::Visit(E->getSubExpr()); |
| |
| case CK_LValueToRValue: { |
| LValue LVal; |
| if (!EvaluateLValue(E->getSubExpr(), LVal, Info)) |
| return false; |
| APValue RVal; |
| // Note, we use the subexpression's type in order to retain cv-qualifiers. |
| if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), |
| LVal, RVal)) |
| return false; |
| return DerivedSuccess(RVal, E); |
| } |
| case CK_LValueToRValueBitCast: { |
| APValue DestValue, SourceValue; |
| if (!Evaluate(SourceValue, Info, E->getSubExpr())) |
| return false; |
| if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E)) |
| return false; |
| return DerivedSuccess(DestValue, E); |
| } |
| |
| case CK_AddressSpaceConversion: { |
| APValue Value; |
| if (!Evaluate(Value, Info, E->getSubExpr())) |
| return false; |
| return DerivedSuccess(Value, E); |
| } |
| } |
| |
| return Error(E); |
| } |
| |
| bool VisitUnaryPostInc(const UnaryOperator *UO) { |
| return VisitUnaryPostIncDec(UO); |
| } |
| bool VisitUnaryPostDec(const UnaryOperator *UO) { |
| return VisitUnaryPostIncDec(UO); |
| } |
| bool VisitUnaryPostIncDec(const UnaryOperator *UO) { |
| if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) |
| return Error(UO); |
| |
| LValue LVal; |
| if (!EvaluateLValue(UO->getSubExpr(), LVal, Info)) |
| return false; |
| APValue RVal; |
| if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(), |
| UO->isIncrementOp(), &RVal)) |
| return false; |
| return DerivedSuccess(RVal, UO); |
| } |
| |
| bool VisitStmtExpr(const StmtExpr *E) { |
| // We will have checked the full-expressions inside the statement expression |
| // when they were completed, and don't need to check them again now. |
| llvm::SaveAndRestore NotCheckingForUB(Info.CheckingForUndefinedBehavior, |
| false); |
| |
| const CompoundStmt *CS = E->getSubStmt(); |
| if (CS->body_empty()) |
| return true; |
| |
| BlockScopeRAII Scope(Info); |
| for (CompoundStmt::const_body_iterator BI = CS->body_begin(), |
| BE = CS->body_end(); |
| /**/; ++BI) { |
| if (BI + 1 == BE) { |
| const Expr *FinalExpr = dyn_cast<Expr>(*BI); |
| if (!FinalExpr) { |
| Info.FFDiag((*BI)->getBeginLoc(), |
| diag::note_constexpr_stmt_expr_unsupported); |
| return false; |
| } |
| return this->Visit(FinalExpr) && Scope.destroy(); |
| } |
| |
| APValue ReturnValue; |
| StmtResult Result = { ReturnValue, nullptr }; |
| EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI); |
| if (ESR != ESR_Succeeded) { |
| // FIXME: If the statement-expression terminated due to 'return', |
| // 'break', or 'continue', it would be nice to propagate that to |
| // the outer statement evaluation rather than bailing out. |
| if (ESR != ESR_Failed) |
| Info.FFDiag((*BI)->getBeginLoc(), |
| diag::note_constexpr_stmt_expr_unsupported); |
| return false; |
| } |
| } |
| |
| llvm_unreachable("Return from function from the loop above."); |
| } |
| |
| bool VisitPackIndexingExpr(const PackIndexingExpr *E) { |
| return StmtVisitorTy::Visit(E->getSelectedExpr()); |
| } |
| |
| /// Visit a value which is evaluated, but whose value is ignored. |
| void VisitIgnoredValue(const Expr *E) { |
| EvaluateIgnoredValue(Info, E); |
| } |
| |
| /// Potentially visit a MemberExpr's base expression. |
| void VisitIgnoredBaseExpression(const Expr *E) { |
| // While MSVC doesn't evaluate the base expression, it does diagnose the |
| // presence of side-effecting behavior. |
| if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx)) |
| return; |
| VisitIgnoredValue(E); |
| } |
| }; |
| |
| } // namespace |
| |
| //===----------------------------------------------------------------------===// |
| // Common base class for lvalue and temporary evaluation. |
| //===----------------------------------------------------------------------===// |
| namespace { |
| template<class Derived> |
| class LValueExprEvaluatorBase |
| : public ExprEvaluatorBase<Derived> { |
| protected: |
| LValue &Result; |
| bool InvalidBaseOK; |
| typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy; |
| typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy; |
| |
| bool Success(APValue::LValueBase B) { |
| Result.set(B); |
| return true; |
| } |
| |
| bool evaluatePointer(const Expr *E, LValue &Result) { |
| return EvaluatePointer(E, Result, this->Info, InvalidBaseOK); |
| } |
| |
| public: |
| LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) |
| : ExprEvaluatorBaseTy(Info), Result(Result), |
| InvalidBaseOK(InvalidBaseOK) {} |
| |
| bool Success(const APValue &V, const Expr *E) { |
| Result.setFrom(this->Info.Ctx, V); |
| return true; |
| } |
| |
| bool VisitMemberExpr(const MemberExpr *E) { |
| // Handle non-static data members. |
| QualType BaseTy; |
| bool EvalOK; |
| if (E->isArrow()) { |
| EvalOK = evaluatePointer(E->getBase(), Result); |
| BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType(); |
| } else if (E->getBase()->isPRValue()) { |
| assert(E->getBase()->getType()->isRecordType()); |
| EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info); |
| BaseTy = E->getBase()->getType(); |
| } else { |
| EvalOK = this->Visit(E->getBase()); |
| BaseTy = E->getBase()->getType(); |
| } |
| if (!EvalOK) { |
| if (!InvalidBaseOK) |
| return false; |
| Result.setInvalid(E); |
| return true; |
| } |
| |
| const ValueDecl *MD = E->getMemberDecl(); |
| if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) { |
| assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == |
| FD->getParent()->getCanonicalDecl() && "record / field mismatch"); |
| (void)BaseTy; |
| if (!HandleLValueMember(this->Info, E, Result, FD)) |
| return false; |
| } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) { |
| if (!HandleLValueIndirectMember(this->Info, E, Result, IFD)) |
| return false; |
| } else |
| return this->Error(E); |
| |
| if (MD->getType()->isReferenceType()) { |
| APValue RefValue; |
| if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result, |
| RefValue)) |
| return false; |
| return Success(RefValue, E); |
| } |
| return true; |
| } |
| |
| bool VisitBinaryOperator(const BinaryOperator *E) { |
| switch (E->getOpcode()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
| |
| case BO_PtrMemD: |
| case BO_PtrMemI: |
| return HandleMemberPointerAccess(this->Info, E, Result); |
| } |
| } |
| |
| bool VisitCastExpr(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: |
| if (!this->Visit(E->getSubExpr())) |
| return false; |
| |
| // Now figure out the necessary offset to add to the base LV to get from |
| // the derived class to the base class. |
| return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(), |
| Result); |
| } |
| } |
| }; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LValue Evaluation |
| // |
| // This is used for evaluating lvalues (in C and C++), xvalues (in C++11), |
| // function designators (in C), decl references to void objects (in C), and |
| // temporaries (if building with -Wno-address-of-temporary). |
| // |
| // LValue evaluation produces values comprising a base expression of one of the |
| // following types: |
| // - Declarations |
| // * VarDecl |
| // * FunctionDecl |
| // - Literals |
| // * CompoundLiteralExpr in C (and in global scope in C++) |
| // * StringLiteral |
| // * PredefinedExpr |
| // * ObjCStringLiteralExpr |
| // * ObjCEncodeExpr |
| // * AddrLabelExpr |
| // * BlockExpr |
| // * CallExpr for a MakeStringConstant builtin |
| // - typeid(T) expressions, as TypeInfoLValues |
| // - Locals and temporaries |
| // * MaterializeTemporaryExpr |
| // * Any Expr, with a CallIndex indicating the function in which the temporary |
| // was evaluated, for cases where the MaterializeTemporaryExpr is missing |
| // from the AST (FIXME). |
| // * A MaterializeTemporaryExpr that has static storage duration, with no |
| // CallIndex, for a lifetime-extended temporary. |
| // * The ConstantExpr that is currently being evaluated during evaluation of an |
| // immediate invocation. |
| // plus an offset in bytes. |
| //===----------------------------------------------------------------------===// |
| namespace { |
| class LValueExprEvaluator |
| : public LValueExprEvaluatorBase<LValueExprEvaluator> { |
| public: |
| LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) : |
| LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {} |
| |
| bool VisitVarDecl(const Expr *E, const VarDecl *VD); |
| bool VisitUnaryPreIncDec(const UnaryOperator *UO); |
| |
| bool VisitCallExpr(const CallExpr *E); |
| bool VisitDeclRefExpr(const DeclRefExpr *E); |
| bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); } |
| bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); |
| bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); |
| bool VisitMemberExpr(const MemberExpr *E); |
| bool VisitStringLiteral(const StringLiteral *E) { |
| return Success(APValue::LValueBase( |
| E, 0, Info.getASTContext().getNextStringLiteralVersion())); |
| } |
| bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); } |
| bool VisitCXXTypeidExpr(const CXXTypeidExpr *E); |
| bool VisitCXXUuidofExpr(const CXXUuidofExpr *E); |
| bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E); |
| bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E); |
| bool VisitUnaryDeref(const UnaryOperator *E); |
| bool VisitUnaryReal(const UnaryOperator *E); |
| bool VisitUnaryImag(const UnaryOperator *E); |
| bool VisitUnaryPreInc(const UnaryOperator *UO) { |
| return VisitUnaryPreIncDec(UO); |
| } |
| bool VisitUnaryPreDec(const UnaryOperator *UO) { |
| return VisitUnaryPreIncDec(UO); |
| } |
| bool VisitBinAssign(const BinaryOperator *BO); |
| bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO); |
| |
| bool VisitCastExpr(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| default: |
| return LValueExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_LValueBitCast: |
| this->CCEDiag(E, diag::note_constexpr_invalid_cast) |
| << 2 << Info.Ctx.getLangOpts().CPlusPlus; |
| if (!Visit(E->getSubExpr())) |
| return false; |
| Result.Designator.setInvalid(); |
| return true; |
| |
| case CK_BaseToDerived: |
| if (!Visit(E->getSubExpr())) |
| return false; |
| return HandleBaseToDerivedCast(Info, E, Result); |
| |
| case CK_Dynamic: |
| if (!Visit(E->getSubExpr())) |
| return false; |
| return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result); |
| } |
| } |
| }; |
| } // end anonymous namespace |
| |
| /// Get an lvalue to a field of a lambda's closure type. |
| static bool HandleLambdaCapture(EvalInfo &Info, const Expr *E, LValue &Result, |
| const CXXMethodDecl *MD, const FieldDecl *FD, |
| bool LValueToRValueConversion) { |
| // Static lambda function call operators can't have captures. We already |
| // diagnosed this, so bail out here. |
| if (MD->isStatic()) { |
| assert(Info.CurrentCall->This == nullptr && |
| "This should not be set for a static call operator"); |
| return false; |
| } |
| |
| // Start with 'Result' referring to the complete closure object... |
| if (MD->isExplicitObjectMemberFunction()) { |
| // Self may be passed by reference or by value. |
| const ParmVarDecl *Self = MD->getParamDecl(0); |
| if (Self->getType()->isReferenceType()) { |
| APValue *RefValue = Info.getParamSlot(Info.CurrentCall->Arguments, Self); |
| Result.setFrom(Info.Ctx, *RefValue); |
| } else { |
| const ParmVarDecl *VD = Info.CurrentCall->Arguments.getOrigParam(Self); |
| CallStackFrame *Frame = |
| Info.getCallFrameAndDepth(Info.CurrentCall->Arguments.CallIndex) |
| .first; |
| unsigned Version = Info.CurrentCall->Arguments.Version; |
| Result.set({VD, Frame->Index, Version}); |
| } |
| } else |
| Result = *Info.CurrentCall->This; |
| |
| // ... then update it to refer to the field of the closure object |
| // that represents the capture. |
| if (!HandleLValueMember(Info, E, Result, FD)) |
| return false; |
| |
| // And if the field is of reference type (or if we captured '*this' by |
| // reference), update 'Result' to refer to what |
| // the field refers to. |
| if (LValueToRValueConversion) { |
| APValue RVal; |
| if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result, RVal)) |
| return false; |
| Result.setFrom(Info.Ctx, RVal); |
| } |
| return true; |
| } |
| |
| /// Evaluate an expression as an lvalue. This can be legitimately called on |
| /// expressions which are not glvalues, in three cases: |
| /// * function designators in C, and |
| /// * "extern void" objects |
| /// * @selector() expressions in Objective-C |
| static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, |
| bool InvalidBaseOK) { |
| assert(!E->isValueDependent()); |
| assert(E->isGLValue() || E->getType()->isFunctionType() || |
| E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E->IgnoreParens())); |
| return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); |
| } |
| |
| bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) { |
| const NamedDecl *D = E->getDecl(); |
| if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl, |
| UnnamedGlobalConstantDecl>(D)) |
| return Success(cast<ValueDecl>(D)); |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
| return VisitVarDecl(E, VD); |
| if (const BindingDecl *BD = dyn_cast<BindingDecl>(D)) |
| return Visit(BD->getBinding()); |
| return Error(E); |
| } |
| |
| |
| bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) { |
| |
| // If we are within a lambda's call operator, check whether the 'VD' referred |
| // to within 'E' actually represents a lambda-capture that maps to a |
| // data-member/field within the closure object, and if so, evaluate to the |
| // field or what the field refers to. |
| if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) && |
| isa<DeclRefExpr>(E) && |
| cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) { |
| // We don't always have a complete capture-map when checking or inferring if |
| // the function call operator meets the requirements of a constexpr function |
| // - but we don't need to evaluate the captures to determine constexprness |
| // (dcl.constexpr C++17). |
| if (Info.checkingPotentialConstantExpression()) |
| return false; |
| |
| if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) { |
| const auto *MD = cast<CXXMethodDecl>(Info.CurrentCall->Callee); |
| return HandleLambdaCapture(Info, E, Result, MD, FD, |
| FD->getType()->isReferenceType()); |
| } |
| } |
| |
| CallStackFrame *Frame = nullptr; |
| unsigned Version = 0; |
| if (VD->hasLocalStorage()) { |
| // Only if a local variable was declared in the function currently being |
| // evaluated, do we expect to be able to find its value in the current |
| // frame. (Otherwise it was likely declared in an enclosing context and |
| // could either have a valid evaluatable value (for e.g. a constexpr |
| // variable) or be ill-formed (and trigger an appropriate evaluation |
| // diagnostic)). |
| CallStackFrame *CurrFrame = Info.CurrentCall; |
| if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) { |
| // Function parameters are stored in some caller's frame. (Usually the |
| // immediate caller, but for an inherited constructor they may be more |
| // distant.) |
| if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) { |
| if (CurrFrame->Arguments) { |
| VD = CurrFrame->Arguments.getOrigParam(PVD); |
| Frame = |
| Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first; |
| Version = CurrFrame->Arguments.Version; |
| } |
| } else { |
| Frame = CurrFrame; |
| Version = CurrFrame->getCurrentTemporaryVersion(VD); |
| } |
| } |
| } |
| |
| if (!VD->getType()->isReferenceType()) { |
| if (Frame) { |
| Result.set({VD, Frame->Index, Version}); |
| return true; |
| } |
| return Success(VD); |
| } |
| |
| if (!Info.getLangOpts().CPlusPlus11) { |
| Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1) |
| << VD << VD->getType(); |
| Info.Note(VD->getLocation(), diag::note_declared_at); |
| } |
| |
| APValue *V; |
| if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V)) |
| return false; |
| if (!V->hasValue()) { |
| // FIXME: Is it possible for V to be indeterminate here? If so, we should |
| // adjust the diagnostic to say that. |
| if (!Info.checkingPotentialConstantExpression()) |
| Info.FFDiag(E, diag::note_constexpr_use_uninit_reference); |
| return false; |
| } |
| return Success(*V, E); |
| } |
| |
| bool LValueExprEvaluator::VisitCallExpr(const CallExpr *E) { |
| if (!IsConstantEvaluatedBuiltinCall(E)) |
| return ExprEvaluatorBaseTy::VisitCallExpr(E); |
| |
| switch (E->getBuiltinCallee()) { |
| default: |
| return false; |
| case Builtin::BIas_const: |
| case Builtin::BIforward: |
| case Builtin::BIforward_like: |
| case Builtin::BImove: |
| case Builtin::BImove_if_noexcept: |
| if (cast<FunctionDecl>(E->getCalleeDecl())->isConstexpr()) |
| return Visit(E->getArg(0)); |
| break; |
| } |
| |
| return ExprEvaluatorBaseTy::VisitCallExpr(E); |
| } |
| |
| bool LValueExprEvaluator::VisitMaterializeTemporaryExpr( |
| const MaterializeTemporaryExpr *E) { |
| // Walk through the expression to find the materialized temporary itself. |
| SmallVector<const Expr *, 2> CommaLHSs; |
| SmallVector<SubobjectAdjustment, 2> Adjustments; |
| const Expr *Inner = |
| E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); |
| |
| // If we passed any comma operators, evaluate their LHSs. |
| for (const Expr *E : CommaLHSs) |
| if (!EvaluateIgnoredValue(Info, E)) |
| return false; |
| |
| // A materialized temporary with static storage duration can appear within the |
| // result of a constant expression evaluation, so we need to preserve its |
| // value for use outside this evaluation. |
| APValue *Value; |
| if (E->getStorageDuration() == SD_Static) { |
| if (Info.EvalMode == EvalInfo::EM_ConstantFold) |
| return false; |
| // FIXME: What about SD_Thread? |
| Value = E->getOrCreateValue(true); |
| *Value = APValue(); |
| Result.set(E); |
| } else { |
| Value = &Info.CurrentCall->createTemporary( |
| E, Inner->getType(), |
| E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression |
| : ScopeKind::Block, |
| Result); |
| } |
| |
| QualType Type = Inner->getType(); |
| |
| // Materialize the temporary itself. |
| if (!EvaluateInPlace(*Value, Info, Result, Inner)) { |
| *Value = APValue(); |
| return false; |
| } |
| |
| // Adjust our lvalue to refer to the desired subobject. |
| for (unsigned I = Adjustments.size(); I != 0; /**/) { |
| --I; |
| switch (Adjustments[I].Kind) { |
| case SubobjectAdjustment::DerivedToBaseAdjustment: |
| if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath, |
| Type, Result)) |
| return false; |
| Type = Adjustments[I].DerivedToBase.BasePath->getType(); |
| break; |
| |
| case SubobjectAdjustment::FieldAdjustment: |
| if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field)) |
| return false; |
| Type = Adjustments[I].Field->getType(); |
| break; |
| |
| case SubobjectAdjustment::MemberPointerAdjustment: |
| if (!HandleMemberPointerAccess(this->Info, Type, Result, |
| Adjustments[I].Ptr.RHS)) |
| return false; |
| Type = Adjustments[I].Ptr.MPT->getPointeeType(); |
| break; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool |
| LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { |
| assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) && |
| "lvalue compound literal in c++?"); |
| // Defer visiting the literal until the lvalue-to-rvalue conversion. We can |
| // only see this when folding in C, so there's no standard to follow here. |
| return Success(E); |
| } |
| |
| bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { |
| TypeInfoLValue TypeInfo; |
| |
| if (!E->isPotentiallyEvaluated()) { |
| if (E->isTypeOperand()) |
| TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr()); |
| else |
| TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr()); |
| } else { |
| if (!Info.Ctx.getLangOpts().CPlusPlus20) { |
| Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic) |
| << E->getExprOperand()->getType() |
| << E->getExprOperand()->getSourceRange(); |
| } |
| |
| if (!Visit(E->getExprOperand())) |
| return false; |
| |
| std::optional<DynamicType> DynType = |
| ComputeDynamicType(Info, E, Result, AK_TypeId); |
| if (!DynType) |
| return false; |
| |
| TypeInfo = |
| TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr()); |
| } |
| |
| return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType())); |
| } |
| |
| bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { |
| return Success(E->getGuidDecl()); |
| } |
| |
| bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) { |
| // Handle static data members. |
| if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) { |
| VisitIgnoredBaseExpression(E->getBase()); |
| return VisitVarDecl(E, VD); |
| } |
| |
| // Handle static member functions. |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) { |
| if (MD->isStatic()) { |
| VisitIgnoredBaseExpression(E->getBase()); |
| return Success(MD); |
| } |
| } |
| |
| // Handle non-static data members. |
| return LValueExprEvaluatorBaseTy::VisitMemberExpr(E); |
| } |
| |
| bool LValueExprEvaluator::VisitExtVectorElementExpr( |
| const ExtVectorElementExpr *E) { |
| bool Success = true; |
| |
| APValue Val; |
| if (!Evaluate(Val, Info, E->getBase())) { |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| |
| SmallVector<uint32_t, 4> Indices; |
| E->getEncodedElementAccess(Indices); |
| // FIXME: support accessing more than one element |
| if (Indices.size() > 1) |
| return false; |
| |
| if (Success) { |
| Result.setFrom(Info.Ctx, Val); |
| const auto *VT = E->getBase()->getType()->castAs<VectorType>(); |
| HandleLValueVectorElement(Info, E, Result, VT->getElementType(), |
| VT->getNumElements(), Indices[0]); |
| } |
| |
| return Success; |
| } |
| |
| bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { |
| if (E->getBase()->getType()->isSveVLSBuiltinType()) |
| return Error(E); |
| |
| APSInt Index; |
| bool Success = true; |
| |
| if (const auto *VT = E->getBase()->getType()->getAs<VectorType>()) { |
| APValue Val; |
| if (!Evaluate(Val, Info, E->getBase())) { |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| |
| if (!EvaluateInteger(E->getIdx(), Index, Info)) { |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| |
| if (Success) { |
| Result.setFrom(Info.Ctx, Val); |
| HandleLValueVectorElement(Info, E, Result, VT->getElementType(), |
| VT->getNumElements(), Index.getExtValue()); |
| } |
| |
| return Success; |
| } |
| |
| // C++17's rules require us to evaluate the LHS first, regardless of which |
| // side is the base. |
| for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) { |
| if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result) |
| : !EvaluateInteger(SubExpr, Index, Info)) { |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| } |
| |
| return Success && |
| HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index); |
| } |
| |
| bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) { |
| return evaluatePointer(E->getSubExpr(), Result); |
| } |
| |
| bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| // __real is a no-op on scalar lvalues. |
| if (E->getSubExpr()->getType()->isAnyComplexType()) |
| HandleLValueComplexElement(Info, E, Result, E->getType(), false); |
| return true; |
| } |
| |
| bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
| assert(E->getSubExpr()->getType()->isAnyComplexType() && |
| "lvalue __imag__ on scalar?"); |
| if (!Visit(E->getSubExpr())) |
| return false; |
| HandleLValueComplexElement(Info, E, Result, E->getType(), true); |
| return true; |
| } |
| |
| bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) { |
| if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) |
| return Error(UO); |
| |
| if (!this->Visit(UO->getSubExpr())) |
| return false; |
| |
| return handleIncDec( |
| this->Info, UO, Result, UO->getSubExpr()->getType(), |
| UO->isIncrementOp(), nullptr); |
| } |
| |
| bool LValueExprEvaluator::VisitCompoundAssignOperator( |
| const CompoundAssignOperator *CAO) { |
| if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) |
| return Error(CAO); |
| |
| bool Success = true; |
| |
| // C++17 onwards require that we evaluate the RHS first. |
| APValue RHS; |
| if (!Evaluate(RHS, this->Info, CAO->getRHS())) { |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| |
| // The overall lvalue result is the result of evaluating the LHS. |
| if (!this->Visit(CAO->getLHS()) || !Success) |
| return false; |
| |
| return handleCompoundAssignment( |
| this->Info, CAO, |
| Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(), |
| CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS); |
| } |
| |
| bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) { |
| if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) |
| return Error(E); |
| |
| bool Success = true; |
| |
| // C++17 onwards require that we evaluate the RHS first. |
| APValue NewVal; |
| if (!Evaluate(NewVal, this->Info, E->getRHS())) { |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| |
| if (!this->Visit(E->getLHS()) || !Success) |
| return false; |
| |
| if (Info.getLangOpts().CPlusPlus20 && |
| !MaybeHandleUnionActiveMemberChange(Info, E->getLHS(), Result)) |
| return false; |
| |
| return handleAssignment(this->Info, E, Result, E->getLHS()->getType(), |
| NewVal); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Pointer Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| /// Attempts to compute the number of bytes available at the pointer |
| /// returned by a function with the alloc_size attribute. Returns true if we |
| /// were successful. Places an unsigned number into `Result`. |
| /// |
| /// This expects the given CallExpr to be a call to a function with an |
| /// alloc_size attribute. |
| static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, |
| const CallExpr *Call, |
| llvm::APInt &Result) { |
| const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call); |
| |
| assert(AllocSize && AllocSize->getElemSizeParam().isValid()); |
| unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex(); |
| unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType()); |
| if (Call->getNumArgs() <= SizeArgNo) |
| return false; |
| |
| auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) { |
| Expr::EvalResult ExprResult; |
| if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects)) |
| return false; |
| Into = ExprResult.Val.getInt(); |
| if (Into.isNegative() || !Into.isIntN(BitsInSizeT)) |
| return false; |
| Into = Into.zext(BitsInSizeT); |
| return true; |
| }; |
| |
| APSInt SizeOfElem; |
| if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem)) |
| return false; |
| |
| if (!AllocSize->getNumElemsParam().isValid()) { |
| Result = std::move(SizeOfElem); |
| return true; |
| } |
| |
| APSInt NumberOfElems; |
| unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex(); |
| if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems)) |
| return false; |
| |
| bool Overflow; |
| llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow); |
| if (Overflow) |
| return false; |
| |
| Result = std::move(BytesAvailable); |
| return true; |
| } |
| |
| /// Convenience function. LVal's base must be a call to an alloc_size |
| /// function. |
| static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, |
| const LValue &LVal, |
| llvm::APInt &Result) { |
| assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) && |
| "Can't get the size of a non alloc_size function"); |
| const auto *Base = LVal.getLValueBase().get<const Expr *>(); |
| const CallExpr *CE = tryUnwrapAllocSizeCall(Base); |
| return getBytesReturnedByAllocSizeCall(Ctx, CE, Result); |
| } |
| |
| /// Attempts to evaluate the given LValueBase as the result of a call to |
| /// a function with the alloc_size attribute. If it was possible to do so, this |
| /// function will return true, make Result's Base point to said function call, |
| /// and mark Result's Base as invalid. |
| static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base, |
| LValue &Result) { |
| if (Base.isNull()) |
| return false; |
| |
| // Because we do no form of static analysis, we only support const variables. |
| // |
| // Additionally, we can't support parameters, nor can we support static |
| // variables (in the latter case, use-before-assign isn't UB; in the former, |
| // we have no clue what they'll be assigned to). |
| const auto *VD = |
| dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>()); |
| if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified()) |
| return false; |
| |
| const Expr *Init = VD->getAnyInitializer(); |
| if (!Init || Init->getType().isNull()) |
| return false; |
| |
| const Expr *E = Init->IgnoreParens(); |
| if (!tryUnwrapAllocSizeCall(E)) |
| return false; |
| |
| // Store E instead of E unwrapped so that the type of the LValue's base is |
| // what the user wanted. |
| Result.setInvalid(E); |
| |
| QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType(); |
| Result.addUnsizedArray(Info, E, Pointee); |
| return true; |
| } |
| |
| namespace { |
| class PointerExprEvaluator |
| : public ExprEvaluatorBase<PointerExprEvaluator> { |
| LValue &Result; |
| bool InvalidBaseOK; |
| |
| bool Success(const Expr *E) { |
| Result.set(E); |
| return true; |
| } |
| |
| bool evaluateLValue(const Expr *E, LValue &Result) { |
| return EvaluateLValue(E, Result, Info, InvalidBaseOK); |
| } |
| |
| bool evaluatePointer(const Expr *E, LValue &Result) { |
| return EvaluatePointer(E, Result, Info, InvalidBaseOK); |
| } |
| |
| bool visitNonBuiltinCallExpr(const CallExpr *E); |
| public: |
| |
| PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK) |
| : ExprEvaluatorBaseTy(info), Result(Result), |
| InvalidBaseOK(InvalidBaseOK) {} |
| |
| bool Success(const APValue &V, const Expr *E) { |
| Result.setFrom(Info.Ctx, V); |
| return true; |
| } |
| bool ZeroInitialization(const Expr *E) { |
| Result.setNull(Info.Ctx, E->getType()); |
| return true; |
| } |
| |
| bool VisitBinaryOperator(const BinaryOperator *E); |
| bool VisitCastExpr(const CastExpr* E); |
| bool VisitUnaryAddrOf(const UnaryOperator *E); |
| bool VisitObjCStringLiteral(const ObjCStringLiteral *E) |
| { return Success(E); } |
| bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { |
| if (E->isExpressibleAsConstantInitializer()) |
| return Success(E); |
| if (Info.noteFailure()) |
| EvaluateIgnoredValue(Info, E->getSubExpr()); |
| return Error(E); |
| } |
| bool VisitAddrLabelExpr(const AddrLabelExpr *E) |
| { return Success(E); } |
| bool VisitCallExpr(const CallExpr *E); |
| bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); |
| bool VisitBlockExpr(const BlockExpr *E) { |
| if (!E->getBlockDecl()->hasCaptures()) |
| return Success(E); |
| return Error(E); |
| } |
| bool VisitCXXThisExpr(const CXXThisExpr *E) { |
| auto DiagnoseInvalidUseOfThis = [&] { |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit(); |
| else |
| Info.FFDiag(E); |
| }; |
| |
| // Can't look at 'this' when checking a potential constant expression. |
| if (Info.checkingPotentialConstantExpression()) |
| return false; |
| |
| bool IsExplicitLambda = |
| isLambdaCallWithExplicitObjectParameter(Info.CurrentCall->Callee); |
| if (!IsExplicitLambda) { |
| if (!Info.CurrentCall->This) { |
| DiagnoseInvalidUseOfThis(); |
| return false; |
| } |
| |
| Result = *Info.CurrentCall->This; |
| } |
| |
| if (isLambdaCallOperator(Info.CurrentCall->Callee)) { |
| // Ensure we actually have captured 'this'. If something was wrong with |
| // 'this' capture, the error would have been previously reported. |
| // Otherwise we can be inside of a default initialization of an object |
| // declared by lambda's body, so no need to return false. |
| if (!Info.CurrentCall->LambdaThisCaptureField) { |
| if (IsExplicitLambda && !Info.CurrentCall->This) { |
| DiagnoseInvalidUseOfThis(); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| const auto *MD = cast<CXXMethodDecl>(Info.CurrentCall->Callee); |
| return HandleLambdaCapture( |
| Info, E, Result, MD, Info.CurrentCall->LambdaThisCaptureField, |
| Info.CurrentCall->LambdaThisCaptureField->getType()->isPointerType()); |
| } |
| return true; |
| } |
| |
| bool VisitCXXNewExpr(const CXXNewExpr *E); |
| |
| bool VisitSourceLocExpr(const SourceLocExpr *E) { |
| assert(!E->isIntType() && "SourceLocExpr isn't a pointer type?"); |
| APValue LValResult = E->EvaluateInContext( |
| Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); |
| Result.setFrom(Info.Ctx, LValResult); |
| return true; |
| } |
| |
| bool VisitEmbedExpr(const EmbedExpr *E) { |
| llvm::report_fatal_error("Not yet implemented for ExprConstant.cpp"); |
| return true; |
| } |
| |
| bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) { |
| std::string ResultStr = E->ComputeName(Info.Ctx); |
| |
| QualType CharTy = Info.Ctx.CharTy.withConst(); |
| APInt Size(Info.Ctx.getTypeSize(Info.Ctx.getSizeType()), |
| ResultStr.size() + 1); |
| QualType ArrayTy = Info.Ctx.getConstantArrayType( |
| CharTy, Size, nullptr, ArraySizeModifier::Normal, 0); |
| |
| StringLiteral *SL = |
| StringLiteral::Create(Info.Ctx, ResultStr, StringLiteralKind::Ordinary, |
| /*Pascal*/ false, ArrayTy, E->getLocation()); |
| |
| evaluateLValue(SL, Result); |
| Result.addArray(Info, E, cast<ConstantArrayType>(ArrayTy)); |
| return true; |
| } |
| |
| // FIXME: Missing: @protocol, @selector |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info, |
| bool InvalidBaseOK) { |
| assert(!E->isValueDependent()); |
| assert(E->isPRValue() && E->getType()->hasPointerRepresentation()); |
| return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); |
| } |
| |
| bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| if (E->getOpcode() != BO_Add && |
| E->getOpcode() != BO_Sub) |
| return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
| |
| const Expr *PExp = E->getLHS(); |
| const Expr *IExp = E->getRHS(); |
| if (IExp->getType()->isPointerType()) |
| std::swap(PExp, IExp); |
| |
| bool EvalPtrOK = evaluatePointer(PExp, Result); |
| if (!EvalPtrOK && !Info.noteFailure()) |
| return false; |
| |
| llvm::APSInt Offset; |
| if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK) |
| return false; |
| |
| if (E->getOpcode() == BO_Sub) |
| negateAsSigned(Offset); |
| |
| QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType(); |
| return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset); |
| } |
| |
| bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { |
| return evaluateLValue(E->getSubExpr(), Result); |
| } |
| |
| // Is the provided decl 'std::source_location::current'? |
| static bool IsDeclSourceLocationCurrent(const FunctionDecl *FD) { |
| if (!FD) |
| return false; |
| const IdentifierInfo *FnII = FD->getIdentifier(); |
| if (!FnII || !FnII->isStr("current")) |
| return false; |
| |
| const auto *RD = dyn_cast<RecordDecl>(FD->getParent()); |
| if (!RD) |
| return false; |
| |
| const IdentifierInfo *ClassII = RD->getIdentifier(); |
| return RD->isInStdNamespace() && ClassII && ClassII->isStr("source_location"); |
| } |
| |
| bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) { |
| const Expr *SubExpr = E->getSubExpr(); |
| |
| switch (E->getCastKind()) { |
| default: |
| break; |
| case CK_BitCast: |
| case CK_CPointerToObjCPointerCast: |
| case CK_BlockPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| case CK_AddressSpaceConversion: |
| if (!Visit(SubExpr)) |
| return false; |
| // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are |
| // permitted in constant expressions in C++11. Bitcasts from cv void* are |
| // also static_casts, but we disallow them as a resolution to DR1312. |
| if (!E->getType()->isVoidPointerType()) { |
| // In some circumstances, we permit casting from void* to cv1 T*, when the |
| // actual pointee object is actually a cv2 T. |
| bool HasValidResult = !Result.InvalidBase && !Result.Designator.Invalid && |
| !Result.IsNullPtr; |
| bool VoidPtrCastMaybeOK = |
| Result.IsNullPtr || |
| (HasValidResult && |
| Info.Ctx.hasSimilarType(Result.Designator.getType(Info.Ctx), |
| E->getType()->getPointeeType())); |
| // 1. We'll allow it in std::allocator::allocate, and anything which that |
| // calls. |
| // 2. HACK 2022-03-28: Work around an issue with libstdc++'s |
| // <source_location> header. Fixed in GCC 12 and later (2022-04-??). |
| // We'll allow it in the body of std::source_location::current. GCC's |
| // implementation had a parameter of type `void*`, and casts from |
| // that back to `const __impl*` in its body. |
| if (VoidPtrCastMaybeOK && |
| (Info.getStdAllocatorCaller("allocate") || |
| IsDeclSourceLocationCurrent(Info.CurrentCall->Callee) || |
| Info.getLangOpts().CPlusPlus26)) { |
| // Permitted. |
| } else { |
| if (SubExpr->getType()->isVoidPointerType() && |
| Info.getLangOpts().CPlusPlus) { |
| if (HasValidResult) |
| CCEDiag(E, diag::note_constexpr_invalid_void_star_cast) |
| << SubExpr->getType() << Info.getLangOpts().CPlusPlus26 |
| << Result.Designator.getType(Info.Ctx).getCanonicalType() |
| << E->getType()->getPointeeType(); |
| else |
| CCEDiag(E, diag::note_constexpr_invalid_cast) |
| << 3 << SubExpr->getType(); |
| } else |
| CCEDiag(E, diag::note_constexpr_invalid_cast) |
| << 2 << Info.Ctx.getLangOpts().CPlusPlus; |
| Result.Designator.setInvalid(); |
| } |
| } |
| if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr) |
| ZeroInitialization(E); |
| return true; |
| |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: |
| if (!evaluatePointer(E->getSubExpr(), Result)) |
| return false; |
| if (!Result.Base && Result.Offset.isZero()) |
| return true; |
| |
| // Now figure out the necessary offset to add to the base LV to get from |
| // the derived class to the base class. |
| return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()-> |
| castAs<PointerType>()->getPointeeType(), |
| Result); |
| |
| case CK_BaseToDerived: |
| if (!Visit(E->getSubExpr())) |
| return false; |
| if (!Result.Base && Result.Offset.isZero()) |
| return true; |
| return HandleBaseToDerivedCast(Info, E, Result); |
| |
| case CK_Dynamic: |
| if (!Visit(E->getSubExpr())) |
| return false; |
| return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result); |
| |
| case CK_NullToPointer: |
| VisitIgnoredValue(E->getSubExpr()); |
| return ZeroInitialization(E); |
| |
| case CK_IntegralToPointer: { |
| CCEDiag(E, diag::note_constexpr_invalid_cast) |
| << 2 << Info.Ctx.getLangOpts().CPlusPlus; |
| |
| APValue Value; |
| if (!EvaluateIntegerOrLValue(SubExpr, Value, Info)) |
| break; |
| |
| if (Value.isInt()) { |
| unsigned Size = Info.Ctx.getTypeSize(E->getType()); |
| uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue(); |
| Result.Base = (Expr*)nullptr; |
| Result.InvalidBase = false; |
| Result.Offset = CharUnits::fromQuantity(N); |
| Result.Designator.setInvalid(); |
| Result.IsNullPtr = false; |
| return true; |
| } else { |
| // In rare instances, the value isn't an lvalue. |
| // For example, when the value is the difference between the addresses of |
| // two labels. We reject that as a constant expression because we can't |
| // compute a valid offset to convert into a pointer. |
| if (!Value.isLValue()) |
| return false; |
| |
| // Cast is of an lvalue, no need to change value. |
| Result.setFrom(Info.Ctx, Value); |
| return true; |
| } |
| } |
| |
| case CK_ArrayToPointerDecay: { |
| if (SubExpr->isGLValue()) { |
| if (!evaluateLValue(SubExpr, Result)) |
| return false; |
| } else { |
| APValue &Value = Info.CurrentCall->createTemporary( |
| SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result); |
| if (!EvaluateInPlace(Value, Info, Result, SubExpr)) |
| return false; |
| } |
| // The result is a pointer to the first element of the array. |
| auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType()); |
