| //===--- SemaOpenMP.cpp - Semantic Analysis for OpenMP constructs ---------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file implements semantic analysis for OpenMP directives and |
| /// clauses. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "TreeTransform.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTMutationListener.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclOpenMP.h" |
| #include "clang/AST/OpenMPClause.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/AST/StmtOpenMP.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/AST/TypeOrdering.h" |
| #include "clang/Basic/DiagnosticSema.h" |
| #include "clang/Basic/OpenMPKinds.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/SemaInternal.h" |
| #include "llvm/ADT/IndexedMap.h" |
| #include "llvm/ADT/PointerEmbeddedInt.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Frontend/OpenMP/OMPConstants.h" |
| #include <set> |
| |
| using namespace clang; |
| using namespace llvm::omp; |
| |
| //===----------------------------------------------------------------------===// |
| // Stack of data-sharing attributes for variables |
| //===----------------------------------------------------------------------===// |
| |
| static const Expr *checkMapClauseExpressionBase( |
| Sema &SemaRef, Expr *E, |
| OMPClauseMappableExprCommon::MappableExprComponentList &CurComponents, |
| OpenMPClauseKind CKind, OpenMPDirectiveKind DKind, bool NoDiagnose); |
| |
| namespace { |
| /// Default data sharing attributes, which can be applied to directive. |
| enum DefaultDataSharingAttributes { |
| DSA_unspecified = 0, /// Data sharing attribute not specified. |
| DSA_none = 1 << 0, /// Default data sharing attribute 'none'. |
| DSA_shared = 1 << 1, /// Default data sharing attribute 'shared'. |
| DSA_firstprivate = 1 << 2, /// Default data sharing attribute 'firstprivate'. |
| }; |
| |
| /// Stack for tracking declarations used in OpenMP directives and |
| /// clauses and their data-sharing attributes. |
| class DSAStackTy { |
| public: |
| struct DSAVarData { |
| OpenMPDirectiveKind DKind = OMPD_unknown; |
| OpenMPClauseKind CKind = OMPC_unknown; |
| unsigned Modifier = 0; |
| const Expr *RefExpr = nullptr; |
| DeclRefExpr *PrivateCopy = nullptr; |
| SourceLocation ImplicitDSALoc; |
| bool AppliedToPointee = false; |
| DSAVarData() = default; |
| DSAVarData(OpenMPDirectiveKind DKind, OpenMPClauseKind CKind, |
| const Expr *RefExpr, DeclRefExpr *PrivateCopy, |
| SourceLocation ImplicitDSALoc, unsigned Modifier, |
| bool AppliedToPointee) |
| : DKind(DKind), CKind(CKind), Modifier(Modifier), RefExpr(RefExpr), |
| PrivateCopy(PrivateCopy), ImplicitDSALoc(ImplicitDSALoc), |
| AppliedToPointee(AppliedToPointee) {} |
| }; |
| using OperatorOffsetTy = |
| llvm::SmallVector<std::pair<Expr *, OverloadedOperatorKind>, 4>; |
| using DoacrossDependMapTy = |
| llvm::DenseMap<OMPDependClause *, OperatorOffsetTy>; |
| /// Kind of the declaration used in the uses_allocators clauses. |
| enum class UsesAllocatorsDeclKind { |
| /// Predefined allocator |
| PredefinedAllocator, |
| /// User-defined allocator |
| UserDefinedAllocator, |
| /// The declaration that represent allocator trait |
| AllocatorTrait, |
| }; |
| |
| private: |
| struct DSAInfo { |
| OpenMPClauseKind Attributes = OMPC_unknown; |
| unsigned Modifier = 0; |
| /// Pointer to a reference expression and a flag which shows that the |
| /// variable is marked as lastprivate(true) or not (false). |
| llvm::PointerIntPair<const Expr *, 1, bool> RefExpr; |
| DeclRefExpr *PrivateCopy = nullptr; |
| /// true if the attribute is applied to the pointee, not the variable |
| /// itself. |
| bool AppliedToPointee = false; |
| }; |
| using DeclSAMapTy = llvm::SmallDenseMap<const ValueDecl *, DSAInfo, 8>; |
| using UsedRefMapTy = llvm::SmallDenseMap<const ValueDecl *, const Expr *, 8>; |
| using LCDeclInfo = std::pair<unsigned, VarDecl *>; |
| using LoopControlVariablesMapTy = |
| llvm::SmallDenseMap<const ValueDecl *, LCDeclInfo, 8>; |
| /// Struct that associates a component with the clause kind where they are |
| /// found. |
| struct MappedExprComponentTy { |
| OMPClauseMappableExprCommon::MappableExprComponentLists Components; |
| OpenMPClauseKind Kind = OMPC_unknown; |
| }; |
| using MappedExprComponentsTy = |
| llvm::DenseMap<const ValueDecl *, MappedExprComponentTy>; |
| using CriticalsWithHintsTy = |
| llvm::StringMap<std::pair<const OMPCriticalDirective *, llvm::APSInt>>; |
| struct ReductionData { |
| using BOKPtrType = llvm::PointerEmbeddedInt<BinaryOperatorKind, 16>; |
| SourceRange ReductionRange; |
| llvm::PointerUnion<const Expr *, BOKPtrType> ReductionOp; |
| ReductionData() = default; |
| void set(BinaryOperatorKind BO, SourceRange RR) { |
| ReductionRange = RR; |
| ReductionOp = BO; |
| } |
| void set(const Expr *RefExpr, SourceRange RR) { |
| ReductionRange = RR; |
| ReductionOp = RefExpr; |
| } |
| }; |
| using DeclReductionMapTy = |
| llvm::SmallDenseMap<const ValueDecl *, ReductionData, 4>; |
| struct DefaultmapInfo { |
| OpenMPDefaultmapClauseModifier ImplicitBehavior = |
| OMPC_DEFAULTMAP_MODIFIER_unknown; |
| SourceLocation SLoc; |
| DefaultmapInfo() = default; |
| DefaultmapInfo(OpenMPDefaultmapClauseModifier M, SourceLocation Loc) |
| : ImplicitBehavior(M), SLoc(Loc) {} |
| }; |
| |
| struct SharingMapTy { |
| DeclSAMapTy SharingMap; |
| DeclReductionMapTy ReductionMap; |
| UsedRefMapTy AlignedMap; |
| UsedRefMapTy NontemporalMap; |
| MappedExprComponentsTy MappedExprComponents; |
| LoopControlVariablesMapTy LCVMap; |
| DefaultDataSharingAttributes DefaultAttr = DSA_unspecified; |
| SourceLocation DefaultAttrLoc; |
| DefaultmapInfo DefaultmapMap[OMPC_DEFAULTMAP_unknown]; |
| OpenMPDirectiveKind Directive = OMPD_unknown; |
| DeclarationNameInfo DirectiveName; |
| Scope *CurScope = nullptr; |
| DeclContext *Context = nullptr; |
| SourceLocation ConstructLoc; |
| /// Set of 'depend' clauses with 'sink|source' dependence kind. Required to |
| /// get the data (loop counters etc.) about enclosing loop-based construct. |
| /// This data is required during codegen. |
| DoacrossDependMapTy DoacrossDepends; |
| /// First argument (Expr *) contains optional argument of the |
| /// 'ordered' clause, the second one is true if the regions has 'ordered' |
| /// clause, false otherwise. |
| llvm::Optional<std::pair<const Expr *, OMPOrderedClause *>> OrderedRegion; |
| unsigned AssociatedLoops = 1; |
| bool HasMutipleLoops = false; |
| const Decl *PossiblyLoopCounter = nullptr; |
| bool NowaitRegion = false; |
| bool CancelRegion = false; |
| bool LoopStart = false; |
| bool BodyComplete = false; |
| SourceLocation PrevScanLocation; |
| SourceLocation PrevOrderedLocation; |
| SourceLocation InnerTeamsRegionLoc; |
| /// Reference to the taskgroup task_reduction reference expression. |
| Expr *TaskgroupReductionRef = nullptr; |
| llvm::DenseSet<QualType> MappedClassesQualTypes; |
| SmallVector<Expr *, 4> InnerUsedAllocators; |
| llvm::DenseSet<CanonicalDeclPtr<Decl>> ImplicitTaskFirstprivates; |
| /// List of globals marked as declare target link in this target region |
| /// (isOpenMPTargetExecutionDirective(Directive) == true). |
| llvm::SmallVector<DeclRefExpr *, 4> DeclareTargetLinkVarDecls; |
| /// List of decls used in inclusive/exclusive clauses of the scan directive. |
| llvm::DenseSet<CanonicalDeclPtr<Decl>> UsedInScanDirective; |
| llvm::DenseMap<CanonicalDeclPtr<const Decl>, UsesAllocatorsDeclKind> |
| UsesAllocatorsDecls; |
| Expr *DeclareMapperVar = nullptr; |
| SharingMapTy(OpenMPDirectiveKind DKind, DeclarationNameInfo Name, |
| Scope *CurScope, SourceLocation Loc) |
| : Directive(DKind), DirectiveName(Name), CurScope(CurScope), |
| ConstructLoc(Loc) {} |
| SharingMapTy() = default; |
| }; |
| |
| using StackTy = SmallVector<SharingMapTy, 4>; |
| |
| /// Stack of used declaration and their data-sharing attributes. |
| DeclSAMapTy Threadprivates; |
| const FunctionScopeInfo *CurrentNonCapturingFunctionScope = nullptr; |
| SmallVector<std::pair<StackTy, const FunctionScopeInfo *>, 4> Stack; |
| /// true, if check for DSA must be from parent directive, false, if |
| /// from current directive. |
| OpenMPClauseKind ClauseKindMode = OMPC_unknown; |
| Sema &SemaRef; |
| bool ForceCapturing = false; |
| /// true if all the variables in the target executable directives must be |
| /// captured by reference. |
| bool ForceCaptureByReferenceInTargetExecutable = false; |
| CriticalsWithHintsTy Criticals; |
| unsigned IgnoredStackElements = 0; |
| |
| /// Iterators over the stack iterate in order from innermost to outermost |
| /// directive. |
| using const_iterator = StackTy::const_reverse_iterator; |
| const_iterator begin() const { |
| return Stack.empty() ? const_iterator() |
| : Stack.back().first.rbegin() + IgnoredStackElements; |
| } |
| const_iterator end() const { |
| return Stack.empty() ? const_iterator() : Stack.back().first.rend(); |
| } |
| using iterator = StackTy::reverse_iterator; |
| iterator begin() { |
| return Stack.empty() ? iterator() |
| : Stack.back().first.rbegin() + IgnoredStackElements; |
| } |
| iterator end() { |
| return Stack.empty() ? iterator() : Stack.back().first.rend(); |
| } |
| |
| // Convenience operations to get at the elements of the stack. |
| |
| bool isStackEmpty() const { |
| return Stack.empty() || |
| Stack.back().second != CurrentNonCapturingFunctionScope || |
| Stack.back().first.size() <= IgnoredStackElements; |
| } |
| size_t getStackSize() const { |
| return isStackEmpty() ? 0 |
| : Stack.back().first.size() - IgnoredStackElements; |
| } |
| |
| SharingMapTy *getTopOfStackOrNull() { |
| size_t Size = getStackSize(); |
| if (Size == 0) |
| return nullptr; |
| return &Stack.back().first[Size - 1]; |
| } |
| const SharingMapTy *getTopOfStackOrNull() const { |
| return const_cast<DSAStackTy&>(*this).getTopOfStackOrNull(); |
| } |
| SharingMapTy &getTopOfStack() { |
| assert(!isStackEmpty() && "no current directive"); |
| return *getTopOfStackOrNull(); |
| } |
| const SharingMapTy &getTopOfStack() const { |
| return const_cast<DSAStackTy&>(*this).getTopOfStack(); |
| } |
| |
| SharingMapTy *getSecondOnStackOrNull() { |
| size_t Size = getStackSize(); |
| if (Size <= 1) |
| return nullptr; |
| return &Stack.back().first[Size - 2]; |
| } |
| const SharingMapTy *getSecondOnStackOrNull() const { |
| return const_cast<DSAStackTy&>(*this).getSecondOnStackOrNull(); |
| } |
| |
| /// Get the stack element at a certain level (previously returned by |
| /// \c getNestingLevel). |
| /// |
| /// Note that nesting levels count from outermost to innermost, and this is |
| /// the reverse of our iteration order where new inner levels are pushed at |
| /// the front of the stack. |
| SharingMapTy &getStackElemAtLevel(unsigned Level) { |
| assert(Level < getStackSize() && "no such stack element"); |
| return Stack.back().first[Level]; |
| } |
| const SharingMapTy &getStackElemAtLevel(unsigned Level) const { |
| return const_cast<DSAStackTy&>(*this).getStackElemAtLevel(Level); |
| } |
| |
| DSAVarData getDSA(const_iterator &Iter, ValueDecl *D) const; |
| |
| /// Checks if the variable is a local for OpenMP region. |
| bool isOpenMPLocal(VarDecl *D, const_iterator Iter) const; |
| |
| /// Vector of previously declared requires directives |
| SmallVector<const OMPRequiresDecl *, 2> RequiresDecls; |
| /// omp_allocator_handle_t type. |
| QualType OMPAllocatorHandleT; |
| /// omp_depend_t type. |
| QualType OMPDependT; |
| /// omp_event_handle_t type. |
| QualType OMPEventHandleT; |
| /// omp_alloctrait_t type. |
| QualType OMPAlloctraitT; |
| /// Expression for the predefined allocators. |
| Expr *OMPPredefinedAllocators[OMPAllocateDeclAttr::OMPUserDefinedMemAlloc] = { |
| nullptr}; |
| /// Vector of previously encountered target directives |
| SmallVector<SourceLocation, 2> TargetLocations; |
| SourceLocation AtomicLocation; |
| /// Vector of declare variant construct traits. |
| SmallVector<llvm::omp::TraitProperty, 8> ConstructTraits; |
| |
| public: |
| explicit DSAStackTy(Sema &S) : SemaRef(S) {} |
| |
| /// Sets omp_allocator_handle_t type. |
| void setOMPAllocatorHandleT(QualType Ty) { OMPAllocatorHandleT = Ty; } |
| /// Gets omp_allocator_handle_t type. |
| QualType getOMPAllocatorHandleT() const { return OMPAllocatorHandleT; } |
| /// Sets omp_alloctrait_t type. |
| void setOMPAlloctraitT(QualType Ty) { OMPAlloctraitT = Ty; } |
| /// Gets omp_alloctrait_t type. |
| QualType getOMPAlloctraitT() const { return OMPAlloctraitT; } |
| /// Sets the given default allocator. |
| void setAllocator(OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind, |
| Expr *Allocator) { |
| OMPPredefinedAllocators[AllocatorKind] = Allocator; |
| } |
| /// Returns the specified default allocator. |
| Expr *getAllocator(OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind) const { |
| return OMPPredefinedAllocators[AllocatorKind]; |
| } |
| /// Sets omp_depend_t type. |
| void setOMPDependT(QualType Ty) { OMPDependT = Ty; } |
| /// Gets omp_depend_t type. |
| QualType getOMPDependT() const { return OMPDependT; } |
| |
| /// Sets omp_event_handle_t type. |
| void setOMPEventHandleT(QualType Ty) { OMPEventHandleT = Ty; } |
| /// Gets omp_event_handle_t type. |
| QualType getOMPEventHandleT() const { return OMPEventHandleT; } |
| |
| bool isClauseParsingMode() const { return ClauseKindMode != OMPC_unknown; } |
| OpenMPClauseKind getClauseParsingMode() const { |
| assert(isClauseParsingMode() && "Must be in clause parsing mode."); |
| return ClauseKindMode; |
| } |
| void setClauseParsingMode(OpenMPClauseKind K) { ClauseKindMode = K; } |
| |
| bool isBodyComplete() const { |
| const SharingMapTy *Top = getTopOfStackOrNull(); |
| return Top && Top->BodyComplete; |
| } |
| void setBodyComplete() { |
| getTopOfStack().BodyComplete = true; |
| } |
| |
| bool isForceVarCapturing() const { return ForceCapturing; } |
| void setForceVarCapturing(bool V) { ForceCapturing = V; } |
| |
| void setForceCaptureByReferenceInTargetExecutable(bool V) { |
| ForceCaptureByReferenceInTargetExecutable = V; |
| } |
| bool isForceCaptureByReferenceInTargetExecutable() const { |
| return ForceCaptureByReferenceInTargetExecutable; |
| } |
| |
| void push(OpenMPDirectiveKind DKind, const DeclarationNameInfo &DirName, |
| Scope *CurScope, SourceLocation Loc) { |
| assert(!IgnoredStackElements && |
| "cannot change stack while ignoring elements"); |
| if (Stack.empty() || |
| Stack.back().second != CurrentNonCapturingFunctionScope) |
| Stack.emplace_back(StackTy(), CurrentNonCapturingFunctionScope); |
| Stack.back().first.emplace_back(DKind, DirName, CurScope, Loc); |
| Stack.back().first.back().DefaultAttrLoc = Loc; |
| } |
| |
| void pop() { |
| assert(!IgnoredStackElements && |
| "cannot change stack while ignoring elements"); |
| assert(!Stack.back().first.empty() && |
| "Data-sharing attributes stack is empty!"); |
| Stack.back().first.pop_back(); |
| } |
| |
| /// RAII object to temporarily leave the scope of a directive when we want to |
| /// logically operate in its parent. |
| class ParentDirectiveScope { |
| DSAStackTy &Self; |
| bool Active; |
| public: |
| ParentDirectiveScope(DSAStackTy &Self, bool Activate) |
| : Self(Self), Active(false) { |
| if (Activate) |
| enable(); |
| } |
| ~ParentDirectiveScope() { disable(); } |
| void disable() { |
| if (Active) { |
| --Self.IgnoredStackElements; |
| Active = false; |
| } |
| } |
| void enable() { |
| if (!Active) { |
| ++Self.IgnoredStackElements; |
| Active = true; |
| } |
| } |
| }; |
| |
| /// Marks that we're started loop parsing. |
| void loopInit() { |
| assert(isOpenMPLoopDirective(getCurrentDirective()) && |
| "Expected loop-based directive."); |
| getTopOfStack().LoopStart = true; |
| } |
| /// Start capturing of the variables in the loop context. |
| void loopStart() { |
| assert(isOpenMPLoopDirective(getCurrentDirective()) && |
| "Expected loop-based directive."); |
| getTopOfStack().LoopStart = false; |
| } |
| /// true, if variables are captured, false otherwise. |
| bool isLoopStarted() const { |
| assert(isOpenMPLoopDirective(getCurrentDirective()) && |
| "Expected loop-based directive."); |
| return !getTopOfStack().LoopStart; |
| } |
| /// Marks (or clears) declaration as possibly loop counter. |
| void resetPossibleLoopCounter(const Decl *D = nullptr) { |
| getTopOfStack().PossiblyLoopCounter = |
| D ? D->getCanonicalDecl() : D; |
| } |
| /// Gets the possible loop counter decl. |
| const Decl *getPossiblyLoopCunter() const { |
| return getTopOfStack().PossiblyLoopCounter; |
| } |
| /// Start new OpenMP region stack in new non-capturing function. |
| void pushFunction() { |
| assert(!IgnoredStackElements && |
| "cannot change stack while ignoring elements"); |
| const FunctionScopeInfo *CurFnScope = SemaRef.getCurFunction(); |
| assert(!isa<CapturingScopeInfo>(CurFnScope)); |
| CurrentNonCapturingFunctionScope = CurFnScope; |
| } |
| /// Pop region stack for non-capturing function. |
| void popFunction(const FunctionScopeInfo *OldFSI) { |
| assert(!IgnoredStackElements && |
| "cannot change stack while ignoring elements"); |
| if (!Stack.empty() && Stack.back().second == OldFSI) { |
| assert(Stack.back().first.empty()); |
| Stack.pop_back(); |
| } |
| CurrentNonCapturingFunctionScope = nullptr; |
| for (const FunctionScopeInfo *FSI : llvm::reverse(SemaRef.FunctionScopes)) { |
| if (!isa<CapturingScopeInfo>(FSI)) { |
| CurrentNonCapturingFunctionScope = FSI; |
| break; |
| } |
| } |
| } |
| |
| void addCriticalWithHint(const OMPCriticalDirective *D, llvm::APSInt Hint) { |
| Criticals.try_emplace(D->getDirectiveName().getAsString(), D, Hint); |
| } |
| const std::pair<const OMPCriticalDirective *, llvm::APSInt> |
| getCriticalWithHint(const DeclarationNameInfo &Name) const { |
| auto I = Criticals.find(Name.getAsString()); |
| if (I != Criticals.end()) |
| return I->second; |
| return std::make_pair(nullptr, llvm::APSInt()); |
| } |
| /// If 'aligned' declaration for given variable \a D was not seen yet, |
| /// add it and return NULL; otherwise return previous occurrence's expression |
| /// for diagnostics. |
| const Expr *addUniqueAligned(const ValueDecl *D, const Expr *NewDE); |
| /// If 'nontemporal' declaration for given variable \a D was not seen yet, |
| /// add it and return NULL; otherwise return previous occurrence's expression |
| /// for diagnostics. |
| const Expr *addUniqueNontemporal(const ValueDecl *D, const Expr *NewDE); |
| |
| /// Register specified variable as loop control variable. |
| void addLoopControlVariable(const ValueDecl *D, VarDecl *Capture); |
| /// Check if the specified variable is a loop control variable for |
| /// current region. |
| /// \return The index of the loop control variable in the list of associated |
| /// for-loops (from outer to inner). |
| const LCDeclInfo isLoopControlVariable(const ValueDecl *D) const; |
| /// Check if the specified variable is a loop control variable for |
| /// parent region. |
| /// \return The index of the loop control variable in the list of associated |
| /// for-loops (from outer to inner). |
| const LCDeclInfo isParentLoopControlVariable(const ValueDecl *D) const; |
| /// Check if the specified variable is a loop control variable for |
| /// current region. |
| /// \return The index of the loop control variable in the list of associated |
| /// for-loops (from outer to inner). |
| const LCDeclInfo isLoopControlVariable(const ValueDecl *D, |
| unsigned Level) const; |
| /// Get the loop control variable for the I-th loop (or nullptr) in |
| /// parent directive. |
| const ValueDecl *getParentLoopControlVariable(unsigned I) const; |
| |
| /// Marks the specified decl \p D as used in scan directive. |
| void markDeclAsUsedInScanDirective(ValueDecl *D) { |
| if (SharingMapTy *Stack = getSecondOnStackOrNull()) |
| Stack->UsedInScanDirective.insert(D); |
| } |
| |
| /// Checks if the specified declaration was used in the inner scan directive. |
| bool isUsedInScanDirective(ValueDecl *D) const { |
| if (const SharingMapTy *Stack = getTopOfStackOrNull()) |
| return Stack->UsedInScanDirective.contains(D); |
| return false; |
| } |
| |
| /// Adds explicit data sharing attribute to the specified declaration. |
| void addDSA(const ValueDecl *D, const Expr *E, OpenMPClauseKind A, |
| DeclRefExpr *PrivateCopy = nullptr, unsigned Modifier = 0, |
| bool AppliedToPointee = false); |
| |
| /// Adds additional information for the reduction items with the reduction id |
| /// represented as an operator. |
| void addTaskgroupReductionData(const ValueDecl *D, SourceRange SR, |
| BinaryOperatorKind BOK); |
| /// Adds additional information for the reduction items with the reduction id |
| /// represented as reduction identifier. |
| void addTaskgroupReductionData(const ValueDecl *D, SourceRange SR, |
| const Expr *ReductionRef); |
| /// Returns the location and reduction operation from the innermost parent |
| /// region for the given \p D. |
| const DSAVarData |
| getTopMostTaskgroupReductionData(const ValueDecl *D, SourceRange &SR, |
| BinaryOperatorKind &BOK, |
| Expr *&TaskgroupDescriptor) const; |
| /// Returns the location and reduction operation from the innermost parent |
| /// region for the given \p D. |
| const DSAVarData |
| getTopMostTaskgroupReductionData(const ValueDecl *D, SourceRange &SR, |
| const Expr *&ReductionRef, |
| Expr *&TaskgroupDescriptor) const; |
| /// Return reduction reference expression for the current taskgroup or |
| /// parallel/worksharing directives with task reductions. |
| Expr *getTaskgroupReductionRef() const { |
| assert((getTopOfStack().Directive == OMPD_taskgroup || |
| ((isOpenMPParallelDirective(getTopOfStack().Directive) || |
| isOpenMPWorksharingDirective(getTopOfStack().Directive)) && |
| !isOpenMPSimdDirective(getTopOfStack().Directive))) && |
| "taskgroup reference expression requested for non taskgroup or " |
| "parallel/worksharing directive."); |
| return getTopOfStack().TaskgroupReductionRef; |
| } |
| /// Checks if the given \p VD declaration is actually a taskgroup reduction |
| /// descriptor variable at the \p Level of OpenMP regions. |
| bool isTaskgroupReductionRef(const ValueDecl *VD, unsigned Level) const { |
| return getStackElemAtLevel(Level).TaskgroupReductionRef && |
| cast<DeclRefExpr>(getStackElemAtLevel(Level).TaskgroupReductionRef) |
| ->getDecl() == VD; |
| } |
| |
| /// Returns data sharing attributes from top of the stack for the |
| /// specified declaration. |
| const DSAVarData getTopDSA(ValueDecl *D, bool FromParent); |
| /// Returns data-sharing attributes for the specified declaration. |
| const DSAVarData getImplicitDSA(ValueDecl *D, bool FromParent) const; |
| /// Returns data-sharing attributes for the specified declaration. |
| const DSAVarData getImplicitDSA(ValueDecl *D, unsigned Level) const; |
| /// Checks if the specified variables has data-sharing attributes which |
| /// match specified \a CPred predicate in any directive which matches \a DPred |
| /// predicate. |
| const DSAVarData |
| hasDSA(ValueDecl *D, |
| const llvm::function_ref<bool(OpenMPClauseKind, bool)> CPred, |
| const llvm::function_ref<bool(OpenMPDirectiveKind)> DPred, |
| bool FromParent) const; |
| /// Checks if the specified variables has data-sharing attributes which |
| /// match specified \a CPred predicate in any innermost directive which |
| /// matches \a DPred predicate. |
| const DSAVarData |
| hasInnermostDSA(ValueDecl *D, |
| const llvm::function_ref<bool(OpenMPClauseKind, bool)> CPred, |
| const llvm::function_ref<bool(OpenMPDirectiveKind)> DPred, |
| bool FromParent) const; |
| /// Checks if the specified variables has explicit data-sharing |
| /// attributes which match specified \a CPred predicate at the specified |
| /// OpenMP region. |
| bool |
| hasExplicitDSA(const ValueDecl *D, |
| const llvm::function_ref<bool(OpenMPClauseKind, bool)> CPred, |
| unsigned Level, bool NotLastprivate = false) const; |
| |
| /// Returns true if the directive at level \Level matches in the |
| /// specified \a DPred predicate. |
| bool hasExplicitDirective( |
| const llvm::function_ref<bool(OpenMPDirectiveKind)> DPred, |
| unsigned Level) const; |
| |
| /// Finds a directive which matches specified \a DPred predicate. |
| bool hasDirective( |
| const llvm::function_ref<bool( |
| OpenMPDirectiveKind, const DeclarationNameInfo &, SourceLocation)> |
| DPred, |
| bool FromParent) const; |
| |
| /// Returns currently analyzed directive. |
| OpenMPDirectiveKind getCurrentDirective() const { |
| const SharingMapTy *Top = getTopOfStackOrNull(); |
| return Top ? Top->Directive : OMPD_unknown; |
| } |
| /// Returns directive kind at specified level. |
| OpenMPDirectiveKind getDirective(unsigned Level) const { |
| assert(!isStackEmpty() && "No directive at specified level."); |
| return getStackElemAtLevel(Level).Directive; |
| } |
| /// Returns the capture region at the specified level. |
| OpenMPDirectiveKind getCaptureRegion(unsigned Level, |
| unsigned OpenMPCaptureLevel) const { |
| SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; |
| getOpenMPCaptureRegions(CaptureRegions, getDirective(Level)); |
| return CaptureRegions[OpenMPCaptureLevel]; |
| } |
| /// Returns parent directive. |
| OpenMPDirectiveKind getParentDirective() const { |
| const SharingMapTy *Parent = getSecondOnStackOrNull(); |
| return Parent ? Parent->Directive : OMPD_unknown; |
| } |
| |
| /// Add requires decl to internal vector |
| void addRequiresDecl(OMPRequiresDecl *RD) { |
| RequiresDecls.push_back(RD); |
| } |
| |
| /// Checks if the defined 'requires' directive has specified type of clause. |
| template <typename ClauseType> |
| bool hasRequiresDeclWithClause() const { |
| return llvm::any_of(RequiresDecls, [](const OMPRequiresDecl *D) { |
| return llvm::any_of(D->clauselists(), [](const OMPClause *C) { |
| return isa<ClauseType>(C); |
| }); |
| }); |
| } |
| |
| /// Checks for a duplicate clause amongst previously declared requires |
| /// directives |
| bool hasDuplicateRequiresClause(ArrayRef<OMPClause *> ClauseList) const { |
| bool IsDuplicate = false; |
| for (OMPClause *CNew : ClauseList) { |
| for (const OMPRequiresDecl *D : RequiresDecls) { |
| for (const OMPClause *CPrev : D->clauselists()) { |
| if (CNew->getClauseKind() == CPrev->getClauseKind()) { |
| SemaRef.Diag(CNew->getBeginLoc(), |
| diag::err_omp_requires_clause_redeclaration) |
| << getOpenMPClauseName(CNew->getClauseKind()); |
| SemaRef.Diag(CPrev->getBeginLoc(), |
| diag::note_omp_requires_previous_clause) |
| << getOpenMPClauseName(CPrev->getClauseKind()); |
| IsDuplicate = true; |
| } |
| } |
| } |
| } |
| return IsDuplicate; |
| } |
| |
| /// Add location of previously encountered target to internal vector |
| void addTargetDirLocation(SourceLocation LocStart) { |
| TargetLocations.push_back(LocStart); |
| } |
| |
| /// Add location for the first encountered atomicc directive. |
| void addAtomicDirectiveLoc(SourceLocation Loc) { |
| if (AtomicLocation.isInvalid()) |
| AtomicLocation = Loc; |
| } |
| |
| /// Returns the location of the first encountered atomic directive in the |
| /// module. |
| SourceLocation getAtomicDirectiveLoc() const { |
| return AtomicLocation; |
| } |
| |
| // Return previously encountered target region locations. |
| ArrayRef<SourceLocation> getEncounteredTargetLocs() const { |
| return TargetLocations; |
| } |
| |
| /// Set default data sharing attribute to none. |
| void setDefaultDSANone(SourceLocation Loc) { |
| getTopOfStack().DefaultAttr = DSA_none; |
| getTopOfStack().DefaultAttrLoc = Loc; |
| } |
| /// Set default data sharing attribute to shared. |
| void setDefaultDSAShared(SourceLocation Loc) { |
| getTopOfStack().DefaultAttr = DSA_shared; |
| getTopOfStack().DefaultAttrLoc = Loc; |
| } |
| /// Set default data sharing attribute to firstprivate. |
| void setDefaultDSAFirstPrivate(SourceLocation Loc) { |
| getTopOfStack().DefaultAttr = DSA_firstprivate; |
| getTopOfStack().DefaultAttrLoc = Loc; |
| } |
| /// Set default data mapping attribute to Modifier:Kind |
| void setDefaultDMAAttr(OpenMPDefaultmapClauseModifier M, |
| OpenMPDefaultmapClauseKind Kind, |
| SourceLocation Loc) { |
| DefaultmapInfo &DMI = getTopOfStack().DefaultmapMap[Kind]; |
| DMI.ImplicitBehavior = M; |
| DMI.SLoc = Loc; |
| } |
| /// Check whether the implicit-behavior has been set in defaultmap |
| bool checkDefaultmapCategory(OpenMPDefaultmapClauseKind VariableCategory) { |
| if (VariableCategory == OMPC_DEFAULTMAP_unknown) |
| return getTopOfStack() |
| .DefaultmapMap[OMPC_DEFAULTMAP_aggregate] |
| .ImplicitBehavior != OMPC_DEFAULTMAP_MODIFIER_unknown || |
| getTopOfStack() |
| .DefaultmapMap[OMPC_DEFAULTMAP_scalar] |
| .ImplicitBehavior != OMPC_DEFAULTMAP_MODIFIER_unknown || |
| getTopOfStack() |
| .DefaultmapMap[OMPC_DEFAULTMAP_pointer] |
| .ImplicitBehavior != OMPC_DEFAULTMAP_MODIFIER_unknown; |
| return getTopOfStack().DefaultmapMap[VariableCategory].ImplicitBehavior != |
| OMPC_DEFAULTMAP_MODIFIER_unknown; |
| } |
| |
| ArrayRef<llvm::omp::TraitProperty> getConstructTraits() { |
| return ConstructTraits; |
| } |
| void handleConstructTrait(ArrayRef<llvm::omp::TraitProperty> Traits, |
| bool ScopeEntry) { |
| if (ScopeEntry) |
| ConstructTraits.append(Traits.begin(), Traits.end()); |
| else |
| for (llvm::omp::TraitProperty Trait : llvm::reverse(Traits)) { |
| llvm::omp::TraitProperty Top = ConstructTraits.pop_back_val(); |
| assert(Top == Trait && "Something left a trait on the stack!"); |
| (void)Trait; |
| (void)Top; |
| } |
| } |
| |
| DefaultDataSharingAttributes getDefaultDSA(unsigned Level) const { |
| return getStackSize() <= Level ? DSA_unspecified |
| : getStackElemAtLevel(Level).DefaultAttr; |
| } |
| DefaultDataSharingAttributes getDefaultDSA() const { |
| return isStackEmpty() ? DSA_unspecified |
| : getTopOfStack().DefaultAttr; |
| } |
| SourceLocation getDefaultDSALocation() const { |
| return isStackEmpty() ? SourceLocation() |
| : getTopOfStack().DefaultAttrLoc; |
| } |
| OpenMPDefaultmapClauseModifier |
| getDefaultmapModifier(OpenMPDefaultmapClauseKind Kind) const { |
| return isStackEmpty() |
| ? OMPC_DEFAULTMAP_MODIFIER_unknown |
| : getTopOfStack().DefaultmapMap[Kind].ImplicitBehavior; |
| } |
| OpenMPDefaultmapClauseModifier |
| getDefaultmapModifierAtLevel(unsigned Level, |
| OpenMPDefaultmapClauseKind Kind) const { |
| return getStackElemAtLevel(Level).DefaultmapMap[Kind].ImplicitBehavior; |
| } |
| bool isDefaultmapCapturedByRef(unsigned Level, |
| OpenMPDefaultmapClauseKind Kind) const { |
| OpenMPDefaultmapClauseModifier M = |
| getDefaultmapModifierAtLevel(Level, Kind); |
| if (Kind == OMPC_DEFAULTMAP_scalar || Kind == OMPC_DEFAULTMAP_pointer) { |
| return (M == OMPC_DEFAULTMAP_MODIFIER_alloc) || |
| (M == OMPC_DEFAULTMAP_MODIFIER_to) || |
| (M == OMPC_DEFAULTMAP_MODIFIER_from) || |
| (M == OMPC_DEFAULTMAP_MODIFIER_tofrom); |
| } |
| return true; |
| } |
| static bool mustBeFirstprivateBase(OpenMPDefaultmapClauseModifier M, |
| OpenMPDefaultmapClauseKind Kind) { |
| switch (Kind) { |
| case OMPC_DEFAULTMAP_scalar: |
| case OMPC_DEFAULTMAP_pointer: |
| return (M == OMPC_DEFAULTMAP_MODIFIER_unknown) || |
| (M == OMPC_DEFAULTMAP_MODIFIER_firstprivate) || |
| (M == OMPC_DEFAULTMAP_MODIFIER_default); |
| case OMPC_DEFAULTMAP_aggregate: |
| return M == OMPC_DEFAULTMAP_MODIFIER_firstprivate; |
| default: |
| break; |
| } |
| llvm_unreachable("Unexpected OpenMPDefaultmapClauseKind enum"); |
| } |
| bool mustBeFirstprivateAtLevel(unsigned Level, |
| OpenMPDefaultmapClauseKind Kind) const { |
| OpenMPDefaultmapClauseModifier M = |
| getDefaultmapModifierAtLevel(Level, Kind); |
| return mustBeFirstprivateBase(M, Kind); |
| } |
| bool mustBeFirstprivate(OpenMPDefaultmapClauseKind Kind) const { |
| OpenMPDefaultmapClauseModifier M = getDefaultmapModifier(Kind); |
| return mustBeFirstprivateBase(M, Kind); |
| } |
| |
| /// Checks if the specified variable is a threadprivate. |
| bool isThreadPrivate(VarDecl *D) { |
| const DSAVarData DVar = getTopDSA(D, false); |
| return isOpenMPThreadPrivate(DVar.CKind); |
| } |
