| //===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines layout properties related to datatype size/offset/alignment |
| // information. It uses lazy annotations to cache information about how |
| // structure types are laid out and used. |
| // |
| // This structure should be created once, filled in if the defaults are not |
| // correct and then passed around by const&. None of the members functions |
| // require modification to the object. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_IR_DATALAYOUT_H |
| #define LLVM_IR_DATALAYOUT_H |
| |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/Alignment.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/TrailingObjects.h" |
| #include "llvm/Support/TypeSize.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <string> |
| |
| // This needs to be outside of the namespace, to avoid conflict with llvm-c |
| // decl. |
| using LLVMTargetDataRef = struct LLVMOpaqueTargetData *; |
| |
| namespace llvm { |
| |
| class GlobalVariable; |
| class LLVMContext; |
| class StructLayout; |
| class Triple; |
| class Value; |
| |
| // FIXME: Currently the DataLayout string carries a "preferred alignment" |
| // for types. As the DataLayout is module/global, this should likely be |
| // sunk down to an FTTI element that is queried rather than a global |
| // preference. |
| |
| /// A parsed version of the target data layout string in and methods for |
| /// querying it. |
| /// |
| /// The target data layout string is specified *by the target* - a frontend |
| /// generating LLVM IR is required to generate the right target data for the |
| /// target being codegen'd to. |
| class DataLayout { |
| public: |
| /// Primitive type specification. |
| struct PrimitiveSpec { |
| uint32_t BitWidth; |
| Align ABIAlign; |
| Align PrefAlign; |
| |
| LLVM_ABI bool operator==(const PrimitiveSpec &Other) const; |
| }; |
| |
| /// Pointer type specification. |
| struct PointerSpec { |
| uint32_t AddrSpace; |
| uint32_t BitWidth; |
| Align ABIAlign; |
| Align PrefAlign; |
| uint32_t IndexBitWidth; |
| /// Pointers in this address space don't have a well-defined bitwise |
| /// representation (e.g. may be relocated by a copying garbage collector). |
| /// Additionally, they may also be non-integral (i.e. containing additional |
| /// metadata such as bounds information/permissions). |
| bool IsNonIntegral; |
| LLVM_ABI bool operator==(const PointerSpec &Other) const; |
| }; |
| |
| enum class FunctionPtrAlignType { |
| /// The function pointer alignment is independent of the function alignment. |
| Independent, |
| /// The function pointer alignment is a multiple of the function alignment. |
| MultipleOfFunctionAlign, |
| }; |
| |
| private: |
| bool BigEndian = false; |
| |
| unsigned AllocaAddrSpace = 0; |
| unsigned ProgramAddrSpace = 0; |
| unsigned DefaultGlobalsAddrSpace = 0; |
| |
| MaybeAlign StackNaturalAlign; |
| MaybeAlign FunctionPtrAlign; |
| FunctionPtrAlignType TheFunctionPtrAlignType = |
| FunctionPtrAlignType::Independent; |
| |
| enum ManglingModeT { |
| MM_None, |
| MM_ELF, |
| MM_MachO, |
| MM_WinCOFF, |
| MM_WinCOFFX86, |
| MM_GOFF, |
| MM_Mips, |
| MM_XCOFF |
| }; |
| ManglingModeT ManglingMode = MM_None; |
| |
| // FIXME: `unsigned char` truncates the value parsed by `parseSpecifier`. |
| SmallVector<unsigned char, 8> LegalIntWidths; |
| |
| /// Primitive type specifications. Sorted and uniqued by type bit width. |
| SmallVector<PrimitiveSpec, 6> IntSpecs; |
| SmallVector<PrimitiveSpec, 4> FloatSpecs; |
| SmallVector<PrimitiveSpec, 10> VectorSpecs; |
| |
| /// Pointer type specifications. Sorted and uniqued by address space number. |
| SmallVector<PointerSpec, 8> PointerSpecs; |
| |
| /// The string representation used to create this DataLayout |
| std::string StringRepresentation; |
| |
| /// Struct type ABI and preferred alignments. The default spec is "a:8:64". |
| Align StructABIAlignment = Align::Constant<1>(); |