| if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) |
| Result.addArray(Info, E, CAT); |
| else |
| Result.addUnsizedArray(Info, E, AT->getElementType()); |
| return true; |
| } |
| |
| case CK_FunctionToPointerDecay: |
| return evaluateLValue(SubExpr, Result); |
| |
| case CK_LValueToRValue: { |
| LValue LVal; |
| if (!evaluateLValue(E->getSubExpr(), LVal)) |
| return false; |
| |
| APValue RVal; |
| // Note, we use the subexpression's type in order to retain cv-qualifiers. |
| if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), |
| LVal, RVal)) |
| return InvalidBaseOK && |
| evaluateLValueAsAllocSize(Info, LVal.Base, Result); |
| return Success(RVal, E); |
| } |
| } |
| |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| } |
| |
| static CharUnits GetAlignOfType(const ASTContext &Ctx, QualType T, |
| UnaryExprOrTypeTrait ExprKind) { |
| // C++ [expr.alignof]p3: |
| // When alignof is applied to a reference type, the result is the |
| // alignment of the referenced type. |
| T = T.getNonReferenceType(); |
| |
| if (T.getQualifiers().hasUnaligned()) |
| return CharUnits::One(); |
| |
| const bool AlignOfReturnsPreferred = |
| Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; |
| |
| // __alignof is defined to return the preferred alignment. |
| // Before 8, clang returned the preferred alignment for alignof and _Alignof |
| // as well. |
| if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) |
| return Ctx.toCharUnitsFromBits(Ctx.getPreferredTypeAlign(T.getTypePtr())); |
| // alignof and _Alignof are defined to return the ABI alignment. |
| else if (ExprKind == UETT_AlignOf) |
| return Ctx.getTypeAlignInChars(T.getTypePtr()); |
| else |
| llvm_unreachable("GetAlignOfType on a non-alignment ExprKind"); |
| } |
| |
| CharUnits GetAlignOfExpr(const ASTContext &Ctx, const Expr *E, |
| UnaryExprOrTypeTrait ExprKind) { |
| E = E->IgnoreParens(); |
| |
| // The kinds of expressions that we have special-case logic here for |
| // should be kept up to date with the special checks for those |
| // expressions in Sema. |
| |
| // alignof decl is always accepted, even if it doesn't make sense: we default |
| // to 1 in those cases. |
| if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) |
| return Ctx.getDeclAlign(DRE->getDecl(), |
| /*RefAsPointee*/ true); |
| |
| if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) |
| return Ctx.getDeclAlign(ME->getMemberDecl(), |
| /*RefAsPointee*/ true); |
| |
| return GetAlignOfType(Ctx, E->getType(), ExprKind); |
| } |
| |
| static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) { |
| if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>()) |
| return Info.Ctx.getDeclAlign(VD); |
| if (const auto *E = Value.Base.dyn_cast<const Expr *>()) |
| return GetAlignOfExpr(Info.Ctx, E, UETT_AlignOf); |
| return GetAlignOfType(Info.Ctx, Value.Base.getTypeInfoType(), UETT_AlignOf); |
| } |
| |
| /// Evaluate the value of the alignment argument to __builtin_align_{up,down}, |
| /// __builtin_is_aligned and __builtin_assume_aligned. |
| static bool getAlignmentArgument(const Expr *E, QualType ForType, |
| EvalInfo &Info, APSInt &Alignment) { |
| if (!EvaluateInteger(E, Alignment, Info)) |
| return false; |
| if (Alignment < 0 || !Alignment.isPowerOf2()) { |
| Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment; |
| return false; |
| } |
| unsigned SrcWidth = Info.Ctx.getIntWidth(ForType); |
| APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1)); |
| if (APSInt::compareValues(Alignment, MaxValue) > 0) { |
| Info.FFDiag(E, diag::note_constexpr_alignment_too_big) |
| << MaxValue << ForType << Alignment; |
| return false; |
| } |
| // Ensure both alignment and source value have the same bit width so that we |
| // don't assert when computing the resulting value. |
| APSInt ExtAlignment = |
| APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true); |
| assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 && |
| "Alignment should not be changed by ext/trunc"); |
| Alignment = ExtAlignment; |
| assert(Alignment.getBitWidth() == SrcWidth); |
| return true; |
| } |
| |
| // To be clear: this happily visits unsupported builtins. Better name welcomed. |
| bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) { |
| if (ExprEvaluatorBaseTy::VisitCallExpr(E)) |
| return true; |
| |
| if (!(InvalidBaseOK && getAllocSizeAttr(E))) |
| return false; |
| |
| Result.setInvalid(E); |
| QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType(); |
| Result.addUnsizedArray(Info, E, PointeeTy); |
| return true; |
| } |
| |
| bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) { |
| if (!IsConstantEvaluatedBuiltinCall(E)) |
| return visitNonBuiltinCallExpr(E); |
| return VisitBuiltinCallExpr(E, E->getBuiltinCallee()); |
| } |
| |
| // Determine if T is a character type for which we guarantee that |
| // sizeof(T) == 1. |
| static bool isOneByteCharacterType(QualType T) { |
| return T->isCharType() || T->isChar8Type(); |
| } |
| |
| bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, |
| unsigned BuiltinOp) { |
| if (IsOpaqueConstantCall(E)) |
| return Success(E); |
| |
| switch (BuiltinOp) { |
| case Builtin::BIaddressof: |
| case Builtin::BI__addressof: |
| case Builtin::BI__builtin_addressof: |
| return evaluateLValue(E->getArg(0), Result); |
| case Builtin::BI__builtin_assume_aligned: { |
| // We need to be very careful here because: if the pointer does not have the |
| // asserted alignment, then the behavior is undefined, and undefined |
| // behavior is non-constant. |
| if (!evaluatePointer(E->getArg(0), Result)) |
| return false; |
| |
| LValue OffsetResult(Result); |
| APSInt Alignment; |
| if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info, |
| Alignment)) |
| return false; |
| CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue()); |
| |
| if (E->getNumArgs() > 2) { |
| APSInt Offset; |
| if (!EvaluateInteger(E->getArg(2), Offset, Info)) |
| return false; |
| |
| int64_t AdditionalOffset = -Offset.getZExtValue(); |
| OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset); |
| } |
| |
| // If there is a base object, then it must have the correct alignment. |
| if (OffsetResult.Base) { |
| CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult); |
| |
| if (BaseAlignment < Align) { |
| Result.Designator.setInvalid(); |
| CCEDiag(E->getArg(0), diag::note_constexpr_baa_insufficient_alignment) |
| << 0 << BaseAlignment.getQuantity() << Align.getQuantity(); |
| return false; |
| } |
| } |
| |
| // The offset must also have the correct alignment. |
| if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) { |
| Result.Designator.setInvalid(); |
| |
| (OffsetResult.Base |
| ? CCEDiag(E->getArg(0), |
| diag::note_constexpr_baa_insufficient_alignment) |
| << 1 |
| : CCEDiag(E->getArg(0), |
| diag::note_constexpr_baa_value_insufficient_alignment)) |
| << OffsetResult.Offset.getQuantity() << Align.getQuantity(); |
| return false; |
| } |
| |
| return true; |
| } |
| case Builtin::BI__builtin_align_up: |
| case Builtin::BI__builtin_align_down: { |
| if (!evaluatePointer(E->getArg(0), Result)) |
| return false; |
| APSInt Alignment; |
| if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info, |
| Alignment)) |
| return false; |
| CharUnits BaseAlignment = getBaseAlignment(Info, Result); |
| CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset); |
| // For align_up/align_down, we can return the same value if the alignment |
| // is known to be greater or equal to the requested value. |
| if (PtrAlign.getQuantity() >= Alignment) |
| return true; |
| |
| // The alignment could be greater than the minimum at run-time, so we cannot |
| // infer much about the resulting pointer value. One case is possible: |
| // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we |
| // can infer the correct index if the requested alignment is smaller than |
| // the base alignment so we can perform the computation on the offset. |
| if (BaseAlignment.getQuantity() >= Alignment) { |
| assert(Alignment.getBitWidth() <= 64 && |
| "Cannot handle > 64-bit address-space"); |
| uint64_t Alignment64 = Alignment.getZExtValue(); |
| CharUnits NewOffset = CharUnits::fromQuantity( |
| BuiltinOp == Builtin::BI__builtin_align_down |
| ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64) |
| : llvm::alignTo(Result.Offset.getQuantity(), Alignment64)); |
| Result.adjustOffset(NewOffset - Result.Offset); |
| // TODO: diagnose out-of-bounds values/only allow for arrays? |
| return true; |
| } |
| // Otherwise, we cannot constant-evaluate the result. |
| Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust) |
| << Alignment; |
| return false; |
| } |
| case Builtin::BI__builtin_operator_new: |
| return HandleOperatorNewCall(Info, E, Result); |
| case Builtin::BI__builtin_launder: |
| return evaluatePointer(E->getArg(0), Result); |
| case Builtin::BIstrchr: |
| case Builtin::BIwcschr: |
| case Builtin::BImemchr: |
| case Builtin::BIwmemchr: |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.CCEDiag(E, diag::note_constexpr_invalid_function) |
| << /*isConstexpr*/ 0 << /*isConstructor*/ 0 |
| << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str(); |
| else |
| Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| [[fallthrough]]; |
| case Builtin::BI__builtin_strchr: |
| case Builtin::BI__builtin_wcschr: |
| case Builtin::BI__builtin_memchr: |
| case Builtin::BI__builtin_char_memchr: |
| case Builtin::BI__builtin_wmemchr: { |
| if (!Visit(E->getArg(0))) |
| return false; |
| APSInt Desired; |
| if (!EvaluateInteger(E->getArg(1), Desired, Info)) |
| return false; |
| uint64_t MaxLength = uint64_t(-1); |
| if (BuiltinOp != Builtin::BIstrchr && |
| BuiltinOp != Builtin::BIwcschr && |
| BuiltinOp != Builtin::BI__builtin_strchr && |
| BuiltinOp != Builtin::BI__builtin_wcschr) { |
| APSInt N; |
| if (!EvaluateInteger(E->getArg(2), N, Info)) |
| return false; |
| MaxLength = N.getZExtValue(); |
| } |
| // We cannot find the value if there are no candidates to match against. |
| if (MaxLength == 0u) |
| return ZeroInitialization(E); |
| if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) || |
| Result.Designator.Invalid) |
| return false; |
| QualType CharTy = Result.Designator.getType(Info.Ctx); |
| bool IsRawByte = BuiltinOp == Builtin::BImemchr || |
| BuiltinOp == Builtin::BI__builtin_memchr; |
| assert(IsRawByte || |
| Info.Ctx.hasSameUnqualifiedType( |
| CharTy, E->getArg(0)->getType()->getPointeeType())); |
| // Pointers to const void may point to objects of incomplete type. |
| if (IsRawByte && CharTy->isIncompleteType()) { |
| Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy; |
| return false; |
| } |
| // Give up on byte-oriented matching against multibyte elements. |
| // FIXME: We can compare the bytes in the correct order. |
| if (IsRawByte && !isOneByteCharacterType(CharTy)) { |
| Info.FFDiag(E, diag::note_constexpr_memchr_unsupported) |
| << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str() |
| << CharTy; |
| return false; |
| } |
| // Figure out what value we're actually looking for (after converting to |
| // the corresponding unsigned type if necessary). |
| uint64_t DesiredVal; |
| bool StopAtNull = false; |
| switch (BuiltinOp) { |
| case Builtin::BIstrchr: |
| case Builtin::BI__builtin_strchr: |
| // strchr compares directly to the passed integer, and therefore |
| // always fails if given an int that is not a char. |
| if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy, |
| E->getArg(1)->getType(), |
| Desired), |
| Desired)) |
| return ZeroInitialization(E); |
| StopAtNull = true; |
| [[fallthrough]]; |
| case Builtin::BImemchr: |
| case Builtin::BI__builtin_memchr: |
| case Builtin::BI__builtin_char_memchr: |
| // memchr compares by converting both sides to unsigned char. That's also |
| // correct for strchr if we get this far (to cope with plain char being |
| // unsigned in the strchr case). |
| DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue(); |
| break; |
| |
| case Builtin::BIwcschr: |
| case Builtin::BI__builtin_wcschr: |
| StopAtNull = true; |
| [[fallthrough]]; |
| case Builtin::BIwmemchr: |
| case Builtin::BI__builtin_wmemchr: |
| // wcschr and wmemchr are given a wchar_t to look for. Just use it. |
| DesiredVal = Desired.getZExtValue(); |
| break; |
| } |
| |
| for (; MaxLength; --MaxLength) { |
| APValue Char; |
| if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) || |
| !Char.isInt()) |
| return false; |
| if (Char.getInt().getZExtValue() == DesiredVal) |
| return true; |
| if (StopAtNull && !Char.getInt()) |
| break; |
| if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1)) |
| return false; |
| } |
| // Not found: return nullptr. |
| return ZeroInitialization(E); |
| } |
| |
| case Builtin::BImemcpy: |
| case Builtin::BImemmove: |
| case Builtin::BIwmemcpy: |
| case Builtin::BIwmemmove: |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.CCEDiag(E, diag::note_constexpr_invalid_function) |
| << /*isConstexpr*/ 0 << /*isConstructor*/ 0 |
| << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str(); |
| else |
| Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| [[fallthrough]]; |
| case Builtin::BI__builtin_memcpy: |
| case Builtin::BI__builtin_memmove: |
| case Builtin::BI__builtin_wmemcpy: |
| case Builtin::BI__builtin_wmemmove: { |
| bool WChar = BuiltinOp == Builtin::BIwmemcpy || |
| BuiltinOp == Builtin::BIwmemmove || |
| BuiltinOp == Builtin::BI__builtin_wmemcpy || |
| BuiltinOp == Builtin::BI__builtin_wmemmove; |
| bool Move = BuiltinOp == Builtin::BImemmove || |
| BuiltinOp == Builtin::BIwmemmove || |
| BuiltinOp == Builtin::BI__builtin_memmove || |
| BuiltinOp == Builtin::BI__builtin_wmemmove; |
| |
| // The result of mem* is the first argument. |
| if (!Visit(E->getArg(0))) |
| return false; |
| LValue Dest = Result; |
| |
| LValue Src; |
| if (!EvaluatePointer(E->getArg(1), Src, Info)) |
| return false; |
| |
| APSInt N; |
| if (!EvaluateInteger(E->getArg(2), N, Info)) |
| return false; |
| assert(!N.isSigned() && "memcpy and friends take an unsigned size"); |
| |
| // If the size is zero, we treat this as always being a valid no-op. |
| // (Even if one of the src and dest pointers is null.) |
| if (!N) |
| return true; |
| |
| // Otherwise, if either of the operands is null, we can't proceed. Don't |
| // try to determine the type of the copied objects, because there aren't |
| // any. |
| if (!Src.Base || !Dest.Base) { |
| APValue Val; |
| (!Src.Base ? Src : Dest).moveInto(Val); |
| Info.FFDiag(E, diag::note_constexpr_memcpy_null) |
| << Move << WChar << !!Src.Base |
| << Val.getAsString(Info.Ctx, E->getArg(0)->getType()); |
| return false; |
| } |
| if (Src.Designator.Invalid || Dest.Designator.Invalid) |
| return false; |
| |
| // We require that Src and Dest are both pointers to arrays of |
| // trivially-copyable type. (For the wide version, the designator will be |
| // invalid if the designated object is not a wchar_t.) |
| QualType T = Dest.Designator.getType(Info.Ctx); |
| QualType SrcT = Src.Designator.getType(Info.Ctx); |
| if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) { |
| // FIXME: Consider using our bit_cast implementation to support this. |
| Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T; |
| return false; |
| } |
| if (T->isIncompleteType()) { |
| Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T; |
| return false; |
| } |
| if (!T.isTriviallyCopyableType(Info.Ctx)) { |
| Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T; |
| return false; |
| } |
| |
| // Figure out how many T's we're copying. |
| uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity(); |
| if (TSize == 0) |
| return false; |
| if (!WChar) { |
| uint64_t Remainder; |
| llvm::APInt OrigN = N; |
| llvm::APInt::udivrem(OrigN, TSize, N, Remainder); |
| if (Remainder) { |
| Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) |
| << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false) |
| << (unsigned)TSize; |
| return false; |
| } |
| } |
| |
| // Check that the copying will remain within the arrays, just so that we |
| // can give a more meaningful diagnostic. This implicitly also checks that |
| // N fits into 64 bits. |
| uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second; |
| uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second; |
| if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) { |
| Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) |
| << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T |
| << toString(N, 10, /*Signed*/false); |
| return false; |
| } |
| uint64_t NElems = N.getZExtValue(); |
| uint64_t NBytes = NElems * TSize; |
| |
| // Check for overlap. |
| int Direction = 1; |
| if (HasSameBase(Src, Dest)) { |
| uint64_t SrcOffset = Src.getLValueOffset().getQuantity(); |
| uint64_t DestOffset = Dest.getLValueOffset().getQuantity(); |
| if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) { |
| // Dest is inside the source region. |
| if (!Move) { |
| Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; |
| return false; |
| } |
| // For memmove and friends, copy backwards. |
| if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) || |
| !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1)) |
| return false; |
| Direction = -1; |
| } else if (!Move && SrcOffset >= DestOffset && |
| SrcOffset - DestOffset < NBytes) { |
| // Src is inside the destination region for memcpy: invalid. |
| Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; |
| return false; |
| } |
| } |
| |
| while (true) { |
| APValue Val; |
| // FIXME: Set WantObjectRepresentation to true if we're copying a |
| // char-like type? |
| if (!handleLValueToRValueConversion(Info, E, T, Src, Val) || |
| !handleAssignment(Info, E, Dest, T, Val)) |
| return false; |
| // Do not iterate past the last element; if we're copying backwards, that |
| // might take us off the start of the array. |
| if (--NElems == 0) |
| return true; |
| if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) || |
| !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction)) |
| return false; |
| } |
| } |
| |
| default: |
| return false; |
| } |
| } |
| |
| static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, |
| APValue &Result, const InitListExpr *ILE, |
| QualType AllocType); |
| static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This, |
| APValue &Result, |
| const CXXConstructExpr *CCE, |
| QualType AllocType); |
| |
| bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) { |
| if (!Info.getLangOpts().CPlusPlus20) |
| Info.CCEDiag(E, diag::note_constexpr_new); |
| |
| // We cannot speculatively evaluate a delete expression. |
| if (Info.SpeculativeEvaluationDepth) |
| return false; |
| |
| FunctionDecl *OperatorNew = E->getOperatorNew(); |
| QualType AllocType = E->getAllocatedType(); |
| QualType TargetType = AllocType; |
| |
| bool IsNothrow = false; |
| bool IsPlacement = false; |
| |
| if (E->getNumPlacementArgs() == 1 && |
| E->getPlacementArg(0)->getType()->isNothrowT()) { |
| // The only new-placement list we support is of the form (std::nothrow). |
| // |
| // FIXME: There is no restriction on this, but it's not clear that any |
| // other form makes any sense. We get here for cases such as: |
| // |
| // new (std::align_val_t{N}) X(int) |
| // |
| // (which should presumably be valid only if N is a multiple of |
| // alignof(int), and in any case can't be deallocated unless N is |
| // alignof(X) and X has new-extended alignment). |
| LValue Nothrow; |
| if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info)) |
| return false; |
| IsNothrow = true; |
| } else if (OperatorNew->isReservedGlobalPlacementOperator()) { |
| if (Info.CurrentCall->isStdFunction() || Info.getLangOpts().CPlusPlus26) { |
| if (!EvaluatePointer(E->getPlacementArg(0), Result, Info)) |
| return false; |
| if (Result.Designator.Invalid) |
| return false; |
| TargetType = E->getPlacementArg(0)->getType(); |
| IsPlacement = true; |
| } else { |
| Info.FFDiag(E, diag::note_constexpr_new_placement) |
| << /*C++26 feature*/ 1 << E->getSourceRange(); |
| return false; |
| } |
| } else if (E->getNumPlacementArgs()) { |
| Info.FFDiag(E, diag::note_constexpr_new_placement) |
| << /*Unsupported*/ 0 << E->getSourceRange(); |
| return false; |
| } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) { |
| Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) |
| << isa<CXXMethodDecl>(OperatorNew) << OperatorNew; |
| return false; |
| } |
| |
| const Expr *Init = E->getInitializer(); |
| const InitListExpr *ResizedArrayILE = nullptr; |
| const CXXConstructExpr *ResizedArrayCCE = nullptr; |
| bool ValueInit = false; |
| |
| if (std::optional<const Expr *> ArraySize = E->getArraySize()) { |
| const Expr *Stripped = *ArraySize; |
| for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); |
| Stripped = ICE->getSubExpr()) |
| if (ICE->getCastKind() != CK_NoOp && |
| ICE->getCastKind() != CK_IntegralCast) |
| break; |
| |
| llvm::APSInt ArrayBound; |
| if (!EvaluateInteger(Stripped, ArrayBound, Info)) |
| return false; |
| |
| // C++ [expr.new]p9: |
| // The expression is erroneous if: |
| // -- [...] its value before converting to size_t [or] applying the |
| // second standard conversion sequence is less than zero |
| if (ArrayBound.isSigned() && ArrayBound.isNegative()) { |
| if (IsNothrow) |
| return ZeroInitialization(E); |
| |
| Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative) |
| << ArrayBound << (*ArraySize)->getSourceRange(); |
| return false; |
| } |
| |
| // -- its value is such that the size of the allocated object would |
| // exceed the implementation-defined limit |
| if (!Info.CheckArraySize(ArraySize.value()->getExprLoc(), |
| ConstantArrayType::getNumAddressingBits( |
| Info.Ctx, AllocType, ArrayBound), |
| ArrayBound.getZExtValue(), /*Diag=*/!IsNothrow)) { |
| if (IsNothrow) |
| return ZeroInitialization(E); |
| return false; |
| } |
| |
| // -- the new-initializer is a braced-init-list and the number of |
| // array elements for which initializers are provided [...] |
| // exceeds the number of elements to initialize |
| if (!Init) { |
| // No initialization is performed. |
| } else if (isa<CXXScalarValueInitExpr>(Init) || |
| isa<ImplicitValueInitExpr>(Init)) { |
| ValueInit = true; |
| } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) { |
| ResizedArrayCCE = CCE; |
| } else { |
| auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType()); |
| assert(CAT && "unexpected type for array initializer"); |
| |
| unsigned Bits = |
| std::max(CAT->getSizeBitWidth(), ArrayBound.getBitWidth()); |
| llvm::APInt InitBound = CAT->getSize().zext(Bits); |
| llvm::APInt AllocBound = ArrayBound.zext(Bits); |
| if (InitBound.ugt(AllocBound)) { |
| if (IsNothrow) |
| return ZeroInitialization(E); |
| |
| Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small) |
| << toString(AllocBound, 10, /*Signed=*/false) |
| << toString(InitBound, 10, /*Signed=*/false) |
| << (*ArraySize)->getSourceRange(); |
| return false; |
| } |
| |
| // If the sizes differ, we must have an initializer list, and we need |
| // special handling for this case when we initialize. |
| if (InitBound != AllocBound) |
| ResizedArrayILE = cast<InitListExpr>(Init); |
| } |
| |
| AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr, |
| ArraySizeModifier::Normal, 0); |
| } else { |
| assert(!AllocType->isArrayType() && |
| "array allocation with non-array new"); |
| } |
| |
| APValue *Val; |
| if (IsPlacement) { |
| AccessKinds AK = AK_Construct; |
| struct FindObjectHandler { |
| EvalInfo &Info; |
| const Expr *E; |
| QualType AllocType; |
| const AccessKinds AccessKind; |
| APValue *Value; |
| |
| typedef bool result_type; |
| bool failed() { return false; } |
| bool found(APValue &Subobj, QualType SubobjType) { |
| // FIXME: Reject the cases where [basic.life]p8 would not permit the |
| // old name of the object to be used to name the new object. |
| unsigned SubobjectSize = 1; |
| unsigned AllocSize = 1; |
| if (auto *CAT = dyn_cast<ConstantArrayType>(AllocType)) |
| AllocSize = CAT->getZExtSize(); |
| if (auto *CAT = dyn_cast<ConstantArrayType>(SubobjType)) |
| SubobjectSize = CAT->getZExtSize(); |
| if (SubobjectSize < AllocSize || |
| !Info.Ctx.hasSimilarType(Info.Ctx.getBaseElementType(SubobjType), |
| Info.Ctx.getBaseElementType(AllocType))) { |
| Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) |
| << SubobjType << AllocType; |
| return false; |
| } |
| Value = &Subobj; |
| return true; |
| } |
| bool found(APSInt &Value, QualType SubobjType) { |
| Info.FFDiag(E, diag::note_constexpr_construct_complex_elem); |
| return false; |
| } |
| bool found(APFloat &Value, QualType SubobjType) { |
| Info.FFDiag(E, diag::note_constexpr_construct_complex_elem); |
| return false; |
| } |
| } Handler = {Info, E, AllocType, AK, nullptr}; |
| |
| CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType); |
| if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler)) |
| return false; |
| |
| Val = Handler.Value; |
| |
| // [basic.life]p1: |
| // The lifetime of an object o of type T ends when [...] the storage |
| // which the object occupies is [...] reused by an object that is not |
| // nested within o (6.6.2). |
| *Val = APValue(); |
| } else { |
| // Perform the allocation and obtain a pointer to the resulting object. |
| Val = Info.createHeapAlloc(E, AllocType, Result); |
| if (!Val) |
| return false; |
| } |
| |
| if (ValueInit) { |
| ImplicitValueInitExpr VIE(AllocType); |
| if (!EvaluateInPlace(*Val, Info, Result, &VIE)) |
| return false; |
| } else if (ResizedArrayILE) { |
| if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE, |
| AllocType)) |
| return false; |
| } else if (ResizedArrayCCE) { |
| if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE, |
| AllocType)) |
| return false; |
| } else if (Init) { |
| if (!EvaluateInPlace(*Val, Info, Result, Init)) |
| return false; |
| } else if (!handleDefaultInitValue(AllocType, *Val)) { |
| return false; |
| } |
| |
| // Array new returns a pointer to the first element, not a pointer to the |
| // array. |
| if (auto *AT = AllocType->getAsArrayTypeUnsafe()) |
| Result.addArray(Info, E, cast<ConstantArrayType>(AT)); |
| |
| return true; |
| } |
| //===----------------------------------------------------------------------===// |
| // Member Pointer Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class MemberPointerExprEvaluator |
| : public ExprEvaluatorBase<MemberPointerExprEvaluator> { |
| MemberPtr &Result; |
| |
| bool Success(const ValueDecl *D) { |
| Result = MemberPtr(D); |
| return true; |
| } |
| public: |
| |
| MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result) |
| : ExprEvaluatorBaseTy(Info), Result(Result) {} |
| |
| bool Success(const APValue &V, const Expr *E) { |
| Result.setFrom(V); |
| return true; |
| } |
| bool ZeroInitialization(const Expr *E) { |
| return Success((const ValueDecl*)nullptr); |
| } |
| |
| bool VisitCastExpr(const CastExpr *E); |
| bool VisitUnaryAddrOf(const UnaryOperator *E); |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, |
| EvalInfo &Info) { |
| assert(!E->isValueDependent()); |
| assert(E->isPRValue() && E->getType()->isMemberPointerType()); |
| return MemberPointerExprEvaluator(Info, Result).Visit(E); |
| } |
| |
| bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_NullToMemberPointer: |
| VisitIgnoredValue(E->getSubExpr()); |
| return ZeroInitialization(E); |
| |
| case CK_BaseToDerivedMemberPointer: { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| if (E->path_empty()) |
| return true; |
| // Base-to-derived member pointer casts store the path in derived-to-base |
| // order, so iterate backwards. The CXXBaseSpecifier also provides us with |
| // the wrong end of the derived->base arc, so stagger the path by one class. |
| typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter; |
| for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin()); |
| PathI != PathE; ++PathI) { |
| assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); |
| const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl(); |
| if (!Result.castToDerived(Derived)) |
| return Error(E); |
| } |
| const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass(); |
| if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl())) |
| return Error(E); |
| return true; |
| } |
| |
| case CK_DerivedToBaseMemberPointer: |
| if (!Visit(E->getSubExpr())) |
| return false; |
| for (CastExpr::path_const_iterator PathI = E->path_begin(), |
| PathE = E->path_end(); PathI != PathE; ++PathI) { |
| assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); |
| const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); |
| if (!Result.castToBase(Base)) |
| return Error(E); |
| } |
| return true; |
| } |
| } |
| |
| bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { |
| // C++11 [expr.unary.op]p3 has very strict rules on how the address of a |
| // member can be formed. |
| return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Record Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class RecordExprEvaluator |
| : public ExprEvaluatorBase<RecordExprEvaluator> { |
| const LValue &This; |
| APValue &Result; |
| public: |
| |
| RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result) |
| : ExprEvaluatorBaseTy(info), This(This), Result(Result) {} |
| |
| bool Success(const APValue &V, const Expr *E) { |
| Result = V; |
| return true; |
| } |
| bool ZeroInitialization(const Expr *E) { |
| return ZeroInitialization(E, E->getType()); |
| } |
| bool ZeroInitialization(const Expr *E, QualType T); |
| |
| bool VisitCallExpr(const CallExpr *E) { |
| return handleCallExpr(E, Result, &This); |
| } |
| bool VisitCastExpr(const CastExpr *E); |
| bool VisitInitListExpr(const InitListExpr *E); |
| bool VisitCXXConstructExpr(const CXXConstructExpr *E) { |
| return VisitCXXConstructExpr(E, E->getType()); |
| } |
| bool VisitLambdaExpr(const LambdaExpr *E); |
| bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); |
| bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T); |
| bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E); |
| bool VisitBinCmp(const BinaryOperator *E); |
| bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E); |
| bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit, |
| ArrayRef<Expr *> Args); |
| }; |
| } |
| |
| /// Perform zero-initialization on an object of non-union class type. |
| /// C++11 [dcl.init]p5: |
| /// To zero-initialize an object or reference of type T means: |
| /// [...] |
| /// -- if T is a (possibly cv-qualified) non-union class type, |
| /// each non-static data member and each base-class subobject is |
| /// zero-initialized |
| static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E, |
| const RecordDecl *RD, |
| const LValue &This, APValue &Result) { |
| assert(!RD->isUnion() && "Expected non-union class type"); |
| const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); |
| Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0, |
| std::distance(RD->field_begin(), RD->field_end())); |
| |
| if (RD->isInvalidDecl()) return false; |
| const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
| |
| if (CD) { |
| unsigned Index = 0; |
| for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(), |
| End = CD->bases_end(); I != End; ++I, ++Index) { |
| const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl(); |
| LValue Subobject = This; |
| if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout)) |
| return false; |
| if (!HandleClassZeroInitialization(Info, E, Base, Subobject, |
| Result.getStructBase(Index))) |
| return false; |
| } |
| } |
| |
| for (const auto *I : RD->fields()) { |
| // -- if T is a reference type, no initialization is performed. |
| if (I->isUnnamedBitField() || I->getType()->isReferenceType()) |
| continue; |
| |
| LValue Subobject = This; |
| if (!HandleLValueMember(Info, E, Subobject, I, &Layout)) |
| return false; |
| |
| ImplicitValueInitExpr VIE(I->getType()); |
| if (!EvaluateInPlace( |
| Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) { |
| const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); |
| if (RD->isInvalidDecl()) return false; |
| if (RD->isUnion()) { |
| // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the |
| // object's first non-static named data member is zero-initialized |
| RecordDecl::field_iterator I = RD->field_begin(); |
| while (I != RD->field_end() && (*I)->isUnnamedBitField()) |
| ++I; |
| if (I == RD->field_end()) { |
| Result = APValue((const FieldDecl*)nullptr); |
| return true; |
| } |
| |
| LValue Subobject = This; |
| if (!HandleLValueMember(Info, E, Subobject, *I)) |
| return false; |
| Result = APValue(*I); |
| ImplicitValueInitExpr VIE(I->getType()); |
| return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE); |
| } |
| |
| if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) { |
| Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD; |
| return false; |
| } |
| |
| return HandleClassZeroInitialization(Info, E, RD, This, Result); |
| } |
| |
| bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_ConstructorConversion: |
| return Visit(E->getSubExpr()); |
| |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: { |
| APValue DerivedObject; |
| if (!Evaluate(DerivedObject, Info, E->getSubExpr())) |
| return false; |
| if (!DerivedObject.isStruct()) |
| return Error(E->getSubExpr()); |
| |
| // Derived-to-base rvalue conversion: just slice off the derived part. |
| APValue *Value = &DerivedObject; |
| const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl(); |
| for (CastExpr::path_const_iterator PathI = E->path_begin(), |
| PathE = E->path_end(); PathI != PathE; ++PathI) { |
| assert(!(*PathI)->isVirtual() && "record rvalue with virtual base"); |
| const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); |
| Value = &Value->getStructBase(getBaseIndex(RD, Base)); |
| RD = Base; |
| } |
| Result = *Value; |
| return true; |
| } |
| } |
| } |
| |
| bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) { |
| if (E->isTransparent()) |
| return Visit(E->getInit(0)); |
| return VisitCXXParenListOrInitListExpr(E, E->inits()); |
| } |
| |
| bool RecordExprEvaluator::VisitCXXParenListOrInitListExpr( |
| const Expr *ExprToVisit, ArrayRef<Expr *> Args) { |
| const RecordDecl *RD = |
| ExprToVisit->getType()->castAs<RecordType>()->getDecl(); |
| if (RD->isInvalidDecl()) return false; |
| const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
| auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); |
| |
| EvalInfo::EvaluatingConstructorRAII EvalObj( |
| Info, |
| ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}, |
| CXXRD && CXXRD->getNumBases()); |
| |
| if (RD->isUnion()) { |
| const FieldDecl *Field; |
| if (auto *ILE = dyn_cast<InitListExpr>(ExprToVisit)) { |
| Field = ILE->getInitializedFieldInUnion(); |
| } else if (auto *PLIE = dyn_cast<CXXParenListInitExpr>(ExprToVisit)) { |
| Field = PLIE->getInitializedFieldInUnion(); |
| } else { |
| llvm_unreachable( |
| "Expression is neither an init list nor a C++ paren list"); |
| } |
| |
| Result = APValue(Field); |
| if (!Field) |
| return true; |
| |
| // If the initializer list for a union does not contain any elements, the |
| // first element of the union is value-initialized. |
| // FIXME: The element should be initialized from an initializer list. |
| // Is this difference ever observable for initializer lists which |
| // we don't build? |
| ImplicitValueInitExpr VIE(Field->getType()); |
| const Expr *InitExpr = Args.empty() ? &VIE : Args[0]; |
| |
| LValue Subobject = This; |
| if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout)) |
| return false; |
| |
| // Temporarily override This, in case there's a CXXDefaultInitExpr in here. |
| ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, |
| isa<CXXDefaultInitExpr>(InitExpr)); |
| |
| if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) { |
| if (Field->isBitField()) |
| return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(), |
| Field); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| if (!Result.hasValue()) |
| Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0, |
| std::distance(RD->field_begin(), RD->field_end())); |
| unsigned ElementNo = 0; |
| bool Success = true; |
| |
| // Initialize base classes. |
| if (CXXRD && CXXRD->getNumBases()) { |
| for (const auto &Base : CXXRD->bases()) { |
| assert(ElementNo < Args.size() && "missing init for base class"); |
| const Expr *Init = Args[ElementNo]; |
| |
| LValue Subobject = This; |
| if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base)) |
| return false; |
| |
| APValue &FieldVal = Result.getStructBase(ElementNo); |
| if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) { |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| ++ElementNo; |
| } |
| |
| EvalObj.finishedConstructingBases(); |
| } |
| |
| // Initialize members. |
| for (const auto *Field : RD->fields()) { |
| // Anonymous bit-fields are not considered members of the class for |
| // purposes of aggregate initialization. |
| if (Field->isUnnamedBitField()) |
| continue; |
| |
| LValue Subobject = This; |
| |
| bool HaveInit = ElementNo < Args.size(); |
| |
| // FIXME: Diagnostics here should point to the end of the initializer |
| // list, not the start. |
| if (!HandleLValueMember(Info, HaveInit ? Args[ElementNo] : ExprToVisit, |
| Subobject, Field, &Layout)) |
| return false; |
| |
| // Perform an implicit value-initialization for members beyond the end of |
| // the initializer list. |
| ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType()); |
| const Expr *Init = HaveInit ? Args[ElementNo++] : &VIE; |
| |
| if (Field->getType()->isIncompleteArrayType()) { |
| if (auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType())) { |
| if (!CAT->isZeroSize()) { |
| // Bail out for now. This might sort of "work", but the rest of the |
| // code isn't really prepared to handle it. |
| Info.FFDiag(Init, diag::note_constexpr_unsupported_flexible_array); |
| return false; |
| } |
| } |
| } |
| |
| // Temporarily override This, in case there's a CXXDefaultInitExpr in here. |
| ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, |
| isa<CXXDefaultInitExpr>(Init)); |
| |
| APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); |
| if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) || |
| (Field->isBitField() && !truncateBitfieldValue(Info, Init, |
| FieldVal, Field))) { |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| } |
| |
| EvalObj.finishedConstructingFields(); |
| |
| return Success; |
| } |
| |
| bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, |
| QualType T) { |
| // Note that E's type is not necessarily the type of our class here; we might |
| // be initializing an array element instead. |
| const CXXConstructorDecl *FD = E->getConstructor(); |
| if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false; |
| |
| bool ZeroInit = E->requiresZeroInitialization(); |
| if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) { |
| // If we've already performed zero-initialization, we're already done. |
| if (Result.hasValue()) |
| return true; |
| |
| if (ZeroInit) |
| return ZeroInitialization(E, T); |
| |
| return handleDefaultInitValue(T, Result); |
| } |
| |
| const FunctionDecl *Definition = nullptr; |
| auto Body = FD->getBody(Definition); |
| |
| if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) |
| return false; |
| |
| // Avoid materializing a temporary for an elidable copy/move constructor. |
| if (E->isElidable() && !ZeroInit) { |
| // FIXME: This only handles the simplest case, where the source object |
