| //===- SemaTemplateDeduction.cpp - Template Argument Deduction ------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements C++ template argument deduction. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Sema/TemplateDeduction.h" |
| #include "TreeTransform.h" |
| #include "TypeLocBuilder.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTLambda.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclAccessPair.h" |
| #include "clang/AST/DeclBase.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/DeclarationName.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/NestedNameSpecifier.h" |
| #include "clang/AST/RecursiveASTVisitor.h" |
| #include "clang/AST/TemplateBase.h" |
| #include "clang/AST/TemplateName.h" |
| #include "clang/AST/Type.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/AST/UnresolvedSet.h" |
| #include "clang/Basic/AddressSpaces.h" |
| #include "clang/Basic/ExceptionSpecificationType.h" |
| #include "clang/Basic/LLVM.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/Specifiers.h" |
| #include "clang/Sema/Ownership.h" |
| #include "clang/Sema/Sema.h" |
| #include "clang/Sema/Template.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <tuple> |
| #include <utility> |
| |
| namespace clang { |
| |
| /// Various flags that control template argument deduction. |
| /// |
| /// These flags can be bitwise-OR'd together. |
| enum TemplateDeductionFlags { |
| /// No template argument deduction flags, which indicates the |
| /// strictest results for template argument deduction (as used for, e.g., |
| /// matching class template partial specializations). |
| TDF_None = 0, |
| |
| /// Within template argument deduction from a function call, we are |
| /// matching with a parameter type for which the original parameter was |
| /// a reference. |
| TDF_ParamWithReferenceType = 0x1, |
| |
| /// Within template argument deduction from a function call, we |
| /// are matching in a case where we ignore cv-qualifiers. |
| TDF_IgnoreQualifiers = 0x02, |
| |
| /// Within template argument deduction from a function call, |
| /// we are matching in a case where we can perform template argument |
| /// deduction from a template-id of a derived class of the argument type. |
| TDF_DerivedClass = 0x04, |
| |
| /// Allow non-dependent types to differ, e.g., when performing |
| /// template argument deduction from a function call where conversions |
| /// may apply. |
| TDF_SkipNonDependent = 0x08, |
| |
| /// Whether we are performing template argument deduction for |
| /// parameters and arguments in a top-level template argument |
| TDF_TopLevelParameterTypeList = 0x10, |
| |
| /// Within template argument deduction from overload resolution per |
| /// C++ [over.over] allow matching function types that are compatible in |
| /// terms of noreturn and default calling convention adjustments, or |
| /// similarly matching a declared template specialization against a |
| /// possible template, per C++ [temp.deduct.decl]. In either case, permit |
| /// deduction where the parameter is a function type that can be converted |
| /// to the argument type. |
| TDF_AllowCompatibleFunctionType = 0x20, |
| |
| /// Within template argument deduction for a conversion function, we are |
| /// matching with an argument type for which the original argument was |
| /// a reference. |
| TDF_ArgWithReferenceType = 0x40, |
| }; |
| } |
| |
| using namespace clang; |
| using namespace sema; |
| |
| /// Compare two APSInts, extending and switching the sign as |
| /// necessary to compare their values regardless of underlying type. |
| static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) { |
| if (Y.getBitWidth() > X.getBitWidth()) |
| X = X.extend(Y.getBitWidth()); |
| else if (Y.getBitWidth() < X.getBitWidth()) |
| Y = Y.extend(X.getBitWidth()); |
| |
| // If there is a signedness mismatch, correct it. |
| if (X.isSigned() != Y.isSigned()) { |
| // If the signed value is negative, then the values cannot be the same. |
| if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative())) |
| return false; |
| |
| Y.setIsSigned(true); |
| X.setIsSigned(true); |
| } |
| |
| return X == Y; |
| } |
| |
| static Sema::TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch( |
| Sema &S, TemplateParameterList *TemplateParams, QualType Param, |
| QualType Arg, TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF, |
| bool PartialOrdering = false, bool DeducedFromArrayBound = false); |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, |
| ArrayRef<TemplateArgument> Ps, |
| ArrayRef<TemplateArgument> As, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| bool NumberOfArgumentsMustMatch); |
| |
| static void MarkUsedTemplateParameters(ASTContext &Ctx, |
| const TemplateArgument &TemplateArg, |
| bool OnlyDeduced, unsigned Depth, |
| llvm::SmallBitVector &Used); |
| |
| static void MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, |
| bool OnlyDeduced, unsigned Level, |
| llvm::SmallBitVector &Deduced); |
| |
| /// If the given expression is of a form that permits the deduction |
| /// of a non-type template parameter, return the declaration of that |
| /// non-type template parameter. |
| static const NonTypeTemplateParmDecl * |
| getDeducedParameterFromExpr(const Expr *E, unsigned Depth) { |
| // If we are within an alias template, the expression may have undergone |
| // any number of parameter substitutions already. |
| while (true) { |
| if (const auto *IC = dyn_cast<ImplicitCastExpr>(E)) |
| E = IC->getSubExpr(); |
| else if (const auto *CE = dyn_cast<ConstantExpr>(E)) |
| E = CE->getSubExpr(); |
| else if (const auto *Subst = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) |
| E = Subst->getReplacement(); |
| else if (const auto *CCE = dyn_cast<CXXConstructExpr>(E)) { |
| // Look through implicit copy construction from an lvalue of the same type. |
| if (CCE->getParenOrBraceRange().isValid()) |
| break; |
| // Note, there could be default arguments. |
| assert(CCE->getNumArgs() >= 1 && "implicit construct expr should have 1 arg"); |
| E = CCE->getArg(0); |
| } else |
| break; |
| } |
| |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) |
| if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl())) |
| if (NTTP->getDepth() == Depth) |
| return NTTP; |
| |
| return nullptr; |
| } |
| |
| static const NonTypeTemplateParmDecl * |
| getDeducedParameterFromExpr(TemplateDeductionInfo &Info, Expr *E) { |
| return getDeducedParameterFromExpr(E, Info.getDeducedDepth()); |
| } |
| |
| /// Determine whether two declaration pointers refer to the same |
| /// declaration. |
| static bool isSameDeclaration(Decl *X, Decl *Y) { |
| if (NamedDecl *NX = dyn_cast<NamedDecl>(X)) |
| X = NX->getUnderlyingDecl(); |
| if (NamedDecl *NY = dyn_cast<NamedDecl>(Y)) |
| Y = NY->getUnderlyingDecl(); |
| |
| return X->getCanonicalDecl() == Y->getCanonicalDecl(); |
| } |
| |
| /// Verify that the given, deduced template arguments are compatible. |
| /// |
| /// \returns The deduced template argument, or a NULL template argument if |
| /// the deduced template arguments were incompatible. |
| static DeducedTemplateArgument |
| checkDeducedTemplateArguments(ASTContext &Context, |
| const DeducedTemplateArgument &X, |
| const DeducedTemplateArgument &Y) { |
| // We have no deduction for one or both of the arguments; they're compatible. |
| if (X.isNull()) |
| return Y; |
| if (Y.isNull()) |
| return X; |
| |
| // If we have two non-type template argument values deduced for the same |
| // parameter, they must both match the type of the parameter, and thus must |
| // match each other's type. As we're only keeping one of them, we must check |
| // for that now. The exception is that if either was deduced from an array |
| // bound, the type is permitted to differ. |
| if (!X.wasDeducedFromArrayBound() && !Y.wasDeducedFromArrayBound()) { |
| QualType XType = X.getNonTypeTemplateArgumentType(); |
| if (!XType.isNull()) { |
| QualType YType = Y.getNonTypeTemplateArgumentType(); |
| if (YType.isNull() || !Context.hasSameType(XType, YType)) |
| return DeducedTemplateArgument(); |
| } |
| } |
| |
| switch (X.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Non-deduced template arguments handled above"); |
| |
| case TemplateArgument::Type: |
| // If two template type arguments have the same type, they're compatible. |
| if (Y.getKind() == TemplateArgument::Type && |
| Context.hasSameType(X.getAsType(), Y.getAsType())) |
| return X; |
| |
| // If one of the two arguments was deduced from an array bound, the other |
| // supersedes it. |
| if (X.wasDeducedFromArrayBound() != Y.wasDeducedFromArrayBound()) |
| return X.wasDeducedFromArrayBound() ? Y : X; |
| |
| // The arguments are not compatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::Integral: |
| // If we deduced a constant in one case and either a dependent expression or |
| // declaration in another case, keep the integral constant. |
| // If both are integral constants with the same value, keep that value. |
| if (Y.getKind() == TemplateArgument::Expression || |
| Y.getKind() == TemplateArgument::Declaration || |
| (Y.getKind() == TemplateArgument::Integral && |
| hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()))) |
| return X.wasDeducedFromArrayBound() ? Y : X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::Template: |
| if (Y.getKind() == TemplateArgument::Template && |
| Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate())) |
| return X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::TemplateExpansion: |
| if (Y.getKind() == TemplateArgument::TemplateExpansion && |
| Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(), |
| Y.getAsTemplateOrTemplatePattern())) |
| return X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::Expression: { |
| if (Y.getKind() != TemplateArgument::Expression) |
| return checkDeducedTemplateArguments(Context, Y, X); |
| |
| // Compare the expressions for equality |
| llvm::FoldingSetNodeID ID1, ID2; |
| X.getAsExpr()->Profile(ID1, Context, true); |
| Y.getAsExpr()->Profile(ID2, Context, true); |
| if (ID1 == ID2) |
| return X.wasDeducedFromArrayBound() ? Y : X; |
| |
| // Differing dependent expressions are incompatible. |
| return DeducedTemplateArgument(); |
| } |
| |
| case TemplateArgument::Declaration: |
| assert(!X.wasDeducedFromArrayBound()); |
| |
| // If we deduced a declaration and a dependent expression, keep the |
| // declaration. |
| if (Y.getKind() == TemplateArgument::Expression) |
| return X; |
| |
| // If we deduced a declaration and an integral constant, keep the |
| // integral constant and whichever type did not come from an array |
| // bound. |
| if (Y.getKind() == TemplateArgument::Integral) { |
| if (Y.wasDeducedFromArrayBound()) |
| return TemplateArgument(Context, Y.getAsIntegral(), |
| X.getParamTypeForDecl()); |
| return Y; |
| } |
| |
| // If we deduced two declarations, make sure that they refer to the |
| // same declaration. |
| if (Y.getKind() == TemplateArgument::Declaration && |
| isSameDeclaration(X.getAsDecl(), Y.getAsDecl())) |
| return X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::NullPtr: |
| // If we deduced a null pointer and a dependent expression, keep the |
| // null pointer. |
| if (Y.getKind() == TemplateArgument::Expression) |
| return X; |
| |
| // If we deduced a null pointer and an integral constant, keep the |
| // integral constant. |
| if (Y.getKind() == TemplateArgument::Integral) |
| return Y; |
| |
| // If we deduced two null pointers, they are the same. |
| if (Y.getKind() == TemplateArgument::NullPtr) |
| return X; |
| |
| // All other combinations are incompatible. |
| return DeducedTemplateArgument(); |
| |
| case TemplateArgument::Pack: { |
| if (Y.getKind() != TemplateArgument::Pack || |
| X.pack_size() != Y.pack_size()) |
| return DeducedTemplateArgument(); |
| |
| llvm::SmallVector<TemplateArgument, 8> NewPack; |
| for (TemplateArgument::pack_iterator XA = X.pack_begin(), |
| XAEnd = X.pack_end(), |
| YA = Y.pack_begin(); |
| XA != XAEnd; ++XA, ++YA) { |
| TemplateArgument Merged = checkDeducedTemplateArguments( |
| Context, DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()), |
| DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound())); |
| if (Merged.isNull() && !(XA->isNull() && YA->isNull())) |
| return DeducedTemplateArgument(); |
| NewPack.push_back(Merged); |
| } |
| |
| return DeducedTemplateArgument( |
| TemplateArgument::CreatePackCopy(Context, NewPack), |
| X.wasDeducedFromArrayBound() && Y.wasDeducedFromArrayBound()); |
| } |
| } |
| |
| llvm_unreachable("Invalid TemplateArgument Kind!"); |
| } |
| |
| /// Deduce the value of the given non-type template parameter |
| /// as the given deduced template argument. All non-type template parameter |
| /// deduction is funneled through here. |