| Align StructPrefAlignment = Align::Constant<8>(); |
| |
| // The StructType -> StructLayout map. |
| mutable void *LayoutMap = nullptr; |
| |
| /// Sets or updates the specification for the given primitive type. |
| void setPrimitiveSpec(char Specifier, uint32_t BitWidth, Align ABIAlign, |
| Align PrefAlign); |
| |
| /// Searches for a pointer specification that matches the given address space. |
| /// Returns the default address space specification if not found. |
| LLVM_ABI const PointerSpec &getPointerSpec(uint32_t AddrSpace) const; |
| |
| /// Sets or updates the specification for pointer in the given address space. |
| void setPointerSpec(uint32_t AddrSpace, uint32_t BitWidth, Align ABIAlign, |
| Align PrefAlign, uint32_t IndexBitWidth, |
| bool IsNonIntegral); |
| |
| /// Internal helper to get alignment for integer of given bitwidth. |
| LLVM_ABI Align getIntegerAlignment(uint32_t BitWidth, bool abi_or_pref) const; |
| |
| /// Internal helper method that returns requested alignment for type. |
| Align getAlignment(Type *Ty, bool abi_or_pref) const; |
| |
| /// Attempts to parse primitive specification ('i', 'f', or 'v'). |
| Error parsePrimitiveSpec(StringRef Spec); |
| |
| /// Attempts to parse aggregate specification ('a'). |
| Error parseAggregateSpec(StringRef Spec); |
| |
| /// Attempts to parse pointer specification ('p'). |
| Error parsePointerSpec(StringRef Spec); |
| |
| /// Attempts to parse a single specification. |
| Error parseSpecification(StringRef Spec, |
| SmallVectorImpl<unsigned> &NonIntegralAddressSpaces); |
| |
| /// Attempts to parse a data layout string. |
| Error parseLayoutString(StringRef LayoutString); |
| |
| public: |
| /// Constructs a DataLayout with default values. |
| LLVM_ABI DataLayout(); |
| |
| /// Constructs a DataLayout from a specification string. |
| /// WARNING: Aborts execution if the string is malformed. Use parse() instead. |
| LLVM_ABI explicit DataLayout(StringRef LayoutString); |
| |
| DataLayout(const DataLayout &DL) { *this = DL; } |
| |
| LLVM_ABI ~DataLayout(); // Not virtual, do not subclass this class |
| |
| LLVM_ABI DataLayout &operator=(const DataLayout &Other); |
| |
| LLVM_ABI bool operator==(const DataLayout &Other) const; |
| bool operator!=(const DataLayout &Other) const { return !(*this == Other); } |
| |
| /// Parse a data layout string and return the layout. Return an error |
| /// description on failure. |
| LLVM_ABI static Expected<DataLayout> parse(StringRef LayoutString); |
| |
| /// Layout endianness... |
| bool isLittleEndian() const { return !BigEndian; } |
| bool isBigEndian() const { return BigEndian; } |
| |
| /// Returns the string representation of the DataLayout. |
| /// |
| /// This representation is in the same format accepted by the string |
| /// constructor above. This should not be used to compare two DataLayout as |
| /// different string can represent the same layout. |
| const std::string &getStringRepresentation() const { |
| return StringRepresentation; |
| } |
| |
| /// Test if the DataLayout was constructed from an empty string. |
| bool isDefault() const { return StringRepresentation.empty(); } |
| |
| /// Returns true if the specified type is known to be a native integer |
| /// type supported by the CPU. |
| /// |
| /// For example, i64 is not native on most 32-bit CPUs and i37 is not native |
| /// on any known one. This returns false if the integer width is not legal. |
| /// |
| /// The width is specified in bits. |
| bool isLegalInteger(uint64_t Width) const { |
| return llvm::is_contained(LegalIntWidths, Width); |
| } |
| |
| bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); } |
| |
| /// Returns the natural stack alignment, or MaybeAlign() if one wasn't |
| /// specified. |
| MaybeAlign getStackAlignment() const { return StackNaturalAlign; } |
| |
| unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; } |
| |