| // is passed directly as the first argument to the constructor. |
| // This should also handle stepping though implicit casts and |
| // and conversion sequences which involve two steps, with a |
| // conversion operator followed by a converting constructor. |
| const Expr *SrcObj = E->getArg(0); |
| assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent())); |
| assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType())); |
| if (const MaterializeTemporaryExpr *ME = |
| dyn_cast<MaterializeTemporaryExpr>(SrcObj)) |
| return Visit(ME->getSubExpr()); |
| } |
| |
| if (ZeroInit && !ZeroInitialization(E, T)) |
| return false; |
| |
| auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs()); |
| return HandleConstructorCall(E, This, Args, |
| cast<CXXConstructorDecl>(Definition), Info, |
| Result); |
| } |
| |
| bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr( |
| const CXXInheritedCtorInitExpr *E) { |
| if (!Info.CurrentCall) { |
| assert(Info.checkingPotentialConstantExpression()); |
| return false; |
| } |
| |
| const CXXConstructorDecl *FD = E->getConstructor(); |
| if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) |
| return false; |
| |
| const FunctionDecl *Definition = nullptr; |
| auto Body = FD->getBody(Definition); |
| |
| if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) |
| return false; |
| |
| return HandleConstructorCall(E, This, Info.CurrentCall->Arguments, |
| cast<CXXConstructorDecl>(Definition), Info, |
| Result); |
| } |
| |
| bool RecordExprEvaluator::VisitCXXStdInitializerListExpr( |
| const CXXStdInitializerListExpr *E) { |
| const ConstantArrayType *ArrayType = |
| Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); |
| |
| LValue Array; |
| if (!EvaluateLValue(E->getSubExpr(), Array, Info)) |
| return false; |
| |
| assert(ArrayType && "unexpected type for array initializer"); |
| |
| // Get a pointer to the first element of the array. |
| Array.addArray(Info, E, ArrayType); |
| |
| // FIXME: What if the initializer_list type has base classes, etc? |
| Result = APValue(APValue::UninitStruct(), 0, 2); |
| Array.moveInto(Result.getStructField(0)); |
| |
| RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); |
| RecordDecl::field_iterator Field = Record->field_begin(); |
| assert(Field != Record->field_end() && |
| Info.Ctx.hasSameType(Field->getType()->getPointeeType(), |
| ArrayType->getElementType()) && |
| "Expected std::initializer_list first field to be const E *"); |
| ++Field; |
| assert(Field != Record->field_end() && |
| "Expected std::initializer_list to have two fields"); |
| |
| if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType())) { |
| // Length. |
| Result.getStructField(1) = APValue(APSInt(ArrayType->getSize())); |
| } else { |
| // End pointer. |
| assert(Info.Ctx.hasSameType(Field->getType()->getPointeeType(), |
| ArrayType->getElementType()) && |
| "Expected std::initializer_list second field to be const E *"); |
| if (!HandleLValueArrayAdjustment(Info, E, Array, |
| ArrayType->getElementType(), |
| ArrayType->getZExtSize())) |
| return false; |
| Array.moveInto(Result.getStructField(1)); |
| } |
| |
| assert(++Field == Record->field_end() && |
| "Expected std::initializer_list to only have two fields"); |
| |
| return true; |
| } |
| |
| bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) { |
| const CXXRecordDecl *ClosureClass = E->getLambdaClass(); |
| if (ClosureClass->isInvalidDecl()) |
| return false; |
| |
| const size_t NumFields = |
| std::distance(ClosureClass->field_begin(), ClosureClass->field_end()); |
| |
| assert(NumFields == (size_t)std::distance(E->capture_init_begin(), |
| E->capture_init_end()) && |
| "The number of lambda capture initializers should equal the number of " |
| "fields within the closure type"); |
| |
| Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields); |
| // Iterate through all the lambda's closure object's fields and initialize |
| // them. |
| auto *CaptureInitIt = E->capture_init_begin(); |
| bool Success = true; |
| const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass); |
| for (const auto *Field : ClosureClass->fields()) { |
| assert(CaptureInitIt != E->capture_init_end()); |
| // Get the initializer for this field |
| Expr *const CurFieldInit = *CaptureInitIt++; |
| |
| // If there is no initializer, either this is a VLA or an error has |
| // occurred. |
| if (!CurFieldInit) |
| return Error(E); |
| |
| LValue Subobject = This; |
| |
| if (!HandleLValueMember(Info, E, Subobject, Field, &Layout)) |
| return false; |
| |
| APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); |
| if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) { |
| if (!Info.keepEvaluatingAfterFailure()) |
| return false; |
| Success = false; |
| } |
| } |
| return Success; |
| } |
| |
| static bool EvaluateRecord(const Expr *E, const LValue &This, |
| APValue &Result, EvalInfo &Info) { |
| assert(!E->isValueDependent()); |
| assert(E->isPRValue() && E->getType()->isRecordType() && |
| "can't evaluate expression as a record rvalue"); |
| return RecordExprEvaluator(Info, This, Result).Visit(E); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Temporary Evaluation |
| // |
| // Temporaries are represented in the AST as rvalues, but generally behave like |
| // lvalues. The full-object of which the temporary is a subobject is implicitly |
| // materialized so that a reference can bind to it. |
| //===----------------------------------------------------------------------===// |
| namespace { |
| class TemporaryExprEvaluator |
| : public LValueExprEvaluatorBase<TemporaryExprEvaluator> { |
| public: |
| TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) : |
| LValueExprEvaluatorBaseTy(Info, Result, false) {} |
| |
| /// Visit an expression which constructs the value of this temporary. |
| bool VisitConstructExpr(const Expr *E) { |
| APValue &Value = Info.CurrentCall->createTemporary( |
| E, E->getType(), ScopeKind::FullExpression, Result); |
| return EvaluateInPlace(Value, Info, Result, E); |
| } |
| |
| bool VisitCastExpr(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| default: |
| return LValueExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_ConstructorConversion: |
| return VisitConstructExpr(E->getSubExpr()); |
| } |
| } |
| bool VisitInitListExpr(const InitListExpr *E) { |
| return VisitConstructExpr(E); |
| } |
| bool VisitCXXConstructExpr(const CXXConstructExpr *E) { |
| return VisitConstructExpr(E); |
| } |
| bool VisitCallExpr(const CallExpr *E) { |
| return VisitConstructExpr(E); |
| } |
| bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) { |
| return VisitConstructExpr(E); |
| } |
| bool VisitLambdaExpr(const LambdaExpr *E) { |
| return VisitConstructExpr(E); |
| } |
| }; |
| } // end anonymous namespace |
| |
| /// Evaluate an expression of record type as a temporary. |
| static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) { |
| assert(!E->isValueDependent()); |
| assert(E->isPRValue() && E->getType()->isRecordType()); |
| return TemporaryExprEvaluator(Info, Result).Visit(E); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Vector Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class VectorExprEvaluator |
| : public ExprEvaluatorBase<VectorExprEvaluator> { |
| APValue &Result; |
| public: |
| |
| VectorExprEvaluator(EvalInfo &info, APValue &Result) |
| : ExprEvaluatorBaseTy(info), Result(Result) {} |
| |
| bool Success(ArrayRef<APValue> V, const Expr *E) { |
| assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements()); |
| // FIXME: remove this APValue copy. |
| Result = APValue(V.data(), V.size()); |
| return true; |
| } |
| bool Success(const APValue &V, const Expr *E) { |
| assert(V.isVector()); |
| Result = V; |
| return true; |
| } |
| bool ZeroInitialization(const Expr *E); |
| |
| bool VisitUnaryReal(const UnaryOperator *E) |
| { return Visit(E->getSubExpr()); } |
| bool VisitCastExpr(const CastExpr* E); |
| bool VisitInitListExpr(const InitListExpr *E); |
| bool VisitUnaryImag(const UnaryOperator *E); |
| bool VisitBinaryOperator(const BinaryOperator *E); |
| bool VisitUnaryOperator(const UnaryOperator *E); |
| bool VisitConvertVectorExpr(const ConvertVectorExpr *E); |
| bool VisitShuffleVectorExpr(const ShuffleVectorExpr *E); |
| |
| // FIXME: Missing: conditional operator (for GNU |
| // conditional select), ExtVectorElementExpr |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) { |
| assert(E->isPRValue() && E->getType()->isVectorType() && |
| "not a vector prvalue"); |
| return VectorExprEvaluator(Info, Result).Visit(E); |
| } |
| |
| bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) { |
| const VectorType *VTy = E->getType()->castAs<VectorType>(); |
| unsigned NElts = VTy->getNumElements(); |
| |
| const Expr *SE = E->getSubExpr(); |
| QualType SETy = SE->getType(); |
| |
| switch (E->getCastKind()) { |
| case CK_VectorSplat: { |
| APValue Val = APValue(); |
| if (SETy->isIntegerType()) { |
| APSInt IntResult; |
| if (!EvaluateInteger(SE, IntResult, Info)) |
| return false; |
| Val = APValue(std::move(IntResult)); |
| } else if (SETy->isRealFloatingType()) { |
| APFloat FloatResult(0.0); |
| if (!EvaluateFloat(SE, FloatResult, Info)) |
| return false; |
| Val = APValue(std::move(FloatResult)); |
| } else { |
| return Error(E); |
| } |
| |
| // Splat and create vector APValue. |
| SmallVector<APValue, 4> Elts(NElts, Val); |
| return Success(Elts, E); |
| } |
| case CK_BitCast: { |
| APValue SVal; |
| if (!Evaluate(SVal, Info, SE)) |
| return false; |
| |
| if (!SVal.isInt() && !SVal.isFloat() && !SVal.isVector()) { |
| // Give up if the input isn't an int, float, or vector. For example, we |
| // reject "(v4i16)(intptr_t)&a". |
| Info.FFDiag(E, diag::note_constexpr_invalid_cast) |
| << 2 << Info.Ctx.getLangOpts().CPlusPlus; |
| return false; |
| } |
| |
| if (!handleRValueToRValueBitCast(Info, Result, SVal, E)) |
| return false; |
| |
| return true; |
| } |
| case CK_HLSLVectorTruncation: { |
| APValue Val; |
| SmallVector<APValue, 4> Elements; |
| if (!EvaluateVector(SE, Val, Info)) |
| return Error(E); |
| for (unsigned I = 0; I < NElts; I++) |
| Elements.push_back(Val.getVectorElt(I)); |
| return Success(Elements, E); |
| } |
| default: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| } |
| } |
| |
| bool |
| VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) { |
| const VectorType *VT = E->getType()->castAs<VectorType>(); |
| unsigned NumInits = E->getNumInits(); |
| unsigned NumElements = VT->getNumElements(); |
| |
| QualType EltTy = VT->getElementType(); |
| SmallVector<APValue, 4> Elements; |
| |
| // The number of initializers can be less than the number of |
| // vector elements. For OpenCL, this can be due to nested vector |
| // initialization. For GCC compatibility, missing trailing elements |
| // should be initialized with zeroes. |
| unsigned CountInits = 0, CountElts = 0; |
| while (CountElts < NumElements) { |
| // Handle nested vector initialization. |
| if (CountInits < NumInits |
| && E->getInit(CountInits)->getType()->isVectorType()) { |
| APValue v; |
| if (!EvaluateVector(E->getInit(CountInits), v, Info)) |
| return Error(E); |
| unsigned vlen = v.getVectorLength(); |
| for (unsigned j = 0; j < vlen; j++) |
| Elements.push_back(v.getVectorElt(j)); |
| CountElts += vlen; |
| } else if (EltTy->isIntegerType()) { |
| llvm::APSInt sInt(32); |
| if (CountInits < NumInits) { |
| if (!EvaluateInteger(E->getInit(CountInits), sInt, Info)) |
| return false; |
| } else // trailing integer zero. |
| sInt = Info.Ctx.MakeIntValue(0, EltTy); |
| Elements.push_back(APValue(sInt)); |
| CountElts++; |
| } else { |
| llvm::APFloat f(0.0); |
| if (CountInits < NumInits) { |
| if (!EvaluateFloat(E->getInit(CountInits), f, Info)) |
| return false; |
| } else // trailing float zero. |
| f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)); |
| Elements.push_back(APValue(f)); |
| CountElts++; |
| } |
| CountInits++; |
| } |
| return Success(Elements, E); |
| } |
| |
| bool |
| VectorExprEvaluator::ZeroInitialization(const Expr *E) { |
| const auto *VT = E->getType()->castAs<VectorType>(); |
| QualType EltTy = VT->getElementType(); |
| APValue ZeroElement; |
| if (EltTy->isIntegerType()) |
| ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy)); |
| else |
| ZeroElement = |
| APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy))); |
| |
| SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement); |
| return Success(Elements, E); |
| } |
| |
| bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
| VisitIgnoredValue(E->getSubExpr()); |
| return ZeroInitialization(E); |
| } |
| |
| bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| BinaryOperatorKind Op = E->getOpcode(); |
| assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp && |
| "Operation not supported on vector types"); |
| |
| if (Op == BO_Comma) |
| return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
| |
| Expr *LHS = E->getLHS(); |
| Expr *RHS = E->getRHS(); |
| |
| assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() && |
| "Must both be vector types"); |
| // Checking JUST the types are the same would be fine, except shifts don't |
| // need to have their types be the same (since you always shift by an int). |
| assert(LHS->getType()->castAs<VectorType>()->getNumElements() == |
| E->getType()->castAs<VectorType>()->getNumElements() && |
| RHS->getType()->castAs<VectorType>()->getNumElements() == |
| E->getType()->castAs<VectorType>()->getNumElements() && |
| "All operands must be the same size."); |
| |
| APValue LHSValue; |
| APValue RHSValue; |
| bool LHSOK = Evaluate(LHSValue, Info, LHS); |
| if (!LHSOK && !Info.noteFailure()) |
| return false; |
| if (!Evaluate(RHSValue, Info, RHS) || !LHSOK) |
| return false; |
| |
| if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue)) |
| return false; |
| |
| return Success(LHSValue, E); |
| } |
| |
| static std::optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx, |
| QualType ResultTy, |
| UnaryOperatorKind Op, |
| APValue Elt) { |
| switch (Op) { |
| case UO_Plus: |
| // Nothing to do here. |
| return Elt; |
| case UO_Minus: |
| if (Elt.getKind() == APValue::Int) { |
| Elt.getInt().negate(); |
| } else { |
| assert(Elt.getKind() == APValue::Float && |
| "Vector can only be int or float type"); |
| Elt.getFloat().changeSign(); |
| } |
| return Elt; |
| case UO_Not: |
| // This is only valid for integral types anyway, so we don't have to handle |
| // float here. |
| assert(Elt.getKind() == APValue::Int && |
| "Vector operator ~ can only be int"); |
| Elt.getInt().flipAllBits(); |
| return Elt; |
| case UO_LNot: { |
| if (Elt.getKind() == APValue::Int) { |
| Elt.getInt() = !Elt.getInt(); |
| // operator ! on vectors returns -1 for 'truth', so negate it. |
| Elt.getInt().negate(); |
| return Elt; |
| } |
| assert(Elt.getKind() == APValue::Float && |
| "Vector can only be int or float type"); |
| // Float types result in an int of the same size, but -1 for true, or 0 for |
| // false. |
| APSInt EltResult{Ctx.getIntWidth(ResultTy), |
| ResultTy->isUnsignedIntegerType()}; |
| if (Elt.getFloat().isZero()) |
| EltResult.setAllBits(); |
| else |
| EltResult.clearAllBits(); |
| |
| return APValue{EltResult}; |
| } |
| default: |
| // FIXME: Implement the rest of the unary operators. |
| return std::nullopt; |
| } |
| } |
| |
| bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
| Expr *SubExpr = E->getSubExpr(); |
| const auto *VD = SubExpr->getType()->castAs<VectorType>(); |
| // This result element type differs in the case of negating a floating point |
| // vector, since the result type is the a vector of the equivilant sized |
| // integer. |
| const QualType ResultEltTy = VD->getElementType(); |
| UnaryOperatorKind Op = E->getOpcode(); |
| |
| APValue SubExprValue; |
| if (!Evaluate(SubExprValue, Info, SubExpr)) |
| return false; |
| |
| // FIXME: This vector evaluator someday needs to be changed to be LValue |
| // aware/keep LValue information around, rather than dealing with just vector |
| // types directly. Until then, we cannot handle cases where the operand to |
| // these unary operators is an LValue. The only case I've been able to see |
| // cause this is operator++ assigning to a member expression (only valid in |
| // altivec compilations) in C mode, so this shouldn't limit us too much. |
| if (SubExprValue.isLValue()) |
| return false; |
| |
| assert(SubExprValue.getVectorLength() == VD->getNumElements() && |
| "Vector length doesn't match type?"); |
| |
| SmallVector<APValue, 4> ResultElements; |
| for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) { |
| std::optional<APValue> Elt = handleVectorUnaryOperator( |
| Info.Ctx, ResultEltTy, Op, SubExprValue.getVectorElt(EltNum)); |
| if (!Elt) |
| return false; |
| ResultElements.push_back(*Elt); |
| } |
| return Success(APValue(ResultElements.data(), ResultElements.size()), E); |
| } |
| |
| static bool handleVectorElementCast(EvalInfo &Info, const FPOptions FPO, |
| const Expr *E, QualType SourceTy, |
| QualType DestTy, APValue const &Original, |
| APValue &Result) { |
| if (SourceTy->isIntegerType()) { |
| if (DestTy->isRealFloatingType()) { |
| Result = APValue(APFloat(0.0)); |
| return HandleIntToFloatCast(Info, E, FPO, SourceTy, Original.getInt(), |
| DestTy, Result.getFloat()); |
| } |
| if (DestTy->isIntegerType()) { |
| Result = APValue( |
| HandleIntToIntCast(Info, E, DestTy, SourceTy, Original.getInt())); |
| return true; |
| } |
| } else if (SourceTy->isRealFloatingType()) { |
| if (DestTy->isRealFloatingType()) { |
| Result = Original; |
| return HandleFloatToFloatCast(Info, E, SourceTy, DestTy, |
| Result.getFloat()); |
| } |
| if (DestTy->isIntegerType()) { |
| Result = APValue(APSInt()); |
| return HandleFloatToIntCast(Info, E, SourceTy, Original.getFloat(), |
| DestTy, Result.getInt()); |
| } |
| } |
| |
| Info.FFDiag(E, diag::err_convertvector_constexpr_unsupported_vector_cast) |
| << SourceTy << DestTy; |
| return false; |
| } |
| |
| bool VectorExprEvaluator::VisitConvertVectorExpr(const ConvertVectorExpr *E) { |
| APValue Source; |
| QualType SourceVecType = E->getSrcExpr()->getType(); |
| if (!EvaluateAsRValue(Info, E->getSrcExpr(), Source)) |
| return false; |
| |
| QualType DestTy = E->getType()->castAs<VectorType>()->getElementType(); |
| QualType SourceTy = SourceVecType->castAs<VectorType>()->getElementType(); |
| |
| const FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()); |
| |
| auto SourceLen = Source.getVectorLength(); |
| SmallVector<APValue, 4> ResultElements; |
| ResultElements.reserve(SourceLen); |
| for (unsigned EltNum = 0; EltNum < SourceLen; ++EltNum) { |
| APValue Elt; |
| if (!handleVectorElementCast(Info, FPO, E, SourceTy, DestTy, |
| Source.getVectorElt(EltNum), Elt)) |
| return false; |
| ResultElements.push_back(std::move(Elt)); |
| } |
| |
| return Success(APValue(ResultElements.data(), ResultElements.size()), E); |
| } |
| |
| static bool handleVectorShuffle(EvalInfo &Info, const ShuffleVectorExpr *E, |
| QualType ElemType, APValue const &VecVal1, |
| APValue const &VecVal2, unsigned EltNum, |
| APValue &Result) { |
| unsigned const TotalElementsInInputVector1 = VecVal1.getVectorLength(); |
| unsigned const TotalElementsInInputVector2 = VecVal2.getVectorLength(); |
| |
| APSInt IndexVal = E->getShuffleMaskIdx(Info.Ctx, EltNum); |
| int64_t index = IndexVal.getExtValue(); |
| // The spec says that -1 should be treated as undef for optimizations, |
| // but in constexpr we'd have to produce an APValue::Indeterminate, |
| // which is prohibited from being a top-level constant value. Emit a |
| // diagnostic instead. |
| if (index == -1) { |
| Info.FFDiag( |
| E, diag::err_shufflevector_minus_one_is_undefined_behavior_constexpr) |
| << EltNum; |
| return false; |
| } |
| |
| if (index < 0 || |
| index >= TotalElementsInInputVector1 + TotalElementsInInputVector2) |
| llvm_unreachable("Out of bounds shuffle index"); |
| |
| if (index >= TotalElementsInInputVector1) |
| Result = VecVal2.getVectorElt(index - TotalElementsInInputVector1); |
| else |
| Result = VecVal1.getVectorElt(index); |
| return true; |
| } |
| |
| bool VectorExprEvaluator::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) { |
| APValue VecVal1; |
| const Expr *Vec1 = E->getExpr(0); |
| if (!EvaluateAsRValue(Info, Vec1, VecVal1)) |
| return false; |
| APValue VecVal2; |
| const Expr *Vec2 = E->getExpr(1); |
| if (!EvaluateAsRValue(Info, Vec2, VecVal2)) |
| return false; |
| |
| VectorType const *DestVecTy = E->getType()->castAs<VectorType>(); |
| QualType DestElTy = DestVecTy->getElementType(); |
| |
| auto TotalElementsInOutputVector = DestVecTy->getNumElements(); |
| |
| SmallVector<APValue, 4> ResultElements; |
| ResultElements.reserve(TotalElementsInOutputVector); |
| for (unsigned EltNum = 0; EltNum < TotalElementsInOutputVector; ++EltNum) { |
| APValue Elt; |
| if (!handleVectorShuffle(Info, E, DestElTy, VecVal1, VecVal2, EltNum, Elt)) |
| return false; |
| ResultElements.push_back(std::move(Elt)); |
| } |
| |
| return Success(APValue(ResultElements.data(), ResultElements.size()), E); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Array Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class ArrayExprEvaluator |
| : public ExprEvaluatorBase<ArrayExprEvaluator> { |
| const LValue &This; |
| APValue &Result; |
| public: |
| |
| ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result) |
| : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} |
| |
| bool Success(const APValue &V, const Expr *E) { |
| assert(V.isArray() && "expected array"); |
| Result = V; |
| return true; |
| } |
| |
| bool ZeroInitialization(const Expr *E) { |
| const ConstantArrayType *CAT = |
| Info.Ctx.getAsConstantArrayType(E->getType()); |
| if (!CAT) { |
| if (E->getType()->isIncompleteArrayType()) { |
| // We can be asked to zero-initialize a flexible array member; this |
| // is represented as an ImplicitValueInitExpr of incomplete array |
| // type. In this case, the array has zero elements. |
| Result = APValue(APValue::UninitArray(), 0, 0); |
| return true; |
| } |
| // FIXME: We could handle VLAs here. |
| return Error(E); |
| } |
| |
| Result = APValue(APValue::UninitArray(), 0, CAT->getZExtSize()); |
| if (!Result.hasArrayFiller()) |
| return true; |
| |
| // Zero-initialize all elements. |
| LValue Subobject = This; |
| Subobject.addArray(Info, E, CAT); |
| ImplicitValueInitExpr VIE(CAT->getElementType()); |
| return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE); |
| } |
| |
| bool VisitCallExpr(const CallExpr *E) { |
| return handleCallExpr(E, Result, &This); |
| } |
| bool VisitInitListExpr(const InitListExpr *E, |
| QualType AllocType = QualType()); |
| bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E); |
| bool VisitCXXConstructExpr(const CXXConstructExpr *E); |
| bool VisitCXXConstructExpr(const CXXConstructExpr *E, |
| const LValue &Subobject, |
| APValue *Value, QualType Type); |
| bool VisitStringLiteral(const StringLiteral *E, |
| QualType AllocType = QualType()) { |
| expandStringLiteral(Info, E, Result, AllocType); |
| return true; |
| } |
| bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E); |
| bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit, |
| ArrayRef<Expr *> Args, |
| const Expr *ArrayFiller, |
| QualType AllocType = QualType()); |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateArray(const Expr *E, const LValue &This, |
| APValue &Result, EvalInfo &Info) { |
| assert(!E->isValueDependent()); |
| assert(E->isPRValue() && E->getType()->isArrayType() && |
| "not an array prvalue"); |
| return ArrayExprEvaluator(Info, This, Result).Visit(E); |
| } |
| |
| static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, |
| APValue &Result, const InitListExpr *ILE, |
| QualType AllocType) { |
| assert(!ILE->isValueDependent()); |
| assert(ILE->isPRValue() && ILE->getType()->isArrayType() && |
| "not an array prvalue"); |
| return ArrayExprEvaluator(Info, This, Result) |
| .VisitInitListExpr(ILE, AllocType); |
| } |
| |
| static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This, |
| APValue &Result, |
| const CXXConstructExpr *CCE, |
| QualType AllocType) { |
| assert(!CCE->isValueDependent()); |
| assert(CCE->isPRValue() && CCE->getType()->isArrayType() && |
| "not an array prvalue"); |
| return ArrayExprEvaluator(Info, This, Result) |
| .VisitCXXConstructExpr(CCE, This, &Result, AllocType); |
| } |
| |
| // Return true iff the given array filler may depend on the element index. |
| static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) { |
| // For now, just allow non-class value-initialization and initialization |
| // lists comprised of them. |
| if (isa<ImplicitValueInitExpr>(FillerExpr)) |
| return false; |
| if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) { |
| for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) { |
| if (MaybeElementDependentArrayFiller(ILE->getInit(I))) |
| return true; |
| } |
| |
| if (ILE->hasArrayFiller() && |
| MaybeElementDependentArrayFiller(ILE->getArrayFiller())) |
| return true; |
| |
| return false; |
| } |
| return true; |
| } |
| |
| bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E, |
| QualType AllocType) { |
| const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( |
| AllocType.isNull() ? E->getType() : AllocType); |
| if (!CAT) |
| return Error(E); |
| |
| // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...] |
| // an appropriately-typed string literal enclosed in braces. |
| if (E->isStringLiteralInit()) { |
| auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParenImpCasts()); |
| // FIXME: Support ObjCEncodeExpr here once we support it in |
| // ArrayExprEvaluator generally. |
| if (!SL) |
| return Error(E); |
| return VisitStringLiteral(SL, AllocType); |
| } |
| // Any other transparent list init will need proper handling of the |
| // AllocType; we can't just recurse to the inner initializer. |
| assert(!E->isTransparent() && |
| "transparent array list initialization is not string literal init?"); |
| |
| return VisitCXXParenListOrInitListExpr(E, E->inits(), E->getArrayFiller(), |
| AllocType); |
| } |
| |
| bool ArrayExprEvaluator::VisitCXXParenListOrInitListExpr( |
| const Expr *ExprToVisit, ArrayRef<Expr *> Args, const Expr *ArrayFiller, |
| QualType AllocType) { |
| const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( |
| AllocType.isNull() ? ExprToVisit->getType() : AllocType); |
| |
| bool Success = true; |
| |
| assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) && |
| "zero-initialized array shouldn't have any initialized elts"); |
| APValue Filler; |
| if (Result.isArray() && Result.hasArrayFiller()) |
| Filler = Result.getArrayFiller(); |
| |
| unsigned NumEltsToInit = Args.size(); |
| unsigned NumElts = CAT->getZExtSize(); |
| |
| // If the initializer might depend on the array index, run it for each |
| // array element. |
| if (NumEltsToInit != NumElts && |
| MaybeElementDependentArrayFiller(ArrayFiller)) { |
| NumEltsToInit = NumElts; |
| } else { |
| for (auto *Init : Args) { |
| if (auto *EmbedS = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) |
| NumEltsToInit += EmbedS->getDataElementCount() - 1; |
| } |
| if (NumEltsToInit > NumElts) |
| NumEltsToInit = NumElts; |
| } |
| |
| LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: " |
| << NumEltsToInit << ".\n"); |
| |
| Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts); |
| |
| // If the array was previously zero-initialized, preserve the |
| // zero-initialized values. |
| if (Filler.hasValue()) { |
| for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I) |
| Result.getArrayInitializedElt(I) = Filler; |
| if (Result.hasArrayFiller()) |
| Result.getArrayFiller() = Filler; |
| } |
| |
| LValue Subobject = This; |
| Subobject.addArray(Info, ExprToVisit, CAT); |
| auto Eval = [&](const Expr *Init, unsigned ArrayIndex) { |
| if (!EvaluateInPlace(Result.getArrayInitializedElt(ArrayIndex), Info, |
| Subobject, Init) || |
| !HandleLValueArrayAdjustment(Info, Init, Subobject, |
| CAT->getElementType(), 1)) { |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| return true; |
| }; |
| unsigned ArrayIndex = 0; |
| QualType DestTy = CAT->getElementType(); |
| APSInt Value(Info.Ctx.getTypeSize(DestTy), DestTy->isUnsignedIntegerType()); |
| for (unsigned Index = 0; Index != NumEltsToInit; ++Index) { |
| const Expr *Init = Index < Args.size() ? Args[Index] : ArrayFiller; |
| if (ArrayIndex >= NumEltsToInit) |
| break; |
| if (auto *EmbedS = dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) { |
| StringLiteral *SL = EmbedS->getDataStringLiteral(); |
| for (unsigned I = EmbedS->getStartingElementPos(), |
| N = EmbedS->getDataElementCount(); |
| I != EmbedS->getStartingElementPos() + N; ++I) { |
| Value = SL->getCodeUnit(I); |
| if (DestTy->isIntegerType()) { |
| Result.getArrayInitializedElt(ArrayIndex) = APValue(Value); |
| } else { |
| assert(DestTy->isFloatingType() && "unexpected type"); |
| const FPOptions FPO = |
| Init->getFPFeaturesInEffect(Info.Ctx.getLangOpts()); |
| APFloat FValue(0.0); |
| if (!HandleIntToFloatCast(Info, Init, FPO, EmbedS->getType(), Value, |
| DestTy, FValue)) |
| return false; |
| Result.getArrayInitializedElt(ArrayIndex) = APValue(FValue); |
| } |
| ArrayIndex++; |
| } |
| } else { |
| if (!Eval(Init, ArrayIndex)) |
| return false; |
| ++ArrayIndex; |
| } |
| } |
| |
| if (!Result.hasArrayFiller()) |
| return Success; |
| |
| // If we get here, we have a trivial filler, which we can just evaluate |
| // once and splat over the rest of the array elements. |
| assert(ArrayFiller && "no array filler for incomplete init list"); |
| return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, |
| ArrayFiller) && |
| Success; |
| } |
| |
| bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { |
| LValue CommonLV; |
| if (E->getCommonExpr() && |
| !Evaluate(Info.CurrentCall->createTemporary( |
| E->getCommonExpr(), |
| getStorageType(Info.Ctx, E->getCommonExpr()), |
| ScopeKind::FullExpression, CommonLV), |
| Info, E->getCommonExpr()->getSourceExpr())) |
| return false; |
| |
| auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe()); |
| |
| uint64_t Elements = CAT->getZExtSize(); |
| Result = APValue(APValue::UninitArray(), Elements, Elements); |
| |
| LValue Subobject = This; |
| Subobject.addArray(Info, E, CAT); |
| |
| bool Success = true; |
| for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) { |
| // C++ [class.temporary]/5 |
| // There are four contexts in which temporaries are destroyed at a different |
| // point than the end of the full-expression. [...] The second context is |
| // when a copy constructor is called to copy an element of an array while |
| // the entire array is copied [...]. In either case, if the constructor has |
| // one or more default arguments, the destruction of every temporary created |
| // in a default argument is sequenced before the construction of the next |
| // array element, if any. |
| FullExpressionRAII Scope(Info); |
| |
| if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), |
| Info, Subobject, E->getSubExpr()) || |
| !HandleLValueArrayAdjustment(Info, E, Subobject, |
| CAT->getElementType(), 1)) { |
| if (!Info.noteFailure()) |
| return false; |
| Success = false; |
| } |
| |
| // Make sure we run the destructors too. |
| Scope.destroy(); |
| } |
| |
| return Success; |
| } |
| |
| bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) { |
| return VisitCXXConstructExpr(E, This, &Result, E->getType()); |
| } |
| |
| bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, |
| const LValue &Subobject, |
| APValue *Value, |
| QualType Type) { |
| bool HadZeroInit = Value->hasValue(); |
| |
| if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) { |
| unsigned FinalSize = CAT->getZExtSize(); |
| |
| // Preserve the array filler if we had prior zero-initialization. |
| APValue Filler = |
| HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller() |
| : APValue(); |
| |
| *Value = APValue(APValue::UninitArray(), 0, FinalSize); |
| if (FinalSize == 0) |
| return true; |
| |
| bool HasTrivialConstructor = CheckTrivialDefaultConstructor( |
| Info, E->getExprLoc(), E->getConstructor(), |
| E->requiresZeroInitialization()); |
| LValue ArrayElt = Subobject; |
| ArrayElt.addArray(Info, E, CAT); |
| // We do the whole initialization in two passes, first for just one element, |
| // then for the whole array. It's possible we may find out we can't do const |
| // init in the first pass, in which case we avoid allocating a potentially |
| // large array. We don't do more passes because expanding array requires |
| // copying the data, which is wasteful. |
| for (const unsigned N : {1u, FinalSize}) { |
| unsigned OldElts = Value->getArrayInitializedElts(); |
| if (OldElts == N) |
| break; |
| |
| // Expand the array to appropriate size. |
| APValue NewValue(APValue::UninitArray(), N, FinalSize); |
| for (unsigned I = 0; I < OldElts; ++I) |
| NewValue.getArrayInitializedElt(I).swap( |
| Value->getArrayInitializedElt(I)); |
| Value->swap(NewValue); |
| |
| if (HadZeroInit) |
| for (unsigned I = OldElts; I < N; ++I) |
| Value->getArrayInitializedElt(I) = Filler; |
| |
| if (HasTrivialConstructor && N == FinalSize && FinalSize != 1) { |
| // If we have a trivial constructor, only evaluate it once and copy |
| // the result into all the array elements. |
| APValue &FirstResult = Value->getArrayInitializedElt(0); |
| for (unsigned I = OldElts; I < FinalSize; ++I) |
| Value->getArrayInitializedElt(I) = FirstResult; |
| } else { |
| for (unsigned I = OldElts; I < N; ++I) { |
| if (!VisitCXXConstructExpr(E, ArrayElt, |
| &Value->getArrayInitializedElt(I), |
| CAT->getElementType()) || |
| !HandleLValueArrayAdjustment(Info, E, ArrayElt, |
| CAT->getElementType(), 1)) |
| return false; |
| // When checking for const initilization any diagnostic is considered |
| // an error. |
| if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() && |
| !Info.keepEvaluatingAfterFailure()) |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| if (!Type->isRecordType()) |
| return Error(E); |
| |
| return RecordExprEvaluator(Info, Subobject, *Value) |
| .VisitCXXConstructExpr(E, Type); |
| } |
| |
| bool ArrayExprEvaluator::VisitCXXParenListInitExpr( |
| const CXXParenListInitExpr *E) { |
| assert(E->getType()->isConstantArrayType() && |
| "Expression result is not a constant array type"); |
| |
| return VisitCXXParenListOrInitListExpr(E, E->getInitExprs(), |
| E->getArrayFiller()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Integer Evaluation |
| // |
| // As a GNU extension, we support casting pointers to sufficiently-wide integer |
| // types and back in constant folding. Integer values are thus represented |
| // either as an integer-valued APValue, or as an lvalue-valued APValue. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class IntExprEvaluator |
| : public ExprEvaluatorBase<IntExprEvaluator> { |
| APValue &Result; |
| public: |
| IntExprEvaluator(EvalInfo &info, APValue &result) |
| : ExprEvaluatorBaseTy(info), Result(result) {} |
| |
| bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) { |
| assert(E->getType()->isIntegralOrEnumerationType() && |
| "Invalid evaluation result."); |
| assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && |
| "Invalid evaluation result."); |
| assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && |
| "Invalid evaluation result."); |
| Result = APValue(SI); |
| return true; |
| } |
| bool Success(const llvm::APSInt &SI, const Expr *E) { |
| return Success(SI, E, Result); |
| } |
| |
| bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) { |
| assert(E->getType()->isIntegralOrEnumerationType() && |
| "Invalid evaluation result."); |
| assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && |
| "Invalid evaluation result."); |
| Result = APValue(APSInt(I)); |
| Result.getInt().setIsUnsigned( |
| E->getType()->isUnsignedIntegerOrEnumerationType()); |
| return true; |
| } |
| bool Success(const llvm::APInt &I, const Expr *E) { |
| return Success(I, E, Result); |
| } |
| |
| bool Success(uint64_t Value, const Expr *E, APValue &Result) { |
| assert(E->getType()->isIntegralOrEnumerationType() && |
| "Invalid evaluation result."); |
| Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType())); |
| return true; |
| } |
| bool Success(uint64_t Value, const Expr *E) { |
| return Success(Value, E, Result); |
| } |
| |
| bool Success(CharUnits Size, const Expr *E) { |
| return Success(Size.getQuantity(), E); |
| } |
| |
| bool Success(const APValue &V, const Expr *E) { |
| if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) { |
| Result = V; |
| return true; |
| } |
| return Success(V.getInt(), E); |
| } |
| |
| bool ZeroInitialization(const Expr *E) { return Success(0, E); } |
| |
| friend std::optional<bool> EvaluateBuiltinIsWithinLifetime(IntExprEvaluator &, |
| const CallExpr *); |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| bool VisitIntegerLiteral(const IntegerLiteral *E) { |
| return Success(E->getValue(), E); |
| } |
| bool VisitCharacterLiteral(const CharacterLiteral *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool CheckReferencedDecl(const Expr *E, const Decl *D); |
| bool VisitDeclRefExpr(const DeclRefExpr *E) { |
| if (CheckReferencedDecl(E, E->getDecl())) |
| return true; |
| |
| return ExprEvaluatorBaseTy::VisitDeclRefExpr(E); |
| } |
| bool VisitMemberExpr(const MemberExpr *E) { |
| if (CheckReferencedDecl(E, E->getMemberDecl())) { |
| VisitIgnoredBaseExpression(E->getBase()); |
| return true; |
| } |
| |
| return ExprEvaluatorBaseTy::VisitMemberExpr(E); |
| } |
| |
| bool VisitCallExpr(const CallExpr *E); |
| bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); |
| bool VisitBinaryOperator(const BinaryOperator *E); |
| bool VisitOffsetOfExpr(const OffsetOfExpr *E); |
| bool VisitUnaryOperator(const UnaryOperator *E); |
| |
| bool VisitCastExpr(const CastExpr* E); |
| bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); |
| |
| bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { |
| if (Info.ArrayInitIndex == uint64_t(-1)) { |
| // We were asked to evaluate this subexpression independent of the |
| // enclosing ArrayInitLoopExpr. We can't do that. |
| Info.FFDiag(E); |
| return false; |
| } |
| return Success(Info.ArrayInitIndex, E); |
| } |
| |
| // Note, GNU defines __null as an integer, not a pointer. |
| bool VisitGNUNullExpr(const GNUNullExpr *E) { |
| return ZeroInitialization(E); |
| } |
| |
| bool VisitTypeTraitExpr(const TypeTraitExpr *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool VisitOpenACCAsteriskSizeExpr(const OpenACCAsteriskSizeExpr *E) { |
| // This should not be evaluated during constant expr evaluation, as it |
| // should always be in an unevaluated context (the args list of a 'gang' or |
| // 'tile' clause). |
| return Error(E); |
| } |
| |
| bool VisitUnaryReal(const UnaryOperator *E); |
| bool VisitUnaryImag(const UnaryOperator *E); |
| |
| bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E); |
| bool VisitSizeOfPackExpr(const SizeOfPackExpr *E); |
| bool VisitSourceLocExpr(const SourceLocExpr *E); |
| bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E); |
| bool VisitRequiresExpr(const RequiresExpr *E); |
| // FIXME: Missing: array subscript of vector, member of vector |
| }; |
| |
| class FixedPointExprEvaluator |
| : public ExprEvaluatorBase<FixedPointExprEvaluator> { |
| APValue &Result; |
| |
| public: |
| FixedPointExprEvaluator(EvalInfo &info, APValue &result) |
| : ExprEvaluatorBaseTy(info), Result(result) {} |
| |
| bool Success(const llvm::APInt &I, const Expr *E) { |
