blob: 2992484c47d060ecbb6bc4da6ddc4b32322473f8 [file] [log] [blame]
//===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines layout properties related to datatype size/offset/alignment
// information. It uses lazy annotations to cache information about how
// structure types are laid out and used.
//
// This structure should be created once, filled in if the defaults are not
// correct and then passed around by const&. None of the members functions
// require modification to the object.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_DATALAYOUT_H
#define LLVM_IR_DATALAYOUT_H
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TrailingObjects.h"
#include "llvm/Support/TypeSize.h"
#include <cassert>
#include <cstdint>
#include <string>
// This needs to be outside of the namespace, to avoid conflict with llvm-c
// decl.
using LLVMTargetDataRef = struct LLVMOpaqueTargetData *;
namespace llvm {
class GlobalVariable;
class LLVMContext;
class StructLayout;
class Triple;
class Value;
// FIXME: Currently the DataLayout string carries a "preferred alignment"
// for types. As the DataLayout is module/global, this should likely be
// sunk down to an FTTI element that is queried rather than a global
// preference.
/// A parsed version of the target data layout string in and methods for
/// querying it.
///
/// The target data layout string is specified *by the target* - a frontend
/// generating LLVM IR is required to generate the right target data for the
/// target being codegen'd to.
class DataLayout {
public:
/// Primitive type specification.
struct PrimitiveSpec {
uint32_t BitWidth;
Align ABIAlign;
Align PrefAlign;
LLVM_ABI bool operator==(const PrimitiveSpec &Other) const;
};
/// Pointer type specification.
struct PointerSpec {
uint32_t AddrSpace;
uint32_t BitWidth;
Align ABIAlign;
Align PrefAlign;
uint32_t IndexBitWidth;
/// Pointers in this address space don't have a well-defined bitwise
/// representation (e.g. may be relocated by a copying garbage collector).
/// Additionally, they may also be non-integral (i.e. containing additional
/// metadata such as bounds information/permissions).
bool IsNonIntegral;
LLVM_ABI bool operator==(const PointerSpec &Other) const;
};
enum class FunctionPtrAlignType {
/// The function pointer alignment is independent of the function alignment.
Independent,
/// The function pointer alignment is a multiple of the function alignment.
MultipleOfFunctionAlign,
};
private:
bool BigEndian = false;
unsigned AllocaAddrSpace = 0;
unsigned ProgramAddrSpace = 0;
unsigned DefaultGlobalsAddrSpace = 0;
MaybeAlign StackNaturalAlign;
MaybeAlign FunctionPtrAlign;
FunctionPtrAlignType TheFunctionPtrAlignType =
FunctionPtrAlignType::Independent;
enum ManglingModeT {
MM_None,
MM_ELF,
MM_MachO,
MM_WinCOFF,
MM_WinCOFFX86,
MM_GOFF,
MM_Mips,
MM_XCOFF
};
ManglingModeT ManglingMode = MM_None;
// FIXME: `unsigned char` truncates the value parsed by `parseSpecifier`.
SmallVector<unsigned char, 8> LegalIntWidths;
/// Primitive type specifications. Sorted and uniqued by type bit width.
SmallVector<PrimitiveSpec, 6> IntSpecs;
SmallVector<PrimitiveSpec, 4> FloatSpecs;
SmallVector<PrimitiveSpec, 10> VectorSpecs;
/// Pointer type specifications. Sorted and uniqued by address space number.
SmallVector<PointerSpec, 8> PointerSpecs;
/// The string representation used to create this DataLayout
std::string StringRepresentation;
/// Struct type ABI and preferred alignments. The default spec is "a:8:64".
Align StructABIAlignment = Align::Constant<1>();
Align StructPrefAlignment = Align::Constant<8>();
// The StructType -> StructLayout map.
mutable void *LayoutMap = nullptr;
/// Sets or updates the specification for the given primitive type.
void setPrimitiveSpec(char Specifier, uint32_t BitWidth, Align ABIAlign,
Align PrefAlign);
/// Searches for a pointer specification that matches the given address space.
/// Returns the default address space specification if not found.