| PointerType *getAllocaPtrType(LLVMContext &Ctx) const { |
| return PointerType::get(Ctx, AllocaAddrSpace); |
| } |
| |
| /// Returns the alignment of function pointers, which may or may not be |
| /// related to the alignment of functions. |
| /// \see getFunctionPtrAlignType |
| MaybeAlign getFunctionPtrAlign() const { return FunctionPtrAlign; } |
| |
| /// Return the type of function pointer alignment. |
| /// \see getFunctionPtrAlign |
| FunctionPtrAlignType getFunctionPtrAlignType() const { |
| return TheFunctionPtrAlignType; |
| } |
| |
| unsigned getProgramAddressSpace() const { return ProgramAddrSpace; } |
| unsigned getDefaultGlobalsAddressSpace() const { |
| return DefaultGlobalsAddrSpace; |
| } |
| |
| bool hasMicrosoftFastStdCallMangling() const { |
| return ManglingMode == MM_WinCOFFX86; |
| } |
| |
| /// Returns true if symbols with leading question marks should not receive IR |
| /// mangling. True for Windows mangling modes. |
| bool doNotMangleLeadingQuestionMark() const { |
| return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86; |
| } |
| |
| bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; } |
| |
| StringRef getLinkerPrivateGlobalPrefix() const { |
| if (ManglingMode == MM_MachO) |
| return "l"; |
| return ""; |
| } |
| |
| char getGlobalPrefix() const { |
| switch (ManglingMode) { |
| case MM_None: |
| case MM_ELF: |
| case MM_GOFF: |
| case MM_Mips: |
| case MM_WinCOFF: |
| case MM_XCOFF: |
| return '\0'; |
| case MM_MachO: |
| case MM_WinCOFFX86: |
| return '_'; |
| } |
| llvm_unreachable("invalid mangling mode"); |
| } |
| |
| StringRef getPrivateGlobalPrefix() const { |
| switch (ManglingMode) { |
| case MM_None: |
| return ""; |
| case MM_ELF: |
| case MM_WinCOFF: |
| return ".L"; |
| case MM_GOFF: |
| return "L#"; |
| case MM_Mips: |
| return "$"; |
| case MM_MachO: |
| case MM_WinCOFFX86: |
| return "L"; |
| case MM_XCOFF: |
| return "L.."; |
| } |
| llvm_unreachable("invalid mangling mode"); |
| } |
| |
| LLVM_ABI static const char *getManglingComponent(const Triple &T); |
| |
| /// Returns true if the specified type fits in a native integer type |
| /// supported by the CPU. |
| /// |
| /// For example, if the CPU only supports i32 as a native integer type, then |
| /// i27 fits in a legal integer type but i45 does not. |
| bool fitsInLegalInteger(unsigned Width) const { |
| for (unsigned LegalIntWidth : LegalIntWidths) |
| if (Width <= LegalIntWidth) |
| return true; |
| return false; |
| } |
| |
| /// Layout pointer alignment |
| LLVM_ABI Align getPointerABIAlignment(unsigned AS) const; |
| |
| /// Return target's alignment for stack-based pointers |
| /// FIXME: The defaults need to be removed once all of |
| /// the backends/clients are updated. |
| LLVM_ABI Align getPointerPrefAlignment(unsigned AS = 0) const; |
| |
| /// The pointer representation size in bytes, rounded up to a whole number of |
| /// bytes. The difference between this function and getAddressSize() is that |
| /// this one returns the size of the entire pointer representation (including |
| /// metadata bits for fat pointers) and the latter only returns the number of |
| /// address bits. |
| /// \sa DataLayout::getAddressSizeInBits |
| /// FIXME: The defaults need to be removed once all of |
| /// the backends/clients are updated. |
| LLVM_ABI unsigned getPointerSize(unsigned AS = 0) const; |
| |
| /// The index size in bytes used for address calculation, rounded up to a |
| /// whole number of bytes. This not only defines the size used in |
| /// getelementptr operations, but also the size of addresses in this \p AS. |
| /// For example, a 64-bit CHERI-enabled target has 128-bit pointers of which |
| /// only 64 are used to represent the address and the remaining ones are used |
| /// for metadata such as bounds and access permissions. In this case |
| /// getPointerSize() returns 16, but getIndexSize() returns 8. |