| static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( |
| Sema &S, TemplateParameterList *TemplateParams, |
| const NonTypeTemplateParmDecl *NTTP, const DeducedTemplateArgument &NewDeduced, |
| QualType ValueType, TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| assert(NTTP->getDepth() == Info.getDeducedDepth() && |
| "deducing non-type template argument with wrong depth"); |
| |
| DeducedTemplateArgument Result = checkDeducedTemplateArguments( |
| S.Context, Deduced[NTTP->getIndex()], NewDeduced); |
| if (Result.isNull()) { |
| Info.Param = const_cast<NonTypeTemplateParmDecl*>(NTTP); |
| Info.FirstArg = Deduced[NTTP->getIndex()]; |
| Info.SecondArg = NewDeduced; |
| return Sema::TDK_Inconsistent; |
| } |
| |
| Deduced[NTTP->getIndex()] = Result; |
| if (!S.getLangOpts().CPlusPlus17) |
| return Sema::TDK_Success; |
| |
| if (NTTP->isExpandedParameterPack()) |
| // FIXME: We may still need to deduce parts of the type here! But we |
| // don't have any way to find which slice of the type to use, and the |
| // type stored on the NTTP itself is nonsense. Perhaps the type of an |
| // expanded NTTP should be a pack expansion type? |
| return Sema::TDK_Success; |
| |
| // Get the type of the parameter for deduction. If it's a (dependent) array |
| // or function type, we will not have decayed it yet, so do that now. |
| QualType ParamType = S.Context.getAdjustedParameterType(NTTP->getType()); |
| if (auto *Expansion = dyn_cast<PackExpansionType>(ParamType)) |
| ParamType = Expansion->getPattern(); |
| |
| // FIXME: It's not clear how deduction of a parameter of reference |
| // type from an argument (of non-reference type) should be performed. |
| // For now, we just remove reference types from both sides and let |
| // the final check for matching types sort out the mess. |
| ValueType = ValueType.getNonReferenceType(); |
| if (ParamType->isReferenceType()) |
| ParamType = ParamType.getNonReferenceType(); |
| else |
| // Top-level cv-qualifiers are irrelevant for a non-reference type. |
| ValueType = ValueType.getUnqualifiedType(); |
| |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, ParamType, ValueType, Info, Deduced, |
| TDF_SkipNonDependent, /*PartialOrdering=*/false, |
| /*ArrayBound=*/NewDeduced.wasDeducedFromArrayBound()); |
| } |
| |
| /// Deduce the value of the given non-type template parameter |
| /// from the given integral constant. |
| static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( |
| Sema &S, TemplateParameterList *TemplateParams, |
| const NonTypeTemplateParmDecl *NTTP, const llvm::APSInt &Value, |
| QualType ValueType, bool DeducedFromArrayBound, TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, |
| DeducedTemplateArgument(S.Context, Value, ValueType, |
| DeducedFromArrayBound), |
| ValueType, Info, Deduced); |
| } |
| |
| /// Deduce the value of the given non-type template parameter |
| /// from the given null pointer template argument type. |
| static Sema::TemplateDeductionResult DeduceNullPtrTemplateArgument( |
| Sema &S, TemplateParameterList *TemplateParams, |
| const NonTypeTemplateParmDecl *NTTP, QualType NullPtrType, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| Expr *Value = S.ImpCastExprToType( |
| new (S.Context) CXXNullPtrLiteralExpr(S.Context.NullPtrTy, |
| NTTP->getLocation()), |
| NullPtrType, |
| NullPtrType->isMemberPointerType() ? CK_NullToMemberPointer |
| : CK_NullToPointer) |
| .get(); |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, |
| DeducedTemplateArgument(Value), |
| Value->getType(), Info, Deduced); |
| } |
| |
| /// Deduce the value of the given non-type template parameter |
| /// from the given type- or value-dependent expression. |
| /// |
| /// \returns true if deduction succeeded, false otherwise. |
| static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( |
| Sema &S, TemplateParameterList *TemplateParams, |
| const NonTypeTemplateParmDecl *NTTP, Expr *Value, TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, |
| DeducedTemplateArgument(Value), |
| Value->getType(), Info, Deduced); |
| } |
| |
| /// Deduce the value of the given non-type template parameter |
| /// from the given declaration. |
| /// |
| /// \returns true if deduction succeeded, false otherwise. |
| static Sema::TemplateDeductionResult DeduceNonTypeTemplateArgument( |
| Sema &S, TemplateParameterList *TemplateParams, |
| const NonTypeTemplateParmDecl *NTTP, ValueDecl *D, QualType T, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr; |
| TemplateArgument New(D, T); |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, DeducedTemplateArgument(New), T, Info, Deduced); |
| } |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, |
| TemplateParameterList *TemplateParams, |
| TemplateName Param, |
| TemplateName Arg, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| TemplateDecl *ParamDecl = Param.getAsTemplateDecl(); |
| if (!ParamDecl) { |
| // The parameter type is dependent and is not a template template parameter, |
| // so there is nothing that we can deduce. |
| return Sema::TDK_Success; |
| } |
| |
| if (TemplateTemplateParmDecl *TempParam |
| = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) { |
| // If we're not deducing at this depth, there's nothing to deduce. |
| if (TempParam->getDepth() != Info.getDeducedDepth()) |
| return Sema::TDK_Success; |
| |
| DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg)); |
| DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, |
| Deduced[TempParam->getIndex()], |
| NewDeduced); |
| if (Result.isNull()) { |
| Info.Param = TempParam; |
| Info.FirstArg = Deduced[TempParam->getIndex()]; |
| Info.SecondArg = NewDeduced; |
| return Sema::TDK_Inconsistent; |
| } |
| |
| Deduced[TempParam->getIndex()] = Result; |
| return Sema::TDK_Success; |
| } |
| |
| // Verify that the two template names are equivalent. |
| if (S.Context.hasSameTemplateName(Param, Arg)) |
| return Sema::TDK_Success; |
| |
| // Mismatch of non-dependent template parameter to argument. |
| Info.FirstArg = TemplateArgument(Param); |
| Info.SecondArg = TemplateArgument(Arg); |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| /// Deduce the template arguments by comparing the template parameter |
| /// type (which is a template-id) with the template argument type. |
| /// |
| /// \param S the Sema |
| /// |
| /// \param TemplateParams the template parameters that we are deducing |
| /// |
| /// \param Param the parameter type |
| /// |
| /// \param Arg the argument type |
| /// |
| /// \param Info information about the template argument deduction itself |
| /// |
| /// \param Deduced the deduced template arguments |
| /// |
| /// \returns the result of template argument deduction so far. Note that a |
| /// "success" result means that template argument deduction has not yet failed, |
| /// but it may still fail, later, for other reasons. |
| static Sema::TemplateDeductionResult |
| DeduceTemplateSpecArguments(Sema &S, TemplateParameterList *TemplateParams, |
| const QualType P, QualType A, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| QualType UP = P; |
| if (const auto *IP = P->getAs<InjectedClassNameType>()) |
| UP = IP->getInjectedSpecializationType(); |
| // FIXME: Try to preserve type sugar here, which is hard |
| // because of the unresolved template arguments. |
| const auto *TP = UP.getCanonicalType()->castAs<TemplateSpecializationType>(); |
| ArrayRef<TemplateArgument> PResolved = TP->template_arguments(); |
| |
| QualType UA = A; |
| // Treat an injected-class-name as its underlying template-id. |
| if (const auto *Injected = A->getAs<InjectedClassNameType>()) |
| UA = Injected->getInjectedSpecializationType(); |
| |
| // Check whether the template argument is a dependent template-id. |
| // FIXME: Should not lose sugar here. |
| if (const auto *SA = |
| dyn_cast<TemplateSpecializationType>(UA.getCanonicalType())) { |
| // Perform template argument deduction for the template name. |
| if (auto Result = |
| DeduceTemplateArguments(S, TemplateParams, TP->getTemplateName(), |
| SA->getTemplateName(), Info, Deduced)) |
| return Result; |
| // Perform template argument deduction on each template |
| // argument. Ignore any missing/extra arguments, since they could be |
| // filled in by default arguments. |
| return DeduceTemplateArguments(S, TemplateParams, PResolved, |
| SA->template_arguments(), Info, Deduced, |
| /*NumberOfArgumentsMustMatch=*/false); |
| } |
| |
| // If the argument type is a class template specialization, we |
| // perform template argument deduction using its template |
| // arguments. |
| const auto *RA = UA->getAs<RecordType>(); |
| const auto *SA = |
| RA ? dyn_cast<ClassTemplateSpecializationDecl>(RA->getDecl()) : nullptr; |
| if (!SA) { |
| Info.FirstArg = TemplateArgument(P); |
| Info.SecondArg = TemplateArgument(A); |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // Perform template argument deduction for the template name. |
| if (auto Result = DeduceTemplateArguments( |
| S, TemplateParams, TP->getTemplateName(), |
| TemplateName(SA->getSpecializedTemplate()), Info, Deduced)) |
| return Result; |
| |
| // Perform template argument deduction for the template arguments. |
| return DeduceTemplateArguments(S, TemplateParams, PResolved, |
| SA->getTemplateArgs().asArray(), Info, Deduced, |
| /*NumberOfArgumentsMustMatch=*/true); |
| } |
| |
| static bool IsPossiblyOpaquelyQualifiedTypeInternal(const Type *T) { |
| assert(T->isCanonicalUnqualified()); |
| |
| switch (T->getTypeClass()) { |
| case Type::TypeOfExpr: |
| case Type::TypeOf: |
| case Type::DependentName: |
| case Type::Decltype: |
| case Type::UnresolvedUsing: |
| case Type::TemplateTypeParm: |
| return true; |
| |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| case Type::DependentSizedArray: |
| return IsPossiblyOpaquelyQualifiedTypeInternal( |
| cast<ArrayType>(T)->getElementType().getTypePtr()); |
| |
| default: |
| return false; |
| } |
| } |
| |
| /// Determines whether the given type is an opaque type that |
| /// might be more qualified when instantiated. |
| static bool IsPossiblyOpaquelyQualifiedType(QualType T) { |
| return IsPossiblyOpaquelyQualifiedTypeInternal( |
| T->getCanonicalTypeInternal().getTypePtr()); |
| } |
| |
| /// Helper function to build a TemplateParameter when we don't |
| /// know its type statically. |
| static TemplateParameter makeTemplateParameter(Decl *D) { |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D)) |
| return TemplateParameter(TTP); |
| if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) |
| return TemplateParameter(NTTP); |
| |
| return TemplateParameter(cast<TemplateTemplateParmDecl>(D)); |
| } |
| |
| /// A pack that we're currently deducing. |
| struct clang::DeducedPack { |
| // The index of the pack. |
| unsigned Index; |
| |
| // The old value of the pack before we started deducing it. |
| DeducedTemplateArgument Saved; |
| |
| // A deferred value of this pack from an inner deduction, that couldn't be |
| // deduced because this deduction hadn't happened yet. |
| DeducedTemplateArgument DeferredDeduction; |
| |
| // The new value of the pack. |
| SmallVector<DeducedTemplateArgument, 4> New; |
| |
| // The outer deduction for this pack, if any. |
| DeducedPack *Outer = nullptr; |
| |
| DeducedPack(unsigned Index) : Index(Index) {} |
| }; |
| |
| namespace { |
| |
| /// A scope in which we're performing pack deduction. |
| class PackDeductionScope { |
| public: |
| /// Prepare to deduce the packs named within Pattern. |
| PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| TemplateDeductionInfo &Info, TemplateArgument Pattern) |
| : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { |
| unsigned NumNamedPacks = addPacks(Pattern); |
| finishConstruction(NumNamedPacks); |
| } |
| |
| /// Prepare to directly deduce arguments of the parameter with index \p Index. |
| PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| TemplateDeductionInfo &Info, unsigned Index) |
| : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { |
| addPack(Index); |
| finishConstruction(1); |
| } |
| |
| private: |
| void addPack(unsigned Index) { |
| // Save the deduced template argument for the parameter pack expanded |
| // by this pack expansion, then clear out the deduction. |
| DeducedPack Pack(Index); |
| Pack.Saved = Deduced[Index]; |
| Deduced[Index] = TemplateArgument(); |
| |
| // FIXME: What if we encounter multiple packs with different numbers of |
| // pre-expanded expansions? (This should already have been diagnosed |
| // during substitution.) |
| if (Optional<unsigned> ExpandedPackExpansions = |
| getExpandedPackSize(TemplateParams->getParam(Index))) |
| FixedNumExpansions = ExpandedPackExpansions; |
| |
| Packs.push_back(Pack); |
| } |
| |
| unsigned addPacks(TemplateArgument Pattern) { |
| // Compute the set of template parameter indices that correspond to |
