|  | //===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the Correlated Value Propagation pass. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/DomTreeUpdater.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/LazyValueInfo.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/ConstantRange.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include <cassert> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "correlated-value-propagation" | 
|  |  | 
|  | STATISTIC(NumPhis,      "Number of phis propagated"); | 
|  | STATISTIC(NumPhiCommon, "Number of phis deleted via common incoming value"); | 
|  | STATISTIC(NumSelects,   "Number of selects propagated"); | 
|  | STATISTIC(NumMemAccess, "Number of memory access targets propagated"); | 
|  | STATISTIC(NumCmps,      "Number of comparisons propagated"); | 
|  | STATISTIC(NumReturns,   "Number of return values propagated"); | 
|  | STATISTIC(NumDeadCases, "Number of switch cases removed"); | 
|  | STATISTIC(NumSDivs,     "Number of sdiv converted to udiv"); | 
|  | STATISTIC(NumUDivs,     "Number of udivs whose width was decreased"); | 
|  | STATISTIC(NumAShrs,     "Number of ashr converted to lshr"); | 
|  | STATISTIC(NumSRems,     "Number of srem converted to urem"); | 
|  | STATISTIC(NumOverflows, "Number of overflow checks removed"); | 
|  | STATISTIC(NumSaturating, | 
|  | "Number of saturating arithmetics converted to normal arithmetics"); | 
|  |  | 
|  | static cl::opt<bool> DontAddNoWrapFlags("cvp-dont-add-nowrap-flags", cl::init(false)); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class CorrelatedValuePropagation : public FunctionPass { | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | CorrelatedValuePropagation(): FunctionPass(ID) { | 
|  | initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override; | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<LazyValueInfoWrapperPass>(); | 
|  | AU.addPreserved<GlobalsAAWrapperPass>(); | 
|  | AU.addPreserved<DominatorTreeWrapperPass>(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char CorrelatedValuePropagation::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation", | 
|  | "Value Propagation", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation", | 
|  | "Value Propagation", false, false) | 
|  |  | 
|  | // Public interface to the Value Propagation pass | 
|  | Pass *llvm::createCorrelatedValuePropagationPass() { | 
|  | return new CorrelatedValuePropagation(); | 
|  | } | 
|  |  | 
|  | static bool processSelect(SelectInst *S, LazyValueInfo *LVI) { | 
|  | if (S->getType()->isVectorTy()) return false; | 
|  | if (isa<Constant>(S->getOperand(0))) return false; | 
|  |  | 
|  | Constant *C = LVI->getConstant(S->getCondition(), S->getParent(), S); | 
|  | if (!C) return false; | 
|  |  | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(C); | 
|  | if (!CI) return false; | 
|  |  | 
|  | Value *ReplaceWith = S->getTrueValue(); | 
|  | Value *Other = S->getFalseValue(); | 
|  | if (!CI->isOne()) std::swap(ReplaceWith, Other); | 
|  | if (ReplaceWith == S) ReplaceWith = UndefValue::get(S->getType()); | 
|  |  | 
|  | S->replaceAllUsesWith(ReplaceWith); | 
|  | S->eraseFromParent(); | 
|  |  | 
|  | ++NumSelects; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Try to simplify a phi with constant incoming values that match the edge | 
|  | /// values of a non-constant value on all other edges: | 
|  | /// bb0: | 
|  | ///   %isnull = icmp eq i8* %x, null | 
|  | ///   br i1 %isnull, label %bb2, label %bb1 | 
|  | /// bb1: | 
|  | ///   br label %bb2 | 
|  | /// bb2: | 
|  | ///   %r = phi i8* [ %x, %bb1 ], [ null, %bb0 ] | 
|  | /// --> | 
