blob: f4b63f301c204a18a3c4f88c0ba83d6cfbe93c7f [file] [log] [blame]
//===----------- MemoryManager.h - Target independent memory manager ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Target independent memory manager.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OPENMP_LIBOMPTARGET_PLUGINS_COMMON_MEMORYMANAGER_MEMORYMANAGER_H
#define LLVM_OPENMP_LIBOMPTARGET_PLUGINS_COMMON_MEMORYMANAGER_MEMORYMANAGER_H
#include <cassert>
#include <functional>
#include <list>
#include <mutex>
#include <set>
#include <unordered_map>
#include <vector>
#include "Debug.h"
#include "omptargetplugin.h"
/// Base class of per-device allocator.
class DeviceAllocatorTy {
public:
virtual ~DeviceAllocatorTy() = default;
/// Allocate a memory of size \p Size . \p HstPtr is used to assist the
/// allocation.
virtual void *allocate(size_t Size, void *HstPtr, TargetAllocTy Kind) = 0;
/// Delete the pointer \p TgtPtr on the device
virtual int free(void *TgtPtr) = 0;
};
/// Class of memory manager. The memory manager is per-device by using
/// per-device allocator. Therefore, each plugin using memory manager should
/// have an allocator for each device.
class MemoryManagerTy {
static constexpr const size_t BucketSize[] = {
0, 1U << 2, 1U << 3, 1U << 4, 1U << 5, 1U << 6, 1U << 7,
1U << 8, 1U << 9, 1U << 10, 1U << 11, 1U << 12, 1U << 13};
static constexpr const int NumBuckets =
sizeof(BucketSize) / sizeof(BucketSize[0]);
/// Find the previous number that is power of 2 given a number that is not
/// power of 2.
static size_t floorToPowerOfTwo(size_t Num) {
Num |= Num >> 1;
Num |= Num >> 2;
Num |= Num >> 4;
Num |= Num >> 8;
Num |= Num >> 16;
#if INTPTR_MAX == INT64_MAX
Num |= Num >> 32;
#elif INTPTR_MAX == INT32_MAX
// Do nothing with 32-bit
#else
#error Unsupported architecture
#endif
Num += 1;
return Num >> 1;
}
/// Find a suitable bucket
static int findBucket(size_t Size) {
const size_t F = floorToPowerOfTwo(Size);
DP("findBucket: Size %zu is floored to %zu.\n", Size, F);
int L = 0, H = NumBuckets - 1;
while (H - L > 1) {
int M = (L + H) >> 1;
if (BucketSize[M] == F)
return M;
if (BucketSize[M] > F)
H = M - 1;
else
L = M;
}
assert(L >= 0 && L < NumBuckets && "L is out of range");
DP("findBucket: Size %zu goes to bucket %d\n", Size, L);
return L;
}
/// A structure stores the meta data of a target pointer
struct NodeTy {
/// Memory size
const size_t Size;
/// Target pointer
void *Ptr;
/// Constructor
NodeTy(size_t Size, void *Ptr) : Size(Size), Ptr(Ptr) {}
};
/// To make \p NodePtrTy ordered when they're put into \p std::multiset.
struct NodeCmpTy {
bool operator()(const NodeTy &LHS, const NodeTy &RHS) const {
return LHS.Size < RHS.Size;
}
};
/// A \p FreeList is a set of Nodes. We're using \p std::multiset here to make
/// the look up procedure more efficient.
using FreeListTy = std::multiset<std::reference_wrapper<NodeTy>, NodeCmpTy>;
/// A list of \p FreeListTy entries, each of which is a \p std::multiset of
/// Nodes whose size is less or equal to a specific bucket size.