| // parameter packs expanded by the pack expansion. |
| llvm::SmallBitVector SawIndices(TemplateParams->size()); |
| llvm::SmallVector<TemplateArgument, 4> ExtraDeductions; |
| |
| auto AddPack = [&](unsigned Index) { |
| if (SawIndices[Index]) |
| return; |
| SawIndices[Index] = true; |
| addPack(Index); |
| |
| // Deducing a parameter pack that is a pack expansion also constrains the |
| // packs appearing in that parameter to have the same deduced arity. Also, |
| // in C++17 onwards, deducing a non-type template parameter deduces its |
| // type, so we need to collect the pending deduced values for those packs. |
| if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>( |
| TemplateParams->getParam(Index))) { |
| if (!NTTP->isExpandedParameterPack()) |
| if (auto *Expansion = dyn_cast<PackExpansionType>(NTTP->getType())) |
| ExtraDeductions.push_back(Expansion->getPattern()); |
| } |
| // FIXME: Also collect the unexpanded packs in any type and template |
| // parameter packs that are pack expansions. |
| }; |
| |
| auto Collect = [&](TemplateArgument Pattern) { |
| SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| S.collectUnexpandedParameterPacks(Pattern, Unexpanded); |
| for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { |
| unsigned Depth, Index; |
| std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); |
| if (Depth == Info.getDeducedDepth()) |
| AddPack(Index); |
| } |
| }; |
| |
| // Look for unexpanded packs in the pattern. |
| Collect(Pattern); |
| assert(!Packs.empty() && "Pack expansion without unexpanded packs?"); |
| |
| unsigned NumNamedPacks = Packs.size(); |
| |
| // Also look for unexpanded packs that are indirectly deduced by deducing |
| // the sizes of the packs in this pattern. |
| while (!ExtraDeductions.empty()) |
| Collect(ExtraDeductions.pop_back_val()); |
| |
| return NumNamedPacks; |
| } |
| |
| void finishConstruction(unsigned NumNamedPacks) { |
| // Dig out the partially-substituted pack, if there is one. |
| const TemplateArgument *PartialPackArgs = nullptr; |
| unsigned NumPartialPackArgs = 0; |
| std::pair<unsigned, unsigned> PartialPackDepthIndex(-1u, -1u); |
| if (auto *Scope = S.CurrentInstantiationScope) |
| if (auto *Partial = Scope->getPartiallySubstitutedPack( |
| &PartialPackArgs, &NumPartialPackArgs)) |
| PartialPackDepthIndex = getDepthAndIndex(Partial); |
| |
| // This pack expansion will have been partially or fully expanded if |
| // it only names explicitly-specified parameter packs (including the |
| // partially-substituted one, if any). |
| bool IsExpanded = true; |
| for (unsigned I = 0; I != NumNamedPacks; ++I) { |
| if (Packs[I].Index >= Info.getNumExplicitArgs()) { |
| IsExpanded = false; |
| IsPartiallyExpanded = false; |
| break; |
| } |
| if (PartialPackDepthIndex == |
| std::make_pair(Info.getDeducedDepth(), Packs[I].Index)) { |
| IsPartiallyExpanded = true; |
| } |
| } |
| |
| // Skip over the pack elements that were expanded into separate arguments. |
| // If we partially expanded, this is the number of partial arguments. |
| if (IsPartiallyExpanded) |
| PackElements += NumPartialPackArgs; |
| else if (IsExpanded) |
| PackElements += *FixedNumExpansions; |
| |
| for (auto &Pack : Packs) { |
| if (Info.PendingDeducedPacks.size() > Pack.Index) |
| Pack.Outer = Info.PendingDeducedPacks[Pack.Index]; |
| else |
| Info.PendingDeducedPacks.resize(Pack.Index + 1); |
| Info.PendingDeducedPacks[Pack.Index] = &Pack; |
| |
| if (PartialPackDepthIndex == |
| std::make_pair(Info.getDeducedDepth(), Pack.Index)) { |
| Pack.New.append(PartialPackArgs, PartialPackArgs + NumPartialPackArgs); |
| // We pre-populate the deduced value of the partially-substituted |
| // pack with the specified value. This is not entirely correct: the |
| // value is supposed to have been substituted, not deduced, but the |
| // cases where this is observable require an exact type match anyway. |
| // |
| // FIXME: If we could represent a "depth i, index j, pack elem k" |
| // parameter, we could substitute the partially-substituted pack |
| // everywhere and avoid this. |
| if (!IsPartiallyExpanded) |
| Deduced[Pack.Index] = Pack.New[PackElements]; |
| } |
| } |
| } |
| |
| public: |
| ~PackDeductionScope() { |
| for (auto &Pack : Packs) |
| Info.PendingDeducedPacks[Pack.Index] = Pack.Outer; |
| } |
| |
| /// Determine whether this pack has already been partially expanded into a |
| /// sequence of (prior) function parameters / template arguments. |
| bool isPartiallyExpanded() { return IsPartiallyExpanded; } |
| |
| /// Determine whether this pack expansion scope has a known, fixed arity. |
| /// This happens if it involves a pack from an outer template that has |
| /// (notionally) already been expanded. |
| bool hasFixedArity() { return FixedNumExpansions.hasValue(); } |
| |
| /// Determine whether the next element of the argument is still part of this |
| /// pack. This is the case unless the pack is already expanded to a fixed |
| /// length. |
| bool hasNextElement() { |
| return !FixedNumExpansions || *FixedNumExpansions > PackElements; |
| } |
| |
| /// Move to deducing the next element in each pack that is being deduced. |
| void nextPackElement() { |
| // Capture the deduced template arguments for each parameter pack expanded |
| // by this pack expansion, add them to the list of arguments we've deduced |
| // for that pack, then clear out the deduced argument. |
| for (auto &Pack : Packs) { |
| DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index]; |
| if (!Pack.New.empty() || !DeducedArg.isNull()) { |
| while (Pack.New.size() < PackElements) |
| Pack.New.push_back(DeducedTemplateArgument()); |
| if (Pack.New.size() == PackElements) |
| Pack.New.push_back(DeducedArg); |
| else |
| Pack.New[PackElements] = DeducedArg; |
| DeducedArg = Pack.New.size() > PackElements + 1 |
| ? Pack.New[PackElements + 1] |
| : DeducedTemplateArgument(); |
| } |
| } |
| ++PackElements; |
| } |
| |
| /// Finish template argument deduction for a set of argument packs, |
| /// producing the argument packs and checking for consistency with prior |
| /// deductions. |
| Sema::TemplateDeductionResult finish() { |
| // Build argument packs for each of the parameter packs expanded by this |
| // pack expansion. |
| for (auto &Pack : Packs) { |
| // Put back the old value for this pack. |
| Deduced[Pack.Index] = Pack.Saved; |
| |
| // Always make sure the size of this pack is correct, even if we didn't |
| // deduce any values for it. |
| // |
| // FIXME: This isn't required by the normative wording, but substitution |
| // and post-substitution checking will always fail if the arity of any |
| // pack is not equal to the number of elements we processed. (Either that |
| // or something else has gone *very* wrong.) We're permitted to skip any |
| // hard errors from those follow-on steps by the intent (but not the |
| // wording) of C++ [temp.inst]p8: |
| // |
| // If the function selected by overload resolution can be determined |
| // without instantiating a class template definition, it is unspecified |
| // whether that instantiation actually takes place |
| Pack.New.resize(PackElements); |
| |
| // Build or find a new value for this pack. |
| DeducedTemplateArgument NewPack; |
| if (Pack.New.empty()) { |
| // If we deduced an empty argument pack, create it now. |
| NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack()); |
| } else { |
| TemplateArgument *ArgumentPack = |
| new (S.Context) TemplateArgument[Pack.New.size()]; |
| std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack); |
| NewPack = DeducedTemplateArgument( |
| TemplateArgument(llvm::makeArrayRef(ArgumentPack, Pack.New.size())), |
| // FIXME: This is wrong, it's possible that some pack elements are |
| // deduced from an array bound and others are not: |
| // template<typename ...T, T ...V> void g(const T (&...p)[V]); |
| // g({1, 2, 3}, {{}, {}}); |
| // ... should deduce T = {int, size_t (from array bound)}. |
| Pack.New[0].wasDeducedFromArrayBound()); |
| } |
| |
| // Pick where we're going to put the merged pack. |
| DeducedTemplateArgument *Loc; |
| if (Pack.Outer) { |
| if (Pack.Outer->DeferredDeduction.isNull()) { |
| // Defer checking this pack until we have a complete pack to compare |
| // it against. |
| Pack.Outer->DeferredDeduction = NewPack; |
| continue; |
| } |
| Loc = &Pack.Outer->DeferredDeduction; |
| } else { |
| Loc = &Deduced[Pack.Index]; |
| } |
| |
| // Check the new pack matches any previous value. |
| DeducedTemplateArgument OldPack = *Loc; |
| DeducedTemplateArgument Result = |
| checkDeducedTemplateArguments(S.Context, OldPack, NewPack); |
| |
| // If we deferred a deduction of this pack, check that one now too. |
| if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) { |
| OldPack = Result; |
| NewPack = Pack.DeferredDeduction; |
| Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack); |
| } |
| |
| NamedDecl *Param = TemplateParams->getParam(Pack.Index); |
| if (Result.isNull()) { |
| Info.Param = makeTemplateParameter(Param); |
| Info.FirstArg = OldPack; |
| Info.SecondArg = NewPack; |
| return Sema::TDK_Inconsistent; |
| } |
| |
| // If we have a pre-expanded pack and we didn't deduce enough elements |
| // for it, fail deduction. |
| if (Optional<unsigned> Expansions = getExpandedPackSize(Param)) { |
| if (*Expansions != PackElements) { |
| Info.Param = makeTemplateParameter(Param); |
| Info.FirstArg = Result; |
| return Sema::TDK_IncompletePack; |
| } |
| } |
| |
| *Loc = Result; |
| } |
| |
| return Sema::TDK_Success; |
| } |
| |
| private: |
| Sema &S; |
| TemplateParameterList *TemplateParams; |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced; |
| TemplateDeductionInfo &Info; |
| unsigned PackElements = 0; |
| bool IsPartiallyExpanded = false; |
| /// The number of expansions, if we have a fully-expanded pack in this scope. |
| Optional<unsigned> FixedNumExpansions; |
| |
| SmallVector<DeducedPack, 2> Packs; |
| }; |
| |
| } // namespace |
| |
| /// Deduce the template arguments by comparing the list of parameter |
| /// types to the list of argument types, as in the parameter-type-lists of |
| /// function types (C++ [temp.deduct.type]p10). |
| /// |
| /// \param S The semantic analysis object within which we are deducing |
| /// |
| /// \param TemplateParams The template parameters that we are deducing |
| /// |
| /// \param Params The list of parameter types |
| /// |
| /// \param NumParams The number of types in \c Params |
| /// |
| /// \param Args The list of argument types |
| /// |
| /// \param NumArgs The number of types in \c Args |
| /// |
| /// \param Info information about the template argument deduction itself |
| /// |
| /// \param Deduced the deduced template arguments |
| /// |
| /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe |
| /// how template argument deduction is performed. |
| /// |
| /// \param PartialOrdering If true, we are performing template argument |
| /// deduction for during partial ordering for a call |
| /// (C++0x [temp.deduct.partial]). |
| /// |
| /// \returns the result of template argument deduction so far. Note that a |
| /// "success" result means that template argument deduction has not yet failed, |
| /// but it may still fail, later, for other reasons. |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, |
| TemplateParameterList *TemplateParams, |
| const QualType *Params, unsigned NumParams, |
| const QualType *Args, unsigned NumArgs, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| unsigned TDF, |
| bool PartialOrdering = false) { |
| // C++0x [temp.deduct.type]p10: |
| // Similarly, if P has a form that contains (T), then each parameter type |
| // Pi of the respective parameter-type- list of P is compared with the |
| // corresponding parameter type Ai of the corresponding parameter-type-list |
| // of A. [...] |
| unsigned ArgIdx = 0, ParamIdx = 0; |
| for (; ParamIdx != NumParams; ++ParamIdx) { |
| // Check argument types. |
| const PackExpansionType *Expansion |
| = dyn_cast<PackExpansionType>(Params[ParamIdx]); |
| if (!Expansion) { |
| // Simple case: compare the parameter and argument types at this point. |
| |
| // Make sure we have an argument. |
| if (ArgIdx >= NumArgs) |
| return Sema::TDK_MiscellaneousDeductionFailure; |
| |
| if (isa<PackExpansionType>(Args[ArgIdx])) { |
| // C++0x [temp.deduct.type]p22: |
| // If the original function parameter associated with A is a function |
| // parameter pack and the function parameter associated with P is not |
| // a function parameter pack, then template argument deduction fails. |
| return Sema::TDK_MiscellaneousDeductionFailure; |
| } |
| |
| if (Sema::TemplateDeductionResult Result = |
| DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, Params[ParamIdx].getUnqualifiedType(), |
| Args[ArgIdx].getUnqualifiedType(), Info, Deduced, TDF, |