|  | ///   %r = %x | 
|  | static bool simplifyCommonValuePhi(PHINode *P, LazyValueInfo *LVI, | 
|  | DominatorTree *DT) { | 
|  | // Collect incoming constants and initialize possible common value. | 
|  | SmallVector<std::pair<Constant *, unsigned>, 4> IncomingConstants; | 
|  | Value *CommonValue = nullptr; | 
|  | for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { | 
|  | Value *Incoming = P->getIncomingValue(i); | 
|  | if (auto *IncomingConstant = dyn_cast<Constant>(Incoming)) { | 
|  | IncomingConstants.push_back(std::make_pair(IncomingConstant, i)); | 
|  | } else if (!CommonValue) { | 
|  | // The potential common value is initialized to the first non-constant. | 
|  | CommonValue = Incoming; | 
|  | } else if (Incoming != CommonValue) { | 
|  | // There can be only one non-constant common value. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!CommonValue || IncomingConstants.empty()) | 
|  | return false; | 
|  |  | 
|  | // The common value must be valid in all incoming blocks. | 
|  | BasicBlock *ToBB = P->getParent(); | 
|  | if (auto *CommonInst = dyn_cast<Instruction>(CommonValue)) | 
|  | if (!DT->dominates(CommonInst, ToBB)) | 
|  | return false; | 
|  |  | 
|  | // We have a phi with exactly 1 variable incoming value and 1 or more constant | 
|  | // incoming values. See if all constant incoming values can be mapped back to | 
|  | // the same incoming variable value. | 
|  | for (auto &IncomingConstant : IncomingConstants) { | 
|  | Constant *C = IncomingConstant.first; | 
|  | BasicBlock *IncomingBB = P->getIncomingBlock(IncomingConstant.second); | 
|  | if (C != LVI->getConstantOnEdge(CommonValue, IncomingBB, ToBB, P)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // All constant incoming values map to the same variable along the incoming | 
|  | // edges of the phi. The phi is unnecessary. | 
|  | P->replaceAllUsesWith(CommonValue); | 
|  | P->eraseFromParent(); | 
|  | ++NumPhiCommon; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool processPHI(PHINode *P, LazyValueInfo *LVI, DominatorTree *DT, | 
|  | const SimplifyQuery &SQ) { | 
|  | bool Changed = false; | 
|  |  | 
|  | BasicBlock *BB = P->getParent(); | 
|  | for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) { | 
|  | Value *Incoming = P->getIncomingValue(i); | 
|  | if (isa<Constant>(Incoming)) continue; | 
|  |  | 
|  | Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P); | 
|  |  | 
|  | // Look if the incoming value is a select with a scalar condition for which | 
|  | // LVI can tells us the value. In that case replace the incoming value with | 
|  | // the appropriate value of the select. This often allows us to remove the | 
|  | // select later. | 
|  | if (!V) { | 
|  | SelectInst *SI = dyn_cast<SelectInst>(Incoming); | 
|  | if (!SI) continue; | 
|  |  | 
|  | Value *Condition = SI->getCondition(); | 
|  | if (!Condition->getType()->isVectorTy()) { | 
|  | if (Constant *C = LVI->getConstantOnEdge( | 
|  | Condition, P->getIncomingBlock(i), BB, P)) { | 
|  | if (C->isOneValue()) { | 
|  | V = SI->getTrueValue(); | 
|  | } else if (C->isZeroValue()) { | 
|  | V = SI->getFalseValue(); | 
|  | } | 
|  | // Once LVI learns to handle vector types, we could also add support | 
|  | // for vector type constants that are not all zeroes or all ones. | 
|  | } | 
|  | } | 
|  |  | 
|  | // Look if the select has a constant but LVI tells us that the incoming | 
|  | // value can never be that constant. In that case replace the incoming | 
|  | // value with the other value of the select. This often allows us to | 
|  | // remove the select later. | 
|  | if (!V) { | 