LLVM_ABI const PointerSpec &getPointerSpec(uint32_t AddrSpace) const;
/// Sets or updates the specification for pointer in the given address space.
void setPointerSpec(uint32_t AddrSpace, uint32_t BitWidth, Align ABIAlign,
Align PrefAlign, uint32_t IndexBitWidth,
bool IsNonIntegral);
/// Internal helper to get alignment for integer of given bitwidth.
LLVM_ABI Align getIntegerAlignment(uint32_t BitWidth, bool abi_or_pref) const;
/// Internal helper method that returns requested alignment for type.
Align getAlignment(Type *Ty, bool abi_or_pref) const;
/// Attempts to parse primitive specification ('i', 'f', or 'v').
Error parsePrimitiveSpec(StringRef Spec);
/// Attempts to parse aggregate specification ('a').
Error parseAggregateSpec(StringRef Spec);
/// Attempts to parse pointer specification ('p').
Error parsePointerSpec(StringRef Spec);
/// Attempts to parse a single specification.
Error parseSpecification(StringRef Spec,
SmallVectorImpl<unsigned> &NonIntegralAddressSpaces);
/// Attempts to parse a data layout string.
Error parseLayoutString(StringRef LayoutString);
public:
/// Constructs a DataLayout with default values.
LLVM_ABI DataLayout();
/// Constructs a DataLayout from a specification string.
/// WARNING: Aborts execution if the string is malformed. Use parse() instead.
LLVM_ABI explicit DataLayout(StringRef LayoutString);
DataLayout(const DataLayout &DL) { *this = DL; }
LLVM_ABI ~DataLayout(); // Not virtual, do not subclass this class
LLVM_ABI DataLayout &operator=(const DataLayout &Other);
LLVM_ABI bool operator==(const DataLayout &Other) const;
bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
/// Parse a data layout string and return the layout. Return an error
/// description on failure.
LLVM_ABI static Expected<DataLayout> parse(StringRef LayoutString);
/// Layout endianness...
bool isLittleEndian() const { return !BigEndian; }
bool isBigEndian() const { return BigEndian; }
/// Returns the string representation of the DataLayout.
///
/// This representation is in the same format accepted by the string
/// constructor above. This should not be used to compare two DataLayout as
/// different string can represent the same layout.
const std::string &getStringRepresentation() const {
return StringRepresentation;
}
/// Test if the DataLayout was constructed from an empty string.
bool isDefault() const { return StringRepresentation.empty(); }
/// Returns true if the specified type is known to be a native integer
/// type supported by the CPU.
///
/// For example, i64 is not native on most 32-bit CPUs and i37 is not native
/// on any known one. This returns false if the integer width is not legal.
///
/// The width is specified in bits.
bool isLegalInteger(uint64_t Width) const {
return llvm::is_contained(LegalIntWidths, Width);
}
bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); }
/// Returns the natural stack alignment, or MaybeAlign() if one wasn't
/// specified.
MaybeAlign getStackAlignment() const { return StackNaturalAlign; }
unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; }
PointerType *getAllocaPtrType(LLVMContext &Ctx) const {
return PointerType::get(Ctx, AllocaAddrSpace);
}
/// Returns the alignment of function pointers, which may or may not be
/// related to the alignment of functions.
/// \see getFunctionPtrAlignType
MaybeAlign getFunctionPtrAlign() const { return FunctionPtrAlign; }
/// Return the type of function pointer alignment.
/// \see getFunctionPtrAlign
FunctionPtrAlignType getFunctionPtrAlignType() const {
return TheFunctionPtrAlignType;
}
unsigned getProgramAddressSpace() const { return ProgramAddrSpace; }
unsigned getDefaultGlobalsAddressSpace() const {
return DefaultGlobalsAddrSpace;
}
bool hasMicrosoftFastStdCallMangling() const {
return ManglingMode == MM_WinCOFFX86;
}
/// Returns true if symbols with leading question marks should not receive IR
/// mangling. True for Windows mangling modes.