| |
| /// Marks current region as ordered (it has an 'ordered' clause). |
| void setOrderedRegion(bool IsOrdered, const Expr *Param, |
| OMPOrderedClause *Clause) { |
| if (IsOrdered) |
| getTopOfStack().OrderedRegion.emplace(Param, Clause); |
| else |
| getTopOfStack().OrderedRegion.reset(); |
| } |
| /// Returns true, if region is ordered (has associated 'ordered' clause), |
| /// false - otherwise. |
| bool isOrderedRegion() const { |
| if (const SharingMapTy *Top = getTopOfStackOrNull()) |
| return Top->OrderedRegion.hasValue(); |
| return false; |
| } |
| /// Returns optional parameter for the ordered region. |
| std::pair<const Expr *, OMPOrderedClause *> getOrderedRegionParam() const { |
| if (const SharingMapTy *Top = getTopOfStackOrNull()) |
| if (Top->OrderedRegion.hasValue()) |
| return Top->OrderedRegion.getValue(); |
| return std::make_pair(nullptr, nullptr); |
| } |
| /// Returns true, if parent region is ordered (has associated |
| /// 'ordered' clause), false - otherwise. |
| bool isParentOrderedRegion() const { |
| if (const SharingMapTy *Parent = getSecondOnStackOrNull()) |
| return Parent->OrderedRegion.hasValue(); |
| return false; |
| } |
| /// Returns optional parameter for the ordered region. |
| std::pair<const Expr *, OMPOrderedClause *> |
| getParentOrderedRegionParam() const { |
| if (const SharingMapTy *Parent = getSecondOnStackOrNull()) |
| if (Parent->OrderedRegion.hasValue()) |
| return Parent->OrderedRegion.getValue(); |
| return std::make_pair(nullptr, nullptr); |
| } |
| /// Marks current region as nowait (it has a 'nowait' clause). |
| void setNowaitRegion(bool IsNowait = true) { |
| getTopOfStack().NowaitRegion = IsNowait; |
| } |
| /// Returns true, if parent region is nowait (has associated |
| /// 'nowait' clause), false - otherwise. |
| bool isParentNowaitRegion() const { |
| if (const SharingMapTy *Parent = getSecondOnStackOrNull()) |
| return Parent->NowaitRegion; |
| return false; |
| } |
| /// Marks parent region as cancel region. |
| void setParentCancelRegion(bool Cancel = true) { |
| if (SharingMapTy *Parent = getSecondOnStackOrNull()) |
| Parent->CancelRegion |= Cancel; |
| } |
| /// Return true if current region has inner cancel construct. |
| bool isCancelRegion() const { |
| const SharingMapTy *Top = getTopOfStackOrNull(); |
| return Top ? Top->CancelRegion : false; |
| } |
| |
| /// Mark that parent region already has scan directive. |
| void setParentHasScanDirective(SourceLocation Loc) { |
| if (SharingMapTy *Parent = getSecondOnStackOrNull()) |
| Parent->PrevScanLocation = Loc; |
| } |
| /// Return true if current region has inner cancel construct. |
| bool doesParentHasScanDirective() const { |
| const SharingMapTy *Top = getSecondOnStackOrNull(); |
| return Top ? Top->PrevScanLocation.isValid() : false; |
| } |
| /// Return true if current region has inner cancel construct. |
| SourceLocation getParentScanDirectiveLoc() const { |
| const SharingMapTy *Top = getSecondOnStackOrNull(); |
| return Top ? Top->PrevScanLocation : SourceLocation(); |
| } |
| /// Mark that parent region already has ordered directive. |
| void setParentHasOrderedDirective(SourceLocation Loc) { |
| if (SharingMapTy *Parent = getSecondOnStackOrNull()) |
| Parent->PrevOrderedLocation = Loc; |
| } |
| /// Return true if current region has inner ordered construct. |
| bool doesParentHasOrderedDirective() const { |
| const SharingMapTy *Top = getSecondOnStackOrNull(); |
| return Top ? Top->PrevOrderedLocation.isValid() : false; |
| } |
| /// Returns the location of the previously specified ordered directive. |
| SourceLocation getParentOrderedDirectiveLoc() const { |
| const SharingMapTy *Top = getSecondOnStackOrNull(); |
| return Top ? Top->PrevOrderedLocation : SourceLocation(); |
| } |
| |
| /// Set collapse value for the region. |
| void setAssociatedLoops(unsigned Val) { |
| getTopOfStack().AssociatedLoops = Val; |
| if (Val > 1) |
| getTopOfStack().HasMutipleLoops = true; |
| } |
| /// Return collapse value for region. |
| unsigned getAssociatedLoops() const { |
| const SharingMapTy *Top = getTopOfStackOrNull(); |
| return Top ? Top->AssociatedLoops : 0; |
| } |
| /// Returns true if the construct is associated with multiple loops. |
| bool hasMutipleLoops() const { |
| const SharingMapTy *Top = getTopOfStackOrNull(); |
| return Top ? Top->HasMutipleLoops : false; |
| } |
| |
| /// Marks current target region as one with closely nested teams |
| /// region. |
| void setParentTeamsRegionLoc(SourceLocation TeamsRegionLoc) { |
| if (SharingMapTy *Parent = getSecondOnStackOrNull()) |
| Parent->InnerTeamsRegionLoc = TeamsRegionLoc; |
| } |
| /// Returns true, if current region has closely nested teams region. |
| bool hasInnerTeamsRegion() const { |
| return getInnerTeamsRegionLoc().isValid(); |
| } |
| /// Returns location of the nested teams region (if any). |
| SourceLocation getInnerTeamsRegionLoc() const { |
| const SharingMapTy *Top = getTopOfStackOrNull(); |
| return Top ? Top->InnerTeamsRegionLoc : SourceLocation(); |
| } |
| |
| Scope *getCurScope() const { |
| const SharingMapTy *Top = getTopOfStackOrNull(); |
| return Top ? Top->CurScope : nullptr; |
| } |
| void setContext(DeclContext *DC) { getTopOfStack().Context = DC; } |
| SourceLocation getConstructLoc() const { |
| const SharingMapTy *Top = getTopOfStackOrNull(); |
| return Top ? Top->ConstructLoc : SourceLocation(); |
| } |
| |
| /// Do the check specified in \a Check to all component lists and return true |
| /// if any issue is found. |
| bool checkMappableExprComponentListsForDecl( |
| const ValueDecl *VD, bool CurrentRegionOnly, |
| const llvm::function_ref< |
| bool(OMPClauseMappableExprCommon::MappableExprComponentListRef, |
| OpenMPClauseKind)> |
| Check) const { |
| if (isStackEmpty()) |
| return false; |
| auto SI = begin(); |
| auto SE = end(); |
| |
| if (SI == SE) |
| return false; |
| |
| if (CurrentRegionOnly) |
| SE = std::next(SI); |
| else |
| std::advance(SI, 1); |
| |
| for (; SI != SE; ++SI) { |
| auto MI = SI->MappedExprComponents.find(VD); |
| if (MI != SI->MappedExprComponents.end()) |
| for (OMPClauseMappableExprCommon::MappableExprComponentListRef L : |
| MI->second.Components) |
| if (Check(L, MI->second.Kind)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Do the check specified in \a Check to all component lists at a given level |
| /// and return true if any issue is found. |
| bool checkMappableExprComponentListsForDeclAtLevel( |
| const ValueDecl *VD, unsigned Level, |
| const llvm::function_ref< |
| bool(OMPClauseMappableExprCommon::MappableExprComponentListRef, |
| OpenMPClauseKind)> |
| Check) const { |
| if (getStackSize() <= Level) |
| return false; |
| |
| const SharingMapTy &StackElem = getStackElemAtLevel(Level); |
| auto MI = StackElem.MappedExprComponents.find(VD); |
| if (MI != StackElem.MappedExprComponents.end()) |
| for (OMPClauseMappableExprCommon::MappableExprComponentListRef L : |
| MI->second.Components) |
| if (Check(L, MI->second.Kind)) |
| return true; |
| return false; |
| } |
| |
| /// Create a new mappable expression component list associated with a given |
| /// declaration and initialize it with the provided list of components. |
| void addMappableExpressionComponents( |
| const ValueDecl *VD, |
| OMPClauseMappableExprCommon::MappableExprComponentListRef Components, |
| OpenMPClauseKind WhereFoundClauseKind) { |
| MappedExprComponentTy &MEC = getTopOfStack().MappedExprComponents[VD]; |
| // Create new entry and append the new components there. |
| MEC.Components.resize(MEC.Components.size() + 1); |
| MEC.Components.back().append(Components.begin(), Components.end()); |
| MEC.Kind = WhereFoundClauseKind; |
| } |
| |
| unsigned getNestingLevel() const { |
| assert(!isStackEmpty()); |
| return getStackSize() - 1; |
| } |
| void addDoacrossDependClause(OMPDependClause *C, |
| const OperatorOffsetTy &OpsOffs) { |
| SharingMapTy *Parent = getSecondOnStackOrNull(); |
| assert(Parent && isOpenMPWorksharingDirective(Parent->Directive)); |
| Parent->DoacrossDepends.try_emplace(C, OpsOffs); |
| } |
| llvm::iterator_range<DoacrossDependMapTy::const_iterator> |
| getDoacrossDependClauses() const { |
| const SharingMapTy &StackElem = getTopOfStack(); |
| if (isOpenMPWorksharingDirective(StackElem.Directive)) { |
| const DoacrossDependMapTy &Ref = StackElem.DoacrossDepends; |
| return llvm::make_range(Ref.begin(), Ref.end()); |
| } |
| return llvm::make_range(StackElem.DoacrossDepends.end(), |
| StackElem.DoacrossDepends.end()); |
| } |
| |
| // Store types of classes which have been explicitly mapped |
| void addMappedClassesQualTypes(QualType QT) { |
| SharingMapTy &StackElem = getTopOfStack(); |
| StackElem.MappedClassesQualTypes.insert(QT); |
| } |
| |
| // Return set of mapped classes types |
| bool isClassPreviouslyMapped(QualType QT) const { |
| const SharingMapTy &StackElem = getTopOfStack(); |
| return StackElem.MappedClassesQualTypes.contains(QT); |
| } |
| |
| /// Adds global declare target to the parent target region. |
| void addToParentTargetRegionLinkGlobals(DeclRefExpr *E) { |
| assert(*OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration( |
| E->getDecl()) == OMPDeclareTargetDeclAttr::MT_Link && |
| "Expected declare target link global."); |
| for (auto &Elem : *this) { |
| if (isOpenMPTargetExecutionDirective(Elem.Directive)) { |
| Elem.DeclareTargetLinkVarDecls.push_back(E); |
| return; |
| } |
| } |
| } |
| |
| /// Returns the list of globals with declare target link if current directive |
| /// is target. |
| ArrayRef<DeclRefExpr *> getLinkGlobals() const { |
| assert(isOpenMPTargetExecutionDirective(getCurrentDirective()) && |
| "Expected target executable directive."); |
| return getTopOfStack().DeclareTargetLinkVarDecls; |
| } |
| |
| /// Adds list of allocators expressions. |
| void addInnerAllocatorExpr(Expr *E) { |
| getTopOfStack().InnerUsedAllocators.push_back(E); |
| } |
| /// Return list of used allocators. |
| ArrayRef<Expr *> getInnerAllocators() const { |
| return getTopOfStack().InnerUsedAllocators; |
| } |
| /// Marks the declaration as implicitly firstprivate nin the task-based |
| /// regions. |
| void addImplicitTaskFirstprivate(unsigned Level, Decl *D) { |
| getStackElemAtLevel(Level).ImplicitTaskFirstprivates.insert(D); |
| } |
| /// Checks if the decl is implicitly firstprivate in the task-based region. |
| bool isImplicitTaskFirstprivate(Decl *D) const { |
| return getTopOfStack().ImplicitTaskFirstprivates.contains(D); |
| } |
| |
| /// Marks decl as used in uses_allocators clause as the allocator. |
| void addUsesAllocatorsDecl(const Decl *D, UsesAllocatorsDeclKind Kind) { |
| getTopOfStack().UsesAllocatorsDecls.try_emplace(D, Kind); |
| } |
| /// Checks if specified decl is used in uses allocator clause as the |
| /// allocator. |
| Optional<UsesAllocatorsDeclKind> isUsesAllocatorsDecl(unsigned Level, |
| const Decl *D) const { |
| const SharingMapTy &StackElem = getTopOfStack(); |
| auto I = StackElem.UsesAllocatorsDecls.find(D); |
| if (I == StackElem.UsesAllocatorsDecls.end()) |
| return None; |
| return I->getSecond(); |
| } |
| Optional<UsesAllocatorsDeclKind> isUsesAllocatorsDecl(const Decl *D) const { |
| const SharingMapTy &StackElem = getTopOfStack(); |
| auto I = StackElem.UsesAllocatorsDecls.find(D); |
| if (I == StackElem.UsesAllocatorsDecls.end()) |
| return None; |
| return I->getSecond(); |
| } |
| |
| void addDeclareMapperVarRef(Expr *Ref) { |
| SharingMapTy &StackElem = getTopOfStack(); |
| StackElem.DeclareMapperVar = Ref; |
| } |
| const Expr *getDeclareMapperVarRef() const { |
| const SharingMapTy *Top = getTopOfStackOrNull(); |
| return Top ? Top->DeclareMapperVar : nullptr; |
| } |
| }; |
| |
| bool isImplicitTaskingRegion(OpenMPDirectiveKind DKind) { |
| return isOpenMPParallelDirective(DKind) || isOpenMPTeamsDirective(DKind); |
| } |
| |
| bool isImplicitOrExplicitTaskingRegion(OpenMPDirectiveKind DKind) { |
| return isImplicitTaskingRegion(DKind) || isOpenMPTaskingDirective(DKind) || |
| DKind == OMPD_unknown; |
| } |
| |
| } // namespace |
| |
| static const Expr *getExprAsWritten(const Expr *E) { |
| if (const auto *FE = dyn_cast<FullExpr>(E)) |
| E = FE->getSubExpr(); |
| |
| if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) |
| E = MTE->getSubExpr(); |
| |
| while (const auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E)) |
| E = Binder->getSubExpr(); |
| |
| if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E)) |
| E = ICE->getSubExprAsWritten(); |
| return E->IgnoreParens(); |
| } |
| |
| static Expr *getExprAsWritten(Expr *E) { |
| return const_cast<Expr *>(getExprAsWritten(const_cast<const Expr *>(E))); |
| } |
| |
| static const ValueDecl *getCanonicalDecl(const ValueDecl *D) { |
| if (const auto *CED = dyn_cast<OMPCapturedExprDecl>(D)) |
| if (const auto *ME = dyn_cast<MemberExpr>(getExprAsWritten(CED->getInit()))) |
| D = ME->getMemberDecl(); |
| const auto *VD = dyn_cast<VarDecl>(D); |
| const auto *FD = dyn_cast<FieldDecl>(D); |
| if (VD != nullptr) { |
| VD = VD->getCanonicalDecl(); |
| D = VD; |
| } else { |
| assert(FD); |
| FD = FD->getCanonicalDecl(); |
| D = FD; |
| } |
| return D; |
| } |
| |
| static ValueDecl *getCanonicalDecl(ValueDecl *D) { |
| return const_cast<ValueDecl *>( |
| getCanonicalDecl(const_cast<const ValueDecl *>(D))); |
| } |
| |
| DSAStackTy::DSAVarData DSAStackTy::getDSA(const_iterator &Iter, |
| ValueDecl *D) const { |
| D = getCanonicalDecl(D); |
| auto *VD = dyn_cast<VarDecl>(D); |
| const auto *FD = dyn_cast<FieldDecl>(D); |
| DSAVarData DVar; |
| if (Iter == end()) { |
| // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced |
| // in a region but not in construct] |
| // File-scope or namespace-scope variables referenced in called routines |
| // in the region are shared unless they appear in a threadprivate |
| // directive. |
| if (VD && !VD->isFunctionOrMethodVarDecl() && !isa<ParmVarDecl>(VD)) |
| DVar.CKind = OMPC_shared; |
| |
| // OpenMP [2.9.1.2, Data-sharing Attribute Rules for Variables Referenced |
| // in a region but not in construct] |
| // Variables with static storage duration that are declared in called |
| // routines in the region are shared. |
| if (VD && VD->hasGlobalStorage()) |
| DVar.CKind = OMPC_shared; |
| |
| // Non-static data members are shared by default. |
| if (FD) |
| DVar.CKind = OMPC_shared; |
| |
| return DVar; |
| } |
| |
| // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced |
| // in a Construct, C/C++, predetermined, p.1] |
| // Variables with automatic storage duration that are declared in a scope |
| // inside the construct are private. |
| if (VD && isOpenMPLocal(VD, Iter) && VD->isLocalVarDecl() && |
| (VD->getStorageClass() == SC_Auto || VD->getStorageClass() == SC_None)) { |
| DVar.CKind = OMPC_private; |
| return DVar; |
| } |
| |
| DVar.DKind = Iter->Directive; |
| // Explicitly specified attributes and local variables with predetermined |
| // attributes. |
| if (Iter->SharingMap.count(D)) { |
| const DSAInfo &Data = Iter->SharingMap.lookup(D); |
| DVar.RefExpr = Data.RefExpr.getPointer(); |
| DVar.PrivateCopy = Data.PrivateCopy; |
| DVar.CKind = Data.Attributes; |
| DVar.ImplicitDSALoc = Iter->DefaultAttrLoc; |
| DVar.Modifier = Data.Modifier; |
| DVar.AppliedToPointee = Data.AppliedToPointee; |
| return DVar; |
| } |
| |
| // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced |
| // in a Construct, C/C++, implicitly determined, p.1] |
| // In a parallel or task construct, the data-sharing attributes of these |
| // variables are determined by the default clause, if present. |
| switch (Iter->DefaultAttr) { |
| case DSA_shared: |
| DVar.CKind = OMPC_shared; |
| DVar.ImplicitDSALoc = Iter->DefaultAttrLoc; |
| return DVar; |
| case DSA_none: |
| return DVar; |
| case DSA_firstprivate: |
| if (VD->getStorageDuration() == SD_Static && |
| VD->getDeclContext()->isFileContext()) { |
| DVar.CKind = OMPC_unknown; |
| } else { |
| DVar.CKind = OMPC_firstprivate; |
| } |
| DVar.ImplicitDSALoc = Iter->DefaultAttrLoc; |
| return DVar; |
| case DSA_unspecified: |
| // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced |
| // in a Construct, implicitly determined, p.2] |
| // In a parallel construct, if no default clause is present, these |
| // variables are shared. |
| DVar.ImplicitDSALoc = Iter->DefaultAttrLoc; |
| if ((isOpenMPParallelDirective(DVar.DKind) && |
| !isOpenMPTaskLoopDirective(DVar.DKind)) || |
| isOpenMPTeamsDirective(DVar.DKind)) { |
| DVar.CKind = OMPC_shared; |
| return DVar; |
| } |
| |
| // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced |
| // in a Construct, implicitly determined, p.4] |
| // In a task construct, if no default clause is present, a variable that in |
| // the enclosing context is determined to be shared by all implicit tasks |
| // bound to the current team is shared. |
| if (isOpenMPTaskingDirective(DVar.DKind)) { |
| DSAVarData DVarTemp; |
| const_iterator I = Iter, E = end(); |
| do { |
| ++I; |
| // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables |
| // Referenced in a Construct, implicitly determined, p.6] |
| // In a task construct, if no default clause is present, a variable |
| // whose data-sharing attribute is not determined by the rules above is |
| // firstprivate. |
| DVarTemp = getDSA(I, D); |
| if (DVarTemp.CKind != OMPC_shared) { |
| DVar.RefExpr = nullptr; |
| DVar.CKind = OMPC_firstprivate; |
| return DVar; |
| } |
| } while (I != E && !isImplicitTaskingRegion(I->Directive)); |
| DVar.CKind = |
| (DVarTemp.CKind == OMPC_unknown) ? OMPC_firstprivate : OMPC_shared; |
| return DVar; |
| } |
| } |
| // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced |
| // in a Construct, implicitly determined, p.3] |
| // For constructs other than task, if no default clause is present, these |
| // variables inherit their data-sharing attributes from the enclosing |
| // context. |
| return getDSA(++Iter, D); |
| } |
| |
| const Expr *DSAStackTy::addUniqueAligned(const ValueDecl *D, |
| const Expr *NewDE) { |
| assert(!isStackEmpty() && "Data sharing attributes stack is empty"); |
| D = getCanonicalDecl(D); |
| SharingMapTy &StackElem = getTopOfStack(); |
| auto It = StackElem.AlignedMap.find(D); |
| if (It == StackElem.AlignedMap.end()) { |
| assert(NewDE && "Unexpected nullptr expr to be added into aligned map"); |
| StackElem.AlignedMap[D] = NewDE; |
| return nullptr; |
| } |
| assert(It->second && "Unexpected nullptr expr in the aligned map"); |
| return It->second; |
| } |
| |
| const Expr *DSAStackTy::addUniqueNontemporal(const ValueDecl *D, |
| const Expr *NewDE) { |
| assert(!isStackEmpty() && "Data sharing attributes stack is empty"); |
| D = getCanonicalDecl(D); |
| SharingMapTy &StackElem = getTopOfStack(); |
| auto It = StackElem.NontemporalMap.find(D); |
| if (It == StackElem.NontemporalMap.end()) { |
| assert(NewDE && "Unexpected nullptr expr to be added into aligned map"); |
| StackElem.NontemporalMap[D] = NewDE; |
| return nullptr; |
| } |
| assert(It->second && "Unexpected nullptr expr in the aligned map"); |
| return It->second; |
| } |
| |
| void DSAStackTy::addLoopControlVariable(const ValueDecl *D, VarDecl *Capture) { |
| assert(!isStackEmpty() && "Data-sharing attributes stack is empty"); |
| D = getCanonicalDecl(D); |
| SharingMapTy &StackElem = getTopOfStack(); |
| StackElem.LCVMap.try_emplace( |
| D, LCDeclInfo(StackElem.LCVMap.size() + 1, Capture)); |
| } |
| |
| const DSAStackTy::LCDeclInfo |
| DSAStackTy::isLoopControlVariable(const ValueDecl *D) const { |
| assert(!isStackEmpty() && "Data-sharing attributes stack is empty"); |
| D = getCanonicalDecl(D); |
| const SharingMapTy &StackElem = getTopOfStack(); |
| auto It = StackElem.LCVMap.find(D); |
| if (It != StackElem.LCVMap.end()) |
| return It->second; |
| return {0, nullptr}; |
| } |
| |
| const DSAStackTy::LCDeclInfo |
| DSAStackTy::isLoopControlVariable(const ValueDecl *D, unsigned Level) const { |
| assert(!isStackEmpty() && "Data-sharing attributes stack is empty"); |
| D = getCanonicalDecl(D); |
| for (unsigned I = Level + 1; I > 0; --I) { |
| const SharingMapTy &StackElem = getStackElemAtLevel(I - 1); |
| auto It = StackElem.LCVMap.find(D); |
| if (It != StackElem.LCVMap.end()) |
| return It->second; |
| } |
| return {0, nullptr}; |
| } |
| |
| const DSAStackTy::LCDeclInfo |
| DSAStackTy::isParentLoopControlVariable(const ValueDecl *D) const { |
| const SharingMapTy *Parent = getSecondOnStackOrNull(); |
| assert(Parent && "Data-sharing attributes stack is empty"); |
| D = getCanonicalDecl(D); |
| auto It = Parent->LCVMap.find(D); |
| if (It != Parent->LCVMap.end()) |
| return It->second; |
| return {0, nullptr}; |
| } |
| |
| const ValueDecl *DSAStackTy::getParentLoopControlVariable(unsigned I) const { |
| const SharingMapTy *Parent = getSecondOnStackOrNull(); |
| assert(Parent && "Data-sharing attributes stack is empty"); |
| if (Parent->LCVMap.size() < I) |
| return nullptr; |
| for (const auto &Pair : Parent->LCVMap) |
| if (Pair.second.first == I) |
| return Pair.first; |
| return nullptr; |
| } |
| |
| void DSAStackTy::addDSA(const ValueDecl *D, const Expr *E, OpenMPClauseKind A, |
| DeclRefExpr *PrivateCopy, unsigned Modifier, |
| bool AppliedToPointee) { |
| D = getCanonicalDecl(D); |
| if (A == OMPC_threadprivate) { |
| DSAInfo &Data = Threadprivates[D]; |
| Data.Attributes = A; |
| Data.RefExpr.setPointer(E); |
| Data.PrivateCopy = nullptr; |
| Data.Modifier = Modifier; |
| } else { |
| DSAInfo &Data = getTopOfStack().SharingMap[D]; |
| assert(Data.Attributes == OMPC_unknown || (A == Data.Attributes) || |
| (A == OMPC_firstprivate && Data.Attributes == OMPC_lastprivate) || |
| (A == OMPC_lastprivate && Data.Attributes == OMPC_firstprivate) || |
| (isLoopControlVariable(D).first && A == OMPC_private)); |
| Data.Modifier = Modifier; |
| if (A == OMPC_lastprivate && Data.Attributes == OMPC_firstprivate) { |
| Data.RefExpr.setInt(/*IntVal=*/true); |
| return; |
| } |
| const bool IsLastprivate = |
| A == OMPC_lastprivate || Data.Attributes == OMPC_lastprivate; |
| Data.Attributes = A; |
| Data.RefExpr.setPointerAndInt(E, IsLastprivate); |
| Data.PrivateCopy = PrivateCopy; |
| Data.AppliedToPointee = AppliedToPointee; |
| if (PrivateCopy) { |
| DSAInfo &Data = getTopOfStack().SharingMap[PrivateCopy->getDecl()]; |
| Data.Modifier = Modifier; |
| Data.Attributes = A; |
| Data.RefExpr.setPointerAndInt(PrivateCopy, IsLastprivate); |
| Data.PrivateCopy = nullptr; |
| Data.AppliedToPointee = AppliedToPointee; |
| } |
| } |
| } |
| |
| /// Build a variable declaration for OpenMP loop iteration variable. |
| static VarDecl *buildVarDecl(Sema &SemaRef, SourceLocation Loc, QualType Type, |
| StringRef Name, const AttrVec *Attrs = nullptr, |
| DeclRefExpr *OrigRef = nullptr) { |
| DeclContext *DC = SemaRef.CurContext; |
| IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name); |
| TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc); |
| auto *Decl = |
| VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type, TInfo, SC_None); |
| if (Attrs) { |
| for (specific_attr_iterator<AlignedAttr> I(Attrs->begin()), E(Attrs->end()); |
| I != E; ++I) |
| Decl->addAttr(*I); |
| } |
| Decl->setImplicit(); |
| if (OrigRef) { |
| Decl->addAttr( |
| OMPReferencedVarAttr::CreateImplicit(SemaRef.Context, OrigRef)); |
| } |
| return Decl; |
| } |
| |
| static DeclRefExpr *buildDeclRefExpr(Sema &S, VarDecl *D, QualType Ty, |
| SourceLocation Loc, |
| bool RefersToCapture = false) { |
| D->setReferenced(); |
| D->markUsed(S.Context); |
| return DeclRefExpr::Create(S.getASTContext(), NestedNameSpecifierLoc(), |
| SourceLocation(), D, RefersToCapture, Loc, Ty, |
| VK_LValue); |
| } |
| |
| void DSAStackTy::addTaskgroupReductionData(const ValueDecl *D, SourceRange SR, |
| BinaryOperatorKind BOK) { |
| D = getCanonicalDecl(D); |
| assert(!isStackEmpty() && "Data-sharing attributes stack is empty"); |
| assert( |
| getTopOfStack().SharingMap[D].Attributes == OMPC_reduction && |
| "Additional reduction info may be specified only for reduction items."); |
| ReductionData &ReductionData = getTopOfStack().ReductionMap[D]; |
| assert(ReductionData.ReductionRange.isInvalid() && |
| (getTopOfStack().Directive == OMPD_taskgroup || |
| ((isOpenMPParallelDirective(getTopOfStack().Directive) || |
| isOpenMPWorksharingDirective(getTopOfStack().Directive)) && |
| !isOpenMPSimdDirective(getTopOfStack().Directive))) && |
| "Additional reduction info may be specified only once for reduction " |
| "items."); |
| ReductionData.set(BOK, SR); |
| Expr *&TaskgroupReductionRef = |
| getTopOfStack().TaskgroupReductionRef; |
| if (!TaskgroupReductionRef) { |
| VarDecl *VD = buildVarDecl(SemaRef, SR.getBegin(), |
| SemaRef.Context.VoidPtrTy, ".task_red."); |
| TaskgroupReductionRef = |
| buildDeclRefExpr(SemaRef, VD, SemaRef.Context.VoidPtrTy, SR.getBegin()); |
| } |
| } |
| |
| void DSAStackTy::addTaskgroupReductionData(const ValueDecl *D, SourceRange SR, |
| const Expr *ReductionRef) { |
| D = getCanonicalDecl(D); |
| assert(!isStackEmpty() && "Data-sharing attributes stack is empty"); |
| assert( |
| getTopOfStack().SharingMap[D].Attributes == OMPC_reduction && |
| "Additional reduction info may be specified only for reduction items."); |
| ReductionData &ReductionData = getTopOfStack().ReductionMap[D]; |
| assert(ReductionData.ReductionRange.isInvalid() && |
| (getTopOfStack().Directive == OMPD_taskgroup || |
| ((isOpenMPParallelDirective(getTopOfStack().Directive) || |
| isOpenMPWorksharingDirective(getTopOfStack().Directive)) && |
| !isOpenMPSimdDirective(getTopOfStack().Directive))) && |
| "Additional reduction info may be specified only once for reduction " |
| "items."); |
| ReductionData.set(ReductionRef, SR); |
| Expr *&TaskgroupReductionRef = |
| getTopOfStack().TaskgroupReductionRef; |
| if (!TaskgroupReductionRef) { |
| VarDecl *VD = buildVarDecl(SemaRef, SR.getBegin(), |
| SemaRef.Context.VoidPtrTy, ".task_red."); |
| TaskgroupReductionRef = |
| buildDeclRefExpr(SemaRef, VD, SemaRef.Context.VoidPtrTy, SR.getBegin()); |
| } |
| } |
| |
| const DSAStackTy::DSAVarData DSAStackTy::getTopMostTaskgroupReductionData( |
| const ValueDecl *D, SourceRange &SR, BinaryOperatorKind &BOK, |
| Expr *&TaskgroupDescriptor) const { |
| D = getCanonicalDecl(D); |
| assert(!isStackEmpty() && "Data-sharing attributes stack is empty."); |
| for (const_iterator I = begin() + 1, E = end(); I != E; ++I) { |
| const DSAInfo &Data = I->SharingMap.lookup(D); |
| if (Data.Attributes != OMPC_reduction || |
| Data.Modifier != OMPC_REDUCTION_task) |
| continue; |
| const ReductionData &ReductionData = I->ReductionMap.lookup(D); |
| if (!ReductionData.ReductionOp || |
| ReductionData.ReductionOp.is<const Expr *>()) |
| return DSAVarData(); |
| SR = ReductionData.ReductionRange; |
| BOK = ReductionData.ReductionOp.get<ReductionData::BOKPtrType>(); |
| assert(I->TaskgroupReductionRef && "taskgroup reduction reference " |
| "expression for the descriptor is not " |
| "set."); |
| TaskgroupDescriptor = I->TaskgroupReductionRef; |
| return DSAVarData(I->Directive, OMPC_reduction, Data.RefExpr.getPointer(), |
| Data.PrivateCopy, I->DefaultAttrLoc, OMPC_REDUCTION_task, |
| /*AppliedToPointee=*/false); |
| } |
| return DSAVarData(); |
| } |
| |
| const DSAStackTy::DSAVarData DSAStackTy::getTopMostTaskgroupReductionData( |
| const ValueDecl *D, SourceRange &SR, const Expr *&ReductionRef, |
| Expr *&TaskgroupDescriptor) const { |
| D = getCanonicalDecl(D); |
| assert(!isStackEmpty() && "Data-sharing attributes stack is empty."); |
| for (const_iterator I = begin() + 1, E = end(); I != E; ++I) { |
| const DSAInfo &Data = I->SharingMap.lookup(D); |
| if (Data.Attributes != OMPC_reduction || |
| Data.Modifier != OMPC_REDUCTION_task) |
| continue; |
| const ReductionData &ReductionData = I->ReductionMap.lookup(D); |
| if (!ReductionData.ReductionOp || |
| !ReductionData.ReductionOp.is<const Expr *>()) |
| return DSAVarData(); |
| SR = ReductionData.ReductionRange; |
| ReductionRef = ReductionData.ReductionOp.get<const Expr *>(); |
| assert(I->TaskgroupReductionRef && "taskgroup reduction reference " |
| "expression for the descriptor is not " |
| "set."); |
| TaskgroupDescriptor = I->TaskgroupReductionRef; |
| return DSAVarData(I->Directive, OMPC_reduction, Data.RefExpr.getPointer(), |
| Data.PrivateCopy, I->DefaultAttrLoc, OMPC_REDUCTION_task, |
| /*AppliedToPointee=*/false); |
| } |
| return DSAVarData(); |
| } |
| |
| bool DSAStackTy::isOpenMPLocal(VarDecl *D, const_iterator I) const { |
| D = D->getCanonicalDecl(); |
| for (const_iterator E = end(); I != E; ++I) { |
| if (isImplicitOrExplicitTaskingRegion(I->Directive) || |
| isOpenMPTargetExecutionDirective(I->Directive)) { |
| if (I->CurScope) { |
| Scope *TopScope = I->CurScope->getParent(); |
| Scope *CurScope = getCurScope(); |
| while (CurScope && CurScope != TopScope && !CurScope->isDeclScope(D)) |
| CurScope = CurScope->getParent(); |
| return CurScope != TopScope; |
| } |
| for (DeclContext *DC = D->getDeclContext(); DC; DC = DC->getParent()) |
| if (I->Context == DC) |
| return true; |
| return false; |
| } |
| } |
| return false; |
| } |
| |
| static bool isConstNotMutableType(Sema &SemaRef, QualType Type, |
| bool AcceptIfMutable = true, |
| bool *IsClassType = nullptr) { |
| ASTContext &Context = SemaRef.getASTContext(); |
| Type = Type.getNonReferenceType().getCanonicalType(); |
| bool IsConstant = Type.isConstant(Context); |
| Type = Context.getBaseElementType(Type); |
| const CXXRecordDecl *RD = AcceptIfMutable && SemaRef.getLangOpts().CPlusPlus |
| ? Type->getAsCXXRecordDecl() |
| : nullptr; |
| if (const auto *CTSD = dyn_cast_or_null<ClassTemplateSpecializationDecl>(RD)) |
| if (const ClassTemplateDecl *CTD = CTSD->getSpecializedTemplate()) |
| RD = CTD->getTemplatedDecl(); |
| if (IsClassType) |
| *IsClassType = RD; |
| return IsConstant && !(SemaRef.getLangOpts().CPlusPlus && RD && |
| RD->hasDefinition() && RD->hasMutableFields()); |
| } |
| |
| static bool rejectConstNotMutableType(Sema &SemaRef, const ValueDecl *D, |
| QualType Type, OpenMPClauseKind CKind, |
| SourceLocation ELoc, |
| bool AcceptIfMutable = true, |
| bool ListItemNotVar = false) { |
| ASTContext &Context = SemaRef.getASTContext(); |
| bool IsClassType; |
| if (isConstNotMutableType(SemaRef, Type, AcceptIfMutable, &IsClassType)) { |
| unsigned Diag = ListItemNotVar |
| ? diag::err_omp_const_list_item |
| : IsClassType ? diag::err_omp_const_not_mutable_variable |
| : diag::err_omp_const_variable; |
| SemaRef.Diag(ELoc, Diag) << getOpenMPClauseName(CKind); |
| if (!ListItemNotVar && D) { |
| const VarDecl *VD = dyn_cast<VarDecl>(D); |
| bool IsDecl = !VD || VD->isThisDeclarationADefinition(Context) == |
| VarDecl::DeclarationOnly; |
| SemaRef.Diag(D->getLocation(), |
| IsDecl ? diag::note_previous_decl : diag::note_defined_here) |
| << D; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| const DSAStackTy::DSAVarData DSAStackTy::getTopDSA(ValueDecl *D, |
| bool FromParent) { |
| D = getCanonicalDecl(D); |
| DSAVarData DVar; |
| |
| auto *VD = dyn_cast<VarDecl>(D); |
| auto TI = Threadprivates.find(D); |
| if (TI != Threadprivates.end()) { |
| DVar.RefExpr = TI->getSecond().RefExpr.getPointer(); |
| DVar.CKind = OMPC_threadprivate; |
| DVar.Modifier = TI->getSecond().Modifier; |
| return DVar; |
| } |
| if (VD && VD->hasAttr<OMPThreadPrivateDeclAttr>()) { |
| DVar.RefExpr = buildDeclRefExpr( |
| SemaRef, VD, D->getType().getNonReferenceType(), |
| VD->getAttr<OMPThreadPrivateDeclAttr>()->getLocation()); |
| DVar.CKind = OMPC_threadprivate; |
| addDSA(D, DVar.RefExpr, OMPC_threadprivate); |
| return DVar; |
| } |
| // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced |
| // in a Construct, C/C++, predetermined, p.1] |
| // Variables appearing in threadprivate directives are threadprivate. |
| if ((VD && VD->getTLSKind() != VarDecl::TLS_None && |
| !(VD->hasAttr<OMPThreadPrivateDeclAttr>() && |
| SemaRef.getLangOpts().OpenMPUseTLS && |
| SemaRef.getASTContext().getTargetInfo().isTLSSupported())) || |
| (VD && VD->getStorageClass() == SC_Register && |
| VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())) { |
| DVar.RefExpr = buildDeclRefExpr( |
| SemaRef, VD, D->getType().getNonReferenceType(), D->getLocation()); |
| DVar.CKind = OMPC_threadprivate; |
| addDSA(D, DVar.RefExpr, OMPC_threadprivate); |
| return DVar; |
| } |
| if (SemaRef.getLangOpts().OpenMPCUDAMode && VD && |
| VD->isLocalVarDeclOrParm() && !isStackEmpty() && |
| !isLoopControlVariable(D).first) { |
| const_iterator IterTarget = |
| std::find_if(begin(), end(), [](const SharingMapTy &Data) { |
| return isOpenMPTargetExecutionDirective(Data.Directive); |
| }); |
| if (IterTarget != end()) { |
| const_iterator ParentIterTarget = IterTarget + 1; |
| for (const_iterator Iter = begin(); |
| Iter != ParentIterTarget; ++Iter) { |
| if (isOpenMPLocal(VD, Iter)) { |
| DVar.RefExpr = |
| buildDeclRefExpr(SemaRef, VD, D->getType().getNonReferenceType(), |
| D->getLocation()); |
| DVar.CKind = OMPC_threadprivate; |
| return DVar; |
| } |
| } |
| if (!isClauseParsingMode() || IterTarget != begin()) { |
| auto DSAIter = IterTarget->SharingMap.find(D); |
| if (DSAIter != IterTarget->SharingMap.end() && |
| isOpenMPPrivate(DSAIter->getSecond().Attributes)) { |
| DVar.RefExpr = DSAIter->getSecond().RefExpr.getPointer(); |
| DVar.CKind = OMPC_threadprivate; |
| return DVar; |
| } |
| const_iterator End = end(); |
| if (!SemaRef.isOpenMPCapturedByRef( |
| D, std::distance(ParentIterTarget, End), |
| /*OpenMPCaptureLevel=*/0)) { |
| DVar.RefExpr = |
| buildDeclRefExpr(SemaRef, VD, D->getType().getNonReferenceType(), |
| IterTarget->ConstructLoc); |
| DVar.CKind = OMPC_threadprivate; |
| return DVar; |
| } |
| } |
| } |
| } |
| |
| if (isStackEmpty()) |
| // Not in OpenMP execution region and top scope was already checked. |
| return DVar; |
| |
| // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced |
| // in a Construct, C/C++, predetermined, p.4] |
| // Static data members are shared. |
| // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced |
| // in a Construct, C/C++, predetermined, p.7] |
| // Variables with static storage duration that are declared in a scope |
| // inside the construct are shared. |
| if (VD && VD->isStaticDataMember()) { |
| // Check for explicitly specified attributes. |
| const_iterator I = begin(); |
| const_iterator EndI = end(); |
| if (FromParent && I != EndI) |
| ++I; |
| if (I != EndI) { |
| auto It = I->SharingMap.find(D); |
| if (It != I->SharingMap.end()) { |
| const DSAInfo &Data = It->getSecond(); |
| DVar.RefExpr = Data.RefExpr.getPointer(); |
| DVar.PrivateCopy = Data.PrivateCopy; |
| DVar.CKind = Data.Attributes; |
| DVar.ImplicitDSALoc = I->DefaultAttrLoc; |
| DVar.DKind = I->Directive; |
| DVar.Modifier = Data.Modifier; |
| DVar.AppliedToPointee = Data.AppliedToPointee; |
| return DVar; |
| } |
| } |
| |
| DVar.CKind = OMPC_shared; |
| return DVar; |
| } |
| |
| auto &&MatchesAlways = [](OpenMPDirectiveKind) { return true; }; |
| // The predetermined shared attribute for const-qualified types having no |
| // mutable members was removed after OpenMP 3.1. |
| if (SemaRef.LangOpts.OpenMP <= 31) { |
| // OpenMP [2.9.1.1, Data-sharing Attribute Rules for Variables Referenced |
| // in a Construct, C/C++, predetermined, p.6] |
| // Variables with const qualified type having no mutable member are |
| // shared. |
| if (isConstNotMutableType(SemaRef, D->getType())) { |
| // Variables with const-qualified type having no mutable member may be |
| // listed in a firstprivate clause, even if they are static data members. |
| DSAVarData DVarTemp = hasInnermostDSA( |
| D, |
| [](OpenMPClauseKind C, bool) { |
| return C == OMPC_firstprivate || C == OMPC_shared; |
| }, |
| MatchesAlways, FromParent); |
| if (DVarTemp.CKind != OMPC_unknown && DVarTemp.RefExpr) |
| return DVarTemp; |
| |
| DVar.CKind = OMPC_shared; |
| return DVar; |
| } |
| } |
| |
| // Explicitly specified attributes and local variables with predetermined |
| // attributes. |
| const_iterator I = begin(); |
| const_iterator EndI = end(); |
| if (FromParent && I != EndI) |
| ++I; |
| if (I == EndI) |
| return DVar; |
| auto It = I->SharingMap.find(D); |
| if (It != I->SharingMap.end()) { |
| const DSAInfo &Data = It->getSecond(); |
| DVar.RefExpr = Data.RefExpr.getPointer(); |
| DVar.PrivateCopy = Data.PrivateCopy; |
| DVar.CKind = Data.Attributes; |
| DVar.ImplicitDSALoc = I->DefaultAttrLoc; |
| DVar.DKind = I->Directive; |
| DVar.Modifier = Data.Modifier; |
| DVar.AppliedToPointee = Data.AppliedToPointee; |
| } |
| |
| return DVar; |
| } |
| |
| const DSAStackTy::DSAVarData DSAStackTy::getImplicitDSA(ValueDecl *D, |
| bool FromParent) const { |
| if (isStackEmpty()) { |
| const_iterator I; |
| return getDSA(I, D); |
| } |
| D = getCanonicalDecl(D); |
| const_iterator StartI = begin(); |
| const_iterator EndI = end(); |
| if (FromParent && StartI != EndI) |
| ++StartI; |
| return getDSA(StartI, D); |
| } |
| |
| const DSAStackTy::DSAVarData DSAStackTy::getImplicitDSA(ValueDecl *D, |
| unsigned Level) const { |
| if (getStackSize() <= Level) |
| return DSAVarData(); |
| D = getCanonicalDecl(D); |
| const_iterator StartI = std::next(begin(), getStackSize() - 1 - Level); |
| return getDSA(StartI, D); |
| } |
| |
| const DSAStackTy::DSAVarData |
| DSAStackTy::hasDSA(ValueDecl *D, |
| const llvm::function_ref<bool(OpenMPClauseKind, bool)> CPred, |
| const llvm::function_ref<bool(OpenMPDirectiveKind)> DPred, |
| bool FromParent) const { |
| if (isStackEmpty()) |
| return {}; |
| D = getCanonicalDecl(D); |
| const_iterator I = begin(); |
| const_iterator EndI = end(); |
| if (FromParent && I != EndI) |
| ++I; |
| for (; I != EndI; ++I) { |
| if (!DPred(I->Directive) && |
| !isImplicitOrExplicitTaskingRegion(I->Directive)) |
| continue; |
| const_iterator NewI = I; |
| DSAVarData DVar = getDSA(NewI, D); |
| if (I == NewI && CPred(DVar.CKind, DVar.AppliedToPointee)) |
| return DVar; |
| } |
| return {}; |
| } |
| |
| const DSAStackTy::DSAVarData DSAStackTy::hasInnermostDSA( |
| ValueDecl *D, const llvm::function_ref<bool(OpenMPClauseKind, bool)> CPred, |
| const llvm::function_ref<bool(OpenMPDirectiveKind)> DPred, |
| bool FromParent) const { |
| if (isStackEmpty()) |
| return {}; |
| D = getCanonicalDecl(D); |
| const_iterator StartI = begin(); |
| const_iterator EndI = end(); |
| if (FromParent && StartI != EndI) |
| ++StartI; |
| if (StartI == EndI || !DPred(StartI->Directive)) |
| return {}; |
| const_iterator NewI = StartI; |
| DSAVarData DVar = getDSA(NewI, D); |
| return (NewI == StartI && CPred(DVar.CKind, DVar.AppliedToPointee)) |
| ? DVar |
| : DSAVarData(); |
| } |
| |
| bool DSAStackTy::hasExplicitDSA( |
| const ValueDecl *D, |
| const llvm::function_ref<bool(OpenMPClauseKind, bool)> CPred, |
| unsigned Level, bool NotLastprivate) const { |
| if (getStackSize() <= Level) |
| return false; |
| D = getCanonicalDecl(D); |
| const SharingMapTy &StackElem = getStackElemAtLevel(Level); |
| auto I = StackElem.SharingMap.find(D); |
| if (I != StackElem.SharingMap.end() && I->getSecond().RefExpr.getPointer() && |
| CPred(I->getSecond().Attributes, I->getSecond().AppliedToPointee) && |
| (!NotLastprivate || !I->getSecond().RefExpr.getInt())) |
| return true; |
| // Check predetermined rules for the loop control variables. |
| auto LI = StackElem.LCVMap.find(D); |
| if (LI != StackElem.LCVMap.end()) |
| return CPred(OMPC_private, /*AppliedToPointee=*/false); |
| return false; |
| } |
| |
| bool DSAStackTy::hasExplicitDirective( |
| const llvm::function_ref<bool(OpenMPDirectiveKind)> DPred, |
| unsigned Level) const { |
| if (getStackSize() <= Level) |
| return false; |
| const SharingMapTy &StackElem = getStackElemAtLevel(Level); |
| return DPred(StackElem.Directive); |
| } |
| |
| bool DSAStackTy::hasDirective( |
| const llvm::function_ref<bool(OpenMPDirectiveKind, |
| const DeclarationNameInfo &, SourceLocation)> |
| DPred, |
| bool FromParent) const { |
| // We look only in the enclosing region. |
| size_t Skip = FromParent ? 2 : 1; |
| for (const_iterator I = begin() + std::min(Skip, getStackSize()), E = end(); |
| I != E; ++I) { |
| if (DPred(I->Directive, I->DirectiveName, I->ConstructLoc)) |
| return true; |
| } |
| return false; |
| } |
| |
| void Sema::InitDataSharingAttributesStack() { |
| VarDataSharingAttributesStack = new DSAStackTy(*this); |
| } |
| |
| #define DSAStack static_cast<DSAStackTy *>(VarDataSharingAttributesStack) |
| |
| void Sema::pushOpenMPFunctionRegion() { |
| DSAStack->pushFunction(); |
| } |
| |
| void Sema::popOpenMPFunctionRegion(const FunctionScopeInfo *OldFSI) { |
| DSAStack->popFunction(OldFSI); |
| } |
| |
| static bool isOpenMPDeviceDelayedContext(Sema &S) { |
| assert(S.LangOpts.OpenMP && S.LangOpts.OpenMPIsDevice && |
| "Expected OpenMP device compilation."); |
| return !S.isInOpenMPTargetExecutionDirective(); |
| } |
| |
| namespace { |
| /// Status of the function emission on the host/device. |
| enum class FunctionEmissionStatus { |
| Emitted, |
| Discarded, |
| Unknown, |
| }; |
| } // anonymous namespace |
| |
| Sema::SemaDiagnosticBuilder Sema::diagIfOpenMPDeviceCode(SourceLocation Loc, |
| unsigned DiagID, |
| FunctionDecl *FD) { |
| assert(LangOpts.OpenMP && LangOpts.OpenMPIsDevice && |
| "Expected OpenMP device compilation."); |
| |
| SemaDiagnosticBuilder::Kind Kind = SemaDiagnosticBuilder::K_Nop; |
| if (FD) { |
| FunctionEmissionStatus FES = getEmissionStatus(FD); |
| switch (FES) { |
| case FunctionEmissionStatus::Emitted: |
| Kind = SemaDiagnosticBuilder::K_Immediate; |
| break; |
| case FunctionEmissionStatus::Unknown: |
| // TODO: We should always delay diagnostics here in case a target |
| // region is in a function we do not emit. However, as the |
| // current diagnostics are associated with the function containing |
| // the target region and we do not emit that one, we would miss out |
| // on diagnostics for the target region itself. We need to anchor |
| // the diagnostics with the new generated function *or* ensure we |
| // emit diagnostics associated with the surrounding function. |
| Kind = isOpenMPDeviceDelayedContext(*this) |
| ? SemaDiagnosticBuilder::K_Deferred |
| : SemaDiagnosticBuilder::K_Immediate; |
| break; |
| case FunctionEmissionStatus::TemplateDiscarded: |
| case FunctionEmissionStatus::OMPDiscarded: |
| Kind = SemaDiagnosticBuilder::K_Nop; |
| break; |
| case FunctionEmissionStatus::CUDADiscarded: |
| llvm_unreachable("CUDADiscarded unexpected in OpenMP device compilation"); |
| break; |
| } |
| } |
| |
| return SemaDiagnosticBuilder(Kind, Loc, DiagID, FD, *this); |
| } |
| |
| Sema::SemaDiagnosticBuilder Sema::diagIfOpenMPHostCode(SourceLocation Loc, |
| unsigned DiagID, |
| FunctionDecl *FD) { |
| assert(LangOpts.OpenMP && !LangOpts.OpenMPIsDevice && |
| "Expected OpenMP host compilation."); |
| |
| SemaDiagnosticBuilder::Kind Kind = SemaDiagnosticBuilder::K_Nop; |
| if (FD) { |
| FunctionEmissionStatus FES = getEmissionStatus(FD); |
| switch (FES) { |
| case FunctionEmissionStatus::Emitted: |
| Kind = SemaDiagnosticBuilder::K_Immediate; |
| break; |
| case FunctionEmissionStatus::Unknown: |
| Kind = SemaDiagnosticBuilder::K_Deferred; |
| break; |
| case FunctionEmissionStatus::TemplateDiscarded: |
| case FunctionEmissionStatus::OMPDiscarded: |
| case FunctionEmissionStatus::CUDADiscarded: |
| Kind = SemaDiagnosticBuilder::K_Nop; |
| break; |
| } |
| } |
| |
| return SemaDiagnosticBuilder(Kind, Loc, DiagID, FD, *this); |
| } |
| |
| static OpenMPDefaultmapClauseKind |
| getVariableCategoryFromDecl(const LangOptions &LO, const ValueDecl *VD) { |
| if (LO.OpenMP <= 45) { |
| if (VD->getType().getNonReferenceType()->isScalarType()) |
| return OMPC_DEFAULTMAP_scalar; |
| return OMPC_DEFAULTMAP_aggregate; |
| } |
| if (VD->getType().getNonReferenceType()->isAnyPointerType()) |
| return OMPC_DEFAULTMAP_pointer; |
| if (VD->getType().getNonReferenceType()->isScalarType()) |
| return OMPC_DEFAULTMAP_scalar; |
| return OMPC_DEFAULTMAP_aggregate; |
| } |
| |
| bool Sema::isOpenMPCapturedByRef(const ValueDecl *D, unsigned Level, |
| unsigned OpenMPCaptureLevel) const { |
| assert(LangOpts.OpenMP && "OpenMP is not allowed"); |
| |
| ASTContext &Ctx = getASTContext(); |
| bool IsByRef = true; |
| |
| // Find the directive that is associated with the provided scope. |
| D = cast<ValueDecl>(D->getCanonicalDecl()); |
| QualType Ty = D->getType(); |
| |
| bool IsVariableUsedInMapClause = false; |
| if (DSAStack->hasExplicitDirective(isOpenMPTargetExecutionDirective, Level)) { |
| // This table summarizes how a given variable should be passed to the device |
| // given its type and the clauses where it appears. This table is based on |
| // the description in OpenMP 4.5 [2.10.4, target Construct] and |
| // OpenMP 4.5 [2.15.5, Data-mapping Attribute Rules and Clauses]. |
| // |
| // ========================================================================= |
| // | type | defaultmap | pvt | first | is_device_ptr | map | res. | |
| // | |(tofrom:scalar)| | pvt | | | | |
| // ========================================================================= |
| // | scl | | | | - | | bycopy| |
| // | scl | | - | x | - | - | bycopy| |
| // | scl | | x | - | - | - | null | |
| // | scl | x | | | - | | byref | |
| // | scl | x | - | x | - | - | bycopy| |
| // | scl | x | x | - | - | - | null | |
| // | scl | | - | - | - | x | byref | |
| // | scl | x | - | - | - | x | byref | |
| // |
| // | agg | n.a. | | | - | | byref | |
| // | agg | n.a. | - | x | - | - | byref | |
| // | agg | n.a. | x | - | - | - | null | |
| // | agg | n.a. | - | - | - | x | byref | |
| // | agg | n.a. | - | - | - | x[] | byref | |
| // |
| // | ptr | n.a. | | | - | | bycopy| |
| // | ptr | n.a. | - | x | - | - | bycopy| |
| // | ptr | n.a. | x | - | - | - | null | |
| // | ptr | n.a. | - | - | - | x | byref | |
| // | ptr | n.a. | - | - | - | x[] | bycopy| |
| // | ptr | n.a. | - | - | x | | bycopy| |
| // | ptr | n.a. | - | - | x | x | bycopy| |
| // | ptr | n.a. | - | - | x | x[] | bycopy| |
| // ========================================================================= |
| // Legend: |
| // scl - scalar |
| // ptr - pointer |
| // agg - aggregate |
| // x - applies |
| // - - invalid in this combination |
| // [] - mapped with an array section |
| // byref - should be mapped by reference |
| // byval - should be mapped by value |
| // null - initialize a local variable to null on the device |
| // |
| // Observations: |
| // - All scalar declarations that show up in a map clause have to be passed |
| // by reference, because they may have been mapped in the enclosing data |
| // environment. |
| // - If the scalar value does not fit the size of uintptr, it has to be |
| // passed by reference, regardless the result in the table above. |
| // - For pointers mapped by value that have either an implicit map or an |
| // array section, the runtime library may pass the NULL value to the |
| // device instead of the value passed to it by the compiler. |
| |
| if (Ty->isReferenceType()) |
| Ty = Ty->castAs<ReferenceType>()->getPointeeType(); |
| |
| // Locate map clauses and see if the variable being captured is referred to |
| // in any of those clauses. Here we only care about variables, not fields, |
| // because fields are part of aggregates. |
| bool IsVariableAssociatedWithSection = false; |
| |
| DSAStack->checkMappableExprComponentListsForDeclAtLevel( |
| D, Level, |
| [&IsVariableUsedInMapClause, &IsVariableAssociatedWithSection, D]( |
| OMPClauseMappableExprCommon::MappableExprComponentListRef |
| MapExprComponents, |
| OpenMPClauseKind WhereFoundClauseKind) { |
| // Only the map clause information influences how a variable is |
| // captured. E.g. is_device_ptr does not require changing the default |
| // behavior. |
| if (WhereFoundClauseKind != OMPC_map) |
| return false; |
| |
| auto EI = MapExprComponents.rbegin(); |
| auto EE = MapExprComponents.rend(); |
| |
| assert(EI != EE && "Invalid map expression!"); |
| |
| if (isa<DeclRefExpr>(EI->getAssociatedExpression())) |
| IsVariableUsedInMapClause |= EI->getAssociatedDeclaration() == D; |
| |
| ++EI; |
| if (EI == EE) |
| return false; |
| |
| if (isa<ArraySubscriptExpr>(EI->getAssociatedExpression()) || |
| isa<OMPArraySectionExpr>(EI->getAssociatedExpression()) || |
| isa<MemberExpr>(EI->getAssociatedExpression()) || |
| isa<OMPArrayShapingExpr>(EI->getAssociatedExpression())) { |
| IsVariableAssociatedWithSection = true; |
| // There is nothing more we need to know about this variable. |
| return true; |
| } |
| |
| // Keep looking for more map info. |
| return false; |
| }); |
| |
| if (IsVariableUsedInMapClause) { |
| // If variable is identified in a map clause it is always captured by |
| // reference except if it is a pointer that is dereferenced somehow. |
| IsByRef = !(Ty->isPointerType() && IsVariableAssociatedWithSection); |
| } else { |
| // By default, all the data that has a scalar type is mapped by copy |
| // (except for reduction variables). |
| // Defaultmap scalar is mutual exclusive to defaultmap pointer |
| IsByRef = (DSAStack->isForceCaptureByReferenceInTargetExecutable() && |
| !Ty->isAnyPointerType()) || |
| !Ty->isScalarType() || |
| DSAStack->isDefaultmapCapturedByRef( |
| Level, getVariableCategoryFromDecl(LangOpts, D)) || |
| DSAStack->hasExplicitDSA( |
| D, |
| [](OpenMPClauseKind K, bool AppliedToPointee) { |
| return K == OMPC_reduction && !AppliedToPointee; |
| }, |
| Level); |
| } |
| } |
| |
| if (IsByRef && Ty.getNonReferenceType()->isScalarType()) { |
| IsByRef = |
| ((IsVariableUsedInMapClause && |
| DSAStack->getCaptureRegion(Level, OpenMPCaptureLevel) == |
| OMPD_target) || |
| !(DSAStack->hasExplicitDSA( |
| D, |
| [](OpenMPClauseKind K, bool AppliedToPointee) -> bool { |
| return K == OMPC_firstprivate || |
| (K == OMPC_reduction && AppliedToPointee); |
| }, |
| Level, /*NotLastprivate=*/true) || |
| DSAStack->isUsesAllocatorsDecl(Level, D))) && |
| // If the variable is artificial and must be captured by value - try to |
| // capture by value. |
| !(isa<OMPCapturedExprDecl>(D) && !D->hasAttr<OMPCaptureNoInitAttr>() && |
| !cast<OMPCapturedExprDecl>(D)->getInit()->isGLValue()) && |
| // If the variable is implicitly firstprivate and scalar - capture by |
| // copy |
| !(DSAStack->getDefaultDSA() == DSA_firstprivate && |
| !DSAStack->hasExplicitDSA( |
| D, [](OpenMPClauseKind K, bool) { return K != OMPC_unknown; }, |
| Level) && |
| !DSAStack->isLoopControlVariable(D, Level).first); |
| } |
| |
| // When passing data by copy, we need to make sure it fits the uintptr size |
| // and alignment, because the runtime library only deals with uintptr types. |
| // If it does not fit the uintptr size, we need to pass the data by reference |
| // instead. |
| if (!IsByRef && |
| (Ctx.getTypeSizeInChars(Ty) > |
| Ctx.getTypeSizeInChars(Ctx.getUIntPtrType()) || |
| Ctx.getDeclAlign(D) > Ctx.getTypeAlignInChars(Ctx.getUIntPtrType()))) { |
| IsByRef = true; |
| } |
| |
| return IsByRef; |
| } |
| |
| unsigned Sema::getOpenMPNestingLevel() const { |
| assert(getLangOpts().OpenMP); |
| return DSAStack->getNestingLevel(); |
| } |
| |
| bool Sema::isInOpenMPTargetExecutionDirective() const { |
| return (isOpenMPTargetExecutionDirective(DSAStack->getCurrentDirective()) && |
| !DSAStack->isClauseParsingMode()) || |
| DSAStack->hasDirective( |
| [](OpenMPDirectiveKind K, const DeclarationNameInfo &, |
| SourceLocation) -> bool { |
| return isOpenMPTargetExecutionDirective(K); |
| }, |
| false); |
| } |
| |
| VarDecl *Sema::isOpenMPCapturedDecl(ValueDecl *D, bool CheckScopeInfo, |
| unsigned StopAt) { |
| assert(LangOpts.OpenMP && "OpenMP is not allowed"); |
| D = getCanonicalDecl(D); |
| |
| auto *VD = dyn_cast<VarDecl>(D); |
| // Do not capture constexpr variables. |
| if (VD && VD->isConstexpr()) |
| return nullptr; |
| |
| // If we want to determine whether the variable should be captured from the |
| // perspective of the current capturing scope, and we've already left all the |
| // capturing scopes of the top directive on the stack, check from the |
| // perspective of its parent directive (if any) instead. |
| DSAStackTy::ParentDirectiveScope InParentDirectiveRAII( |
| *DSAStack, CheckScopeInfo && DSAStack->isBodyComplete()); |
| |
| // If we are attempting to capture a global variable in a directive with |
| // 'target' we return true so that this global is also mapped to the device. |
| // |
| if (VD && !VD->hasLocalStorage() && |
| (getCurCapturedRegion() || getCurBlock() || getCurLambda())) { |
| if (isInOpenMPTargetExecutionDirective()) { |
| DSAStackTy::DSAVarData DVarTop = |
| DSAStack->getTopDSA(D, DSAStack->isClauseParsingMode()); |
| if (DVarTop.CKind != OMPC_unknown && DVarTop.RefExpr) |
| return VD; |
| // If the declaration is enclosed in a 'declare target' directive, |
| // then it should not be captured. |
| // |
| if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) |
| return nullptr; |
| CapturedRegionScopeInfo *CSI = nullptr; |
| for (FunctionScopeInfo *FSI : llvm::drop_begin( |
| llvm::reverse(FunctionScopes), |
| CheckScopeInfo ? (FunctionScopes.size() - (StopAt + 1)) : 0)) { |
| if (!isa<CapturingScopeInfo>(FSI)) |
| return nullptr; |
| if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(FSI)) |
| if (RSI->CapRegionKind == CR_OpenMP) { |
| CSI = RSI; |
| break; |
| } |
| } |
| assert(CSI && "Failed to find CapturedRegionScopeInfo"); |
| SmallVector<OpenMPDirectiveKind, 4> Regions; |
| getOpenMPCaptureRegions(Regions, |
| DSAStack->getDirective(CSI->OpenMPLevel)); |
| if (Regions[CSI->OpenMPCaptureLevel] != OMPD_task) |
| return VD; |
| } |
| if (isInOpenMPDeclareTargetContext()) { |
| // Try to mark variable as declare target if it is used in capturing |
| // regions. |
| if (LangOpts.OpenMP <= 45 && |
| !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) |
| checkDeclIsAllowedInOpenMPTarget(nullptr, VD); |
| return nullptr; |
| } |
| } |
| |
| if (CheckScopeInfo) { |
| bool OpenMPFound = false; |
| for (unsigned I = StopAt + 1; I > 0; --I) { |
| FunctionScopeInfo *FSI = FunctionScopes[I - 1]; |
| if(!isa<CapturingScopeInfo>(FSI)) |
| return nullptr; |
| if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(FSI)) |
| if (RSI->CapRegionKind == CR_OpenMP) { |
| OpenMPFound = true; |
| break; |
| } |
| } |
| if (!OpenMPFound) |
| return nullptr; |
| } |
| |
| if (DSAStack->getCurrentDirective() != OMPD_unknown && |
| (!DSAStack->isClauseParsingMode() || |
| DSAStack->getParentDirective() != OMPD_unknown)) { |
| auto &&Info = DSAStack->isLoopControlVariable(D); |
| if (Info.first || |
| (VD && VD->hasLocalStorage() && |
| isImplicitOrExplicitTaskingRegion(DSAStack->getCurrentDirective())) || |
| (VD && DSAStack->isForceVarCapturing())) |
| return VD ? VD : Info.second; |
| DSAStackTy::DSAVarData DVarTop = |
| DSAStack->getTopDSA(D, DSAStack->isClauseParsingMode()); |
| if (DVarTop.CKind != OMPC_unknown && isOpenMPPrivate(DVarTop.CKind) && |
| (!VD || VD->hasLocalStorage() || !DVarTop.AppliedToPointee)) |
| return VD ? VD : cast<VarDecl>(DVarTop.PrivateCopy->getDecl()); |
| // Threadprivate variables must not be captured. |
| if (isOpenMPThreadPrivate(DVarTop.CKind)) |
| return nullptr; |
| // The variable is not private or it is the variable in the directive with |
| // default(none) clause and not used in any clause. |
| DSAStackTy::DSAVarData DVarPrivate = DSAStack->hasDSA( |
| D, |
| [](OpenMPClauseKind C, bool AppliedToPointee) { |
| return isOpenMPPrivate(C) && !AppliedToPointee; |
| }, |
| [](OpenMPDirectiveKind) { return true; }, |
| DSAStack->isClauseParsingMode()); |
| // Global shared must not be captured. |
| if (VD && !VD->hasLocalStorage() && DVarPrivate.CKind == OMPC_unknown && |
| ((DSAStack->getDefaultDSA() != DSA_none && |
| DSAStack->getDefaultDSA() != DSA_firstprivate) || |
| DVarTop.CKind == OMPC_shared)) |
| return nullptr; |
| if (DVarPrivate.CKind != OMPC_unknown || |
| (VD && (DSAStack->getDefaultDSA() == DSA_none || |
| DSAStack->getDefaultDSA() == DSA_firstprivate))) |
| return VD ? VD : cast<VarDecl>(DVarPrivate.PrivateCopy->getDecl()); |
| } |
| return nullptr; |
| } |
| |
| void Sema::adjustOpenMPTargetScopeIndex(unsigned &FunctionScopesIndex, |
| unsigned Level) const { |
| FunctionScopesIndex -= getOpenMPCaptureLevels(DSAStack->getDirective(Level)); |
| } |
| |
| void Sema::startOpenMPLoop() { |
| assert(LangOpts.OpenMP && "OpenMP must be enabled."); |
| if (isOpenMPLoopDirective(DSAStack->getCurrentDirective())) |
| DSAStack->loopInit(); |
| } |
| |
| void Sema::startOpenMPCXXRangeFor() { |
| assert(LangOpts.OpenMP && "OpenMP must be enabled."); |
| if (isOpenMPLoopDirective(DSAStack->getCurrentDirective())) { |
| DSAStack->resetPossibleLoopCounter(); |
| DSAStack->loopStart(); |
| } |
| } |
| |
| OpenMPClauseKind Sema::isOpenMPPrivateDecl(ValueDecl *D, unsigned Level, |
| unsigned CapLevel) const { |
| assert(LangOpts.OpenMP && "OpenMP is not allowed"); |
| if (DSAStack->hasExplicitDirective( |
| [](OpenMPDirectiveKind K) { return isOpenMPTaskingDirective(K); }, |
| Level)) { |
| bool IsTriviallyCopyable = |
| D->getType().getNonReferenceType().isTriviallyCopyableType(Context) && |
| !D->getType() |
| .getNonReferenceType() |
| .getCanonicalType() |
| ->getAsCXXRecordDecl(); |
| OpenMPDirectiveKind DKind = DSAStack->getDirective(Level); |
| SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; |
| getOpenMPCaptureRegions(CaptureRegions, DKind); |
| if (isOpenMPTaskingDirective(CaptureRegions[CapLevel]) && |
| (IsTriviallyCopyable || |
| !isOpenMPTaskLoopDirective(CaptureRegions[CapLevel]))) { |
| if (DSAStack->hasExplicitDSA( |
| D, |
| [](OpenMPClauseKind K, bool) { return K == OMPC_firstprivate; }, |
| Level, /*NotLastprivate=*/true)) |
| return OMPC_firstprivate; |
| DSAStackTy::DSAVarData DVar = DSAStack->getImplicitDSA(D, Level); |
| if (DVar.CKind != OMPC_shared && |
| !DSAStack->isLoopControlVariable(D, Level).first && !DVar.RefExpr) { |
| DSAStack->addImplicitTaskFirstprivate(Level, D); |
| return OMPC_firstprivate; |
| } |
| } |
| } |
| if (isOpenMPLoopDirective(DSAStack->getCurrentDirective())) { |
| if (DSAStack->getAssociatedLoops() > 0 && |
| !DSAStack->isLoopStarted()) { |
| DSAStack->resetPossibleLoopCounter(D); |
| DSAStack->loopStart(); |
| return OMPC_private; |
| } |
| if ((DSAStack->getPossiblyLoopCunter() == D->getCanonicalDecl() || |
| DSAStack->isLoopControlVariable(D).first) && |
| !DSAStack->hasExplicitDSA( |
| D, [](OpenMPClauseKind K, bool) { return K != OMPC_private; }, |
| Level) && |
| !isOpenMPSimdDirective(DSAStack->getCurrentDirective())) |
| return OMPC_private; |
| } |
| if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| if (DSAStack->isThreadPrivate(const_cast<VarDecl *>(VD)) && |
| DSAStack->isForceVarCapturing() && |
| !DSAStack->hasExplicitDSA( |
| D, [](OpenMPClauseKind K, bool) { return K == OMPC_copyin; }, |
| Level)) |
| return OMPC_private; |
| } |
| // User-defined allocators are private since they must be defined in the |
| // context of target region. |
| if (DSAStack->hasExplicitDirective(isOpenMPTargetExecutionDirective, Level) && |
| DSAStack->isUsesAllocatorsDecl(Level, D).getValueOr( |
| DSAStackTy::UsesAllocatorsDeclKind::AllocatorTrait) == |
| DSAStackTy::UsesAllocatorsDeclKind::UserDefinedAllocator) |
| return OMPC_private; |
| return (DSAStack->hasExplicitDSA( |
| D, [](OpenMPClauseKind K, bool) { return K == OMPC_private; }, |
| Level) || |
| (DSAStack->isClauseParsingMode() && |
| DSAStack->getClauseParsingMode() == OMPC_private) || |
| // Consider taskgroup reduction descriptor variable a private |
| // to avoid possible capture in the region. |
| (DSAStack->hasExplicitDirective( |
| [](OpenMPDirectiveKind K) { |
| return K == OMPD_taskgroup || |
| ((isOpenMPParallelDirective(K) || |
| isOpenMPWorksharingDirective(K)) && |
| !isOpenMPSimdDirective(K)); |
| }, |
| Level) && |
| DSAStack->isTaskgroupReductionRef(D, Level))) |
| ? OMPC_private |
| : OMPC_unknown; |
| } |
| |
| void Sema::setOpenMPCaptureKind(FieldDecl *FD, const ValueDecl *D, |
| unsigned Level) { |
| assert(LangOpts.OpenMP && "OpenMP is not allowed"); |
| D = getCanonicalDecl(D); |
| OpenMPClauseKind OMPC = OMPC_unknown; |
| for (unsigned I = DSAStack->getNestingLevel() + 1; I > Level; --I) { |
| const unsigned NewLevel = I - 1; |
| if (DSAStack->hasExplicitDSA( |
| D, |
| [&OMPC](const OpenMPClauseKind K, bool AppliedToPointee) { |
| if (isOpenMPPrivate(K) && !AppliedToPointee) { |
| OMPC = K; |
| return true; |
| } |
| return false; |
| }, |
| NewLevel)) |
| break; |
| if (DSAStack->checkMappableExprComponentListsForDeclAtLevel( |
| D, NewLevel, |
| [](OMPClauseMappableExprCommon::MappableExprComponentListRef, |
| OpenMPClauseKind) { return true; })) { |
| OMPC = OMPC_map; |
| break; |
| } |
| if (DSAStack->hasExplicitDirective(isOpenMPTargetExecutionDirective, |
| NewLevel)) { |
| OMPC = OMPC_map; |
| if (DSAStack->mustBeFirstprivateAtLevel( |
| NewLevel, getVariableCategoryFromDecl(LangOpts, D))) |
| OMPC = OMPC_firstprivate; |
| break; |
| } |
| } |
| if (OMPC != OMPC_unknown) |
| FD->addAttr(OMPCaptureKindAttr::CreateImplicit(Context, unsigned(OMPC))); |
| } |
| |
| bool Sema::isOpenMPTargetCapturedDecl(const ValueDecl *D, unsigned Level, |
| unsigned CaptureLevel) const { |
| assert(LangOpts.OpenMP && "OpenMP is not allowed"); |
| // Return true if the current level is no longer enclosed in a target region. |
| |
| SmallVector<OpenMPDirectiveKind, 4> Regions; |
| getOpenMPCaptureRegions(Regions, DSAStack->getDirective(Level)); |
| const auto *VD = dyn_cast<VarDecl>(D); |
| return VD && !VD->hasLocalStorage() && |
| DSAStack->hasExplicitDirective(isOpenMPTargetExecutionDirective, |
| Level) && |
| Regions[CaptureLevel] != OMPD_task; |
| } |
| |
| bool Sema::isOpenMPGlobalCapturedDecl(ValueDecl *D, unsigned Level, |
| unsigned CaptureLevel) const { |
| assert(LangOpts.OpenMP && "OpenMP is not allowed"); |
| // Return true if the current level is no longer enclosed in a target region. |
| |
| if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| if (!VD->hasLocalStorage()) { |
| if (isInOpenMPTargetExecutionDirective()) |
| return true; |
| DSAStackTy::DSAVarData TopDVar = |
| DSAStack->getTopDSA(D, /*FromParent=*/false); |
| unsigned NumLevels = |
| getOpenMPCaptureLevels(DSAStack->getDirective(Level)); |
| if (Level == 0) |
| return (NumLevels == CaptureLevel + 1) && TopDVar.CKind != OMPC_shared; |
| do { |
| --Level; |
| DSAStackTy::DSAVarData DVar = DSAStack->getImplicitDSA(D, Level); |
| if (DVar.CKind != OMPC_shared) |
| return true; |
| } while (Level > 0); |
| } |
| } |
| return true; |
| } |
| |
| void Sema::DestroyDataSharingAttributesStack() { delete DSAStack; } |
| |
| void Sema::ActOnOpenMPBeginDeclareVariant(SourceLocation Loc, |
| OMPTraitInfo &TI) { |
| OMPDeclareVariantScopes.push_back(OMPDeclareVariantScope(TI)); |
| } |
| |
| void Sema::ActOnOpenMPEndDeclareVariant() { |
| assert(isInOpenMPDeclareVariantScope() && |
| "Not in OpenMP declare variant scope!"); |
| |
| OMPDeclareVariantScopes.pop_back(); |
| } |
| |
| void Sema::finalizeOpenMPDelayedAnalysis(const FunctionDecl *Caller, |
| const FunctionDecl *Callee, |
| SourceLocation Loc) { |
| assert(LangOpts.OpenMP && "Expected OpenMP compilation mode."); |
| Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = |
| OMPDeclareTargetDeclAttr::getDeviceType(Caller->getMostRecentDecl()); |
| // Ignore host functions during device analyzis. |
| if (LangOpts.OpenMPIsDevice && |
| (!DevTy || *DevTy == OMPDeclareTargetDeclAttr::DT_Host)) |
| return; |
| // Ignore nohost functions during host analyzis. |
| if (!LangOpts.OpenMPIsDevice && DevTy && |
| *DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) |
| return; |
| const FunctionDecl *FD = Callee->getMostRecentDecl(); |
| DevTy = OMPDeclareTargetDeclAttr::getDeviceType(FD); |
| if (LangOpts.OpenMPIsDevice && DevTy && |
| *DevTy == OMPDeclareTargetDeclAttr::DT_Host) { |
| // Diagnose host function called during device codegen. |
| StringRef HostDevTy = |
| getOpenMPSimpleClauseTypeName(OMPC_device_type, OMPC_DEVICE_TYPE_host); |