| return Success( |
| APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E); |
| } |
| |
| bool Success(uint64_t Value, const Expr *E) { |
| return Success( |
| APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E); |
| } |
| |
| bool Success(const APValue &V, const Expr *E) { |
| return Success(V.getFixedPoint(), E); |
| } |
| |
| bool Success(const APFixedPoint &V, const Expr *E) { |
| assert(E->getType()->isFixedPointType() && "Invalid evaluation result."); |
| assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) && |
| "Invalid evaluation result."); |
| Result = APValue(V); |
| return true; |
| } |
| |
| bool ZeroInitialization(const Expr *E) { |
| return Success(0, E); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| bool VisitFixedPointLiteral(const FixedPointLiteral *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool VisitCastExpr(const CastExpr *E); |
| bool VisitUnaryOperator(const UnaryOperator *E); |
| bool VisitBinaryOperator(const BinaryOperator *E); |
| }; |
| } // end anonymous namespace |
| |
| /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and |
| /// produce either the integer value or a pointer. |
| /// |
| /// GCC has a heinous extension which folds casts between pointer types and |
| /// pointer-sized integral types. We support this by allowing the evaluation of |
| /// an integer rvalue to produce a pointer (represented as an lvalue) instead. |
| /// Some simple arithmetic on such values is supported (they are treated much |
| /// like char*). |
| static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, |
| EvalInfo &Info) { |
| assert(!E->isValueDependent()); |
| assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType()); |
| return IntExprEvaluator(Info, Result).Visit(E); |
| } |
| |
| static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) { |
| assert(!E->isValueDependent()); |
| APValue Val; |
| if (!EvaluateIntegerOrLValue(E, Val, Info)) |
| return false; |
| if (!Val.isInt()) { |
| // FIXME: It would be better to produce the diagnostic for casting |
| // a pointer to an integer. |
| Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| return false; |
| } |
| Result = Val.getInt(); |
| return true; |
| } |
| |
| bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) { |
| APValue Evaluated = E->EvaluateInContext( |
| Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); |
| return Success(Evaluated, E); |
| } |
| |
| static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, |
| EvalInfo &Info) { |
| assert(!E->isValueDependent()); |
| if (E->getType()->isFixedPointType()) { |
| APValue Val; |
| if (!FixedPointExprEvaluator(Info, Val).Visit(E)) |
| return false; |
| if (!Val.isFixedPoint()) |
| return false; |
| |
| Result = Val.getFixedPoint(); |
| return true; |
| } |
| return false; |
| } |
| |
| static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, |
| EvalInfo &Info) { |
| assert(!E->isValueDependent()); |
| if (E->getType()->isIntegerType()) { |
| auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType()); |
| APSInt Val; |
| if (!EvaluateInteger(E, Val, Info)) |
| return false; |
| Result = APFixedPoint(Val, FXSema); |
| return true; |
| } else if (E->getType()->isFixedPointType()) { |
| return EvaluateFixedPoint(E, Result, Info); |
| } |
| return false; |
| } |
| |
| /// Check whether the given declaration can be directly converted to an integral |
| /// rvalue. If not, no diagnostic is produced; there are other things we can |
| /// try. |
| bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) { |
| // Enums are integer constant exprs. |
| if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) { |
| // Check for signedness/width mismatches between E type and ECD value. |
| bool SameSign = (ECD->getInitVal().isSigned() |
| == E->getType()->isSignedIntegerOrEnumerationType()); |
| bool SameWidth = (ECD->getInitVal().getBitWidth() |
| == Info.Ctx.getIntWidth(E->getType())); |
| if (SameSign && SameWidth) |
| return Success(ECD->getInitVal(), E); |
| else { |
| // Get rid of mismatch (otherwise Success assertions will fail) |
| // by computing a new value matching the type of E. |
| llvm::APSInt Val = ECD->getInitVal(); |
| if (!SameSign) |
| Val.setIsSigned(!ECD->getInitVal().isSigned()); |
| if (!SameWidth) |
| Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType())); |
| return Success(Val, E); |
| } |
| } |
| return false; |
| } |
| |
| /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way |
| /// as GCC. |
| GCCTypeClass EvaluateBuiltinClassifyType(QualType T, |
| const LangOptions &LangOpts) { |
| assert(!T->isDependentType() && "unexpected dependent type"); |
| |
| QualType CanTy = T.getCanonicalType(); |
| |
| switch (CanTy->getTypeClass()) { |
| #define TYPE(ID, BASE) |
| #define DEPENDENT_TYPE(ID, BASE) case Type::ID: |
| #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID: |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID: |
| #include "clang/AST/TypeNodes.inc" |
| case Type::Auto: |
| case Type::DeducedTemplateSpecialization: |
| llvm_unreachable("unexpected non-canonical or dependent type"); |
| |
| case Type::Builtin: |
| switch (cast<BuiltinType>(CanTy)->getKind()) { |
| #define BUILTIN_TYPE(ID, SINGLETON_ID) |
| #define SIGNED_TYPE(ID, SINGLETON_ID) \ |
| case BuiltinType::ID: return GCCTypeClass::Integer; |
| #define FLOATING_TYPE(ID, SINGLETON_ID) \ |
| case BuiltinType::ID: return GCCTypeClass::RealFloat; |
| #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \ |
| case BuiltinType::ID: break; |
| #include "clang/AST/BuiltinTypes.def" |
| case BuiltinType::Void: |
| return GCCTypeClass::Void; |
| |
| case BuiltinType::Bool: |
| return GCCTypeClass::Bool; |
| |
| case BuiltinType::Char_U: |
| case BuiltinType::UChar: |
| case BuiltinType::WChar_U: |
| case BuiltinType::Char8: |
| case BuiltinType::Char16: |
| case BuiltinType::Char32: |
| case BuiltinType::UShort: |
| case BuiltinType::UInt: |
| case BuiltinType::ULong: |
| case BuiltinType::ULongLong: |
| case BuiltinType::UInt128: |
| return GCCTypeClass::Integer; |
| |
| case BuiltinType::UShortAccum: |
| case BuiltinType::UAccum: |
| case BuiltinType::ULongAccum: |
| case BuiltinType::UShortFract: |
| case BuiltinType::UFract: |
| case BuiltinType::ULongFract: |
| case BuiltinType::SatUShortAccum: |
| case BuiltinType::SatUAccum: |
| case BuiltinType::SatULongAccum: |
| case BuiltinType::SatUShortFract: |
| case BuiltinType::SatUFract: |
| case BuiltinType::SatULongFract: |
| return GCCTypeClass::None; |
| |
| case BuiltinType::NullPtr: |
| |
| case BuiltinType::ObjCId: |
| case BuiltinType::ObjCClass: |
| case BuiltinType::ObjCSel: |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/OpenCLImageTypes.def" |
| #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/OpenCLExtensionTypes.def" |
| case BuiltinType::OCLSampler: |
| case BuiltinType::OCLEvent: |
| case BuiltinType::OCLClkEvent: |
| case BuiltinType::OCLQueue: |
| case BuiltinType::OCLReserveID: |
| #define SVE_TYPE(Name, Id, SingletonId) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/AArch64SVEACLETypes.def" |
| #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/PPCTypes.def" |
| #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
| #include "clang/Basic/RISCVVTypes.def" |
| #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
| #include "clang/Basic/WebAssemblyReferenceTypes.def" |
| #define AMDGPU_TYPE(Name, Id, SingletonId, Width, Align) case BuiltinType::Id: |
| #include "clang/Basic/AMDGPUTypes.def" |
| #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
| #include "clang/Basic/HLSLIntangibleTypes.def" |
| return GCCTypeClass::None; |
| |
| case BuiltinType::Dependent: |
| llvm_unreachable("unexpected dependent type"); |
| }; |
| llvm_unreachable("unexpected placeholder type"); |
| |
| case Type::Enum: |
| return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer; |
| |
| case Type::Pointer: |
| case Type::ConstantArray: |
| case Type::VariableArray: |
| case Type::IncompleteArray: |
| case Type::FunctionNoProto: |
| case Type::FunctionProto: |
| case Type::ArrayParameter: |
| return GCCTypeClass::Pointer; |
| |
| case Type::MemberPointer: |
| return CanTy->isMemberDataPointerType() |
| ? GCCTypeClass::PointerToDataMember |
| : GCCTypeClass::PointerToMemberFunction; |
| |
| case Type::Complex: |
| return GCCTypeClass::Complex; |
| |
| case Type::Record: |
| return CanTy->isUnionType() ? GCCTypeClass::Union |
| : GCCTypeClass::ClassOrStruct; |
| |
| case Type::Atomic: |
| // GCC classifies _Atomic T the same as T. |
| return EvaluateBuiltinClassifyType( |
| CanTy->castAs<AtomicType>()->getValueType(), LangOpts); |
| |
| case Type::Vector: |
| case Type::ExtVector: |
| return GCCTypeClass::Vector; |
| |
| case Type::BlockPointer: |
| case Type::ConstantMatrix: |
| case Type::ObjCObject: |
| case Type::ObjCInterface: |
| case Type::ObjCObjectPointer: |
| case Type::Pipe: |
| // Classify all other types that don't fit into the regular |
| // classification the same way. |
| return GCCTypeClass::None; |
| |
| case Type::BitInt: |
| return GCCTypeClass::BitInt; |
| |
| case Type::LValueReference: |
| case Type::RValueReference: |
| llvm_unreachable("invalid type for expression"); |
| } |
| |
| llvm_unreachable("unexpected type class"); |
| } |
| |
| /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way |
| /// as GCC. |
| static GCCTypeClass |
| EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) { |
| // If no argument was supplied, default to None. This isn't |
| // ideal, however it is what gcc does. |
| if (E->getNumArgs() == 0) |
| return GCCTypeClass::None; |
| |
| // FIXME: Bizarrely, GCC treats a call with more than one argument as not |
| // being an ICE, but still folds it to a constant using the type of the first |
| // argument. |
| return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts); |
| } |
| |
| /// EvaluateBuiltinConstantPForLValue - Determine the result of |
| /// __builtin_constant_p when applied to the given pointer. |
| /// |
| /// A pointer is only "constant" if it is null (or a pointer cast to integer) |
| /// or it points to the first character of a string literal. |
| static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) { |
| APValue::LValueBase Base = LV.getLValueBase(); |
| if (Base.isNull()) { |
| // A null base is acceptable. |
| return true; |
| } else if (const Expr *E = Base.dyn_cast<const Expr *>()) { |
| if (!isa<StringLiteral>(E)) |
| return false; |
| return LV.getLValueOffset().isZero(); |
| } else if (Base.is<TypeInfoLValue>()) { |
| // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to |
| // evaluate to true. |
| return true; |
| } else { |
| // Any other base is not constant enough for GCC. |
| return false; |
| } |
| } |
| |
| /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to |
| /// GCC as we can manage. |
| static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) { |
| // This evaluation is not permitted to have side-effects, so evaluate it in |
| // a speculative evaluation context. |
| SpeculativeEvaluationRAII SpeculativeEval(Info); |
| |
| // Constant-folding is always enabled for the operand of __builtin_constant_p |
| // (even when the enclosing evaluation context otherwise requires a strict |
| // language-specific constant expression). |
| FoldConstant Fold(Info, true); |
| |
| QualType ArgType = Arg->getType(); |
| |
| // __builtin_constant_p always has one operand. The rules which gcc follows |
| // are not precisely documented, but are as follows: |
| // |
| // - If the operand is of integral, floating, complex or enumeration type, |
| // and can be folded to a known value of that type, it returns 1. |
| // - If the operand can be folded to a pointer to the first character |
| // of a string literal (or such a pointer cast to an integral type) |
| // or to a null pointer or an integer cast to a pointer, it returns 1. |
| // |
| // Otherwise, it returns 0. |
| // |
| // FIXME: GCC also intends to return 1 for literals of aggregate types, but |
| // its support for this did not work prior to GCC 9 and is not yet well |
| // understood. |
| if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() || |
| ArgType->isAnyComplexType() || ArgType->isPointerType() || |
| ArgType->isNullPtrType()) { |
| APValue V; |
| if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) { |
| Fold.keepDiagnostics(); |
| return false; |
| } |
| |
| // For a pointer (possibly cast to integer), there are special rules. |
| if (V.getKind() == APValue::LValue) |
| return EvaluateBuiltinConstantPForLValue(V); |
| |
| // Otherwise, any constant value is good enough. |
| return V.hasValue(); |
| } |
| |
| // Anything else isn't considered to be sufficiently constant. |
| return false; |
| } |
| |
| /// Retrieves the "underlying object type" of the given expression, |
| /// as used by __builtin_object_size. |
| static QualType getObjectType(APValue::LValueBase B) { |
| if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
| return VD->getType(); |
| } else if (const Expr *E = B.dyn_cast<const Expr*>()) { |
| if (isa<CompoundLiteralExpr>(E)) |
| return E->getType(); |
| } else if (B.is<TypeInfoLValue>()) { |
| return B.getTypeInfoType(); |
| } else if (B.is<DynamicAllocLValue>()) { |
| return B.getDynamicAllocType(); |
| } |
| |
| return QualType(); |
| } |
| |
| /// A more selective version of E->IgnoreParenCasts for |
| /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only |
| /// to change the type of E. |
| /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo` |
| /// |
| /// Always returns an RValue with a pointer representation. |
| static const Expr *ignorePointerCastsAndParens(const Expr *E) { |
| assert(E->isPRValue() && E->getType()->hasPointerRepresentation()); |
| |
| const Expr *NoParens = E->IgnoreParens(); |
| const auto *Cast = dyn_cast<CastExpr>(NoParens); |
| if (Cast == nullptr) |
| return NoParens; |
| |
| // We only conservatively allow a few kinds of casts, because this code is |
| // inherently a simple solution that seeks to support the common case. |
| auto CastKind = Cast->getCastKind(); |
| if (CastKind != CK_NoOp && CastKind != CK_BitCast && |
| CastKind != CK_AddressSpaceConversion) |
| return NoParens; |
| |
| const auto *SubExpr = Cast->getSubExpr(); |
| if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue()) |
| return NoParens; |
| return ignorePointerCastsAndParens(SubExpr); |
| } |
| |
| /// Checks to see if the given LValue's Designator is at the end of the LValue's |
| /// record layout. e.g. |
| /// struct { struct { int a, b; } fst, snd; } obj; |
| /// obj.fst // no |
| /// obj.snd // yes |
| /// obj.fst.a // no |
| /// obj.fst.b // no |
| /// obj.snd.a // no |
| /// obj.snd.b // yes |
| /// |
| /// Please note: this function is specialized for how __builtin_object_size |
| /// views "objects". |
| /// |
| /// If this encounters an invalid RecordDecl or otherwise cannot determine the |
| /// correct result, it will always return true. |
| static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) { |
| assert(!LVal.Designator.Invalid); |
| |
| auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) { |
| const RecordDecl *Parent = FD->getParent(); |
| Invalid = Parent->isInvalidDecl(); |
| if (Invalid || Parent->isUnion()) |
| return true; |
| const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent); |
| return FD->getFieldIndex() + 1 == Layout.getFieldCount(); |
| }; |
| |
| auto &Base = LVal.getLValueBase(); |
| if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) { |
| if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { |
| bool Invalid; |
| if (!IsLastOrInvalidFieldDecl(FD, Invalid)) |
| return Invalid; |
| } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) { |
| for (auto *FD : IFD->chain()) { |
| bool Invalid; |
| if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid)) |
| return Invalid; |
| } |
| } |
| } |
| |
| unsigned I = 0; |
| QualType BaseType = getType(Base); |
| if (LVal.Designator.FirstEntryIsAnUnsizedArray) { |
| // If we don't know the array bound, conservatively assume we're looking at |
| // the final array element. |
| ++I; |
| if (BaseType->isIncompleteArrayType()) |
| BaseType = Ctx.getAsArrayType(BaseType)->getElementType(); |
| else |
| BaseType = BaseType->castAs<PointerType>()->getPointeeType(); |
| } |
| |
| for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) { |
| const auto &Entry = LVal.Designator.Entries[I]; |
| if (BaseType->isArrayType()) { |
| // Because __builtin_object_size treats arrays as objects, we can ignore |
| // the index iff this is the last array in the Designator. |
| if (I + 1 == E) |
| return true; |
| const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType)); |
| uint64_t Index = Entry.getAsArrayIndex(); |
| if (Index + 1 != CAT->getZExtSize()) |
| return false; |
| BaseType = CAT->getElementType(); |
| } else if (BaseType->isAnyComplexType()) { |
| const auto *CT = BaseType->castAs<ComplexType>(); |
| uint64_t Index = Entry.getAsArrayIndex(); |
| if (Index != 1) |
| return false; |
| BaseType = CT->getElementType(); |
| } else if (auto *FD = getAsField(Entry)) { |
| bool Invalid; |
| if (!IsLastOrInvalidFieldDecl(FD, Invalid)) |
| return Invalid; |
| BaseType = FD->getType(); |
| } else { |
| assert(getAsBaseClass(Entry) && "Expecting cast to a base class"); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /// Tests to see if the LValue has a user-specified designator (that isn't |
| /// necessarily valid). Note that this always returns 'true' if the LValue has |
| /// an unsized array as its first designator entry, because there's currently no |
| /// way to tell if the user typed *foo or foo[0]. |
| static bool refersToCompleteObject(const LValue &LVal) { |
| if (LVal.Designator.Invalid) |
| return false; |
| |
| if (!LVal.Designator.Entries.empty()) |
| return LVal.Designator.isMostDerivedAnUnsizedArray(); |
| |
| if (!LVal.InvalidBase) |
| return true; |
| |
| // If `E` is a MemberExpr, then the first part of the designator is hiding in |
| // the LValueBase. |
| const auto *E = LVal.Base.dyn_cast<const Expr *>(); |
| return !E || !isa<MemberExpr>(E); |
| } |
| |
| /// Attempts to detect a user writing into a piece of memory that's impossible |
| /// to figure out the size of by just using types. |
| static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) { |
| const SubobjectDesignator &Designator = LVal.Designator; |
| // Notes: |
| // - Users can only write off of the end when we have an invalid base. Invalid |
| // bases imply we don't know where the memory came from. |
| // - We used to be a bit more aggressive here; we'd only be conservative if |
| // the array at the end was flexible, or if it had 0 or 1 elements. This |
| // broke some common standard library extensions (PR30346), but was |
| // otherwise seemingly fine. It may be useful to reintroduce this behavior |
| // with some sort of list. OTOH, it seems that GCC is always |
| // conservative with the last element in structs (if it's an array), so our |
| // current behavior is more compatible than an explicit list approach would |
| // be. |
| auto isFlexibleArrayMember = [&] { |
| using FAMKind = LangOptions::StrictFlexArraysLevelKind; |
| FAMKind StrictFlexArraysLevel = |
| Ctx.getLangOpts().getStrictFlexArraysLevel(); |
| |
| if (Designator.isMostDerivedAnUnsizedArray()) |
| return true; |
| |
| if (StrictFlexArraysLevel == FAMKind::Default) |
| return true; |
| |
| if (Designator.getMostDerivedArraySize() == 0 && |
| StrictFlexArraysLevel != FAMKind::IncompleteOnly) |
| return true; |
| |
| if (Designator.getMostDerivedArraySize() == 1 && |
| StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete) |
| return true; |
| |
| return false; |
| }; |
| |
| return LVal.InvalidBase && |
| Designator.Entries.size() == Designator.MostDerivedPathLength && |
| Designator.MostDerivedIsArrayElement && isFlexibleArrayMember() && |
| isDesignatorAtObjectEnd(Ctx, LVal); |
| } |
| |
| /// Converts the given APInt to CharUnits, assuming the APInt is unsigned. |
| /// Fails if the conversion would cause loss of precision. |
| static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int, |
| CharUnits &Result) { |
| auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max(); |
| if (Int.ugt(CharUnitsMax)) |
| return false; |
| Result = CharUnits::fromQuantity(Int.getZExtValue()); |
| return true; |
| } |
| |
| /// If we're evaluating the object size of an instance of a struct that |
| /// contains a flexible array member, add the size of the initializer. |
| static void addFlexibleArrayMemberInitSize(EvalInfo &Info, const QualType &T, |
| const LValue &LV, CharUnits &Size) { |
| if (!T.isNull() && T->isStructureType() && |
| T->getAsStructureType()->getDecl()->hasFlexibleArrayMember()) |
| if (const auto *V = LV.getLValueBase().dyn_cast<const ValueDecl *>()) |
| if (const auto *VD = dyn_cast<VarDecl>(V)) |
| if (VD->hasInit()) |
| Size += VD->getFlexibleArrayInitChars(Info.Ctx); |
| } |
| |
| /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will |
| /// determine how many bytes exist from the beginning of the object to either |
| /// the end of the current subobject, or the end of the object itself, depending |
| /// on what the LValue looks like + the value of Type. |
| /// |
| /// If this returns false, the value of Result is undefined. |
| static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc, |
| unsigned Type, const LValue &LVal, |
| CharUnits &EndOffset) { |
| bool DetermineForCompleteObject = refersToCompleteObject(LVal); |
| |
| auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) { |
| if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType()) |
| return false; |
| return HandleSizeof(Info, ExprLoc, Ty, Result); |
| }; |
| |
| // We want to evaluate the size of the entire object. This is a valid fallback |
| // for when Type=1 and the designator is invalid, because we're asked for an |
| // upper-bound. |
| if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) { |
| // Type=3 wants a lower bound, so we can't fall back to this. |
| if (Type == 3 && !DetermineForCompleteObject) |
| return false; |
| |
| llvm::APInt APEndOffset; |
| if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && |
| getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) |
| return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); |
| |
| if (LVal.InvalidBase) |
| return false; |
| |
| QualType BaseTy = getObjectType(LVal.getLValueBase()); |
| const bool Ret = CheckedHandleSizeof(BaseTy, EndOffset); |
| addFlexibleArrayMemberInitSize(Info, BaseTy, LVal, EndOffset); |
| return Ret; |
| } |
| |
| // We want to evaluate the size of a subobject. |
| const SubobjectDesignator &Designator = LVal.Designator; |
| |
| // The following is a moderately common idiom in C: |
| // |
| // struct Foo { int a; char c[1]; }; |
| // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar)); |
| // strcpy(&F->c[0], Bar); |
| // |
| // In order to not break too much legacy code, we need to support it. |
| if (isUserWritingOffTheEnd(Info.Ctx, LVal)) { |
| // If we can resolve this to an alloc_size call, we can hand that back, |
| // because we know for certain how many bytes there are to write to. |
| llvm::APInt APEndOffset; |
| if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && |
| getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) |
| return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); |
| |
| // If we cannot determine the size of the initial allocation, then we can't |
| // given an accurate upper-bound. However, we are still able to give |
| // conservative lower-bounds for Type=3. |
| if (Type == 1) |
| return false; |
| } |
| |
| CharUnits BytesPerElem; |
| if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem)) |
| return false; |
| |
| // According to the GCC documentation, we want the size of the subobject |
| // denoted by the pointer. But that's not quite right -- what we actually |
| // want is the size of the immediately-enclosing array, if there is one. |
| int64_t ElemsRemaining; |
| if (Designator.MostDerivedIsArrayElement && |
| Designator.Entries.size() == Designator.MostDerivedPathLength) { |
| uint64_t ArraySize = Designator.getMostDerivedArraySize(); |
| uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex(); |
| ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex; |
| } else { |
| ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1; |
| } |
| |
| EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining; |
| return true; |
| } |
| |
| /// Tries to evaluate the __builtin_object_size for @p E. If successful, |
| /// returns true and stores the result in @p Size. |
| /// |
| /// If @p WasError is non-null, this will report whether the failure to evaluate |
| /// is to be treated as an Error in IntExprEvaluator. |
| static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type, |
| EvalInfo &Info, uint64_t &Size) { |
| // Determine the denoted object. |
| LValue LVal; |
| { |
| // The operand of __builtin_object_size is never evaluated for side-effects. |
| // If there are any, but we can determine the pointed-to object anyway, then |
| // ignore the side-effects. |
| SpeculativeEvaluationRAII SpeculativeEval(Info); |
| IgnoreSideEffectsRAII Fold(Info); |
| |
| if (E->isGLValue()) { |
| // It's possible for us to be given GLValues if we're called via |
| // Expr::tryEvaluateObjectSize. |
| APValue RVal; |
| if (!EvaluateAsRValue(Info, E, RVal)) |
| return false; |
| LVal.setFrom(Info.Ctx, RVal); |
| } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info, |
| /*InvalidBaseOK=*/true)) |
| return false; |
| } |
| |
| // If we point to before the start of the object, there are no accessible |
| // bytes. |
| if (LVal.getLValueOffset().isNegative()) { |
| Size = 0; |
| return true; |
| } |
| |
| CharUnits EndOffset; |
| if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset)) |
| return false; |
| |
| // If we've fallen outside of the end offset, just pretend there's nothing to |
| // write to/read from. |
| if (EndOffset <= LVal.getLValueOffset()) |
| Size = 0; |
| else |
| Size = (EndOffset - LVal.getLValueOffset()).getQuantity(); |
| return true; |
| } |
| |
| bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) { |
| if (!IsConstantEvaluatedBuiltinCall(E)) |
| return ExprEvaluatorBaseTy::VisitCallExpr(E); |
| return VisitBuiltinCallExpr(E, E->getBuiltinCallee()); |
| } |
| |
| static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info, |
| APValue &Val, APSInt &Alignment) { |
| QualType SrcTy = E->getArg(0)->getType(); |
| if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment)) |
| return false; |
| // Even though we are evaluating integer expressions we could get a pointer |
| // argument for the __builtin_is_aligned() case. |
| if (SrcTy->isPointerType()) { |
| LValue Ptr; |
| if (!EvaluatePointer(E->getArg(0), Ptr, Info)) |
| return false; |
| Ptr.moveInto(Val); |
| } else if (!SrcTy->isIntegralOrEnumerationType()) { |
| Info.FFDiag(E->getArg(0)); |
| return false; |
| } else { |
| APSInt SrcInt; |
| if (!EvaluateInteger(E->getArg(0), SrcInt, Info)) |
| return false; |
| assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() && |
| "Bit widths must be the same"); |
| Val = APValue(SrcInt); |
| } |
| assert(Val.hasValue()); |
| return true; |
| } |
| |
| bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, |
| unsigned BuiltinOp) { |
| switch (BuiltinOp) { |
| default: |
| return false; |
| |
| case Builtin::BI__builtin_dynamic_object_size: |
| case Builtin::BI__builtin_object_size: { |
| // The type was checked when we built the expression. |
| unsigned Type = |
| E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); |
| assert(Type <= 3 && "unexpected type"); |
| |
| uint64_t Size; |
| if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size)) |
| return Success(Size, E); |
| |
| if (E->getArg(0)->HasSideEffects(Info.Ctx)) |
| return Success((Type & 2) ? 0 : -1, E); |
| |
| // Expression had no side effects, but we couldn't statically determine the |
| // size of the referenced object. |
| switch (Info.EvalMode) { |
| case EvalInfo::EM_ConstantExpression: |
| case EvalInfo::EM_ConstantFold: |
| case EvalInfo::EM_IgnoreSideEffects: |
| // Leave it to IR generation. |
| return Error(E); |
| case EvalInfo::EM_ConstantExpressionUnevaluated: |
| // Reduce it to a constant now. |
| return Success((Type & 2) ? 0 : -1, E); |
| } |
| |
| llvm_unreachable("unexpected EvalMode"); |
| } |
| |
| case Builtin::BI__builtin_os_log_format_buffer_size: { |
| analyze_os_log::OSLogBufferLayout Layout; |
| analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout); |
| return Success(Layout.size().getQuantity(), E); |
| } |
| |
| case Builtin::BI__builtin_is_aligned: { |
| APValue Src; |
| APSInt Alignment; |
| if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) |
| return false; |
| if (Src.isLValue()) { |
| // If we evaluated a pointer, check the minimum known alignment. |
| LValue Ptr; |
| Ptr.setFrom(Info.Ctx, Src); |
| CharUnits BaseAlignment = getBaseAlignment(Info, Ptr); |
| CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset); |
| // We can return true if the known alignment at the computed offset is |
| // greater than the requested alignment. |
| assert(PtrAlign.isPowerOfTwo()); |
| assert(Alignment.isPowerOf2()); |
| if (PtrAlign.getQuantity() >= Alignment) |
| return Success(1, E); |
| // If the alignment is not known to be sufficient, some cases could still |
| // be aligned at run time. However, if the requested alignment is less or |
| // equal to the base alignment and the offset is not aligned, we know that |
| // the run-time value can never be aligned. |
| if (BaseAlignment.getQuantity() >= Alignment && |
| PtrAlign.getQuantity() < Alignment) |
| return Success(0, E); |
| // Otherwise we can't infer whether the value is sufficiently aligned. |
| // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N) |
| // in cases where we can't fully evaluate the pointer. |
| Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute) |
| << Alignment; |
| return false; |
| } |
| assert(Src.isInt()); |
| return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E); |
| } |
| case Builtin::BI__builtin_align_up: { |
| APValue Src; |
| APSInt Alignment; |
| if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) |
| return false; |
| if (!Src.isInt()) |
| return Error(E); |
| APSInt AlignedVal = |
| APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1), |
| Src.getInt().isUnsigned()); |
| assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth()); |
| return Success(AlignedVal, E); |
| } |
| case Builtin::BI__builtin_align_down: { |
| APValue Src; |
| APSInt Alignment; |
| if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) |
| return false; |
| if (!Src.isInt()) |
| return Error(E); |
| APSInt AlignedVal = |
| APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned()); |
| assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth()); |
| return Success(AlignedVal, E); |
| } |
| |
| case Builtin::BI__builtin_bitreverse8: |
| case Builtin::BI__builtin_bitreverse16: |
| case Builtin::BI__builtin_bitreverse32: |
| case Builtin::BI__builtin_bitreverse64: { |
| APSInt Val; |
| if (!EvaluateInteger(E->getArg(0), Val, Info)) |
| return false; |
| |
| return Success(Val.reverseBits(), E); |
| } |
| |
| case Builtin::BI__builtin_bswap16: |
| case Builtin::BI__builtin_bswap32: |
| case Builtin::BI__builtin_bswap64: { |
| APSInt Val; |
| if (!EvaluateInteger(E->getArg(0), Val, Info)) |
| return false; |
| |
| return Success(Val.byteSwap(), E); |
| } |
| |
| case Builtin::BI__builtin_classify_type: |
| return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E); |
| |
| case Builtin::BI__builtin_clrsb: |
| case Builtin::BI__builtin_clrsbl: |
| case Builtin::BI__builtin_clrsbll: { |
| APSInt Val; |
| if (!EvaluateInteger(E->getArg(0), Val, Info)) |
| return false; |
| |
| return Success(Val.getBitWidth() - Val.getSignificantBits(), E); |
| } |
| |
| case Builtin::BI__builtin_clz: |
| case Builtin::BI__builtin_clzl: |
| case Builtin::BI__builtin_clzll: |
| case Builtin::BI__builtin_clzs: |
| case Builtin::BI__builtin_clzg: |
| case Builtin::BI__lzcnt16: // Microsoft variants of count leading-zeroes |
| case Builtin::BI__lzcnt: |
| case Builtin::BI__lzcnt64: { |
| APSInt Val; |
| if (!EvaluateInteger(E->getArg(0), Val, Info)) |
| return false; |
| |
| std::optional<APSInt> Fallback; |
| if (BuiltinOp == Builtin::BI__builtin_clzg && E->getNumArgs() > 1) { |
| APSInt FallbackTemp; |
| if (!EvaluateInteger(E->getArg(1), FallbackTemp, Info)) |
| return false; |
| Fallback = FallbackTemp; |
| } |
| |
| if (!Val) { |
| if (Fallback) |
| return Success(*Fallback, E); |
| |
| // When the argument is 0, the result of GCC builtins is undefined, |
| // whereas for Microsoft intrinsics, the result is the bit-width of the |
| // argument. |
| bool ZeroIsUndefined = BuiltinOp != Builtin::BI__lzcnt16 && |
| BuiltinOp != Builtin::BI__lzcnt && |
| BuiltinOp != Builtin::BI__lzcnt64; |
| |
| if (ZeroIsUndefined) |
| return Error(E); |
| } |
| |
| return Success(Val.countl_zero(), E); |
| } |
| |
| case Builtin::BI__builtin_constant_p: { |
| const Expr *Arg = E->getArg(0); |
| if (EvaluateBuiltinConstantP(Info, Arg)) |
| return Success(true, E); |
| if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) { |
| // Outside a constant context, eagerly evaluate to false in the presence |
| // of side-effects in order to avoid -Wunsequenced false-positives in |
| // a branch on __builtin_constant_p(expr). |
| return Success(false, E); |
| } |
| Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| return false; |
| } |
| |
| case Builtin::BI__noop: |
| // __noop always evaluates successfully and returns 0. |
| return Success(0, E); |
| |
| case Builtin::BI__builtin_is_constant_evaluated: { |
| const auto *Callee = Info.CurrentCall->getCallee(); |
| if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression && |
| (Info.CallStackDepth == 1 || |
| (Info.CallStackDepth == 2 && Callee->isInStdNamespace() && |
| Callee->getIdentifier() && |
| Callee->getIdentifier()->isStr("is_constant_evaluated")))) { |
| // FIXME: Find a better way to avoid duplicated diagnostics. |
| if (Info.EvalStatus.Diag) |
| Info.report((Info.CallStackDepth == 1) |
| ? E->getExprLoc() |
| : Info.CurrentCall->getCallRange().getBegin(), |
| diag::warn_is_constant_evaluated_always_true_constexpr) |
| << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated" |
| : "std::is_constant_evaluated"); |
| } |
| |
| return Success(Info.InConstantContext, E); |
| } |
| |
| case Builtin::BI__builtin_is_within_lifetime: |
| if (auto result = EvaluateBuiltinIsWithinLifetime(*this, E)) |
| return Success(*result, E); |
| return false; |
| |
| case Builtin::BI__builtin_ctz: |
| case Builtin::BI__builtin_ctzl: |
| case Builtin::BI__builtin_ctzll: |
| case Builtin::BI__builtin_ctzs: |
| case Builtin::BI__builtin_ctzg: { |
| APSInt Val; |
| if (!EvaluateInteger(E->getArg(0), Val, Info)) |
| return false; |
| |
| std::optional<APSInt> Fallback; |
| if (BuiltinOp == Builtin::BI__builtin_ctzg && E->getNumArgs() > 1) { |
| APSInt FallbackTemp; |
| if (!EvaluateInteger(E->getArg(1), FallbackTemp, Info)) |
| return false; |
| Fallback = FallbackTemp; |
| } |
| |
| if (!Val) { |
| if (Fallback) |
| return Success(*Fallback, E); |
| |
| return Error(E); |
| } |
| |
| return Success(Val.countr_zero(), E); |
| } |
| |
| case Builtin::BI__builtin_eh_return_data_regno: { |
| int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); |
| Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand); |
| return Success(Operand, E); |
| } |
| |
| case Builtin::BI__builtin_expect: |
| case Builtin::BI__builtin_expect_with_probability: |
| return Visit(E->getArg(0)); |
| |
| case Builtin::BI__builtin_ptrauth_string_discriminator: { |
| const auto *Literal = |
| cast<StringLiteral>(E->getArg(0)->IgnoreParenImpCasts()); |
| uint64_t Result = getPointerAuthStableSipHash(Literal->getString()); |
| return Success(Result, E); |
| } |
| |
| case Builtin::BI__builtin_ffs: |
| case Builtin::BI__builtin_ffsl: |
| case Builtin::BI__builtin_ffsll: { |
| APSInt Val; |
| if (!EvaluateInteger(E->getArg(0), Val, Info)) |
| return false; |
| |
| unsigned N = Val.countr_zero(); |
| return Success(N == Val.getBitWidth() ? 0 : N + 1, E); |
| } |
| |
| case Builtin::BI__builtin_fpclassify: { |
| APFloat Val(0.0); |
| if (!EvaluateFloat(E->getArg(5), Val, Info)) |
| return false; |
| unsigned Arg; |
| switch (Val.getCategory()) { |
| case APFloat::fcNaN: Arg = 0; break; |
| case APFloat::fcInfinity: Arg = 1; break; |
| case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break; |
| case APFloat::fcZero: Arg = 4; break; |
| } |
| return Visit(E->getArg(Arg)); |
| } |
| |
| case Builtin::BI__builtin_isinf_sign: { |
| APFloat Val(0.0); |
| return EvaluateFloat(E->getArg(0), Val, Info) && |
| Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E); |
| } |
| |
| case Builtin::BI__builtin_isinf: { |
| APFloat Val(0.0); |
| return EvaluateFloat(E->getArg(0), Val, Info) && |
| Success(Val.isInfinity() ? 1 : 0, E); |
| } |
| |
| case Builtin::BI__builtin_isfinite: { |
| APFloat Val(0.0); |
| return EvaluateFloat(E->getArg(0), Val, Info) && |
| Success(Val.isFinite() ? 1 : 0, E); |
| } |
| |
| case Builtin::BI__builtin_isnan: { |
| APFloat Val(0.0); |
| return EvaluateFloat(E->getArg(0), Val, Info) && |
| Success(Val.isNaN() ? 1 : 0, E); |
| } |
| |
| case Builtin::BI__builtin_isnormal: { |
| APFloat Val(0.0); |
| return EvaluateFloat(E->getArg(0), Val, Info) && |
| Success(Val.isNormal() ? 1 : 0, E); |
| } |
| |
| case Builtin::BI__builtin_issubnormal: { |
| APFloat Val(0.0); |
| return EvaluateFloat(E->getArg(0), Val, Info) && |
| Success(Val.isDenormal() ? 1 : 0, E); |
| } |
| |
| case Builtin::BI__builtin_iszero: { |
| APFloat Val(0.0); |
| return EvaluateFloat(E->getArg(0), Val, Info) && |
| Success(Val.isZero() ? 1 : 0, E); |
| } |
| |
| case Builtin::BI__builtin_signbit: |
| case Builtin::BI__builtin_signbitf: |
| case Builtin::BI__builtin_signbitl: { |
| APFloat Val(0.0); |
| return EvaluateFloat(E->getArg(0), Val, Info) && |
| Success(Val.isNegative() ? 1 : 0, E); |
| } |
| |
| case Builtin::BI__builtin_isgreater: |
| case Builtin::BI__builtin_isgreaterequal: |
| case Builtin::BI__builtin_isless: |
| case Builtin::BI__builtin_islessequal: |
| case Builtin::BI__builtin_islessgreater: |
| case Builtin::BI__builtin_isunordered: { |
| APFloat LHS(0.0); |
| APFloat RHS(0.0); |
| if (!EvaluateFloat(E->getArg(0), LHS, Info) || |
| !EvaluateFloat(E->getArg(1), RHS, Info)) |
| return false; |
| |
| return Success( |
| [&] { |
| switch (BuiltinOp) { |
| case Builtin::BI__builtin_isgreater: |
| return LHS > RHS; |
| case Builtin::BI__builtin_isgreaterequal: |
| return LHS >= RHS; |
| case Builtin::BI__builtin_isless: |
| return LHS < RHS; |
| case Builtin::BI__builtin_islessequal: |
| return LHS <= RHS; |
| case Builtin::BI__builtin_islessgreater: { |
| APFloat::cmpResult cmp = LHS.compare(RHS); |
| return cmp == APFloat::cmpResult::cmpLessThan || |
| cmp == APFloat::cmpResult::cmpGreaterThan; |
| } |
| case Builtin::BI__builtin_isunordered: |
| return LHS.compare(RHS) == APFloat::cmpResult::cmpUnordered; |
| default: |
| llvm_unreachable("Unexpected builtin ID: Should be a floating " |
| "point comparison function"); |
| } |
| }() |
| ? 1 |
| : 0, |
| E); |
| } |
| |
| case Builtin::BI__builtin_issignaling: { |
| APFloat Val(0.0); |
| return EvaluateFloat(E->getArg(0), Val, Info) && |
| Success(Val.isSignaling() ? 1 : 0, E); |