bool doNotMangleLeadingQuestionMark() const {
return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86;
}
bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
StringRef getLinkerPrivateGlobalPrefix() const {
if (ManglingMode == MM_MachO)
return "l";
return "";
}
char getGlobalPrefix() const {
switch (ManglingMode) {
case MM_None:
case MM_ELF:
case MM_GOFF:
case MM_Mips:
case MM_WinCOFF:
case MM_XCOFF:
return '\0';
case MM_MachO:
case MM_WinCOFFX86:
return '_';
}
llvm_unreachable("invalid mangling mode");
}
StringRef getPrivateGlobalPrefix() const {
switch (ManglingMode) {
case MM_None:
return "";
case MM_ELF:
case MM_WinCOFF:
return ".L";
case MM_GOFF:
return "L#";
case MM_Mips:
return "$";
case MM_MachO:
case MM_WinCOFFX86:
return "L";
case MM_XCOFF:
return "L..";
}
llvm_unreachable("invalid mangling mode");
}
LLVM_ABI static const char *getManglingComponent(const Triple &T);
/// Returns true if the specified type fits in a native integer type
/// supported by the CPU.
///
/// For example, if the CPU only supports i32 as a native integer type, then
/// i27 fits in a legal integer type but i45 does not.
bool fitsInLegalInteger(unsigned Width) const {
for (unsigned LegalIntWidth : LegalIntWidths)
if (Width <= LegalIntWidth)
return true;
return false;
}
/// Layout pointer alignment
LLVM_ABI Align getPointerABIAlignment(unsigned AS) const;
/// Return target's alignment for stack-based pointers
/// FIXME: The defaults need to be removed once all of
/// the backends/clients are updated.
LLVM_ABI Align getPointerPrefAlignment(unsigned AS = 0) const;
/// The pointer representation size in bytes, rounded up to a whole number of
/// bytes. The difference between this function and getAddressSize() is that
/// this one returns the size of the entire pointer representation (including
/// metadata bits for fat pointers) and the latter only returns the number of
/// address bits.
/// \sa DataLayout::getAddressSizeInBits
/// FIXME: The defaults need to be removed once all of
/// the backends/clients are updated.
LLVM_ABI unsigned getPointerSize(unsigned AS = 0) const;
/// The index size in bytes used for address calculation, rounded up to a
/// whole number of bytes. This not only defines the size used in
/// getelementptr operations, but also the size of addresses in this \p AS.
/// For example, a 64-bit CHERI-enabled target has 128-bit pointers of which
/// only 64 are used to represent the address and the remaining ones are used
/// for metadata such as bounds and access permissions. In this case
/// getPointerSize() returns 16, but getIndexSize() returns 8.
/// To help with code understanding, the alias getAddressSize() can be used
/// instead of getIndexSize() to clarify that an address width is needed.
LLVM_ABI unsigned getIndexSize(unsigned AS) const;
/// The integral size of a pointer in a given address space in bytes, which
/// is defined to be the same as getIndexSize(). This exists as a separate
/// function to make it clearer when reading code that the size of an address
/// is being requested. While targets exist where index size and the
/// underlying address width are not identical (e.g. AMDGPU fat pointers with
/// 48-bit addresses and 32-bit offsets indexing), there is currently no need
/// to differentiate these properties in LLVM.
/// \sa DataLayout::getIndexSize
/// \sa DataLayout::getAddressSizeInBits
unsigned getAddressSize(unsigned AS) const { return getIndexSize(AS); }
/// Return the address spaces containing non-integral pointers. Pointers in
/// this address space don't have a well-defined bitwise representation.
SmallVector<unsigned, 8> getNonIntegralAddressSpaces() const {
SmallVector<unsigned, 8> AddrSpaces;
for (const PointerSpec &PS : PointerSpecs) {
if (PS.IsNonIntegral)
AddrSpaces.push_back(PS.AddrSpace);
}
return AddrSpaces;
}
bool isNonIntegralAddressSpace(unsigned AddrSpace) const {
return getPointerSpec(AddrSpace).IsNonIntegral;
}
bool isNonIntegralPointerType(PointerType *PT) const {
return isNonIntegralAddressSpace(PT->getAddressSpace());
}
bool isNonIntegralPointerType(Type *Ty) const {
auto *PTy = dyn_cast<PointerType>(Ty);
return PTy && isNonIntegralPointerType(PTy);
}
/// The size in bits of the pointer representation in a given address space.
/// This is not necessarily the same as the integer address of a pointer (e.g.
/// for fat pointers).