| /// To help with code understanding, the alias getAddressSize() can be used |
| /// instead of getIndexSize() to clarify that an address width is needed. |
| LLVM_ABI unsigned getIndexSize(unsigned AS) const; |
| |
| /// The integral size of a pointer in a given address space in bytes, which |
| /// is defined to be the same as getIndexSize(). This exists as a separate |
| /// function to make it clearer when reading code that the size of an address |
| /// is being requested. While targets exist where index size and the |
| /// underlying address width are not identical (e.g. AMDGPU fat pointers with |
| /// 48-bit addresses and 32-bit offsets indexing), there is currently no need |
| /// to differentiate these properties in LLVM. |
| /// \sa DataLayout::getIndexSize |
| /// \sa DataLayout::getAddressSizeInBits |
| unsigned getAddressSize(unsigned AS) const { return getIndexSize(AS); } |
| |
| /// Return the address spaces containing non-integral pointers. Pointers in |
| /// this address space don't have a well-defined bitwise representation. |
| SmallVector<unsigned, 8> getNonIntegralAddressSpaces() const { |
| SmallVector<unsigned, 8> AddrSpaces; |
| for (const PointerSpec &PS : PointerSpecs) { |
| if (PS.IsNonIntegral) |
| AddrSpaces.push_back(PS.AddrSpace); |
| } |
| return AddrSpaces; |
| } |
| |
| bool isNonIntegralAddressSpace(unsigned AddrSpace) const { |
| return getPointerSpec(AddrSpace).IsNonIntegral; |
| } |
| |
| bool isNonIntegralPointerType(PointerType *PT) const { |
| return isNonIntegralAddressSpace(PT->getAddressSpace()); |
| } |
| |
| bool isNonIntegralPointerType(Type *Ty) const { |
| auto *PTy = dyn_cast<PointerType>(Ty); |
| return PTy && isNonIntegralPointerType(PTy); |
| } |
| |
| /// The size in bits of the pointer representation in a given address space. |
| /// This is not necessarily the same as the integer address of a pointer (e.g. |
| /// for fat pointers). |
| /// \sa DataLayout::getAddressSizeInBits() |
| /// FIXME: The defaults need to be removed once all of |
| /// the backends/clients are updated. |
| unsigned getPointerSizeInBits(unsigned AS = 0) const { |
| return getPointerSpec(AS).BitWidth; |
| } |
| |
| /// The size in bits of indices used for address calculation in getelementptr |
| /// and for addresses in the given AS. See getIndexSize() for more |
| /// information. |
| /// \sa DataLayout::getAddressSizeInBits() |
| unsigned getIndexSizeInBits(unsigned AS) const { |
| return getPointerSpec(AS).IndexBitWidth; |
| } |
| |
| /// The size in bits of an address in for the given AS. This is defined to |
| /// return the same value as getIndexSizeInBits() since there is currently no |
| /// target that requires these two properties to have different values. See |
| /// getIndexSize() for more information. |
| /// \sa DataLayout::getIndexSizeInBits() |
| unsigned getAddressSizeInBits(unsigned AS) const { |
| return getIndexSizeInBits(AS); |
| } |
| |
| /// The pointer representation size in bits for this type. If this function is |
| /// called with a pointer type, then the type size of the pointer is returned. |
| /// If this function is called with a vector of pointers, then the type size |
| /// of the pointer is returned. This should only be called with a pointer or |
| /// vector of pointers. |
| LLVM_ABI unsigned getPointerTypeSizeInBits(Type *) const; |
| |
| /// The size in bits of the index used in GEP calculation for this type. |
| /// The function should be called with pointer or vector of pointers type. |
| /// This is defined to return the same value as getAddressSizeInBits(), |
| /// but separate functions exist for code clarity. |
| LLVM_ABI unsigned getIndexTypeSizeInBits(Type *Ty) const; |
| |
| /// The size in bits of an address for this type. |
| /// This is defined to return the same value as getIndexTypeSizeInBits(), |
| /// but separate functions exist for code clarity. |
| unsigned getAddressSizeInBits(Type *Ty) const { |