| } |
| |
| case Builtin::BI__builtin_isfpclass: { |
| APSInt MaskVal; |
| if (!EvaluateInteger(E->getArg(1), MaskVal, Info)) |
| return false; |
| unsigned Test = static_cast<llvm::FPClassTest>(MaskVal.getZExtValue()); |
| APFloat Val(0.0); |
| return EvaluateFloat(E->getArg(0), Val, Info) && |
| Success((Val.classify() & Test) ? 1 : 0, E); |
| } |
| |
| case Builtin::BI__builtin_parity: |
| case Builtin::BI__builtin_parityl: |
| case Builtin::BI__builtin_parityll: { |
| APSInt Val; |
| if (!EvaluateInteger(E->getArg(0), Val, Info)) |
| return false; |
| |
| return Success(Val.popcount() % 2, E); |
| } |
| |
| case Builtin::BI__builtin_popcount: |
| case Builtin::BI__builtin_popcountl: |
| case Builtin::BI__builtin_popcountll: |
| case Builtin::BI__builtin_popcountg: |
| case Builtin::BI__popcnt16: // Microsoft variants of popcount |
| case Builtin::BI__popcnt: |
| case Builtin::BI__popcnt64: { |
| APSInt Val; |
| if (!EvaluateInteger(E->getArg(0), Val, Info)) |
| return false; |
| |
| return Success(Val.popcount(), E); |
| } |
| |
| case Builtin::BI__builtin_rotateleft8: |
| case Builtin::BI__builtin_rotateleft16: |
| case Builtin::BI__builtin_rotateleft32: |
| case Builtin::BI__builtin_rotateleft64: |
| case Builtin::BI_rotl8: // Microsoft variants of rotate right |
| case Builtin::BI_rotl16: |
| case Builtin::BI_rotl: |
| case Builtin::BI_lrotl: |
| case Builtin::BI_rotl64: { |
| APSInt Val, Amt; |
| if (!EvaluateInteger(E->getArg(0), Val, Info) || |
| !EvaluateInteger(E->getArg(1), Amt, Info)) |
| return false; |
| |
| return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E); |
| } |
| |
| case Builtin::BI__builtin_rotateright8: |
| case Builtin::BI__builtin_rotateright16: |
| case Builtin::BI__builtin_rotateright32: |
| case Builtin::BI__builtin_rotateright64: |
| case Builtin::BI_rotr8: // Microsoft variants of rotate right |
| case Builtin::BI_rotr16: |
| case Builtin::BI_rotr: |
| case Builtin::BI_lrotr: |
| case Builtin::BI_rotr64: { |
| APSInt Val, Amt; |
| if (!EvaluateInteger(E->getArg(0), Val, Info) || |
| !EvaluateInteger(E->getArg(1), Amt, Info)) |
| return false; |
| |
| return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E); |
| } |
| |
| case Builtin::BIstrlen: |
| case Builtin::BIwcslen: |
| // A call to strlen is not a constant expression. |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.CCEDiag(E, diag::note_constexpr_invalid_function) |
| << /*isConstexpr*/ 0 << /*isConstructor*/ 0 |
| << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str(); |
| else |
| Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| [[fallthrough]]; |
| case Builtin::BI__builtin_strlen: |
| case Builtin::BI__builtin_wcslen: { |
| // As an extension, we support __builtin_strlen() as a constant expression, |
| // and support folding strlen() to a constant. |
| uint64_t StrLen; |
| if (EvaluateBuiltinStrLen(E->getArg(0), StrLen, Info)) |
| return Success(StrLen, E); |
| return false; |
| } |
| |
| case Builtin::BIstrcmp: |
| case Builtin::BIwcscmp: |
| case Builtin::BIstrncmp: |
| case Builtin::BIwcsncmp: |
| case Builtin::BImemcmp: |
| case Builtin::BIbcmp: |
| case Builtin::BIwmemcmp: |
| // A call to strlen is not a constant expression. |
| if (Info.getLangOpts().CPlusPlus11) |
| Info.CCEDiag(E, diag::note_constexpr_invalid_function) |
| << /*isConstexpr*/ 0 << /*isConstructor*/ 0 |
| << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str(); |
| else |
| Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| [[fallthrough]]; |
| case Builtin::BI__builtin_strcmp: |
| case Builtin::BI__builtin_wcscmp: |
| case Builtin::BI__builtin_strncmp: |
| case Builtin::BI__builtin_wcsncmp: |
| case Builtin::BI__builtin_memcmp: |
| case Builtin::BI__builtin_bcmp: |
| case Builtin::BI__builtin_wmemcmp: { |
| LValue String1, String2; |
| if (!EvaluatePointer(E->getArg(0), String1, Info) || |
| !EvaluatePointer(E->getArg(1), String2, Info)) |
| return false; |
| |
| uint64_t MaxLength = uint64_t(-1); |
| if (BuiltinOp != Builtin::BIstrcmp && |
| BuiltinOp != Builtin::BIwcscmp && |
| BuiltinOp != Builtin::BI__builtin_strcmp && |
| BuiltinOp != Builtin::BI__builtin_wcscmp) { |
| APSInt N; |
| if (!EvaluateInteger(E->getArg(2), N, Info)) |
| return false; |
| MaxLength = N.getZExtValue(); |
| } |
| |
| // Empty substrings compare equal by definition. |
| if (MaxLength == 0u) |
| return Success(0, E); |
| |
| if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) || |
| !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) || |
| String1.Designator.Invalid || String2.Designator.Invalid) |
| return false; |
| |
| QualType CharTy1 = String1.Designator.getType(Info.Ctx); |
| QualType CharTy2 = String2.Designator.getType(Info.Ctx); |
| |
| bool IsRawByte = BuiltinOp == Builtin::BImemcmp || |
| BuiltinOp == Builtin::BIbcmp || |
| BuiltinOp == Builtin::BI__builtin_memcmp || |
| BuiltinOp == Builtin::BI__builtin_bcmp; |
| |
| assert(IsRawByte || |
| (Info.Ctx.hasSameUnqualifiedType( |
| CharTy1, E->getArg(0)->getType()->getPointeeType()) && |
| Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))); |
| |
| // For memcmp, allow comparing any arrays of '[[un]signed] char' or |
| // 'char8_t', but no other types. |
| if (IsRawByte && |
| !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) { |
| // FIXME: Consider using our bit_cast implementation to support this. |
| Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported) |
| << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str() |
| << CharTy1 << CharTy2; |
| return false; |
| } |
| |
| const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) { |
| return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) && |
| handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) && |
| Char1.isInt() && Char2.isInt(); |
| }; |
| const auto &AdvanceElems = [&] { |
| return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) && |
| HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1); |
| }; |
| |
| bool StopAtNull = |
| (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp && |
| BuiltinOp != Builtin::BIwmemcmp && |
| BuiltinOp != Builtin::BI__builtin_memcmp && |
| BuiltinOp != Builtin::BI__builtin_bcmp && |
| BuiltinOp != Builtin::BI__builtin_wmemcmp); |
| bool IsWide = BuiltinOp == Builtin::BIwcscmp || |
| BuiltinOp == Builtin::BIwcsncmp || |
| BuiltinOp == Builtin::BIwmemcmp || |
| BuiltinOp == Builtin::BI__builtin_wcscmp || |
| BuiltinOp == Builtin::BI__builtin_wcsncmp || |
| BuiltinOp == Builtin::BI__builtin_wmemcmp; |
| |
| for (; MaxLength; --MaxLength) { |
| APValue Char1, Char2; |
| if (!ReadCurElems(Char1, Char2)) |
| return false; |
| if (Char1.getInt().ne(Char2.getInt())) { |
| if (IsWide) // wmemcmp compares with wchar_t signedness. |
| return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E); |
| // memcmp always compares unsigned chars. |
| return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E); |
| } |
| if (StopAtNull && !Char1.getInt()) |
| return Success(0, E); |
| assert(!(StopAtNull && !Char2.getInt())); |
| if (!AdvanceElems()) |
| return false; |
| } |
| // We hit the strncmp / memcmp limit. |
| return Success(0, E); |
| } |
| |
| case Builtin::BI__atomic_always_lock_free: |
| case Builtin::BI__atomic_is_lock_free: |
| case Builtin::BI__c11_atomic_is_lock_free: { |
| APSInt SizeVal; |
| if (!EvaluateInteger(E->getArg(0), SizeVal, Info)) |
| return false; |
| |
| // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power |
| // of two less than or equal to the maximum inline atomic width, we know it |
| // is lock-free. If the size isn't a power of two, or greater than the |
| // maximum alignment where we promote atomics, we know it is not lock-free |
| // (at least not in the sense of atomic_is_lock_free). Otherwise, |
| // the answer can only be determined at runtime; for example, 16-byte |
| // atomics have lock-free implementations on some, but not all, |
| // x86-64 processors. |
| |
| // Check power-of-two. |
| CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue()); |
| if (Size.isPowerOfTwo()) { |
| // Check against inlining width. |
| unsigned InlineWidthBits = |
| Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth(); |
| if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) { |
| if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free || |
| Size == CharUnits::One()) |
| return Success(1, E); |
| |
| // If the pointer argument can be evaluated to a compile-time constant |
| // integer (or nullptr), check if that value is appropriately aligned. |
| const Expr *PtrArg = E->getArg(1); |
| Expr::EvalResult ExprResult; |
| APSInt IntResult; |
| if (PtrArg->EvaluateAsRValue(ExprResult, Info.Ctx) && |
| ExprResult.Val.toIntegralConstant(IntResult, PtrArg->getType(), |
| Info.Ctx) && |
| IntResult.isAligned(Size.getAsAlign())) |
| return Success(1, E); |
| |
| // Otherwise, check if the type's alignment against Size. |
| if (auto *ICE = dyn_cast<ImplicitCastExpr>(PtrArg)) { |
| // Drop the potential implicit-cast to 'const volatile void*', getting |
| // the underlying type. |
| if (ICE->getCastKind() == CK_BitCast) |
| PtrArg = ICE->getSubExpr(); |
| } |
| |
| if (auto PtrTy = PtrArg->getType()->getAs<PointerType>()) { |
| QualType PointeeType = PtrTy->getPointeeType(); |
| if (!PointeeType->isIncompleteType() && |
| Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) { |
| // OK, we will inline operations on this object. |
| return Success(1, E); |
| } |
| } |
| } |
| } |
| |
| return BuiltinOp == Builtin::BI__atomic_always_lock_free ? |
| Success(0, E) : Error(E); |
| } |
| case Builtin::BI__builtin_addcb: |
| case Builtin::BI__builtin_addcs: |
| case Builtin::BI__builtin_addc: |
| case Builtin::BI__builtin_addcl: |
| case Builtin::BI__builtin_addcll: |
| case Builtin::BI__builtin_subcb: |
| case Builtin::BI__builtin_subcs: |
| case Builtin::BI__builtin_subc: |
| case Builtin::BI__builtin_subcl: |
| case Builtin::BI__builtin_subcll: { |
| LValue CarryOutLValue; |
| APSInt LHS, RHS, CarryIn, CarryOut, Result; |
| QualType ResultType = E->getArg(0)->getType(); |
| if (!EvaluateInteger(E->getArg(0), LHS, Info) || |
| !EvaluateInteger(E->getArg(1), RHS, Info) || |
| !EvaluateInteger(E->getArg(2), CarryIn, Info) || |
| !EvaluatePointer(E->getArg(3), CarryOutLValue, Info)) |
| return false; |
| // Copy the number of bits and sign. |
| Result = LHS; |
| CarryOut = LHS; |
| |
| bool FirstOverflowed = false; |
| bool SecondOverflowed = false; |
| switch (BuiltinOp) { |
| default: |
| llvm_unreachable("Invalid value for BuiltinOp"); |
| case Builtin::BI__builtin_addcb: |
| case Builtin::BI__builtin_addcs: |
| case Builtin::BI__builtin_addc: |
| case Builtin::BI__builtin_addcl: |
| case Builtin::BI__builtin_addcll: |
| Result = |
| LHS.uadd_ov(RHS, FirstOverflowed).uadd_ov(CarryIn, SecondOverflowed); |
| break; |
| case Builtin::BI__builtin_subcb: |
| case Builtin::BI__builtin_subcs: |
| case Builtin::BI__builtin_subc: |
| case Builtin::BI__builtin_subcl: |
| case Builtin::BI__builtin_subcll: |
| Result = |
| LHS.usub_ov(RHS, FirstOverflowed).usub_ov(CarryIn, SecondOverflowed); |
| break; |
| } |
| |
| // It is possible for both overflows to happen but CGBuiltin uses an OR so |
| // this is consistent. |
| CarryOut = (uint64_t)(FirstOverflowed | SecondOverflowed); |
| APValue APV{CarryOut}; |
| if (!handleAssignment(Info, E, CarryOutLValue, ResultType, APV)) |
| return false; |
| return Success(Result, E); |
| } |
| case Builtin::BI__builtin_add_overflow: |
| case Builtin::BI__builtin_sub_overflow: |
| case Builtin::BI__builtin_mul_overflow: |
| case Builtin::BI__builtin_sadd_overflow: |
| case Builtin::BI__builtin_uadd_overflow: |
| case Builtin::BI__builtin_uaddl_overflow: |
| case Builtin::BI__builtin_uaddll_overflow: |
| case Builtin::BI__builtin_usub_overflow: |
| case Builtin::BI__builtin_usubl_overflow: |
| case Builtin::BI__builtin_usubll_overflow: |
| case Builtin::BI__builtin_umul_overflow: |
| case Builtin::BI__builtin_umull_overflow: |
| case Builtin::BI__builtin_umulll_overflow: |
| case Builtin::BI__builtin_saddl_overflow: |
| case Builtin::BI__builtin_saddll_overflow: |
| case Builtin::BI__builtin_ssub_overflow: |
| case Builtin::BI__builtin_ssubl_overflow: |
| case Builtin::BI__builtin_ssubll_overflow: |
| case Builtin::BI__builtin_smul_overflow: |
| case Builtin::BI__builtin_smull_overflow: |
| case Builtin::BI__builtin_smulll_overflow: { |
| LValue ResultLValue; |
| APSInt LHS, RHS; |
| |
| QualType ResultType = E->getArg(2)->getType()->getPointeeType(); |
| if (!EvaluateInteger(E->getArg(0), LHS, Info) || |
| !EvaluateInteger(E->getArg(1), RHS, Info) || |
| !EvaluatePointer(E->getArg(2), ResultLValue, Info)) |
| return false; |
| |
| APSInt Result; |
| bool DidOverflow = false; |
| |
| // If the types don't have to match, enlarge all 3 to the largest of them. |
| if (BuiltinOp == Builtin::BI__builtin_add_overflow || |
| BuiltinOp == Builtin::BI__builtin_sub_overflow || |
| BuiltinOp == Builtin::BI__builtin_mul_overflow) { |
| bool IsSigned = LHS.isSigned() || RHS.isSigned() || |
| ResultType->isSignedIntegerOrEnumerationType(); |
| bool AllSigned = LHS.isSigned() && RHS.isSigned() && |
| ResultType->isSignedIntegerOrEnumerationType(); |
| uint64_t LHSSize = LHS.getBitWidth(); |
| uint64_t RHSSize = RHS.getBitWidth(); |
| uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType); |
| uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize); |
| |
| // Add an additional bit if the signedness isn't uniformly agreed to. We |
| // could do this ONLY if there is a signed and an unsigned that both have |
| // MaxBits, but the code to check that is pretty nasty. The issue will be |
| // caught in the shrink-to-result later anyway. |
| if (IsSigned && !AllSigned) |
| ++MaxBits; |
| |
| LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned); |
| RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned); |
| Result = APSInt(MaxBits, !IsSigned); |
| } |
| |
| // Find largest int. |
| switch (BuiltinOp) { |
| default: |
| llvm_unreachable("Invalid value for BuiltinOp"); |
| case Builtin::BI__builtin_add_overflow: |
| case Builtin::BI__builtin_sadd_overflow: |
| case Builtin::BI__builtin_saddl_overflow: |
| case Builtin::BI__builtin_saddll_overflow: |
| case Builtin::BI__builtin_uadd_overflow: |
| case Builtin::BI__builtin_uaddl_overflow: |
| case Builtin::BI__builtin_uaddll_overflow: |
| Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow) |
| : LHS.uadd_ov(RHS, DidOverflow); |
| break; |
| case Builtin::BI__builtin_sub_overflow: |
| case Builtin::BI__builtin_ssub_overflow: |
| case Builtin::BI__builtin_ssubl_overflow: |
| case Builtin::BI__builtin_ssubll_overflow: |
| case Builtin::BI__builtin_usub_overflow: |
| case Builtin::BI__builtin_usubl_overflow: |
| case Builtin::BI__builtin_usubll_overflow: |
| Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow) |
| : LHS.usub_ov(RHS, DidOverflow); |
| break; |
| case Builtin::BI__builtin_mul_overflow: |
| case Builtin::BI__builtin_smul_overflow: |
| case Builtin::BI__builtin_smull_overflow: |
| case Builtin::BI__builtin_smulll_overflow: |
| case Builtin::BI__builtin_umul_overflow: |
| case Builtin::BI__builtin_umull_overflow: |
| case Builtin::BI__builtin_umulll_overflow: |
| Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow) |
| : LHS.umul_ov(RHS, DidOverflow); |
| break; |
| } |
| |
| // In the case where multiple sizes are allowed, truncate and see if |
| // the values are the same. |
| if (BuiltinOp == Builtin::BI__builtin_add_overflow || |
| BuiltinOp == Builtin::BI__builtin_sub_overflow || |
| BuiltinOp == Builtin::BI__builtin_mul_overflow) { |
| // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead, |
| // since it will give us the behavior of a TruncOrSelf in the case where |
| // its parameter <= its size. We previously set Result to be at least the |
| // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth |
| // will work exactly like TruncOrSelf. |
| APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType)); |
| Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType()); |
| |
| if (!APSInt::isSameValue(Temp, Result)) |
| DidOverflow = true; |
| Result = Temp; |
| } |
| |
| APValue APV{Result}; |
| if (!handleAssignment(Info, E, ResultLValue, ResultType, APV)) |
| return false; |
| return Success(DidOverflow, E); |
| } |
| |
| case clang::X86::BI__builtin_ia32_addcarryx_u32: |
| case clang::X86::BI__builtin_ia32_addcarryx_u64: |
| case clang::X86::BI__builtin_ia32_subborrow_u32: |
| case clang::X86::BI__builtin_ia32_subborrow_u64: { |
| LValue ResultLValue; |
| APSInt CarryIn, LHS, RHS; |
| QualType ResultType = E->getArg(3)->getType()->getPointeeType(); |
| if (!EvaluateInteger(E->getArg(0), CarryIn, Info) || |
| !EvaluateInteger(E->getArg(1), LHS, Info) || |
| !EvaluateInteger(E->getArg(2), RHS, Info) || |
| !EvaluatePointer(E->getArg(3), ResultLValue, Info)) |
| return false; |
| |
| bool IsAdd = BuiltinOp == clang::X86::BI__builtin_ia32_addcarryx_u32 || |
| BuiltinOp == clang::X86::BI__builtin_ia32_addcarryx_u64; |
| |
| unsigned BitWidth = LHS.getBitWidth(); |
| unsigned CarryInBit = CarryIn.ugt(0) ? 1 : 0; |
| APInt ExResult = |
| IsAdd |
| ? (LHS.zext(BitWidth + 1) + (RHS.zext(BitWidth + 1) + CarryInBit)) |
| : (LHS.zext(BitWidth + 1) - (RHS.zext(BitWidth + 1) + CarryInBit)); |
| |
| APInt Result = ExResult.extractBits(BitWidth, 0); |
| uint64_t CarryOut = ExResult.extractBitsAsZExtValue(1, BitWidth); |
| |
| APValue APV{APSInt(Result, /*isUnsigned=*/true)}; |
| if (!handleAssignment(Info, E, ResultLValue, ResultType, APV)) |
| return false; |
| return Success(CarryOut, E); |
| } |
| |
| case clang::X86::BI__builtin_ia32_bextr_u32: |
| case clang::X86::BI__builtin_ia32_bextr_u64: |
| case clang::X86::BI__builtin_ia32_bextri_u32: |
| case clang::X86::BI__builtin_ia32_bextri_u64: { |
| APSInt Val, Idx; |
| if (!EvaluateInteger(E->getArg(0), Val, Info) || |
| !EvaluateInteger(E->getArg(1), Idx, Info)) |
| return false; |
| |
| unsigned BitWidth = Val.getBitWidth(); |
| uint64_t Shift = Idx.extractBitsAsZExtValue(8, 0); |
| uint64_t Length = Idx.extractBitsAsZExtValue(8, 8); |
| Length = Length > BitWidth ? BitWidth : Length; |
| |
| // Handle out of bounds cases. |
| if (Length == 0 || Shift >= BitWidth) |
| return Success(0, E); |
| |
| uint64_t Result = Val.getZExtValue() >> Shift; |
| Result &= llvm::maskTrailingOnes<uint64_t>(Length); |
| return Success(Result, E); |
| } |
| |
| case clang::X86::BI__builtin_ia32_bzhi_si: |
| case clang::X86::BI__builtin_ia32_bzhi_di: { |
| APSInt Val, Idx; |
| if (!EvaluateInteger(E->getArg(0), Val, Info) || |
| !EvaluateInteger(E->getArg(1), Idx, Info)) |
| return false; |
| |
| unsigned BitWidth = Val.getBitWidth(); |
| unsigned Index = Idx.extractBitsAsZExtValue(8, 0); |
| if (Index < BitWidth) |
| Val.clearHighBits(BitWidth - Index); |
| return Success(Val, E); |
| } |
| |
| case clang::X86::BI__builtin_ia32_lzcnt_u16: |
| case clang::X86::BI__builtin_ia32_lzcnt_u32: |
| case clang::X86::BI__builtin_ia32_lzcnt_u64: { |
| APSInt Val; |
| if (!EvaluateInteger(E->getArg(0), Val, Info)) |
| return false; |
| return Success(Val.countLeadingZeros(), E); |
| } |
| |
| case clang::X86::BI__builtin_ia32_tzcnt_u16: |
| case clang::X86::BI__builtin_ia32_tzcnt_u32: |
| case clang::X86::BI__builtin_ia32_tzcnt_u64: { |
| APSInt Val; |
| if (!EvaluateInteger(E->getArg(0), Val, Info)) |
| return false; |
| return Success(Val.countTrailingZeros(), E); |
| } |
| |
| case clang::X86::BI__builtin_ia32_pdep_si: |
| case clang::X86::BI__builtin_ia32_pdep_di: { |
| APSInt Val, Msk; |
| if (!EvaluateInteger(E->getArg(0), Val, Info) || |
| !EvaluateInteger(E->getArg(1), Msk, Info)) |
| return false; |
| |
| unsigned BitWidth = Val.getBitWidth(); |
| APInt Result = APInt::getZero(BitWidth); |
| for (unsigned I = 0, P = 0; I != BitWidth; ++I) |
| if (Msk[I]) |
| Result.setBitVal(I, Val[P++]); |
| return Success(Result, E); |
| } |
| |
| case clang::X86::BI__builtin_ia32_pext_si: |
| case clang::X86::BI__builtin_ia32_pext_di: { |
| APSInt Val, Msk; |
| if (!EvaluateInteger(E->getArg(0), Val, Info) || |
| !EvaluateInteger(E->getArg(1), Msk, Info)) |
| return false; |
| |
| unsigned BitWidth = Val.getBitWidth(); |
| APInt Result = APInt::getZero(BitWidth); |
| for (unsigned I = 0, P = 0; I != BitWidth; ++I) |
| if (Msk[I]) |
| Result.setBitVal(P++, Val[I]); |
| return Success(Result, E); |
| } |
| } |
| } |
| |
| /// Determine whether this is a pointer past the end of the complete |
| /// object referred to by the lvalue. |
| static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx, |
| const LValue &LV) { |
| // A null pointer can be viewed as being "past the end" but we don't |
| // choose to look at it that way here. |
| if (!LV.getLValueBase()) |
| return false; |
| |
| // If the designator is valid and refers to a subobject, we're not pointing |
| // past the end. |
| if (!LV.getLValueDesignator().Invalid && |
| !LV.getLValueDesignator().isOnePastTheEnd()) |
| return false; |
| |
| // A pointer to an incomplete type might be past-the-end if the type's size is |
| // zero. We cannot tell because the type is incomplete. |
| QualType Ty = getType(LV.getLValueBase()); |
| if (Ty->isIncompleteType()) |
| return true; |
| |
| // Can't be past the end of an invalid object. |
| if (LV.getLValueDesignator().Invalid) |
| return false; |
| |
| // We're a past-the-end pointer if we point to the byte after the object, |
| // no matter what our type or path is. |
| auto Size = Ctx.getTypeSizeInChars(Ty); |
| return LV.getLValueOffset() == Size; |
| } |
| |
| namespace { |
| |
| /// Data recursive integer evaluator of certain binary operators. |
| /// |
| /// We use a data recursive algorithm for binary operators so that we are able |
| /// to handle extreme cases of chained binary operators without causing stack |
| /// overflow. |
| class DataRecursiveIntBinOpEvaluator { |
| struct EvalResult { |
| APValue Val; |
| bool Failed = false; |
| |
| EvalResult() = default; |
| |
| void swap(EvalResult &RHS) { |
| Val.swap(RHS.Val); |
| Failed = RHS.Failed; |
| RHS.Failed = false; |
| } |
| }; |
| |
| struct Job { |
| const Expr *E; |
| EvalResult LHSResult; // meaningful only for binary operator expression. |
| enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind; |
| |
| Job() = default; |
| Job(Job &&) = default; |
| |
| void startSpeculativeEval(EvalInfo &Info) { |
| SpecEvalRAII = SpeculativeEvaluationRAII(Info); |
| } |
| |
| private: |
| SpeculativeEvaluationRAII SpecEvalRAII; |
| }; |
| |
| SmallVector<Job, 16> Queue; |
| |
| IntExprEvaluator &IntEval; |
| EvalInfo &Info; |
| APValue &FinalResult; |
| |
| public: |
| DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result) |
| : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { } |
| |
| /// True if \param E is a binary operator that we are going to handle |
| /// data recursively. |
| /// We handle binary operators that are comma, logical, or that have operands |
| /// with integral or enumeration type. |
| static bool shouldEnqueue(const BinaryOperator *E) { |
| return E->getOpcode() == BO_Comma || E->isLogicalOp() || |
| (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() && |
| E->getLHS()->getType()->isIntegralOrEnumerationType() && |
| E->getRHS()->getType()->isIntegralOrEnumerationType()); |
| } |
| |
| bool Traverse(const BinaryOperator *E) { |
| enqueue(E); |
| EvalResult PrevResult; |
| while (!Queue.empty()) |
| process(PrevResult); |
| |
| if (PrevResult.Failed) return false; |
| |
| FinalResult.swap(PrevResult.Val); |
| return true; |
| } |
| |
| private: |
| bool Success(uint64_t Value, const Expr *E, APValue &Result) { |
| return IntEval.Success(Value, E, Result); |
| } |
| bool Success(const APSInt &Value, const Expr *E, APValue &Result) { |
| return IntEval.Success(Value, E, Result); |
| } |
| bool Error(const Expr *E) { |
| return IntEval.Error(E); |
| } |
| bool Error(const Expr *E, diag::kind D) { |
| return IntEval.Error(E, D); |
| } |
| |
| OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { |
| return Info.CCEDiag(E, D); |
| } |
| |
| // Returns true if visiting the RHS is necessary, false otherwise. |
| bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, |
| bool &SuppressRHSDiags); |
| |
| bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, |
| const BinaryOperator *E, APValue &Result); |
| |
| void EvaluateExpr(const Expr *E, EvalResult &Result) { |
| Result.Failed = !Evaluate(Result.Val, Info, E); |
| if (Result.Failed) |
| Result.Val = APValue(); |
| } |
| |
| void process(EvalResult &Result); |
| |
| void enqueue(const Expr *E) { |
| E = E->IgnoreParens(); |
| Queue.resize(Queue.size()+1); |
| Queue.back().E = E; |
| Queue.back().Kind = Job::AnyExprKind; |
| } |
| }; |
| |
| } |
| |
| bool DataRecursiveIntBinOpEvaluator:: |
| VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, |
| bool &SuppressRHSDiags) { |
| if (E->getOpcode() == BO_Comma) { |
| // Ignore LHS but note if we could not evaluate it. |
| if (LHSResult.Failed) |
| return Info.noteSideEffect(); |
| return true; |
| } |
| |
| if (E->isLogicalOp()) { |
| bool LHSAsBool; |
| if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) { |
| // We were able to evaluate the LHS, see if we can get away with not |
| // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 |
| if (LHSAsBool == (E->getOpcode() == BO_LOr)) { |
| Success(LHSAsBool, E, LHSResult.Val); |
| return false; // Ignore RHS |
| } |
| } else { |
| LHSResult.Failed = true; |
| |
| // Since we weren't able to evaluate the left hand side, it |
| // might have had side effects. |
| if (!Info.noteSideEffect()) |
| return false; |
| |
| // We can't evaluate the LHS; however, sometimes the result |
| // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. |
| // Don't ignore RHS and suppress diagnostics from this arm. |
| SuppressRHSDiags = true; |
| } |
| |
| return true; |
| } |
| |
| assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && |
| E->getRHS()->getType()->isIntegralOrEnumerationType()); |
| |
| if (LHSResult.Failed && !Info.noteFailure()) |
| return false; // Ignore RHS; |
| |
| return true; |
| } |
| |
| static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index, |
| bool IsSub) { |
| // Compute the new offset in the appropriate width, wrapping at 64 bits. |
| // FIXME: When compiling for a 32-bit target, we should use 32-bit |
| // offsets. |
| assert(!LVal.hasLValuePath() && "have designator for integer lvalue"); |
| CharUnits &Offset = LVal.getLValueOffset(); |
| uint64_t Offset64 = Offset.getQuantity(); |
| uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); |
| Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64 |
| : Offset64 + Index64); |
| } |
| |
| bool DataRecursiveIntBinOpEvaluator:: |
| VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, |
| const BinaryOperator *E, APValue &Result) { |
| if (E->getOpcode() == BO_Comma) { |
| if (RHSResult.Failed) |
| return false; |
| Result = RHSResult.Val; |
| return true; |
| } |
| |
| if (E->isLogicalOp()) { |
| bool lhsResult, rhsResult; |
| bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult); |
| bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult); |
| |
| if (LHSIsOK) { |
| if (RHSIsOK) { |
| if (E->getOpcode() == BO_LOr) |
| return Success(lhsResult || rhsResult, E, Result); |
| else |
| return Success(lhsResult && rhsResult, E, Result); |
| } |
| } else { |
| if (RHSIsOK) { |
| // We can't evaluate the LHS; however, sometimes the result |
| // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. |
| if (rhsResult == (E->getOpcode() == BO_LOr)) |
| return Success(rhsResult, E, Result); |
| } |
| } |
| |
| return false; |
| } |
| |
| assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && |
| E->getRHS()->getType()->isIntegralOrEnumerationType()); |
| |
| if (LHSResult.Failed || RHSResult.Failed) |
| return false; |
| |
| const APValue &LHSVal = LHSResult.Val; |
| const APValue &RHSVal = RHSResult.Val; |
| |
| // Handle cases like (unsigned long)&a + 4. |
| if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) { |
| Result = LHSVal; |
| addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub); |
| return true; |
| } |
| |
| // Handle cases like 4 + (unsigned long)&a |
| if (E->getOpcode() == BO_Add && |
| RHSVal.isLValue() && LHSVal.isInt()) { |
| Result = RHSVal; |
| addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false); |
| return true; |
| } |
| |
| if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) { |
| // Handle (intptr_t)&&A - (intptr_t)&&B. |
| if (!LHSVal.getLValueOffset().isZero() || |
| !RHSVal.getLValueOffset().isZero()) |
| return false; |
| const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>(); |
| const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>(); |
| if (!LHSExpr || !RHSExpr) |
| return false; |
| const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); |
| const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); |
| if (!LHSAddrExpr || !RHSAddrExpr) |
| return false; |
| // Make sure both labels come from the same function. |
| if (LHSAddrExpr->getLabel()->getDeclContext() != |
| RHSAddrExpr->getLabel()->getDeclContext()) |
| return false; |
| Result = APValue(LHSAddrExpr, RHSAddrExpr); |
| return true; |
| } |
| |
| // All the remaining cases expect both operands to be an integer |
| if (!LHSVal.isInt() || !RHSVal.isInt()) |
| return Error(E); |
| |
| // Set up the width and signedness manually, in case it can't be deduced |
| // from the operation we're performing. |
| // FIXME: Don't do this in the cases where we can deduce it. |
| APSInt Value(Info.Ctx.getIntWidth(E->getType()), |
| E->getType()->isUnsignedIntegerOrEnumerationType()); |
| if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(), |
| RHSVal.getInt(), Value)) |
| return false; |
| return Success(Value, E, Result); |
| } |
| |
| void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) { |
| Job &job = Queue.back(); |
| |
| switch (job.Kind) { |
| case Job::AnyExprKind: { |
| if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) { |
| if (shouldEnqueue(Bop)) { |
| job.Kind = Job::BinOpKind; |
| enqueue(Bop->getLHS()); |
| return; |
| } |
| } |
| |
| EvaluateExpr(job.E, Result); |
| Queue.pop_back(); |
| return; |
| } |
| |
| case Job::BinOpKind: { |
| const BinaryOperator *Bop = cast<BinaryOperator>(job.E); |
| bool SuppressRHSDiags = false; |
| if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) { |
| Queue.pop_back(); |
| return; |
| } |
| if (SuppressRHSDiags) |
| job.startSpeculativeEval(Info); |
| job.LHSResult.swap(Result); |
| job.Kind = Job::BinOpVisitedLHSKind; |
| enqueue(Bop->getRHS()); |
| return; |
| } |
| |
| case Job::BinOpVisitedLHSKind: { |
| const BinaryOperator *Bop = cast<BinaryOperator>(job.E); |
| EvalResult RHS; |
| RHS.swap(Result); |
| Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val); |
| Queue.pop_back(); |
| return; |
| } |
| } |
| |
| llvm_unreachable("Invalid Job::Kind!"); |
| } |
| |
| namespace { |
| enum class CmpResult { |
| Unequal, |
| Less, |
| Equal, |
| Greater, |
| Unordered, |
| }; |
| } |
| |
| template <class SuccessCB, class AfterCB> |
| static bool |
| EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E, |
| SuccessCB &&Success, AfterCB &&DoAfter) { |
| assert(!E->isValueDependent()); |
| assert(E->isComparisonOp() && "expected comparison operator"); |
| assert((E->getOpcode() == BO_Cmp || |
| E->getType()->isIntegralOrEnumerationType()) && |
| "unsupported binary expression evaluation"); |
| auto Error = [&](const Expr *E) { |
| Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| return false; |
| }; |
| |
| bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp; |
| bool IsEquality = E->isEqualityOp(); |
| |
| QualType LHSTy = E->getLHS()->getType(); |
| QualType RHSTy = E->getRHS()->getType(); |
| |
| if (LHSTy->isIntegralOrEnumerationType() && |
| RHSTy->isIntegralOrEnumerationType()) { |
| APSInt LHS, RHS; |
| bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info); |
| if (!LHSOK && !Info.noteFailure()) |
| return false; |
| if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK) |
| return false; |
| if (LHS < RHS) |
| return Success(CmpResult::Less, E); |
| if (LHS > RHS) |
| return Success(CmpResult::Greater, E); |
| return Success(CmpResult::Equal, E); |
| } |
| |
| if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) { |
| APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy)); |
| APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy)); |
| |
| bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info); |
| if (!LHSOK && !Info.noteFailure()) |
| return false; |
| if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK) |
| return false; |
| if (LHSFX < RHSFX) |
| return Success(CmpResult::Less, E); |
| if (LHSFX > RHSFX) |
| return Success(CmpResult::Greater, E); |
| return Success(CmpResult::Equal, E); |
| } |
| |
| if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) { |
| ComplexValue LHS, RHS; |
| bool LHSOK; |
| if (E->isAssignmentOp()) { |
| LValue LV; |
| EvaluateLValue(E->getLHS(), LV, Info); |
| LHSOK = false; |
| } else if (LHSTy->isRealFloatingType()) { |
| LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info); |
| if (LHSOK) { |
| LHS.makeComplexFloat(); |
| LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics()); |
| } |
| } else { |
| LHSOK = EvaluateComplex(E->getLHS(), LHS, Info); |
| } |
| if (!LHSOK && !Info.noteFailure()) |
| return false; |
| |
| if (E->getRHS()->getType()->isRealFloatingType()) { |
| if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK) |
| return false; |
| RHS.makeComplexFloat(); |
| RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics()); |
| } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) |
| return false; |
| |
| if (LHS.isComplexFloat()) { |
| APFloat::cmpResult CR_r = |
| LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal()); |
| APFloat::cmpResult CR_i = |
| LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag()); |
| bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual; |
| return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E); |
| } else { |
| assert(IsEquality && "invalid complex comparison"); |
| bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() && |
| LHS.getComplexIntImag() == RHS.getComplexIntImag(); |
| return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E); |
| } |
| } |
| |
| if (LHSTy->isRealFloatingType() && |
| RHSTy->isRealFloatingType()) { |
| APFloat RHS(0.0), LHS(0.0); |
| |
| bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info); |
| if (!LHSOK && !Info.noteFailure()) |
| return false; |
| |
| if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK) |
| return false; |
| |
| assert(E->isComparisonOp() && "Invalid binary operator!"); |
| llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS); |
| if (!Info.InConstantContext && |
| APFloatCmpResult == APFloat::cmpUnordered && |
| E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) { |
| // Note: Compares may raise invalid in some cases involving NaN or sNaN. |
| Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); |
| return false; |
| } |
| auto GetCmpRes = [&]() { |
| switch (APFloatCmpResult) { |
| case APFloat::cmpEqual: |
| return CmpResult::Equal; |
| case APFloat::cmpLessThan: |
| return CmpResult::Less; |
| case APFloat::cmpGreaterThan: |
| return CmpResult::Greater; |
| case APFloat::cmpUnordered: |
| return CmpResult::Unordered; |
| } |
| llvm_unreachable("Unrecognised APFloat::cmpResult enum"); |
| }; |
| return Success(GetCmpRes(), E); |
| } |
| |
| if (LHSTy->isPointerType() && RHSTy->isPointerType()) { |
| LValue LHSValue, RHSValue; |
| |
| bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); |
| if (!LHSOK && !Info.noteFailure()) |
| return false; |
| |
| if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) |
| return false; |
| |
| // Reject differing bases from the normal codepath; we special-case |
| // comparisons to null. |
| if (!HasSameBase(LHSValue, RHSValue)) { |
| auto DiagComparison = [&] (unsigned DiagID, bool Reversed = false) { |
| std::string LHS = LHSValue.toString(Info.Ctx, E->getLHS()->getType()); |
| std::string RHS = RHSValue.toString(Info.Ctx, E->getRHS()->getType()); |
| Info.FFDiag(E, DiagID) |
| << (Reversed ? RHS : LHS) << (Reversed ? LHS : RHS); |
| return false; |
| }; |
| // Inequalities and subtractions between unrelated pointers have |
| // unspecified or undefined behavior. |
| if (!IsEquality) |
| return DiagComparison( |
| diag::note_constexpr_pointer_comparison_unspecified); |
| // A constant address may compare equal to the address of a symbol. |
| // The one exception is that address of an object cannot compare equal |
| // to a null pointer constant. |
| // TODO: Should we restrict this to actual null pointers, and exclude the |
| // case of zero cast to pointer type? |
| if ((!LHSValue.Base && !LHSValue.Offset.isZero()) || |
| (!RHSValue.Base && !RHSValue.Offset.isZero())) |
| return DiagComparison(diag::note_constexpr_pointer_constant_comparison, |
| !RHSValue.Base); |
| // C++2c [intro.object]/10: |
| // Two objects [...] may have the same address if [...] they are both |
| // potentially non-unique objects. |
| // C++2c [intro.object]/9: |
| // An object is potentially non-unique if it is a string literal object, |
| // the backing array of an initializer list, or a subobject thereof. |
| // |
| // This makes the comparison result unspecified, so it's not a constant |
| // expression. |
| // |
| // TODO: Do we need to handle the initializer list case here? |
| if (ArePotentiallyOverlappingStringLiterals(Info, LHSValue, RHSValue)) |
| return DiagComparison(diag::note_constexpr_literal_comparison); |
| if (IsOpaqueConstantCall(LHSValue) || IsOpaqueConstantCall(RHSValue)) |
| return DiagComparison(diag::note_constexpr_opaque_call_comparison, |
| !IsOpaqueConstantCall(LHSValue)); |
| // We can't tell whether weak symbols will end up pointing to the same |
| // object. |
| if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue)) |
| return DiagComparison(diag::note_constexpr_pointer_weak_comparison, |
| !IsWeakLValue(LHSValue)); |
| // We can't compare the address of the start of one object with the |
| // past-the-end address of another object, per C++ DR1652. |
| if (LHSValue.Base && LHSValue.Offset.isZero() && |
| isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) |
| return DiagComparison(diag::note_constexpr_pointer_comparison_past_end, |
| true); |
| if (RHSValue.Base && RHSValue.Offset.isZero() && |
| isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)) |
| return DiagComparison(diag::note_constexpr_pointer_comparison_past_end, |
| false); |
| // We can't tell whether an object is at the same address as another |
| // zero sized object. |
| if ((RHSValue.Base && isZeroSized(LHSValue)) || |
| (LHSValue.Base && isZeroSized(RHSValue))) |
| return DiagComparison( |
| diag::note_constexpr_pointer_comparison_zero_sized); |
| return Success(CmpResult::Unequal, E); |
| } |
| |
| const CharUnits &LHSOffset = LHSValue.getLValueOffset(); |
| const CharUnits &RHSOffset = RHSValue.getLValueOffset(); |
| |
| SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); |
| SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); |
| |
| // C++11 [expr.rel]p2: |
| // - If two pointers point to non-static data members of the same object, |
| // or to subobjects or array elements fo such members, recursively, the |
| // pointer to the later declared member compares greater provided the |
| // two members have the same access control and provided their class is |
| // not a union. |
| // [...] |