| PartialOrdering, |
| /*DeducedFromArrayBound=*/false)) |
| return Result; |
| |
| ++ArgIdx; |
| continue; |
| } |
| |
| // C++0x [temp.deduct.type]p10: |
| // If the parameter-declaration corresponding to Pi is a function |
| // parameter pack, then the type of its declarator- id is compared with |
| // each remaining parameter type in the parameter-type-list of A. Each |
| // comparison deduces template arguments for subsequent positions in the |
| // template parameter packs expanded by the function parameter pack. |
| |
| QualType Pattern = Expansion->getPattern(); |
| PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); |
| |
| // A pack scope with fixed arity is not really a pack any more, so is not |
| // a non-deduced context. |
| if (ParamIdx + 1 == NumParams || PackScope.hasFixedArity()) { |
| for (; ArgIdx < NumArgs && PackScope.hasNextElement(); ++ArgIdx) { |
| // Deduce template arguments from the pattern. |
| if (Sema::TemplateDeductionResult Result = |
| DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, Pattern.getUnqualifiedType(), |
| Args[ArgIdx].getUnqualifiedType(), Info, Deduced, TDF, |
| PartialOrdering, /*DeducedFromArrayBound=*/false)) |
| return Result; |
| |
| PackScope.nextPackElement(); |
| } |
| } else { |
| // C++0x [temp.deduct.type]p5: |
| // The non-deduced contexts are: |
| // - A function parameter pack that does not occur at the end of the |
| // parameter-declaration-clause. |
| // |
| // FIXME: There is no wording to say what we should do in this case. We |
| // choose to resolve this by applying the same rule that is applied for a |
| // function call: that is, deduce all contained packs to their |
| // explicitly-specified values (or to <> if there is no such value). |
| // |
| // This is seemingly-arbitrarily different from the case of a template-id |
| // with a non-trailing pack-expansion in its arguments, which renders the |
| // entire template-argument-list a non-deduced context. |
| |
| // If the parameter type contains an explicitly-specified pack that we |
| // could not expand, skip the number of parameters notionally created |
| // by the expansion. |
| Optional<unsigned> NumExpansions = Expansion->getNumExpansions(); |
| if (NumExpansions && !PackScope.isPartiallyExpanded()) { |
| for (unsigned I = 0; I != *NumExpansions && ArgIdx < NumArgs; |
| ++I, ++ArgIdx) |
| PackScope.nextPackElement(); |
| } |
| } |
| |
| // Build argument packs for each of the parameter packs expanded by this |
| // pack expansion. |
| if (auto Result = PackScope.finish()) |
| return Result; |
| } |
| |
| // Make sure we don't have any extra arguments. |
| if (ArgIdx < NumArgs) |
| return Sema::TDK_MiscellaneousDeductionFailure; |
| |
| return Sema::TDK_Success; |
| } |
| |
| /// Determine whether the parameter has qualifiers that the argument |
| /// lacks. Put another way, determine whether there is no way to add |
| /// a deduced set of qualifiers to the ParamType that would result in |
| /// its qualifiers matching those of the ArgType. |
| static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType, |
| QualType ArgType) { |
| Qualifiers ParamQs = ParamType.getQualifiers(); |
| Qualifiers ArgQs = ArgType.getQualifiers(); |
| |
| if (ParamQs == ArgQs) |
| return false; |
| |
| // Mismatched (but not missing) Objective-C GC attributes. |
| if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() && |
| ParamQs.hasObjCGCAttr()) |
| return true; |
| |
| // Mismatched (but not missing) address spaces. |
| if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() && |
| ParamQs.hasAddressSpace()) |
| return true; |
| |
| // Mismatched (but not missing) Objective-C lifetime qualifiers. |
| if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() && |
| ParamQs.hasObjCLifetime()) |
| return true; |
| |
| // CVR qualifiers inconsistent or a superset. |
| return (ParamQs.getCVRQualifiers() & ~ArgQs.getCVRQualifiers()) != 0; |
| } |
| |
| /// Compare types for equality with respect to possibly compatible |
| /// function types (noreturn adjustment, implicit calling conventions). If any |
| /// of parameter and argument is not a function, just perform type comparison. |
| /// |
| /// \param P the template parameter type. |
| /// |
| /// \param A the argument type. |
| bool Sema::isSameOrCompatibleFunctionType(QualType P, QualType A) { |
| const FunctionType *PF = P->getAs<FunctionType>(), |
| *AF = A->getAs<FunctionType>(); |
| |
| // Just compare if not functions. |
| if (!PF || !AF) |
| return Context.hasSameType(P, A); |
| |
| // Noreturn and noexcept adjustment. |
| QualType AdjustedParam; |
| if (IsFunctionConversion(P, A, AdjustedParam)) |
| return Context.hasSameType(AdjustedParam, A); |
| |
| // FIXME: Compatible calling conventions. |
| |
| return Context.hasSameType(P, A); |
| } |
| |
| /// Get the index of the first template parameter that was originally from the |
| /// innermost template-parameter-list. This is 0 except when we concatenate |
| /// the template parameter lists of a class template and a constructor template |
| /// when forming an implicit deduction guide. |
| static unsigned getFirstInnerIndex(FunctionTemplateDecl *FTD) { |
| auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FTD->getTemplatedDecl()); |
| if (!Guide || !Guide->isImplicit()) |
| return 0; |
| return Guide->getDeducedTemplate()->getTemplateParameters()->size(); |
| } |
| |
| /// Determine whether a type denotes a forwarding reference. |
| static bool isForwardingReference(QualType Param, unsigned FirstInnerIndex) { |
| // C++1z [temp.deduct.call]p3: |
| // A forwarding reference is an rvalue reference to a cv-unqualified |
| // template parameter that does not represent a template parameter of a |
| // class template. |
| if (auto *ParamRef = Param->getAs<RValueReferenceType>()) { |
| if (ParamRef->getPointeeType().getQualifiers()) |
| return false; |
| auto *TypeParm = ParamRef->getPointeeType()->getAs<TemplateTypeParmType>(); |
| return TypeParm && TypeParm->getIndex() >= FirstInnerIndex; |
| } |
| return false; |
| } |
| |
| static CXXRecordDecl *getCanonicalRD(QualType T) { |
| return cast<CXXRecordDecl>( |
| T->castAs<RecordType>()->getDecl()->getCanonicalDecl()); |
| } |
| |
| /// Attempt to deduce the template arguments by checking the base types |
| /// according to (C++20 [temp.deduct.call] p4b3. |
| /// |
| /// \param S the semantic analysis object within which we are deducing. |
| /// |
| /// \param RecordT the top level record object we are deducing against. |
| /// |
| /// \param TemplateParams the template parameters that we are deducing. |
| /// |
| /// \param SpecParam the template specialization parameter type. |
| /// |
| /// \param Info information about the template argument deduction itself. |
| /// |
| /// \param Deduced the deduced template arguments. |
| /// |
| /// \returns the result of template argument deduction with the bases. "invalid" |
| /// means no matches, "success" found a single item, and the |
| /// "MiscellaneousDeductionFailure" result happens when the match is ambiguous. |
| static Sema::TemplateDeductionResult |
| DeduceTemplateBases(Sema &S, const CXXRecordDecl *RD, |
| TemplateParameterList *TemplateParams, QualType P, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| // C++14 [temp.deduct.call] p4b3: |
| // If P is a class and P has the form simple-template-id, then the |
| // transformed A can be a derived class of the deduced A. Likewise if |
| // P is a pointer to a class of the form simple-template-id, the |
| // transformed A can be a pointer to a derived class pointed to by the |
| // deduced A. However, if there is a class C that is a (direct or |
| // indirect) base class of D and derived (directly or indirectly) from a |
| // class B and that would be a valid deduced A, the deduced A cannot be |
| // B or pointer to B, respectively. |
| // |
| // These alternatives are considered only if type deduction would |
| // otherwise fail. If they yield more than one possible deduced A, the |
| // type deduction fails. |
| |
| // Use a breadth-first search through the bases to collect the set of |
| // successful matches. Visited contains the set of nodes we have already |
| // visited, while ToVisit is our stack of records that we still need to |
| // visit. Matches contains a list of matches that have yet to be |
| // disqualified. |
| llvm::SmallPtrSet<const CXXRecordDecl *, 8> Visited; |
| SmallVector<QualType, 8> ToVisit; |
| // We iterate over this later, so we have to use MapVector to ensure |
| // determinism. |
| llvm::MapVector<const CXXRecordDecl *, |
| SmallVector<DeducedTemplateArgument, 8>> |
| Matches; |
| |
| auto AddBases = [&Visited, &ToVisit](const CXXRecordDecl *RD) { |
| for (const auto &Base : RD->bases()) { |
| QualType T = Base.getType(); |
| assert(T->isRecordType() && "Base class that isn't a record?"); |
| if (Visited.insert(::getCanonicalRD(T)).second) |
| ToVisit.push_back(T); |
| } |
| }; |
| |
| // Set up the loop by adding all the bases. |
| AddBases(RD); |
| |
| // Search each path of bases until we either run into a successful match |
| // (where all bases of it are invalid), or we run out of bases. |
| while (!ToVisit.empty()) { |
| QualType NextT = ToVisit.pop_back_val(); |
| |
| SmallVector<DeducedTemplateArgument, 8> DeducedCopy(Deduced.begin(), |
| Deduced.end()); |
| TemplateDeductionInfo BaseInfo(TemplateDeductionInfo::ForBase, Info); |
| Sema::TemplateDeductionResult BaseResult = DeduceTemplateSpecArguments( |
| S, TemplateParams, P, NextT, BaseInfo, DeducedCopy); |
| |
| // If this was a successful deduction, add it to the list of matches, |
| // otherwise we need to continue searching its bases. |
| const CXXRecordDecl *RD = ::getCanonicalRD(NextT); |
| if (BaseResult == Sema::TDK_Success) |
| Matches.insert({RD, DeducedCopy}); |
| else |
| AddBases(RD); |
| } |
| |
| // At this point, 'Matches' contains a list of seemingly valid bases, however |
| // in the event that we have more than 1 match, it is possible that the base |
| // of one of the matches might be disqualified for being a base of another |
| // valid match. We can count on cyclical instantiations being invalid to |
| // simplify the disqualifications. That is, if A & B are both matches, and B |
| // inherits from A (disqualifying A), we know that A cannot inherit from B. |
| if (Matches.size() > 1) { |
| Visited.clear(); |
| for (const auto &Match : Matches) |
| AddBases(Match.first); |
| |
| // We can give up once we have a single item (or have run out of things to |
| // search) since cyclical inheritance isn't valid. |
| while (Matches.size() > 1 && !ToVisit.empty()) { |
| const CXXRecordDecl *RD = ::getCanonicalRD(ToVisit.pop_back_val()); |
| Matches.erase(RD); |
| |
| // Always add all bases, since the inheritance tree can contain |
| // disqualifications for multiple matches. |
| AddBases(RD); |
| } |
| } |
| |
| if (Matches.empty()) |
| return Sema::TDK_Invalid; |
| if (Matches.size() > 1) |
| return Sema::TDK_MiscellaneousDeductionFailure; |
| |
| std::swap(Matches.front().second, Deduced); |
| return Sema::TDK_Success; |
| } |
| |
| /// Deduce the template arguments by comparing the parameter type and |
| /// the argument type (C++ [temp.deduct.type]). |
| /// |
| /// \param S the semantic analysis object within which we are deducing |
| /// |
| /// \param TemplateParams the template parameters that we are deducing |
| /// |
| /// \param ParamIn the parameter type |
| /// |
| /// \param ArgIn the argument type |
| /// |
| /// \param Info information about the template argument deduction itself |
| /// |
| /// \param Deduced the deduced template arguments |
| /// |
| /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe |
| /// how template argument deduction is performed. |
| /// |
| /// \param PartialOrdering Whether we're performing template argument deduction |
| /// in the context of partial ordering (C++0x [temp.deduct.partial]). |
| /// |
| /// \returns the result of template argument deduction so far. Note that a |
| /// "success" result means that template argument deduction has not yet failed, |
| /// but it may still fail, later, for other reasons. |
| static Sema::TemplateDeductionResult DeduceTemplateArgumentsByTypeMatch( |
| Sema &S, TemplateParameterList *TemplateParams, QualType P, QualType A, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF, |
| bool PartialOrdering, bool DeducedFromArrayBound) { |
| |
| // If the argument type is a pack expansion, look at its pattern. |
| // This isn't explicitly called out |
| if (const auto *AExp = dyn_cast<PackExpansionType>(A)) |
| A = AExp->getPattern(); |
| assert(!isa<PackExpansionType>(A.getCanonicalType())); |
| |
| if (PartialOrdering) { |
| // C++11 [temp.deduct.partial]p5: |
| // Before the partial ordering is done, certain transformations are |