| Diag(Loc, diag::err_omp_wrong_device_function_call) << HostDevTy << 0; |
| Diag(*OMPDeclareTargetDeclAttr::getLocation(FD), |
| diag::note_omp_marked_device_type_here) |
| << HostDevTy; |
| return; |
| } |
| if (!LangOpts.OpenMPIsDevice && DevTy && |
| *DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) { |
| // Diagnose nohost function called during host codegen. |
| StringRef NoHostDevTy = getOpenMPSimpleClauseTypeName( |
| OMPC_device_type, OMPC_DEVICE_TYPE_nohost); |
| Diag(Loc, diag::err_omp_wrong_device_function_call) << NoHostDevTy << 1; |
| Diag(*OMPDeclareTargetDeclAttr::getLocation(FD), |
| diag::note_omp_marked_device_type_here) |
| << NoHostDevTy; |
| } |
| } |
| |
| void Sema::StartOpenMPDSABlock(OpenMPDirectiveKind DKind, |
| const DeclarationNameInfo &DirName, |
| Scope *CurScope, SourceLocation Loc) { |
| DSAStack->push(DKind, DirName, CurScope, Loc); |
| PushExpressionEvaluationContext( |
| ExpressionEvaluationContext::PotentiallyEvaluated); |
| } |
| |
| void Sema::StartOpenMPClause(OpenMPClauseKind K) { |
| DSAStack->setClauseParsingMode(K); |
| } |
| |
| void Sema::EndOpenMPClause() { |
| DSAStack->setClauseParsingMode(/*K=*/OMPC_unknown); |
| CleanupVarDeclMarking(); |
| } |
| |
| static std::pair<ValueDecl *, bool> |
| getPrivateItem(Sema &S, Expr *&RefExpr, SourceLocation &ELoc, |
| SourceRange &ERange, bool AllowArraySection = false); |
| |
| /// Check consistency of the reduction clauses. |
| static void checkReductionClauses(Sema &S, DSAStackTy *Stack, |
| ArrayRef<OMPClause *> Clauses) { |
| bool InscanFound = false; |
| SourceLocation InscanLoc; |
| // OpenMP 5.0, 2.19.5.4 reduction Clause, Restrictions. |
| // A reduction clause without the inscan reduction-modifier may not appear on |
| // a construct on which a reduction clause with the inscan reduction-modifier |
| // appears. |
| for (OMPClause *C : Clauses) { |
| if (C->getClauseKind() != OMPC_reduction) |
| continue; |
| auto *RC = cast<OMPReductionClause>(C); |
| if (RC->getModifier() == OMPC_REDUCTION_inscan) { |
| InscanFound = true; |
| InscanLoc = RC->getModifierLoc(); |
| continue; |
| } |
| if (RC->getModifier() == OMPC_REDUCTION_task) { |
| // OpenMP 5.0, 2.19.5.4 reduction Clause. |
| // A reduction clause with the task reduction-modifier may only appear on |
| // a parallel construct, a worksharing construct or a combined or |
| // composite construct for which any of the aforementioned constructs is a |
| // constituent construct and simd or loop are not constituent constructs. |
| OpenMPDirectiveKind CurDir = Stack->getCurrentDirective(); |
| if (!(isOpenMPParallelDirective(CurDir) || |
| isOpenMPWorksharingDirective(CurDir)) || |
| isOpenMPSimdDirective(CurDir)) |
| S.Diag(RC->getModifierLoc(), |
| diag::err_omp_reduction_task_not_parallel_or_worksharing); |
| continue; |
| } |
| } |
| if (InscanFound) { |
| for (OMPClause *C : Clauses) { |
| if (C->getClauseKind() != OMPC_reduction) |
| continue; |
| auto *RC = cast<OMPReductionClause>(C); |
| if (RC->getModifier() != OMPC_REDUCTION_inscan) { |
| S.Diag(RC->getModifier() == OMPC_REDUCTION_unknown |
| ? RC->getBeginLoc() |
| : RC->getModifierLoc(), |
| diag::err_omp_inscan_reduction_expected); |
| S.Diag(InscanLoc, diag::note_omp_previous_inscan_reduction); |
| continue; |
| } |
| for (Expr *Ref : RC->varlists()) { |
| assert(Ref && "NULL expr in OpenMP nontemporal clause."); |
| SourceLocation ELoc; |
| SourceRange ERange; |
| Expr *SimpleRefExpr = Ref; |
| auto Res = getPrivateItem(S, SimpleRefExpr, ELoc, ERange, |
| /*AllowArraySection=*/true); |
| ValueDecl *D = Res.first; |
| if (!D) |
| continue; |
| if (!Stack->isUsedInScanDirective(getCanonicalDecl(D))) { |
| S.Diag(Ref->getExprLoc(), |
| diag::err_omp_reduction_not_inclusive_exclusive) |
| << Ref->getSourceRange(); |
| } |
| } |
| } |
| } |
| } |
| |
| static void checkAllocateClauses(Sema &S, DSAStackTy *Stack, |
| ArrayRef<OMPClause *> Clauses); |
| static DeclRefExpr *buildCapture(Sema &S, ValueDecl *D, Expr *CaptureExpr, |
| bool WithInit); |
| |
| static void reportOriginalDsa(Sema &SemaRef, const DSAStackTy *Stack, |
| const ValueDecl *D, |
| const DSAStackTy::DSAVarData &DVar, |
| bool IsLoopIterVar = false); |
| |
| void Sema::EndOpenMPDSABlock(Stmt *CurDirective) { |
| // OpenMP [2.14.3.5, Restrictions, C/C++, p.1] |
| // A variable of class type (or array thereof) that appears in a lastprivate |
| // clause requires an accessible, unambiguous default constructor for the |
| // class type, unless the list item is also specified in a firstprivate |
| // clause. |
| if (const auto *D = dyn_cast_or_null<OMPExecutableDirective>(CurDirective)) { |
| for (OMPClause *C : D->clauses()) { |
| if (auto *Clause = dyn_cast<OMPLastprivateClause>(C)) { |
| SmallVector<Expr *, 8> PrivateCopies; |
| for (Expr *DE : Clause->varlists()) { |
| if (DE->isValueDependent() || DE->isTypeDependent()) { |
| PrivateCopies.push_back(nullptr); |
| continue; |
| } |
| auto *DRE = cast<DeclRefExpr>(DE->IgnoreParens()); |
| auto *VD = cast<VarDecl>(DRE->getDecl()); |
| QualType Type = VD->getType().getNonReferenceType(); |
| const DSAStackTy::DSAVarData DVar = |
| DSAStack->getTopDSA(VD, /*FromParent=*/false); |
| if (DVar.CKind == OMPC_lastprivate) { |
| // Generate helper private variable and initialize it with the |
| // default value. The address of the original variable is replaced |
| // by the address of the new private variable in CodeGen. This new |
| // variable is not added to IdResolver, so the code in the OpenMP |
| // region uses original variable for proper diagnostics. |
| VarDecl *VDPrivate = buildVarDecl( |
| *this, DE->getExprLoc(), Type.getUnqualifiedType(), |
| VD->getName(), VD->hasAttrs() ? &VD->getAttrs() : nullptr, DRE); |
| ActOnUninitializedDecl(VDPrivate); |
| if (VDPrivate->isInvalidDecl()) { |
| PrivateCopies.push_back(nullptr); |
| continue; |
| } |
| PrivateCopies.push_back(buildDeclRefExpr( |
| *this, VDPrivate, DE->getType(), DE->getExprLoc())); |
| } else { |
| // The variable is also a firstprivate, so initialization sequence |
| // for private copy is generated already. |
| PrivateCopies.push_back(nullptr); |
| } |
| } |
| Clause->setPrivateCopies(PrivateCopies); |
| continue; |
| } |
| // Finalize nontemporal clause by handling private copies, if any. |
| if (auto *Clause = dyn_cast<OMPNontemporalClause>(C)) { |
| SmallVector<Expr *, 8> PrivateRefs; |
| for (Expr *RefExpr : Clause->varlists()) { |
| assert(RefExpr && "NULL expr in OpenMP nontemporal clause."); |
| SourceLocation ELoc; |
| SourceRange ERange; |
| Expr *SimpleRefExpr = RefExpr; |
| auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange); |
| if (Res.second) |
| // It will be analyzed later. |
| PrivateRefs.push_back(RefExpr); |
| ValueDecl *D = Res.first; |
| if (!D) |
| continue; |
| |
| const DSAStackTy::DSAVarData DVar = |
| DSAStack->getTopDSA(D, /*FromParent=*/false); |
| PrivateRefs.push_back(DVar.PrivateCopy ? DVar.PrivateCopy |
| : SimpleRefExpr); |
| } |
| Clause->setPrivateRefs(PrivateRefs); |
| continue; |
| } |
| if (auto *Clause = dyn_cast<OMPUsesAllocatorsClause>(C)) { |
| for (unsigned I = 0, E = Clause->getNumberOfAllocators(); I < E; ++I) { |
| OMPUsesAllocatorsClause::Data D = Clause->getAllocatorData(I); |
| auto *DRE = dyn_cast<DeclRefExpr>(D.Allocator->IgnoreParenImpCasts()); |
| if (!DRE) |
| continue; |
| ValueDecl *VD = DRE->getDecl(); |
| if (!VD || !isa<VarDecl>(VD)) |
| continue; |
| DSAStackTy::DSAVarData DVar = |
| DSAStack->getTopDSA(VD, /*FromParent=*/false); |
| // OpenMP [2.12.5, target Construct] |
| // Memory allocators that appear in a uses_allocators clause cannot |
| // appear in other data-sharing attribute clauses or data-mapping |
| // attribute clauses in the same construct. |
| Expr *MapExpr = nullptr; |
| if (DVar.RefExpr || |
| DSAStack->checkMappableExprComponentListsForDecl( |
| VD, /*CurrentRegionOnly=*/true, |
| [VD, &MapExpr]( |
| OMPClauseMappableExprCommon::MappableExprComponentListRef |
| MapExprComponents, |
| OpenMPClauseKind C) { |
| auto MI = MapExprComponents.rbegin(); |
| auto ME = MapExprComponents.rend(); |
| if (MI != ME && |
| MI->getAssociatedDeclaration()->getCanonicalDecl() == |
| VD->getCanonicalDecl()) { |
| MapExpr = MI->getAssociatedExpression(); |
| return true; |
| } |
| return false; |
| })) { |
| Diag(D.Allocator->getExprLoc(), |
| diag::err_omp_allocator_used_in_clauses) |
| << D.Allocator->getSourceRange(); |
| if (DVar.RefExpr) |
| reportOriginalDsa(*this, DSAStack, VD, DVar); |
| else |
| Diag(MapExpr->getExprLoc(), diag::note_used_here) |
| << MapExpr->getSourceRange(); |
| } |
| } |
| continue; |
| } |
| } |
| // Check allocate clauses. |
| if (!CurContext->isDependentContext()) |
| checkAllocateClauses(*this, DSAStack, D->clauses()); |
| checkReductionClauses(*this, DSAStack, D->clauses()); |
| } |
| |
| DSAStack->pop(); |
| DiscardCleanupsInEvaluationContext(); |
| PopExpressionEvaluationContext(); |
| } |
| |
| static bool FinishOpenMPLinearClause(OMPLinearClause &Clause, DeclRefExpr *IV, |
| Expr *NumIterations, Sema &SemaRef, |
| Scope *S, DSAStackTy *Stack); |
| |
| namespace { |
| |
| class VarDeclFilterCCC final : public CorrectionCandidateCallback { |
| private: |
| Sema &SemaRef; |
| |
| public: |
| explicit VarDeclFilterCCC(Sema &S) : SemaRef(S) {} |
| bool ValidateCandidate(const TypoCorrection &Candidate) override { |
| NamedDecl *ND = Candidate.getCorrectionDecl(); |
| if (const auto *VD = dyn_cast_or_null<VarDecl>(ND)) { |
| return VD->hasGlobalStorage() && |
| SemaRef.isDeclInScope(ND, SemaRef.getCurLexicalContext(), |
| SemaRef.getCurScope()); |
| } |
| return false; |
| } |
| |
| std::unique_ptr<CorrectionCandidateCallback> clone() override { |
| return std::make_unique<VarDeclFilterCCC>(*this); |
| } |
| |
| }; |
| |
| class VarOrFuncDeclFilterCCC final : public CorrectionCandidateCallback { |
| private: |
| Sema &SemaRef; |
| |
| public: |
| explicit VarOrFuncDeclFilterCCC(Sema &S) : SemaRef(S) {} |
| bool ValidateCandidate(const TypoCorrection &Candidate) override { |
| NamedDecl *ND = Candidate.getCorrectionDecl(); |
| if (ND && ((isa<VarDecl>(ND) && ND->getKind() == Decl::Var) || |
| isa<FunctionDecl>(ND))) { |
| return SemaRef.isDeclInScope(ND, SemaRef.getCurLexicalContext(), |
| SemaRef.getCurScope()); |
| } |
| return false; |
| } |
| |
| std::unique_ptr<CorrectionCandidateCallback> clone() override { |
| return std::make_unique<VarOrFuncDeclFilterCCC>(*this); |
| } |
| }; |
| |
| } // namespace |
| |
| ExprResult Sema::ActOnOpenMPIdExpression(Scope *CurScope, |
| CXXScopeSpec &ScopeSpec, |
| const DeclarationNameInfo &Id, |
| OpenMPDirectiveKind Kind) { |
| LookupResult Lookup(*this, Id, LookupOrdinaryName); |
| LookupParsedName(Lookup, CurScope, &ScopeSpec, true); |
| |
| if (Lookup.isAmbiguous()) |
| return ExprError(); |
| |
| VarDecl *VD; |
| if (!Lookup.isSingleResult()) { |
| VarDeclFilterCCC CCC(*this); |
| if (TypoCorrection Corrected = |
| CorrectTypo(Id, LookupOrdinaryName, CurScope, nullptr, CCC, |
| CTK_ErrorRecovery)) { |
| diagnoseTypo(Corrected, |
| PDiag(Lookup.empty() |
| ? diag::err_undeclared_var_use_suggest |
| : diag::err_omp_expected_var_arg_suggest) |
| << Id.getName()); |
| VD = Corrected.getCorrectionDeclAs<VarDecl>(); |
| } else { |
| Diag(Id.getLoc(), Lookup.empty() ? diag::err_undeclared_var_use |
| : diag::err_omp_expected_var_arg) |
| << Id.getName(); |
| return ExprError(); |
| } |
| } else if (!(VD = Lookup.getAsSingle<VarDecl>())) { |
| Diag(Id.getLoc(), diag::err_omp_expected_var_arg) << Id.getName(); |
| Diag(Lookup.getFoundDecl()->getLocation(), diag::note_declared_at); |
| return ExprError(); |
| } |
| Lookup.suppressDiagnostics(); |
| |
| // OpenMP [2.9.2, Syntax, C/C++] |
| // Variables must be file-scope, namespace-scope, or static block-scope. |
| if (Kind == OMPD_threadprivate && !VD->hasGlobalStorage()) { |
| Diag(Id.getLoc(), diag::err_omp_global_var_arg) |
| << getOpenMPDirectiveName(Kind) << !VD->isStaticLocal(); |
| bool IsDecl = |
| VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly; |
| Diag(VD->getLocation(), |
| IsDecl ? diag::note_previous_decl : diag::note_defined_here) |
| << VD; |
| return ExprError(); |
| } |
| |
| VarDecl *CanonicalVD = VD->getCanonicalDecl(); |
| NamedDecl *ND = CanonicalVD; |
| // OpenMP [2.9.2, Restrictions, C/C++, p.2] |
| // A threadprivate directive for file-scope variables must appear outside |
| // any definition or declaration. |
| if (CanonicalVD->getDeclContext()->isTranslationUnit() && |
| !getCurLexicalContext()->isTranslationUnit()) { |
| Diag(Id.getLoc(), diag::err_omp_var_scope) |
| << getOpenMPDirectiveName(Kind) << VD; |
| bool IsDecl = |
| VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly; |
| Diag(VD->getLocation(), |
| IsDecl ? diag::note_previous_decl : diag::note_defined_here) |
| << VD; |
| return ExprError(); |
| } |
| // OpenMP [2.9.2, Restrictions, C/C++, p.3] |
| // A threadprivate directive for static class member variables must appear |
| // in the class definition, in the same scope in which the member |
| // variables are declared. |
| if (CanonicalVD->isStaticDataMember() && |
| !CanonicalVD->getDeclContext()->Equals(getCurLexicalContext())) { |
| Diag(Id.getLoc(), diag::err_omp_var_scope) |
| << getOpenMPDirectiveName(Kind) << VD; |
| bool IsDecl = |
| VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly; |
| Diag(VD->getLocation(), |
| IsDecl ? diag::note_previous_decl : diag::note_defined_here) |
| << VD; |
| return ExprError(); |
| } |
| // OpenMP [2.9.2, Restrictions, C/C++, p.4] |
| // A threadprivate directive for namespace-scope variables must appear |
| // outside any definition or declaration other than the namespace |
| // definition itself. |
| if (CanonicalVD->getDeclContext()->isNamespace() && |
| (!getCurLexicalContext()->isFileContext() || |
| !getCurLexicalContext()->Encloses(CanonicalVD->getDeclContext()))) { |
| Diag(Id.getLoc(), diag::err_omp_var_scope) |
| << getOpenMPDirectiveName(Kind) << VD; |
| bool IsDecl = |
| VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly; |
| Diag(VD->getLocation(), |
| IsDecl ? diag::note_previous_decl : diag::note_defined_here) |
| << VD; |
| return ExprError(); |
| } |
| // OpenMP [2.9.2, Restrictions, C/C++, p.6] |
| // A threadprivate directive for static block-scope variables must appear |
| // in the scope of the variable and not in a nested scope. |
| if (CanonicalVD->isLocalVarDecl() && CurScope && |
| !isDeclInScope(ND, getCurLexicalContext(), CurScope)) { |
| Diag(Id.getLoc(), diag::err_omp_var_scope) |
| << getOpenMPDirectiveName(Kind) << VD; |
| bool IsDecl = |
| VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly; |
| Diag(VD->getLocation(), |
| IsDecl ? diag::note_previous_decl : diag::note_defined_here) |
| << VD; |
| return ExprError(); |
| } |
| |
| // OpenMP [2.9.2, Restrictions, C/C++, p.2-6] |
| // A threadprivate directive must lexically precede all references to any |
| // of the variables in its list. |
| if (Kind == OMPD_threadprivate && VD->isUsed() && |
| !DSAStack->isThreadPrivate(VD)) { |
| Diag(Id.getLoc(), diag::err_omp_var_used) |
| << getOpenMPDirectiveName(Kind) << VD; |
| return ExprError(); |
| } |
| |
| QualType ExprType = VD->getType().getNonReferenceType(); |
| return DeclRefExpr::Create(Context, NestedNameSpecifierLoc(), |
| SourceLocation(), VD, |
| /*RefersToEnclosingVariableOrCapture=*/false, |
| Id.getLoc(), ExprType, VK_LValue); |
| } |
| |
| Sema::DeclGroupPtrTy |
| Sema::ActOnOpenMPThreadprivateDirective(SourceLocation Loc, |
| ArrayRef<Expr *> VarList) { |
| if (OMPThreadPrivateDecl *D = CheckOMPThreadPrivateDecl(Loc, VarList)) { |
| CurContext->addDecl(D); |
| return DeclGroupPtrTy::make(DeclGroupRef(D)); |
| } |
| return nullptr; |
| } |
| |
| namespace { |
| class LocalVarRefChecker final |
| : public ConstStmtVisitor<LocalVarRefChecker, bool> { |
| Sema &SemaRef; |
| |
| public: |
| bool VisitDeclRefExpr(const DeclRefExpr *E) { |
| if (const auto *VD = dyn_cast<VarDecl>(E->getDecl())) { |
| if (VD->hasLocalStorage()) { |
| SemaRef.Diag(E->getBeginLoc(), |
| diag::err_omp_local_var_in_threadprivate_init) |
| << E->getSourceRange(); |
| SemaRef.Diag(VD->getLocation(), diag::note_defined_here) |
| << VD << VD->getSourceRange(); |
| return true; |
| } |
| } |
| return false; |
| } |
| bool VisitStmt(const Stmt *S) { |
| for (const Stmt *Child : S->children()) { |
| if (Child && Visit(Child)) |
| return true; |
| } |
| return false; |
| } |
| explicit LocalVarRefChecker(Sema &SemaRef) : SemaRef(SemaRef) {} |
| }; |
| } // namespace |
| |
| OMPThreadPrivateDecl * |
| Sema::CheckOMPThreadPrivateDecl(SourceLocation Loc, ArrayRef<Expr *> VarList) { |
| SmallVector<Expr *, 8> Vars; |
| for (Expr *RefExpr : VarList) { |
| auto *DE = cast<DeclRefExpr>(RefExpr); |
| auto *VD = cast<VarDecl>(DE->getDecl()); |
| SourceLocation ILoc = DE->getExprLoc(); |
| |
| // Mark variable as used. |
| VD->setReferenced(); |
| VD->markUsed(Context); |
| |
| QualType QType = VD->getType(); |
| if (QType->isDependentType() || QType->isInstantiationDependentType()) { |
| // It will be analyzed later. |
| Vars.push_back(DE); |
| continue; |
| } |
| |
| // OpenMP [2.9.2, Restrictions, C/C++, p.10] |
| // A threadprivate variable must not have an incomplete type. |
| if (RequireCompleteType(ILoc, VD->getType(), |
| diag::err_omp_threadprivate_incomplete_type)) { |
| continue; |
| } |
| |
| // OpenMP [2.9.2, Restrictions, C/C++, p.10] |
| // A threadprivate variable must not have a reference type. |
| if (VD->getType()->isReferenceType()) { |
| Diag(ILoc, diag::err_omp_ref_type_arg) |
| << getOpenMPDirectiveName(OMPD_threadprivate) << VD->getType(); |
| bool IsDecl = |
| VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly; |
| Diag(VD->getLocation(), |
| IsDecl ? diag::note_previous_decl : diag::note_defined_here) |
| << VD; |
| continue; |
| } |
| |
| // Check if this is a TLS variable. If TLS is not being supported, produce |
| // the corresponding diagnostic. |
| if ((VD->getTLSKind() != VarDecl::TLS_None && |
| !(VD->hasAttr<OMPThreadPrivateDeclAttr>() && |
| getLangOpts().OpenMPUseTLS && |
| getASTContext().getTargetInfo().isTLSSupported())) || |
| (VD->getStorageClass() == SC_Register && VD->hasAttr<AsmLabelAttr>() && |
| !VD->isLocalVarDecl())) { |
| Diag(ILoc, diag::err_omp_var_thread_local) |
| << VD << ((VD->getTLSKind() != VarDecl::TLS_None) ? 0 : 1); |
| bool IsDecl = |
| VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly; |
| Diag(VD->getLocation(), |
| IsDecl ? diag::note_previous_decl : diag::note_defined_here) |
| << VD; |
| continue; |
| } |
| |
| // Check if initial value of threadprivate variable reference variable with |
| // local storage (it is not supported by runtime). |
| if (const Expr *Init = VD->getAnyInitializer()) { |
| LocalVarRefChecker Checker(*this); |
| if (Checker.Visit(Init)) |
| continue; |
| } |
| |
| Vars.push_back(RefExpr); |
| DSAStack->addDSA(VD, DE, OMPC_threadprivate); |
| VD->addAttr(OMPThreadPrivateDeclAttr::CreateImplicit( |
| Context, SourceRange(Loc, Loc))); |
| if (ASTMutationListener *ML = Context.getASTMutationListener()) |
| ML->DeclarationMarkedOpenMPThreadPrivate(VD); |
| } |
| OMPThreadPrivateDecl *D = nullptr; |
| if (!Vars.empty()) { |
| D = OMPThreadPrivateDecl::Create(Context, getCurLexicalContext(), Loc, |
| Vars); |
| D->setAccess(AS_public); |
| } |
| return D; |
| } |
| |
| static OMPAllocateDeclAttr::AllocatorTypeTy |
| getAllocatorKind(Sema &S, DSAStackTy *Stack, Expr *Allocator) { |
| if (!Allocator) |
| return OMPAllocateDeclAttr::OMPNullMemAlloc; |
| if (Allocator->isTypeDependent() || Allocator->isValueDependent() || |
| Allocator->isInstantiationDependent() || |
| Allocator->containsUnexpandedParameterPack()) |
| return OMPAllocateDeclAttr::OMPUserDefinedMemAlloc; |
| auto AllocatorKindRes = OMPAllocateDeclAttr::OMPUserDefinedMemAlloc; |
| const Expr *AE = Allocator->IgnoreParenImpCasts(); |
| for (int I = 0; I < OMPAllocateDeclAttr::OMPUserDefinedMemAlloc; ++I) { |
| auto AllocatorKind = static_cast<OMPAllocateDeclAttr::AllocatorTypeTy>(I); |
| const Expr *DefAllocator = Stack->getAllocator(AllocatorKind); |
| llvm::FoldingSetNodeID AEId, DAEId; |
| AE->Profile(AEId, S.getASTContext(), /*Canonical=*/true); |
| DefAllocator->Profile(DAEId, S.getASTContext(), /*Canonical=*/true); |
| if (AEId == DAEId) { |
| AllocatorKindRes = AllocatorKind; |
| break; |
| } |
| } |
| return AllocatorKindRes; |
| } |
| |
| static bool checkPreviousOMPAllocateAttribute( |
| Sema &S, DSAStackTy *Stack, Expr *RefExpr, VarDecl *VD, |
| OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind, Expr *Allocator) { |
| if (!VD->hasAttr<OMPAllocateDeclAttr>()) |
| return false; |
| const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); |
| Expr *PrevAllocator = A->getAllocator(); |
| OMPAllocateDeclAttr::AllocatorTypeTy PrevAllocatorKind = |
| getAllocatorKind(S, Stack, PrevAllocator); |
| bool AllocatorsMatch = AllocatorKind == PrevAllocatorKind; |
| if (AllocatorsMatch && |
| AllocatorKind == OMPAllocateDeclAttr::OMPUserDefinedMemAlloc && |
| Allocator && PrevAllocator) { |
| const Expr *AE = Allocator->IgnoreParenImpCasts(); |
| const Expr *PAE = PrevAllocator->IgnoreParenImpCasts(); |
| llvm::FoldingSetNodeID AEId, PAEId; |
| AE->Profile(AEId, S.Context, /*Canonical=*/true); |
| PAE->Profile(PAEId, S.Context, /*Canonical=*/true); |
| AllocatorsMatch = AEId == PAEId; |
| } |
| if (!AllocatorsMatch) { |
| SmallString<256> AllocatorBuffer; |
| llvm::raw_svector_ostream AllocatorStream(AllocatorBuffer); |
| if (Allocator) |
| Allocator->printPretty(AllocatorStream, nullptr, S.getPrintingPolicy()); |
| SmallString<256> PrevAllocatorBuffer; |
| llvm::raw_svector_ostream PrevAllocatorStream(PrevAllocatorBuffer); |
| if (PrevAllocator) |
| PrevAllocator->printPretty(PrevAllocatorStream, nullptr, |
| S.getPrintingPolicy()); |
| |
| SourceLocation AllocatorLoc = |
| Allocator ? Allocator->getExprLoc() : RefExpr->getExprLoc(); |
| SourceRange AllocatorRange = |
| Allocator ? Allocator->getSourceRange() : RefExpr->getSourceRange(); |
| SourceLocation PrevAllocatorLoc = |
| PrevAllocator ? PrevAllocator->getExprLoc() : A->getLocation(); |
| SourceRange PrevAllocatorRange = |
| PrevAllocator ? PrevAllocator->getSourceRange() : A->getRange(); |
| S.Diag(AllocatorLoc, diag::warn_omp_used_different_allocator) |
| << (Allocator ? 1 : 0) << AllocatorStream.str() |
| << (PrevAllocator ? 1 : 0) << PrevAllocatorStream.str() |
| << AllocatorRange; |
| S.Diag(PrevAllocatorLoc, diag::note_omp_previous_allocator) |
| << PrevAllocatorRange; |
| return true; |
| } |
| return false; |
| } |
| |
| static void |
| applyOMPAllocateAttribute(Sema &S, VarDecl *VD, |
| OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind, |
| Expr *Allocator, Expr *Alignment, SourceRange SR) { |
| if (VD->hasAttr<OMPAllocateDeclAttr>()) |
| return; |
| if (Alignment && |
| (Alignment->isTypeDependent() || Alignment->isValueDependent() || |
| Alignment->isInstantiationDependent() || |
| Alignment->containsUnexpandedParameterPack())) |
| // Apply later when we have a usable value. |
| return; |
| if (Allocator && |
| (Allocator->isTypeDependent() || Allocator->isValueDependent() || |
| Allocator->isInstantiationDependent() || |
| Allocator->containsUnexpandedParameterPack())) |
| return; |
| auto *A = OMPAllocateDeclAttr::CreateImplicit(S.Context, AllocatorKind, |
| Allocator, Alignment, SR); |
| VD->addAttr(A); |
| if (ASTMutationListener *ML = S.Context.getASTMutationListener()) |
| ML->DeclarationMarkedOpenMPAllocate(VD, A); |
| } |
| |
| Sema::DeclGroupPtrTy Sema::ActOnOpenMPAllocateDirective( |
| SourceLocation Loc, ArrayRef<Expr *> VarList, |
| ArrayRef<OMPClause *> Clauses, DeclContext *Owner) { |
| assert(Clauses.size() <= 2 && "Expected at most two clauses."); |
| Expr *Alignment = nullptr; |
| Expr *Allocator = nullptr; |
| if (Clauses.empty()) { |
| // OpenMP 5.0, 2.11.3 allocate Directive, Restrictions. |
| // allocate directives that appear in a target region must specify an |
| // allocator clause unless a requires directive with the dynamic_allocators |
| // clause is present in the same compilation unit. |
| if (LangOpts.OpenMPIsDevice && |
| !DSAStack->hasRequiresDeclWithClause<OMPDynamicAllocatorsClause>()) |
| targetDiag(Loc, diag::err_expected_allocator_clause); |
| } else { |
| for (const OMPClause *C : Clauses) |
| if (const auto *AC = dyn_cast<OMPAllocatorClause>(C)) |
| Allocator = AC->getAllocator(); |
| else if (const auto *AC = dyn_cast<OMPAlignClause>(C)) |
| Alignment = AC->getAlignment(); |
| else |
| llvm_unreachable("Unexpected clause on allocate directive"); |
| } |
| OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind = |
| getAllocatorKind(*this, DSAStack, Allocator); |
| SmallVector<Expr *, 8> Vars; |
| for (Expr *RefExpr : VarList) { |
| auto *DE = cast<DeclRefExpr>(RefExpr); |
| auto *VD = cast<VarDecl>(DE->getDecl()); |
| |
| // Check if this is a TLS variable or global register. |
| if (VD->getTLSKind() != VarDecl::TLS_None || |
| VD->hasAttr<OMPThreadPrivateDeclAttr>() || |
| (VD->getStorageClass() == SC_Register && VD->hasAttr<AsmLabelAttr>() && |
| !VD->isLocalVarDecl())) |
| continue; |
| |
| // If the used several times in the allocate directive, the same allocator |
| // must be used. |
| if (checkPreviousOMPAllocateAttribute(*this, DSAStack, RefExpr, VD, |
| AllocatorKind, Allocator)) |
| continue; |
| |
| // OpenMP, 2.11.3 allocate Directive, Restrictions, C / C++ |
| // If a list item has a static storage type, the allocator expression in the |
| // allocator clause must be a constant expression that evaluates to one of |
| // the predefined memory allocator values. |
| if (Allocator && VD->hasGlobalStorage()) { |
| if (AllocatorKind == OMPAllocateDeclAttr::OMPUserDefinedMemAlloc) { |
| Diag(Allocator->getExprLoc(), |
| diag::err_omp_expected_predefined_allocator) |
| << Allocator->getSourceRange(); |
| bool IsDecl = VD->isThisDeclarationADefinition(Context) == |
| VarDecl::DeclarationOnly; |
| Diag(VD->getLocation(), |
| IsDecl ? diag::note_previous_decl : diag::note_defined_here) |
| << VD; |
| continue; |
| } |
| } |
| |
| Vars.push_back(RefExpr); |
| applyOMPAllocateAttribute(*this, VD, AllocatorKind, Allocator, Alignment, |
| DE->getSourceRange()); |
| } |
| if (Vars.empty()) |
| return nullptr; |
| if (!Owner) |
| Owner = getCurLexicalContext(); |
| auto *D = OMPAllocateDecl::Create(Context, Owner, Loc, Vars, Clauses); |
| D->setAccess(AS_public); |
| Owner->addDecl(D); |
| return DeclGroupPtrTy::make(DeclGroupRef(D)); |
| } |
| |
| Sema::DeclGroupPtrTy |
| Sema::ActOnOpenMPRequiresDirective(SourceLocation Loc, |
| ArrayRef<OMPClause *> ClauseList) { |
| OMPRequiresDecl *D = nullptr; |
| if (!CurContext->isFileContext()) { |
| Diag(Loc, diag::err_omp_invalid_scope) << "requires"; |
| } else { |
| D = CheckOMPRequiresDecl(Loc, ClauseList); |
| if (D) { |
| CurContext->addDecl(D); |
| DSAStack->addRequiresDecl(D); |
| } |
| } |
| return DeclGroupPtrTy::make(DeclGroupRef(D)); |
| } |
| |
| void Sema::ActOnOpenMPAssumesDirective(SourceLocation Loc, |
| OpenMPDirectiveKind DKind, |
| ArrayRef<std::string> Assumptions, |
| bool SkippedClauses) { |
| if (!SkippedClauses && Assumptions.empty()) |
| Diag(Loc, diag::err_omp_no_clause_for_directive) |
| << llvm::omp::getAllAssumeClauseOptions() |
| << llvm::omp::getOpenMPDirectiveName(DKind); |
| |
| auto *AA = AssumptionAttr::Create(Context, llvm::join(Assumptions, ","), Loc); |
| if (DKind == llvm::omp::Directive::OMPD_begin_assumes) { |
| OMPAssumeScoped.push_back(AA); |
| return; |
| } |
| |
| // Global assumes without assumption clauses are ignored. |
| if (Assumptions.empty()) |
| return; |
| |
| assert(DKind == llvm::omp::Directive::OMPD_assumes && |
| "Unexpected omp assumption directive!"); |
| OMPAssumeGlobal.push_back(AA); |
| |
| // The OMPAssumeGlobal scope above will take care of new declarations but |
| // we also want to apply the assumption to existing ones, e.g., to |
| // declarations in included headers. To this end, we traverse all existing |
| // declaration contexts and annotate function declarations here. |
| SmallVector<DeclContext *, 8> DeclContexts; |
| auto *Ctx = CurContext; |
| while (Ctx->getLexicalParent()) |
| Ctx = Ctx->getLexicalParent(); |
| DeclContexts.push_back(Ctx); |
| while (!DeclContexts.empty()) { |
| DeclContext *DC = DeclContexts.pop_back_val(); |
| for (auto *SubDC : DC->decls()) { |
| if (SubDC->isInvalidDecl()) |
| continue; |
| if (auto *CTD = dyn_cast<ClassTemplateDecl>(SubDC)) { |
| DeclContexts.push_back(CTD->getTemplatedDecl()); |
| for (auto *S : CTD->specializations()) |
| DeclContexts.push_back(S); |
| continue; |
| } |
| if (auto *DC = dyn_cast<DeclContext>(SubDC)) |
| DeclContexts.push_back(DC); |
| if (auto *F = dyn_cast<FunctionDecl>(SubDC)) { |
| F->addAttr(AA); |
| continue; |
| } |
| } |
| } |
| } |
| |
| void Sema::ActOnOpenMPEndAssumesDirective() { |
| assert(isInOpenMPAssumeScope() && "Not in OpenMP assumes scope!"); |
| OMPAssumeScoped.pop_back(); |
| } |
| |
| OMPRequiresDecl *Sema::CheckOMPRequiresDecl(SourceLocation Loc, |
| ArrayRef<OMPClause *> ClauseList) { |
| /// For target specific clauses, the requires directive cannot be |
| /// specified after the handling of any of the target regions in the |
| /// current compilation unit. |
| ArrayRef<SourceLocation> TargetLocations = |
| DSAStack->getEncounteredTargetLocs(); |
| SourceLocation AtomicLoc = DSAStack->getAtomicDirectiveLoc(); |
| if (!TargetLocations.empty() || !AtomicLoc.isInvalid()) { |
| for (const OMPClause *CNew : ClauseList) { |
| // Check if any of the requires clauses affect target regions. |
| if (isa<OMPUnifiedSharedMemoryClause>(CNew) || |
| isa<OMPUnifiedAddressClause>(CNew) || |
| isa<OMPReverseOffloadClause>(CNew) || |
| isa<OMPDynamicAllocatorsClause>(CNew)) { |
| Diag(Loc, diag::err_omp_directive_before_requires) |
| << "target" << getOpenMPClauseName(CNew->getClauseKind()); |
| for (SourceLocation TargetLoc : TargetLocations) { |
| Diag(TargetLoc, diag::note_omp_requires_encountered_directive) |
| << "target"; |
| } |
| } else if (!AtomicLoc.isInvalid() && |
| isa<OMPAtomicDefaultMemOrderClause>(CNew)) { |
| Diag(Loc, diag::err_omp_directive_before_requires) |
| << "atomic" << getOpenMPClauseName(CNew->getClauseKind()); |
| Diag(AtomicLoc, diag::note_omp_requires_encountered_directive) |
| << "atomic"; |
| } |
| } |
| } |
| |
| if (!DSAStack->hasDuplicateRequiresClause(ClauseList)) |
| return OMPRequiresDecl::Create(Context, getCurLexicalContext(), Loc, |
| ClauseList); |
| return nullptr; |
| } |
| |
| static void reportOriginalDsa(Sema &SemaRef, const DSAStackTy *Stack, |
| const ValueDecl *D, |
| const DSAStackTy::DSAVarData &DVar, |
| bool IsLoopIterVar) { |
| if (DVar.RefExpr) { |
| SemaRef.Diag(DVar.RefExpr->getExprLoc(), diag::note_omp_explicit_dsa) |
| << getOpenMPClauseName(DVar.CKind); |
| return; |
| } |
| enum { |
| PDSA_StaticMemberShared, |
| PDSA_StaticLocalVarShared, |
| PDSA_LoopIterVarPrivate, |
| PDSA_LoopIterVarLinear, |
| PDSA_LoopIterVarLastprivate, |
| PDSA_ConstVarShared, |
| PDSA_GlobalVarShared, |
| PDSA_TaskVarFirstprivate, |
| PDSA_LocalVarPrivate, |
| PDSA_Implicit |
| } Reason = PDSA_Implicit; |
| bool ReportHint = false; |
| auto ReportLoc = D->getLocation(); |
| auto *VD = dyn_cast<VarDecl>(D); |
| if (IsLoopIterVar) { |
| if (DVar.CKind == OMPC_private) |
| Reason = PDSA_LoopIterVarPrivate; |
| else if (DVar.CKind == OMPC_lastprivate) |
| Reason = PDSA_LoopIterVarLastprivate; |
| else |
| Reason = PDSA_LoopIterVarLinear; |
| } else if (isOpenMPTaskingDirective(DVar.DKind) && |
| DVar.CKind == OMPC_firstprivate) { |
| Reason = PDSA_TaskVarFirstprivate; |
| ReportLoc = DVar.ImplicitDSALoc; |
| } else if (VD && VD->isStaticLocal()) |
| Reason = PDSA_StaticLocalVarShared; |
| else if (VD && VD->isStaticDataMember()) |
| Reason = PDSA_StaticMemberShared; |
| else if (VD && VD->isFileVarDecl()) |
| Reason = PDSA_GlobalVarShared; |
| else if (D->getType().isConstant(SemaRef.getASTContext())) |