|  | Constant *C = dyn_cast<Constant>(SI->getFalseValue()); | 
|  | if (!C) continue; | 
|  |  | 
|  | if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, | 
|  | P->getIncomingBlock(i), BB, P) != | 
|  | LazyValueInfo::False) | 
|  | continue; | 
|  | V = SI->getTrueValue(); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n'); | 
|  | } | 
|  |  | 
|  | P->setIncomingValue(i, V); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | if (Value *V = SimplifyInstruction(P, SQ)) { | 
|  | P->replaceAllUsesWith(V); | 
|  | P->eraseFromParent(); | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | if (!Changed) | 
|  | Changed = simplifyCommonValuePhi(P, LVI, DT); | 
|  |  | 
|  | if (Changed) | 
|  | ++NumPhis; | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | static bool processMemAccess(Instruction *I, LazyValueInfo *LVI) { | 
|  | Value *Pointer = nullptr; | 
|  | if (LoadInst *L = dyn_cast<LoadInst>(I)) | 
|  | Pointer = L->getPointerOperand(); | 
|  | else | 
|  | Pointer = cast<StoreInst>(I)->getPointerOperand(); | 
|  |  | 
|  | if (isa<Constant>(Pointer)) return false; | 
|  |  | 
|  | Constant *C = LVI->getConstant(Pointer, I->getParent(), I); | 
|  | if (!C) return false; | 
|  |  | 
|  | ++NumMemAccess; | 
|  | I->replaceUsesOfWith(Pointer, C); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// See if LazyValueInfo's ability to exploit edge conditions or range | 
|  | /// information is sufficient to prove this comparison. Even for local | 
|  | /// conditions, this can sometimes prove conditions instcombine can't by | 
|  | /// exploiting range information. | 
|  | static bool processCmp(CmpInst *Cmp, LazyValueInfo *LVI) { | 
|  | Value *Op0 = Cmp->getOperand(0); | 
|  | auto *C = dyn_cast<Constant>(Cmp->getOperand(1)); | 
|  | if (!C) | 
|  | return false; | 
|  |  | 
|  | // As a policy choice, we choose not to waste compile time on anything where | 
|  | // the comparison is testing local values.  While LVI can sometimes reason | 
|  | // about such cases, it's not its primary purpose.  We do make sure to do | 
|  | // the block local query for uses from terminator instructions, but that's | 
|  | // handled in the code for each terminator. | 
|  | auto *I = dyn_cast<Instruction>(Op0); | 
|  | if (I && I->getParent() == Cmp->getParent()) | 
|  | return false; | 
|  |  | 
|  | LazyValueInfo::Tristate Result = | 
|  | LVI->getPredicateAt(Cmp->getPredicate(), Op0, C, Cmp); | 
|  | if (Result == LazyValueInfo::Unknown) | 
|  | return false; | 
|  |  | 
|  | ++NumCmps; | 
|  | Constant *TorF = ConstantInt::get(Type::getInt1Ty(Cmp->getContext()), Result); | 
|  | Cmp->replaceAllUsesWith(TorF); | 
|  | Cmp->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Simplify a switch instruction by removing cases which can never fire. If the | 
|  | /// uselessness of a case could be determined locally then constant propagation | 
|  | /// would already have figured it out. Instead, walk the predecessors and | 
|  | /// statically evaluate cases based on information available on that edge. Cases | 
|  | /// that cannot fire no matter what the incoming edge can safely be removed. If | 
|  | /// a case fires on every incoming edge then the entire switch can be removed | 
|  | /// and replaced with a branch to the case destination. | 
|  | static bool processSwitch(SwitchInst *I, LazyValueInfo *LVI, | 
|  | DominatorTree *DT) { | 
|  | DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); | 
|  | Value *Cond = I->getCondition(); | 
|  | BasicBlock *BB = I->getParent(); | 
|  |  | 
|  | // If the condition was defined in same block as the switch then LazyValueInfo | 
|  | // currently won't say anything useful about it, though in theory it could. | 