| // performed on the types used for partial ordering: |
| // - If P is a reference type, P is replaced by the type referred to. |
| const ReferenceType *PRef = P->getAs<ReferenceType>(); |
| if (PRef) |
| P = PRef->getPointeeType(); |
| |
| // - If A is a reference type, A is replaced by the type referred to. |
| const ReferenceType *ARef = A->getAs<ReferenceType>(); |
| if (ARef) |
| A = A->getPointeeType(); |
| |
| if (PRef && ARef && S.Context.hasSameUnqualifiedType(P, A)) { |
| // C++11 [temp.deduct.partial]p9: |
| // If, for a given type, deduction succeeds in both directions (i.e., |
| // the types are identical after the transformations above) and both |
| // P and A were reference types [...]: |
| // - if [one type] was an lvalue reference and [the other type] was |
| // not, [the other type] is not considered to be at least as |
| // specialized as [the first type] |
| // - if [one type] is more cv-qualified than [the other type], |
| // [the other type] is not considered to be at least as specialized |
| // as [the first type] |
| // Objective-C ARC adds: |
| // - [one type] has non-trivial lifetime, [the other type] has |
| // __unsafe_unretained lifetime, and the types are otherwise |
| // identical |
| // |
| // A is "considered to be at least as specialized" as P iff deduction |
| // succeeds, so we model this as a deduction failure. Note that |
| // [the first type] is P and [the other type] is A here; the standard |
| // gets this backwards. |
| Qualifiers PQuals = P.getQualifiers(), AQuals = A.getQualifiers(); |
| if ((PRef->isLValueReferenceType() && !ARef->isLValueReferenceType()) || |
| PQuals.isStrictSupersetOf(AQuals) || |
| (PQuals.hasNonTrivialObjCLifetime() && |
| AQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone && |
| PQuals.withoutObjCLifetime() == AQuals.withoutObjCLifetime())) { |
| Info.FirstArg = TemplateArgument(P); |
| Info.SecondArg = TemplateArgument(A); |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| } |
| Qualifiers DiscardedQuals; |
| // C++11 [temp.deduct.partial]p7: |
| // Remove any top-level cv-qualifiers: |
| // - If P is a cv-qualified type, P is replaced by the cv-unqualified |
| // version of P. |
| P = S.Context.getUnqualifiedArrayType(P, DiscardedQuals); |
| // - If A is a cv-qualified type, A is replaced by the cv-unqualified |
| // version of A. |
| A = S.Context.getUnqualifiedArrayType(A, DiscardedQuals); |
| } else { |
| // C++0x [temp.deduct.call]p4 bullet 1: |
| // - If the original P is a reference type, the deduced A (i.e., the type |
| // referred to by the reference) can be more cv-qualified than the |
| // transformed A. |
| if (TDF & TDF_ParamWithReferenceType) { |
| Qualifiers Quals; |
| QualType UnqualP = S.Context.getUnqualifiedArrayType(P, Quals); |
| Quals.setCVRQualifiers(Quals.getCVRQualifiers() & A.getCVRQualifiers()); |
| P = S.Context.getQualifiedType(UnqualP, Quals); |
| } |
| |
| if ((TDF & TDF_TopLevelParameterTypeList) && !P->isFunctionType()) { |
| // C++0x [temp.deduct.type]p10: |
| // If P and A are function types that originated from deduction when |
| // taking the address of a function template (14.8.2.2) or when deducing |
| // template arguments from a function declaration (14.8.2.6) and Pi and |
| // Ai are parameters of the top-level parameter-type-list of P and A, |
| // respectively, Pi is adjusted if it is a forwarding reference and Ai |
| // is an lvalue reference, in |
| // which case the type of Pi is changed to be the template parameter |
| // type (i.e., T&& is changed to simply T). [ Note: As a result, when |
| // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be |
| // deduced as X&. - end note ] |
| TDF &= ~TDF_TopLevelParameterTypeList; |
| if (isForwardingReference(P, /*FirstInnerIndex=*/0) && |
| A->isLValueReferenceType()) |
| P = P->getPointeeType(); |
| } |
| } |
| |
| // C++ [temp.deduct.type]p9: |
| // A template type argument T, a template template argument TT or a |
| // template non-type argument i can be deduced if P and A have one of |
| // the following forms: |
| // |
| // T |
| // cv-list T |
| if (const auto *TTP = P->getAs<TemplateTypeParmType>()) { |
| // Just skip any attempts to deduce from a placeholder type or a parameter |
| // at a different depth. |
| if (A->isPlaceholderType() || Info.getDeducedDepth() != TTP->getDepth()) |
| return Sema::TDK_Success; |
| |
| unsigned Index = TTP->getIndex(); |
| |
| // If the argument type is an array type, move the qualifiers up to the |
| // top level, so they can be matched with the qualifiers on the parameter. |
| if (A->isArrayType()) { |
| Qualifiers Quals; |
| A = S.Context.getUnqualifiedArrayType(A, Quals); |
| if (Quals) |
| A = S.Context.getQualifiedType(A, Quals); |
| } |
| |
| // The argument type can not be less qualified than the parameter |
| // type. |
| if (!(TDF & TDF_IgnoreQualifiers) && |
| hasInconsistentOrSupersetQualifiersOf(P, A)) { |
| Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); |
| Info.FirstArg = TemplateArgument(P); |
| Info.SecondArg = TemplateArgument(A); |
| return Sema::TDK_Underqualified; |
| } |
| |
| // Do not match a function type with a cv-qualified type. |
| // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1584 |
| if (A->isFunctionType() && P.hasQualifiers()) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| assert(TTP->getDepth() == Info.getDeducedDepth() && |
| "saw template type parameter with wrong depth"); |
| assert(A->getCanonicalTypeInternal() != S.Context.OverloadTy && |
| "Unresolved overloaded function"); |
| QualType DeducedType = A; |
| |
| // Remove any qualifiers on the parameter from the deduced type. |
| // We checked the qualifiers for consistency above. |
| Qualifiers DeducedQs = DeducedType.getQualifiers(); |
| Qualifiers ParamQs = P.getQualifiers(); |
| DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers()); |
| if (ParamQs.hasObjCGCAttr()) |
| DeducedQs.removeObjCGCAttr(); |
| if (ParamQs.hasAddressSpace()) |
| DeducedQs.removeAddressSpace(); |
| if (ParamQs.hasObjCLifetime()) |
| DeducedQs.removeObjCLifetime(); |
| |
| // Objective-C ARC: |
| // If template deduction would produce a lifetime qualifier on a type |
| // that is not a lifetime type, template argument deduction fails. |
| if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() && |
| !DeducedType->isDependentType()) { |
| Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); |
| Info.FirstArg = TemplateArgument(P); |
| Info.SecondArg = TemplateArgument(A); |
| return Sema::TDK_Underqualified; |
| } |
| |
| // Objective-C ARC: |
| // If template deduction would produce an argument type with lifetime type |
| // but no lifetime qualifier, the __strong lifetime qualifier is inferred. |
| if (S.getLangOpts().ObjCAutoRefCount && DeducedType->isObjCLifetimeType() && |
| !DeducedQs.hasObjCLifetime()) |
| DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong); |
| |
| DeducedType = |
| S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), DeducedQs); |
| |
| DeducedTemplateArgument NewDeduced(DeducedType, DeducedFromArrayBound); |
| DeducedTemplateArgument Result = |
| checkDeducedTemplateArguments(S.Context, Deduced[Index], NewDeduced); |
| if (Result.isNull()) { |
| Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); |
| Info.FirstArg = Deduced[Index]; |
| Info.SecondArg = NewDeduced; |
| return Sema::TDK_Inconsistent; |
| } |
| |
| Deduced[Index] = Result; |
| return Sema::TDK_Success; |
| } |
| |
| // Set up the template argument deduction information for a failure. |
| Info.FirstArg = TemplateArgument(P); |
| Info.SecondArg = TemplateArgument(A); |
| |
| // If the parameter is an already-substituted template parameter |
| // pack, do nothing: we don't know which of its arguments to look |
| // at, so we have to wait until all of the parameter packs in this |
| // expansion have arguments. |
| if (P->getAs<SubstTemplateTypeParmPackType>()) |
| return Sema::TDK_Success; |
| |
| // Check the cv-qualifiers on the parameter and argument types. |
| if (!(TDF & TDF_IgnoreQualifiers)) { |
| if (TDF & TDF_ParamWithReferenceType) { |
| if (hasInconsistentOrSupersetQualifiersOf(P, A)) |
| return Sema::TDK_NonDeducedMismatch; |
| } else if (TDF & TDF_ArgWithReferenceType) { |
| // C++ [temp.deduct.conv]p4: |
| // If the original A is a reference type, A can be more cv-qualified |
| // than the deduced A |
| if (!A.getQualifiers().compatiblyIncludes(P.getQualifiers())) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // Strip out all extra qualifiers from the argument to figure out the |
| // type we're converting to, prior to the qualification conversion. |
| Qualifiers Quals; |
| A = S.Context.getUnqualifiedArrayType(A, Quals); |
| A = S.Context.getQualifiedType(A, P.getQualifiers()); |
| } else if (!IsPossiblyOpaquelyQualifiedType(P)) { |
| if (P.getCVRQualifiers() != A.getCVRQualifiers()) |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| } |
| |
| // If the parameter type is not dependent, there is nothing to deduce. |
| if (!P->isDependentType()) { |
| if (TDF & TDF_SkipNonDependent) |
| return Sema::TDK_Success; |
| if ((TDF & TDF_IgnoreQualifiers) ? S.Context.hasSameUnqualifiedType(P, A) |
| : S.Context.hasSameType(P, A)) |
| return Sema::TDK_Success; |
| if (TDF & TDF_AllowCompatibleFunctionType && |
| S.isSameOrCompatibleFunctionType(P, A)) |
| return Sema::TDK_Success; |
| if (!(TDF & TDF_IgnoreQualifiers)) |
| return Sema::TDK_NonDeducedMismatch; |
| // Otherwise, when ignoring qualifiers, the types not having the same |
| // unqualified type does not mean they do not match, so in this case we |
| // must keep going and analyze with a non-dependent parameter type. |
| } |
| |
| switch (P.getCanonicalType()->getTypeClass()) { |
| // Non-canonical types cannot appear here. |
| #define NON_CANONICAL_TYPE(Class, Base) \ |
| case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class); |
| #define TYPE(Class, Base) |
| #include "clang/AST/TypeNodes.inc" |
| |
| case Type::TemplateTypeParm: |
| case Type::SubstTemplateTypeParmPack: |
| llvm_unreachable("Type nodes handled above"); |
| |
| case Type::Auto: |
| // FIXME: Implement deduction in dependent case. |
| if (P->isDependentType()) |
| return Sema::TDK_Success; |
| LLVM_FALLTHROUGH; |
| case Type::Builtin: |
| case Type::VariableArray: |
| case Type::Vector: |
| case Type::FunctionNoProto: |
| case Type::Record: |
| case Type::Enum: |
| case Type::ObjCObject: |
| case Type::ObjCInterface: |
| case Type::ObjCObjectPointer: |
| case Type::ExtInt: |
| return (TDF & TDF_SkipNonDependent) || |
| ((TDF & TDF_IgnoreQualifiers) |
| ? S.Context.hasSameUnqualifiedType(P, A) |
| : S.Context.hasSameType(P, A)) |
| ? Sema::TDK_Success |
| : Sema::TDK_NonDeducedMismatch; |
| |
| // _Complex T [placeholder extension] |
| case Type::Complex: { |
| const auto *CP = P->castAs<ComplexType>(), *CA = A->getAs<ComplexType>(); |
| if (!CA) |
| return Sema::TDK_NonDeducedMismatch; |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, CP->getElementType(), CA->getElementType(), Info, |
| Deduced, TDF); |
| } |
| |
| // _Atomic T [extension] |
| case Type::Atomic: { |
| const auto *PA = P->castAs<AtomicType>(), *AA = A->getAs<AtomicType>(); |
| if (!AA) |
| return Sema::TDK_NonDeducedMismatch; |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, PA->getValueType(), AA->getValueType(), Info, |
| Deduced, TDF); |
| } |
| |
| // T * |
| case Type::Pointer: { |
| QualType PointeeType; |
| if (const auto *PA = A->getAs<PointerType>()) { |
| PointeeType = PA->getPointeeType(); |
| } else if (const auto *PA = A->getAs<ObjCObjectPointerType>()) { |
| PointeeType = PA->getPointeeType(); |
| } else { |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, P->castAs<PointerType>()->getPointeeType(), |
| PointeeType, Info, Deduced, |
| TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass)); |
| } |
| |
| // T & |
| case Type::LValueReference: { |
| const auto *RP = P->castAs<LValueReferenceType>(), |
| *RA = A->getAs<LValueReferenceType>(); |
| if (!RA) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info, |
| Deduced, 0); |
| } |
| |
| // T && [C++0x] |
| case Type::RValueReference: { |
| const auto *RP = P->castAs<RValueReferenceType>(), |
| *RA = A->getAs<RValueReferenceType>(); |
| if (!RA) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, RP->getPointeeType(), RA->getPointeeType(), Info, |
| Deduced, 0); |
| } |
| |
| // T [] (implied, but not stated explicitly) |
| case Type::IncompleteArray: { |
| const auto *IAA = S.Context.getAsIncompleteArrayType(A); |
| if (!IAA) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, |
| S.Context.getAsIncompleteArrayType(P)->getElementType(), |
| IAA->getElementType(), Info, Deduced, TDF & TDF_IgnoreQualifiers); |
| } |
| |
| // T [integer-constant] |
| case Type::ConstantArray: { |