| Reason = PDSA_ConstVarShared; |
| else if (VD && VD->isLocalVarDecl() && DVar.CKind == OMPC_private) { |
| ReportHint = true; |
| Reason = PDSA_LocalVarPrivate; |
| } |
| if (Reason != PDSA_Implicit) { |
| SemaRef.Diag(ReportLoc, diag::note_omp_predetermined_dsa) |
| << Reason << ReportHint |
| << getOpenMPDirectiveName(Stack->getCurrentDirective()); |
| } else if (DVar.ImplicitDSALoc.isValid()) { |
| SemaRef.Diag(DVar.ImplicitDSALoc, diag::note_omp_implicit_dsa) |
| << getOpenMPClauseName(DVar.CKind); |
| } |
| } |
| |
| static OpenMPMapClauseKind |
| getMapClauseKindFromModifier(OpenMPDefaultmapClauseModifier M, |
| bool IsAggregateOrDeclareTarget) { |
| OpenMPMapClauseKind Kind = OMPC_MAP_unknown; |
| switch (M) { |
| case OMPC_DEFAULTMAP_MODIFIER_alloc: |
| Kind = OMPC_MAP_alloc; |
| break; |
| case OMPC_DEFAULTMAP_MODIFIER_to: |
| Kind = OMPC_MAP_to; |
| break; |
| case OMPC_DEFAULTMAP_MODIFIER_from: |
| Kind = OMPC_MAP_from; |
| break; |
| case OMPC_DEFAULTMAP_MODIFIER_tofrom: |
| Kind = OMPC_MAP_tofrom; |
| break; |
| case OMPC_DEFAULTMAP_MODIFIER_present: |
| // OpenMP 5.1 [2.21.7.3] defaultmap clause, Description] |
| // If implicit-behavior is present, each variable referenced in the |
| // construct in the category specified by variable-category is treated as if |
| // it had been listed in a map clause with the map-type of alloc and |
| // map-type-modifier of present. |
| Kind = OMPC_MAP_alloc; |
| break; |
| case OMPC_DEFAULTMAP_MODIFIER_firstprivate: |
| case OMPC_DEFAULTMAP_MODIFIER_last: |
| llvm_unreachable("Unexpected defaultmap implicit behavior"); |
| case OMPC_DEFAULTMAP_MODIFIER_none: |
| case OMPC_DEFAULTMAP_MODIFIER_default: |
| case OMPC_DEFAULTMAP_MODIFIER_unknown: |
| // IsAggregateOrDeclareTarget could be true if: |
| // 1. the implicit behavior for aggregate is tofrom |
| // 2. it's a declare target link |
| if (IsAggregateOrDeclareTarget) { |
| Kind = OMPC_MAP_tofrom; |
| break; |
| } |
| llvm_unreachable("Unexpected defaultmap implicit behavior"); |
| } |
| assert(Kind != OMPC_MAP_unknown && "Expect map kind to be known"); |
| return Kind; |
| } |
| |
| namespace { |
| class DSAAttrChecker final : public StmtVisitor<DSAAttrChecker, void> { |
| DSAStackTy *Stack; |
| Sema &SemaRef; |
| bool ErrorFound = false; |
| bool TryCaptureCXXThisMembers = false; |
| CapturedStmt *CS = nullptr; |
| const static unsigned DefaultmapKindNum = OMPC_DEFAULTMAP_pointer + 1; |
| llvm::SmallVector<Expr *, 4> ImplicitFirstprivate; |
| llvm::SmallVector<Expr *, 4> ImplicitMap[DefaultmapKindNum][OMPC_MAP_delete]; |
| llvm::SmallVector<OpenMPMapModifierKind, NumberOfOMPMapClauseModifiers> |
| ImplicitMapModifier[DefaultmapKindNum]; |
| Sema::VarsWithInheritedDSAType VarsWithInheritedDSA; |
| llvm::SmallDenseSet<const ValueDecl *, 4> ImplicitDeclarations; |
| |
| void VisitSubCaptures(OMPExecutableDirective *S) { |
| // Check implicitly captured variables. |
| if (!S->hasAssociatedStmt() || !S->getAssociatedStmt()) |
| return; |
| if (S->getDirectiveKind() == OMPD_atomic || |
| S->getDirectiveKind() == OMPD_critical || |
| S->getDirectiveKind() == OMPD_section || |
| S->getDirectiveKind() == OMPD_master || |
| S->getDirectiveKind() == OMPD_masked || |
| isOpenMPLoopTransformationDirective(S->getDirectiveKind())) { |
| Visit(S->getAssociatedStmt()); |
| return; |
| } |
| visitSubCaptures(S->getInnermostCapturedStmt()); |
| // Try to capture inner this->member references to generate correct mappings |
| // and diagnostics. |
| if (TryCaptureCXXThisMembers || |
| (isOpenMPTargetExecutionDirective(Stack->getCurrentDirective()) && |
| llvm::any_of(S->getInnermostCapturedStmt()->captures(), |
| [](const CapturedStmt::Capture &C) { |
| return C.capturesThis(); |
| }))) { |
| bool SavedTryCaptureCXXThisMembers = TryCaptureCXXThisMembers; |
| TryCaptureCXXThisMembers = true; |
| Visit(S->getInnermostCapturedStmt()->getCapturedStmt()); |
| TryCaptureCXXThisMembers = SavedTryCaptureCXXThisMembers; |
| } |
| // In tasks firstprivates are not captured anymore, need to analyze them |
| // explicitly. |
| if (isOpenMPTaskingDirective(S->getDirectiveKind()) && |
| !isOpenMPTaskLoopDirective(S->getDirectiveKind())) { |
| for (OMPClause *C : S->clauses()) |
| if (auto *FC = dyn_cast<OMPFirstprivateClause>(C)) { |
| for (Expr *Ref : FC->varlists()) |
| Visit(Ref); |
| } |
| } |
| } |
| |
| public: |
| void VisitDeclRefExpr(DeclRefExpr *E) { |
| if (TryCaptureCXXThisMembers || E->isTypeDependent() || |
| E->isValueDependent() || E->containsUnexpandedParameterPack() || |
| E->isInstantiationDependent()) |
| return; |
| if (auto *VD = dyn_cast<VarDecl>(E->getDecl())) { |
| // Check the datasharing rules for the expressions in the clauses. |
| if (!CS) { |
| if (auto *CED = dyn_cast<OMPCapturedExprDecl>(VD)) |
| if (!CED->hasAttr<OMPCaptureNoInitAttr>()) { |
| Visit(CED->getInit()); |
| return; |
| } |
| } else if (VD->isImplicit() || isa<OMPCapturedExprDecl>(VD)) |
| // Do not analyze internal variables and do not enclose them into |
| // implicit clauses. |
| return; |
| VD = VD->getCanonicalDecl(); |
| // Skip internally declared variables. |
| if (VD->hasLocalStorage() && CS && !CS->capturesVariable(VD) && |
| !Stack->isImplicitTaskFirstprivate(VD)) |
| return; |
| // Skip allocators in uses_allocators clauses. |
| if (Stack->isUsesAllocatorsDecl(VD).hasValue()) |
| return; |
| |
| DSAStackTy::DSAVarData DVar = Stack->getTopDSA(VD, /*FromParent=*/false); |
| // Check if the variable has explicit DSA set and stop analysis if it so. |
| if (DVar.RefExpr || !ImplicitDeclarations.insert(VD).second) |
| return; |
| |
| // Skip internally declared static variables. |
| llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = |
| OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); |
| if (VD->hasGlobalStorage() && CS && !CS->capturesVariable(VD) && |
| (Stack->hasRequiresDeclWithClause<OMPUnifiedSharedMemoryClause>() || |
| !Res || *Res != OMPDeclareTargetDeclAttr::MT_Link) && |
| !Stack->isImplicitTaskFirstprivate(VD)) |
| return; |
| |
| SourceLocation ELoc = E->getExprLoc(); |
| OpenMPDirectiveKind DKind = Stack->getCurrentDirective(); |
| // The default(none) clause requires that each variable that is referenced |
| // in the construct, and does not have a predetermined data-sharing |
| // attribute, must have its data-sharing attribute explicitly determined |
| // by being listed in a data-sharing attribute clause. |
| if (DVar.CKind == OMPC_unknown && |
| (Stack->getDefaultDSA() == DSA_none || |
| Stack->getDefaultDSA() == DSA_firstprivate) && |
| isImplicitOrExplicitTaskingRegion(DKind) && |
| VarsWithInheritedDSA.count(VD) == 0) { |
| bool InheritedDSA = Stack->getDefaultDSA() == DSA_none; |
| if (!InheritedDSA && Stack->getDefaultDSA() == DSA_firstprivate) { |
| DSAStackTy::DSAVarData DVar = |
| Stack->getImplicitDSA(VD, /*FromParent=*/false); |
| InheritedDSA = DVar.CKind == OMPC_unknown; |
| } |
| if (InheritedDSA) |
| VarsWithInheritedDSA[VD] = E; |
| return; |
| } |
| |
| // OpenMP 5.0 [2.19.7.2, defaultmap clause, Description] |
| // If implicit-behavior is none, each variable referenced in the |
| // construct that does not have a predetermined data-sharing attribute |
| // and does not appear in a to or link clause on a declare target |
| // directive must be listed in a data-mapping attribute clause, a |
| // data-haring attribute clause (including a data-sharing attribute |
| // clause on a combined construct where target. is one of the |
| // constituent constructs), or an is_device_ptr clause. |
| OpenMPDefaultmapClauseKind ClauseKind = |
| getVariableCategoryFromDecl(SemaRef.getLangOpts(), VD); |
| if (SemaRef.getLangOpts().OpenMP >= 50) { |
| bool IsModifierNone = Stack->getDefaultmapModifier(ClauseKind) == |
| OMPC_DEFAULTMAP_MODIFIER_none; |
| if (DVar.CKind == OMPC_unknown && IsModifierNone && |
| VarsWithInheritedDSA.count(VD) == 0 && !Res) { |
| // Only check for data-mapping attribute and is_device_ptr here |
| // since we have already make sure that the declaration does not |
| // have a data-sharing attribute above |
| if (!Stack->checkMappableExprComponentListsForDecl( |
| VD, /*CurrentRegionOnly=*/true, |
| [VD](OMPClauseMappableExprCommon::MappableExprComponentListRef |
| MapExprComponents, |
| OpenMPClauseKind) { |
| auto MI = MapExprComponents.rbegin(); |
| auto ME = MapExprComponents.rend(); |
| return MI != ME && MI->getAssociatedDeclaration() == VD; |
| })) { |
| VarsWithInheritedDSA[VD] = E; |
| return; |
| } |
| } |
| } |
| if (SemaRef.getLangOpts().OpenMP > 50) { |
| bool IsModifierPresent = Stack->getDefaultmapModifier(ClauseKind) == |
| OMPC_DEFAULTMAP_MODIFIER_present; |
| if (IsModifierPresent) { |
| if (llvm::find(ImplicitMapModifier[ClauseKind], |
| OMPC_MAP_MODIFIER_present) == |
| std::end(ImplicitMapModifier[ClauseKind])) { |
| ImplicitMapModifier[ClauseKind].push_back( |
| OMPC_MAP_MODIFIER_present); |
| } |
| } |
| } |
| |
| if (isOpenMPTargetExecutionDirective(DKind) && |
| !Stack->isLoopControlVariable(VD).first) { |
| if (!Stack->checkMappableExprComponentListsForDecl( |
| VD, /*CurrentRegionOnly=*/true, |
| [this](OMPClauseMappableExprCommon::MappableExprComponentListRef |
| StackComponents, |
| OpenMPClauseKind) { |
| if (SemaRef.LangOpts.OpenMP >= 50) |
| return !StackComponents.empty(); |
| // Variable is used if it has been marked as an array, array |
| // section, array shaping or the variable iself. |
| return StackComponents.size() == 1 || |
| std::all_of( |
| std::next(StackComponents.rbegin()), |
| StackComponents.rend(), |
| [](const OMPClauseMappableExprCommon:: |
| MappableComponent &MC) { |
| return MC.getAssociatedDeclaration() == |
| nullptr && |
| (isa<OMPArraySectionExpr>( |
| MC.getAssociatedExpression()) || |
| isa<OMPArrayShapingExpr>( |
| MC.getAssociatedExpression()) || |
| isa<ArraySubscriptExpr>( |
| MC.getAssociatedExpression())); |
| }); |
| })) { |
| bool IsFirstprivate = false; |
| // By default lambdas are captured as firstprivates. |
| if (const auto *RD = |
| VD->getType().getNonReferenceType()->getAsCXXRecordDecl()) |
| IsFirstprivate = RD->isLambda(); |
| IsFirstprivate = |
| IsFirstprivate || (Stack->mustBeFirstprivate(ClauseKind) && !Res); |
| if (IsFirstprivate) { |
| ImplicitFirstprivate.emplace_back(E); |
| } else { |
| OpenMPDefaultmapClauseModifier M = |
| Stack->getDefaultmapModifier(ClauseKind); |
| OpenMPMapClauseKind Kind = getMapClauseKindFromModifier( |
| M, ClauseKind == OMPC_DEFAULTMAP_aggregate || Res); |
| ImplicitMap[ClauseKind][Kind].emplace_back(E); |
| } |
| return; |
| } |
| } |
| |
| // OpenMP [2.9.3.6, Restrictions, p.2] |
| // A list item that appears in a reduction clause of the innermost |
| // enclosing worksharing or parallel construct may not be accessed in an |
| // explicit task. |
| DVar = Stack->hasInnermostDSA( |
| VD, |
| [](OpenMPClauseKind C, bool AppliedToPointee) { |
| return C == OMPC_reduction && !AppliedToPointee; |
| }, |
| [](OpenMPDirectiveKind K) { |
| return isOpenMPParallelDirective(K) || |
| isOpenMPWorksharingDirective(K) || isOpenMPTeamsDirective(K); |
| }, |
| /*FromParent=*/true); |
| if (isOpenMPTaskingDirective(DKind) && DVar.CKind == OMPC_reduction) { |
| ErrorFound = true; |
| SemaRef.Diag(ELoc, diag::err_omp_reduction_in_task); |
| reportOriginalDsa(SemaRef, Stack, VD, DVar); |
| return; |
| } |
| |
| // Define implicit data-sharing attributes for task. |
| DVar = Stack->getImplicitDSA(VD, /*FromParent=*/false); |
| if (((isOpenMPTaskingDirective(DKind) && DVar.CKind != OMPC_shared) || |
| (Stack->getDefaultDSA() == DSA_firstprivate && |
| DVar.CKind == OMPC_firstprivate && !DVar.RefExpr)) && |
| !Stack->isLoopControlVariable(VD).first) { |
| ImplicitFirstprivate.push_back(E); |
| return; |
| } |
| |
| // Store implicitly used globals with declare target link for parent |
| // target. |
| if (!isOpenMPTargetExecutionDirective(DKind) && Res && |
| *Res == OMPDeclareTargetDeclAttr::MT_Link) { |
| Stack->addToParentTargetRegionLinkGlobals(E); |
| return; |
| } |
| } |
| } |
| void VisitMemberExpr(MemberExpr *E) { |
| if (E->isTypeDependent() || E->isValueDependent() || |
| E->containsUnexpandedParameterPack() || E->isInstantiationDependent()) |
| return; |
| auto *FD = dyn_cast<FieldDecl>(E->getMemberDecl()); |
| OpenMPDirectiveKind DKind = Stack->getCurrentDirective(); |
| if (auto *TE = dyn_cast<CXXThisExpr>(E->getBase()->IgnoreParenCasts())) { |
| if (!FD) |
| return; |
| DSAStackTy::DSAVarData DVar = Stack->getTopDSA(FD, /*FromParent=*/false); |
| // Check if the variable has explicit DSA set and stop analysis if it |
| // so. |
| if (DVar.RefExpr || !ImplicitDeclarations.insert(FD).second) |
| return; |
| |
| if (isOpenMPTargetExecutionDirective(DKind) && |
| !Stack->isLoopControlVariable(FD).first && |
| !Stack->checkMappableExprComponentListsForDecl( |
| FD, /*CurrentRegionOnly=*/true, |
| [](OMPClauseMappableExprCommon::MappableExprComponentListRef |
| StackComponents, |
| OpenMPClauseKind) { |
| return isa<CXXThisExpr>( |
| cast<MemberExpr>( |
| StackComponents.back().getAssociatedExpression()) |
| ->getBase() |
| ->IgnoreParens()); |
| })) { |
| // OpenMP 4.5 [2.15.5.1, map Clause, Restrictions, C/C++, p.3] |
| // A bit-field cannot appear in a map clause. |
| // |
| if (FD->isBitField()) |
| return; |
| |
| // Check to see if the member expression is referencing a class that |
| // has already been explicitly mapped |
| if (Stack->isClassPreviouslyMapped(TE->getType())) |
| return; |
| |
| OpenMPDefaultmapClauseModifier Modifier = |
| Stack->getDefaultmapModifier(OMPC_DEFAULTMAP_aggregate); |
| OpenMPDefaultmapClauseKind ClauseKind = |
| getVariableCategoryFromDecl(SemaRef.getLangOpts(), FD); |
| OpenMPMapClauseKind Kind = getMapClauseKindFromModifier( |
| Modifier, /*IsAggregateOrDeclareTarget*/ true); |
| ImplicitMap[ClauseKind][Kind].emplace_back(E); |
| return; |
| } |
| |
| SourceLocation ELoc = E->getExprLoc(); |
| // OpenMP [2.9.3.6, Restrictions, p.2] |
| // A list item that appears in a reduction clause of the innermost |
| // enclosing worksharing or parallel construct may not be accessed in |
| // an explicit task. |
| DVar = Stack->hasInnermostDSA( |
| FD, |
| [](OpenMPClauseKind C, bool AppliedToPointee) { |
| return C == OMPC_reduction && !AppliedToPointee; |
| }, |
| [](OpenMPDirectiveKind K) { |
| return isOpenMPParallelDirective(K) || |
| isOpenMPWorksharingDirective(K) || isOpenMPTeamsDirective(K); |
| }, |
| /*FromParent=*/true); |
| if (isOpenMPTaskingDirective(DKind) && DVar.CKind == OMPC_reduction) { |
| ErrorFound = true; |
| SemaRef.Diag(ELoc, diag::err_omp_reduction_in_task); |
| reportOriginalDsa(SemaRef, Stack, FD, DVar); |
| return; |
| } |
| |
| // Define implicit data-sharing attributes for task. |
| DVar = Stack->getImplicitDSA(FD, /*FromParent=*/false); |
| if (isOpenMPTaskingDirective(DKind) && DVar.CKind != OMPC_shared && |
| !Stack->isLoopControlVariable(FD).first) { |
| // Check if there is a captured expression for the current field in the |
| // region. Do not mark it as firstprivate unless there is no captured |
| // expression. |
| // TODO: try to make it firstprivate. |
| if (DVar.CKind != OMPC_unknown) |
| ImplicitFirstprivate.push_back(E); |
| } |
| return; |
| } |
| if (isOpenMPTargetExecutionDirective(DKind)) { |
| OMPClauseMappableExprCommon::MappableExprComponentList CurComponents; |
| if (!checkMapClauseExpressionBase(SemaRef, E, CurComponents, OMPC_map, |
| Stack->getCurrentDirective(), |
| /*NoDiagnose=*/true)) |
| return; |
| const auto *VD = cast<ValueDecl>( |
| CurComponents.back().getAssociatedDeclaration()->getCanonicalDecl()); |
| if (!Stack->checkMappableExprComponentListsForDecl( |
| VD, /*CurrentRegionOnly=*/true, |
| [&CurComponents]( |
| OMPClauseMappableExprCommon::MappableExprComponentListRef |
| StackComponents, |
| OpenMPClauseKind) { |
| auto CCI = CurComponents.rbegin(); |
| auto CCE = CurComponents.rend(); |
| for (const auto &SC : llvm::reverse(StackComponents)) { |
| // Do both expressions have the same kind? |
| if (CCI->getAssociatedExpression()->getStmtClass() != |
| SC.getAssociatedExpression()->getStmtClass()) |
| if (!((isa<OMPArraySectionExpr>( |
| SC.getAssociatedExpression()) || |
| isa<OMPArrayShapingExpr>( |
| SC.getAssociatedExpression())) && |
| isa<ArraySubscriptExpr>( |
| CCI->getAssociatedExpression()))) |
| return false; |
| |
| const Decl *CCD = CCI->getAssociatedDeclaration(); |
| const Decl *SCD = SC.getAssociatedDeclaration(); |
| CCD = CCD ? CCD->getCanonicalDecl() : nullptr; |
| SCD = SCD ? SCD->getCanonicalDecl() : nullptr; |
| if (SCD != CCD) |
| return false; |
| std::advance(CCI, 1); |
| if (CCI == CCE) |
| break; |
| } |
| return true; |
| })) { |
| Visit(E->getBase()); |
| } |
| } else if (!TryCaptureCXXThisMembers) { |
| Visit(E->getBase()); |
| } |
| } |
| void VisitOMPExecutableDirective(OMPExecutableDirective *S) { |
| for (OMPClause *C : S->clauses()) { |
| // Skip analysis of arguments of implicitly defined firstprivate clause |
| // for task|target directives. |
| // Skip analysis of arguments of implicitly defined map clause for target |
| // directives. |
| if (C && !((isa<OMPFirstprivateClause>(C) || isa<OMPMapClause>(C)) && |
| C->isImplicit() && |
| !isOpenMPTaskingDirective(Stack->getCurrentDirective()))) { |
| for (Stmt *CC : C->children()) { |
| if (CC) |
| Visit(CC); |
| } |
| } |
| } |
| // Check implicitly captured variables. |
| VisitSubCaptures(S); |
| } |
| |
| void VisitOMPLoopTransformationDirective(OMPLoopTransformationDirective *S) { |
| // Loop transformation directives do not introduce data sharing |
| VisitStmt(S); |
| } |
| |
| void VisitStmt(Stmt *S) { |
| for (Stmt *C : S->children()) { |
| if (C) { |
| // Check implicitly captured variables in the task-based directives to |
| // check if they must be firstprivatized. |
| Visit(C); |
| } |
| } |
| } |
| |
| void visitSubCaptures(CapturedStmt *S) { |
| for (const CapturedStmt::Capture &Cap : S->captures()) { |
| if (!Cap.capturesVariable() && !Cap.capturesVariableByCopy()) |
| continue; |
| VarDecl *VD = Cap.getCapturedVar(); |
| // Do not try to map the variable if it or its sub-component was mapped |
| // already. |
| if (isOpenMPTargetExecutionDirective(Stack->getCurrentDirective()) && |
| Stack->checkMappableExprComponentListsForDecl( |
| VD, /*CurrentRegionOnly=*/true, |
| [](OMPClauseMappableExprCommon::MappableExprComponentListRef, |
| OpenMPClauseKind) { return true; })) |
| continue; |
| DeclRefExpr *DRE = buildDeclRefExpr( |
| SemaRef, VD, VD->getType().getNonLValueExprType(SemaRef.Context), |
| Cap.getLocation(), /*RefersToCapture=*/true); |
| Visit(DRE); |
| } |
| } |
| bool isErrorFound() const { return ErrorFound; } |
| ArrayRef<Expr *> getImplicitFirstprivate() const { |
| return ImplicitFirstprivate; |
| } |
| ArrayRef<Expr *> getImplicitMap(OpenMPDefaultmapClauseKind DK, |
| OpenMPMapClauseKind MK) const { |
| return ImplicitMap[DK][MK]; |
| } |
| ArrayRef<OpenMPMapModifierKind> |
| getImplicitMapModifier(OpenMPDefaultmapClauseKind Kind) const { |
| return ImplicitMapModifier[Kind]; |
| } |
| const Sema::VarsWithInheritedDSAType &getVarsWithInheritedDSA() const { |
| return VarsWithInheritedDSA; |
| } |
| |
| DSAAttrChecker(DSAStackTy *S, Sema &SemaRef, CapturedStmt *CS) |
| : Stack(S), SemaRef(SemaRef), ErrorFound(false), CS(CS) { |
| // Process declare target link variables for the target directives. |
| if (isOpenMPTargetExecutionDirective(S->getCurrentDirective())) { |
| for (DeclRefExpr *E : Stack->getLinkGlobals()) |
| Visit(E); |
| } |
| } |
| }; |
| } // namespace |
| |
| static void handleDeclareVariantConstructTrait(DSAStackTy *Stack, |
| OpenMPDirectiveKind DKind, |
| bool ScopeEntry) { |
| SmallVector<llvm::omp::TraitProperty, 8> Traits; |
| if (isOpenMPTargetExecutionDirective(DKind)) |
| Traits.emplace_back(llvm::omp::TraitProperty::construct_target_target); |
| if (isOpenMPTeamsDirective(DKind)) |
| Traits.emplace_back(llvm::omp::TraitProperty::construct_teams_teams); |
| if (isOpenMPParallelDirective(DKind)) |
| Traits.emplace_back(llvm::omp::TraitProperty::construct_parallel_parallel); |
| if (isOpenMPWorksharingDirective(DKind)) |
| Traits.emplace_back(llvm::omp::TraitProperty::construct_for_for); |
| if (isOpenMPSimdDirective(DKind)) |
| Traits.emplace_back(llvm::omp::TraitProperty::construct_simd_simd); |
| Stack->handleConstructTrait(Traits, ScopeEntry); |
| } |
| |
| void Sema::ActOnOpenMPRegionStart(OpenMPDirectiveKind DKind, Scope *CurScope) { |
| switch (DKind) { |
| case OMPD_parallel: |
| case OMPD_parallel_for: |
| case OMPD_parallel_for_simd: |
| case OMPD_parallel_sections: |
| case OMPD_parallel_master: |
| case OMPD_teams: |
| case OMPD_teams_distribute: |
| case OMPD_teams_distribute_simd: { |
| QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst(); |
| QualType KmpInt32PtrTy = |
| Context.getPointerType(KmpInt32Ty).withConst().withRestrict(); |
| Sema::CapturedParamNameType Params[] = { |
| std::make_pair(".global_tid.", KmpInt32PtrTy), |
| std::make_pair(".bound_tid.", KmpInt32PtrTy), |
| std::make_pair(StringRef(), QualType()) // __context with shared vars |
| }; |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| Params); |
| break; |
| } |
| case OMPD_target_teams: |
| case OMPD_target_parallel: |
| case OMPD_target_parallel_for: |
| case OMPD_target_parallel_for_simd: |
| case OMPD_target_teams_distribute: |
| case OMPD_target_teams_distribute_simd: { |
| QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst(); |
| QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict(); |
| QualType KmpInt32PtrTy = |
| Context.getPointerType(KmpInt32Ty).withConst().withRestrict(); |
| QualType Args[] = {VoidPtrTy}; |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.Variadic = true; |
| QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI); |
| Sema::CapturedParamNameType Params[] = { |
| std::make_pair(".global_tid.", KmpInt32Ty), |
| std::make_pair(".part_id.", KmpInt32PtrTy), |
| std::make_pair(".privates.", VoidPtrTy), |
| std::make_pair( |
| ".copy_fn.", |
| Context.getPointerType(CopyFnType).withConst().withRestrict()), |
| std::make_pair(".task_t.", Context.VoidPtrTy.withConst()), |
| std::make_pair(StringRef(), QualType()) // __context with shared vars |
| }; |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| Params, /*OpenMPCaptureLevel=*/0); |
| // Mark this captured region as inlined, because we don't use outlined |
| // function directly. |
| getCurCapturedRegion()->TheCapturedDecl->addAttr( |
| AlwaysInlineAttr::CreateImplicit( |
| Context, {}, AttributeCommonInfo::AS_Keyword, |
| AlwaysInlineAttr::Keyword_forceinline)); |
| Sema::CapturedParamNameType ParamsTarget[] = { |
| std::make_pair(StringRef(), QualType()) // __context with shared vars |
| }; |
| // Start a captured region for 'target' with no implicit parameters. |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| ParamsTarget, /*OpenMPCaptureLevel=*/1); |
| Sema::CapturedParamNameType ParamsTeamsOrParallel[] = { |
| std::make_pair(".global_tid.", KmpInt32PtrTy), |
| std::make_pair(".bound_tid.", KmpInt32PtrTy), |
| std::make_pair(StringRef(), QualType()) // __context with shared vars |
| }; |
| // Start a captured region for 'teams' or 'parallel'. Both regions have |
| // the same implicit parameters. |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| ParamsTeamsOrParallel, /*OpenMPCaptureLevel=*/2); |
| break; |
| } |
| case OMPD_target: |
| case OMPD_target_simd: { |
| QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst(); |
| QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict(); |
| QualType KmpInt32PtrTy = |
| Context.getPointerType(KmpInt32Ty).withConst().withRestrict(); |
| QualType Args[] = {VoidPtrTy}; |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.Variadic = true; |
| QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI); |
| Sema::CapturedParamNameType Params[] = { |
| std::make_pair(".global_tid.", KmpInt32Ty), |
| std::make_pair(".part_id.", KmpInt32PtrTy), |
| std::make_pair(".privates.", VoidPtrTy), |
| std::make_pair( |
| ".copy_fn.", |
| Context.getPointerType(CopyFnType).withConst().withRestrict()), |
| std::make_pair(".task_t.", Context.VoidPtrTy.withConst()), |
| std::make_pair(StringRef(), QualType()) // __context with shared vars |
| }; |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| Params, /*OpenMPCaptureLevel=*/0); |
| // Mark this captured region as inlined, because we don't use outlined |
| // function directly. |
| getCurCapturedRegion()->TheCapturedDecl->addAttr( |
| AlwaysInlineAttr::CreateImplicit( |
| Context, {}, AttributeCommonInfo::AS_Keyword, |
| AlwaysInlineAttr::Keyword_forceinline)); |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| std::make_pair(StringRef(), QualType()), |
| /*OpenMPCaptureLevel=*/1); |
| break; |
| } |
| case OMPD_atomic: |
| case OMPD_critical: |
| case OMPD_section: |
| case OMPD_master: |
| case OMPD_masked: |
| case OMPD_tile: |
| case OMPD_unroll: |
| break; |
| case OMPD_loop: |
| // TODO: 'loop' may require additional parameters depending on the binding. |
| // Treat similar to OMPD_simd/OMPD_for for now. |
| case OMPD_simd: |
| case OMPD_for: |
| case OMPD_for_simd: |
| case OMPD_sections: |
| case OMPD_single: |
| case OMPD_taskgroup: |
| case OMPD_distribute: |
| case OMPD_distribute_simd: |
| case OMPD_ordered: |
| case OMPD_target_data: |
| case OMPD_dispatch: { |
| Sema::CapturedParamNameType Params[] = { |
| std::make_pair(StringRef(), QualType()) // __context with shared vars |
| }; |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| Params); |
| break; |
| } |
| case OMPD_task: { |
| QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst(); |
| QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict(); |
| QualType KmpInt32PtrTy = |
| Context.getPointerType(KmpInt32Ty).withConst().withRestrict(); |
| QualType Args[] = {VoidPtrTy}; |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.Variadic = true; |
| QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI); |
| Sema::CapturedParamNameType Params[] = { |
| std::make_pair(".global_tid.", KmpInt32Ty), |
| std::make_pair(".part_id.", KmpInt32PtrTy), |
| std::make_pair(".privates.", VoidPtrTy), |
| std::make_pair( |
| ".copy_fn.", |
| Context.getPointerType(CopyFnType).withConst().withRestrict()), |
| std::make_pair(".task_t.", Context.VoidPtrTy.withConst()), |
| std::make_pair(StringRef(), QualType()) // __context with shared vars |
| }; |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| Params); |
| // Mark this captured region as inlined, because we don't use outlined |
| // function directly. |
| getCurCapturedRegion()->TheCapturedDecl->addAttr( |
| AlwaysInlineAttr::CreateImplicit( |
| Context, {}, AttributeCommonInfo::AS_Keyword, |
| AlwaysInlineAttr::Keyword_forceinline)); |
| break; |
| } |
| case OMPD_taskloop: |
| case OMPD_taskloop_simd: |
| case OMPD_master_taskloop: |
| case OMPD_master_taskloop_simd: { |
| QualType KmpInt32Ty = |
| Context.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1) |
| .withConst(); |
| QualType KmpUInt64Ty = |
| Context.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0) |
| .withConst(); |
| QualType KmpInt64Ty = |
| Context.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1) |
| .withConst(); |
| QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict(); |
| QualType KmpInt32PtrTy = |
| Context.getPointerType(KmpInt32Ty).withConst().withRestrict(); |
| QualType Args[] = {VoidPtrTy}; |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.Variadic = true; |
| QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI); |
| Sema::CapturedParamNameType Params[] = { |
| std::make_pair(".global_tid.", KmpInt32Ty), |
| std::make_pair(".part_id.", KmpInt32PtrTy), |
| std::make_pair(".privates.", VoidPtrTy), |
| std::make_pair( |
| ".copy_fn.", |
| Context.getPointerType(CopyFnType).withConst().withRestrict()), |
| std::make_pair(".task_t.", Context.VoidPtrTy.withConst()), |
| std::make_pair(".lb.", KmpUInt64Ty), |
| std::make_pair(".ub.", KmpUInt64Ty), |
| std::make_pair(".st.", KmpInt64Ty), |
| std::make_pair(".liter.", KmpInt32Ty), |
| std::make_pair(".reductions.", VoidPtrTy), |
| std::make_pair(StringRef(), QualType()) // __context with shared vars |
| }; |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| Params); |
| // Mark this captured region as inlined, because we don't use outlined |
| // function directly. |
| getCurCapturedRegion()->TheCapturedDecl->addAttr( |
| AlwaysInlineAttr::CreateImplicit( |
| Context, {}, AttributeCommonInfo::AS_Keyword, |
| AlwaysInlineAttr::Keyword_forceinline)); |
| break; |
| } |
| case OMPD_parallel_master_taskloop: |
| case OMPD_parallel_master_taskloop_simd: { |
| QualType KmpInt32Ty = |
| Context.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1) |
| .withConst(); |
| QualType KmpUInt64Ty = |
| Context.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0) |
| .withConst(); |
| QualType KmpInt64Ty = |
| Context.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1) |
| .withConst(); |
| QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict(); |
| QualType KmpInt32PtrTy = |
| Context.getPointerType(KmpInt32Ty).withConst().withRestrict(); |
| Sema::CapturedParamNameType ParamsParallel[] = { |
| std::make_pair(".global_tid.", KmpInt32PtrTy), |
| std::make_pair(".bound_tid.", KmpInt32PtrTy), |
| std::make_pair(StringRef(), QualType()) // __context with shared vars |
| }; |
| // Start a captured region for 'parallel'. |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| ParamsParallel, /*OpenMPCaptureLevel=*/0); |
| QualType Args[] = {VoidPtrTy}; |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.Variadic = true; |
| QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI); |
| Sema::CapturedParamNameType Params[] = { |
| std::make_pair(".global_tid.", KmpInt32Ty), |
| std::make_pair(".part_id.", KmpInt32PtrTy), |
| std::make_pair(".privates.", VoidPtrTy), |
| std::make_pair( |
| ".copy_fn.", |
| Context.getPointerType(CopyFnType).withConst().withRestrict()), |
| std::make_pair(".task_t.", Context.VoidPtrTy.withConst()), |
| std::make_pair(".lb.", KmpUInt64Ty), |
| std::make_pair(".ub.", KmpUInt64Ty), |
| std::make_pair(".st.", KmpInt64Ty), |
| std::make_pair(".liter.", KmpInt32Ty), |
| std::make_pair(".reductions.", VoidPtrTy), |
| std::make_pair(StringRef(), QualType()) // __context with shared vars |
| }; |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| Params, /*OpenMPCaptureLevel=*/1); |
| // Mark this captured region as inlined, because we don't use outlined |
| // function directly. |
| getCurCapturedRegion()->TheCapturedDecl->addAttr( |
| AlwaysInlineAttr::CreateImplicit( |
| Context, {}, AttributeCommonInfo::AS_Keyword, |
| AlwaysInlineAttr::Keyword_forceinline)); |
| break; |
| } |
| case OMPD_distribute_parallel_for_simd: |
| case OMPD_distribute_parallel_for: { |
| QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst(); |
| QualType KmpInt32PtrTy = |
| Context.getPointerType(KmpInt32Ty).withConst().withRestrict(); |
| Sema::CapturedParamNameType Params[] = { |
| std::make_pair(".global_tid.", KmpInt32PtrTy), |
| std::make_pair(".bound_tid.", KmpInt32PtrTy), |
| std::make_pair(".previous.lb.", Context.getSizeType().withConst()), |
| std::make_pair(".previous.ub.", Context.getSizeType().withConst()), |
| std::make_pair(StringRef(), QualType()) // __context with shared vars |
| }; |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| Params); |
| break; |
| } |
| case OMPD_target_teams_distribute_parallel_for: |
| case OMPD_target_teams_distribute_parallel_for_simd: { |
| QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst(); |
| QualType KmpInt32PtrTy = |
| Context.getPointerType(KmpInt32Ty).withConst().withRestrict(); |
| QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict(); |
| |
| QualType Args[] = {VoidPtrTy}; |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.Variadic = true; |
| QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI); |
| Sema::CapturedParamNameType Params[] = { |