|  | if (isa<Instruction>(Cond) && cast<Instruction>(Cond)->getParent() == BB) | 
|  | return false; | 
|  |  | 
|  | // If the switch is unreachable then trying to improve it is a waste of time. | 
|  | pred_iterator PB = pred_begin(BB), PE = pred_end(BB); | 
|  | if (PB == PE) return false; | 
|  |  | 
|  | // Analyse each switch case in turn. | 
|  | bool Changed = false; | 
|  | DenseMap<BasicBlock*, int> SuccessorsCount; | 
|  | for (auto *Succ : successors(BB)) | 
|  | SuccessorsCount[Succ]++; | 
|  |  | 
|  | { // Scope for SwitchInstProfUpdateWrapper. It must not live during | 
|  | // ConstantFoldTerminator() as the underlying SwitchInst can be changed. | 
|  | SwitchInstProfUpdateWrapper SI(*I); | 
|  |  | 
|  | for (auto CI = SI->case_begin(), CE = SI->case_end(); CI != CE;) { | 
|  | ConstantInt *Case = CI->getCaseValue(); | 
|  |  | 
|  | // Check to see if the switch condition is equal to/not equal to the case | 
|  | // value on every incoming edge, equal/not equal being the same each time. | 
|  | LazyValueInfo::Tristate State = LazyValueInfo::Unknown; | 
|  | for (pred_iterator PI = PB; PI != PE; ++PI) { | 
|  | // Is the switch condition equal to the case value? | 
|  | LazyValueInfo::Tristate Value = LVI->getPredicateOnEdge(CmpInst::ICMP_EQ, | 
|  | Cond, Case, *PI, | 
|  | BB, SI); | 
|  | // Give up on this case if nothing is known. | 
|  | if (Value == LazyValueInfo::Unknown) { | 
|  | State = LazyValueInfo::Unknown; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this was the first edge to be visited, record that all other edges | 
|  | // need to give the same result. | 
|  | if (PI == PB) { | 
|  | State = Value; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If this case is known to fire for some edges and known not to fire for | 
|  | // others then there is nothing we can do - give up. | 
|  | if (Value != State) { | 
|  | State = LazyValueInfo::Unknown; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (State == LazyValueInfo::False) { | 
|  | // This case never fires - remove it. | 
|  | BasicBlock *Succ = CI->getCaseSuccessor(); | 
|  | Succ->removePredecessor(BB); | 
|  | CI = SI.removeCase(CI); | 
|  | CE = SI->case_end(); | 
|  |  | 
|  | // The condition can be modified by removePredecessor's PHI simplification | 
|  | // logic. | 
|  | Cond = SI->getCondition(); | 
|  |  | 
|  | ++NumDeadCases; | 
|  | Changed = true; | 
|  | if (--SuccessorsCount[Succ] == 0) | 
|  | DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB, Succ}}); | 
|  | continue; | 
|  | } | 
|  | if (State == LazyValueInfo::True) { | 
|  | // This case always fires.  Arrange for the switch to be turned into an | 
|  | // unconditional branch by replacing the switch condition with the case | 
|  | // value. | 
|  | SI->setCondition(Case); | 
|  | NumDeadCases += SI->getNumCases(); | 
|  | Changed = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Increment the case iterator since we didn't delete it. | 
|  | ++CI; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Changed) | 
|  | // If the switch has been simplified to the point where it can be replaced | 
|  | // by a branch then do so now. | 
|  | ConstantFoldTerminator(BB, /*DeleteDeadConditions = */ false, | 
|  | /*TLI = */ nullptr, &DTU); | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // See if we can prove that the given binary op intrinsic will not overflow. | 
|  | static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI) { | 
|  | ConstantRange LRange = LVI->getConstantRange( | 
|  | BO->getLHS(), BO->getParent(), BO); | 
|  | ConstantRange RRange = LVI->getConstantRange( | 