| // - Otherwise pointer comparisons are unspecified. |
| if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) { |
| bool WasArrayIndex; |
| unsigned Mismatch = FindDesignatorMismatch( |
| getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex); |
| // At the point where the designators diverge, the comparison has a |
| // specified value if: |
| // - we are comparing array indices |
| // - we are comparing fields of a union, or fields with the same access |
| // Otherwise, the result is unspecified and thus the comparison is not a |
| // constant expression. |
| if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() && |
| Mismatch < RHSDesignator.Entries.size()) { |
| const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]); |
| const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]); |
| if (!LF && !RF) |
| Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes); |
| else if (!LF) |
| Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) |
| << getAsBaseClass(LHSDesignator.Entries[Mismatch]) |
| << RF->getParent() << RF; |
| else if (!RF) |
| Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) |
| << getAsBaseClass(RHSDesignator.Entries[Mismatch]) |
| << LF->getParent() << LF; |
| else if (!LF->getParent()->isUnion() && |
| LF->getAccess() != RF->getAccess()) |
| Info.CCEDiag(E, |
| diag::note_constexpr_pointer_comparison_differing_access) |
| << LF << LF->getAccess() << RF << RF->getAccess() |
| << LF->getParent(); |
| } |
| } |
| |
| // The comparison here must be unsigned, and performed with the same |
| // width as the pointer. |
| unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy); |
| uint64_t CompareLHS = LHSOffset.getQuantity(); |
| uint64_t CompareRHS = RHSOffset.getQuantity(); |
| assert(PtrSize <= 64 && "Unexpected pointer width"); |
| uint64_t Mask = ~0ULL >> (64 - PtrSize); |
| CompareLHS &= Mask; |
| CompareRHS &= Mask; |
| |
| // If there is a base and this is a relational operator, we can only |
| // compare pointers within the object in question; otherwise, the result |
| // depends on where the object is located in memory. |
| if (!LHSValue.Base.isNull() && IsRelational) { |
| QualType BaseTy = getType(LHSValue.Base); |
| if (BaseTy->isIncompleteType()) |
| return Error(E); |
| CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy); |
| uint64_t OffsetLimit = Size.getQuantity(); |
| if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit) |
| return Error(E); |
| } |
| |
| if (CompareLHS < CompareRHS) |
| return Success(CmpResult::Less, E); |
| if (CompareLHS > CompareRHS) |
| return Success(CmpResult::Greater, E); |
| return Success(CmpResult::Equal, E); |
| } |
| |
| if (LHSTy->isMemberPointerType()) { |
| assert(IsEquality && "unexpected member pointer operation"); |
| assert(RHSTy->isMemberPointerType() && "invalid comparison"); |
| |
| MemberPtr LHSValue, RHSValue; |
| |
| bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info); |
| if (!LHSOK && !Info.noteFailure()) |
| return false; |
| |
| if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK) |
| return false; |
| |
| // If either operand is a pointer to a weak function, the comparison is not |
| // constant. |
| if (LHSValue.getDecl() && LHSValue.getDecl()->isWeak()) { |
| Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison) |
| << LHSValue.getDecl(); |
| return false; |
| } |
| if (RHSValue.getDecl() && RHSValue.getDecl()->isWeak()) { |
| Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison) |
| << RHSValue.getDecl(); |
| return false; |
| } |
| |
| // C++11 [expr.eq]p2: |
| // If both operands are null, they compare equal. Otherwise if only one is |
| // null, they compare unequal. |
| if (!LHSValue.getDecl() || !RHSValue.getDecl()) { |
| bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl(); |
| return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E); |
| } |
| |
| // Otherwise if either is a pointer to a virtual member function, the |
| // result is unspecified. |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl())) |
| if (MD->isVirtual()) |
| Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl())) |
| if (MD->isVirtual()) |
| Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; |
| |
| // Otherwise they compare equal if and only if they would refer to the |
| // same member of the same most derived object or the same subobject if |
| // they were dereferenced with a hypothetical object of the associated |
| // class type. |
| bool Equal = LHSValue == RHSValue; |
| return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E); |
| } |
| |
| if (LHSTy->isNullPtrType()) { |
| assert(E->isComparisonOp() && "unexpected nullptr operation"); |
| assert(RHSTy->isNullPtrType() && "missing pointer conversion"); |
| // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t |
| // are compared, the result is true of the operator is <=, >= or ==, and |
| // false otherwise. |
| LValue Res; |
| if (!EvaluatePointer(E->getLHS(), Res, Info) || |
| !EvaluatePointer(E->getRHS(), Res, Info)) |
| return false; |
| return Success(CmpResult::Equal, E); |
| } |
| |
| return DoAfter(); |
| } |
| |
| bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) { |
| if (!CheckLiteralType(Info, E)) |
| return false; |
| |
| auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) { |
| ComparisonCategoryResult CCR; |
| switch (CR) { |
| case CmpResult::Unequal: |
| llvm_unreachable("should never produce Unequal for three-way comparison"); |
| case CmpResult::Less: |
| CCR = ComparisonCategoryResult::Less; |
| break; |
| case CmpResult::Equal: |
| CCR = ComparisonCategoryResult::Equal; |
| break; |
| case CmpResult::Greater: |
| CCR = ComparisonCategoryResult::Greater; |
| break; |
| case CmpResult::Unordered: |
| CCR = ComparisonCategoryResult::Unordered; |
| break; |
| } |
| // Evaluation succeeded. Lookup the information for the comparison category |
| // type and fetch the VarDecl for the result. |
| const ComparisonCategoryInfo &CmpInfo = |
| Info.Ctx.CompCategories.getInfoForType(E->getType()); |
| const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD; |
| // Check and evaluate the result as a constant expression. |
| LValue LV; |
| LV.set(VD); |
| if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) |
| return false; |
| return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result, |
| ConstantExprKind::Normal); |
| }; |
| return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { |
| return ExprEvaluatorBaseTy::VisitBinCmp(E); |
| }); |
| } |
| |
| bool RecordExprEvaluator::VisitCXXParenListInitExpr( |
| const CXXParenListInitExpr *E) { |
| return VisitCXXParenListOrInitListExpr(E, E->getInitExprs()); |
| } |
| |
| bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| // We don't support assignment in C. C++ assignments don't get here because |
| // assignment is an lvalue in C++. |
| if (E->isAssignmentOp()) { |
| Error(E); |
| if (!Info.noteFailure()) |
| return false; |
| } |
| |
| if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E)) |
| return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E); |
| |
| assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() || |
| !E->getRHS()->getType()->isIntegralOrEnumerationType()) && |
| "DataRecursiveIntBinOpEvaluator should have handled integral types"); |
| |
| if (E->isComparisonOp()) { |
| // Evaluate builtin binary comparisons by evaluating them as three-way |
| // comparisons and then translating the result. |
| auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) { |
| assert((CR != CmpResult::Unequal || E->isEqualityOp()) && |
| "should only produce Unequal for equality comparisons"); |
| bool IsEqual = CR == CmpResult::Equal, |
| IsLess = CR == CmpResult::Less, |
| IsGreater = CR == CmpResult::Greater; |
| auto Op = E->getOpcode(); |
| switch (Op) { |
| default: |
| llvm_unreachable("unsupported binary operator"); |
| case BO_EQ: |
| case BO_NE: |
| return Success(IsEqual == (Op == BO_EQ), E); |
| case BO_LT: |
| return Success(IsLess, E); |
| case BO_GT: |
| return Success(IsGreater, E); |
| case BO_LE: |
| return Success(IsEqual || IsLess, E); |
| case BO_GE: |
| return Success(IsEqual || IsGreater, E); |
| } |
| }; |
| return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { |
| return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
| }); |
| } |
| |
| QualType LHSTy = E->getLHS()->getType(); |
| QualType RHSTy = E->getRHS()->getType(); |
| |
| if (LHSTy->isPointerType() && RHSTy->isPointerType() && |
| E->getOpcode() == BO_Sub) { |
| LValue LHSValue, RHSValue; |
| |
| bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); |
| if (!LHSOK && !Info.noteFailure()) |
| return false; |
| |
| if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) |
| return false; |
| |
| // Reject differing bases from the normal codepath; we special-case |
| // comparisons to null. |
| if (!HasSameBase(LHSValue, RHSValue)) { |
| // Handle &&A - &&B. |
| if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero()) |
| return Error(E); |
| const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>(); |
| const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>(); |
| if (!LHSExpr || !RHSExpr) |
| return Error(E); |
| const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); |
| const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); |
| if (!LHSAddrExpr || !RHSAddrExpr) |
| return Error(E); |
| // Make sure both labels come from the same function. |
| if (LHSAddrExpr->getLabel()->getDeclContext() != |
| RHSAddrExpr->getLabel()->getDeclContext()) |
| return Error(E); |
| return Success(APValue(LHSAddrExpr, RHSAddrExpr), E); |
| } |
| const CharUnits &LHSOffset = LHSValue.getLValueOffset(); |
| const CharUnits &RHSOffset = RHSValue.getLValueOffset(); |
| |
| SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); |
| SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); |
| |
| // C++11 [expr.add]p6: |
| // Unless both pointers point to elements of the same array object, or |
| // one past the last element of the array object, the behavior is |
| // undefined. |
| if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && |
| !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator, |
| RHSDesignator)) |
| Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array); |
| |
| QualType Type = E->getLHS()->getType(); |
| QualType ElementType = Type->castAs<PointerType>()->getPointeeType(); |
| |
| CharUnits ElementSize; |
| if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize)) |
| return false; |
| |
| // As an extension, a type may have zero size (empty struct or union in |
| // C, array of zero length). Pointer subtraction in such cases has |
| // undefined behavior, so is not constant. |
| if (ElementSize.isZero()) { |
| Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size) |
| << ElementType; |
| return false; |
| } |
| |
| // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime, |
| // and produce incorrect results when it overflows. Such behavior |
| // appears to be non-conforming, but is common, so perhaps we should |
| // assume the standard intended for such cases to be undefined behavior |
| // and check for them. |
| |
| // Compute (LHSOffset - RHSOffset) / Size carefully, checking for |
| // overflow in the final conversion to ptrdiff_t. |
| APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false); |
| APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false); |
| APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), |
| false); |
| APSInt TrueResult = (LHS - RHS) / ElemSize; |
| APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType())); |
| |
| if (Result.extend(65) != TrueResult && |
| !HandleOverflow(Info, E, TrueResult, E->getType())) |
| return false; |
| return Success(Result, E); |
| } |
| |
| return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
| } |
| |
| /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with |
| /// a result as the expression's type. |
| bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr( |
| const UnaryExprOrTypeTraitExpr *E) { |
| switch(E->getKind()) { |
| case UETT_PreferredAlignOf: |
| case UETT_AlignOf: { |
| if (E->isArgumentType()) |
| return Success( |
| GetAlignOfType(Info.Ctx, E->getArgumentType(), E->getKind()), E); |
| else |
| return Success( |
| GetAlignOfExpr(Info.Ctx, E->getArgumentExpr(), E->getKind()), E); |
| } |
| |
| case UETT_PtrAuthTypeDiscriminator: { |
| if (E->getArgumentType()->isDependentType()) |
| return false; |
| return Success( |
| Info.Ctx.getPointerAuthTypeDiscriminator(E->getArgumentType()), E); |
| } |
| case UETT_VecStep: { |
| QualType Ty = E->getTypeOfArgument(); |
| |
| if (Ty->isVectorType()) { |
| unsigned n = Ty->castAs<VectorType>()->getNumElements(); |
| |
| // The vec_step built-in functions that take a 3-component |
| // vector return 4. (OpenCL 1.1 spec 6.11.12) |
| if (n == 3) |
| n = 4; |
| |
| return Success(n, E); |
| } else |
| return Success(1, E); |
| } |
| |
| case UETT_DataSizeOf: |
| case UETT_SizeOf: { |
| QualType SrcTy = E->getTypeOfArgument(); |
| // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, |
| // the result is the size of the referenced type." |
| if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>()) |
| SrcTy = Ref->getPointeeType(); |
| |
| CharUnits Sizeof; |
| if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof, |
| E->getKind() == UETT_DataSizeOf ? SizeOfType::DataSizeOf |
| : SizeOfType::SizeOf)) { |
| return false; |
| } |
| return Success(Sizeof, E); |
| } |
| case UETT_OpenMPRequiredSimdAlign: |
| assert(E->isArgumentType()); |
| return Success( |
| Info.Ctx.toCharUnitsFromBits( |
| Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType())) |
| .getQuantity(), |
| E); |
| case UETT_VectorElements: { |
| QualType Ty = E->getTypeOfArgument(); |
| // If the vector has a fixed size, we can determine the number of elements |
| // at compile time. |
| if (const auto *VT = Ty->getAs<VectorType>()) |
| return Success(VT->getNumElements(), E); |
| |
| assert(Ty->isSizelessVectorType()); |
| if (Info.InConstantContext) |
| Info.CCEDiag(E, diag::note_constexpr_non_const_vectorelements) |
| << E->getSourceRange(); |
| |
| return false; |
| } |
| } |
| |
| llvm_unreachable("unknown expr/type trait"); |
| } |
| |
| bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) { |
| CharUnits Result; |
| unsigned n = OOE->getNumComponents(); |
| if (n == 0) |
| return Error(OOE); |
| QualType CurrentType = OOE->getTypeSourceInfo()->getType(); |
| for (unsigned i = 0; i != n; ++i) { |
| OffsetOfNode ON = OOE->getComponent(i); |
| switch (ON.getKind()) { |
| case OffsetOfNode::Array: { |
| const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex()); |
| APSInt IdxResult; |
| if (!EvaluateInteger(Idx, IdxResult, Info)) |
| return false; |
| const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType); |
| if (!AT) |
| return Error(OOE); |
| CurrentType = AT->getElementType(); |
| CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType); |
| Result += IdxResult.getSExtValue() * ElementSize; |
| break; |
| } |
| |
| case OffsetOfNode::Field: { |
| FieldDecl *MemberDecl = ON.getField(); |
| const RecordType *RT = CurrentType->getAs<RecordType>(); |
| if (!RT) |
| return Error(OOE); |
| RecordDecl *RD = RT->getDecl(); |
| if (RD->isInvalidDecl()) return false; |
| const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); |
| unsigned i = MemberDecl->getFieldIndex(); |
| assert(i < RL.getFieldCount() && "offsetof field in wrong type"); |
| Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i)); |
| CurrentType = MemberDecl->getType().getNonReferenceType(); |
| break; |
| } |
| |
| case OffsetOfNode::Identifier: |
| llvm_unreachable("dependent __builtin_offsetof"); |
| |
| case OffsetOfNode::Base: { |
| CXXBaseSpecifier *BaseSpec = ON.getBase(); |
| if (BaseSpec->isVirtual()) |
| return Error(OOE); |
| |
| // Find the layout of the class whose base we are looking into. |
| const RecordType *RT = CurrentType->getAs<RecordType>(); |
| if (!RT) |
| return Error(OOE); |
| RecordDecl *RD = RT->getDecl(); |
| if (RD->isInvalidDecl()) return false; |
| const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); |
| |
| // Find the base class itself. |
| CurrentType = BaseSpec->getType(); |
| const RecordType *BaseRT = CurrentType->getAs<RecordType>(); |
| if (!BaseRT) |
| return Error(OOE); |
| |
| // Add the offset to the base. |
| Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl())); |
| break; |
| } |
| } |
| } |
| return Success(Result, OOE); |
| } |
| |
| bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
| switch (E->getOpcode()) { |
| default: |
| // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. |
| // See C99 6.6p3. |
| return Error(E); |
| case UO_Extension: |
| // FIXME: Should extension allow i-c-e extension expressions in its scope? |
| // If so, we could clear the diagnostic ID. |
| return Visit(E->getSubExpr()); |
| case UO_Plus: |
| // The result is just the value. |
| return Visit(E->getSubExpr()); |
| case UO_Minus: { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| if (!Result.isInt()) return Error(E); |
| const APSInt &Value = Result.getInt(); |
| if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow()) { |
| if (Info.checkingForUndefinedBehavior()) |
| Info.Ctx.getDiagnostics().Report(E->getExprLoc(), |
| diag::warn_integer_constant_overflow) |
| << toString(Value, 10, Value.isSigned(), /*formatAsCLiteral=*/false, |
| /*UpperCase=*/true, /*InsertSeparators=*/true) |
| << E->getType() << E->getSourceRange(); |
| |
| if (!HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1), |
| E->getType())) |
| return false; |
| } |
| return Success(-Value, E); |
| } |
| case UO_Not: { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| if (!Result.isInt()) return Error(E); |
| return Success(~Result.getInt(), E); |
| } |
| case UO_LNot: { |
| bool bres; |
| if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) |
| return false; |
| return Success(!bres, E); |
| } |
| } |
| } |
| |
| /// HandleCast - This is used to evaluate implicit or explicit casts where the |
| /// result type is integer. |
| bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) { |
| const Expr *SubExpr = E->getSubExpr(); |
| QualType DestType = E->getType(); |
| QualType SrcType = SubExpr->getType(); |
| |
| switch (E->getCastKind()) { |
| case CK_BaseToDerived: |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: |
| case CK_Dynamic: |
| case CK_ToUnion: |
| case CK_ArrayToPointerDecay: |
| case CK_FunctionToPointerDecay: |
| case CK_NullToPointer: |
| case CK_NullToMemberPointer: |
| case CK_BaseToDerivedMemberPointer: |
| case CK_DerivedToBaseMemberPointer: |
| case CK_ReinterpretMemberPointer: |
| case CK_ConstructorConversion: |
| case CK_IntegralToPointer: |
| case CK_ToVoid: |
| case CK_VectorSplat: |
| case CK_IntegralToFloating: |
| case CK_FloatingCast: |
| case CK_CPointerToObjCPointerCast: |
| case CK_BlockPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| case CK_ObjCObjectLValueCast: |
| case CK_FloatingRealToComplex: |
| case CK_FloatingComplexToReal: |
| case CK_FloatingComplexCast: |
| case CK_FloatingComplexToIntegralComplex: |
| case CK_IntegralRealToComplex: |
| case CK_IntegralComplexCast: |
| case CK_IntegralComplexToFloatingComplex: |
| case CK_BuiltinFnToFnPtr: |
| case CK_ZeroToOCLOpaqueType: |
| case CK_NonAtomicToAtomic: |
| case CK_AddressSpaceConversion: |
| case CK_IntToOCLSampler: |
| case CK_FloatingToFixedPoint: |
| case CK_FixedPointToFloating: |
| case CK_FixedPointCast: |
| case CK_IntegralToFixedPoint: |
| case CK_MatrixCast: |
| llvm_unreachable("invalid cast kind for integral value"); |
| |
| case CK_BitCast: |
| case CK_Dependent: |
| case CK_LValueBitCast: |
| case CK_ARCProduceObject: |
| case CK_ARCConsumeObject: |
| case CK_ARCReclaimReturnedObject: |
| case CK_ARCExtendBlockObject: |
| case CK_CopyAndAutoreleaseBlockObject: |
| return Error(E); |
| |
| case CK_UserDefinedConversion: |
| case CK_LValueToRValue: |
| case CK_AtomicToNonAtomic: |
| case CK_NoOp: |
| case CK_LValueToRValueBitCast: |
| case CK_HLSLArrayRValue: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_MemberPointerToBoolean: |
| case CK_PointerToBoolean: |
| case CK_IntegralToBoolean: |
| case CK_FloatingToBoolean: |
| case CK_BooleanToSignedIntegral: |
| case CK_FloatingComplexToBoolean: |
| case CK_IntegralComplexToBoolean: { |
| bool BoolResult; |
| if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info)) |
| return false; |
| uint64_t IntResult = BoolResult; |
| if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral) |
| IntResult = (uint64_t)-1; |
| return Success(IntResult, E); |
| } |
| |
| case CK_FixedPointToIntegral: { |
| APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType)); |
| if (!EvaluateFixedPoint(SubExpr, Src, Info)) |
| return false; |
| bool Overflowed; |
| llvm::APSInt Result = Src.convertToInt( |
| Info.Ctx.getIntWidth(DestType), |
| DestType->isSignedIntegerOrEnumerationType(), &Overflowed); |
| if (Overflowed && !HandleOverflow(Info, E, Result, DestType)) |
| return false; |
| return Success(Result, E); |
| } |
| |
| case CK_FixedPointToBoolean: { |
| // Unsigned padding does not affect this. |
| APValue Val; |
| if (!Evaluate(Val, Info, SubExpr)) |
| return false; |
| return Success(Val.getFixedPoint().getBoolValue(), E); |
| } |
| |
| case CK_IntegralCast: { |
| if (!Visit(SubExpr)) |
| return false; |
| |
| if (!Result.isInt()) { |
| // Allow casts of address-of-label differences if they are no-ops |
| // or narrowing. (The narrowing case isn't actually guaranteed to |
| // be constant-evaluatable except in some narrow cases which are hard |
| // to detect here. We let it through on the assumption the user knows |
| // what they are doing.) |
| if (Result.isAddrLabelDiff()) |
| return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType); |
| // Only allow casts of lvalues if they are lossless. |
| return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType); |
| } |
| |
| if (Info.Ctx.getLangOpts().CPlusPlus && Info.InConstantContext && |
| Info.EvalMode == EvalInfo::EM_ConstantExpression && |
| DestType->isEnumeralType()) { |
| |
| bool ConstexprVar = true; |
| |
| // We know if we are here that we are in a context that we might require |
| // a constant expression or a context that requires a constant |
| // value. But if we are initializing a value we don't know if it is a |
| // constexpr variable or not. We can check the EvaluatingDecl to determine |
| // if it constexpr or not. If not then we don't want to emit a diagnostic. |
| if (const auto *VD = dyn_cast_or_null<VarDecl>( |
| Info.EvaluatingDecl.dyn_cast<const ValueDecl *>())) |
| ConstexprVar = VD->isConstexpr(); |
| |
| const EnumType *ET = dyn_cast<EnumType>(DestType.getCanonicalType()); |
| const EnumDecl *ED = ET->getDecl(); |
| // Check that the value is within the range of the enumeration values. |
| // |
| // This corressponds to [expr.static.cast]p10 which says: |
| // A value of integral or enumeration type can be explicitly converted |
| // to a complete enumeration type ... If the enumeration type does not |
| // have a fixed underlying type, the value is unchanged if the original |
| // value is within the range of the enumeration values ([dcl.enum]), and |
| // otherwise, the behavior is undefined. |
| // |
| // This was resolved as part of DR2338 which has CD5 status. |
| if (!ED->isFixed()) { |
| llvm::APInt Min; |
| llvm::APInt Max; |
| |
| ED->getValueRange(Max, Min); |
| --Max; |
| |
| if (ED->getNumNegativeBits() && ConstexprVar && |
| (Max.slt(Result.getInt().getSExtValue()) || |
| Min.sgt(Result.getInt().getSExtValue()))) |
| Info.CCEDiag(E, diag::note_constexpr_unscoped_enum_out_of_range) |
| << llvm::toString(Result.getInt(), 10) << Min.getSExtValue() |
| << Max.getSExtValue() << ED; |
| else if (!ED->getNumNegativeBits() && ConstexprVar && |
| Max.ult(Result.getInt().getZExtValue())) |
| Info.CCEDiag(E, diag::note_constexpr_unscoped_enum_out_of_range) |
| << llvm::toString(Result.getInt(), 10) << Min.getZExtValue() |
| << Max.getZExtValue() << ED; |
| } |
| } |
| |
| return Success(HandleIntToIntCast(Info, E, DestType, SrcType, |
| Result.getInt()), E); |
| } |
| |
| case CK_PointerToIntegral: { |
| CCEDiag(E, diag::note_constexpr_invalid_cast) |
| << 2 << Info.Ctx.getLangOpts().CPlusPlus << E->getSourceRange(); |
| |
| LValue LV; |
| if (!EvaluatePointer(SubExpr, LV, Info)) |
| return false; |
| |
| if (LV.getLValueBase()) { |
| // Only allow based lvalue casts if they are lossless. |
| // FIXME: Allow a larger integer size than the pointer size, and allow |
| // narrowing back down to pointer width in subsequent integral casts. |
| // FIXME: Check integer type's active bits, not its type size. |
| if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType)) |
| return Error(E); |
| |
| LV.Designator.setInvalid(); |
| LV.moveInto(Result); |
| return true; |
| } |
| |
| APSInt AsInt; |
| APValue V; |
| LV.moveInto(V); |
| if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx)) |
| llvm_unreachable("Can't cast this!"); |
| |
| return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E); |
| } |
| |
| case CK_IntegralComplexToReal: { |
| ComplexValue C; |
| if (!EvaluateComplex(SubExpr, C, Info)) |
| return false; |
| return Success(C.getComplexIntReal(), E); |
| } |
| |
| case CK_FloatingToIntegral: { |
| APFloat F(0.0); |
| if (!EvaluateFloat(SubExpr, F, Info)) |
| return false; |
| |
| APSInt Value; |
| if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value)) |
| return false; |
| return Success(Value, E); |
| } |
| case CK_HLSLVectorTruncation: { |
| APValue Val; |
| if (!EvaluateVector(SubExpr, Val, Info)) |
| return Error(E); |
| return Success(Val.getVectorElt(0), E); |
| } |
| } |
| |
| llvm_unreachable("unknown cast resulting in integral value"); |
| } |
| |
| bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { |
| if (E->getSubExpr()->getType()->isAnyComplexType()) { |
| ComplexValue LV; |
| if (!EvaluateComplex(E->getSubExpr(), LV, Info)) |
| return false; |
| if (!LV.isComplexInt()) |
| return Error(E); |
| return Success(LV.getComplexIntReal(), E); |
| } |
| |
| return Visit(E->getSubExpr()); |
| } |
| |
| bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
| if (E->getSubExpr()->getType()->isComplexIntegerType()) { |
| ComplexValue LV; |
| if (!EvaluateComplex(E->getSubExpr(), LV, Info)) |
| return false; |
| if (!LV.isComplexInt()) |
| return Error(E); |
| return Success(LV.getComplexIntImag(), E); |
| } |
| |
| VisitIgnoredValue(E->getSubExpr()); |
| return Success(0, E); |
| } |
| |
| bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { |
| return Success(E->getPackLength(), E); |
| } |
| |
| bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { |
| return Success(E->getValue(), E); |
| } |
| |
| bool IntExprEvaluator::VisitConceptSpecializationExpr( |
| const ConceptSpecializationExpr *E) { |
| return Success(E->isSatisfied(), E); |
| } |
| |
| bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) { |
| return Success(E->isSatisfied(), E); |
| } |
| |
| bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
| switch (E->getOpcode()) { |
| default: |
| // Invalid unary operators |
| return Error(E); |
| case UO_Plus: |
| // The result is just the value. |
| return Visit(E->getSubExpr()); |
| case UO_Minus: { |
| if (!Visit(E->getSubExpr())) return false; |
| if (!Result.isFixedPoint()) |
| return Error(E); |
| bool Overflowed; |
| APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed); |
| if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType())) |
| return false; |
| return Success(Negated, E); |
| } |
| case UO_LNot: { |
| bool bres; |
| if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) |
| return false; |
| return Success(!bres, E); |
| } |
| } |
| } |
| |
| bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) { |
| const Expr *SubExpr = E->getSubExpr(); |
| QualType DestType = E->getType(); |
| assert(DestType->isFixedPointType() && |
| "Expected destination type to be a fixed point type"); |
| auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType); |
| |
| switch (E->getCastKind()) { |
| case CK_FixedPointCast: { |
| APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType())); |
| if (!EvaluateFixedPoint(SubExpr, Src, Info)) |
| return false; |
| bool Overflowed; |
| APFixedPoint Result = Src.convert(DestFXSema, &Overflowed); |
| if (Overflowed) { |
| if (Info.checkingForUndefinedBehavior()) |
| Info.Ctx.getDiagnostics().Report(E->getExprLoc(), |
| diag::warn_fixedpoint_constant_overflow) |
| << Result.toString() << E->getType(); |
| if (!HandleOverflow(Info, E, Result, E->getType())) |
| return false; |
| } |
| return Success(Result, E); |
| } |
| case CK_IntegralToFixedPoint: { |
| APSInt Src; |
| if (!EvaluateInteger(SubExpr, Src, Info)) |
| return false; |
| |
| bool Overflowed; |
| APFixedPoint IntResult = APFixedPoint::getFromIntValue( |
| Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed); |
| |
| if (Overflowed) { |
| if (Info.checkingForUndefinedBehavior()) |
| Info.Ctx.getDiagnostics().Report(E->getExprLoc(), |
| diag::warn_fixedpoint_constant_overflow) |
| << IntResult.toString() << E->getType(); |
| if (!HandleOverflow(Info, E, IntResult, E->getType())) |
| return false; |
| } |
| |
| return Success(IntResult, E); |
| } |
| case CK_FloatingToFixedPoint: { |
| APFloat Src(0.0); |
| if (!EvaluateFloat(SubExpr, Src, Info)) |
| return false; |
| |
| bool Overflowed; |
| APFixedPoint Result = APFixedPoint::getFromFloatValue( |
| Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed); |
| |
| if (Overflowed) { |
| if (Info.checkingForUndefinedBehavior()) |
| Info.Ctx.getDiagnostics().Report(E->getExprLoc(), |
| diag::warn_fixedpoint_constant_overflow) |
| << Result.toString() << E->getType(); |
| if (!HandleOverflow(Info, E, Result, E->getType())) |
| return false; |
| } |
| |
| return Success(Result, E); |
| } |
| case CK_NoOp: |
| case CK_LValueToRValue: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| default: |
| return Error(E); |
| } |
| } |
| |
| bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) |
| return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
| |
| const Expr *LHS = E->getLHS(); |
| const Expr *RHS = E->getRHS(); |
| FixedPointSemantics ResultFXSema = |
| Info.Ctx.getFixedPointSemantics(E->getType()); |
| |
| APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType())); |
| if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info)) |
| return false; |
| APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType())); |
| if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info)) |
| return false; |
| |
| bool OpOverflow = false, ConversionOverflow = false; |
| APFixedPoint Result(LHSFX.getSemantics()); |
| switch (E->getOpcode()) { |
| case BO_Add: { |
| Result = LHSFX.add(RHSFX, &OpOverflow) |
| .convert(ResultFXSema, &ConversionOverflow); |
| break; |
| } |
| case BO_Sub: { |
| Result = LHSFX.sub(RHSFX, &OpOverflow) |
| .convert(ResultFXSema, &ConversionOverflow); |
| break; |
| } |
| case BO_Mul: { |
| Result = LHSFX.mul(RHSFX, &OpOverflow) |
| .convert(ResultFXSema, &ConversionOverflow); |
| break; |
| } |
| case BO_Div: { |
| if (RHSFX.getValue() == 0) { |
| Info.FFDiag(E, diag::note_expr_divide_by_zero); |
| return false; |
| } |
| Result = LHSFX.div(RHSFX, &OpOverflow) |
| .convert(ResultFXSema, &ConversionOverflow); |
| break; |
| } |
| case BO_Shl: |
| case BO_Shr: { |
| FixedPointSemantics LHSSema = LHSFX.getSemantics(); |
| llvm::APSInt RHSVal = RHSFX.getValue(); |
| |
| unsigned ShiftBW = |
| LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding(); |
| unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1); |
| // Embedded-C 4.1.6.2.2: |
| // The right operand must be nonnegative and less than the total number |
| // of (nonpadding) bits of the fixed-point operand ... |
| if (RHSVal.isNegative()) |
| Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal; |
| else if (Amt != RHSVal) |
| Info.CCEDiag(E, diag::note_constexpr_large_shift) |
| << RHSVal << E->getType() << ShiftBW; |
| |
| if (E->getOpcode() == BO_Shl) |
| Result = LHSFX.shl(Amt, &OpOverflow); |
| else |
| Result = LHSFX.shr(Amt, &OpOverflow); |
| break; |
| } |
| default: |
| return false; |
| } |
| if (OpOverflow || ConversionOverflow) { |
| if (Info.checkingForUndefinedBehavior()) |
| Info.Ctx.getDiagnostics().Report(E->getExprLoc(), |
| diag::warn_fixedpoint_constant_overflow) |
| << Result.toString() << E->getType(); |
| if (!HandleOverflow(Info, E, Result, E->getType())) |
| return false; |
| } |
| return Success(Result, E); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Float Evaluation |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class FloatExprEvaluator |
| : public ExprEvaluatorBase<FloatExprEvaluator> { |
| APFloat &Result; |
| public: |
| FloatExprEvaluator(EvalInfo &info, APFloat &result) |
| : ExprEvaluatorBaseTy(info), Result(result) {} |
| |
| bool Success(const APValue &V, const Expr *e) { |
| Result = V.getFloat(); |
| return true; |
| } |
| |
| bool ZeroInitialization(const Expr *E) { |
| Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType())); |
| return true; |
| } |
| |
| bool VisitCallExpr(const CallExpr *E); |
| |
| bool VisitUnaryOperator(const UnaryOperator *E); |
| bool VisitBinaryOperator(const BinaryOperator *E); |
| bool VisitFloatingLiteral(const FloatingLiteral *E); |
| bool VisitCastExpr(const CastExpr *E); |
| |
| bool VisitUnaryReal(const UnaryOperator *E); |
| bool VisitUnaryImag(const UnaryOperator *E); |
| |
| // FIXME: Missing: array subscript of vector, member of vector |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) { |
| assert(!E->isValueDependent()); |
| assert(E->isPRValue() && E->getType()->isRealFloatingType()); |
| return FloatExprEvaluator(Info, Result).Visit(E); |
| } |
| |
| static bool TryEvaluateBuiltinNaN(const ASTContext &Context, |
| QualType ResultTy, |
| const Expr *Arg, |
| bool SNaN, |
| llvm::APFloat &Result) { |
| const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); |
| if (!S) return false; |
| |
| const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy); |
| |
| llvm::APInt fill; |
| |
| // Treat empty strings as if they were zero. |
| if (S->getString().empty()) |
| fill = llvm::APInt(32, 0); |
| else if (S->getString().getAsInteger(0, fill)) |
| return false; |
| |
| if (Context.getTargetInfo().isNan2008()) { |
| if (SNaN) |
| Result = llvm::APFloat::getSNaN(Sem, false, &fill); |
| else |
| Result = llvm::APFloat::getQNaN(Sem, false, &fill); |
| } else { |
| // Prior to IEEE 754-2008, architectures were allowed to choose whether |
| // the first bit of their significand was set for qNaN or sNaN. MIPS chose |
| // a different encoding to what became a standard in 2008, and for pre- |
| // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as |
| // sNaN. This is now known as "legacy NaN" encoding. |
| if (SNaN) |
| Result = llvm::APFloat::getQNaN(Sem, false, &fill); |
| else |
| Result = llvm::APFloat::getSNaN(Sem, false, &fill); |
| } |
| |
| return true; |
| } |
| |
| bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) { |
| if (!IsConstantEvaluatedBuiltinCall(E)) |
| return ExprEvaluatorBaseTy::VisitCallExpr(E); |
| |
| switch (E->getBuiltinCallee()) { |
| default: |
| return false; |
| |
| case Builtin::BI__builtin_huge_val: |
| case Builtin::BI__builtin_huge_valf: |
| case Builtin::BI__builtin_huge_vall: |
| case Builtin::BI__builtin_huge_valf16: |
| case Builtin::BI__builtin_huge_valf128: |
| case Builtin::BI__builtin_inf: |
| case Builtin::BI__builtin_inff: |
| case Builtin::BI__builtin_infl: |
| case Builtin::BI__builtin_inff16: |
| case Builtin::BI__builtin_inff128: { |
| const llvm::fltSemantics &Sem = |
| Info.Ctx.getFloatTypeSemantics(E->getType()); |
| Result = llvm::APFloat::getInf(Sem); |
| return true; |
| } |
| |
| case Builtin::BI__builtin_nans: |
| case Builtin::BI__builtin_nansf: |
| case Builtin::BI__builtin_nansl: |
| case Builtin::BI__builtin_nansf16: |
| case Builtin::BI__builtin_nansf128: |
| if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), |
| true, Result)) |
| return Error(E); |
| return true; |
| |
| case Builtin::BI__builtin_nan: |
| case Builtin::BI__builtin_nanf: |
| case Builtin::BI__builtin_nanl: |
| case Builtin::BI__builtin_nanf16: |
| case Builtin::BI__builtin_nanf128: |
| // If this is __builtin_nan() turn this into a nan, otherwise we |
| // can't constant fold it. |
| if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), |
| false, Result)) |
| return Error(E); |
| return true; |
| |
| case Builtin::BI__builtin_fabs: |
| case Builtin::BI__builtin_fabsf: |
| case Builtin::BI__builtin_fabsl: |
| case Builtin::BI__builtin_fabsf128: |
| // The C standard says "fabs raises no floating-point exceptions, |
| // even if x is a signaling NaN. The returned value is independent of |
| // the current rounding direction mode." Therefore constant folding can |
| // proceed without regard to the floating point settings. |
| // Reference, WG14 N2478 F.10.4.3 |
| if (!EvaluateFloat(E->getArg(0), Result, Info)) |
| return false; |
| |
| if (Result.isNegative()) |
| Result.changeSign(); |
| return true; |
| |
| case Builtin::BI__arithmetic_fence: |
| return EvaluateFloat(E->getArg(0), Result, Info); |
| |
| // FIXME: Builtin::BI__builtin_powi |
| // FIXME: Builtin::BI__builtin_powif |
| // FIXME: Builtin::BI__builtin_powil |
| |
| case Builtin::BI__builtin_copysign: |
| case Builtin::BI__builtin_copysignf: |
| case Builtin::BI__builtin_copysignl: |
| case Builtin::BI__builtin_copysignf128: { |
| APFloat RHS(0.); |
| if (!EvaluateFloat(E->getArg(0), Result, Info) || |
| !EvaluateFloat(E->getArg(1), RHS, Info)) |
| return false; |
| Result.copySign(RHS); |
| return true; |
| } |
| |
| case Builtin::BI__builtin_fmax: |
| case Builtin::BI__builtin_fmaxf: |
| case Builtin::BI__builtin_fmaxl: |
| case Builtin::BI__builtin_fmaxf16: |
| case Builtin::BI__builtin_fmaxf128: { |
| // TODO: Handle sNaN. |
| APFloat RHS(0.); |
| if (!EvaluateFloat(E->getArg(0), Result, Info) || |
| !EvaluateFloat(E->getArg(1), RHS, Info)) |
| return false; |
| // When comparing zeroes, return +0.0 if one of the zeroes is positive. |
| if (Result.isZero() && RHS.isZero() && Result.isNegative()) |
| Result = RHS; |
| else if (Result.isNaN() || RHS > Result) |
| Result = RHS; |
| return true; |
| } |
| |
| case Builtin::BI__builtin_fmin: |
| case Builtin::BI__builtin_fminf: |
| case Builtin::BI__builtin_fminl: |
| case Builtin::BI__builtin_fminf16: |
| case Builtin::BI__builtin_fminf128: { |
| // TODO: Handle sNaN. |
| APFloat RHS(0.); |
| if (!EvaluateFloat(E->getArg(0), Result, Info) || |
| !EvaluateFloat(E->getArg(1), RHS, Info)) |
| return false; |
| // When comparing zeroes, return -0.0 if one of the zeroes is negative. |
| if (Result.isZero() && RHS.isZero() && RHS.isNegative()) |
| Result = RHS; |
| else if (Result.isNaN() || RHS < Result) |
| Result = RHS; |
| return true; |
| } |
| } |
| } |
| |
| bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { |
| if (E->getSubExpr()->getType()->isAnyComplexType()) { |
| ComplexValue CV; |
| if (!EvaluateComplex(E->getSubExpr(), CV, Info)) |
| return false; |
| Result = CV.FloatReal; |
| return true; |
| } |
| |
| return Visit(E->getSubExpr()); |
| } |
| |
| bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
| if (E->getSubExpr()->getType()->isAnyComplexType()) { |
| ComplexValue CV; |
| if (!EvaluateComplex(E->getSubExpr(), CV, Info)) |
| return false; |
| Result = CV.FloatImag; |
| return true; |
| } |
| |
| VisitIgnoredValue(E->getSubExpr()); |