| std::make_pair(".global_tid.", KmpInt32Ty), |
| std::make_pair(".part_id.", KmpInt32PtrTy), |
| std::make_pair(".privates.", VoidPtrTy), |
| std::make_pair( |
| ".copy_fn.", |
| Context.getPointerType(CopyFnType).withConst().withRestrict()), |
| std::make_pair(".task_t.", Context.VoidPtrTy.withConst()), |
| std::make_pair(StringRef(), QualType()) // __context with shared vars |
| }; |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| Params, /*OpenMPCaptureLevel=*/0); |
| // Mark this captured region as inlined, because we don't use outlined |
| // function directly. |
| getCurCapturedRegion()->TheCapturedDecl->addAttr( |
| AlwaysInlineAttr::CreateImplicit( |
| Context, {}, AttributeCommonInfo::AS_Keyword, |
| AlwaysInlineAttr::Keyword_forceinline)); |
| Sema::CapturedParamNameType ParamsTarget[] = { |
| std::make_pair(StringRef(), QualType()) // __context with shared vars |
| }; |
| // Start a captured region for 'target' with no implicit parameters. |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| ParamsTarget, /*OpenMPCaptureLevel=*/1); |
| |
| Sema::CapturedParamNameType ParamsTeams[] = { |
| std::make_pair(".global_tid.", KmpInt32PtrTy), |
| std::make_pair(".bound_tid.", KmpInt32PtrTy), |
| std::make_pair(StringRef(), QualType()) // __context with shared vars |
| }; |
| // Start a captured region for 'target' with no implicit parameters. |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| ParamsTeams, /*OpenMPCaptureLevel=*/2); |
| |
| Sema::CapturedParamNameType ParamsParallel[] = { |
| std::make_pair(".global_tid.", KmpInt32PtrTy), |
| std::make_pair(".bound_tid.", KmpInt32PtrTy), |
| std::make_pair(".previous.lb.", Context.getSizeType().withConst()), |
| std::make_pair(".previous.ub.", Context.getSizeType().withConst()), |
| std::make_pair(StringRef(), QualType()) // __context with shared vars |
| }; |
| // Start a captured region for 'teams' or 'parallel'. Both regions have |
| // the same implicit parameters. |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| ParamsParallel, /*OpenMPCaptureLevel=*/3); |
| break; |
| } |
| |
| case OMPD_teams_distribute_parallel_for: |
| case OMPD_teams_distribute_parallel_for_simd: { |
| QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst(); |
| QualType KmpInt32PtrTy = |
| Context.getPointerType(KmpInt32Ty).withConst().withRestrict(); |
| |
| Sema::CapturedParamNameType ParamsTeams[] = { |
| std::make_pair(".global_tid.", KmpInt32PtrTy), |
| std::make_pair(".bound_tid.", KmpInt32PtrTy), |
| std::make_pair(StringRef(), QualType()) // __context with shared vars |
| }; |
| // Start a captured region for 'target' with no implicit parameters. |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| ParamsTeams, /*OpenMPCaptureLevel=*/0); |
| |
| Sema::CapturedParamNameType ParamsParallel[] = { |
| std::make_pair(".global_tid.", KmpInt32PtrTy), |
| std::make_pair(".bound_tid.", KmpInt32PtrTy), |
| std::make_pair(".previous.lb.", Context.getSizeType().withConst()), |
| std::make_pair(".previous.ub.", Context.getSizeType().withConst()), |
| std::make_pair(StringRef(), QualType()) // __context with shared vars |
| }; |
| // Start a captured region for 'teams' or 'parallel'. Both regions have |
| // the same implicit parameters. |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| ParamsParallel, /*OpenMPCaptureLevel=*/1); |
| break; |
| } |
| case OMPD_target_update: |
| case OMPD_target_enter_data: |
| case OMPD_target_exit_data: { |
| QualType KmpInt32Ty = Context.getIntTypeForBitwidth(32, 1).withConst(); |
| QualType VoidPtrTy = Context.VoidPtrTy.withConst().withRestrict(); |
| QualType KmpInt32PtrTy = |
| Context.getPointerType(KmpInt32Ty).withConst().withRestrict(); |
| QualType Args[] = {VoidPtrTy}; |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.Variadic = true; |
| QualType CopyFnType = Context.getFunctionType(Context.VoidTy, Args, EPI); |
| Sema::CapturedParamNameType Params[] = { |
| std::make_pair(".global_tid.", KmpInt32Ty), |
| std::make_pair(".part_id.", KmpInt32PtrTy), |
| std::make_pair(".privates.", VoidPtrTy), |
| std::make_pair( |
| ".copy_fn.", |
| Context.getPointerType(CopyFnType).withConst().withRestrict()), |
| std::make_pair(".task_t.", Context.VoidPtrTy.withConst()), |
| std::make_pair(StringRef(), QualType()) // __context with shared vars |
| }; |
| ActOnCapturedRegionStart(DSAStack->getConstructLoc(), CurScope, CR_OpenMP, |
| Params); |
| // Mark this captured region as inlined, because we don't use outlined |
| // function directly. |
| getCurCapturedRegion()->TheCapturedDecl->addAttr( |
| AlwaysInlineAttr::CreateImplicit( |
| Context, {}, AttributeCommonInfo::AS_Keyword, |
| AlwaysInlineAttr::Keyword_forceinline)); |
| break; |
| } |
| case OMPD_threadprivate: |
| case OMPD_allocate: |
| case OMPD_taskyield: |
| case OMPD_barrier: |
| case OMPD_taskwait: |
| case OMPD_cancellation_point: |
| case OMPD_cancel: |
| case OMPD_flush: |
| case OMPD_depobj: |
| case OMPD_scan: |
| case OMPD_declare_reduction: |
| case OMPD_declare_mapper: |
| case OMPD_declare_simd: |
| case OMPD_declare_target: |
| case OMPD_end_declare_target: |
| case OMPD_requires: |
| case OMPD_declare_variant: |
| case OMPD_begin_declare_variant: |
| case OMPD_end_declare_variant: |
| case OMPD_metadirective: |
| llvm_unreachable("OpenMP Directive is not allowed"); |
| case OMPD_unknown: |
| default: |
| llvm_unreachable("Unknown OpenMP directive"); |
| } |
| DSAStack->setContext(CurContext); |
| handleDeclareVariantConstructTrait(DSAStack, DKind, /* ScopeEntry */ true); |
| } |
| |
| int Sema::getNumberOfConstructScopes(unsigned Level) const { |
| return getOpenMPCaptureLevels(DSAStack->getDirective(Level)); |
| } |
| |
| int Sema::getOpenMPCaptureLevels(OpenMPDirectiveKind DKind) { |
| SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; |
| getOpenMPCaptureRegions(CaptureRegions, DKind); |
| return CaptureRegions.size(); |
| } |
| |
| static OMPCapturedExprDecl *buildCaptureDecl(Sema &S, IdentifierInfo *Id, |
| Expr *CaptureExpr, bool WithInit, |
| bool AsExpression) { |
| assert(CaptureExpr); |
| ASTContext &C = S.getASTContext(); |
| Expr *Init = AsExpression ? CaptureExpr : CaptureExpr->IgnoreImpCasts(); |
| QualType Ty = Init->getType(); |
| if (CaptureExpr->getObjectKind() == OK_Ordinary && CaptureExpr->isGLValue()) { |
| if (S.getLangOpts().CPlusPlus) { |
| Ty = C.getLValueReferenceType(Ty); |
| } else { |
| Ty = C.getPointerType(Ty); |
| ExprResult Res = |
| S.CreateBuiltinUnaryOp(CaptureExpr->getExprLoc(), UO_AddrOf, Init); |
| if (!Res.isUsable()) |
| return nullptr; |
| Init = Res.get(); |
| } |
| WithInit = true; |
| } |
| auto *CED = OMPCapturedExprDecl::Create(C, S.CurContext, Id, Ty, |
| CaptureExpr->getBeginLoc()); |
| if (!WithInit) |
| CED->addAttr(OMPCaptureNoInitAttr::CreateImplicit(C)); |
| S.CurContext->addHiddenDecl(CED); |
| Sema::TentativeAnalysisScope Trap(S); |
| S.AddInitializerToDecl(CED, Init, /*DirectInit=*/false); |
| return CED; |
| } |
| |
| static DeclRefExpr *buildCapture(Sema &S, ValueDecl *D, Expr *CaptureExpr, |
| bool WithInit) { |
| OMPCapturedExprDecl *CD; |
| if (VarDecl *VD = S.isOpenMPCapturedDecl(D)) |
| CD = cast<OMPCapturedExprDecl>(VD); |
| else |
| CD = buildCaptureDecl(S, D->getIdentifier(), CaptureExpr, WithInit, |
| /*AsExpression=*/false); |
| return buildDeclRefExpr(S, CD, CD->getType().getNonReferenceType(), |
| CaptureExpr->getExprLoc()); |
| } |
| |
| static ExprResult buildCapture(Sema &S, Expr *CaptureExpr, DeclRefExpr *&Ref) { |
| CaptureExpr = S.DefaultLvalueConversion(CaptureExpr).get(); |
| if (!Ref) { |
| OMPCapturedExprDecl *CD = buildCaptureDecl( |
| S, &S.getASTContext().Idents.get(".capture_expr."), CaptureExpr, |
| /*WithInit=*/true, /*AsExpression=*/true); |
| Ref = buildDeclRefExpr(S, CD, CD->getType().getNonReferenceType(), |
| CaptureExpr->getExprLoc()); |
| } |
| ExprResult Res = Ref; |
| if (!S.getLangOpts().CPlusPlus && |
| CaptureExpr->getObjectKind() == OK_Ordinary && CaptureExpr->isGLValue() && |
| Ref->getType()->isPointerType()) { |
| Res = S.CreateBuiltinUnaryOp(CaptureExpr->getExprLoc(), UO_Deref, Ref); |
| if (!Res.isUsable()) |
| return ExprError(); |
| } |
| return S.DefaultLvalueConversion(Res.get()); |
| } |
| |
| namespace { |
| // OpenMP directives parsed in this section are represented as a |
| // CapturedStatement with an associated statement. If a syntax error |
| // is detected during the parsing of the associated statement, the |
| // compiler must abort processing and close the CapturedStatement. |
| // |
| // Combined directives such as 'target parallel' have more than one |
| // nested CapturedStatements. This RAII ensures that we unwind out |
| // of all the nested CapturedStatements when an error is found. |
| class CaptureRegionUnwinderRAII { |
| private: |
| Sema &S; |
| bool &ErrorFound; |
| OpenMPDirectiveKind DKind = OMPD_unknown; |
| |
| public: |
| CaptureRegionUnwinderRAII(Sema &S, bool &ErrorFound, |
| OpenMPDirectiveKind DKind) |
| : S(S), ErrorFound(ErrorFound), DKind(DKind) {} |
| ~CaptureRegionUnwinderRAII() { |
| if (ErrorFound) { |
| int ThisCaptureLevel = S.getOpenMPCaptureLevels(DKind); |
| while (--ThisCaptureLevel >= 0) |
| S.ActOnCapturedRegionError(); |
| } |
| } |
| }; |
| } // namespace |
| |
| void Sema::tryCaptureOpenMPLambdas(ValueDecl *V) { |
| // Capture variables captured by reference in lambdas for target-based |
| // directives. |
| if (!CurContext->isDependentContext() && |
| (isOpenMPTargetExecutionDirective(DSAStack->getCurrentDirective()) || |
| isOpenMPTargetDataManagementDirective( |
| DSAStack->getCurrentDirective()))) { |
| QualType Type = V->getType(); |
| if (const auto *RD = Type.getCanonicalType() |
| .getNonReferenceType() |
| ->getAsCXXRecordDecl()) { |
| bool SavedForceCaptureByReferenceInTargetExecutable = |
| DSAStack->isForceCaptureByReferenceInTargetExecutable(); |
| DSAStack->setForceCaptureByReferenceInTargetExecutable( |
| /*V=*/true); |
| if (RD->isLambda()) { |
| llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; |
| FieldDecl *ThisCapture; |
| RD->getCaptureFields(Captures, ThisCapture); |
| for (const LambdaCapture &LC : RD->captures()) { |
| if (LC.getCaptureKind() == LCK_ByRef) { |
| VarDecl *VD = LC.getCapturedVar(); |
| DeclContext *VDC = VD->getDeclContext(); |
| if (!VDC->Encloses(CurContext)) |
| continue; |
| MarkVariableReferenced(LC.getLocation(), VD); |
| } else if (LC.getCaptureKind() == LCK_This) { |
| QualType ThisTy = getCurrentThisType(); |
| if (!ThisTy.isNull() && |
| Context.typesAreCompatible(ThisTy, ThisCapture->getType())) |
| CheckCXXThisCapture(LC.getLocation()); |
| } |
| } |
| } |
| DSAStack->setForceCaptureByReferenceInTargetExecutable( |
| SavedForceCaptureByReferenceInTargetExecutable); |
| } |
| } |
| } |
| |
| static bool checkOrderedOrderSpecified(Sema &S, |
| const ArrayRef<OMPClause *> Clauses) { |
| const OMPOrderedClause *Ordered = nullptr; |
| const OMPOrderClause *Order = nullptr; |
| |
| for (const OMPClause *Clause : Clauses) { |
| if (Clause->getClauseKind() == OMPC_ordered) |
| Ordered = cast<OMPOrderedClause>(Clause); |
| else if (Clause->getClauseKind() == OMPC_order) { |
| Order = cast<OMPOrderClause>(Clause); |
| if (Order->getKind() != OMPC_ORDER_concurrent) |
| Order = nullptr; |
| } |
| if (Ordered && Order) |
| break; |
| } |
| |
| if (Ordered && Order) { |
| S.Diag(Order->getKindKwLoc(), |
| diag::err_omp_simple_clause_incompatible_with_ordered) |
| << getOpenMPClauseName(OMPC_order) |
| << getOpenMPSimpleClauseTypeName(OMPC_order, OMPC_ORDER_concurrent) |
| << SourceRange(Order->getBeginLoc(), Order->getEndLoc()); |
| S.Diag(Ordered->getBeginLoc(), diag::note_omp_ordered_param) |
| << 0 << SourceRange(Ordered->getBeginLoc(), Ordered->getEndLoc()); |
| return true; |
| } |
| return false; |
| } |
| |
| StmtResult Sema::ActOnOpenMPRegionEnd(StmtResult S, |
| ArrayRef<OMPClause *> Clauses) { |
| handleDeclareVariantConstructTrait(DSAStack, DSAStack->getCurrentDirective(), |
| /* ScopeEntry */ false); |
| if (DSAStack->getCurrentDirective() == OMPD_atomic || |
| DSAStack->getCurrentDirective() == OMPD_critical || |
| DSAStack->getCurrentDirective() == OMPD_section || |
| DSAStack->getCurrentDirective() == OMPD_master || |
| DSAStack->getCurrentDirective() == OMPD_masked) |
| return S; |
| |
| bool ErrorFound = false; |
| CaptureRegionUnwinderRAII CaptureRegionUnwinder( |
| *this, ErrorFound, DSAStack->getCurrentDirective()); |
| if (!S.isUsable()) { |
| ErrorFound = true; |
| return StmtError(); |
| } |
| |
| SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; |
| getOpenMPCaptureRegions(CaptureRegions, DSAStack->getCurrentDirective()); |
| OMPOrderedClause *OC = nullptr; |
| OMPScheduleClause *SC = nullptr; |
| SmallVector<const OMPLinearClause *, 4> LCs; |
| SmallVector<const OMPClauseWithPreInit *, 4> PICs; |
| // This is required for proper codegen. |
| for (OMPClause *Clause : Clauses) { |
| if (!LangOpts.OpenMPSimd && |
| isOpenMPTaskingDirective(DSAStack->getCurrentDirective()) && |
| Clause->getClauseKind() == OMPC_in_reduction) { |
| // Capture taskgroup task_reduction descriptors inside the tasking regions |
| // with the corresponding in_reduction items. |
| auto *IRC = cast<OMPInReductionClause>(Clause); |
| for (Expr *E : IRC->taskgroup_descriptors()) |
| if (E) |
| MarkDeclarationsReferencedInExpr(E); |
| } |
| if (isOpenMPPrivate(Clause->getClauseKind()) || |
| Clause->getClauseKind() == OMPC_copyprivate || |
| (getLangOpts().OpenMPUseTLS && |
| getASTContext().getTargetInfo().isTLSSupported() && |
| Clause->getClauseKind() == OMPC_copyin)) { |
| DSAStack->setForceVarCapturing(Clause->getClauseKind() == OMPC_copyin); |
| // Mark all variables in private list clauses as used in inner region. |
| for (Stmt *VarRef : Clause->children()) { |
| if (auto *E = cast_or_null<Expr>(VarRef)) { |
| MarkDeclarationsReferencedInExpr(E); |
| } |
| } |
| DSAStack->setForceVarCapturing(/*V=*/false); |
| } else if (isOpenMPLoopTransformationDirective( |
| DSAStack->getCurrentDirective())) { |
| assert(CaptureRegions.empty() && |
| "No captured regions in loop transformation directives."); |
| } else if (CaptureRegions.size() > 1 || |
| CaptureRegions.back() != OMPD_unknown) { |
| if (auto *C = OMPClauseWithPreInit::get(Clause)) |
| PICs.push_back(C); |
| if (auto *C = OMPClauseWithPostUpdate::get(Clause)) { |
| if (Expr *E = C->getPostUpdateExpr()) |
| MarkDeclarationsReferencedInExpr(E); |
| } |
| } |
| if (Clause->getClauseKind() == OMPC_schedule) |
| SC = cast<OMPScheduleClause>(Clause); |
| else if (Clause->getClauseKind() == OMPC_ordered) |
| OC = cast<OMPOrderedClause>(Clause); |
| else if (Clause->getClauseKind() == OMPC_linear) |
| LCs.push_back(cast<OMPLinearClause>(Clause)); |
| } |
| // Capture allocator expressions if used. |
| for (Expr *E : DSAStack->getInnerAllocators()) |
| MarkDeclarationsReferencedInExpr(E); |
| // OpenMP, 2.7.1 Loop Construct, Restrictions |
| // The nonmonotonic modifier cannot be specified if an ordered clause is |
| // specified. |
| if (SC && |
| (SC->getFirstScheduleModifier() == OMPC_SCHEDULE_MODIFIER_nonmonotonic || |
| SC->getSecondScheduleModifier() == |
| OMPC_SCHEDULE_MODIFIER_nonmonotonic) && |
| OC) { |
| Diag(SC->getFirstScheduleModifier() == OMPC_SCHEDULE_MODIFIER_nonmonotonic |
| ? SC->getFirstScheduleModifierLoc() |
| : SC->getSecondScheduleModifierLoc(), |
| diag::err_omp_simple_clause_incompatible_with_ordered) |
| << getOpenMPClauseName(OMPC_schedule) |
| << getOpenMPSimpleClauseTypeName(OMPC_schedule, |
| OMPC_SCHEDULE_MODIFIER_nonmonotonic) |
| << SourceRange(OC->getBeginLoc(), OC->getEndLoc()); |
| ErrorFound = true; |
| } |
| // OpenMP 5.0, 2.9.2 Worksharing-Loop Construct, Restrictions. |
| // If an order(concurrent) clause is present, an ordered clause may not appear |
| // on the same directive. |
| if (checkOrderedOrderSpecified(*this, Clauses)) |
| ErrorFound = true; |
| if (!LCs.empty() && OC && OC->getNumForLoops()) { |
| for (const OMPLinearClause *C : LCs) { |
| Diag(C->getBeginLoc(), diag::err_omp_linear_ordered) |
| << SourceRange(OC->getBeginLoc(), OC->getEndLoc()); |
| } |
| ErrorFound = true; |
| } |
| if (isOpenMPWorksharingDirective(DSAStack->getCurrentDirective()) && |
| isOpenMPSimdDirective(DSAStack->getCurrentDirective()) && OC && |
| OC->getNumForLoops()) { |
| Diag(OC->getBeginLoc(), diag::err_omp_ordered_simd) |
| << getOpenMPDirectiveName(DSAStack->getCurrentDirective()); |
| ErrorFound = true; |
| } |
| if (ErrorFound) { |
| return StmtError(); |
| } |
| StmtResult SR = S; |
| unsigned CompletedRegions = 0; |
| for (OpenMPDirectiveKind ThisCaptureRegion : llvm::reverse(CaptureRegions)) { |
| // Mark all variables in private list clauses as used in inner region. |
| // Required for proper codegen of combined directives. |
| // TODO: add processing for other clauses. |
| if (ThisCaptureRegion != OMPD_unknown) { |
| for (const clang::OMPClauseWithPreInit *C : PICs) { |
| OpenMPDirectiveKind CaptureRegion = C->getCaptureRegion(); |
| // Find the particular capture region for the clause if the |
| // directive is a combined one with multiple capture regions. |
| // If the directive is not a combined one, the capture region |
| // associated with the clause is OMPD_unknown and is generated |
| // only once. |
| if (CaptureRegion == ThisCaptureRegion || |
| CaptureRegion == OMPD_unknown) { |
| if (auto *DS = cast_or_null<DeclStmt>(C->getPreInitStmt())) { |
| for (Decl *D : DS->decls()) |
| MarkVariableReferenced(D->getLocation(), cast<VarDecl>(D)); |
| } |
| } |
| } |
| } |
| if (ThisCaptureRegion == OMPD_target) { |
| // Capture allocator traits in the target region. They are used implicitly |
| // and, thus, are not captured by default. |
| for (OMPClause *C : Clauses) { |
| if (const auto *UAC = dyn_cast<OMPUsesAllocatorsClause>(C)) { |
| for (unsigned I = 0, End = UAC->getNumberOfAllocators(); I < End; |
| ++I) { |
| OMPUsesAllocatorsClause::Data D = UAC->getAllocatorData(I); |
| if (Expr *E = D.AllocatorTraits) |
| MarkDeclarationsReferencedInExpr(E); |
| } |
| continue; |
| } |
| } |
| } |
| if (ThisCaptureRegion == OMPD_parallel) { |
| // Capture temp arrays for inscan reductions and locals in aligned |
| // clauses. |
| for (OMPClause *C : Clauses) { |
| if (auto *RC = dyn_cast<OMPReductionClause>(C)) { |
| if (RC->getModifier() != OMPC_REDUCTION_inscan) |
| continue; |
| for (Expr *E : RC->copy_array_temps()) |
| MarkDeclarationsReferencedInExpr(E); |
| } |
| if (auto *AC = dyn_cast<OMPAlignedClause>(C)) { |
| for (Expr *E : AC->varlists()) |
| MarkDeclarationsReferencedInExpr(E); |
| } |
| } |
| } |
| if (++CompletedRegions == CaptureRegions.size()) |
| DSAStack->setBodyComplete(); |
| SR = ActOnCapturedRegionEnd(SR.get()); |
| } |
| return SR; |
| } |
| |
| static bool checkCancelRegion(Sema &SemaRef, OpenMPDirectiveKind CurrentRegion, |
| OpenMPDirectiveKind CancelRegion, |
| SourceLocation StartLoc) { |
| // CancelRegion is only needed for cancel and cancellation_point. |
| if (CurrentRegion != OMPD_cancel && CurrentRegion != OMPD_cancellation_point) |
| return false; |
| |
| if (CancelRegion == OMPD_parallel || CancelRegion == OMPD_for || |
| CancelRegion == OMPD_sections || CancelRegion == OMPD_taskgroup) |
| return false; |
| |
| SemaRef.Diag(StartLoc, diag::err_omp_wrong_cancel_region) |
| << getOpenMPDirectiveName(CancelRegion); |
| return true; |
| } |
| |
| static bool checkNestingOfRegions(Sema &SemaRef, const DSAStackTy *Stack, |
| OpenMPDirectiveKind CurrentRegion, |
| const DeclarationNameInfo &CurrentName, |
| OpenMPDirectiveKind CancelRegion, |
| OpenMPBindClauseKind BindKind, |
| SourceLocation StartLoc) { |
| if (Stack->getCurScope()) { |
| OpenMPDirectiveKind ParentRegion = Stack->getParentDirective(); |
| OpenMPDirectiveKind OffendingRegion = ParentRegion; |
| bool NestingProhibited = false; |
| bool CloseNesting = true; |
| bool OrphanSeen = false; |
| enum { |
| NoRecommend, |
| ShouldBeInParallelRegion, |
| ShouldBeInOrderedRegion, |
| ShouldBeInTargetRegion, |
| ShouldBeInTeamsRegion, |
| ShouldBeInLoopSimdRegion, |
| } Recommend = NoRecommend; |
| if (isOpenMPSimdDirective(ParentRegion) && |
| ((SemaRef.LangOpts.OpenMP <= 45 && CurrentRegion != OMPD_ordered) || |
| (SemaRef.LangOpts.OpenMP >= 50 && CurrentRegion != OMPD_ordered && |
| CurrentRegion != OMPD_simd && CurrentRegion != OMPD_atomic && |
| CurrentRegion != OMPD_scan))) { |
| // OpenMP [2.16, Nesting of Regions] |
| // OpenMP constructs may not be nested inside a simd region. |
| // OpenMP [2.8.1,simd Construct, Restrictions] |
| // An ordered construct with the simd clause is the only OpenMP |
| // construct that can appear in the simd region. |
| // Allowing a SIMD construct nested in another SIMD construct is an |
| // extension. The OpenMP 4.5 spec does not allow it. Issue a warning |
| // message. |
| // OpenMP 5.0 [2.9.3.1, simd Construct, Restrictions] |
| // The only OpenMP constructs that can be encountered during execution of |
| // a simd region are the atomic construct, the loop construct, the simd |
| // construct and the ordered construct with the simd clause. |
| SemaRef.Diag(StartLoc, (CurrentRegion != OMPD_simd) |
| ? diag::err_omp_prohibited_region_simd |
| : diag::warn_omp_nesting_simd) |
| << (SemaRef.LangOpts.OpenMP >= 50 ? 1 : 0); |
| return CurrentRegion != OMPD_simd; |
| } |
| if (ParentRegion == OMPD_atomic) { |
| // OpenMP [2.16, Nesting of Regions] |
| // OpenMP constructs may not be nested inside an atomic region. |
| SemaRef.Diag(StartLoc, diag::err_omp_prohibited_region_atomic); |
| return true; |
| } |
| if (CurrentRegion == OMPD_section) { |
| // OpenMP [2.7.2, sections Construct, Restrictions] |
| // Orphaned section directives are prohibited. That is, the section |
| // directives must appear within the sections construct and must not be |
| // encountered elsewhere in the sections region. |
| if (ParentRegion != OMPD_sections && |
| ParentRegion != OMPD_parallel_sections) { |
| SemaRef.Diag(StartLoc, diag::err_omp_orphaned_section_directive) |
| << (ParentRegion != OMPD_unknown) |
| << getOpenMPDirectiveName(ParentRegion); |
| return true; |
| } |
| return false; |
| } |
| // Allow some constructs (except teams and cancellation constructs) to be |
| // orphaned (they could be used in functions, called from OpenMP regions |
| // with the required preconditions). |
| if (ParentRegion == OMPD_unknown && |
| !isOpenMPNestingTeamsDirective(CurrentRegion) && |
| CurrentRegion != OMPD_cancellation_point && |
| CurrentRegion != OMPD_cancel && CurrentRegion != OMPD_scan) |
| return false; |
| if (CurrentRegion == OMPD_cancellation_point || |
| CurrentRegion == OMPD_cancel) { |
| // OpenMP [2.16, Nesting of Regions] |
| // A cancellation point construct for which construct-type-clause is |
| // taskgroup must be nested inside a task construct. A cancellation |
| // point construct for which construct-type-clause is not taskgroup must |
| // be closely nested inside an OpenMP construct that matches the type |
| // specified in construct-type-clause. |
| // A cancel construct for which construct-type-clause is taskgroup must be |
| // nested inside a task construct. A cancel construct for which |
| // construct-type-clause is not taskgroup must be closely nested inside an |
| // OpenMP construct that matches the type specified in |
| // construct-type-clause. |
| NestingProhibited = |
| !((CancelRegion == OMPD_parallel && |
| (ParentRegion == OMPD_parallel || |
| ParentRegion == OMPD_target_parallel)) || |
| (CancelRegion == OMPD_for && |
| (ParentRegion == OMPD_for || ParentRegion == OMPD_parallel_for || |
| ParentRegion == OMPD_target_parallel_for || |
| ParentRegion == OMPD_distribute_parallel_for || |
| ParentRegion == OMPD_teams_distribute_parallel_for || |
| ParentRegion == OMPD_target_teams_distribute_parallel_for)) || |
| (CancelRegion == OMPD_taskgroup && |
| (ParentRegion == OMPD_task || |
| (SemaRef.getLangOpts().OpenMP >= 50 && |
| (ParentRegion == OMPD_taskloop || |
| ParentRegion == OMPD_master_taskloop || |
| ParentRegion == OMPD_parallel_master_taskloop)))) || |
| (CancelRegion == OMPD_sections && |
| (ParentRegion == OMPD_section || ParentRegion == OMPD_sections || |
| ParentRegion == OMPD_parallel_sections))); |
| OrphanSeen = ParentRegion == OMPD_unknown; |
| } else if (CurrentRegion == OMPD_master || CurrentRegion == OMPD_masked) { |
| // OpenMP 5.1 [2.22, Nesting of Regions] |
| // A masked region may not be closely nested inside a worksharing, loop, |
| // atomic, task, or taskloop region. |
| NestingProhibited = isOpenMPWorksharingDirective(ParentRegion) || |
| isOpenMPGenericLoopDirective(ParentRegion) || |
| isOpenMPTaskingDirective(ParentRegion); |
| } else if (CurrentRegion == OMPD_critical && CurrentName.getName()) { |
| // OpenMP [2.16, Nesting of Regions] |
| // A critical region may not be nested (closely or otherwise) inside a |
| // critical region with the same name. Note that this restriction is not |
| // sufficient to prevent deadlock. |
| SourceLocation PreviousCriticalLoc; |
| bool DeadLock = Stack->hasDirective( |
| [CurrentName, &PreviousCriticalLoc](OpenMPDirectiveKind K, |
| const DeclarationNameInfo &DNI, |
| SourceLocation Loc) { |
| if (K == OMPD_critical && DNI.getName() == CurrentName.getName()) { |
| PreviousCriticalLoc = Loc; |
| return true; |
| } |
| return false; |
| }, |
| false /* skip top directive */); |
| if (DeadLock) { |
| SemaRef.Diag(StartLoc, |
| diag::err_omp_prohibited_region_critical_same_name) |
| << CurrentName.getName(); |
| if (PreviousCriticalLoc.isValid()) |
| SemaRef.Diag(PreviousCriticalLoc, |
| diag::note_omp_previous_critical_region); |
| return true; |
| } |
| } else if (CurrentRegion == OMPD_barrier) { |
| // OpenMP 5.1 [2.22, Nesting of Regions] |
| // A barrier region may not be closely nested inside a worksharing, loop, |
| // task, taskloop, critical, ordered, atomic, or masked region. |
| NestingProhibited = |
| isOpenMPWorksharingDirective(ParentRegion) || |
| isOpenMPGenericLoopDirective(ParentRegion) || |
| isOpenMPTaskingDirective(ParentRegion) || |
| ParentRegion == OMPD_master || ParentRegion == OMPD_masked || |
| ParentRegion == OMPD_parallel_master || |
| ParentRegion == OMPD_critical || ParentRegion == OMPD_ordered; |
| } else if (isOpenMPWorksharingDirective(CurrentRegion) && |
| !isOpenMPParallelDirective(CurrentRegion) && |
| !isOpenMPTeamsDirective(CurrentRegion)) { |
| // OpenMP 5.1 [2.22, Nesting of Regions] |
| // A loop region that binds to a parallel region or a worksharing region |
| // may not be closely nested inside a worksharing, loop, task, taskloop, |
| // critical, ordered, atomic, or masked region. |
| NestingProhibited = |
| isOpenMPWorksharingDirective(ParentRegion) || |
| isOpenMPGenericLoopDirective(ParentRegion) || |
| isOpenMPTaskingDirective(ParentRegion) || |
| ParentRegion == OMPD_master || ParentRegion == OMPD_masked || |
| ParentRegion == OMPD_parallel_master || |
| ParentRegion == OMPD_critical || ParentRegion == OMPD_ordered; |
| Recommend = ShouldBeInParallelRegion; |
| } else if (CurrentRegion == OMPD_ordered) { |
| // OpenMP [2.16, Nesting of Regions] |
| // An ordered region may not be closely nested inside a critical, |
| // atomic, or explicit task region. |
| // An ordered region must be closely nested inside a loop region (or |
| // parallel loop region) with an ordered clause. |
| // OpenMP [2.8.1,simd Construct, Restrictions] |
| // An ordered construct with the simd clause is the only OpenMP construct |
| // that can appear in the simd region. |
| NestingProhibited = ParentRegion == OMPD_critical || |
| isOpenMPTaskingDirective(ParentRegion) || |
| !(isOpenMPSimdDirective(ParentRegion) || |
| Stack->isParentOrderedRegion()); |
| Recommend = ShouldBeInOrderedRegion; |
| } else if (isOpenMPNestingTeamsDirective(CurrentRegion)) { |
| // OpenMP [2.16, Nesting of Regions] |
| // If specified, a teams construct must be contained within a target |
| // construct. |
| NestingProhibited = |
| (SemaRef.LangOpts.OpenMP <= 45 && ParentRegion != OMPD_target) || |
| (SemaRef.LangOpts.OpenMP >= 50 && ParentRegion != OMPD_unknown && |
| ParentRegion != OMPD_target); |
| OrphanSeen = ParentRegion == OMPD_unknown; |
| Recommend = ShouldBeInTargetRegion; |
| } else if (CurrentRegion == OMPD_scan) { |
| // OpenMP [2.16, Nesting of Regions] |
| // If specified, a teams construct must be contained within a target |
| // construct. |
| NestingProhibited = |
| SemaRef.LangOpts.OpenMP < 50 || |
| (ParentRegion != OMPD_simd && ParentRegion != OMPD_for && |
| ParentRegion != OMPD_for_simd && ParentRegion != OMPD_parallel_for && |
| ParentRegion != OMPD_parallel_for_simd); |
| OrphanSeen = ParentRegion == OMPD_unknown; |
| Recommend = ShouldBeInLoopSimdRegion; |
| } |
| if (!NestingProhibited && |
| !isOpenMPTargetExecutionDirective(CurrentRegion) && |
| !isOpenMPTargetDataManagementDirective(CurrentRegion) && |
| (ParentRegion == OMPD_teams || ParentRegion == OMPD_target_teams)) { |
| // OpenMP [5.1, 2.22, Nesting of Regions] |
| // distribute, distribute simd, distribute parallel worksharing-loop, |
| // distribute parallel worksharing-loop SIMD, loop, parallel regions, |
| // including any parallel regions arising from combined constructs, |
| // omp_get_num_teams() regions, and omp_get_team_num() regions are the |
| // only OpenMP regions that may be strictly nested inside the teams |
| // region. |
| NestingProhibited = !isOpenMPParallelDirective(CurrentRegion) && |
| !isOpenMPDistributeDirective(CurrentRegion) && |
| CurrentRegion != OMPD_loop; |
| Recommend = ShouldBeInParallelRegion; |
| } |
| if (!NestingProhibited && CurrentRegion == OMPD_loop) { |
| // OpenMP [5.1, 2.11.7, loop Construct, Restrictions] |
| // If the bind clause is present on the loop construct and binding is |
| // teams then the corresponding loop region must be strictly nested inside |
| // a teams region. |
| NestingProhibited = BindKind == OMPC_BIND_teams && |
| ParentRegion != OMPD_teams && |
| ParentRegion != OMPD_target_teams; |
| Recommend = ShouldBeInTeamsRegion; |
| } |
| if (!NestingProhibited && |
| isOpenMPNestingDistributeDirective(CurrentRegion)) { |
| // OpenMP 4.5 [2.17 Nesting of Regions] |
| // The region associated with the distribute construct must be strictly |
| // nested inside a teams region |
| NestingProhibited = |
| (ParentRegion != OMPD_teams && ParentRegion != OMPD_target_teams); |
| Recommend = ShouldBeInTeamsRegion; |
| } |
| if (!NestingProhibited && |
| (isOpenMPTargetExecutionDirective(CurrentRegion) || |
| isOpenMPTargetDataManagementDirective(CurrentRegion))) { |
| // OpenMP 4.5 [2.17 Nesting of Regions] |
| // If a target, target update, target data, target enter data, or |
| // target exit data construct is encountered during execution of a |
| // target region, the behavior is unspecified. |
| NestingProhibited = Stack->hasDirective( |
| [&OffendingRegion](OpenMPDirectiveKind K, const DeclarationNameInfo &, |
| SourceLocation) { |
| if (isOpenMPTargetExecutionDirective(K)) { |
| OffendingRegion = K; |
| return true; |
| } |
| return false; |
| }, |
| false /* don't skip top directive */); |
| CloseNesting = false; |
| } |
| if (NestingProhibited) { |
| if (OrphanSeen) { |
| SemaRef.Diag(StartLoc, diag::err_omp_orphaned_device_directive) |
| << getOpenMPDirectiveName(CurrentRegion) << Recommend; |
| } else { |
| SemaRef.Diag(StartLoc, diag::err_omp_prohibited_region) |
| << CloseNesting << getOpenMPDirectiveName(OffendingRegion) |
| << Recommend << getOpenMPDirectiveName(CurrentRegion); |
| } |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| struct Kind2Unsigned { |
| using argument_type = OpenMPDirectiveKind; |
| unsigned operator()(argument_type DK) { return unsigned(DK); } |
| }; |
| static bool checkIfClauses(Sema &S, OpenMPDirectiveKind Kind, |
| ArrayRef<OMPClause *> Clauses, |
| ArrayRef<OpenMPDirectiveKind> AllowedNameModifiers) { |
| bool ErrorFound = false; |
| unsigned NamedModifiersNumber = 0; |
| llvm::IndexedMap<const OMPIfClause *, Kind2Unsigned> FoundNameModifiers; |