| const auto *CAA = S.Context.getAsConstantArrayType(A), |
| *CAP = S.Context.getAsConstantArrayType(P); |
| assert(CAP); |
| if (!CAA || CAA->getSize() != CAP->getSize()) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, CAP->getElementType(), CAA->getElementType(), Info, |
| Deduced, TDF & TDF_IgnoreQualifiers); |
| } |
| |
| // type [i] |
| case Type::DependentSizedArray: { |
| const auto *AA = S.Context.getAsArrayType(A); |
| if (!AA) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // Check the element type of the arrays |
| const auto *DAP = S.Context.getAsDependentSizedArrayType(P); |
| assert(DAP); |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, DAP->getElementType(), AA->getElementType(), |
| Info, Deduced, TDF & TDF_IgnoreQualifiers)) |
| return Result; |
| |
| // Determine the array bound is something we can deduce. |
| const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, DAP->getSizeExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| // We can perform template argument deduction for the given non-type |
| // template parameter. |
| assert(NTTP->getDepth() == Info.getDeducedDepth() && |
| "saw non-type template parameter with wrong depth"); |
| if (const auto *CAA = dyn_cast<ConstantArrayType>(AA)) { |
| llvm::APSInt Size(CAA->getSize()); |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, Size, S.Context.getSizeType(), |
| /*ArrayBound=*/true, Info, Deduced); |
| } |
| if (const auto *DAA = dyn_cast<DependentSizedArrayType>(AA)) |
| if (DAA->getSizeExpr()) |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, DAA->getSizeExpr(), Info, Deduced); |
| |
| // Incomplete type does not match a dependently-sized array type |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // type(*)(T) |
| // T(*)() |
| // T(*)(T) |
| case Type::FunctionProto: { |
| const auto *FPP = P->castAs<FunctionProtoType>(), |
| *FPA = A->getAs<FunctionProtoType>(); |
| if (!FPA) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| if (FPP->getMethodQuals() != FPA->getMethodQuals() || |
| FPP->getRefQualifier() != FPA->getRefQualifier() || |
| FPP->isVariadic() != FPA->isVariadic()) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // Check return types. |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, FPP->getReturnType(), FPA->getReturnType(), |
| Info, Deduced, 0, |
| /*PartialOrdering=*/false, |
| /*DeducedFromArrayBound=*/false)) |
| return Result; |
| |
| // Check parameter types. |
| if (auto Result = DeduceTemplateArguments( |
| S, TemplateParams, FPP->param_type_begin(), FPP->getNumParams(), |
| FPA->param_type_begin(), FPA->getNumParams(), Info, Deduced, |
| TDF & TDF_TopLevelParameterTypeList)) |
| return Result; |
| |
| if (TDF & TDF_AllowCompatibleFunctionType) |
| return Sema::TDK_Success; |
| |
| // FIXME: Per core-2016/10/1019 (no corresponding core issue yet), permit |
| // deducing through the noexcept-specifier if it's part of the canonical |
| // type. libstdc++ relies on this. |
| Expr *NoexceptExpr = FPP->getNoexceptExpr(); |
| if (const NonTypeTemplateParmDecl *NTTP = |
| NoexceptExpr ? getDeducedParameterFromExpr(Info, NoexceptExpr) |
| : nullptr) { |
| assert(NTTP->getDepth() == Info.getDeducedDepth() && |
| "saw non-type template parameter with wrong depth"); |
| |
| llvm::APSInt Noexcept(1); |
| switch (FPA->canThrow()) { |
| case CT_Cannot: |
| Noexcept = 1; |
| LLVM_FALLTHROUGH; |
| |
| case CT_Can: |
| // We give E in noexcept(E) the "deduced from array bound" treatment. |
| // FIXME: Should we? |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, Noexcept, S.Context.BoolTy, |
| /*DeducedFromArrayBound=*/true, Info, Deduced); |
| |
| case CT_Dependent: |
| if (Expr *ArgNoexceptExpr = FPA->getNoexceptExpr()) |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, ArgNoexceptExpr, Info, Deduced); |
| // Can't deduce anything from throw(T...). |
| break; |
| } |
| } |
| // FIXME: Detect non-deduced exception specification mismatches? |
| // |
| // Careful about [temp.deduct.call] and [temp.deduct.conv], which allow |
| // top-level differences in noexcept-specifications. |
| |
| return Sema::TDK_Success; |
| } |
| |
| case Type::InjectedClassName: |
| // Treat a template's injected-class-name as if the template |
| // specialization type had been used. |
| |
| // template-name<T> (where template-name refers to a class template) |
| // template-name<i> |
| // TT<T> |
| // TT<i> |
| // TT<> |
| case Type::TemplateSpecialization: { |
| // When Arg cannot be a derived class, we can just try to deduce template |
| // arguments from the template-id. |
| if (!(TDF & TDF_DerivedClass) || !A->isRecordType()) |
| return DeduceTemplateSpecArguments(S, TemplateParams, P, A, Info, |
| Deduced); |
| |
| SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(), |
| Deduced.end()); |
| |
| auto Result = |
| DeduceTemplateSpecArguments(S, TemplateParams, P, A, Info, Deduced); |
| if (Result == Sema::TDK_Success) |
| return Result; |
| |
| // We cannot inspect base classes as part of deduction when the type |
| // is incomplete, so either instantiate any templates necessary to |
| // complete the type, or skip over it if it cannot be completed. |
| if (!S.isCompleteType(Info.getLocation(), A)) |
| return Result; |
| |
| // Reset the incorrectly deduced argument from above. |
| Deduced = DeducedOrig; |
| |
| // Check bases according to C++14 [temp.deduct.call] p4b3: |
| auto BaseResult = DeduceTemplateBases(S, getCanonicalRD(A), |
| TemplateParams, P, Info, Deduced); |
| return BaseResult != Sema::TDK_Invalid ? BaseResult : Result; |
| } |
| |
| // T type::* |
| // T T::* |
| // T (type::*)() |
| // type (T::*)() |
| // type (type::*)(T) |
| // type (T::*)(T) |
| // T (type::*)(T) |
| // T (T::*)() |
| // T (T::*)(T) |
| case Type::MemberPointer: { |
| const auto *MPP = P->castAs<MemberPointerType>(), |
| *MPA = A->getAs<MemberPointerType>(); |
| if (!MPA) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| QualType PPT = MPP->getPointeeType(); |
| if (PPT->isFunctionType()) |
| S.adjustMemberFunctionCC(PPT, /*IsStatic=*/true, |
| /*IsCtorOrDtor=*/false, Info.getLocation()); |
| QualType APT = MPA->getPointeeType(); |
| if (APT->isFunctionType()) |
| S.adjustMemberFunctionCC(APT, /*IsStatic=*/true, |
| /*IsCtorOrDtor=*/false, Info.getLocation()); |
| |
| unsigned SubTDF = TDF & TDF_IgnoreQualifiers; |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, PPT, APT, Info, Deduced, SubTDF)) |
| return Result; |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, QualType(MPP->getClass(), 0), |
| QualType(MPA->getClass(), 0), Info, Deduced, SubTDF); |
| } |
| |
| // (clang extension) |
| // |
| // type(^)(T) |
| // T(^)() |
| // T(^)(T) |
| case Type::BlockPointer: { |
| const auto *BPP = P->castAs<BlockPointerType>(), |
| *BPA = A->getAs<BlockPointerType>(); |
| if (!BPA) |
| return Sema::TDK_NonDeducedMismatch; |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, BPP->getPointeeType(), BPA->getPointeeType(), Info, |
| Deduced, 0); |
| } |
| |
| // (clang extension) |
| // |
| // T __attribute__(((ext_vector_type(<integral constant>)))) |
| case Type::ExtVector: { |
| const auto *VP = P->castAs<ExtVectorType>(); |
| QualType ElementType; |
| if (const auto *VA = A->getAs<ExtVectorType>()) { |
| // Make sure that the vectors have the same number of elements. |
| if (VP->getNumElements() != VA->getNumElements()) |
| return Sema::TDK_NonDeducedMismatch; |
| ElementType = VA->getElementType(); |
| } else if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) { |
| // We can't check the number of elements, since the argument has a |
| // dependent number of elements. This can only occur during partial |
| // ordering. |
| ElementType = VA->getElementType(); |
| } else { |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| // Perform deduction on the element types. |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, VP->getElementType(), ElementType, Info, Deduced, |
| TDF); |
| } |
| |
| case Type::DependentVector: { |
| const auto *VP = P->castAs<DependentVectorType>(); |
| |
| if (const auto *VA = A->getAs<VectorType>()) { |
| // Perform deduction on the element types. |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, VP->getElementType(), VA->getElementType(), |
| Info, Deduced, TDF)) |
| return Result; |
| |
| // Perform deduction on the vector size, if we can. |
| const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, VP->getSizeExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); |
| ArgSize = VA->getNumElements(); |
| // Note that we use the "array bound" rules here; just like in that |
| // case, we don't have any particular type for the vector size, but |
| // we can provide one if necessary. |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, |
| S.Context.UnsignedIntTy, true, |
| Info, Deduced); |
| } |
| |
| if (const auto *VA = A->getAs<DependentVectorType>()) { |
| // Perform deduction on the element types. |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, VP->getElementType(), VA->getElementType(), |
| Info, Deduced, TDF)) |
| return Result; |
| |
| // Perform deduction on the vector size, if we can. |
| const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, VP->getSizeExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, |
| VA->getSizeExpr(), Info, Deduced); |
| } |
| |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // (clang extension) |
| // |
| // T __attribute__(((ext_vector_type(N)))) |
| case Type::DependentSizedExtVector: { |
| const auto *VP = P->castAs<DependentSizedExtVectorType>(); |
| |
| if (const auto *VA = A->getAs<ExtVectorType>()) { |
| // Perform deduction on the element types. |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, VP->getElementType(), VA->getElementType(), |
| Info, Deduced, TDF)) |
| return Result; |
| |
| // Perform deduction on the vector size, if we can. |
| const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, VP->getSizeExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); |
| ArgSize = VA->getNumElements(); |
| // Note that we use the "array bound" rules here; just like in that |
| // case, we don't have any particular type for the vector size, but |
| // we can provide one if necessary. |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, |
| S.Context.IntTy, true, Info, |
| Deduced); |
| } |
| |
| if (const auto *VA = A->getAs<DependentSizedExtVectorType>()) { |
| // Perform deduction on the element types. |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, VP->getElementType(), VA->getElementType(), |
| Info, Deduced, TDF)) |
| return Result; |
| |
| // Perform deduction on the vector size, if we can. |
| const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, VP->getSizeExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, |
| VA->getSizeExpr(), Info, Deduced); |
| } |
| |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // (clang extension) |
| // |
| // T __attribute__((matrix_type(<integral constant>, |
| // <integral constant>))) |
| case Type::ConstantMatrix: { |
| const auto *MP = P->castAs<ConstantMatrixType>(), |
| *MA = A->getAs<ConstantMatrixType>(); |
| if (!MA) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // Check that the dimensions are the same |
| if (MP->getNumRows() != MA->getNumRows() || |
| MP->getNumColumns() != MA->getNumColumns()) { |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| // Perform deduction on element types. |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, MP->getElementType(), MA->getElementType(), Info, |
| Deduced, TDF); |
| } |
| |
| case Type::DependentSizedMatrix: { |
| const auto *MP = P->castAs<DependentSizedMatrixType>(); |
| const auto *MA = A->getAs<MatrixType>(); |
| if (!MA) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| // Check the element type of the matrixes. |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, MP->getElementType(), MA->getElementType(), |
| Info, Deduced, TDF)) |
| return Result; |
| |
| // Try to deduce a matrix dimension. |
| auto DeduceMatrixArg = |
| [&S, &Info, &Deduced, &TemplateParams]( |
| Expr *ParamExpr, const MatrixType *A, |
| unsigned (ConstantMatrixType::*GetArgDimension)() const, |
| Expr *(DependentSizedMatrixType::*GetArgDimensionExpr)() const) { |
| const auto *ACM = dyn_cast<ConstantMatrixType>(A); |
| const auto *ADM = dyn_cast<DependentSizedMatrixType>(A); |
| if (!ParamExpr->isValueDependent()) { |
| Optional<llvm::APSInt> ParamConst = |
| ParamExpr->getIntegerConstantExpr(S.Context); |
| if (!ParamConst) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| if (ACM) { |
| if ((ACM->*GetArgDimension)() == *ParamConst) |
| return Sema::TDK_Success; |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| Expr *ArgExpr = (ADM->*GetArgDimensionExpr)(); |
| if (Optional<llvm::APSInt> ArgConst = |
| ArgExpr->getIntegerConstantExpr(S.Context)) |