| const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType()); |
| Result = llvm::APFloat::getZero(Sem); |
| return true; |
| } |
| |
| bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
| switch (E->getOpcode()) { |
| default: return Error(E); |
| case UO_Plus: |
| return EvaluateFloat(E->getSubExpr(), Result, Info); |
| case UO_Minus: |
| // In C standard, WG14 N2478 F.3 p4 |
| // "the unary - raises no floating point exceptions, |
| // even if the operand is signalling." |
| if (!EvaluateFloat(E->getSubExpr(), Result, Info)) |
| return false; |
| Result.changeSign(); |
| return true; |
| } |
| } |
| |
| bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) |
| return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
| |
| APFloat RHS(0.0); |
| bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info); |
| if (!LHSOK && !Info.noteFailure()) |
| return false; |
| return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK && |
| handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS); |
| } |
| |
| bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) { |
| Result = E->getValue(); |
| return true; |
| } |
| |
| bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) { |
| const Expr* SubExpr = E->getSubExpr(); |
| |
| switch (E->getCastKind()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_IntegralToFloating: { |
| APSInt IntResult; |
| const FPOptions FPO = E->getFPFeaturesInEffect( |
| Info.Ctx.getLangOpts()); |
| return EvaluateInteger(SubExpr, IntResult, Info) && |
| HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(), |
| IntResult, E->getType(), Result); |
| } |
| |
| case CK_FixedPointToFloating: { |
| APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType())); |
| if (!EvaluateFixedPoint(SubExpr, FixResult, Info)) |
| return false; |
| Result = |
| FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType())); |
| return true; |
| } |
| |
| case CK_FloatingCast: { |
| if (!Visit(SubExpr)) |
| return false; |
| return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(), |
| Result); |
| } |
| |
| case CK_FloatingComplexToReal: { |
| ComplexValue V; |
| if (!EvaluateComplex(SubExpr, V, Info)) |
| return false; |
| Result = V.getComplexFloatReal(); |
| return true; |
| } |
| case CK_HLSLVectorTruncation: { |
| APValue Val; |
| if (!EvaluateVector(SubExpr, Val, Info)) |
| return Error(E); |
| return Success(Val.getVectorElt(0), E); |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Complex Evaluation (for float and integer) |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class ComplexExprEvaluator |
| : public ExprEvaluatorBase<ComplexExprEvaluator> { |
| ComplexValue &Result; |
| |
| public: |
| ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result) |
| : ExprEvaluatorBaseTy(info), Result(Result) {} |
| |
| bool Success(const APValue &V, const Expr *e) { |
| Result.setFrom(V); |
| return true; |
| } |
| |
| bool ZeroInitialization(const Expr *E); |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| bool VisitImaginaryLiteral(const ImaginaryLiteral *E); |
| bool VisitCastExpr(const CastExpr *E); |
| bool VisitBinaryOperator(const BinaryOperator *E); |
| bool VisitUnaryOperator(const UnaryOperator *E); |
| bool VisitInitListExpr(const InitListExpr *E); |
| bool VisitCallExpr(const CallExpr *E); |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateComplex(const Expr *E, ComplexValue &Result, |
| EvalInfo &Info) { |
| assert(!E->isValueDependent()); |
| assert(E->isPRValue() && E->getType()->isAnyComplexType()); |
| return ComplexExprEvaluator(Info, Result).Visit(E); |
| } |
| |
| bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) { |
| QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); |
| if (ElemTy->isRealFloatingType()) { |
| Result.makeComplexFloat(); |
| APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy)); |
| Result.FloatReal = Zero; |
| Result.FloatImag = Zero; |
| } else { |
| Result.makeComplexInt(); |
| APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy); |
| Result.IntReal = Zero; |
| Result.IntImag = Zero; |
| } |
| return true; |
| } |
| |
| bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) { |
| const Expr* SubExpr = E->getSubExpr(); |
| |
| if (SubExpr->getType()->isRealFloatingType()) { |
| Result.makeComplexFloat(); |
| APFloat &Imag = Result.FloatImag; |
| if (!EvaluateFloat(SubExpr, Imag, Info)) |
| return false; |
| |
| Result.FloatReal = APFloat(Imag.getSemantics()); |
| return true; |
| } else { |
| assert(SubExpr->getType()->isIntegerType() && |
| "Unexpected imaginary literal."); |
| |
| Result.makeComplexInt(); |
| APSInt &Imag = Result.IntImag; |
| if (!EvaluateInteger(SubExpr, Imag, Info)) |
| return false; |
| |
| Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned()); |
| return true; |
| } |
| } |
| |
| bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) { |
| |
| switch (E->getCastKind()) { |
| case CK_BitCast: |
| case CK_BaseToDerived: |
| case CK_DerivedToBase: |
| case CK_UncheckedDerivedToBase: |
| case CK_Dynamic: |
| case CK_ToUnion: |
| case CK_ArrayToPointerDecay: |
| case CK_FunctionToPointerDecay: |
| case CK_NullToPointer: |
| case CK_NullToMemberPointer: |
| case CK_BaseToDerivedMemberPointer: |
| case CK_DerivedToBaseMemberPointer: |
| case CK_MemberPointerToBoolean: |
| case CK_ReinterpretMemberPointer: |
| case CK_ConstructorConversion: |
| case CK_IntegralToPointer: |
| case CK_PointerToIntegral: |
| case CK_PointerToBoolean: |
| case CK_ToVoid: |
| case CK_VectorSplat: |
| case CK_IntegralCast: |
| case CK_BooleanToSignedIntegral: |
| case CK_IntegralToBoolean: |
| case CK_IntegralToFloating: |
| case CK_FloatingToIntegral: |
| case CK_FloatingToBoolean: |
| case CK_FloatingCast: |
| case CK_CPointerToObjCPointerCast: |
| case CK_BlockPointerToObjCPointerCast: |
| case CK_AnyPointerToBlockPointerCast: |
| case CK_ObjCObjectLValueCast: |
| case CK_FloatingComplexToReal: |
| case CK_FloatingComplexToBoolean: |
| case CK_IntegralComplexToReal: |
| case CK_IntegralComplexToBoolean: |
| case CK_ARCProduceObject: |
| case CK_ARCConsumeObject: |
| case CK_ARCReclaimReturnedObject: |
| case CK_ARCExtendBlockObject: |
| case CK_CopyAndAutoreleaseBlockObject: |
| case CK_BuiltinFnToFnPtr: |
| case CK_ZeroToOCLOpaqueType: |
| case CK_NonAtomicToAtomic: |
| case CK_AddressSpaceConversion: |
| case CK_IntToOCLSampler: |
| case CK_FloatingToFixedPoint: |
| case CK_FixedPointToFloating: |
| case CK_FixedPointCast: |
| case CK_FixedPointToBoolean: |
| case CK_FixedPointToIntegral: |
| case CK_IntegralToFixedPoint: |
| case CK_MatrixCast: |
| case CK_HLSLVectorTruncation: |
| llvm_unreachable("invalid cast kind for complex value"); |
| |
| case CK_LValueToRValue: |
| case CK_AtomicToNonAtomic: |
| case CK_NoOp: |
| case CK_LValueToRValueBitCast: |
| case CK_HLSLArrayRValue: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| |
| case CK_Dependent: |
| case CK_LValueBitCast: |
| case CK_UserDefinedConversion: |
| return Error(E); |
| |
| case CK_FloatingRealToComplex: { |
| APFloat &Real = Result.FloatReal; |
| if (!EvaluateFloat(E->getSubExpr(), Real, Info)) |
| return false; |
| |
| Result.makeComplexFloat(); |
| Result.FloatImag = APFloat(Real.getSemantics()); |
| return true; |
| } |
| |
| case CK_FloatingComplexCast: { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| |
| QualType To = E->getType()->castAs<ComplexType>()->getElementType(); |
| QualType From |
| = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); |
| |
| return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) && |
| HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag); |
| } |
| |
| case CK_FloatingComplexToIntegralComplex: { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| |
| QualType To = E->getType()->castAs<ComplexType>()->getElementType(); |
| QualType From |
| = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); |
| Result.makeComplexInt(); |
| return HandleFloatToIntCast(Info, E, From, Result.FloatReal, |
| To, Result.IntReal) && |
| HandleFloatToIntCast(Info, E, From, Result.FloatImag, |
| To, Result.IntImag); |
| } |
| |
| case CK_IntegralRealToComplex: { |
| APSInt &Real = Result.IntReal; |
| if (!EvaluateInteger(E->getSubExpr(), Real, Info)) |
| return false; |
| |
| Result.makeComplexInt(); |
| Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned()); |
| return true; |
| } |
| |
| case CK_IntegralComplexCast: { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| |
| QualType To = E->getType()->castAs<ComplexType>()->getElementType(); |
| QualType From |
| = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); |
| |
| Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal); |
| Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag); |
| return true; |
| } |
| |
| case CK_IntegralComplexToFloatingComplex: { |
| if (!Visit(E->getSubExpr())) |
| return false; |
| |
| const FPOptions FPO = E->getFPFeaturesInEffect( |
| Info.Ctx.getLangOpts()); |
| QualType To = E->getType()->castAs<ComplexType>()->getElementType(); |
| QualType From |
| = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); |
| Result.makeComplexFloat(); |
| return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal, |
| To, Result.FloatReal) && |
| HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag, |
| To, Result.FloatImag); |
| } |
| } |
| |
| llvm_unreachable("unknown cast resulting in complex value"); |
| } |
| |
| void HandleComplexComplexMul(APFloat A, APFloat B, APFloat C, APFloat D, |
| APFloat &ResR, APFloat &ResI) { |
| // This is an implementation of complex multiplication according to the |
| // constraints laid out in C11 Annex G. The implementation uses the |
| // following naming scheme: |
| // (a + ib) * (c + id) |
| |
| APFloat AC = A * C; |
| APFloat BD = B * D; |
| APFloat AD = A * D; |
| APFloat BC = B * C; |
| ResR = AC - BD; |
| ResI = AD + BC; |
| if (ResR.isNaN() && ResI.isNaN()) { |
| bool Recalc = false; |
| if (A.isInfinity() || B.isInfinity()) { |
| A = APFloat::copySign(APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), |
| A); |
| B = APFloat::copySign(APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), |
| B); |
| if (C.isNaN()) |
| C = APFloat::copySign(APFloat(C.getSemantics()), C); |
| if (D.isNaN()) |
| D = APFloat::copySign(APFloat(D.getSemantics()), D); |
| Recalc = true; |
| } |
| if (C.isInfinity() || D.isInfinity()) { |
| C = APFloat::copySign(APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), |
| C); |
| D = APFloat::copySign(APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), |
| D); |
| if (A.isNaN()) |
| A = APFloat::copySign(APFloat(A.getSemantics()), A); |
| if (B.isNaN()) |
| B = APFloat::copySign(APFloat(B.getSemantics()), B); |
| Recalc = true; |
| } |
| if (!Recalc && (AC.isInfinity() || BD.isInfinity() || AD.isInfinity() || |
| BC.isInfinity())) { |
| if (A.isNaN()) |
| A = APFloat::copySign(APFloat(A.getSemantics()), A); |
| if (B.isNaN()) |
| B = APFloat::copySign(APFloat(B.getSemantics()), B); |
| if (C.isNaN()) |
| C = APFloat::copySign(APFloat(C.getSemantics()), C); |
| if (D.isNaN()) |
| D = APFloat::copySign(APFloat(D.getSemantics()), D); |
| Recalc = true; |
| } |
| if (Recalc) { |
| ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D); |
| ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C); |
| } |
| } |
| } |
| |
| void HandleComplexComplexDiv(APFloat A, APFloat B, APFloat C, APFloat D, |
| APFloat &ResR, APFloat &ResI) { |
| // This is an implementation of complex division according to the |
| // constraints laid out in C11 Annex G. The implementation uses the |
| // following naming scheme: |
| // (a + ib) / (c + id) |
| |
| int DenomLogB = 0; |
| APFloat MaxCD = maxnum(abs(C), abs(D)); |
| if (MaxCD.isFinite()) { |
| DenomLogB = ilogb(MaxCD); |
| C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven); |
| D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven); |
| } |
| APFloat Denom = C * C + D * D; |
| ResR = |
| scalbn((A * C + B * D) / Denom, -DenomLogB, APFloat::rmNearestTiesToEven); |
| ResI = |
| scalbn((B * C - A * D) / Denom, -DenomLogB, APFloat::rmNearestTiesToEven); |
| if (ResR.isNaN() && ResI.isNaN()) { |
| if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) { |
| ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A; |
| ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B; |
| } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() && |
| D.isFinite()) { |
| A = APFloat::copySign(APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), |
| A); |
| B = APFloat::copySign(APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), |
| B); |
| ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D); |
| ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D); |
| } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) { |
| C = APFloat::copySign(APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), |
| C); |
| D = APFloat::copySign(APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), |
| D); |
| ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D); |
| ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D); |
| } |
| } |
| } |
| |
| bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
| if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) |
| return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
| |
| // Track whether the LHS or RHS is real at the type system level. When this is |
| // the case we can simplify our evaluation strategy. |
| bool LHSReal = false, RHSReal = false; |
| |
| bool LHSOK; |
| if (E->getLHS()->getType()->isRealFloatingType()) { |
| LHSReal = true; |
| APFloat &Real = Result.FloatReal; |
| LHSOK = EvaluateFloat(E->getLHS(), Real, Info); |
| if (LHSOK) { |
| Result.makeComplexFloat(); |
| Result.FloatImag = APFloat(Real.getSemantics()); |
| } |
| } else { |
| LHSOK = Visit(E->getLHS()); |
| } |
| if (!LHSOK && !Info.noteFailure()) |
| return false; |
| |
| ComplexValue RHS; |
| if (E->getRHS()->getType()->isRealFloatingType()) { |
| RHSReal = true; |
| APFloat &Real = RHS.FloatReal; |
| if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK) |
| return false; |
| RHS.makeComplexFloat(); |
| RHS.FloatImag = APFloat(Real.getSemantics()); |
| } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) |
| return false; |
| |
| assert(!(LHSReal && RHSReal) && |
| "Cannot have both operands of a complex operation be real."); |
| switch (E->getOpcode()) { |
| default: return Error(E); |
| case BO_Add: |
| if (Result.isComplexFloat()) { |
| Result.getComplexFloatReal().add(RHS.getComplexFloatReal(), |
| APFloat::rmNearestTiesToEven); |
| if (LHSReal) |
| Result.getComplexFloatImag() = RHS.getComplexFloatImag(); |
| else if (!RHSReal) |
| Result.getComplexFloatImag().add(RHS.getComplexFloatImag(), |
| APFloat::rmNearestTiesToEven); |
| } else { |
| Result.getComplexIntReal() += RHS.getComplexIntReal(); |
| Result.getComplexIntImag() += RHS.getComplexIntImag(); |
| } |
| break; |
| case BO_Sub: |
| if (Result.isComplexFloat()) { |
| Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(), |
| APFloat::rmNearestTiesToEven); |
| if (LHSReal) { |
| Result.getComplexFloatImag() = RHS.getComplexFloatImag(); |
| Result.getComplexFloatImag().changeSign(); |
| } else if (!RHSReal) { |
| Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(), |
| APFloat::rmNearestTiesToEven); |
| } |
| } else { |
| Result.getComplexIntReal() -= RHS.getComplexIntReal(); |
| Result.getComplexIntImag() -= RHS.getComplexIntImag(); |
| } |
| break; |
| case BO_Mul: |
| if (Result.isComplexFloat()) { |
| // This is an implementation of complex multiplication according to the |
| // constraints laid out in C11 Annex G. The implementation uses the |
| // following naming scheme: |
| // (a + ib) * (c + id) |
| ComplexValue LHS = Result; |
| APFloat &A = LHS.getComplexFloatReal(); |
| APFloat &B = LHS.getComplexFloatImag(); |
| APFloat &C = RHS.getComplexFloatReal(); |
| APFloat &D = RHS.getComplexFloatImag(); |
| APFloat &ResR = Result.getComplexFloatReal(); |
| APFloat &ResI = Result.getComplexFloatImag(); |
| if (LHSReal) { |
| assert(!RHSReal && "Cannot have two real operands for a complex op!"); |
| ResR = A; |
| ResI = A; |
| // ResR = A * C; |
| // ResI = A * D; |
| if (!handleFloatFloatBinOp(Info, E, ResR, BO_Mul, C) || |
| !handleFloatFloatBinOp(Info, E, ResI, BO_Mul, D)) |
| return false; |
| } else if (RHSReal) { |
| // ResR = C * A; |
| // ResI = C * B; |
| ResR = C; |
| ResI = C; |
| if (!handleFloatFloatBinOp(Info, E, ResR, BO_Mul, A) || |
| !handleFloatFloatBinOp(Info, E, ResI, BO_Mul, B)) |
| return false; |
| } else { |
| HandleComplexComplexMul(A, B, C, D, ResR, ResI); |
| } |
| } else { |
| ComplexValue LHS = Result; |
| Result.getComplexIntReal() = |
| (LHS.getComplexIntReal() * RHS.getComplexIntReal() - |
| LHS.getComplexIntImag() * RHS.getComplexIntImag()); |
| Result.getComplexIntImag() = |
| (LHS.getComplexIntReal() * RHS.getComplexIntImag() + |
| LHS.getComplexIntImag() * RHS.getComplexIntReal()); |
| } |
| break; |
| case BO_Div: |
| if (Result.isComplexFloat()) { |
| // This is an implementation of complex division according to the |
| // constraints laid out in C11 Annex G. The implementation uses the |
| // following naming scheme: |
| // (a + ib) / (c + id) |
| ComplexValue LHS = Result; |
| APFloat &A = LHS.getComplexFloatReal(); |
| APFloat &B = LHS.getComplexFloatImag(); |
| APFloat &C = RHS.getComplexFloatReal(); |
| APFloat &D = RHS.getComplexFloatImag(); |
| APFloat &ResR = Result.getComplexFloatReal(); |
| APFloat &ResI = Result.getComplexFloatImag(); |
| if (RHSReal) { |
| ResR = A; |
| ResI = B; |
| // ResR = A / C; |
| // ResI = B / C; |
| if (!handleFloatFloatBinOp(Info, E, ResR, BO_Div, C) || |
| !handleFloatFloatBinOp(Info, E, ResI, BO_Div, C)) |
| return false; |
| } else { |
| if (LHSReal) { |
| // No real optimizations we can do here, stub out with zero. |
| B = APFloat::getZero(A.getSemantics()); |
| } |
| HandleComplexComplexDiv(A, B, C, D, ResR, ResI); |
| } |
| } else { |
| ComplexValue LHS = Result; |
| APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() + |
| RHS.getComplexIntImag() * RHS.getComplexIntImag(); |
| if (Den.isZero()) |
| return Error(E, diag::note_expr_divide_by_zero); |
| |
| Result.getComplexIntReal() = |
| (LHS.getComplexIntReal() * RHS.getComplexIntReal() + |
| LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den; |
| Result.getComplexIntImag() = |
| (LHS.getComplexIntImag() * RHS.getComplexIntReal() - |
| LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den; |
| } |
| break; |
| } |
| |
| return true; |
| } |
| |
| bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
| // Get the operand value into 'Result'. |
| if (!Visit(E->getSubExpr())) |
| return false; |
| |
| switch (E->getOpcode()) { |
| default: |
| return Error(E); |
| case UO_Extension: |
| return true; |
| case UO_Plus: |
| // The result is always just the subexpr. |
| return true; |
| case UO_Minus: |
| if (Result.isComplexFloat()) { |
| Result.getComplexFloatReal().changeSign(); |
| Result.getComplexFloatImag().changeSign(); |
| } |
| else { |
| Result.getComplexIntReal() = -Result.getComplexIntReal(); |
| Result.getComplexIntImag() = -Result.getComplexIntImag(); |
| } |
| return true; |
| case UO_Not: |
| if (Result.isComplexFloat()) |
| Result.getComplexFloatImag().changeSign(); |
| else |
| Result.getComplexIntImag() = -Result.getComplexIntImag(); |
| return true; |
| } |
| } |
| |
| bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) { |
| if (E->getNumInits() == 2) { |
| if (E->getType()->isComplexType()) { |
| Result.makeComplexFloat(); |
| if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info)) |
| return false; |
| if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info)) |
| return false; |
| } else { |
| Result.makeComplexInt(); |
| if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info)) |
| return false; |
| if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info)) |
| return false; |
| } |
| return true; |
| } |
| return ExprEvaluatorBaseTy::VisitInitListExpr(E); |
| } |
| |
| bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) { |
| if (!IsConstantEvaluatedBuiltinCall(E)) |
| return ExprEvaluatorBaseTy::VisitCallExpr(E); |
| |
| switch (E->getBuiltinCallee()) { |
| case Builtin::BI__builtin_complex: |
| Result.makeComplexFloat(); |
| if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info)) |
| return false; |
| if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info)) |
| return false; |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic |
| // implicit conversion. |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class AtomicExprEvaluator : |
| public ExprEvaluatorBase<AtomicExprEvaluator> { |
| const LValue *This; |
| APValue &Result; |
| public: |
| AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result) |
| : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} |
| |
| bool Success(const APValue &V, const Expr *E) { |
| Result = V; |
| return true; |
| } |
| |
| bool ZeroInitialization(const Expr *E) { |
| ImplicitValueInitExpr VIE( |
| E->getType()->castAs<AtomicType>()->getValueType()); |
| // For atomic-qualified class (and array) types in C++, initialize the |
| // _Atomic-wrapped subobject directly, in-place. |
| return This ? EvaluateInPlace(Result, Info, *This, &VIE) |
| : Evaluate(Result, Info, &VIE); |
| } |
| |
| bool VisitCastExpr(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| case CK_NullToPointer: |
| VisitIgnoredValue(E->getSubExpr()); |
| return ZeroInitialization(E); |
| case CK_NonAtomicToAtomic: |
| return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr()) |
| : Evaluate(Result, Info, E->getSubExpr()); |
| } |
| } |
| }; |
| } // end anonymous namespace |
| |
| static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, |
| EvalInfo &Info) { |
| assert(!E->isValueDependent()); |
| assert(E->isPRValue() && E->getType()->isAtomicType()); |
| return AtomicExprEvaluator(Info, This, Result).Visit(E); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Void expression evaluation, primarily for a cast to void on the LHS of a |
| // comma operator |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| class VoidExprEvaluator |
| : public ExprEvaluatorBase<VoidExprEvaluator> { |
| public: |
| VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {} |
| |
| bool Success(const APValue &V, const Expr *e) { return true; } |
| |
| bool ZeroInitialization(const Expr *E) { return true; } |
| |
| bool VisitCastExpr(const CastExpr *E) { |
| switch (E->getCastKind()) { |
| default: |
| return ExprEvaluatorBaseTy::VisitCastExpr(E); |
| case CK_ToVoid: |
| VisitIgnoredValue(E->getSubExpr()); |
| return true; |
| } |
| } |
| |
| bool VisitCallExpr(const CallExpr *E) { |
| if (!IsConstantEvaluatedBuiltinCall(E)) |
| return ExprEvaluatorBaseTy::VisitCallExpr(E); |
| |
| switch (E->getBuiltinCallee()) { |
| case Builtin::BI__assume: |
| case Builtin::BI__builtin_assume: |
| // The argument is not evaluated! |
| return true; |
| |
| case Builtin::BI__builtin_operator_delete: |
| return HandleOperatorDeleteCall(Info, E); |
| |
| default: |
| return false; |
| } |
| } |
| |
| bool VisitCXXDeleteExpr(const CXXDeleteExpr *E); |
| }; |
| } // end anonymous namespace |
| |
| bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { |
| // We cannot speculatively evaluate a delete expression. |
| if (Info.SpeculativeEvaluationDepth) |
| return false; |
| |
| FunctionDecl *OperatorDelete = E->getOperatorDelete(); |
| if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) { |
| Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) |
| << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete; |
| return false; |
| } |
| |
| const Expr *Arg = E->getArgument(); |
| |
| LValue Pointer; |
| if (!EvaluatePointer(Arg, Pointer, Info)) |
| return false; |
| if (Pointer.Designator.Invalid) |
| return false; |
| |
| // Deleting a null pointer has no effect. |
| if (Pointer.isNullPointer()) { |
| // This is the only case where we need to produce an extension warning: |
| // the only other way we can succeed is if we find a dynamic allocation, |
| // and we will have warned when we allocated it in that case. |
| if (!Info.getLangOpts().CPlusPlus20) |
| Info.CCEDiag(E, diag::note_constexpr_new); |
| return true; |
| } |
| |
| std::optional<DynAlloc *> Alloc = CheckDeleteKind( |
| Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New); |
| if (!Alloc) |
| return false; |
| QualType AllocType = Pointer.Base.getDynamicAllocType(); |
| |
| // For the non-array case, the designator must be empty if the static type |
| // does not have a virtual destructor. |
| if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 && |
| !hasVirtualDestructor(Arg->getType()->getPointeeType())) { |
| Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor) |
| << Arg->getType()->getPointeeType() << AllocType; |
| return false; |
| } |
| |
| // For a class type with a virtual destructor, the selected operator delete |
| // is the one looked up when building the destructor. |
| if (!E->isArrayForm() && !E->isGlobalDelete()) { |
| const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType); |
| if (VirtualDelete && |
| !VirtualDelete->isReplaceableGlobalAllocationFunction()) { |
| Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) |
| << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete; |
| return false; |
| } |
| } |
| |
| if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(), |
| (*Alloc)->Value, AllocType)) |
| return false; |
| |
| if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) { |
| // The element was already erased. This means the destructor call also |
| // deleted the object. |
| // FIXME: This probably results in undefined behavior before we get this |
| // far, and should be diagnosed elsewhere first. |
| Info.FFDiag(E, diag::note_constexpr_double_delete); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool EvaluateVoid(const Expr *E, EvalInfo &Info) { |
| assert(!E->isValueDependent()); |
| assert(E->isPRValue() && E->getType()->isVoidType()); |
| return VoidExprEvaluator(Info).Visit(E); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top level Expr::EvaluateAsRValue method. |
| //===----------------------------------------------------------------------===// |
| |
| static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) { |
| assert(!E->isValueDependent()); |
| // In C, function designators are not lvalues, but we evaluate them as if they |
| // are. |
| QualType T = E->getType(); |
| if (E->isGLValue() || T->isFunctionType()) { |
| LValue LV; |
| if (!EvaluateLValue(E, LV, Info)) |
| return false; |
| LV.moveInto(Result); |
| } else if (T->isVectorType()) { |
| if (!EvaluateVector(E, Result, Info)) |
| return false; |
| } else if (T->isIntegralOrEnumerationType()) { |
| if (!IntExprEvaluator(Info, Result).Visit(E)) |
| return false; |
| } else if (T->hasPointerRepresentation()) { |
| LValue LV; |
| if (!EvaluatePointer(E, LV, Info)) |
| return false; |
| LV.moveInto(Result); |
| } else if (T->isRealFloatingType()) { |
| llvm::APFloat F(0.0); |
| if (!EvaluateFloat(E, F, Info)) |
| return false; |
| Result = APValue(F); |
| } else if (T->isAnyComplexType()) { |
| ComplexValue C; |
| if (!EvaluateComplex(E, C, Info)) |
| return false; |
| C.moveInto(Result); |
| } else if (T->isFixedPointType()) { |
| if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false; |
| } else if (T->isMemberPointerType()) { |
| MemberPtr P; |
| if (!EvaluateMemberPointer(E, P, Info)) |
| return false; |
| P.moveInto(Result); |
| return true; |
| } else if (T->isArrayType()) { |
| LValue LV; |
| APValue &Value = |
| Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV); |
| if (!EvaluateArray(E, LV, Value, Info)) |
| return false; |
| Result = Value; |
| } else if (T->isRecordType()) { |
| LValue LV; |
| APValue &Value = |
| Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV); |
| if (!EvaluateRecord(E, LV, Value, Info)) |
| return false; |
| Result = Value; |
| } else if (T->isVoidType()) { |
| if (!Info.getLangOpts().CPlusPlus11) |
| Info.CCEDiag(E, diag::note_constexpr_nonliteral) |
| << E->getType(); |
| if (!EvaluateVoid(E, Info)) |
| return false; |
| } else if (T->isAtomicType()) { |
| QualType Unqual = T.getAtomicUnqualifiedType(); |
| if (Unqual->isArrayType() || Unqual->isRecordType()) { |
| LValue LV; |
| APValue &Value = Info.CurrentCall->createTemporary( |
| E, Unqual, ScopeKind::FullExpression, LV); |
| if (!EvaluateAtomic(E, &LV, Value, Info)) |
| return false; |
| Result = Value; |
| } else { |
| if (!EvaluateAtomic(E, nullptr, Result, Info)) |
| return false; |
| } |
| } else if (Info.getLangOpts().CPlusPlus11) { |
| Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType(); |
| return false; |
| } else { |
| Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some |
| /// cases, the in-place evaluation is essential, since later initializers for |
| /// an object can indirectly refer to subobjects which were initialized earlier. |
| static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This, |
| const Expr *E, bool AllowNonLiteralTypes) { |
| assert(!E->isValueDependent()); |
| |
| if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This)) |
| return false; |
| |
| if (E->isPRValue()) { |
| // Evaluate arrays and record types in-place, so that later initializers can |
| // refer to earlier-initialized members of the object. |
| QualType T = E->getType(); |
| if (T->isArrayType()) |
| return EvaluateArray(E, This, Result, Info); |
| else if (T->isRecordType()) |
| return EvaluateRecord(E, This, Result, Info); |
| else if (T->isAtomicType()) { |
| QualType Unqual = T.getAtomicUnqualifiedType(); |
| if (Unqual->isArrayType() || Unqual->isRecordType()) |
| return EvaluateAtomic(E, &This, Result, Info); |
| } |
| } |
| |
| // For any other type, in-place evaluation is unimportant. |
| return Evaluate(Result, Info, E); |
| } |
| |
| /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit |
| /// lvalue-to-rvalue cast if it is an lvalue. |
| static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) { |
| assert(!E->isValueDependent()); |
| |
| if (E->getType().isNull()) |
| return false; |
| |
| if (!CheckLiteralType(Info, E)) |
| return false; |
| |
| if (Info.EnableNewConstInterp) { |
| if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result)) |
| return false; |
| return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result, |
| ConstantExprKind::Normal); |
| } |
| |
| if (!::Evaluate(Result, Info, E)) |
| return false; |
| |
| // Implicit lvalue-to-rvalue cast. |
| if (E->isGLValue()) { |
| LValue LV; |
| LV.setFrom(Info.Ctx, Result); |
| if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) |
| return false; |
| } |
| |
| // Check this core constant expression is a constant expression. |
| return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result, |
| ConstantExprKind::Normal) && |
| CheckMemoryLeaks(Info); |
| } |
| |
| static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result, |
| const ASTContext &Ctx, bool &IsConst) { |
| // Fast-path evaluations of integer literals, since we sometimes see files |
| // containing vast quantities of these. |
| if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) { |
| Result.Val = APValue(APSInt(L->getValue(), |
| L->getType()->isUnsignedIntegerType())); |
| IsConst = true; |
| return true; |
| } |
| |
| if (const auto *L = dyn_cast<CXXBoolLiteralExpr>(Exp)) { |
| Result.Val = APValue(APSInt(APInt(1, L->getValue()))); |
| IsConst = true; |
| return true; |
| } |
| |
| if (const auto *CE = dyn_cast<ConstantExpr>(Exp)) { |
| if (CE->hasAPValueResult()) { |
| APValue APV = CE->getAPValueResult(); |
| if (!APV.isLValue()) { |
| Result.Val = std::move(APV); |
| IsConst = true; |
| return true; |
| } |
| } |
| |
| // The SubExpr is usually just an IntegerLiteral. |
| return FastEvaluateAsRValue(CE->getSubExpr(), Result, Ctx, IsConst); |
| } |
| |
| // This case should be rare, but we need to check it before we check on |
| // the type below. |
| if (Exp->getType().isNull()) { |
| IsConst = false; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result, |
| Expr::SideEffectsKind SEK) { |
| return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) || |
| (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior); |
| } |
| |
| static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result, |
| const ASTContext &Ctx, EvalInfo &Info) { |
| assert(!E->isValueDependent()); |
| bool IsConst; |
| if (FastEvaluateAsRValue(E, Result, Ctx, IsConst)) |
| return IsConst; |
| |
| return EvaluateAsRValue(Info, E, Result.Val); |
| } |
| |
| static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult, |
| const ASTContext &Ctx, |
| Expr::SideEffectsKind AllowSideEffects, |
| EvalInfo &Info) { |
| assert(!E->isValueDependent()); |
| if (!E->getType()->isIntegralOrEnumerationType()) |
| return false; |
| |
| if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) || |
| !ExprResult.Val.isInt() || |
| hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult, |
| const ASTContext &Ctx, |
| Expr::SideEffectsKind AllowSideEffects, |
| EvalInfo &Info) { |
| assert(!E->isValueDependent()); |
| if (!E->getType()->isFixedPointType()) |
| return false; |
| |
| if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info)) |
| return false; |
| |
| if (!ExprResult.Val.isFixedPoint() || |
| hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) |
| return false; |
| |
| return true; |
| } |
| |
| /// EvaluateAsRValue - Return true if this is a constant which we can fold using |
| /// any crazy technique (that has nothing to do with language standards) that |
| /// we want to. If this function returns true, it returns the folded constant |
| /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion |
| /// will be applied to the result. |
| bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx, |
| bool InConstantContext) const { |
| assert(!isValueDependent() && |
| "Expression evaluator can't be called on a dependent expression."); |
| ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsRValue"); |
| EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); |
| Info.InConstantContext = InConstantContext; |
| return ::EvaluateAsRValue(this, Result, Ctx, Info); |
| } |
| |
| bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx, |
| bool InConstantContext) const { |
| assert(!isValueDependent() && |
| "Expression evaluator can't be called on a dependent expression."); |
| ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsBooleanCondition"); |
| EvalResult Scratch; |
| return EvaluateAsRValue(Scratch, Ctx, InConstantContext) && |
| HandleConversionToBool(Scratch.Val, Result); |
| } |
| |
| bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, |
| SideEffectsKind AllowSideEffects, |
| bool InConstantContext) const { |
| assert(!isValueDependent() && |
| "Expression evaluator can't be called on a dependent expression."); |
| ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsInt"); |
| EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); |
| Info.InConstantContext = InConstantContext; |
| return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info); |
| } |
| |
| bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx, |
| SideEffectsKind AllowSideEffects, |
| bool InConstantContext) const { |
| assert(!isValueDependent() && |
| "Expression evaluator can't be called on a dependent expression."); |
| ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFixedPoint"); |
| EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); |
| Info.InConstantContext = InConstantContext; |
| return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info); |
| } |
| |
| bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx, |
| SideEffectsKind AllowSideEffects, |
| bool InConstantContext) const { |
| assert(!isValueDependent() && |
| "Expression evaluator can't be called on a dependent expression."); |
| |
| if (!getType()->isRealFloatingType()) |
| return false; |
| |
| ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFloat"); |
| EvalResult ExprResult; |
| if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) || |
| !ExprResult.Val.isFloat() || |
| hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) |
| return false; |
| |
| Result = ExprResult.Val.getFloat(); |
| return true; |
| } |
| |
| bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx, |
| bool InConstantContext) const { |
| assert(!isValueDependent() && |
| "Expression evaluator can't be called on a dependent expression."); |
| |
| ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsLValue"); |
| EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold); |
| Info.InConstantContext = InConstantContext; |
| LValue LV; |
| CheckedTemporaries CheckedTemps; |
| if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() || |
| Result.HasSideEffects || |
| !CheckLValueConstantExpression(Info, getExprLoc(), |
| Ctx.getLValueReferenceType(getType()), LV, |
| ConstantExprKind::Normal, CheckedTemps)) |
| return false; |
| |
| LV.moveInto(Result.Val); |
| return true; |
| } |
| |
| static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base, |
| APValue DestroyedValue, QualType Type, |
| SourceLocation Loc, Expr::EvalStatus &EStatus, |
| bool IsConstantDestruction) { |
| EvalInfo Info(Ctx, EStatus, |
| IsConstantDestruction ? EvalInfo::EM_ConstantExpression |
| : EvalInfo::EM_ConstantFold); |
| Info.setEvaluatingDecl(Base, DestroyedValue, |
| EvalInfo::EvaluatingDeclKind::Dtor); |
| Info.InConstantContext = IsConstantDestruction; |
| |
| LValue LVal; |
| LVal.set(Base); |
| |
| if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) || |
| EStatus.HasSideEffects) |
| return false; |
| |
| if (!Info.discardCleanups()) |
| llvm_unreachable("Unhandled cleanup; missing full expression marker?"); |
| |
| return true; |
| } |
| |
| bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx, |
| ConstantExprKind Kind) const { |
| assert(!isValueDependent() && |
| "Expression evaluator can't be called on a dependent expression."); |
| bool IsConst; |
| if (FastEvaluateAsRValue(this, Result, Ctx, IsConst) && Result.Val.hasValue()) |
| return true; |
| |
| ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsConstantExpr"); |
| EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression; |
| EvalInfo Info(Ctx, Result, EM); |
| Info.InConstantContext = true; |
| |
| if (Info.EnableNewConstInterp) { |
| if (!Info.Ctx.getInterpContext().evaluate(Info, this, Result.Val, Kind)) |
| return false; |
| return CheckConstantExpression(Info, getExprLoc(), |
| getStorageType(Ctx, this), Result.Val, Kind); |
| } |
| |
| // The type of the object we're initializing is 'const T' for a class NTTP. |
| QualType T = getType(); |
| if (Kind == ConstantExprKind::ClassTemplateArgument) |
| T.addConst(); |
| |
| // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to |
| // represent the result of the evaluation. CheckConstantExpression ensures |
| // this doesn't escape. |
| MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true); |
| APValue::LValueBase Base(&BaseMTE); |
| Info.setEvaluatingDecl(Base, Result.Val); |
| |
| if (Info.EnableNewConstInterp) { |
| if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, this, Result.Val)) |
| return false; |
| } else { |
| LValue LVal; |
| LVal.set(Base); |
| // C++23 [intro.execution]/p5 |
| // A full-expression is [...] a constant-expression |
| // So we need to make sure temporary objects are destroyed after having |
| // evaluating the expression (per C++23 [class.temporary]/p4). |
| FullExpressionRAII Scope(Info); |