|  | BO->getRHS(), BO->getParent(), BO); | 
|  | ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion( | 
|  | BO->getBinaryOp(), RRange, BO->getNoWrapKind()); | 
|  | return NWRegion.contains(LRange); | 
|  | } | 
|  |  | 
|  | static void processOverflowIntrinsic(WithOverflowInst *WO) { | 
|  | IRBuilder<> B(WO); | 
|  | Value *NewOp = B.CreateBinOp( | 
|  | WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), WO->getName()); | 
|  | // Constant-folding could have happened. | 
|  | if (auto *Inst = dyn_cast<Instruction>(NewOp)) { | 
|  | if (WO->isSigned()) | 
|  | Inst->setHasNoSignedWrap(); | 
|  | else | 
|  | Inst->setHasNoUnsignedWrap(); | 
|  | } | 
|  |  | 
|  | Value *NewI = B.CreateInsertValue(UndefValue::get(WO->getType()), NewOp, 0); | 
|  | NewI = B.CreateInsertValue(NewI, ConstantInt::getFalse(WO->getContext()), 1); | 
|  | WO->replaceAllUsesWith(NewI); | 
|  | WO->eraseFromParent(); | 
|  | ++NumOverflows; | 
|  | } | 
|  |  | 
|  | static void processSaturatingInst(SaturatingInst *SI) { | 
|  | BinaryOperator *BinOp = BinaryOperator::Create( | 
|  | SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI); | 
|  | BinOp->setDebugLoc(SI->getDebugLoc()); | 
|  | if (SI->isSigned()) | 
|  | BinOp->setHasNoSignedWrap(); | 
|  | else | 
|  | BinOp->setHasNoUnsignedWrap(); | 
|  |  | 
|  | SI->replaceAllUsesWith(BinOp); | 
|  | SI->eraseFromParent(); | 
|  | ++NumSaturating; | 
|  | } | 
|  |  | 
|  | /// Infer nonnull attributes for the arguments at the specified callsite. | 
|  | static bool processCallSite(CallSite CS, LazyValueInfo *LVI) { | 
|  | SmallVector<unsigned, 4> ArgNos; | 
|  | unsigned ArgNo = 0; | 
|  |  | 
|  | if (auto *WO = dyn_cast<WithOverflowInst>(CS.getInstruction())) { | 
|  | if (WO->getLHS()->getType()->isIntegerTy() && willNotOverflow(WO, LVI)) { | 
|  | processOverflowIntrinsic(WO); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (auto *SI = dyn_cast<SaturatingInst>(CS.getInstruction())) { | 
|  | if (SI->getType()->isIntegerTy() && willNotOverflow(SI, LVI)) { | 
|  | processSaturatingInst(SI); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Deopt bundle operands are intended to capture state with minimal | 
|  | // perturbance of the code otherwise.  If we can find a constant value for | 
|  | // any such operand and remove a use of the original value, that's | 
|  | // desireable since it may allow further optimization of that value (e.g. via | 
|  | // single use rules in instcombine).  Since deopt uses tend to, | 
|  | // idiomatically, appear along rare conditional paths, it's reasonable likely | 
|  | // we may have a conditional fact with which LVI can fold. | 
|  | if (auto DeoptBundle = CS.getOperandBundle(LLVMContext::OB_deopt)) { | 
|  | bool Progress = false; | 
|  | for (const Use &ConstU : DeoptBundle->Inputs) { | 
|  | Use &U = const_cast<Use&>(ConstU); | 
|  | Value *V = U.get(); | 
|  | if (V->getType()->isVectorTy()) continue; | 
|  | if (isa<Constant>(V)) continue; | 
|  |  | 
|  | Constant *C = LVI->getConstant(V, CS.getParent(), CS.getInstruction()); | 
|  | if (!C) continue; | 
|  | U.set(C); | 
|  | Progress = true; | 
|  | } | 
|  | if (Progress) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for (Value *V : CS.args()) { | 
|  | PointerType *Type = dyn_cast<PointerType>(V->getType()); | 
|  | // Try to mark pointer typed parameters as non-null.  We skip the | 
|  | // relatively expensive analysis for constants which are obviously either | 
|  | // null or non-null to start with. | 
|  | if (Type && !CS.paramHasAttr(ArgNo, Attribute::NonNull) && | 
|  | !isa<Constant>(V) && | 
|  | LVI->getPredicateAt(ICmpInst::ICMP_EQ, V, | 