| FoundNameModifiers.resize(llvm::omp::Directive_enumSize + 1); |
| SmallVector<SourceLocation, 4> NameModifierLoc; |
| for (const OMPClause *C : Clauses) { |
| if (const auto *IC = dyn_cast_or_null<OMPIfClause>(C)) { |
| // At most one if clause without a directive-name-modifier can appear on |
| // the directive. |
| OpenMPDirectiveKind CurNM = IC->getNameModifier(); |
| if (FoundNameModifiers[CurNM]) { |
| S.Diag(C->getBeginLoc(), diag::err_omp_more_one_clause) |
| << getOpenMPDirectiveName(Kind) << getOpenMPClauseName(OMPC_if) |
| << (CurNM != OMPD_unknown) << getOpenMPDirectiveName(CurNM); |
| ErrorFound = true; |
| } else if (CurNM != OMPD_unknown) { |
| NameModifierLoc.push_back(IC->getNameModifierLoc()); |
| ++NamedModifiersNumber; |
| } |
| FoundNameModifiers[CurNM] = IC; |
| if (CurNM == OMPD_unknown) |
| continue; |
| // Check if the specified name modifier is allowed for the current |
| // directive. |
| // At most one if clause with the particular directive-name-modifier can |
| // appear on the directive. |
| if (!llvm::is_contained(AllowedNameModifiers, CurNM)) { |
| S.Diag(IC->getNameModifierLoc(), |
| diag::err_omp_wrong_if_directive_name_modifier) |
| << getOpenMPDirectiveName(CurNM) << getOpenMPDirectiveName(Kind); |
| ErrorFound = true; |
| } |
| } |
| } |
| // If any if clause on the directive includes a directive-name-modifier then |
| // all if clauses on the directive must include a directive-name-modifier. |
| if (FoundNameModifiers[OMPD_unknown] && NamedModifiersNumber > 0) { |
| if (NamedModifiersNumber == AllowedNameModifiers.size()) { |
| S.Diag(FoundNameModifiers[OMPD_unknown]->getBeginLoc(), |
| diag::err_omp_no_more_if_clause); |
| } else { |
| std::string Values; |
| std::string Sep(", "); |
| unsigned AllowedCnt = 0; |
| unsigned TotalAllowedNum = |
| AllowedNameModifiers.size() - NamedModifiersNumber; |
| for (unsigned Cnt = 0, End = AllowedNameModifiers.size(); Cnt < End; |
| ++Cnt) { |
| OpenMPDirectiveKind NM = AllowedNameModifiers[Cnt]; |
| if (!FoundNameModifiers[NM]) { |
| Values += "'"; |
| Values += getOpenMPDirectiveName(NM); |
| Values += "'"; |
| if (AllowedCnt + 2 == TotalAllowedNum) |
| Values += " or "; |
| else if (AllowedCnt + 1 != TotalAllowedNum) |
| Values += Sep; |
| ++AllowedCnt; |
| } |
| } |
| S.Diag(FoundNameModifiers[OMPD_unknown]->getCondition()->getBeginLoc(), |
| diag::err_omp_unnamed_if_clause) |
| << (TotalAllowedNum > 1) << Values; |
| } |
| for (SourceLocation Loc : NameModifierLoc) { |
| S.Diag(Loc, diag::note_omp_previous_named_if_clause); |
| } |
| ErrorFound = true; |
| } |
| return ErrorFound; |
| } |
| |
| static std::pair<ValueDecl *, bool> getPrivateItem(Sema &S, Expr *&RefExpr, |
| SourceLocation &ELoc, |
| SourceRange &ERange, |
| bool AllowArraySection) { |
| if (RefExpr->isTypeDependent() || RefExpr->isValueDependent() || |
| RefExpr->containsUnexpandedParameterPack()) |
| return std::make_pair(nullptr, true); |
| |
| // OpenMP [3.1, C/C++] |
| // A list item is a variable name. |
| // OpenMP [2.9.3.3, Restrictions, p.1] |
| // A variable that is part of another variable (as an array or |
| // structure element) cannot appear in a private clause. |
| RefExpr = RefExpr->IgnoreParens(); |
| enum { |
| NoArrayExpr = -1, |
| ArraySubscript = 0, |
| OMPArraySection = 1 |
| } IsArrayExpr = NoArrayExpr; |
| if (AllowArraySection) { |
| if (auto *ASE = dyn_cast_or_null<ArraySubscriptExpr>(RefExpr)) { |
| Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); |
| while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) |
| Base = TempASE->getBase()->IgnoreParenImpCasts(); |
| RefExpr = Base; |
| IsArrayExpr = ArraySubscript; |
| } else if (auto *OASE = dyn_cast_or_null<OMPArraySectionExpr>(RefExpr)) { |
| Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); |
| while (auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) |
| Base = TempOASE->getBase()->IgnoreParenImpCasts(); |
| while (auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) |
| Base = TempASE->getBase()->IgnoreParenImpCasts(); |
| RefExpr = Base; |
| IsArrayExpr = OMPArraySection; |
| } |
| } |
| ELoc = RefExpr->getExprLoc(); |
| ERange = RefExpr->getSourceRange(); |
| RefExpr = RefExpr->IgnoreParenImpCasts(); |
| auto *DE = dyn_cast_or_null<DeclRefExpr>(RefExpr); |
| auto *ME = dyn_cast_or_null<MemberExpr>(RefExpr); |
| if ((!DE || !isa<VarDecl>(DE->getDecl())) && |
| (S.getCurrentThisType().isNull() || !ME || |
| !isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts()) || |
| !isa<FieldDecl>(ME->getMemberDecl()))) { |
| if (IsArrayExpr != NoArrayExpr) { |
| S.Diag(ELoc, diag::err_omp_expected_base_var_name) << IsArrayExpr |
| << ERange; |
| } else { |
| S.Diag(ELoc, |
| AllowArraySection |
| ? diag::err_omp_expected_var_name_member_expr_or_array_item |
| : diag::err_omp_expected_var_name_member_expr) |
| << (S.getCurrentThisType().isNull() ? 0 : 1) << ERange; |
| } |
| return std::make_pair(nullptr, false); |
| } |
| return std::make_pair( |
| getCanonicalDecl(DE ? DE->getDecl() : ME->getMemberDecl()), false); |
| } |
| |
| namespace { |
| /// Checks if the allocator is used in uses_allocators clause to be allowed in |
| /// target regions. |
| class AllocatorChecker final : public ConstStmtVisitor<AllocatorChecker, bool> { |
| DSAStackTy *S = nullptr; |
| |
| public: |
| bool VisitDeclRefExpr(const DeclRefExpr *E) { |
| return S->isUsesAllocatorsDecl(E->getDecl()) |
| .getValueOr( |
| DSAStackTy::UsesAllocatorsDeclKind::AllocatorTrait) == |
| DSAStackTy::UsesAllocatorsDeclKind::AllocatorTrait; |
| } |
| bool VisitStmt(const Stmt *S) { |
| for (const Stmt *Child : S->children()) { |
| if (Child && Visit(Child)) |
| return true; |
| } |
| return false; |
| } |
| explicit AllocatorChecker(DSAStackTy *S) : S(S) {} |
| }; |
| } // namespace |
| |
| static void checkAllocateClauses(Sema &S, DSAStackTy *Stack, |
| ArrayRef<OMPClause *> Clauses) { |
| assert(!S.CurContext->isDependentContext() && |
| "Expected non-dependent context."); |
| auto AllocateRange = |
| llvm::make_filter_range(Clauses, OMPAllocateClause::classof); |
| llvm::DenseMap<CanonicalDeclPtr<Decl>, CanonicalDeclPtr<VarDecl>> |
| DeclToCopy; |
| auto PrivateRange = llvm::make_filter_range(Clauses, [](const OMPClause *C) { |
| return isOpenMPPrivate(C->getClauseKind()); |
| }); |
| for (OMPClause *Cl : PrivateRange) { |
| MutableArrayRef<Expr *>::iterator I, It, Et; |
| if (Cl->getClauseKind() == OMPC_private) { |
| auto *PC = cast<OMPPrivateClause>(Cl); |
| I = PC->private_copies().begin(); |
| It = PC->varlist_begin(); |
| Et = PC->varlist_end(); |
| } else if (Cl->getClauseKind() == OMPC_firstprivate) { |
| auto *PC = cast<OMPFirstprivateClause>(Cl); |
| I = PC->private_copies().begin(); |
| It = PC->varlist_begin(); |
| Et = PC->varlist_end(); |
| } else if (Cl->getClauseKind() == OMPC_lastprivate) { |
| auto *PC = cast<OMPLastprivateClause>(Cl); |
| I = PC->private_copies().begin(); |
| It = PC->varlist_begin(); |
| Et = PC->varlist_end(); |
| } else if (Cl->getClauseKind() == OMPC_linear) { |
| auto *PC = cast<OMPLinearClause>(Cl); |
| I = PC->privates().begin(); |
| It = PC->varlist_begin(); |
| Et = PC->varlist_end(); |
| } else if (Cl->getClauseKind() == OMPC_reduction) { |
| auto *PC = cast<OMPReductionClause>(Cl); |
| I = PC->privates().begin(); |
| It = PC->varlist_begin(); |
| Et = PC->varlist_end(); |
| } else if (Cl->getClauseKind() == OMPC_task_reduction) { |
| auto *PC = cast<OMPTaskReductionClause>(Cl); |
| I = PC->privates().begin(); |
| It = PC->varlist_begin(); |
| Et = PC->varlist_end(); |
| } else if (Cl->getClauseKind() == OMPC_in_reduction) { |
| auto *PC = cast<OMPInReductionClause>(Cl); |
| I = PC->privates().begin(); |
| It = PC->varlist_begin(); |
| Et = PC->varlist_end(); |
| } else { |
| llvm_unreachable("Expected private clause."); |
| } |
| for (Expr *E : llvm::make_range(It, Et)) { |
| if (!*I) { |
| ++I; |
| continue; |
| } |
| SourceLocation ELoc; |
| SourceRange ERange; |
| Expr *SimpleRefExpr = E; |
| auto Res = getPrivateItem(S, SimpleRefExpr, ELoc, ERange, |
| /*AllowArraySection=*/true); |
| DeclToCopy.try_emplace(Res.first, |
| cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl())); |
| ++I; |
| } |
| } |
| for (OMPClause *C : AllocateRange) { |
| auto *AC = cast<OMPAllocateClause>(C); |
| if (S.getLangOpts().OpenMP >= 50 && |
| !Stack->hasRequiresDeclWithClause<OMPDynamicAllocatorsClause>() && |
| isOpenMPTargetExecutionDirective(Stack->getCurrentDirective()) && |
| AC->getAllocator()) { |
| Expr *Allocator = AC->getAllocator(); |
| // OpenMP, 2.12.5 target Construct |
| // Memory allocators that do not appear in a uses_allocators clause cannot |
| // appear as an allocator in an allocate clause or be used in the target |
| // region unless a requires directive with the dynamic_allocators clause |
| // is present in the same compilation unit. |
| AllocatorChecker Checker(Stack); |
| if (Checker.Visit(Allocator)) |
| S.Diag(Allocator->getExprLoc(), |
| diag::err_omp_allocator_not_in_uses_allocators) |
| << Allocator->getSourceRange(); |
| } |
| OMPAllocateDeclAttr::AllocatorTypeTy AllocatorKind = |
| getAllocatorKind(S, Stack, AC->getAllocator()); |
| // OpenMP, 2.11.4 allocate Clause, Restrictions. |
| // For task, taskloop or target directives, allocation requests to memory |
| // allocators with the trait access set to thread result in unspecified |
| // behavior. |
| if (AllocatorKind == OMPAllocateDeclAttr::OMPThreadMemAlloc && |
| (isOpenMPTaskingDirective(Stack->getCurrentDirective()) || |
| isOpenMPTargetExecutionDirective(Stack->getCurrentDirective()))) { |
| S.Diag(AC->getAllocator()->getExprLoc(), |
| diag::warn_omp_allocate_thread_on_task_target_directive) |
| << getOpenMPDirectiveName(Stack->getCurrentDirective()); |
| } |
| for (Expr *E : AC->varlists()) { |
| SourceLocation ELoc; |
| SourceRange ERange; |
| Expr *SimpleRefExpr = E; |
| auto Res = getPrivateItem(S, SimpleRefExpr, ELoc, ERange); |
| ValueDecl *VD = Res.first; |
| DSAStackTy::DSAVarData Data = Stack->getTopDSA(VD, /*FromParent=*/false); |
| if (!isOpenMPPrivate(Data.CKind)) { |
| S.Diag(E->getExprLoc(), |
| diag::err_omp_expected_private_copy_for_allocate); |
| continue; |
| } |
| VarDecl *PrivateVD = DeclToCopy[VD]; |
| if (checkPreviousOMPAllocateAttribute(S, Stack, E, PrivateVD, |
| AllocatorKind, AC->getAllocator())) |
| continue; |
| // Placeholder until allocate clause supports align modifier. |
| Expr *Alignment = nullptr; |
| applyOMPAllocateAttribute(S, PrivateVD, AllocatorKind, AC->getAllocator(), |
| Alignment, E->getSourceRange()); |
| } |
| } |
| } |
| |
| namespace { |
| /// Rewrite statements and expressions for Sema \p Actions CurContext. |
| /// |
| /// Used to wrap already parsed statements/expressions into a new CapturedStmt |
| /// context. DeclRefExpr used inside the new context are changed to refer to the |
| /// captured variable instead. |
| class CaptureVars : public TreeTransform<CaptureVars> { |
| using BaseTransform = TreeTransform<CaptureVars>; |
| |
| public: |
| CaptureVars(Sema &Actions) : BaseTransform(Actions) {} |
| |
| bool AlwaysRebuild() { return true; } |
| }; |
| } // namespace |
| |
| static VarDecl *precomputeExpr(Sema &Actions, |
| SmallVectorImpl<Stmt *> &BodyStmts, Expr *E, |
| StringRef Name) { |
| Expr *NewE = AssertSuccess(CaptureVars(Actions).TransformExpr(E)); |
| VarDecl *NewVar = buildVarDecl(Actions, {}, NewE->getType(), Name, nullptr, |
| dyn_cast<DeclRefExpr>(E->IgnoreImplicit())); |
| auto *NewDeclStmt = cast<DeclStmt>(AssertSuccess( |
| Actions.ActOnDeclStmt(Actions.ConvertDeclToDeclGroup(NewVar), {}, {}))); |
| Actions.AddInitializerToDecl(NewDeclStmt->getSingleDecl(), NewE, false); |
| BodyStmts.push_back(NewDeclStmt); |
| return NewVar; |
| } |
| |
| /// Create a closure that computes the number of iterations of a loop. |
| /// |
| /// \param Actions The Sema object. |
| /// \param LogicalTy Type for the logical iteration number. |
| /// \param Rel Comparison operator of the loop condition. |
| /// \param StartExpr Value of the loop counter at the first iteration. |
| /// \param StopExpr Expression the loop counter is compared against in the loop |
| /// condition. \param StepExpr Amount of increment after each iteration. |
| /// |
| /// \return Closure (CapturedStmt) of the distance calculation. |
| static CapturedStmt *buildDistanceFunc(Sema &Actions, QualType LogicalTy, |
| BinaryOperator::Opcode Rel, |
| Expr *StartExpr, Expr *StopExpr, |
| Expr *StepExpr) { |
| ASTContext &Ctx = Actions.getASTContext(); |
| TypeSourceInfo *LogicalTSI = Ctx.getTrivialTypeSourceInfo(LogicalTy); |
| |
| // Captured regions currently don't support return values, we use an |
| // out-parameter instead. All inputs are implicit captures. |
| // TODO: Instead of capturing each DeclRefExpr occurring in |
| // StartExpr/StopExpr/Step, these could also be passed as a value capture. |
| QualType ResultTy = Ctx.getLValueReferenceType(LogicalTy); |
| Sema::CapturedParamNameType Params[] = {{"Distance", ResultTy}, |
| {StringRef(), QualType()}}; |
| Actions.ActOnCapturedRegionStart({}, nullptr, CR_Default, Params); |
| |
| Stmt *Body; |
| { |
| Sema::CompoundScopeRAII CompoundScope(Actions); |
| CapturedDecl *CS = cast<CapturedDecl>(Actions.CurContext); |
| |
| // Get the LValue expression for the result. |
| ImplicitParamDecl *DistParam = CS->getParam(0); |
| DeclRefExpr *DistRef = Actions.BuildDeclRefExpr( |
| DistParam, LogicalTy, VK_LValue, {}, nullptr, nullptr, {}, nullptr); |
| |
| SmallVector<Stmt *, 4> BodyStmts; |
| |
| // Capture all referenced variable references. |
| // TODO: Instead of computing NewStart/NewStop/NewStep inside the |
| // CapturedStmt, we could compute them before and capture the result, to be |
| // used jointly with the LoopVar function. |
| VarDecl *NewStart = precomputeExpr(Actions, BodyStmts, StartExpr, ".start"); |
| VarDecl *NewStop = precomputeExpr(Actions, BodyStmts, StopExpr, ".stop"); |
| VarDecl *NewStep = precomputeExpr(Actions, BodyStmts, StepExpr, ".step"); |
| auto BuildVarRef = [&](VarDecl *VD) { |
| return buildDeclRefExpr(Actions, VD, VD->getType(), {}); |
| }; |
| |
| IntegerLiteral *Zero = IntegerLiteral::Create( |
| Ctx, llvm::APInt(Ctx.getIntWidth(LogicalTy), 0), LogicalTy, {}); |
| Expr *Dist; |
| if (Rel == BO_NE) { |
| // When using a != comparison, the increment can be +1 or -1. This can be |
| // dynamic at runtime, so we need to check for the direction. |
| Expr *IsNegStep = AssertSuccess( |
| Actions.BuildBinOp(nullptr, {}, BO_LT, BuildVarRef(NewStep), Zero)); |
| |
| // Positive increment. |
| Expr *ForwardRange = AssertSuccess(Actions.BuildBinOp( |
| nullptr, {}, BO_Sub, BuildVarRef(NewStop), BuildVarRef(NewStart))); |
| ForwardRange = AssertSuccess( |
| Actions.BuildCStyleCastExpr({}, LogicalTSI, {}, ForwardRange)); |
| Expr *ForwardDist = AssertSuccess(Actions.BuildBinOp( |
| nullptr, {}, BO_Div, ForwardRange, BuildVarRef(NewStep))); |
| |
| // Negative increment. |
| Expr *BackwardRange = AssertSuccess(Actions.BuildBinOp( |
| nullptr, {}, BO_Sub, BuildVarRef(NewStart), BuildVarRef(NewStop))); |
| BackwardRange = AssertSuccess( |
| Actions.BuildCStyleCastExpr({}, LogicalTSI, {}, BackwardRange)); |
| Expr *NegIncAmount = AssertSuccess( |
| Actions.BuildUnaryOp(nullptr, {}, UO_Minus, BuildVarRef(NewStep))); |
| Expr *BackwardDist = AssertSuccess( |
| Actions.BuildBinOp(nullptr, {}, BO_Div, BackwardRange, NegIncAmount)); |
| |
| // Use the appropriate case. |
| Dist = AssertSuccess(Actions.ActOnConditionalOp( |
| {}, {}, IsNegStep, BackwardDist, ForwardDist)); |
| } else { |
| assert((Rel == BO_LT || Rel == BO_LE || Rel == BO_GE || Rel == BO_GT) && |
| "Expected one of these relational operators"); |
| |
| // We can derive the direction from any other comparison operator. It is |
| // non well-formed OpenMP if Step increments/decrements in the other |
| // directions. Whether at least the first iteration passes the loop |
| // condition. |
| Expr *HasAnyIteration = AssertSuccess(Actions.BuildBinOp( |
| nullptr, {}, Rel, BuildVarRef(NewStart), BuildVarRef(NewStop))); |
| |
| // Compute the range between first and last counter value. |
| Expr *Range; |
| if (Rel == BO_GE || Rel == BO_GT) |
| Range = AssertSuccess(Actions.BuildBinOp( |
| nullptr, {}, BO_Sub, BuildVarRef(NewStart), BuildVarRef(NewStop))); |
| else |
| Range = AssertSuccess(Actions.BuildBinOp( |
| nullptr, {}, BO_Sub, BuildVarRef(NewStop), BuildVarRef(NewStart))); |
| |
| // Ensure unsigned range space. |
| Range = |
| AssertSuccess(Actions.BuildCStyleCastExpr({}, LogicalTSI, {}, Range)); |
| |
| if (Rel == BO_LE || Rel == BO_GE) { |
| // Add one to the range if the relational operator is inclusive. |
| Range = AssertSuccess(Actions.BuildBinOp( |
| nullptr, {}, BO_Add, Range, |
| Actions.ActOnIntegerConstant(SourceLocation(), 1).get())); |
| } |
| |
| // Divide by the absolute step amount. |
| Expr *Divisor = BuildVarRef(NewStep); |
| if (Rel == BO_GE || Rel == BO_GT) |
| Divisor = |
| AssertSuccess(Actions.BuildUnaryOp(nullptr, {}, UO_Minus, Divisor)); |
| Dist = AssertSuccess( |
| Actions.BuildBinOp(nullptr, {}, BO_Div, Range, Divisor)); |
| |
| // If there is not at least one iteration, the range contains garbage. Fix |
| // to zero in this case. |
| Dist = AssertSuccess( |
| Actions.ActOnConditionalOp({}, {}, HasAnyIteration, Dist, Zero)); |
| } |
| |
| // Assign the result to the out-parameter. |
| Stmt *ResultAssign = AssertSuccess(Actions.BuildBinOp( |
| Actions.getCurScope(), {}, BO_Assign, DistRef, Dist)); |
| BodyStmts.push_back(ResultAssign); |
| |
| Body = AssertSuccess(Actions.ActOnCompoundStmt({}, {}, BodyStmts, false)); |
| } |
| |
| return cast<CapturedStmt>( |
| AssertSuccess(Actions.ActOnCapturedRegionEnd(Body))); |
| } |
| |
| /// Create a closure that computes the loop variable from the logical iteration |
| /// number. |
| /// |
| /// \param Actions The Sema object. |
| /// \param LoopVarTy Type for the loop variable used for result value. |
| /// \param LogicalTy Type for the logical iteration number. |
| /// \param StartExpr Value of the loop counter at the first iteration. |
| /// \param Step Amount of increment after each iteration. |
| /// \param Deref Whether the loop variable is a dereference of the loop |
| /// counter variable. |
| /// |
| /// \return Closure (CapturedStmt) of the loop value calculation. |
| static CapturedStmt *buildLoopVarFunc(Sema &Actions, QualType LoopVarTy, |
| QualType LogicalTy, |
| DeclRefExpr *StartExpr, Expr *Step, |
| bool Deref) { |
| ASTContext &Ctx = Actions.getASTContext(); |
| |
| // Pass the result as an out-parameter. Passing as return value would require |
| // the OpenMPIRBuilder to know additional C/C++ semantics, such as how to |
| // invoke a copy constructor. |
| QualType TargetParamTy = Ctx.getLValueReferenceType(LoopVarTy); |
| Sema::CapturedParamNameType Params[] = {{"LoopVar", TargetParamTy}, |
| {"Logical", LogicalTy}, |
| {StringRef(), QualType()}}; |
| Actions.ActOnCapturedRegionStart({}, nullptr, CR_Default, Params); |
| |
| // Capture the initial iterator which represents the LoopVar value at the |
| // zero's logical iteration. Since the original ForStmt/CXXForRangeStmt update |
| // it in every iteration, capture it by value before it is modified. |
| VarDecl *StartVar = cast<VarDecl>(StartExpr->getDecl()); |
| bool Invalid = Actions.tryCaptureVariable(StartVar, {}, |
| Sema::TryCapture_ExplicitByVal, {}); |
| (void)Invalid; |
| assert(!Invalid && "Expecting capture-by-value to work."); |
| |
| Expr *Body; |
| { |
| Sema::CompoundScopeRAII CompoundScope(Actions); |
| auto *CS = cast<CapturedDecl>(Actions.CurContext); |
| |
| ImplicitParamDecl *TargetParam = CS->getParam(0); |
| DeclRefExpr *TargetRef = Actions.BuildDeclRefExpr( |
| TargetParam, LoopVarTy, VK_LValue, {}, nullptr, nullptr, {}, nullptr); |
| ImplicitParamDecl *IndvarParam = CS->getParam(1); |
| DeclRefExpr *LogicalRef = Actions.BuildDeclRefExpr( |
| IndvarParam, LogicalTy, VK_LValue, {}, nullptr, nullptr, {}, nullptr); |
| |
| // Capture the Start expression. |
| CaptureVars Recap(Actions); |
| Expr *NewStart = AssertSuccess(Recap.TransformExpr(StartExpr)); |
| Expr *NewStep = AssertSuccess(Recap.TransformExpr(Step)); |
| |
| Expr *Skip = AssertSuccess( |
| Actions.BuildBinOp(nullptr, {}, BO_Mul, NewStep, LogicalRef)); |
| // TODO: Explicitly cast to the iterator's difference_type instead of |
| // relying on implicit conversion. |
| Expr *Advanced = |
| AssertSuccess(Actions.BuildBinOp(nullptr, {}, BO_Add, NewStart, Skip)); |
| |
| if (Deref) { |
| // For range-based for-loops convert the loop counter value to a concrete |
| // loop variable value by dereferencing the iterator. |
| Advanced = |
| AssertSuccess(Actions.BuildUnaryOp(nullptr, {}, UO_Deref, Advanced)); |
| } |
| |
| // Assign the result to the output parameter. |
| Body = AssertSuccess(Actions.BuildBinOp(Actions.getCurScope(), {}, |
| BO_Assign, TargetRef, Advanced)); |
| } |
| return cast<CapturedStmt>( |
| AssertSuccess(Actions.ActOnCapturedRegionEnd(Body))); |
| } |
| |
| StmtResult Sema::ActOnOpenMPCanonicalLoop(Stmt *AStmt) { |
| ASTContext &Ctx = getASTContext(); |
| |
| // Extract the common elements of ForStmt and CXXForRangeStmt: |
| // Loop variable, repeat condition, increment |
| Expr *Cond, *Inc; |
| VarDecl *LIVDecl, *LUVDecl; |
| if (auto *For = dyn_cast<ForStmt>(AStmt)) { |
| Stmt *Init = For->getInit(); |
| if (auto *LCVarDeclStmt = dyn_cast<DeclStmt>(Init)) { |
| // For statement declares loop variable. |
| LIVDecl = cast<VarDecl>(LCVarDeclStmt->getSingleDecl()); |
| } else if (auto *LCAssign = dyn_cast<BinaryOperator>(Init)) { |
| // For statement reuses variable. |
| assert(LCAssign->getOpcode() == BO_Assign && |
| "init part must be a loop variable assignment"); |
| auto *CounterRef = cast<DeclRefExpr>(LCAssign->getLHS()); |
| LIVDecl = cast<VarDecl>(CounterRef->getDecl()); |
| } else |
| llvm_unreachable("Cannot determine loop variable"); |
| LUVDecl = LIVDecl; |
| |
| Cond = For->getCond(); |
| Inc = For->getInc(); |
| } else if (auto *RangeFor = dyn_cast<CXXForRangeStmt>(AStmt)) { |
| DeclStmt *BeginStmt = RangeFor->getBeginStmt(); |
| LIVDecl = cast<VarDecl>(BeginStmt->getSingleDecl()); |
| LUVDecl = RangeFor->getLoopVariable(); |
| |
| Cond = RangeFor->getCond(); |
| Inc = RangeFor->getInc(); |
| } else |
| llvm_unreachable("unhandled kind of loop"); |
| |
| QualType CounterTy = LIVDecl->getType(); |
| QualType LVTy = LUVDecl->getType(); |
| |
| // Analyze the loop condition. |
| Expr *LHS, *RHS; |
| BinaryOperator::Opcode CondRel; |
| Cond = Cond->IgnoreImplicit(); |
| if (auto *CondBinExpr = dyn_cast<BinaryOperator>(Cond)) { |
| LHS = CondBinExpr->getLHS(); |
| RHS = CondBinExpr->getRHS(); |
| CondRel = CondBinExpr->getOpcode(); |
| } else if (auto *CondCXXOp = dyn_cast<CXXOperatorCallExpr>(Cond)) { |
| assert(CondCXXOp->getNumArgs() == 2 && "Comparison should have 2 operands"); |
| LHS = CondCXXOp->getArg(0); |
| RHS = CondCXXOp->getArg(1); |
| switch (CondCXXOp->getOperator()) { |
| case OO_ExclaimEqual: |
| CondRel = BO_NE; |
| break; |
| case OO_Less: |
| CondRel = BO_LT; |
| break; |
| case OO_LessEqual: |
| CondRel = BO_LE; |
| break; |
| case OO_Greater: |
| CondRel = BO_GT; |
| break; |
| case OO_GreaterEqual: |
| CondRel = BO_GE; |
| break; |
| default: |
| llvm_unreachable("unexpected iterator operator"); |
| } |
| } else |
| llvm_unreachable("unexpected loop condition"); |
| |
| // Normalize such that the loop counter is on the LHS. |
| if (!isa<DeclRefExpr>(LHS->IgnoreImplicit()) || |
| cast<DeclRefExpr>(LHS->IgnoreImplicit())->getDecl() != LIVDecl) { |
| std::swap(LHS, RHS); |
| CondRel = BinaryOperator::reverseComparisonOp(CondRel); |
| } |
| auto *CounterRef = cast<DeclRefExpr>(LHS->IgnoreImplicit()); |
| |
| // Decide the bit width for the logical iteration counter. By default use the |
| // unsigned ptrdiff_t integer size (for iterators and pointers). |
| // TODO: For iterators, use iterator::difference_type, |
| // std::iterator_traits<>::difference_type or decltype(it - end). |
| QualType LogicalTy = Ctx.getUnsignedPointerDiffType(); |
| if (CounterTy->isIntegerType()) { |
| unsigned BitWidth = Ctx.getIntWidth(CounterTy); |
| LogicalTy = Ctx.getIntTypeForBitwidth(BitWidth, false); |
| } |
| |
| // Analyze the loop increment. |
| Expr *Step; |
| if (auto *IncUn = dyn_cast<UnaryOperator>(Inc)) { |
| int Direction; |
| switch (IncUn->getOpcode()) { |
| case UO_PreInc: |
| case UO_PostInc: |
| Direction = 1; |
| break; |
| case UO_PreDec: |
| case UO_PostDec: |
| Direction = -1; |
| break; |
| default: |
| llvm_unreachable("unhandled unary increment operator"); |
| } |
| Step = IntegerLiteral::Create( |
| Ctx, llvm::APInt(Ctx.getIntWidth(LogicalTy), Direction), LogicalTy, {}); |
| } else if (auto *IncBin = dyn_cast<BinaryOperator>(Inc)) { |
| if (IncBin->getOpcode() == BO_AddAssign) { |
| Step = IncBin->getRHS(); |
| } else if (IncBin->getOpcode() == BO_SubAssign) { |
| Step = |
| AssertSuccess(BuildUnaryOp(nullptr, {}, UO_Minus, IncBin->getRHS())); |
| } else |
| llvm_unreachable("unhandled binary increment operator"); |
| } else if (auto *CondCXXOp = dyn_cast<CXXOperatorCallExpr>(Inc)) { |
| switch (CondCXXOp->getOperator()) { |
| case OO_PlusPlus: |
| Step = IntegerLiteral::Create( |
| Ctx, llvm::APInt(Ctx.getIntWidth(LogicalTy), 1), LogicalTy, {}); |
| break; |
| case OO_MinusMinus: |
| Step = IntegerLiteral::Create( |
| Ctx, llvm::APInt(Ctx.getIntWidth(LogicalTy), -1), LogicalTy, {}); |
| break; |
| case OO_PlusEqual: |
| Step = CondCXXOp->getArg(1); |
| break; |
| case OO_MinusEqual: |
| Step = AssertSuccess( |
| BuildUnaryOp(nullptr, {}, UO_Minus, CondCXXOp->getArg(1))); |
| break; |
| default: |
| llvm_unreachable("unhandled overloaded increment operator"); |
| } |
| } else |
| llvm_unreachable("unknown increment expression"); |
| |
| CapturedStmt *DistanceFunc = |
| buildDistanceFunc(*this, LogicalTy, CondRel, LHS, RHS, Step); |
| CapturedStmt *LoopVarFunc = buildLoopVarFunc( |
| *this, LVTy, LogicalTy, CounterRef, Step, isa<CXXForRangeStmt>(AStmt)); |
| DeclRefExpr *LVRef = BuildDeclRefExpr(LUVDecl, LUVDecl->getType(), VK_LValue, |
| {}, nullptr, nullptr, {}, nullptr); |
| return OMPCanonicalLoop::create(getASTContext(), AStmt, DistanceFunc, |
| LoopVarFunc, LVRef); |
| } |
| |
| StmtResult Sema::ActOnOpenMPLoopnest(Stmt *AStmt) { |
| // Handle a literal loop. |
| if (isa<ForStmt>(AStmt) || isa<CXXForRangeStmt>(AStmt)) |
| return ActOnOpenMPCanonicalLoop(AStmt); |
| |
| // If not a literal loop, it must be the result of a loop transformation. |
| OMPExecutableDirective *LoopTransform = cast<OMPExecutableDirective>(AStmt); |
| assert( |
| isOpenMPLoopTransformationDirective(LoopTransform->getDirectiveKind()) && |
| "Loop transformation directive expected"); |
| return LoopTransform; |
| } |
| |
| static ExprResult buildUserDefinedMapperRef(Sema &SemaRef, Scope *S, |
| CXXScopeSpec &MapperIdScopeSpec, |
| const DeclarationNameInfo &MapperId, |
| QualType Type, |
| Expr *UnresolvedMapper); |
| |
| /// Perform DFS through the structure/class data members trying to find |
| /// member(s) with user-defined 'default' mapper and generate implicit map |
| /// clauses for such members with the found 'default' mapper. |
| static void |
| processImplicitMapsWithDefaultMappers(Sema &S, DSAStackTy *Stack, |
| SmallVectorImpl<OMPClause *> &Clauses) { |
| // Check for the deault mapper for data members. |
| if (S.getLangOpts().OpenMP < 50) |
| return; |
| SmallVector<OMPClause *, 4> ImplicitMaps; |
| for (int Cnt = 0, EndCnt = Clauses.size(); Cnt < EndCnt; ++Cnt) { |
| auto *C = dyn_cast<OMPMapClause>(Clauses[Cnt]); |
| if (!C) |
| continue; |
| SmallVector<Expr *, 4> SubExprs; |
| auto *MI = C->mapperlist_begin(); |
| for (auto I = C->varlist_begin(), End = C->varlist_end(); I != End; |
| ++I, ++MI) { |
| // Expression is mapped using mapper - skip it. |
| if (*MI) |
| continue; |
| Expr *E = *I; |
| // Expression is dependent - skip it, build the mapper when it gets |
| // instantiated. |
| if (E->isTypeDependent() || E->isValueDependent() || |
| E->containsUnexpandedParameterPack()) |
| continue; |
| // Array section - need to check for the mapping of the array section |
| // element. |
| QualType CanonType = E->getType().getCanonicalType(); |
| if (CanonType->isSpecificBuiltinType(BuiltinType::OMPArraySection)) { |
| const auto *OASE = cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts()); |
| QualType BaseType = |
| OMPArraySectionExpr::getBaseOriginalType(OASE->getBase()); |
| QualType ElemType; |
| if (const auto *ATy = BaseType->getAsArrayTypeUnsafe()) |
| ElemType = ATy->getElementType(); |
| else |
| ElemType = BaseType->getPointeeType(); |
| CanonType = ElemType; |
| } |
| |
| // DFS over data members in structures/classes. |
| SmallVector<std::pair<QualType, FieldDecl *>, 4> Types( |
| 1, {CanonType, nullptr}); |
| llvm::DenseMap<const Type *, Expr *> Visited; |
| SmallVector<std::pair<FieldDecl *, unsigned>, 4> ParentChain( |
| 1, {nullptr, 1}); |
| while (!Types.empty()) { |
| QualType BaseType; |
| FieldDecl *CurFD; |
| std::tie(BaseType, CurFD) = Types.pop_back_val(); |
| while (ParentChain.back().second == 0) |
| ParentChain.pop_back(); |
| --ParentChain.back().second; |
| if (BaseType.isNull()) |
| continue; |
| // Only structs/classes are allowed to have mappers. |
| const RecordDecl *RD = BaseType.getCanonicalType()->getAsRecordDecl(); |
| if (!RD) |
| continue; |
| auto It = Visited.find(BaseType.getTypePtr()); |
| if (It == Visited.end()) { |
| // Try to find the associated user-defined mapper. |
| CXXScopeSpec MapperIdScopeSpec; |
| DeclarationNameInfo DefaultMapperId; |
| DefaultMapperId.setName(S.Context.DeclarationNames.getIdentifier( |
| &S.Context.Idents.get("default"))); |
| DefaultMapperId.setLoc(E->getExprLoc()); |
| ExprResult ER = buildUserDefinedMapperRef( |
| S, Stack->getCurScope(), MapperIdScopeSpec, DefaultMapperId, |
| BaseType, /*UnresolvedMapper=*/nullptr); |
| if (ER.isInvalid()) |
| continue; |
| It = Visited.try_emplace(BaseType.getTypePtr(), ER.get()).first; |
| } |
| // Found default mapper. |
| if (It->second) { |
| auto *OE = new (S.Context) OpaqueValueExpr(E->getExprLoc(), CanonType, |
| VK_LValue, OK_Ordinary, E); |
| OE->setIsUnique(/*V=*/true); |
| Expr *BaseExpr = OE; |
| for (const auto &P : ParentChain) { |
| if (P.first) { |
| BaseExpr = S.BuildMemberExpr( |
| BaseExpr, /*IsArrow=*/false, E->getExprLoc(), |
| NestedNameSpecifierLoc(), SourceLocation(), P.first, |
| DeclAccessPair::make(P.first, P.first->getAccess()), |
| /*HadMultipleCandidates=*/false, DeclarationNameInfo(), |
| P.first->getType(), VK_LValue, OK_Ordinary); |
| BaseExpr = S.DefaultLvalueConversion(BaseExpr).get(); |
| } |
| } |
| if (CurFD) |
| BaseExpr = S.BuildMemberExpr( |
| BaseExpr, /*IsArrow=*/false, E->getExprLoc(), |
| NestedNameSpecifierLoc(), SourceLocation(), CurFD, |
| DeclAccessPair::make(CurFD, CurFD->getAccess()), |
| /*HadMultipleCandidates=*/false, DeclarationNameInfo(), |
| CurFD->getType(), VK_LValue, OK_Ordinary); |
| SubExprs.push_back(BaseExpr); |
| continue; |
| } |
| // Check for the "default" mapper for data members. |
| bool FirstIter = true; |
| for (FieldDecl *FD : RD->fields()) { |
| if (!FD) |
| continue; |
| QualType FieldTy = FD->getType(); |
| if (FieldTy.isNull() || |
| !(FieldTy->isStructureOrClassType() || FieldTy->isUnionType())) |
| continue; |
| if (FirstIter) { |
| FirstIter = false; |
| ParentChain.emplace_back(CurFD, 1); |
| } else { |
| ++ParentChain.back().second; |
| } |
| Types.emplace_back(FieldTy, FD); |
| } |
| } |
| } |
| if (SubExprs.empty()) |
| continue; |
| CXXScopeSpec MapperIdScopeSpec; |
| DeclarationNameInfo MapperId; |
| if (OMPClause *NewClause = S.ActOnOpenMPMapClause( |
| C->getMapTypeModifiers(), C->getMapTypeModifiersLoc(), |
| MapperIdScopeSpec, MapperId, C->getMapType(), |
| /*IsMapTypeImplicit=*/true, SourceLocation(), SourceLocation(), |
| SubExprs, OMPVarListLocTy())) |
| Clauses.push_back(NewClause); |
| } |
| } |
| |
| StmtResult Sema::ActOnOpenMPExecutableDirective( |