/// \sa DataLayout::getAddressSizeInBits()
/// FIXME: The defaults need to be removed once all of
/// the backends/clients are updated.
unsigned getPointerSizeInBits(unsigned AS = 0) const {
return getPointerSpec(AS).BitWidth;
}
/// The size in bits of indices used for address calculation in getelementptr
/// and for addresses in the given AS. See getIndexSize() for more
/// information.
/// \sa DataLayout::getAddressSizeInBits()
unsigned getIndexSizeInBits(unsigned AS) const {
return getPointerSpec(AS).IndexBitWidth;
}
/// The size in bits of an address in for the given AS. This is defined to
/// return the same value as getIndexSizeInBits() since there is currently no
/// target that requires these two properties to have different values. See
/// getIndexSize() for more information.
/// \sa DataLayout::getIndexSizeInBits()
unsigned getAddressSizeInBits(unsigned AS) const {
return getIndexSizeInBits(AS);
}
/// The pointer representation size in bits for this type. If this function is
/// called with a pointer type, then the type size of the pointer is returned.
/// If this function is called with a vector of pointers, then the type size
/// of the pointer is returned. This should only be called with a pointer or
/// vector of pointers.
LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const;
/// The size in bits of the index used in GEP calculation for this type.
/// The function should be called with pointer or vector of pointers type.
/// This is defined to return the same value as getAddressSizeInBits(),
/// but separate functions exist for code clarity.
LLVM_ABI unsigned getIndexTypeSizeInBits(Type *Ty) const;
/// The size in bits of an address for this type.
/// This is defined to return the same value as getIndexTypeSizeInBits(),
/// but separate functions exist for code clarity.
unsigned getAddressSizeInBits(Type *Ty) const {
return getIndexTypeSizeInBits(Ty);
}
unsigned getPointerTypeSize(Type *Ty) const {
return getPointerTypeSizeInBits(Ty) / 8;
}
/// Size examples:
///
/// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
/// ---- ---------- --------------- ---------------
/// i1 1 8 8
/// i8 8 8 8
/// i19 19 24 32
/// i32 32 32 32
/// i100 100 104 128
/// i128 128 128 128
/// Float 32 32 32
/// Double 64 64 64
/// X86_FP80 80 80 96
///
/// [*] The alloc size depends on the alignment, and thus on the target.
/// These values are for x86-32 linux.
/// Returns the number of bits necessary to hold the specified type.
///
/// If Ty is a scalable vector type, the scalable property will be set and
/// the runtime size will be a positive integer multiple of the base size.
///
/// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
/// have a size (Type::isSized() must return true).
TypeSize getTypeSizeInBits(Type *Ty) const;
/// Returns the maximum number of bytes that may be overwritten by
/// storing the specified type.
///
/// If Ty is a scalable vector type, the scalable property will be set and
/// the runtime size will be a positive integer multiple of the base size.
///
/// For example, returns 5 for i36 and 10 for x86_fp80.
TypeSize getTypeStoreSize(Type *Ty) const {
TypeSize StoreSizeInBits = getTypeStoreSizeInBits(Ty);
return {StoreSizeInBits.getKnownMinValue() / 8,
StoreSizeInBits.isScalable()};
}
/// Returns the maximum number of bits that may be overwritten by
/// storing the specified type; always a multiple of 8.
///
/// If Ty is a scalable vector type, the scalable property will be set and
/// the runtime size will be a positive integer multiple of the base size.
///
/// For example, returns 40 for i36 and 80 for x86_fp80.
TypeSize getTypeStoreSizeInBits(Type *Ty) const {
TypeSize BaseSize = getTypeSizeInBits(Ty);
uint64_t AlignedSizeInBits =
alignToPowerOf2(BaseSize.getKnownMinValue(), 8);
return {AlignedSizeInBits, BaseSize.isScalable()};
}
/// Returns true if no extra padding bits are needed when storing the
/// specified type.
///
/// For example, returns false for i19 that has a 24-bit store size.
bool typeSizeEqualsStoreSize(Type *Ty) const {
return getTypeSizeInBits(Ty) == getTypeStoreSizeInBits(Ty);
}
/// Returns the offset in bytes between successive objects of the
/// specified type, including alignment padding.
///
/// If Ty is a scalable vector type, the scalable property will be set and
/// the runtime size will be a positive integer multiple of the base size.
///
/// This is the amount that alloca reserves for this type. For example,
/// returns 12 or 16 for x86_fp80, depending on alignment.