| return getIndexTypeSizeInBits(Ty); |
| } |
| |
| unsigned getPointerTypeSize(Type *Ty) const { |
| return getPointerTypeSizeInBits(Ty) / 8; |
| } |
| |
| /// Size examples: |
| /// |
| /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*] |
| /// ---- ---------- --------------- --------------- |
| /// i1 1 8 8 |
| /// i8 8 8 8 |
| /// i19 19 24 32 |
| /// i32 32 32 32 |
| /// i100 100 104 128 |
| /// i128 128 128 128 |
| /// Float 32 32 32 |
| /// Double 64 64 64 |
| /// X86_FP80 80 80 96 |
| /// |
| /// [*] The alloc size depends on the alignment, and thus on the target. |
| /// These values are for x86-32 linux. |
| |
| /// Returns the number of bits necessary to hold the specified type. |
| /// |
| /// If Ty is a scalable vector type, the scalable property will be set and |
| /// the runtime size will be a positive integer multiple of the base size. |
| /// |
| /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must |
| /// have a size (Type::isSized() must return true). |
| TypeSize getTypeSizeInBits(Type *Ty) const; |
| |
| /// Returns the maximum number of bytes that may be overwritten by |
| /// storing the specified type. |
| /// |
| /// If Ty is a scalable vector type, the scalable property will be set and |
| /// the runtime size will be a positive integer multiple of the base size. |
| /// |
| /// For example, returns 5 for i36 and 10 for x86_fp80. |
| TypeSize getTypeStoreSize(Type *Ty) const { |
| TypeSize StoreSizeInBits = getTypeStoreSizeInBits(Ty); |
| return {StoreSizeInBits.getKnownMinValue() / 8, |
| StoreSizeInBits.isScalable()}; |
| } |
| |
| /// Returns the maximum number of bits that may be overwritten by |
| /// storing the specified type; always a multiple of 8. |
| /// |
| /// If Ty is a scalable vector type, the scalable property will be set and |
| /// the runtime size will be a positive integer multiple of the base size. |
| /// |
| /// For example, returns 40 for i36 and 80 for x86_fp80. |
| TypeSize getTypeStoreSizeInBits(Type *Ty) const { |
| TypeSize BaseSize = getTypeSizeInBits(Ty); |
| uint64_t AlignedSizeInBits = |
| alignToPowerOf2(BaseSize.getKnownMinValue(), 8); |
| return {AlignedSizeInBits, BaseSize.isScalable()}; |
| } |
| |
| /// Returns true if no extra padding bits are needed when storing the |
| /// specified type. |
| /// |
| /// For example, returns false for i19 that has a 24-bit store size. |
| bool typeSizeEqualsStoreSize(Type *Ty) const { |
| return getTypeSizeInBits(Ty) == getTypeStoreSizeInBits(Ty); |
| } |
| |
| /// Returns the offset in bytes between successive objects of the |
| /// specified type, including alignment padding. |
| /// |
| /// If Ty is a scalable vector type, the scalable property will be set and |
| /// the runtime size will be a positive integer multiple of the base size. |
| /// |
| /// This is the amount that alloca reserves for this type. For example, |
| /// returns 12 or 16 for x86_fp80, depending on alignment. |
| TypeSize getTypeAllocSize(Type *Ty) const { |
| // Round up to the next alignment boundary. |
| return alignTo(getTypeStoreSize(Ty), getABITypeAlign(Ty).value()); |
| } |
| |
| /// Returns the offset in bits between successive objects of the |
| /// specified type, including alignment padding; always a multiple of 8. |
| /// |
| /// If Ty is a scalable vector type, the scalable property will be set and |
| /// the runtime size will be a positive integer multiple of the base size. |
| /// |
| /// This is the amount that alloca reserves for this type. For example, |
| /// returns 96 or 128 for x86_fp80, depending on alignment. |
| TypeSize getTypeAllocSizeInBits(Type *Ty) const { |
| return 8 * getTypeAllocSize(Ty); |
| } |
| |
| /// Returns the minimum ABI-required alignment for the specified type. |
| LLVM_ABI Align getABITypeAlign(Type *Ty) const; |
| |
| /// Helper function to return `Alignment` if it's set or the result of |