|  | ConstantPointerNull::get(Type), | 
|  | CS.getInstruction()) == LazyValueInfo::False) | 
|  | ArgNos.push_back(ArgNo); | 
|  | ArgNo++; | 
|  | } | 
|  |  | 
|  | assert(ArgNo == CS.arg_size() && "sanity check"); | 
|  |  | 
|  | if (ArgNos.empty()) | 
|  | return false; | 
|  |  | 
|  | AttributeList AS = CS.getAttributes(); | 
|  | LLVMContext &Ctx = CS.getInstruction()->getContext(); | 
|  | AS = AS.addParamAttribute(Ctx, ArgNos, | 
|  | Attribute::get(Ctx, Attribute::NonNull)); | 
|  | CS.setAttributes(AS); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool hasPositiveOperands(BinaryOperator *SDI, LazyValueInfo *LVI) { | 
|  | Constant *Zero = ConstantInt::get(SDI->getType(), 0); | 
|  | for (Value *O : SDI->operands()) { | 
|  | auto Result = LVI->getPredicateAt(ICmpInst::ICMP_SGE, O, Zero, SDI); | 
|  | if (Result != LazyValueInfo::True) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Try to shrink a udiv/urem's width down to the smallest power of two that's | 
|  | /// sufficient to contain its operands. | 
|  | static bool processUDivOrURem(BinaryOperator *Instr, LazyValueInfo *LVI) { | 
|  | assert(Instr->getOpcode() == Instruction::UDiv || | 
|  | Instr->getOpcode() == Instruction::URem); | 
|  | if (Instr->getType()->isVectorTy()) | 
|  | return false; | 
|  |  | 
|  | // Find the smallest power of two bitwidth that's sufficient to hold Instr's | 
|  | // operands. | 
|  | auto OrigWidth = Instr->getType()->getIntegerBitWidth(); | 
|  | ConstantRange OperandRange(OrigWidth, /*isFullset=*/false); | 
|  | for (Value *Operand : Instr->operands()) { | 
|  | OperandRange = OperandRange.unionWith( | 
|  | LVI->getConstantRange(Operand, Instr->getParent())); | 
|  | } | 
|  | // Don't shrink below 8 bits wide. | 
|  | unsigned NewWidth = std::max<unsigned>( | 
|  | PowerOf2Ceil(OperandRange.getUnsignedMax().getActiveBits()), 8); | 
|  | // NewWidth might be greater than OrigWidth if OrigWidth is not a power of | 
|  | // two. | 
|  | if (NewWidth >= OrigWidth) | 
|  | return false; | 
|  |  | 
|  | ++NumUDivs; | 
|  | IRBuilder<> B{Instr}; | 
|  | auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth); | 
|  | auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy, | 
|  | Instr->getName() + ".lhs.trunc"); | 
|  | auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy, | 
|  | Instr->getName() + ".rhs.trunc"); | 
|  | auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName()); | 
|  | auto *Zext = B.CreateZExt(BO, Instr->getType(), Instr->getName() + ".zext"); | 
|  | if (auto *BinOp = dyn_cast<BinaryOperator>(BO)) | 
|  | if (BinOp->getOpcode() == Instruction::UDiv) | 
|  | BinOp->setIsExact(Instr->isExact()); | 
|  |  | 
|  | Instr->replaceAllUsesWith(Zext); | 
|  | Instr->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool processSRem(BinaryOperator *SDI, LazyValueInfo *LVI) { | 
|  | if (SDI->getType()->isVectorTy() || !hasPositiveOperands(SDI, LVI)) | 
|  | return false; | 
|  |  | 
|  | ++NumSRems; | 
|  | auto *BO = BinaryOperator::CreateURem(SDI->getOperand(0), SDI->getOperand(1), | 
|  | SDI->getName(), SDI); | 
|  | BO->setDebugLoc(SDI->getDebugLoc()); | 
|  | SDI->replaceAllUsesWith(BO); | 
|  | SDI->eraseFromParent(); | 
|  |  | 
|  | // Try to process our new urem. | 
|  | processUDivOrURem(BO, LVI); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// See if LazyValueInfo's ability to exploit edge conditions or range | 
|  | /// information is sufficient to prove the both operands of this SDiv are | 
|  | /// positive.  If this is the case, replace the SDiv with a UDiv. Even for local | 
|  | /// conditions, this can sometimes prove conditions instcombine can't by | 