std::vector<FreeListTy> FreeLists;
/// A list of mutex for each \p FreeListTy entry
std::vector<std::mutex> FreeListLocks;
/// A table to map from a target pointer to its node
std::unordered_map<void *, NodeTy> PtrToNodeTable;
/// The mutex for the table \p PtrToNodeTable
std::mutex MapTableLock;
/// The reference to a device allocator
DeviceAllocatorTy &DeviceAllocator;
/// The threshold to manage memory using memory manager. If the request size
/// is larger than \p SizeThreshold, the allocation will not be managed by the
/// memory manager.
size_t SizeThreshold = 1U << 13;
/// Request memory from target device
void *allocateOnDevice(size_t Size, void *HstPtr) const {
return DeviceAllocator.allocate(Size, HstPtr, TARGET_ALLOC_DEVICE);
}
/// Deallocate data on device
int deleteOnDevice(void *Ptr) const { return DeviceAllocator.free(Ptr); }
/// This function is called when it tries to allocate memory on device but the
/// device returns out of memory. It will first free all memory in the
/// FreeList and try to allocate again.
void *freeAndAllocate(size_t Size, void *HstPtr) {
std::vector<void *> RemoveList;
// Deallocate all memory in FreeList
for (int I = 0; I < NumBuckets; ++I) {
FreeListTy &List = FreeLists[I];
std::lock_guard<std::mutex> Lock(FreeListLocks[I]);
if (List.empty())
continue;
for (const NodeTy &N : List) {
deleteOnDevice(N.Ptr);
RemoveList.push_back(N.Ptr);
}
FreeLists[I].clear();
}
// Remove all nodes in the map table which have been released
if (!RemoveList.empty()) {
std::lock_guard<std::mutex> LG(MapTableLock);
for (void *P : RemoveList)
PtrToNodeTable.erase(P);
}
// Try allocate memory again
return allocateOnDevice(Size, HstPtr);
}
/// The goal is to allocate memory on the device. It first tries to
/// allocate directly on the device. If a \p nullptr is returned, it might
/// be because the device is OOM. In that case, it will free all unused
/// memory and then try again.
void *allocateOrFreeAndAllocateOnDevice(size_t Size, void *HstPtr) {
void *TgtPtr = allocateOnDevice(Size, HstPtr);
// We cannot get memory from the device. It might be due to OOM. Let's
// free all memory in FreeLists and try again.
if (TgtPtr == nullptr) {
DP("Failed to get memory on device. Free all memory in FreeLists and "
"try again.\n");
TgtPtr = freeAndAllocate(Size, HstPtr);
}
if (TgtPtr == nullptr)
DP("Still cannot get memory on device probably because the device is "
"OOM.\n");
return TgtPtr;
}
public:
/// Constructor. If \p Threshold is non-zero, then the default threshold will
/// be overwritten by \p Threshold.
MemoryManagerTy(DeviceAllocatorTy &DeviceAllocator, size_t Threshold = 0)
: FreeLists(NumBuckets), FreeListLocks(NumBuckets),
DeviceAllocator(DeviceAllocator) {
if (Threshold)
SizeThreshold = Threshold;
}
/// Destructor
~MemoryManagerTy() {
for (auto Itr = PtrToNodeTable.begin(); Itr != PtrToNodeTable.end();
++Itr) {
assert(Itr->second.Ptr && "nullptr in map table");
deleteOnDevice(Itr->second.Ptr);
}
}
/// Allocate memory of size \p Size from target device. \p HstPtr is used to
/// assist the allocation.
void *allocate(size_t Size, void *HstPtr) {
// If the size is zero, we will not bother the target device. Just return
// nullptr directly.
if (Size == 0)
return nullptr;
DP("MemoryManagerTy::allocate: size %zu with host pointer " DPxMOD ".\n",
Size, DPxPTR(HstPtr));
// If the size is greater than the threshold, allocate it directly from
// device.