| /// `getABITypeAlign(Ty)`, in any case the result is a valid alignment. |
| inline Align getValueOrABITypeAlignment(MaybeAlign Alignment, |
| Type *Ty) const { |
| return Alignment ? *Alignment : getABITypeAlign(Ty); |
| } |
| |
| /// Returns the minimum ABI-required alignment for an integer type of |
| /// the specified bitwidth. |
| Align getABIIntegerTypeAlignment(unsigned BitWidth) const { |
| return getIntegerAlignment(BitWidth, /* abi_or_pref */ true); |
| } |
| |
| /// Returns the preferred stack/global alignment for the specified |
| /// type. |
| /// |
| /// This is always at least as good as the ABI alignment. |
| LLVM_ABI Align getPrefTypeAlign(Type *Ty) const; |
| |
| /// Returns an integer type with size at least as big as that of a |
| /// pointer in the given address space. |
| LLVM_ABI IntegerType *getIntPtrType(LLVMContext &C, |
| unsigned AddressSpace = 0) const; |
| |
| /// Returns an integer (vector of integer) type with size at least as |
| /// big as that of a pointer of the given pointer (vector of pointer) type. |
| LLVM_ABI Type *getIntPtrType(Type *) const; |
| |
| /// Returns the smallest integer type with size at least as big as |
| /// Width bits. |
| LLVM_ABI Type *getSmallestLegalIntType(LLVMContext &C, |
| unsigned Width = 0) const; |
| |
| /// Returns the largest legal integer type, or null if none are set. |
| Type *getLargestLegalIntType(LLVMContext &C) const { |
| unsigned LargestSize = getLargestLegalIntTypeSizeInBits(); |
| return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize); |
| } |
| |
| /// Returns the size of largest legal integer type size, or 0 if none |
| /// are set. |
| LLVM_ABI unsigned getLargestLegalIntTypeSizeInBits() const; |
| |
| /// Returns the type of a GEP index in \p AddressSpace. |
| /// If it was not specified explicitly, it will be the integer type of the |
| /// pointer width - IntPtrType. |
| LLVM_ABI IntegerType *getIndexType(LLVMContext &C, |
| unsigned AddressSpace) const; |
| /// Returns the type of an address in \p AddressSpace |
| IntegerType *getAddressType(LLVMContext &C, unsigned AddressSpace) const { |
| return getIndexType(C, AddressSpace); |
| } |
| |
| /// Returns the type of a GEP index. |
| /// If it was not specified explicitly, it will be the integer type of the |
| /// pointer width - IntPtrType. |
| LLVM_ABI Type *getIndexType(Type *PtrTy) const; |
| /// Returns the type of an address in \p AddressSpace |
| Type *getAddressType(Type *PtrTy) const { return getIndexType(PtrTy); } |
| |
| /// Returns the offset from the beginning of the type for the specified |
| /// indices. |
| /// |
| /// Note that this takes the element type, not the pointer type. |
| /// This is used to implement getelementptr. |
| LLVM_ABI int64_t getIndexedOffsetInType(Type *ElemTy, |
| ArrayRef<Value *> Indices) const; |
| |
| /// Get GEP indices to access Offset inside ElemTy. ElemTy is updated to be |
| /// the result element type and Offset to be the residual offset. |
| LLVM_ABI SmallVector<APInt> getGEPIndicesForOffset(Type *&ElemTy, |
| APInt &Offset) const; |
| |
| /// Get single GEP index to access Offset inside ElemTy. Returns std::nullopt |
| /// if index cannot be computed, e.g. because the type is not an aggregate. |
| /// ElemTy is updated to be the result element type and Offset to be the |
| /// residual offset. |
| LLVM_ABI std::optional<APInt> getGEPIndexForOffset(Type *&ElemTy, |
| APInt &Offset) const; |
| |
| /// Returns a StructLayout object, indicating the alignment of the |
| /// struct, its size, and the offsets of its fields. |
| /// |
| /// Note that this information is lazily cached. |
| LLVM_ABI const StructLayout *getStructLayout(StructType *Ty) const; |
| |
| /// Returns the preferred alignment of the specified global. |
| /// |
| /// This includes an explicitly requested alignment (if the global has one). |
| LLVM_ABI Align getPreferredAlign(const GlobalVariable *GV) const; |