|  | /// exploiting range information. | 
|  | static bool processSDiv(BinaryOperator *SDI, LazyValueInfo *LVI) { | 
|  | if (SDI->getType()->isVectorTy() || !hasPositiveOperands(SDI, LVI)) | 
|  | return false; | 
|  |  | 
|  | ++NumSDivs; | 
|  | auto *BO = BinaryOperator::CreateUDiv(SDI->getOperand(0), SDI->getOperand(1), | 
|  | SDI->getName(), SDI); | 
|  | BO->setDebugLoc(SDI->getDebugLoc()); | 
|  | BO->setIsExact(SDI->isExact()); | 
|  | SDI->replaceAllUsesWith(BO); | 
|  | SDI->eraseFromParent(); | 
|  |  | 
|  | // Try to simplify our new udiv. | 
|  | processUDivOrURem(BO, LVI); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool processAShr(BinaryOperator *SDI, LazyValueInfo *LVI) { | 
|  | if (SDI->getType()->isVectorTy()) | 
|  | return false; | 
|  |  | 
|  | Constant *Zero = ConstantInt::get(SDI->getType(), 0); | 
|  | if (LVI->getPredicateAt(ICmpInst::ICMP_SGE, SDI->getOperand(0), Zero, SDI) != | 
|  | LazyValueInfo::True) | 
|  | return false; | 
|  |  | 
|  | ++NumAShrs; | 
|  | auto *BO = BinaryOperator::CreateLShr(SDI->getOperand(0), SDI->getOperand(1), | 
|  | SDI->getName(), SDI); | 
|  | BO->setDebugLoc(SDI->getDebugLoc()); | 
|  | BO->setIsExact(SDI->isExact()); | 
|  | SDI->replaceAllUsesWith(BO); | 
|  | SDI->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI) { | 
|  | using OBO = OverflowingBinaryOperator; | 
|  |  | 
|  | if (DontAddNoWrapFlags) | 
|  | return false; | 
|  |  | 
|  | if (BinOp->getType()->isVectorTy()) | 
|  | return false; | 
|  |  | 
|  | bool NSW = BinOp->hasNoSignedWrap(); | 
|  | bool NUW = BinOp->hasNoUnsignedWrap(); | 
|  | if (NSW && NUW) | 
|  | return false; | 
|  |  | 
|  | BasicBlock *BB = BinOp->getParent(); | 
|  |  | 
|  | Value *LHS = BinOp->getOperand(0); | 
|  | Value *RHS = BinOp->getOperand(1); | 
|  |  | 
|  | ConstantRange LRange = LVI->getConstantRange(LHS, BB, BinOp); | 
|  | ConstantRange RRange = LVI->getConstantRange(RHS, BB, BinOp); | 
|  |  | 
|  | bool Changed = false; | 
|  | if (!NUW) { | 
|  | ConstantRange NUWRange = ConstantRange::makeGuaranteedNoWrapRegion( | 
|  | BinOp->getOpcode(), RRange, OBO::NoUnsignedWrap); | 
|  | bool NewNUW = NUWRange.contains(LRange); | 
|  | BinOp->setHasNoUnsignedWrap(NewNUW); | 
|  | Changed |= NewNUW; | 
|  | } | 
|  | if (!NSW) { | 
|  | ConstantRange NSWRange = ConstantRange::makeGuaranteedNoWrapRegion( | 
|  | BinOp->getOpcode(), RRange, OBO::NoSignedWrap); | 
|  | bool NewNSW = NSWRange.contains(LRange); | 
|  | BinOp->setHasNoSignedWrap(NewNSW); | 
|  | Changed |= NewNSW; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | static Constant *getConstantAt(Value *V, Instruction *At, LazyValueInfo *LVI) { | 
|  | if (Constant *C = LVI->getConstant(V, At->getParent(), At)) | 
|  | return C; | 
|  |  | 
|  | // TODO: The following really should be sunk inside LVI's core algorithm, or | 
|  | // at least the outer shims around such. | 
|  | auto *C = dyn_cast<CmpInst>(V); | 
|  | if (!C) return nullptr; | 
|  |  | 
|  | Value *Op0 = C->getOperand(0); | 
|  | Constant *Op1 = dyn_cast<Constant>(C->getOperand(1)); | 
|  | if (!Op1) return nullptr; | 
|  |  | 
|  | LazyValueInfo::Tristate Result = | 
|  | LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At); | 
|  | if (Result == LazyValueInfo::Unknown) | 
|  | return nullptr; | 
|  |  | 
|  | return (Result == LazyValueInfo::True) ? | 
|  | ConstantInt::getTrue(C->getContext()) : | 
|  | ConstantInt::getFalse(C->getContext()); | 
|  | } | 
|  |  | 
|  | static bool runImpl(Function &F, LazyValueInfo *LVI, DominatorTree *DT, | 
|  | const SimplifyQuery &SQ) { | 
|  | bool FnChanged = false; | 