| if (*ArgConst == *ParamConst) |
| return Sema::TDK_Success; |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, ParamExpr); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| if (ACM) { |
| llvm::APSInt ArgConst( |
| S.Context.getTypeSize(S.Context.getSizeType())); |
| ArgConst = (ACM->*GetArgDimension)(); |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, ArgConst, S.Context.getSizeType(), |
| /*ArrayBound=*/true, Info, Deduced); |
| } |
| |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, |
| (ADM->*GetArgDimensionExpr)(), |
| Info, Deduced); |
| }; |
| |
| if (auto Result = DeduceMatrixArg(MP->getRowExpr(), MA, |
| &ConstantMatrixType::getNumRows, |
| &DependentSizedMatrixType::getRowExpr)) |
| return Result; |
| |
| return DeduceMatrixArg(MP->getColumnExpr(), MA, |
| &ConstantMatrixType::getNumColumns, |
| &DependentSizedMatrixType::getColumnExpr); |
| } |
| |
| // (clang extension) |
| // |
| // T __attribute__(((address_space(N)))) |
| case Type::DependentAddressSpace: { |
| const auto *ASP = P->castAs<DependentAddressSpaceType>(); |
| |
| if (const auto *ASA = A->getAs<DependentAddressSpaceType>()) { |
| // Perform deduction on the pointer type. |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, ASP->getPointeeType(), ASA->getPointeeType(), |
| Info, Deduced, TDF)) |
| return Result; |
| |
| // Perform deduction on the address space, if we can. |
| const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, ASP->getAddrSpaceExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, ASA->getAddrSpaceExpr(), Info, Deduced); |
| } |
| |
| if (isTargetAddressSpace(A.getAddressSpace())) { |
| llvm::APSInt ArgAddressSpace(S.Context.getTypeSize(S.Context.IntTy), |
| false); |
| ArgAddressSpace = toTargetAddressSpace(A.getAddressSpace()); |
| |
| // Perform deduction on the pointer types. |
| if (auto Result = DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, ASP->getPointeeType(), |
| S.Context.removeAddrSpaceQualType(A), Info, Deduced, TDF)) |
| return Result; |
| |
| // Perform deduction on the address space, if we can. |
| const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, ASP->getAddrSpaceExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, |
| ArgAddressSpace, S.Context.IntTy, |
| true, Info, Deduced); |
| } |
| |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| case Type::DependentExtInt: { |
| const auto *IP = P->castAs<DependentExtIntType>(); |
| |
| if (const auto *IA = A->getAs<ExtIntType>()) { |
| if (IP->isUnsigned() != IA->isUnsigned()) |
| return Sema::TDK_NonDeducedMismatch; |
| |
| const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, IP->getNumBitsExpr()); |
| if (!NTTP) |
| return Sema::TDK_Success; |
| |
| llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); |
| ArgSize = IA->getNumBits(); |
| |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, ArgSize, |
| S.Context.IntTy, true, Info, |
| Deduced); |
| } |
| |
| if (const auto *IA = A->getAs<DependentExtIntType>()) { |
| if (IP->isUnsigned() != IA->isUnsigned()) |
| return Sema::TDK_NonDeducedMismatch; |
| return Sema::TDK_Success; |
| } |
| |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| case Type::TypeOfExpr: |
| case Type::TypeOf: |
| case Type::DependentName: |
| case Type::UnresolvedUsing: |
| case Type::Decltype: |
| case Type::UnaryTransform: |
| case Type::DeducedTemplateSpecialization: |
| case Type::DependentTemplateSpecialization: |
| case Type::PackExpansion: |
| case Type::Pipe: |
| // No template argument deduction for these types |
| return Sema::TDK_Success; |
| } |
| |
| llvm_unreachable("Invalid Type Class!"); |
| } |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, |
| const TemplateArgument &P, TemplateArgument A, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| // If the template argument is a pack expansion, perform template argument |
| // deduction against the pattern of that expansion. This only occurs during |
| // partial ordering. |
| if (A.isPackExpansion()) |
| A = A.getPackExpansionPattern(); |
| |
| switch (P.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Null template argument in parameter list"); |
| |
| case TemplateArgument::Type: |
| if (A.getKind() == TemplateArgument::Type) |
| return DeduceTemplateArgumentsByTypeMatch( |
| S, TemplateParams, P.getAsType(), A.getAsType(), Info, Deduced, 0); |
| Info.FirstArg = P; |
| Info.SecondArg = A; |
| return Sema::TDK_NonDeducedMismatch; |
| |
| case TemplateArgument::Template: |
| if (A.getKind() == TemplateArgument::Template) |
| return DeduceTemplateArguments(S, TemplateParams, P.getAsTemplate(), |
| A.getAsTemplate(), Info, Deduced); |
| Info.FirstArg = P; |
| Info.SecondArg = A; |
| return Sema::TDK_NonDeducedMismatch; |
| |
| case TemplateArgument::TemplateExpansion: |
| llvm_unreachable("caller should handle pack expansions"); |
| |
| case TemplateArgument::Declaration: |
| if (A.getKind() == TemplateArgument::Declaration && |
| isSameDeclaration(P.getAsDecl(), A.getAsDecl())) |
| return Sema::TDK_Success; |
| |
| Info.FirstArg = P; |
| Info.SecondArg = A; |
| return Sema::TDK_NonDeducedMismatch; |
| |
| case TemplateArgument::NullPtr: |
| if (A.getKind() == TemplateArgument::NullPtr && |
| S.Context.hasSameType(P.getNullPtrType(), A.getNullPtrType())) |
| return Sema::TDK_Success; |
| |
| Info.FirstArg = P; |
| Info.SecondArg = A; |
| return Sema::TDK_NonDeducedMismatch; |
| |
| case TemplateArgument::Integral: |
| if (A.getKind() == TemplateArgument::Integral) { |
| if (hasSameExtendedValue(P.getAsIntegral(), A.getAsIntegral())) |
| return Sema::TDK_Success; |
| } |
| Info.FirstArg = P; |
| Info.SecondArg = A; |
| return Sema::TDK_NonDeducedMismatch; |
| |
| case TemplateArgument::Expression: |
| if (const NonTypeTemplateParmDecl *NTTP = |
| getDeducedParameterFromExpr(Info, P.getAsExpr())) { |
| if (A.getKind() == TemplateArgument::Integral) |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, A.getAsIntegral(), A.getIntegralType(), |
| /*ArrayBound=*/false, Info, Deduced); |
| if (A.getKind() == TemplateArgument::NullPtr) |
| return DeduceNullPtrTemplateArgument(S, TemplateParams, NTTP, |
| A.getNullPtrType(), Info, Deduced); |
| if (A.getKind() == TemplateArgument::Expression) |
| return DeduceNonTypeTemplateArgument(S, TemplateParams, NTTP, |
| A.getAsExpr(), Info, Deduced); |
| if (A.getKind() == TemplateArgument::Declaration) |
| return DeduceNonTypeTemplateArgument( |
| S, TemplateParams, NTTP, A.getAsDecl(), A.getParamTypeForDecl(), |
| Info, Deduced); |
| |
| Info.FirstArg = P; |
| Info.SecondArg = A; |
| return Sema::TDK_NonDeducedMismatch; |
| } |
| |
| // Can't deduce anything, but that's okay. |
| return Sema::TDK_Success; |
| case TemplateArgument::Pack: |
| llvm_unreachable("Argument packs should be expanded by the caller!"); |
| } |
| |
| llvm_unreachable("Invalid TemplateArgument Kind!"); |
| } |
| |
| /// Determine whether there is a template argument to be used for |
| /// deduction. |
| /// |
| /// This routine "expands" argument packs in-place, overriding its input |
| /// parameters so that \c Args[ArgIdx] will be the available template argument. |
| /// |
| /// \returns true if there is another template argument (which will be at |
| /// \c Args[ArgIdx]), false otherwise. |
| static bool hasTemplateArgumentForDeduction(ArrayRef<TemplateArgument> &Args, |
| unsigned &ArgIdx) { |
| if (ArgIdx == Args.size()) |
| return false; |
| |
| const TemplateArgument &Arg = Args[ArgIdx]; |
| if (Arg.getKind() != TemplateArgument::Pack) |
| return true; |
| |
| assert(ArgIdx == Args.size() - 1 && "Pack not at the end of argument list?"); |
| Args = Arg.pack_elements(); |
| ArgIdx = 0; |
| return ArgIdx < Args.size(); |
| } |
| |
| /// Determine whether the given set of template arguments has a pack |
| /// expansion that is not the last template argument. |
| static bool hasPackExpansionBeforeEnd(ArrayRef<TemplateArgument> Args) { |
| bool FoundPackExpansion = false; |
| for (const auto &A : Args) { |
| if (FoundPackExpansion) |
| return true; |
| |
| if (A.getKind() == TemplateArgument::Pack) |
| return hasPackExpansionBeforeEnd(A.pack_elements()); |
| |
| // FIXME: If this is a fixed-arity pack expansion from an outer level of |
| // templates, it should not be treated as a pack expansion. |
| if (A.isPackExpansion()) |
| FoundPackExpansion = true; |
| } |
| |
| return false; |
| } |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, |
| ArrayRef<TemplateArgument> Ps, |
| ArrayRef<TemplateArgument> As, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| bool NumberOfArgumentsMustMatch) { |
| // C++0x [temp.deduct.type]p9: |
| // If the template argument list of P contains a pack expansion that is not |
| // the last template argument, the entire template argument list is a |
| // non-deduced context. |
| if (hasPackExpansionBeforeEnd(Ps)) |
| return Sema::TDK_Success; |
| |
| // C++0x [temp.deduct.type]p9: |
| // If P has a form that contains <T> or <i>, then each argument Pi of the |
| // respective template argument list P is compared with the corresponding |
| // argument Ai of the corresponding template argument list of A. |
| unsigned ArgIdx = 0, ParamIdx = 0; |
| for (; hasTemplateArgumentForDeduction(Ps, ParamIdx); ++ParamIdx) { |
| const TemplateArgument &P = Ps[ParamIdx]; |
| if (!P.isPackExpansion()) { |
| // The simple case: deduce template arguments by matching Pi and Ai. |
| |
| // Check whether we have enough arguments. |
| if (!hasTemplateArgumentForDeduction(As, ArgIdx)) |
| return NumberOfArgumentsMustMatch |
| ? Sema::TDK_MiscellaneousDeductionFailure |
| : Sema::TDK_Success; |
| |
| // C++1z [temp.deduct.type]p9: |
| // During partial ordering, if Ai was originally a pack expansion [and] |
| // Pi is not a pack expansion, template argument deduction fails. |
| if (As[ArgIdx].isPackExpansion()) |
| return Sema::TDK_MiscellaneousDeductionFailure; |
| |
| // Perform deduction for this Pi/Ai pair. |
| if (auto Result = DeduceTemplateArguments(S, TemplateParams, P, |
| As[ArgIdx], Info, Deduced)) |
| return Result; |
| |
| // Move to the next argument. |
| ++ArgIdx; |
| continue; |
| } |
| |
| // The parameter is a pack expansion. |
| |
| // C++0x [temp.deduct.type]p9: |
| // If Pi is a pack expansion, then the pattern of Pi is compared with |
| // each remaining argument in the template argument list of A. Each |
| // comparison deduces template arguments for subsequent positions in the |
| // template parameter packs expanded by Pi. |
| TemplateArgument Pattern = P.getPackExpansionPattern(); |
| |
| // Prepare to deduce the packs within the pattern. |
| PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); |
| |
| // Keep track of the deduced template arguments for each parameter pack |
| // expanded by this pack expansion (the outer index) and for each |
| // template argument (the inner SmallVectors). |
| for (; hasTemplateArgumentForDeduction(As, ArgIdx) && |
| PackScope.hasNextElement(); |
| ++ArgIdx) { |
| // Deduce template arguments from the pattern. |
| if (auto Result = DeduceTemplateArguments(S, TemplateParams, Pattern, |
| As[ArgIdx], Info, Deduced)) |
| return Result; |
| |
| PackScope.nextPackElement(); |
| } |
| |
| // Build argument packs for each of the parameter packs expanded by this |
| // pack expansion. |
| if (auto Result = PackScope.finish()) |
| return Result; |
| } |
| |
| return Sema::TDK_Success; |
| } |
| |
| static Sema::TemplateDeductionResult |
| DeduceTemplateArguments(Sema &S, TemplateParameterList *TemplateParams, |
| const TemplateArgumentList &ParamList, |
| const TemplateArgumentList &ArgList, |
| TemplateDeductionInfo &Info, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced) { |
| return DeduceTemplateArguments(S, TemplateParams, ParamList.asArray(), |
| ArgList.asArray(), Info, Deduced, |
| /*NumberOfArgumentsMustMatch=*/false); |
| } |
| |
| /// Determine whether two template arguments are the same. |
| static bool isSameTemplateArg(ASTContext &Context, |
| TemplateArgument X, |
| const TemplateArgument &Y, |
| bool PackExpansionMatchesPack = false) { |
| // If we're checking deduced arguments (X) against original arguments (Y), |
| // we will have flattened packs to non-expansions in X. |
| if (PackExpansionMatchesPack && X.isPackExpansion() && !Y.isPackExpansion()) |
| X = X.getPackExpansionPattern(); |
| |
| if (X.getKind() != Y.getKind()) |
| return false; |
| |
| switch (X.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Comparing NULL template argument"); |
| |
| case TemplateArgument::Type: |
| return Context.getCanonicalType(X.getAsType()) == |
| Context.getCanonicalType(Y.getAsType()); |
| |
| case TemplateArgument::Declaration: |
| return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()); |
| |
| case TemplateArgument::NullPtr: |
| return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()); |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: |