| }; |
| |
| inline DataLayout *unwrap(LLVMTargetDataRef P) { |
| return reinterpret_cast<DataLayout *>(P); |
| } |
| |
| inline LLVMTargetDataRef wrap(const DataLayout *P) { |
| return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P)); |
| } |
| |
| /// Used to lazily calculate structure layout information for a target machine, |
| /// based on the DataLayout structure. |
| class StructLayout final : private TrailingObjects<StructLayout, TypeSize> { |
| friend TrailingObjects; |
| |
| TypeSize StructSize; |
| Align StructAlignment; |
| unsigned IsPadded : 1; |
| unsigned NumElements : 31; |
| |
| public: |
| TypeSize getSizeInBytes() const { return StructSize; } |
| |
| TypeSize getSizeInBits() const { return 8 * StructSize; } |
| |
| Align getAlignment() const { return StructAlignment; } |
| |
| /// Returns whether the struct has padding or not between its fields. |
| /// NB: Padding in nested element is not taken into account. |
| bool hasPadding() const { return IsPadded; } |
| |
| /// Given a valid byte offset into the structure, returns the structure |
| /// index that contains it. |
| LLVM_ABI unsigned getElementContainingOffset(uint64_t FixedOffset) const; |
| |
| MutableArrayRef<TypeSize> getMemberOffsets() { |
| return getTrailingObjects(NumElements); |
| } |
| |
| ArrayRef<TypeSize> getMemberOffsets() const { |
| return getTrailingObjects(NumElements); |
| } |
| |
| TypeSize getElementOffset(unsigned Idx) const { |
| assert(Idx < NumElements && "Invalid element idx!"); |
| return getMemberOffsets()[Idx]; |
| } |
| |
| TypeSize getElementOffsetInBits(unsigned Idx) const { |
| return getElementOffset(Idx) * 8; |
| } |
| |
| private: |
| friend class DataLayout; // Only DataLayout can create this class |
| |
| StructLayout(StructType *ST, const DataLayout &DL); |
| }; |
| |
| // The implementation of this method is provided inline as it is particularly |
| // well suited to constant folding when called on a specific Type subclass. |
| inline TypeSize DataLayout::getTypeSizeInBits(Type *Ty) const { |
| assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); |
| switch (Ty->getTypeID()) { |
| case Type::LabelTyID: |
| return TypeSize::getFixed(getPointerSizeInBits(0)); |
| case Type::PointerTyID: |
| return TypeSize::getFixed( |
| getPointerSizeInBits(Ty->getPointerAddressSpace())); |
| case Type::ArrayTyID: { |
| ArrayType *ATy = cast<ArrayType>(Ty); |
| return ATy->getNumElements() * |
| getTypeAllocSizeInBits(ATy->getElementType()); |
| } |
| case Type::StructTyID: |
| // Get the layout annotation... which is lazily created on demand. |
| return getStructLayout(cast<StructType>(Ty))->getSizeInBits(); |
| case Type::IntegerTyID: |
| return TypeSize::getFixed(Ty->getIntegerBitWidth()); |
| case Type::HalfTyID: |
| case Type::BFloatTyID: |
| return TypeSize::getFixed(16); |
| case Type::FloatTyID: |
| return TypeSize::getFixed(32); |
| case Type::DoubleTyID: |
| return TypeSize::getFixed(64); |
| case Type::PPC_FP128TyID: |
| case Type::FP128TyID: |
| return TypeSize::getFixed(128); |
| case Type::X86_AMXTyID: |
| return TypeSize::getFixed(8192); |
| // In memory objects this is always aligned to a higher boundary, but |
| // only 80 bits contain information. |
| case Type::X86_FP80TyID: |
| return TypeSize::getFixed(80); |
| case Type::FixedVectorTyID: |
| case Type::ScalableVectorTyID: { |
| VectorType *VTy = cast<VectorType>(Ty); |
| auto EltCnt = VTy->getElementCount(); |
| uint64_t MinBits = EltCnt.getKnownMinValue() * |
| getTypeSizeInBits(VTy->getElementType()).getFixedValue(); |
| return TypeSize(MinBits, EltCnt.isScalable()); |
| } |
| case Type::TargetExtTyID: { |
| Type *LayoutTy = cast<TargetExtType>(Ty)->getLayoutType(); |
| return getTypeSizeInBits(LayoutTy); |
| } |
| default: |
| llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type"); |
| } |
| } |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_IR_DATALAYOUT_H |