if (Size > SizeThreshold) {
DP("%zu is greater than the threshold %zu. Allocate it directly from "
"device\n",
Size, SizeThreshold);
void *TgtPtr = allocateOrFreeAndAllocateOnDevice(Size, HstPtr);
DP("Got target pointer " DPxMOD ". Return directly.\n", DPxPTR(TgtPtr));
return TgtPtr;
}
NodeTy *NodePtr = nullptr;
// Try to get a node from FreeList
{
const int B = findBucket(Size);
FreeListTy &List = FreeLists[B];
NodeTy TempNode(Size, nullptr);
std::lock_guard<std::mutex> LG(FreeListLocks[B]);
const auto Itr = List.find(TempNode);
if (Itr != List.end()) {
NodePtr = &Itr->get();
List.erase(Itr);
}
}
if (NodePtr != nullptr)
DP("Find one node " DPxMOD " in the bucket.\n", DPxPTR(NodePtr));
// We cannot find a valid node in FreeLists. Let's allocate on device and
// create a node for it.
if (NodePtr == nullptr) {
DP("Cannot find a node in the FreeLists. Allocate on device.\n");
// Allocate one on device
void *TgtPtr = allocateOrFreeAndAllocateOnDevice(Size, HstPtr);
if (TgtPtr == nullptr)
return nullptr;
// Create a new node and add it into the map table
{
std::lock_guard<std::mutex> Guard(MapTableLock);
auto Itr = PtrToNodeTable.emplace(TgtPtr, NodeTy(Size, TgtPtr));
NodePtr = &Itr.first->second;
}
DP("Node address " DPxMOD ", target pointer " DPxMOD ", size %zu\n",
DPxPTR(NodePtr), DPxPTR(TgtPtr), Size);
}
assert(NodePtr && "NodePtr should not be nullptr at this point");
return NodePtr->Ptr;
}
/// Deallocate memory pointed by \p TgtPtr
int free(void *TgtPtr) {
DP("MemoryManagerTy::free: target memory " DPxMOD ".\n", DPxPTR(TgtPtr));
NodeTy *P = nullptr;
// Look it up into the table
{
std::lock_guard<std::mutex> G(MapTableLock);
auto Itr = PtrToNodeTable.find(TgtPtr);
// We don't remove the node from the map table because the map does not
// change.
if (Itr != PtrToNodeTable.end())
P = &Itr->second;
}
// The memory is not managed by the manager
if (P == nullptr) {
DP("Cannot find its node. Delete it on device directly.\n");
return deleteOnDevice(TgtPtr);
}
// Insert the node to the free list
const int B = findBucket(P->Size);
DP("Found its node " DPxMOD ". Insert it to bucket %d.\n", DPxPTR(P), B);
{
std::lock_guard<std::mutex> G(FreeListLocks[B]);
FreeLists[B].insert(*P);
}
return OFFLOAD_SUCCESS;
}
/// Get the size threshold from the environment variable
/// \p LIBOMPTARGET_MEMORY_MANAGER_THRESHOLD . Returns a <tt>
/// std::pair<size_t, bool> </tt> where the first element represents the
/// threshold and the second element represents whether user disables memory
/// manager explicitly by setting the var to 0. If user doesn't specify
/// anything, returns <0, true>.
static std::pair<size_t, bool> getSizeThresholdFromEnv() {
size_t Threshold = 0;
if (const char *Env =
std::getenv("LIBOMPTARGET_MEMORY_MANAGER_THRESHOLD")) {
Threshold = std::stoul(Env);
if (Threshold == 0) {
DP("Disabled memory manager as user set "
"LIBOMPTARGET_MEMORY_MANAGER_THRESHOLD=0.\n");
return std::make_pair(0, false);
}
}
return std::make_pair(Threshold, true);
}
};
// GCC still cannot handle the static data member like Clang so we still need
// this part.
constexpr const size_t MemoryManagerTy::BucketSize[];
constexpr const int MemoryManagerTy::NumBuckets;
#endif // LLVM_OPENMP_LIBOMPTARGET_PLUGINS_COMMON_MEMORYMANAGER_MEMORYMANAGER_H