| return Context.getCanonicalTemplateName( |
| X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() == |
| Context.getCanonicalTemplateName( |
| Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer(); |
| |
| case TemplateArgument::Integral: |
| return hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()); |
| |
| case TemplateArgument::Expression: { |
| llvm::FoldingSetNodeID XID, YID; |
| X.getAsExpr()->Profile(XID, Context, true); |
| Y.getAsExpr()->Profile(YID, Context, true); |
| return XID == YID; |
| } |
| |
| case TemplateArgument::Pack: |
| if (X.pack_size() != Y.pack_size()) |
| return false; |
| |
| for (TemplateArgument::pack_iterator XP = X.pack_begin(), |
| XPEnd = X.pack_end(), |
| YP = Y.pack_begin(); |
| XP != XPEnd; ++XP, ++YP) |
| if (!isSameTemplateArg(Context, *XP, *YP, PackExpansionMatchesPack)) |
| return false; |
| |
| return true; |
| } |
| |
| llvm_unreachable("Invalid TemplateArgument Kind!"); |
| } |
| |
| /// Allocate a TemplateArgumentLoc where all locations have |
| /// been initialized to the given location. |
| /// |
| /// \param Arg The template argument we are producing template argument |
| /// location information for. |
| /// |
| /// \param NTTPType For a declaration template argument, the type of |
| /// the non-type template parameter that corresponds to this template |
| /// argument. Can be null if no type sugar is available to add to the |
| /// type from the template argument. |
| /// |
| /// \param Loc The source location to use for the resulting template |
| /// argument. |
| TemplateArgumentLoc |
| Sema::getTrivialTemplateArgumentLoc(const TemplateArgument &Arg, |
| QualType NTTPType, SourceLocation Loc) { |
| switch (Arg.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Can't get a NULL template argument here"); |
| |
| case TemplateArgument::Type: |
| return TemplateArgumentLoc( |
| Arg, Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc)); |
| |
| case TemplateArgument::Declaration: { |
| if (NTTPType.isNull()) |
| NTTPType = Arg.getParamTypeForDecl(); |
| Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) |
| .getAs<Expr>(); |
| return TemplateArgumentLoc(TemplateArgument(E), E); |
| } |
| |
| case TemplateArgument::NullPtr: { |
| if (NTTPType.isNull()) |
| NTTPType = Arg.getNullPtrType(); |
| Expr *E = BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) |
| .getAs<Expr>(); |
| return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true), |
| E); |
| } |
| |
| case TemplateArgument::Integral: { |
| Expr *E = |
| BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>(); |
| return TemplateArgumentLoc(TemplateArgument(E), E); |
| } |
| |
| case TemplateArgument::Template: |
| case TemplateArgument::TemplateExpansion: { |
| NestedNameSpecifierLocBuilder Builder; |
| TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); |
| if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) |
| Builder.MakeTrivial(Context, DTN->getQualifier(), Loc); |
| else if (QualifiedTemplateName *QTN = |
| Template.getAsQualifiedTemplateName()) |
| Builder.MakeTrivial(Context, QTN->getQualifier(), Loc); |
| |
| if (Arg.getKind() == TemplateArgument::Template) |
| return TemplateArgumentLoc(Context, Arg, |
| Builder.getWithLocInContext(Context), Loc); |
| |
| return TemplateArgumentLoc( |
| Context, Arg, Builder.getWithLocInContext(Context), Loc, Loc); |
| } |
| |
| case TemplateArgument::Expression: |
| return TemplateArgumentLoc(Arg, Arg.getAsExpr()); |
| |
| case TemplateArgument::Pack: |
| return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); |
| } |
| |
| llvm_unreachable("Invalid TemplateArgument Kind!"); |
| } |
| |
| TemplateArgumentLoc |
| Sema::getIdentityTemplateArgumentLoc(NamedDecl *TemplateParm, |
| SourceLocation Location) { |
| return getTrivialTemplateArgumentLoc( |
| Context.getInjectedTemplateArg(TemplateParm), QualType(), Location); |
| } |
| |
| /// Convert the given deduced template argument and add it to the set of |
| /// fully-converted template arguments. |
| static bool |
| ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param, |
| DeducedTemplateArgument Arg, |
| NamedDecl *Template, |
| TemplateDeductionInfo &Info, |
| bool IsDeduced, |
| SmallVectorImpl<TemplateArgument> &Output) { |
| auto ConvertArg = [&](DeducedTemplateArgument Arg, |
| unsigned ArgumentPackIndex) { |
| // Convert the deduced template argument into a template |
| // argument that we can check, almost as if the user had written |
| // the template argument explicitly. |
| TemplateArgumentLoc ArgLoc = |
| S.getTrivialTemplateArgumentLoc(Arg, QualType(), Info.getLocation()); |
| |
| // Check the template argument, converting it as necessary. |
| return S.CheckTemplateArgument( |
| Param, ArgLoc, Template, Template->getLocation(), |
| Template->getSourceRange().getEnd(), ArgumentPackIndex, Output, |
| IsDeduced |
| ? (Arg.wasDeducedFromArrayBound() ? Sema::CTAK_DeducedFromArrayBound |
| : Sema::CTAK_Deduced) |
| : Sema::CTAK_Specified); |
| }; |
| |
| if (Arg.getKind() == TemplateArgument::Pack) { |
| // This is a template argument pack, so check each of its arguments against |
| // the template parameter. |
| SmallVector<TemplateArgument, 2> PackedArgsBuilder; |
| for (const auto &P : Arg.pack_elements()) { |
| // When converting the deduced template argument, append it to the |
| // general output list. We need to do this so that the template argument |
| // checking logic has all of the prior template arguments available. |
| DeducedTemplateArgument InnerArg(P); |
| InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound()); |
| assert(InnerArg.getKind() != TemplateArgument::Pack && |
| "deduced nested pack"); |
| if (P.isNull()) { |
| // We deduced arguments for some elements of this pack, but not for |
| // all of them. This happens if we get a conditionally-non-deduced |
| // context in a pack expansion (such as an overload set in one of the |
| // arguments). |
| S.Diag(Param->getLocation(), |
| diag::err_template_arg_deduced_incomplete_pack) |
| << Arg << Param; |
| return true; |
| } |
| if (ConvertArg(InnerArg, PackedArgsBuilder.size())) |
| return true; |
| |
| // Move the converted template argument into our argument pack. |
| PackedArgsBuilder.push_back(Output.pop_back_val()); |
| } |
| |
| // If the pack is empty, we still need to substitute into the parameter |
| // itself, in case that substitution fails. |
| if (PackedArgsBuilder.empty()) { |
| LocalInstantiationScope Scope(S); |
| TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Output); |
| MultiLevelTemplateArgumentList Args(TemplateArgs); |
| |
| if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) { |
| Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, |
| NTTP, Output, |
| Template->getSourceRange()); |
| if (Inst.isInvalid() || |
| S.SubstType(NTTP->getType(), Args, NTTP->getLocation(), |
| NTTP->getDeclName()).isNull()) |
| return true; |
| } else if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Param)) { |
| Sema::InstantiatingTemplate Inst(S, Template->getLocation(), Template, |
| TTP, Output, |
| Template->getSourceRange()); |
| if (Inst.isInvalid() || !S.SubstDecl(TTP, S.CurContext, Args)) |
| return true; |
| } |
| // For type parameters, no substitution is ever required. |
| } |
| |
| // Create the resulting argument pack. |
| Output.push_back( |
| TemplateArgument::CreatePackCopy(S.Context, PackedArgsBuilder)); |
| return false; |
| } |
| |
| return ConvertArg(Arg, 0); |
| } |
| |
| // FIXME: This should not be a template, but |
| // ClassTemplatePartialSpecializationDecl sadly does not derive from |
| // TemplateDecl. |
| template<typename TemplateDeclT> |
| static Sema::TemplateDeductionResult ConvertDeducedTemplateArguments( |
| Sema &S, TemplateDeclT *Template, bool IsDeduced, |
| SmallVectorImpl<DeducedTemplateArgument> &Deduced, |
| TemplateDeductionInfo &Info, SmallVectorImpl<TemplateArgument> &Builder, |
| LocalInstantiationScope *CurrentInstantiationScope = nullptr, |
| unsigned NumAlreadyConverted = 0, bool PartialOverloading = false) { |
| TemplateParameterList *TemplateParams = Template->getTemplateParameters(); |
| |
| for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { |
| NamedDecl *Param = TemplateParams->getParam(I); |
| |
| // C++0x [temp.arg.explicit]p3: |
| // A trailing template parameter pack (14.5.3) not otherwise deduced will |
| // be deduced to an empty sequence of template arguments. |
| // FIXME: Where did the word "trailing" come from? |
| if (Deduced[I].isNull() && Param->isTemplateParameterPack()) { |
| if (auto Result = |
| PackDeductionScope(S, TemplateParams, Deduced, Info, I).finish()) |
| return Result; |
| } |
| |
| if (!Deduced[I].isNull()) { |
| if (I < NumAlreadyConverted) { |
| // We may have had explicitly-specified template arguments for a |
| // template parameter pack (that may or may not have been extended |
| // via additional deduced arguments). |
| if (Param->isParameterPack() && CurrentInstantiationScope && |
| CurrentInstantiationScope->getPartiallySubstitutedPack() == Param) { |
| // Forget the partially-substituted pack; its substitution is now |
| // complete. |
| CurrentInstantiationScope->ResetPartiallySubstitutedPack(); |
| // We still need to check the argument in case it was extended by |
| // deduction. |
| } else { |
| // We have already fully type-checked and converted this |
| // argument, because it was explicitly-specified. Just record the |
| // presence of this argument. |
| Builder.push_back(Deduced[I]); |
| continue; |
| } |
| } |
| |
| // We may have deduced this argument, so it still needs to be |
| // checked and converted. |
| if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Template, Info, |
| IsDeduced, Builder)) { |
| Info.Param = makeTemplateParameter(Param); |
| // FIXME: These template arguments are temporary. Free them! |
| Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); |
| return Sema::TDK_SubstitutionFailure; |
| } |
| |
| continue; |
| } |
| |
| // Substitute into the default template argument, if available. |
| bool HasDefaultArg = false; |
| TemplateDecl *TD = dyn_cast<TemplateDecl>(Template); |
| if (!TD) { |
| assert(isa<ClassTemplatePartialSpecializationDecl>(Template) || |
| isa<VarTemplatePartialSpecializationDecl>(Template)); |
| return Sema::TDK_Incomplete; |
| } |
| |
| TemplateArgumentLoc DefArg; |
| { |
| Qualifiers ThisTypeQuals; |
| CXXRecordDecl *ThisContext = nullptr; |
| if (auto *Rec = dyn_cast<CXXRecordDecl>(TD->getDeclContext())) |
| if (Rec->isLambda()) |
| if (auto *Method = dyn_cast<CXXMethodDecl>(Rec->getDeclContext())) { |
| ThisContext = Method->getParent(); |
| ThisTypeQuals = Method->getMethodQualifiers(); |
| } |
| |
| Sema::CXXThisScopeRAII ThisScope(S, ThisContext, ThisTypeQuals, |
| S.getLangOpts().CPlusPlus17); |
| |
| DefArg = S.SubstDefaultTemplateArgumentIfAvailable( |
| TD, TD->getLocation(), TD->getSourceRange().getEnd(), Param, Builder, |
| HasDefaultArg); |
| } |
| |
| // If there was no default argument, deduction is incomplete. |
| if (DefArg.getArgument().isNull()) { |
| Info.Param = makeTemplateParameter( |
| const_cast<NamedDecl *>(TemplateParams->getParam(I))); |
| Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); |
| if (PartialOverloading) break; |
| |
| return HasDefaultArg ? Sema::TDK_SubstitutionFailure |
| : Sema::TDK_Incomplete; |
| } |
| |
| // Check whether we can actually use the default argument. |
| if (S.CheckTemplateArgument(Param, DefArg, TD, TD->getLocation(), |
| TD->getSourceRange().getEnd(), 0, Builder, |
| Sema::CTAK_Specified)) { |
| Info.Param = makeTemplateParameter( |
| const_cast<NamedDecl *>(TemplateParams->getParam(I))); |
| // FIXME: These template arguments are temporary. Free them! |
| Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder)); |
| return Sema::TDK_SubstitutionFailure; |
| } |
| |
| // If we get here, we successfully used the default template argument. |
| } |
| |
| return Sema::TDK_Success; |
| } |
| |
| static DeclContext *getAsDeclContextOrEnclosing(Decl *D) { |
| if (auto *DC = dyn_cast<DeclContext>(D)) |
| return DC; |
| return D->getDeclContext(); |
| } |
| |
| template<typename T> struct IsPartialSpecialization { |
| static constexpr bool value = false; |
| }; |
| template<> |
| struct IsPartialSpecialization<ClassTemplatePartialSpecializationDecl> { |
| static constexpr bool value = true; |
| }; |
| template<> |
| struct IsPartialSpecialization<VarTemplatePartialSpecializationDecl> { |
| static constexpr bool value = true; |
| }; |
| |
| template<typename TemplateDeclT> |
| static Sema::TemplateDeductionResult |
| CheckDeducedArgumentConstraints(Sema& S, TemplateDeclT *Template, |
| ArrayRef<TemplateArgument> DeducedArgs, |
| TemplateDeductionInfo& Info) { |
| llvm::SmallVector<const Expr *, 3> |