TypeSize getTypeAllocSize(Type *Ty) const {
// Round up to the next alignment boundary.
return alignTo(getTypeStoreSize(Ty), getABITypeAlign(Ty).value());
}
/// Returns the offset in bits between successive objects of the
/// specified type, including alignment padding; always a multiple of 8.
///
/// If Ty is a scalable vector type, the scalable property will be set and
/// the runtime size will be a positive integer multiple of the base size.
///
/// This is the amount that alloca reserves for this type. For example,
/// returns 96 or 128 for x86_fp80, depending on alignment.
TypeSize getTypeAllocSizeInBits(Type *Ty) const {
return 8 * getTypeAllocSize(Ty);
}
/// Returns the minimum ABI-required alignment for the specified type.
LLVM_ABI Align getABITypeAlign(Type *Ty) const;
/// Helper function to return `Alignment` if it's set or the result of
/// `getABITypeAlign(Ty)`, in any case the result is a valid alignment.
inline Align getValueOrABITypeAlignment(MaybeAlign Alignment,
Type *Ty) const {
return Alignment ? *Alignment : getABITypeAlign(Ty);
}
/// Returns the minimum ABI-required alignment for an integer type of
/// the specified bitwidth.
Align getABIIntegerTypeAlignment(unsigned BitWidth) const {
return getIntegerAlignment(BitWidth, /* abi_or_pref */ true);
}
/// Returns the preferred stack/global alignment for the specified
/// type.
///
/// This is always at least as good as the ABI alignment.
LLVM_ABI Align getPrefTypeAlign(Type *Ty) const;
/// Returns an integer type with size at least as big as that of a
/// pointer in the given address space.
LLVM_ABI IntegerType *getIntPtrType(LLVMContext &C,
unsigned AddressSpace = 0) const;
/// Returns an integer (vector of integer) type with size at least as
/// big as that of a pointer of the given pointer (vector of pointer) type.
LLVM_ABI Type *getIntPtrType(Type *) const;
/// Returns the smallest integer type with size at least as big as
/// Width bits.
LLVM_ABI Type *getSmallestLegalIntType(LLVMContext &C,
unsigned Width = 0) const;
/// Returns the largest legal integer type, or null if none are set.
Type *getLargestLegalIntType(LLVMContext &C) const {
unsigned LargestSize = getLargestLegalIntTypeSizeInBits();
return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
}
/// Returns the size of largest legal integer type size, or 0 if none
/// are set.
LLVM_ABI unsigned getLargestLegalIntTypeSizeInBits() const;
/// Returns the type of a GEP index in \p AddressSpace.
/// If it was not specified explicitly, it will be the integer type of the
/// pointer width - IntPtrType.
LLVM_ABI IntegerType *getIndexType(LLVMContext &C,
unsigned AddressSpace) const;
/// Returns the type of an address in \p AddressSpace
IntegerType *getAddressType(LLVMContext &C, unsigned AddressSpace) const {
return getIndexType(C, AddressSpace);
}
/// Returns the type of a GEP index.
/// If it was not specified explicitly, it will be the integer type of the
/// pointer width - IntPtrType.
LLVM_ABI Type *getIndexType(Type *PtrTy) const;
/// Returns the type of an address in \p AddressSpace
Type *getAddressType(Type *PtrTy) const { return getIndexType(PtrTy); }
/// Returns the offset from the beginning of the type for the specified
/// indices.
///
/// Note that this takes the element type, not the pointer type.
/// This is used to implement getelementptr.
LLVM_ABI int64_t getIndexedOffsetInType(Type *ElemTy,
ArrayRef<Value *> Indices) const;
/// Get GEP indices to access Offset inside ElemTy. ElemTy is updated to be
/// the result element type and Offset to be the residual offset.
LLVM_ABI SmallVector<APInt> getGEPIndicesForOffset(Type *&ElemTy,
APInt &Offset) const;
/// Get single GEP index to access Offset inside ElemTy. Returns std::nullopt
/// if index cannot be computed, e.g. because the type is not an aggregate.
/// ElemTy is updated to be the result element type and Offset to be the
/// residual offset.