|  | // Visiting in a pre-order depth-first traversal causes us to simplify early | 
|  | // blocks before querying later blocks (which require us to analyze early | 
|  | // blocks).  Eagerly simplifying shallow blocks means there is strictly less | 
|  | // work to do for deep blocks.  This also means we don't visit unreachable | 
|  | // blocks. | 
|  | for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { | 
|  | bool BBChanged = false; | 
|  | for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { | 
|  | Instruction *II = &*BI++; | 
|  | switch (II->getOpcode()) { | 
|  | case Instruction::Select: | 
|  | BBChanged |= processSelect(cast<SelectInst>(II), LVI); | 
|  | break; | 
|  | case Instruction::PHI: | 
|  | BBChanged |= processPHI(cast<PHINode>(II), LVI, DT, SQ); | 
|  | break; | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: | 
|  | BBChanged |= processCmp(cast<CmpInst>(II), LVI); | 
|  | break; | 
|  | case Instruction::Load: | 
|  | case Instruction::Store: | 
|  | BBChanged |= processMemAccess(II, LVI); | 
|  | break; | 
|  | case Instruction::Call: | 
|  | case Instruction::Invoke: | 
|  | BBChanged |= processCallSite(CallSite(II), LVI); | 
|  | break; | 
|  | case Instruction::SRem: | 
|  | BBChanged |= processSRem(cast<BinaryOperator>(II), LVI); | 
|  | break; | 
|  | case Instruction::SDiv: | 
|  | BBChanged |= processSDiv(cast<BinaryOperator>(II), LVI); | 
|  | break; | 
|  | case Instruction::UDiv: | 
|  | case Instruction::URem: | 
|  | BBChanged |= processUDivOrURem(cast<BinaryOperator>(II), LVI); | 
|  | break; | 
|  | case Instruction::AShr: | 
|  | BBChanged |= processAShr(cast<BinaryOperator>(II), LVI); | 
|  | break; | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | BBChanged |= processBinOp(cast<BinaryOperator>(II), LVI); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | Instruction *Term = BB->getTerminator(); | 
|  | switch (Term->getOpcode()) { | 
|  | case Instruction::Switch: | 
|  | BBChanged |= processSwitch(cast<SwitchInst>(Term), LVI, DT); | 
|  | break; | 
|  | case Instruction::Ret: { | 
|  | auto *RI = cast<ReturnInst>(Term); | 
|  | // Try to determine the return value if we can.  This is mainly here to | 
|  | // simplify the writing of unit tests, but also helps to enable IPO by | 
|  | // constant folding the return values of callees. | 
|  | auto *RetVal = RI->getReturnValue(); | 
|  | if (!RetVal) break; // handle "ret void" | 
|  | if (isa<Constant>(RetVal)) break; // nothing to do | 
|  | if (auto *C = getConstantAt(RetVal, RI, LVI)) { | 
|  | ++NumReturns; | 
|  | RI->replaceUsesOfWith(RetVal, C); | 
|  | BBChanged = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | FnChanged |= BBChanged; | 
|  | } | 
|  |  | 
|  | return FnChanged; | 
|  | } | 
|  |  | 
|  | bool CorrelatedValuePropagation::runOnFunction(Function &F) { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  |  | 
|  | LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); | 
|  | DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  |  | 
|  | return runImpl(F, LVI, DT, getBestSimplifyQuery(*this, F)); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses | 
|  | CorrelatedValuePropagationPass::run(Function &F, FunctionAnalysisManager &AM) { | 
|  | LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F); | 
|  | DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); | 
|  |  | 
|  | bool Changed = runImpl(F, LVI, DT, getBestSimplifyQuery(AM, F)); | 
|  |  | 
|  | if (!Changed) | 
|  | return PreservedAnalyses::all(); | 
|  | PreservedAnalyses PA; | 
|  | PA.preserve<GlobalsAA>(); | 
|  | PA.preserve<DominatorTreeAnalysis>(); | 
|  | return PA; | 
|  | } |