| if (!::EvaluateInPlace(Result.Val, Info, LVal, this) || |
| Result.HasSideEffects || !Scope.destroy()) |
| return false; |
| |
| if (!Info.discardCleanups()) |
| llvm_unreachable("Unhandled cleanup; missing full expression marker?"); |
| } |
| |
| if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this), |
| Result.Val, Kind)) |
| return false; |
| if (!CheckMemoryLeaks(Info)) |
| return false; |
| |
| // If this is a class template argument, it's required to have constant |
| // destruction too. |
| if (Kind == ConstantExprKind::ClassTemplateArgument && |
| (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result, |
| true) || |
| Result.HasSideEffects)) { |
| // FIXME: Prefix a note to indicate that the problem is lack of constant |
| // destruction. |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx, |
| const VarDecl *VD, |
| SmallVectorImpl<PartialDiagnosticAt> &Notes, |
| bool IsConstantInitialization) const { |
| assert(!isValueDependent() && |
| "Expression evaluator can't be called on a dependent expression."); |
| |
| llvm::TimeTraceScope TimeScope("EvaluateAsInitializer", [&] { |
| std::string Name; |
| llvm::raw_string_ostream OS(Name); |
| VD->printQualifiedName(OS); |
| return Name; |
| }); |
| |
| Expr::EvalStatus EStatus; |
| EStatus.Diag = &Notes; |
| |
| EvalInfo Info(Ctx, EStatus, |
| (IsConstantInitialization && |
| (Ctx.getLangOpts().CPlusPlus || Ctx.getLangOpts().C23)) |
| ? EvalInfo::EM_ConstantExpression |
| : EvalInfo::EM_ConstantFold); |
| Info.setEvaluatingDecl(VD, Value); |
| Info.InConstantContext = IsConstantInitialization; |
| |
| SourceLocation DeclLoc = VD->getLocation(); |
| QualType DeclTy = VD->getType(); |
| |
| if (Info.EnableNewConstInterp) { |
| auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext(); |
| if (!InterpCtx.evaluateAsInitializer(Info, VD, Value)) |
| return false; |
| |
| return CheckConstantExpression(Info, DeclLoc, DeclTy, Value, |
| ConstantExprKind::Normal); |
| } else { |
| LValue LVal; |
| LVal.set(VD); |
| |
| { |
| // C++23 [intro.execution]/p5 |
| // A full-expression is ... an init-declarator ([dcl.decl]) or a |
| // mem-initializer. |
| // So we need to make sure temporary objects are destroyed after having |
| // evaluated the expression (per C++23 [class.temporary]/p4). |
| // |
| // FIXME: Otherwise this may break test/Modules/pr68702.cpp because the |
| // serialization code calls ParmVarDecl::getDefaultArg() which strips the |
| // outermost FullExpr, such as ExprWithCleanups. |
| FullExpressionRAII Scope(Info); |
| if (!EvaluateInPlace(Value, Info, LVal, this, |
| /*AllowNonLiteralTypes=*/true) || |
| EStatus.HasSideEffects) |
| return false; |
| } |
| |
| // At this point, any lifetime-extended temporaries are completely |
| // initialized. |
| Info.performLifetimeExtension(); |
| |
| if (!Info.discardCleanups()) |
| llvm_unreachable("Unhandled cleanup; missing full expression marker?"); |
| } |
| |
| return CheckConstantExpression(Info, DeclLoc, DeclTy, Value, |
| ConstantExprKind::Normal) && |
| CheckMemoryLeaks(Info); |
| } |
| |
| bool VarDecl::evaluateDestruction( |
| SmallVectorImpl<PartialDiagnosticAt> &Notes) const { |
| Expr::EvalStatus EStatus; |
| EStatus.Diag = &Notes; |
| |
| // Only treat the destruction as constant destruction if we formally have |
| // constant initialization (or are usable in a constant expression). |
| bool IsConstantDestruction = hasConstantInitialization(); |
| |
| // Make a copy of the value for the destructor to mutate, if we know it. |
| // Otherwise, treat the value as default-initialized; if the destructor works |
| // anyway, then the destruction is constant (and must be essentially empty). |
| APValue DestroyedValue; |
| if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent()) |
| DestroyedValue = *getEvaluatedValue(); |
| else if (!handleDefaultInitValue(getType(), DestroyedValue)) |
| return false; |
| |
| if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue), |
| getType(), getLocation(), EStatus, |
| IsConstantDestruction) || |
| EStatus.HasSideEffects) |
| return false; |
| |
| ensureEvaluatedStmt()->HasConstantDestruction = true; |
| return true; |
| } |
| |
| /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be |
| /// constant folded, but discard the result. |
| bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const { |
| assert(!isValueDependent() && |
| "Expression evaluator can't be called on a dependent expression."); |
| |
| EvalResult Result; |
| return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) && |
| !hasUnacceptableSideEffect(Result, SEK); |
| } |
| |
| APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx, |
| SmallVectorImpl<PartialDiagnosticAt> *Diag) const { |
| assert(!isValueDependent() && |
| "Expression evaluator can't be called on a dependent expression."); |
| |
| ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstInt"); |
| EvalResult EVResult; |
| EVResult.Diag = Diag; |
| EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); |
| Info.InConstantContext = true; |
| |
| bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info); |
| (void)Result; |
| assert(Result && "Could not evaluate expression"); |
| assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); |
| |
| return EVResult.Val.getInt(); |
| } |
| |
| APSInt Expr::EvaluateKnownConstIntCheckOverflow( |
| const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const { |
| assert(!isValueDependent() && |
| "Expression evaluator can't be called on a dependent expression."); |
| |
| ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstIntCheckOverflow"); |
| EvalResult EVResult; |
| EVResult.Diag = Diag; |
| EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); |
| Info.InConstantContext = true; |
| Info.CheckingForUndefinedBehavior = true; |
| |
| bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val); |
| (void)Result; |
| assert(Result && "Could not evaluate expression"); |
| assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); |
| |
| return EVResult.Val.getInt(); |
| } |
| |
| void Expr::EvaluateForOverflow(const ASTContext &Ctx) const { |
| assert(!isValueDependent() && |
| "Expression evaluator can't be called on a dependent expression."); |
| |
| ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateForOverflow"); |
| bool IsConst; |
| EvalResult EVResult; |
| if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) { |
| EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); |
| Info.CheckingForUndefinedBehavior = true; |
| (void)::EvaluateAsRValue(Info, this, EVResult.Val); |
| } |
| } |
| |
| bool Expr::EvalResult::isGlobalLValue() const { |
| assert(Val.isLValue()); |
| return IsGlobalLValue(Val.getLValueBase()); |
| } |
| |
| /// isIntegerConstantExpr - this recursive routine will test if an expression is |
| /// an integer constant expression. |
| |
| /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, |
| /// comma, etc |
| |
| // CheckICE - This function does the fundamental ICE checking: the returned |
| // ICEDiag contains an ICEKind indicating whether the expression is an ICE, |
| // and a (possibly null) SourceLocation indicating the location of the problem. |
| // |
| // Note that to reduce code duplication, this helper does no evaluation |
| // itself; the caller checks whether the expression is evaluatable, and |
| // in the rare cases where CheckICE actually cares about the evaluated |
| // value, it calls into Evaluate. |
| |
| namespace { |
| |
| enum ICEKind { |
| /// This expression is an ICE. |
| IK_ICE, |
| /// This expression is not an ICE, but if it isn't evaluated, it's |
| /// a legal subexpression for an ICE. This return value is used to handle |
| /// the comma operator in C99 mode, and non-constant subexpressions. |
| IK_ICEIfUnevaluated, |
| /// This expression is not an ICE, and is not a legal subexpression for one. |
| IK_NotICE |
| }; |
| |
| struct ICEDiag { |
| ICEKind Kind; |
| SourceLocation Loc; |
| |
| ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {} |
| }; |
| |
| } |
| |
| static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); } |
| |
| static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; } |
| |
| static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) { |
| Expr::EvalResult EVResult; |
| Expr::EvalStatus Status; |
| EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); |
| |
| Info.InConstantContext = true; |
| if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects || |
| !EVResult.Val.isInt()) |
| return ICEDiag(IK_NotICE, E->getBeginLoc()); |
| |
| return NoDiag(); |
| } |
| |
| static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) { |
| assert(!E->isValueDependent() && "Should not see value dependent exprs!"); |
| if (!E->getType()->isIntegralOrEnumerationType()) |
| return ICEDiag(IK_NotICE, E->getBeginLoc()); |
| |
| switch (E->getStmtClass()) { |
| #define ABSTRACT_STMT(Node) |
| #define STMT(Node, Base) case Expr::Node##Class: |
| #define EXPR(Node, Base) |
| #include "clang/AST/StmtNodes.inc" |
| case Expr::PredefinedExprClass: |
| case Expr::FloatingLiteralClass: |
| case Expr::ImaginaryLiteralClass: |
| case Expr::StringLiteralClass: |
| case Expr::ArraySubscriptExprClass: |
| case Expr::MatrixSubscriptExprClass: |
| case Expr::ArraySectionExprClass: |
| case Expr::OMPArrayShapingExprClass: |
| case Expr::OMPIteratorExprClass: |
| case Expr::MemberExprClass: |
| case Expr::CompoundAssignOperatorClass: |
| case Expr::CompoundLiteralExprClass: |
| case Expr::ExtVectorElementExprClass: |
| case Expr::DesignatedInitExprClass: |
| case Expr::ArrayInitLoopExprClass: |
| case Expr::ArrayInitIndexExprClass: |
| case Expr::NoInitExprClass: |
| case Expr::DesignatedInitUpdateExprClass: |
| case Expr::ImplicitValueInitExprClass: |
| case Expr::ParenListExprClass: |
| case Expr::VAArgExprClass: |
| case Expr::AddrLabelExprClass: |
| case Expr::StmtExprClass: |
| case Expr::CXXMemberCallExprClass: |
| case Expr::CUDAKernelCallExprClass: |
| case Expr::CXXAddrspaceCastExprClass: |
| case Expr::CXXDynamicCastExprClass: |
| case Expr::CXXTypeidExprClass: |
| case Expr::CXXUuidofExprClass: |
| case Expr::MSPropertyRefExprClass: |
| case Expr::MSPropertySubscriptExprClass: |
| case Expr::CXXNullPtrLiteralExprClass: |
| case Expr::UserDefinedLiteralClass: |
| case Expr::CXXThisExprClass: |
| case Expr::CXXThrowExprClass: |
| case Expr::CXXNewExprClass: |
| case Expr::CXXDeleteExprClass: |
| case Expr::CXXPseudoDestructorExprClass: |
| case Expr::UnresolvedLookupExprClass: |
| case Expr::TypoExprClass: |
| case Expr::RecoveryExprClass: |
| case Expr::DependentScopeDeclRefExprClass: |
| case Expr::CXXConstructExprClass: |
| case Expr::CXXInheritedCtorInitExprClass: |
| case Expr::CXXStdInitializerListExprClass: |
| case Expr::CXXBindTemporaryExprClass: |
| case Expr::ExprWithCleanupsClass: |
| case Expr::CXXTemporaryObjectExprClass: |
| case Expr::CXXUnresolvedConstructExprClass: |
| case Expr::CXXDependentScopeMemberExprClass: |
| case Expr::UnresolvedMemberExprClass: |
| case Expr::ObjCStringLiteralClass: |
| case Expr::ObjCBoxedExprClass: |
| case Expr::ObjCArrayLiteralClass: |
| case Expr::ObjCDictionaryLiteralClass: |
| case Expr::ObjCEncodeExprClass: |
| case Expr::ObjCMessageExprClass: |
| case Expr::ObjCSelectorExprClass: |
| case Expr::ObjCProtocolExprClass: |
| case Expr::ObjCIvarRefExprClass: |
| case Expr::ObjCPropertyRefExprClass: |
| case Expr::ObjCSubscriptRefExprClass: |
| case Expr::ObjCIsaExprClass: |
| case Expr::ObjCAvailabilityCheckExprClass: |
| case Expr::ShuffleVectorExprClass: |
| case Expr::ConvertVectorExprClass: |
| case Expr::BlockExprClass: |
| case Expr::NoStmtClass: |
| case Expr::OpaqueValueExprClass: |
| case Expr::PackExpansionExprClass: |
| case Expr::SubstNonTypeTemplateParmPackExprClass: |
| case Expr::FunctionParmPackExprClass: |
| case Expr::AsTypeExprClass: |
| case Expr::ObjCIndirectCopyRestoreExprClass: |
| case Expr::MaterializeTemporaryExprClass: |
| case Expr::PseudoObjectExprClass: |
| case Expr::AtomicExprClass: |
| case Expr::LambdaExprClass: |
| case Expr::CXXFoldExprClass: |
| case Expr::CoawaitExprClass: |
| case Expr::DependentCoawaitExprClass: |
| case Expr::CoyieldExprClass: |
| case Expr::SYCLUniqueStableNameExprClass: |
| case Expr::CXXParenListInitExprClass: |
| case Expr::HLSLOutArgExprClass: |
| return ICEDiag(IK_NotICE, E->getBeginLoc()); |
| |
| case Expr::InitListExprClass: { |
| // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the |
| // form "T x = { a };" is equivalent to "T x = a;". |
| // Unless we're initializing a reference, T is a scalar as it is known to be |
| // of integral or enumeration type. |
| if (E->isPRValue()) |
| if (cast<InitListExpr>(E)->getNumInits() == 1) |
| return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx); |
| return ICEDiag(IK_NotICE, E->getBeginLoc()); |
| } |
| |
| case Expr::SizeOfPackExprClass: |
| case Expr::GNUNullExprClass: |
| case Expr::SourceLocExprClass: |
| case Expr::EmbedExprClass: |
| case Expr::OpenACCAsteriskSizeExprClass: |
| return NoDiag(); |
| |
| case Expr::PackIndexingExprClass: |
| return CheckICE(cast<PackIndexingExpr>(E)->getSelectedExpr(), Ctx); |
| |
| case Expr::SubstNonTypeTemplateParmExprClass: |
| return |
| CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx); |
| |
| case Expr::ConstantExprClass: |
| return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx); |
| |
| case Expr::ParenExprClass: |
| return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); |
| case Expr::GenericSelectionExprClass: |
| return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx); |
| case Expr::IntegerLiteralClass: |
| case Expr::FixedPointLiteralClass: |
| case Expr::CharacterLiteralClass: |
| case Expr::ObjCBoolLiteralExprClass: |
| case Expr::CXXBoolLiteralExprClass: |
| case Expr::CXXScalarValueInitExprClass: |
| case Expr::TypeTraitExprClass: |
| case Expr::ConceptSpecializationExprClass: |
| case Expr::RequiresExprClass: |
| case Expr::ArrayTypeTraitExprClass: |
| case Expr::ExpressionTraitExprClass: |
| case Expr::CXXNoexceptExprClass: |
| return NoDiag(); |
| case Expr::CallExprClass: |
| case Expr::CXXOperatorCallExprClass: { |
| // C99 6.6/3 allows function calls within unevaluated subexpressions of |
| // constant expressions, but they can never be ICEs because an ICE cannot |
| // contain an operand of (pointer to) function type. |
| const CallExpr *CE = cast<CallExpr>(E); |
| if (CE->getBuiltinCallee()) |
| return CheckEvalInICE(E, Ctx); |
| return ICEDiag(IK_NotICE, E->getBeginLoc()); |
| } |
| case Expr::CXXRewrittenBinaryOperatorClass: |
| return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(), |
| Ctx); |
| case Expr::DeclRefExprClass: { |
| const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl(); |
| if (isa<EnumConstantDecl>(D)) |
| return NoDiag(); |
| |
| // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified |
| // integer variables in constant expressions: |
| // |
| // C++ 7.1.5.1p2 |
| // A variable of non-volatile const-qualified integral or enumeration |
| // type initialized by an ICE can be used in ICEs. |
| // |
| // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In |
| // that mode, use of reference variables should not be allowed. |
| const VarDecl *VD = dyn_cast<VarDecl>(D); |
| if (VD && VD->isUsableInConstantExpressions(Ctx) && |
| !VD->getType()->isReferenceType()) |
| return NoDiag(); |
| |
| return ICEDiag(IK_NotICE, E->getBeginLoc()); |
| } |
| case Expr::UnaryOperatorClass: { |
| const UnaryOperator *Exp = cast<UnaryOperator>(E); |
| switch (Exp->getOpcode()) { |
| case UO_PostInc: |
| case UO_PostDec: |
| case UO_PreInc: |
| case UO_PreDec: |
| case UO_AddrOf: |
| case UO_Deref: |
| case UO_Coawait: |
| // C99 6.6/3 allows increment and decrement within unevaluated |
| // subexpressions of constant expressions, but they can never be ICEs |
| // because an ICE cannot contain an lvalue operand. |
| return ICEDiag(IK_NotICE, E->getBeginLoc()); |
| case UO_Extension: |
| case UO_LNot: |
| case UO_Plus: |
| case UO_Minus: |
| case UO_Not: |
| case UO_Real: |
| case UO_Imag: |
| return CheckICE(Exp->getSubExpr(), Ctx); |
| } |
| llvm_unreachable("invalid unary operator class"); |
| } |
| case Expr::OffsetOfExprClass: { |
| // Note that per C99, offsetof must be an ICE. And AFAIK, using |
| // EvaluateAsRValue matches the proposed gcc behavior for cases like |
| // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect |
| // compliance: we should warn earlier for offsetof expressions with |
| // array subscripts that aren't ICEs, and if the array subscripts |
| // are ICEs, the value of the offsetof must be an integer constant. |
| return CheckEvalInICE(E, Ctx); |
| } |
| case Expr::UnaryExprOrTypeTraitExprClass: { |
| const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E); |
| if ((Exp->getKind() == UETT_SizeOf) && |
| Exp->getTypeOfArgument()->isVariableArrayType()) |
| return ICEDiag(IK_NotICE, E->getBeginLoc()); |
| return NoDiag(); |
| } |
| case Expr::BinaryOperatorClass: { |
| const BinaryOperator *Exp = cast<BinaryOperator>(E); |
| switch (Exp->getOpcode()) { |
| case BO_PtrMemD: |
| case BO_PtrMemI: |
| case BO_Assign: |
| case BO_MulAssign: |
| case BO_DivAssign: |
| case BO_RemAssign: |
| case BO_AddAssign: |
| case BO_SubAssign: |
| case BO_ShlAssign: |
| case BO_ShrAssign: |
| case BO_AndAssign: |
| case BO_XorAssign: |
| case BO_OrAssign: |
| // C99 6.6/3 allows assignments within unevaluated subexpressions of |
| // constant expressions, but they can never be ICEs because an ICE cannot |
| // contain an lvalue operand. |
| return ICEDiag(IK_NotICE, E->getBeginLoc()); |
| |
| case BO_Mul: |
| case BO_Div: |
| case BO_Rem: |
| case BO_Add: |
| case BO_Sub: |
| case BO_Shl: |
| case BO_Shr: |
| case BO_LT: |
| case BO_GT: |
| case BO_LE: |
| case BO_GE: |
| case BO_EQ: |
| case BO_NE: |
| case BO_And: |
| case BO_Xor: |
| case BO_Or: |
| case BO_Comma: |
| case BO_Cmp: { |
| ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); |
| ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); |
| if (Exp->getOpcode() == BO_Div || |
| Exp->getOpcode() == BO_Rem) { |
| // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure |
| // we don't evaluate one. |
| if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) { |
| llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx); |
| if (REval == 0) |
| return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); |
| if (REval.isSigned() && REval.isAllOnes()) { |
| llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx); |
| if (LEval.isMinSignedValue()) |
| return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); |
| } |
| } |
| } |
| if (Exp->getOpcode() == BO_Comma) { |
| if (Ctx.getLangOpts().C99) { |
| // C99 6.6p3 introduces a strange edge case: comma can be in an ICE |
| // if it isn't evaluated. |
| if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) |
| return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); |
| } else { |
| // In both C89 and C++, commas in ICEs are illegal. |
| return ICEDiag(IK_NotICE, E->getBeginLoc()); |
| } |
| } |
| return Worst(LHSResult, RHSResult); |
| } |
| case BO_LAnd: |
| case BO_LOr: { |
| ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); |
| ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); |
| if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) { |
| // Rare case where the RHS has a comma "side-effect"; we need |
| // to actually check the condition to see whether the side |
| // with the comma is evaluated. |
| if ((Exp->getOpcode() == BO_LAnd) != |
| (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0)) |
| return RHSResult; |
| return NoDiag(); |
| } |
| |
| return Worst(LHSResult, RHSResult); |
| } |
| } |
| llvm_unreachable("invalid binary operator kind"); |
| } |
| case Expr::ImplicitCastExprClass: |
| case Expr::CStyleCastExprClass: |
| case Expr::CXXFunctionalCastExprClass: |
| case Expr::CXXStaticCastExprClass: |
| case Expr::CXXReinterpretCastExprClass: |
| case Expr::CXXConstCastExprClass: |
| case Expr::ObjCBridgedCastExprClass: { |
| const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); |
| if (isa<ExplicitCastExpr>(E)) { |
| if (const FloatingLiteral *FL |
| = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) { |
| unsigned DestWidth = Ctx.getIntWidth(E->getType()); |
| bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType(); |
| APSInt IgnoredVal(DestWidth, !DestSigned); |
| bool Ignored; |
| // If the value does not fit in the destination type, the behavior is |
| // undefined, so we are not required to treat it as a constant |
| // expression. |
| if (FL->getValue().convertToInteger(IgnoredVal, |
| llvm::APFloat::rmTowardZero, |
| &Ignored) & APFloat::opInvalidOp) |
| return ICEDiag(IK_NotICE, E->getBeginLoc()); |
| return NoDiag(); |
| } |
| } |
| switch (cast<CastExpr>(E)->getCastKind()) { |
| case CK_LValueToRValue: |
| case CK_AtomicToNonAtomic: |
| case CK_NonAtomicToAtomic: |
| case CK_NoOp: |
| case CK_IntegralToBoolean: |
| case CK_IntegralCast: |
| return CheckICE(SubExpr, Ctx); |
| default: |
| return ICEDiag(IK_NotICE, E->getBeginLoc()); |
| } |
| } |
| case Expr::BinaryConditionalOperatorClass: { |
| const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E); |
| ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx); |
| if (CommonResult.Kind == IK_NotICE) return CommonResult; |
| ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); |
| if (FalseResult.Kind == IK_NotICE) return FalseResult; |
| if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult; |
| if (FalseResult.Kind == IK_ICEIfUnevaluated && |
| Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag(); |
| return FalseResult; |
| } |
| case Expr::ConditionalOperatorClass: { |
| const ConditionalOperator *Exp = cast<ConditionalOperator>(E); |
| // If the condition (ignoring parens) is a __builtin_constant_p call, |
| // then only the true side is actually considered in an integer constant |
| // expression, and it is fully evaluated. This is an important GNU |
| // extension. See GCC PR38377 for discussion. |
| if (const CallExpr *CallCE |
| = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) |
| if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) |
| return CheckEvalInICE(E, Ctx); |
| ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); |
| if (CondResult.Kind == IK_NotICE) |
| return CondResult; |
| |
| ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); |
| ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); |
| |
| if (TrueResult.Kind == IK_NotICE) |
| return TrueResult; |
| if (FalseResult.Kind == IK_NotICE) |
| return FalseResult; |
| if (CondResult.Kind == IK_ICEIfUnevaluated) |
| return CondResult; |
| if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE) |
| return NoDiag(); |
| // Rare case where the diagnostics depend on which side is evaluated |
| // Note that if we get here, CondResult is 0, and at least one of |
| // TrueResult and FalseResult is non-zero. |
| if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) |
| return FalseResult; |
| return TrueResult; |
| } |
| case Expr::CXXDefaultArgExprClass: |
| return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); |
| case Expr::CXXDefaultInitExprClass: |
| return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx); |
| case Expr::ChooseExprClass: { |
| return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx); |
| } |
| case Expr::BuiltinBitCastExprClass: { |
| if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E))) |
| return ICEDiag(IK_NotICE, E->getBeginLoc()); |
| return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx); |
| } |
| } |
| |
| llvm_unreachable("Invalid StmtClass!"); |
| } |
| |
| /// Evaluate an expression as a C++11 integral constant expression. |
| static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx, |
| const Expr *E, |
| llvm::APSInt *Value, |
| SourceLocation *Loc) { |
| if (!E->getType()->isIntegralOrUnscopedEnumerationType()) { |
| if (Loc) *Loc = E->getExprLoc(); |
| return false; |
| } |
| |
| APValue Result; |
| if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc)) |
| return false; |
| |
| if (!Result.isInt()) { |
| if (Loc) *Loc = E->getExprLoc(); |
| return false; |
| } |
| |
| if (Value) *Value = Result.getInt(); |
| return true; |
| } |
| |
| bool Expr::isIntegerConstantExpr(const ASTContext &Ctx, |
| SourceLocation *Loc) const { |
| assert(!isValueDependent() && |
| "Expression evaluator can't be called on a dependent expression."); |
| |
| ExprTimeTraceScope TimeScope(this, Ctx, "isIntegerConstantExpr"); |
| |
| if (Ctx.getLangOpts().CPlusPlus11) |
| return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc); |
| |
| ICEDiag D = CheckICE(this, Ctx); |
| if (D.Kind != IK_ICE) { |
| if (Loc) *Loc = D.Loc; |
| return false; |
| } |
| return true; |
| } |
| |
| std::optional<llvm::APSInt> |
| Expr::getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc) const { |
| if (isValueDependent()) { |
| // Expression evaluator can't succeed on a dependent expression. |
| return std::nullopt; |
| } |
| |
| APSInt Value; |
| |
| if (Ctx.getLangOpts().CPlusPlus11) { |
| if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc)) |
| return Value; |
| return std::nullopt; |
| } |
| |
| if (!isIntegerConstantExpr(Ctx, Loc)) |
| return std::nullopt; |
| |
| // The only possible side-effects here are due to UB discovered in the |
| // evaluation (for instance, INT_MAX + 1). In such a case, we are still |
| // required to treat the expression as an ICE, so we produce the folded |
| // value. |
| EvalResult ExprResult; |
| Expr::EvalStatus Status; |
| EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects); |
| Info.InConstantContext = true; |
| |
| if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info)) |
| llvm_unreachable("ICE cannot be evaluated!"); |
| |
| return ExprResult.Val.getInt(); |
| } |
| |
| bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const { |
| assert(!isValueDependent() && |
| "Expression evaluator can't be called on a dependent expression."); |
| |
| return CheckICE(this, Ctx).Kind == IK_ICE; |
| } |
| |
| bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result, |
| SourceLocation *Loc) const { |
| assert(!isValueDependent() && |
| "Expression evaluator can't be called on a dependent expression."); |
| |
| // We support this checking in C++98 mode in order to diagnose compatibility |
| // issues. |
| assert(Ctx.getLangOpts().CPlusPlus); |
| |
| // Build evaluation settings. |
| Expr::EvalStatus Status; |
| SmallVector<PartialDiagnosticAt, 8> Diags; |
| Status.Diag = &Diags; |
| EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); |
| |
| APValue Scratch; |
| bool IsConstExpr = |
| ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) && |
| // FIXME: We don't produce a diagnostic for this, but the callers that |
| // call us on arbitrary full-expressions should generally not care. |
| Info.discardCleanups() && !Status.HasSideEffects; |
| |
| if (!Diags.empty()) { |
| IsConstExpr = false; |
| if (Loc) *Loc = Diags[0].first; |
| } else if (!IsConstExpr) { |
| // FIXME: This shouldn't happen. |
| if (Loc) *Loc = getExprLoc(); |
| } |
| |
| return IsConstExpr; |
| } |
| |
| bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx, |
| const FunctionDecl *Callee, |
| ArrayRef<const Expr*> Args, |
| const Expr *This) const { |
| assert(!isValueDependent() && |
| "Expression evaluator can't be called on a dependent expression."); |
| |
| llvm::TimeTraceScope TimeScope("EvaluateWithSubstitution", [&] { |
| std::string Name; |
| llvm::raw_string_ostream OS(Name); |
| Callee->getNameForDiagnostic(OS, Ctx.getPrintingPolicy(), |
| /*Qualified=*/true); |
| return Name; |
| }); |
| |
| Expr::EvalStatus Status; |
| EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated); |
| Info.InConstantContext = true; |
| |
| LValue ThisVal; |
| const LValue *ThisPtr = nullptr; |
| if (This) { |
| #ifndef NDEBUG |
| auto *MD = dyn_cast<CXXMethodDecl>(Callee); |
| assert(MD && "Don't provide `this` for non-methods."); |
| assert(MD->isImplicitObjectMemberFunction() && |
| "Don't provide `this` for methods without an implicit object."); |
| #endif |
| if (!This->isValueDependent() && |
| EvaluateObjectArgument(Info, This, ThisVal) && |
| !Info.EvalStatus.HasSideEffects) |
| ThisPtr = &ThisVal; |
| |
| // Ignore any side-effects from a failed evaluation. This is safe because |
| // they can't interfere with any other argument evaluation. |
| Info.EvalStatus.HasSideEffects = false; |
| } |
| |
| CallRef Call = Info.CurrentCall->createCall(Callee); |
| for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end(); |
| I != E; ++I) { |
| unsigned Idx = I - Args.begin(); |
| if (Idx >= Callee->getNumParams()) |
| break; |
| const ParmVarDecl *PVD = Callee->getParamDecl(Idx); |
| if ((*I)->isValueDependent() || |
| !EvaluateCallArg(PVD, *I, Call, Info) || |
| Info.EvalStatus.HasSideEffects) { |
| // If evaluation fails, throw away the argument entirely. |
| if (APValue *Slot = Info.getParamSlot(Call, PVD)) |
| *Slot = APValue(); |
| } |
| |
| // Ignore any side-effects from a failed evaluation. This is safe because |
| // they can't interfere with any other argument evaluation. |
| Info.EvalStatus.HasSideEffects = false; |
| } |
| |
| // Parameter cleanups happen in the caller and are not part of this |
| // evaluation. |
| Info.discardCleanups(); |
| Info.EvalStatus.HasSideEffects = false; |
| |
| // Build fake call to Callee. |
| CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, This, |
| Call); |
| // FIXME: Missing ExprWithCleanups in enable_if conditions? |
| FullExpressionRAII Scope(Info); |
| return Evaluate(Value, Info, this) && Scope.destroy() && |
| !Info.EvalStatus.HasSideEffects; |
| } |
| |
| bool Expr::isPotentialConstantExpr(const FunctionDecl *FD, |
| SmallVectorImpl< |
| PartialDiagnosticAt> &Diags) { |
| // FIXME: It would be useful to check constexpr function templates, but at the |
| // moment the constant expression evaluator cannot cope with the non-rigorous |
| // ASTs which we build for dependent expressions. |
| if (FD->isDependentContext()) |
| return true; |
| |
| llvm::TimeTraceScope TimeScope("isPotentialConstantExpr", [&] { |
| std::string Name; |
| llvm::raw_string_ostream OS(Name); |
| FD->getNameForDiagnostic(OS, FD->getASTContext().getPrintingPolicy(), |
| /*Qualified=*/true); |
| return Name; |
| }); |
| |
| Expr::EvalStatus Status; |
| Status.Diag = &Diags; |
| |
| EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression); |
| Info.InConstantContext = true; |
| Info.CheckingPotentialConstantExpression = true; |
| |
| // The constexpr VM attempts to compile all methods to bytecode here. |
| if (Info.EnableNewConstInterp) { |
| Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD); |
| return Diags.empty(); |
| } |
| |
| const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); |
| const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr; |
| |
| // Fabricate an arbitrary expression on the stack and pretend that it |
| // is a temporary being used as the 'this' pointer. |
| LValue This; |
| ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy); |
| This.set({&VIE, Info.CurrentCall->Index}); |
| |
| ArrayRef<const Expr*> Args; |
| |
| APValue Scratch; |
| if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { |
| // Evaluate the call as a constant initializer, to allow the construction |
| // of objects of non-literal types. |
| Info.setEvaluatingDecl(This.getLValueBase(), Scratch); |
| HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch); |
| } else { |
| SourceLocation Loc = FD->getLocation(); |
| HandleFunctionCall( |
| Loc, FD, (MD && MD->isImplicitObjectMemberFunction()) ? &This : nullptr, |
| &VIE, Args, CallRef(), FD->getBody(), Info, Scratch, |
| /*ResultSlot=*/nullptr); |
| } |
| |
| return Diags.empty(); |
| } |
| |
| bool Expr::isPotentialConstantExprUnevaluated(Expr *E, |
| const FunctionDecl *FD, |
| SmallVectorImpl< |
| PartialDiagnosticAt> &Diags) { |
| assert(!E->isValueDependent() && |
| "Expression evaluator can't be called on a dependent expression."); |
| |
| Expr::EvalStatus Status; |
| Status.Diag = &Diags; |
| |
| EvalInfo Info(FD->getASTContext(), Status, |
| EvalInfo::EM_ConstantExpressionUnevaluated); |
| Info.InConstantContext = true; |
| Info.CheckingPotentialConstantExpression = true; |
| |
| // Fabricate a call stack frame to give the arguments a plausible cover story. |
| CallStackFrame Frame(Info, SourceLocation(), FD, /*This=*/nullptr, |
| /*CallExpr=*/nullptr, CallRef()); |
| |
| APValue ResultScratch; |
| Evaluate(ResultScratch, Info, E); |
| return Diags.empty(); |
| } |
| |
| bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx, |
| unsigned Type) const { |
| if (!getType()->isPointerType()) |
| return false; |
| |
| Expr::EvalStatus Status; |
| EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); |
| return tryEvaluateBuiltinObjectSize(this, Type, Info, Result); |
| } |
| |
| static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result, |
| EvalInfo &Info, std::string *StringResult) { |
| if (!E->getType()->hasPointerRepresentation() || !E->isPRValue()) |
| return false; |
| |
| LValue String; |
| |
| if (!EvaluatePointer(E, String, Info)) |
| return false; |
| |
| QualType CharTy = E->getType()->getPointeeType(); |
| |
| // Fast path: if it's a string literal, search the string value. |
| if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>( |
| String.getLValueBase().dyn_cast<const Expr *>())) { |
| StringRef Str = S->getBytes(); |
| int64_t Off = String.Offset.getQuantity(); |
| if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() && |
| S->getCharByteWidth() == 1 && |
| // FIXME: Add fast-path for wchar_t too. |
| Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) { |
| Str = Str.substr(Off); |
| |
| StringRef::size_type Pos = Str.find(0); |
| if (Pos != StringRef::npos) |
| Str = Str.substr(0, Pos); |
| |
| Result = Str.size(); |
| if (StringResult) |
| *StringResult = Str; |
| return true; |
| } |
| |
| // Fall through to slow path. |
| } |
| |
| // Slow path: scan the bytes of the string looking for the terminating 0. |
| for (uint64_t Strlen = 0; /**/; ++Strlen) { |
| APValue Char; |
| if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) || |
| !Char.isInt()) |
| return false; |
| if (!Char.getInt()) { |
| Result = Strlen; |
| return true; |
| } else if (StringResult) |
| StringResult->push_back(Char.getInt().getExtValue()); |
| if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1)) |
| return false; |
| } |
| } |
| |
| std::optional<std::string> Expr::tryEvaluateString(ASTContext &Ctx) const { |
| Expr::EvalStatus Status; |
| EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); |
| uint64_t Result; |
| std::string StringResult; |
| |
| if (EvaluateBuiltinStrLen(this, Result, Info, &StringResult)) |
| return StringResult; |
| return {}; |
| } |
| |
| bool Expr::EvaluateCharRangeAsString(std::string &Result, |
| const Expr *SizeExpression, |
| const Expr *PtrExpression, ASTContext &Ctx, |
| EvalResult &Status) const { |
| LValue String; |
| EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); |
| Info.InConstantContext = true; |
| |
| FullExpressionRAII Scope(Info); |
| APSInt SizeValue; |
| if (!::EvaluateInteger(SizeExpression, SizeValue, Info)) |
| return false; |
| |
| uint64_t Size = SizeValue.getZExtValue(); |
| |
| if (!::EvaluatePointer(PtrExpression, String, Info)) |
| return false; |
| |
| QualType CharTy = PtrExpression->getType()->getPointeeType(); |
| for (uint64_t I = 0; I < Size; ++I) { |
| APValue Char; |
| if (!handleLValueToRValueConversion(Info, PtrExpression, CharTy, String, |
| Char)) |
| return false; |
| |
| APSInt C = Char.getInt(); |
| Result.push_back(static_cast<char>(C.getExtValue())); |
| if (!HandleLValueArrayAdjustment(Info, PtrExpression, String, CharTy, 1)) |
| return false; |
| } |
| if (!Scope.destroy()) |
| return false; |
| |
| if (!CheckMemoryLeaks(Info)) |
| return false; |
| |
| return true; |
| } |
| |
| bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const { |
| Expr::EvalStatus Status; |
| EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); |
| return EvaluateBuiltinStrLen(this, Result, Info); |
| } |
| |
| namespace { |
| struct IsWithinLifetimeHandler { |
| EvalInfo &Info; |
| static constexpr AccessKinds AccessKind = AccessKinds::AK_IsWithinLifetime; |
| using result_type = std::optional<bool>; |
| std::optional<bool> failed() { return std::nullopt; } |
| template <typename T> |
| std::optional<bool> found(T &Subobj, QualType SubobjType) { |
| return true; |
| } |
| }; |
| |
| std::optional<bool> EvaluateBuiltinIsWithinLifetime(IntExprEvaluator &IEE, |
| const CallExpr *E) { |
| EvalInfo &Info = IEE.Info; |
| // Sometimes this is called during some sorts of constant folding / early |
| // evaluation. These are meant for non-constant expressions and are not |
| // necessary since this consteval builtin will never be evaluated at runtime. |
| // Just fail to evaluate when not in a constant context. |
| if (!Info.InConstantContext) |
| return std::nullopt; |
| assert(E->getBuiltinCallee() == Builtin::BI__builtin_is_within_lifetime); |
| const Expr *Arg = E->getArg(0); |
| if (Arg->isValueDependent()) |
| return std::nullopt; |
| LValue Val; |
| if (!EvaluatePointer(Arg, Val, Info)) |
| return std::nullopt; |
| |
| auto Error = [&](int Diag) { |
| bool CalledFromStd = false; |
| const auto *Callee = Info.CurrentCall->getCallee(); |
| if (Callee && Callee->isInStdNamespace()) { |
| const IdentifierInfo *Identifier = Callee->getIdentifier(); |
| CalledFromStd = Identifier && Identifier->isStr("is_within_lifetime"); |
| } |
| Info.CCEDiag(CalledFromStd ? Info.CurrentCall->getCallRange().getBegin() |
| : E->getExprLoc(), |
| diag::err_invalid_is_within_lifetime) |
| << (CalledFromStd ? "std::is_within_lifetime" |
| : "__builtin_is_within_lifetime") |
| << Diag; |
| return std::nullopt; |
| }; |
| // C++2c [meta.const.eval]p4: |
| // During the evaluation of an expression E as a core constant expression, a |
| // call to this function is ill-formed unless p points to an object that is |
| // usable in constant expressions or whose complete object's lifetime began |
| // within E. |
| |
| // Make sure it points to an object |
| // nullptr does not point to an object |
| if (Val.isNullPointer() || Val.getLValueBase().isNull()) |
| return Error(0); |
| QualType T = Val.getLValueBase().getType(); |
| assert(!T->isFunctionType() && |
| "Pointers to functions should have been typed as function pointers " |
| "which would have been rejected earlier"); |
| assert(T->isObjectType()); |
| // Hypothetical array element is not an object |
| if (Val.getLValueDesignator().isOnePastTheEnd()) |
| return Error(1); |
| assert(Val.getLValueDesignator().isValidSubobject() && |
| "Unchecked case for valid subobject"); |
| // All other ill-formed values should have failed EvaluatePointer, so the |
| // object should be a pointer to an object that is usable in a constant |
| // expression or whose complete lifetime began within the expression |
| CompleteObject CO = |
| findCompleteObject(Info, E, AccessKinds::AK_IsWithinLifetime, Val, T); |
| // The lifetime hasn't begun yet if we are still evaluating the |
| // initializer ([basic.life]p(1.2)) |
| if (Info.EvaluatingDeclValue && CO.Value == Info.EvaluatingDeclValue) |
| return Error(2); |
| |
| if (!CO) |
| return false; |
| IsWithinLifetimeHandler handler{Info}; |
| return findSubobject(Info, E, CO, Val.getLValueDesignator(), handler); |
| } |
| } // namespace |