LLVM_ABI std::optional<APInt> getGEPIndexForOffset(Type *&ElemTy,
APInt &Offset) const;
/// Returns a StructLayout object, indicating the alignment of the
/// struct, its size, and the offsets of its fields.
///
/// Note that this information is lazily cached.
LLVM_ABI const StructLayout *getStructLayout(StructType *Ty) const;
/// Returns the preferred alignment of the specified global.
///
/// This includes an explicitly requested alignment (if the global has one).
LLVM_ABI Align getPreferredAlign(const GlobalVariable *GV) const;
};
inline DataLayout *unwrap(LLVMTargetDataRef P) {
return reinterpret_cast<DataLayout *>(P);
}
inline LLVMTargetDataRef wrap(const DataLayout *P) {
return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
}
/// Used to lazily calculate structure layout information for a target machine,
/// based on the DataLayout structure.
class StructLayout final : private TrailingObjects<StructLayout, TypeSize> {
friend TrailingObjects;
TypeSize StructSize;
Align StructAlignment;
unsigned IsPadded : 1;
unsigned NumElements : 31;
public:
TypeSize getSizeInBytes() const { return StructSize; }
TypeSize getSizeInBits() const { return 8 * StructSize; }
Align getAlignment() const { return StructAlignment; }
/// Returns whether the struct has padding or not between its fields.
/// NB: Padding in nested element is not taken into account.
bool hasPadding() const { return IsPadded; }
/// Given a valid byte offset into the structure, returns the structure
/// index that contains it.
LLVM_ABI unsigned getElementContainingOffset(uint64_t FixedOffset) const;
MutableArrayRef<TypeSize> getMemberOffsets() {
return getTrailingObjects(NumElements);
}
ArrayRef<TypeSize> getMemberOffsets() const {
return getTrailingObjects(NumElements);
}
TypeSize getElementOffset(unsigned Idx) const {
assert(Idx < NumElements && "Invalid element idx!");
return getMemberOffsets()[Idx];
}
TypeSize getElementOffsetInBits(unsigned Idx) const {
return getElementOffset(Idx) * 8;
}
private:
friend class DataLayout; // Only DataLayout can create this class
StructLayout(StructType *ST, const DataLayout &DL);
};
// The implementation of this method is provided inline as it is particularly
// well suited to constant folding when called on a specific Type subclass.
inline TypeSize DataLayout::getTypeSizeInBits(Type *Ty) const {
assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
switch (Ty->getTypeID()) {
case Type::LabelTyID:
return TypeSize::getFixed(getPointerSizeInBits(0));
case Type::PointerTyID:
return TypeSize::getFixed(
getPointerSizeInBits(Ty->getPointerAddressSpace()));
case Type::ArrayTyID: {
ArrayType *ATy = cast<ArrayType>(Ty);
return ATy->getNumElements() *
getTypeAllocSizeInBits(ATy->getElementType());
}
case Type::StructTyID:
// Get the layout annotation... which is lazily created on demand.
return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
case Type::IntegerTyID:
return TypeSize::getFixed(Ty->getIntegerBitWidth());
case Type::HalfTyID:
case Type::BFloatTyID:
return TypeSize::getFixed(16);
case Type::FloatTyID:
return TypeSize::getFixed(32);
case Type::DoubleTyID:
return TypeSize::getFixed(64);
case Type::PPC_FP128TyID:
case Type::FP128TyID:
return TypeSize::getFixed(128);
case Type::X86_AMXTyID:
return TypeSize::getFixed(8192);
// In memory objects this is always aligned to a higher boundary, but
// only 80 bits contain information.
case Type::X86_FP80TyID:
return TypeSize::getFixed(80);
case Type::FixedVectorTyID:
case Type::ScalableVectorTyID: {
VectorType *VTy = cast<VectorType>(Ty);
auto EltCnt = VTy->getElementCount();
uint64_t MinBits = EltCnt.getKnownMinValue() *
getTypeSizeInBits(VTy->getElementType()).getFixedValue();
return TypeSize(MinBits, EltCnt.isScalable());
}
case Type::TargetExtTyID: {
Type *LayoutTy = cast<TargetExtType>(Ty)->getLayoutType();
return getTypeSizeInBits(LayoutTy);
}
default:
llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
}
}
} // end namespace llvm
#endif // LLVM_IR_DATALAYOUT_H