| OpenMPDirectiveKind Kind, const DeclarationNameInfo &DirName, |
| OpenMPDirectiveKind CancelRegion, ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc) { |
| StmtResult Res = StmtError(); |
| OpenMPBindClauseKind BindKind = OMPC_BIND_unknown; |
| if (const OMPBindClause *BC = |
| OMPExecutableDirective::getSingleClause<OMPBindClause>(Clauses)) |
| BindKind = BC->getBindKind(); |
| // First check CancelRegion which is then used in checkNestingOfRegions. |
| if (checkCancelRegion(*this, Kind, CancelRegion, StartLoc) || |
| checkNestingOfRegions(*this, DSAStack, Kind, DirName, CancelRegion, |
| BindKind, StartLoc)) |
| return StmtError(); |
| |
| llvm::SmallVector<OMPClause *, 8> ClausesWithImplicit; |
| VarsWithInheritedDSAType VarsWithInheritedDSA; |
| bool ErrorFound = false; |
| ClausesWithImplicit.append(Clauses.begin(), Clauses.end()); |
| if (AStmt && !CurContext->isDependentContext() && Kind != OMPD_atomic && |
| Kind != OMPD_critical && Kind != OMPD_section && Kind != OMPD_master && |
| Kind != OMPD_masked && !isOpenMPLoopTransformationDirective(Kind)) { |
| assert(isa<CapturedStmt>(AStmt) && "Captured statement expected"); |
| |
| // Check default data sharing attributes for referenced variables. |
| DSAAttrChecker DSAChecker(DSAStack, *this, cast<CapturedStmt>(AStmt)); |
| int ThisCaptureLevel = getOpenMPCaptureLevels(Kind); |
| Stmt *S = AStmt; |
| while (--ThisCaptureLevel >= 0) |
| S = cast<CapturedStmt>(S)->getCapturedStmt(); |
| DSAChecker.Visit(S); |
| if (!isOpenMPTargetDataManagementDirective(Kind) && |
| !isOpenMPTaskingDirective(Kind)) { |
| // Visit subcaptures to generate implicit clauses for captured vars. |
| auto *CS = cast<CapturedStmt>(AStmt); |
| SmallVector<OpenMPDirectiveKind, 4> CaptureRegions; |
| getOpenMPCaptureRegions(CaptureRegions, Kind); |
| // Ignore outer tasking regions for target directives. |
| if (CaptureRegions.size() > 1 && CaptureRegions.front() == OMPD_task) |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| DSAChecker.visitSubCaptures(CS); |
| } |
| if (DSAChecker.isErrorFound()) |
| return StmtError(); |
| // Generate list of implicitly defined firstprivate variables. |
| VarsWithInheritedDSA = DSAChecker.getVarsWithInheritedDSA(); |
| |
| SmallVector<Expr *, 4> ImplicitFirstprivates( |
| DSAChecker.getImplicitFirstprivate().begin(), |
| DSAChecker.getImplicitFirstprivate().end()); |
| const unsigned DefaultmapKindNum = OMPC_DEFAULTMAP_pointer + 1; |
| SmallVector<Expr *, 4> ImplicitMaps[DefaultmapKindNum][OMPC_MAP_delete]; |
| SmallVector<OpenMPMapModifierKind, NumberOfOMPMapClauseModifiers> |
| ImplicitMapModifiers[DefaultmapKindNum]; |
| SmallVector<SourceLocation, NumberOfOMPMapClauseModifiers> |
| ImplicitMapModifiersLoc[DefaultmapKindNum]; |
| // Get the original location of present modifier from Defaultmap clause. |
| SourceLocation PresentModifierLocs[DefaultmapKindNum]; |
| for (OMPClause *C : Clauses) { |
| if (auto *DMC = dyn_cast<OMPDefaultmapClause>(C)) |
| if (DMC->getDefaultmapModifier() == OMPC_DEFAULTMAP_MODIFIER_present) |
| PresentModifierLocs[DMC->getDefaultmapKind()] = |
| DMC->getDefaultmapModifierLoc(); |
| } |
| for (unsigned VC = 0; VC < DefaultmapKindNum; ++VC) { |
| auto Kind = static_cast<OpenMPDefaultmapClauseKind>(VC); |
| for (unsigned I = 0; I < OMPC_MAP_delete; ++I) { |
| ArrayRef<Expr *> ImplicitMap = DSAChecker.getImplicitMap( |
| Kind, static_cast<OpenMPMapClauseKind>(I)); |
| ImplicitMaps[VC][I].append(ImplicitMap.begin(), ImplicitMap.end()); |
| } |
| ArrayRef<OpenMPMapModifierKind> ImplicitModifier = |
| DSAChecker.getImplicitMapModifier(Kind); |
| ImplicitMapModifiers[VC].append(ImplicitModifier.begin(), |
| ImplicitModifier.end()); |
| std::fill_n(std::back_inserter(ImplicitMapModifiersLoc[VC]), |
| ImplicitModifier.size(), PresentModifierLocs[VC]); |
| } |
| // Mark taskgroup task_reduction descriptors as implicitly firstprivate. |
| for (OMPClause *C : Clauses) { |
| if (auto *IRC = dyn_cast<OMPInReductionClause>(C)) { |
| for (Expr *E : IRC->taskgroup_descriptors()) |
| if (E) |
| ImplicitFirstprivates.emplace_back(E); |
| } |
| // OpenMP 5.0, 2.10.1 task Construct |
| // [detach clause]... The event-handle will be considered as if it was |
| // specified on a firstprivate clause. |
| if (auto *DC = dyn_cast<OMPDetachClause>(C)) |
| ImplicitFirstprivates.push_back(DC->getEventHandler()); |
| } |
| if (!ImplicitFirstprivates.empty()) { |
| if (OMPClause *Implicit = ActOnOpenMPFirstprivateClause( |
| ImplicitFirstprivates, SourceLocation(), SourceLocation(), |
| SourceLocation())) { |
| ClausesWithImplicit.push_back(Implicit); |
| ErrorFound = cast<OMPFirstprivateClause>(Implicit)->varlist_size() != |
| ImplicitFirstprivates.size(); |
| } else { |
| ErrorFound = true; |
| } |
| } |
| // OpenMP 5.0 [2.19.7] |
| // If a list item appears in a reduction, lastprivate or linear |
| // clause on a combined target construct then it is treated as |
| // if it also appears in a map clause with a map-type of tofrom |
| if (getLangOpts().OpenMP >= 50 && Kind != OMPD_target && |
| isOpenMPTargetExecutionDirective(Kind)) { |
| SmallVector<Expr *, 4> ImplicitExprs; |
| for (OMPClause *C : Clauses) { |
| if (auto *RC = dyn_cast<OMPReductionClause>(C)) |
| for (Expr *E : RC->varlists()) |
| if (!isa<DeclRefExpr>(E->IgnoreParenImpCasts())) |
| ImplicitExprs.emplace_back(E); |
| } |
| if (!ImplicitExprs.empty()) { |
| ArrayRef<Expr *> Exprs = ImplicitExprs; |
| CXXScopeSpec MapperIdScopeSpec; |
| DeclarationNameInfo MapperId; |
| if (OMPClause *Implicit = ActOnOpenMPMapClause( |
| OMPC_MAP_MODIFIER_unknown, SourceLocation(), MapperIdScopeSpec, |
| MapperId, OMPC_MAP_tofrom, |
| /*IsMapTypeImplicit=*/true, SourceLocation(), SourceLocation(), |
| Exprs, OMPVarListLocTy(), /*NoDiagnose=*/true)) |
| ClausesWithImplicit.emplace_back(Implicit); |
| } |
| } |
| for (unsigned I = 0, E = DefaultmapKindNum; I < E; ++I) { |
| int ClauseKindCnt = -1; |
| for (ArrayRef<Expr *> ImplicitMap : ImplicitMaps[I]) { |
| ++ClauseKindCnt; |
| if (ImplicitMap.empty()) |
| continue; |
| CXXScopeSpec MapperIdScopeSpec; |
| DeclarationNameInfo MapperId; |
| auto Kind = static_cast<OpenMPMapClauseKind>(ClauseKindCnt); |
| if (OMPClause *Implicit = ActOnOpenMPMapClause( |
| ImplicitMapModifiers[I], ImplicitMapModifiersLoc[I], |
| MapperIdScopeSpec, MapperId, Kind, /*IsMapTypeImplicit=*/true, |
| SourceLocation(), SourceLocation(), ImplicitMap, |
| OMPVarListLocTy())) { |
| ClausesWithImplicit.emplace_back(Implicit); |
| ErrorFound |= cast<OMPMapClause>(Implicit)->varlist_size() != |
| ImplicitMap.size(); |
| } else { |
| ErrorFound = true; |
| } |
| } |
| } |
| // Build expressions for implicit maps of data members with 'default' |
| // mappers. |
| if (LangOpts.OpenMP >= 50) |
| processImplicitMapsWithDefaultMappers(*this, DSAStack, |
| ClausesWithImplicit); |
| } |
| |
| llvm::SmallVector<OpenMPDirectiveKind, 4> AllowedNameModifiers; |
| switch (Kind) { |
| case OMPD_parallel: |
| Res = ActOnOpenMPParallelDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc); |
| AllowedNameModifiers.push_back(OMPD_parallel); |
| break; |
| case OMPD_simd: |
| Res = ActOnOpenMPSimdDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc, |
| VarsWithInheritedDSA); |
| if (LangOpts.OpenMP >= 50) |
| AllowedNameModifiers.push_back(OMPD_simd); |
| break; |
| case OMPD_tile: |
| Res = |
| ActOnOpenMPTileDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc); |
| break; |
| case OMPD_unroll: |
| Res = ActOnOpenMPUnrollDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc); |
| break; |
| case OMPD_for: |
| Res = ActOnOpenMPForDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc, |
| VarsWithInheritedDSA); |
| break; |
| case OMPD_for_simd: |
| Res = ActOnOpenMPForSimdDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc, VarsWithInheritedDSA); |
| if (LangOpts.OpenMP >= 50) |
| AllowedNameModifiers.push_back(OMPD_simd); |
| break; |
| case OMPD_sections: |
| Res = ActOnOpenMPSectionsDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc); |
| break; |
| case OMPD_section: |
| assert(ClausesWithImplicit.empty() && |
| "No clauses are allowed for 'omp section' directive"); |
| Res = ActOnOpenMPSectionDirective(AStmt, StartLoc, EndLoc); |
| break; |
| case OMPD_single: |
| Res = ActOnOpenMPSingleDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc); |
| break; |
| case OMPD_master: |
| assert(ClausesWithImplicit.empty() && |
| "No clauses are allowed for 'omp master' directive"); |
| Res = ActOnOpenMPMasterDirective(AStmt, StartLoc, EndLoc); |
| break; |
| case OMPD_masked: |
| Res = ActOnOpenMPMaskedDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc); |
| break; |
| case OMPD_critical: |
| Res = ActOnOpenMPCriticalDirective(DirName, ClausesWithImplicit, AStmt, |
| StartLoc, EndLoc); |
| break; |
| case OMPD_parallel_for: |
| Res = ActOnOpenMPParallelForDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_parallel); |
| break; |
| case OMPD_parallel_for_simd: |
| Res = ActOnOpenMPParallelForSimdDirective( |
| ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_parallel); |
| if (LangOpts.OpenMP >= 50) |
| AllowedNameModifiers.push_back(OMPD_simd); |
| break; |
| case OMPD_parallel_master: |
| Res = ActOnOpenMPParallelMasterDirective(ClausesWithImplicit, AStmt, |
| StartLoc, EndLoc); |
| AllowedNameModifiers.push_back(OMPD_parallel); |
| break; |
| case OMPD_parallel_sections: |
| Res = ActOnOpenMPParallelSectionsDirective(ClausesWithImplicit, AStmt, |
| StartLoc, EndLoc); |
| AllowedNameModifiers.push_back(OMPD_parallel); |
| break; |
| case OMPD_task: |
| Res = |
| ActOnOpenMPTaskDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc); |
| AllowedNameModifiers.push_back(OMPD_task); |
| break; |
| case OMPD_taskyield: |
| assert(ClausesWithImplicit.empty() && |
| "No clauses are allowed for 'omp taskyield' directive"); |
| assert(AStmt == nullptr && |
| "No associated statement allowed for 'omp taskyield' directive"); |
| Res = ActOnOpenMPTaskyieldDirective(StartLoc, EndLoc); |
| break; |
| case OMPD_barrier: |
| assert(ClausesWithImplicit.empty() && |
| "No clauses are allowed for 'omp barrier' directive"); |
| assert(AStmt == nullptr && |
| "No associated statement allowed for 'omp barrier' directive"); |
| Res = ActOnOpenMPBarrierDirective(StartLoc, EndLoc); |
| break; |
| case OMPD_taskwait: |
| assert(AStmt == nullptr && |
| "No associated statement allowed for 'omp taskwait' directive"); |
| Res = ActOnOpenMPTaskwaitDirective(ClausesWithImplicit, StartLoc, EndLoc); |
| break; |
| case OMPD_taskgroup: |
| Res = ActOnOpenMPTaskgroupDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc); |
| break; |
| case OMPD_flush: |
| assert(AStmt == nullptr && |
| "No associated statement allowed for 'omp flush' directive"); |
| Res = ActOnOpenMPFlushDirective(ClausesWithImplicit, StartLoc, EndLoc); |
| break; |
| case OMPD_depobj: |
| assert(AStmt == nullptr && |
| "No associated statement allowed for 'omp depobj' directive"); |
| Res = ActOnOpenMPDepobjDirective(ClausesWithImplicit, StartLoc, EndLoc); |
| break; |
| case OMPD_scan: |
| assert(AStmt == nullptr && |
| "No associated statement allowed for 'omp scan' directive"); |
| Res = ActOnOpenMPScanDirective(ClausesWithImplicit, StartLoc, EndLoc); |
| break; |
| case OMPD_ordered: |
| Res = ActOnOpenMPOrderedDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc); |
| break; |
| case OMPD_atomic: |
| Res = ActOnOpenMPAtomicDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc); |
| break; |
| case OMPD_teams: |
| Res = |
| ActOnOpenMPTeamsDirective(ClausesWithImplicit, AStmt, StartLoc, EndLoc); |
| break; |
| case OMPD_target: |
| Res = ActOnOpenMPTargetDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc); |
| AllowedNameModifiers.push_back(OMPD_target); |
| break; |
| case OMPD_target_parallel: |
| Res = ActOnOpenMPTargetParallelDirective(ClausesWithImplicit, AStmt, |
| StartLoc, EndLoc); |
| AllowedNameModifiers.push_back(OMPD_target); |
| AllowedNameModifiers.push_back(OMPD_parallel); |
| break; |
| case OMPD_target_parallel_for: |
| Res = ActOnOpenMPTargetParallelForDirective( |
| ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_target); |
| AllowedNameModifiers.push_back(OMPD_parallel); |
| break; |
| case OMPD_cancellation_point: |
| assert(ClausesWithImplicit.empty() && |
| "No clauses are allowed for 'omp cancellation point' directive"); |
| assert(AStmt == nullptr && "No associated statement allowed for 'omp " |
| "cancellation point' directive"); |
| Res = ActOnOpenMPCancellationPointDirective(StartLoc, EndLoc, CancelRegion); |
| break; |
| case OMPD_cancel: |
| assert(AStmt == nullptr && |
| "No associated statement allowed for 'omp cancel' directive"); |
| Res = ActOnOpenMPCancelDirective(ClausesWithImplicit, StartLoc, EndLoc, |
| CancelRegion); |
| AllowedNameModifiers.push_back(OMPD_cancel); |
| break; |
| case OMPD_target_data: |
| Res = ActOnOpenMPTargetDataDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc); |
| AllowedNameModifiers.push_back(OMPD_target_data); |
| break; |
| case OMPD_target_enter_data: |
| Res = ActOnOpenMPTargetEnterDataDirective(ClausesWithImplicit, StartLoc, |
| EndLoc, AStmt); |
| AllowedNameModifiers.push_back(OMPD_target_enter_data); |
| break; |
| case OMPD_target_exit_data: |
| Res = ActOnOpenMPTargetExitDataDirective(ClausesWithImplicit, StartLoc, |
| EndLoc, AStmt); |
| AllowedNameModifiers.push_back(OMPD_target_exit_data); |
| break; |
| case OMPD_taskloop: |
| Res = ActOnOpenMPTaskLoopDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_taskloop); |
| break; |
| case OMPD_taskloop_simd: |
| Res = ActOnOpenMPTaskLoopSimdDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_taskloop); |
| if (LangOpts.OpenMP >= 50) |
| AllowedNameModifiers.push_back(OMPD_simd); |
| break; |
| case OMPD_master_taskloop: |
| Res = ActOnOpenMPMasterTaskLoopDirective( |
| ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_taskloop); |
| break; |
| case OMPD_master_taskloop_simd: |
| Res = ActOnOpenMPMasterTaskLoopSimdDirective( |
| ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_taskloop); |
| if (LangOpts.OpenMP >= 50) |
| AllowedNameModifiers.push_back(OMPD_simd); |
| break; |
| case OMPD_parallel_master_taskloop: |
| Res = ActOnOpenMPParallelMasterTaskLoopDirective( |
| ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_taskloop); |
| AllowedNameModifiers.push_back(OMPD_parallel); |
| break; |
| case OMPD_parallel_master_taskloop_simd: |
| Res = ActOnOpenMPParallelMasterTaskLoopSimdDirective( |
| ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_taskloop); |
| AllowedNameModifiers.push_back(OMPD_parallel); |
| if (LangOpts.OpenMP >= 50) |
| AllowedNameModifiers.push_back(OMPD_simd); |
| break; |
| case OMPD_distribute: |
| Res = ActOnOpenMPDistributeDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc, VarsWithInheritedDSA); |
| break; |
| case OMPD_target_update: |
| Res = ActOnOpenMPTargetUpdateDirective(ClausesWithImplicit, StartLoc, |
| EndLoc, AStmt); |
| AllowedNameModifiers.push_back(OMPD_target_update); |
| break; |
| case OMPD_distribute_parallel_for: |
| Res = ActOnOpenMPDistributeParallelForDirective( |
| ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_parallel); |
| break; |
| case OMPD_distribute_parallel_for_simd: |
| Res = ActOnOpenMPDistributeParallelForSimdDirective( |
| ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_parallel); |
| if (LangOpts.OpenMP >= 50) |
| AllowedNameModifiers.push_back(OMPD_simd); |
| break; |
| case OMPD_distribute_simd: |
| Res = ActOnOpenMPDistributeSimdDirective( |
| ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA); |
| if (LangOpts.OpenMP >= 50) |
| AllowedNameModifiers.push_back(OMPD_simd); |
| break; |
| case OMPD_target_parallel_for_simd: |
| Res = ActOnOpenMPTargetParallelForSimdDirective( |
| ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_target); |
| AllowedNameModifiers.push_back(OMPD_parallel); |
| if (LangOpts.OpenMP >= 50) |
| AllowedNameModifiers.push_back(OMPD_simd); |
| break; |
| case OMPD_target_simd: |
| Res = ActOnOpenMPTargetSimdDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_target); |
| if (LangOpts.OpenMP >= 50) |
| AllowedNameModifiers.push_back(OMPD_simd); |
| break; |
| case OMPD_teams_distribute: |
| Res = ActOnOpenMPTeamsDistributeDirective( |
| ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA); |
| break; |
| case OMPD_teams_distribute_simd: |
| Res = ActOnOpenMPTeamsDistributeSimdDirective( |
| ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA); |
| if (LangOpts.OpenMP >= 50) |
| AllowedNameModifiers.push_back(OMPD_simd); |
| break; |
| case OMPD_teams_distribute_parallel_for_simd: |
| Res = ActOnOpenMPTeamsDistributeParallelForSimdDirective( |
| ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_parallel); |
| if (LangOpts.OpenMP >= 50) |
| AllowedNameModifiers.push_back(OMPD_simd); |
| break; |
| case OMPD_teams_distribute_parallel_for: |
| Res = ActOnOpenMPTeamsDistributeParallelForDirective( |
| ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_parallel); |
| break; |
| case OMPD_target_teams: |
| Res = ActOnOpenMPTargetTeamsDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc); |
| AllowedNameModifiers.push_back(OMPD_target); |
| break; |
| case OMPD_target_teams_distribute: |
| Res = ActOnOpenMPTargetTeamsDistributeDirective( |
| ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_target); |
| break; |
| case OMPD_target_teams_distribute_parallel_for: |
| Res = ActOnOpenMPTargetTeamsDistributeParallelForDirective( |
| ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_target); |
| AllowedNameModifiers.push_back(OMPD_parallel); |
| break; |
| case OMPD_target_teams_distribute_parallel_for_simd: |
| Res = ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective( |
| ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_target); |
| AllowedNameModifiers.push_back(OMPD_parallel); |
| if (LangOpts.OpenMP >= 50) |
| AllowedNameModifiers.push_back(OMPD_simd); |
| break; |
| case OMPD_target_teams_distribute_simd: |
| Res = ActOnOpenMPTargetTeamsDistributeSimdDirective( |
| ClausesWithImplicit, AStmt, StartLoc, EndLoc, VarsWithInheritedDSA); |
| AllowedNameModifiers.push_back(OMPD_target); |
| if (LangOpts.OpenMP >= 50) |
| AllowedNameModifiers.push_back(OMPD_simd); |
| break; |
| case OMPD_interop: |
| assert(AStmt == nullptr && |
| "No associated statement allowed for 'omp interop' directive"); |
| Res = ActOnOpenMPInteropDirective(ClausesWithImplicit, StartLoc, EndLoc); |
| break; |
| case OMPD_dispatch: |
| Res = ActOnOpenMPDispatchDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc); |
| break; |
| case OMPD_loop: |
| Res = ActOnOpenMPGenericLoopDirective(ClausesWithImplicit, AStmt, StartLoc, |
| EndLoc, VarsWithInheritedDSA); |
| break; |
| case OMPD_declare_target: |
| case OMPD_end_declare_target: |
| case OMPD_threadprivate: |
| case OMPD_allocate: |
| case OMPD_declare_reduction: |
| case OMPD_declare_mapper: |
| case OMPD_declare_simd: |
| case OMPD_requires: |
| case OMPD_declare_variant: |
| case OMPD_begin_declare_variant: |
| case OMPD_end_declare_variant: |
| llvm_unreachable("OpenMP Directive is not allowed"); |
| case OMPD_unknown: |
| default: |
| llvm_unreachable("Unknown OpenMP directive"); |
| } |
| |
| ErrorFound = Res.isInvalid() || ErrorFound; |
| |
| // Check variables in the clauses if default(none) or |
| // default(firstprivate) was specified. |
| if (DSAStack->getDefaultDSA() == DSA_none || |
| DSAStack->getDefaultDSA() == DSA_firstprivate) { |
| DSAAttrChecker DSAChecker(DSAStack, *this, nullptr); |
| for (OMPClause *C : Clauses) { |
| switch (C->getClauseKind()) { |
| case OMPC_num_threads: |
| case OMPC_dist_schedule: |
| // Do not analyse if no parent teams directive. |
| if (isOpenMPTeamsDirective(Kind)) |
| break; |
| continue; |
| case OMPC_if: |
| if (isOpenMPTeamsDirective(Kind) && |
| cast<OMPIfClause>(C)->getNameModifier() != OMPD_target) |
| break; |
| if (isOpenMPParallelDirective(Kind) && |
| isOpenMPTaskLoopDirective(Kind) && |
| cast<OMPIfClause>(C)->getNameModifier() != OMPD_parallel) |
| break; |
| continue; |
| case OMPC_schedule: |
| case OMPC_detach: |
| break; |
| case OMPC_grainsize: |
| case OMPC_num_tasks: |
| case OMPC_final: |
| case OMPC_priority: |
| case OMPC_novariants: |
| case OMPC_nocontext: |
| // Do not analyze if no parent parallel directive. |
| if (isOpenMPParallelDirective(Kind)) |
| break; |
| continue; |
| case OMPC_ordered: |
| case OMPC_device: |
| case OMPC_num_teams: |
| case OMPC_thread_limit: |
| case OMPC_hint: |
| case OMPC_collapse: |
| case OMPC_safelen: |
| case OMPC_simdlen: |
| case OMPC_sizes: |
| case OMPC_default: |
| case OMPC_proc_bind: |
| case OMPC_private: |
| case OMPC_firstprivate: |
| case OMPC_lastprivate: |
| case OMPC_shared: |
| case OMPC_reduction: |
| case OMPC_task_reduction: |
| case OMPC_in_reduction: |
| case OMPC_linear: |
| case OMPC_aligned: |
| case OMPC_copyin: |
| case OMPC_copyprivate: |
| case OMPC_nowait: |
| case OMPC_untied: |
| case OMPC_mergeable: |
| case OMPC_allocate: |
| case OMPC_read: |
| case OMPC_write: |
| case OMPC_update: |
| case OMPC_capture: |
| case OMPC_seq_cst: |
| case OMPC_acq_rel: |
| case OMPC_acquire: |
| case OMPC_release: |
| case OMPC_relaxed: |
| case OMPC_depend: |
| case OMPC_threads: |
| case OMPC_simd: |
| case OMPC_map: |
| case OMPC_nogroup: |
| case OMPC_defaultmap: |
| case OMPC_to: |
| case OMPC_from: |
| case OMPC_use_device_ptr: |
| case OMPC_use_device_addr: |
| case OMPC_is_device_ptr: |
| case OMPC_nontemporal: |
| case OMPC_order: |
| case OMPC_destroy: |
| case OMPC_inclusive: |
| case OMPC_exclusive: |
| case OMPC_uses_allocators: |
| case OMPC_affinity: |
| case OMPC_bind: |
| continue; |
| case OMPC_allocator: |
| case OMPC_flush: |
| case OMPC_depobj: |
| case OMPC_threadprivate: |
| case OMPC_uniform: |
| case OMPC_unknown: |
| case OMPC_unified_address: |
| case OMPC_unified_shared_memory: |
| case OMPC_reverse_offload: |
| case OMPC_dynamic_allocators: |
| case OMPC_atomic_default_mem_order: |
| case OMPC_device_type: |
| case OMPC_match: |
| case OMPC_when: |
| default: |
| llvm_unreachable("Unexpected clause"); |
| } |
| for (Stmt *CC : C->children()) { |
| if (CC) |
| DSAChecker.Visit(CC); |
| } |
| } |
| for (const auto &P : DSAChecker.getVarsWithInheritedDSA()) |
| VarsWithInheritedDSA[P.getFirst()] = P.getSecond(); |
| } |
| for (const auto &P : VarsWithInheritedDSA) { |
| if (P.getFirst()->isImplicit() || isa<OMPCapturedExprDecl>(P.getFirst())) |
| continue; |
| ErrorFound = true; |
| if (DSAStack->getDefaultDSA() == DSA_none || |
| DSAStack->getDefaultDSA() == DSA_firstprivate) { |
| Diag(P.second->getExprLoc(), diag::err_omp_no_dsa_for_variable) |
| << P.first << P.second->getSourceRange(); |
| Diag(DSAStack->getDefaultDSALocation(), diag::note_omp_default_dsa_none); |
| } else if (getLangOpts().OpenMP >= 50) { |
| Diag(P.second->getExprLoc(), |
| diag::err_omp_defaultmap_no_attr_for_variable) |
| << P.first << P.second->getSourceRange(); |
| Diag(DSAStack->getDefaultDSALocation(), |
| diag::note_omp_defaultmap_attr_none); |
| } |
| } |
| |
| if (!AllowedNameModifiers.empty()) |
| ErrorFound = checkIfClauses(*this, Kind, Clauses, AllowedNameModifiers) || |
| ErrorFound; |
| |
| if (ErrorFound) |
| return StmtError(); |
| |
| if (!CurContext->isDependentContext() && |
| isOpenMPTargetExecutionDirective(Kind) && |
| !(DSAStack->hasRequiresDeclWithClause<OMPUnifiedSharedMemoryClause>() || |
| DSAStack->hasRequiresDeclWithClause<OMPUnifiedAddressClause>() || |
| DSAStack->hasRequiresDeclWithClause<OMPReverseOffloadClause>() || |
| DSAStack->hasRequiresDeclWithClause<OMPDynamicAllocatorsClause>())) { |
| // Register target to DSA Stack. |
| DSAStack->addTargetDirLocation(StartLoc); |
| } |
| |
| return Res; |
| } |
| |
| Sema::DeclGroupPtrTy Sema::ActOnOpenMPDeclareSimdDirective( |
| DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS, Expr *Simdlen, |
| ArrayRef<Expr *> Uniforms, ArrayRef<Expr *> Aligneds, |
| ArrayRef<Expr *> Alignments, ArrayRef<Expr *> Linears, |
| ArrayRef<unsigned> LinModifiers, ArrayRef<Expr *> Steps, SourceRange SR) { |
| assert(Aligneds.size() == Alignments.size()); |
| assert(Linears.size() == LinModifiers.size()); |
| assert(Linears.size() == Steps.size()); |
| if (!DG || DG.get().isNull()) |
| return DeclGroupPtrTy(); |
| |
| const int SimdId = 0; |
| if (!DG.get().isSingleDecl()) { |
| Diag(SR.getBegin(), diag::err_omp_single_decl_in_declare_simd_variant) |
| << SimdId; |
| return DG; |
| } |
| Decl *ADecl = DG.get().getSingleDecl(); |
| if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ADecl)) |
| ADecl = FTD->getTemplatedDecl(); |
| |
| auto *FD = dyn_cast<FunctionDecl>(ADecl); |
| if (!FD) { |
| Diag(ADecl->getLocation(), diag::err_omp_function_expected) << SimdId; |
| return DeclGroupPtrTy(); |
| } |
| |
| // OpenMP [2.8.2, declare simd construct, Description] |
| // The parameter of the simdlen clause must be a constant positive integer |
| // expression. |
| ExprResult SL; |
| if (Simdlen) |
| SL = VerifyPositiveIntegerConstantInClause(Simdlen, OMPC_simdlen); |
| // OpenMP [2.8.2, declare simd construct, Description] |
| // The special this pointer can be used as if was one of the arguments to the |
| // function in any of the linear, aligned, or uniform clauses. |
| // The uniform clause declares one or more arguments to have an invariant |
| // value for all concurrent invocations of the function in the execution of a |
| // single SIMD loop. |
| llvm::DenseMap<const Decl *, const Expr *> UniformedArgs; |
| const Expr *UniformedLinearThis = nullptr; |
| for (const Expr *E : Uniforms) { |
| E = E->IgnoreParenImpCasts(); |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) |
| if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) |
| if (FD->getNumParams() > PVD->getFunctionScopeIndex() && |
| FD->getParamDecl(PVD->getFunctionScopeIndex()) |
| ->getCanonicalDecl() == PVD->getCanonicalDecl()) { |
| UniformedArgs.try_emplace(PVD->getCanonicalDecl(), E); |
| continue; |
| } |
| if (isa<CXXThisExpr>(E)) { |
| UniformedLinearThis = E; |
| continue; |
| } |
| Diag(E->getExprLoc(), diag::err_omp_param_or_this_in_clause) |
| << FD->getDeclName() << (isa<CXXMethodDecl>(ADecl) ? 1 : 0); |
| } |
| // OpenMP [2.8.2, declare simd construct, Description] |
| // The aligned clause declares that the object to which each list item points |
| // is aligned to the number of bytes expressed in the optional parameter of |
| // the aligned clause. |
| // The special this pointer can be used as if was one of the arguments to the |
| // function in any of the linear, aligned, or uniform clauses. |
| // The type of list items appearing in the aligned clause must be array, |
| // pointer, reference to array, or reference to pointer. |
| llvm::DenseMap<const Decl *, const Expr *> AlignedArgs; |
| const Expr *AlignedThis = nullptr; |
| for (const Expr *E : Aligneds) { |
| E = E->IgnoreParenImpCasts(); |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) |
| if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { |
| const VarDecl *CanonPVD = PVD->getCanonicalDecl(); |
| if (FD->getNumParams() > PVD->getFunctionScopeIndex() && |
| FD->getParamDecl(PVD->getFunctionScopeIndex()) |
| ->getCanonicalDecl() == CanonPVD) { |
| // OpenMP [2.8.1, simd construct, Restrictions] |
| // A list-item cannot appear in more than one aligned clause. |
| if (AlignedArgs.count(CanonPVD) > 0) { |
| Diag(E->getExprLoc(), diag::err_omp_used_in_clause_twice) |
| << 1 << getOpenMPClauseName(OMPC_aligned) |
| << E->getSourceRange(); |
| Diag(AlignedArgs[CanonPVD]->getExprLoc(), |
| diag::note_omp_explicit_dsa) |
| << getOpenMPClauseName(OMPC_aligned); |
| continue; |
| } |
| AlignedArgs[CanonPVD] = E; |
| QualType QTy = PVD->getType() |
| .getNonReferenceType() |
| .getUnqualifiedType() |
| .getCanonicalType(); |
| const Type *Ty = QTy.getTypePtrOrNull(); |
| if (!Ty || (!Ty->isArrayType() && !Ty->isPointerType())) { |
| Diag(E->getExprLoc(), diag::err_omp_aligned_expected_array_or_ptr) |
| << QTy << getLangOpts().CPlusPlus << E->getSourceRange(); |
| Diag(PVD->getLocation(), diag::note_previous_decl) << PVD; |
| } |
| continue; |
| } |
| } |
| if (isa<CXXThisExpr>(E)) { |
| if (AlignedThis) { |
| Diag(E->getExprLoc(), diag::err_omp_used_in_clause_twice) |
| << 2 << getOpenMPClauseName(OMPC_aligned) << E->getSourceRange(); |
| Diag(AlignedThis->getExprLoc(), diag::note_omp_explicit_dsa) |
| << getOpenMPClauseName(OMPC_aligned); |
| } |
| AlignedThis = E; |
| continue; |
| } |
| Diag(E->getExprLoc(), diag::err_omp_param_or_this_in_clause) |
| << FD->getDeclName() << (isa<CXXMethodDecl>(ADecl) ? 1 : 0); |
| } |
| // The optional parameter of the aligned clause, alignment, must be a constant |
| // positive integer expression. If no optional parameter is specified, |
| // implementation-defined default alignments for SIMD instructions on the |
| // target platforms are assumed. |
| SmallVector<const Expr *, 4> NewAligns; |
| for (Expr *E : Alignments) { |
| ExprResult Align; |
| if (E) |
| Align = VerifyPositiveIntegerConstantInClause(E, OMPC_aligned); |
| NewAligns.push_back(Align.get()); |
| } |
| // OpenMP [2.8.2, declare simd construct, Description] |
| // The linear clause declares one or more list items to be private to a SIMD |
| // lane and to have a linear relationship with respect to the iteration space |
| // of a loop. |
| // The special this pointer can be used as if was one of the arguments to the |
| // function in any of the linear, aligned, or uniform clauses. |
| // When a linear-step expression is specified in a linear clause it must be |
| // either a constant integer expression or an integer-typed parameter that is |
| // specified in a uniform clause on the directive. |
| llvm::DenseMap<const Decl *, const Expr *> LinearArgs; |
| const bool IsUniformedThis = UniformedLinearThis != nullptr; |
| auto MI = LinModifiers.begin(); |
| for (const Expr *E : Linears) { |
| auto LinKind = static_cast<OpenMPLinearClauseKind>(*MI); |
| ++MI; |
| E = E->IgnoreParenImpCasts(); |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) |
| if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { |
| const VarDecl *CanonPVD = PVD->getCanonicalDecl(); |
| if (FD->getNumParams() > PVD->getFunctionScopeIndex() && |
| FD->getParamDecl(PVD->getFunctionScopeIndex()) |
| ->getCanonicalDecl() == CanonPVD) { |
| // OpenMP [2.15.3.7, linear Clause, Restrictions] |
| // A list-item cannot appear in more than one linear clause. |
| if (LinearArgs.count(CanonPVD) > 0) { |
| Diag(E->getExprLoc(), diag::err_omp_wrong_dsa) |
| << getOpenMPClauseName(OMPC_linear) |
| << getOpenMPClauseName(OMPC_linear) << E->getSourceRange(); |
| Diag(LinearArgs[CanonPVD]->getExprLoc(), |
| diag::note_omp_explicit_dsa) |
| << getOpenMPClauseName(OMPC_linear); |
| continue; |
| } |
| // Each argument can appear in at most one uniform or linear clause. |
| if (UniformedArgs.count(CanonPVD) > 0) { |
| Diag(E->getExprLoc(), diag::err_omp_wrong_dsa) |
| << getOpenMPClauseName(OMPC_linear) |
| << getOpenMPClauseName(OMPC_uniform) << E->getSourceRange(); |
| Diag(UniformedArgs[CanonPVD]->getExprLoc(), |
| diag::note_omp_explicit_dsa) |
| << getOpenMPClauseName(OMPC_uniform); |
| continue; |
| } |
| LinearArgs[CanonPVD] = E; |
| if (E->isValueDependent() || E->isTypeDependent() || |
| E->isInstantiationDependent() || |
| E->containsUnexpandedParameterPack()) |
| continue; |
| (void)CheckOpenMPLinearDecl(CanonPVD, E->getExprLoc(), LinKind, |
| PVD->getOriginalType(), |
| /*IsDeclareSimd=*/true); |
| continue; |
| } |
| } |
| if (isa<CXXThisExpr>(E)) { |
| if (UniformedLinearThis) { |
| Diag(E->getExprLoc(), diag::err_omp_wrong_dsa) |
| << getOpenMPClauseName(OMPC_linear) |
| << getOpenMPClauseName(IsUniformedThis ? OMPC_uniform : OMPC_linear) |
| << E->getSourceRange(); |
| Diag(UniformedLinearThis->getExprLoc(), diag::note_omp_explicit_dsa) |
| << getOpenMPClauseName(IsUniformedThis ? OMPC_uniform |
| : OMPC_linear); |
| continue; |
| } |
| UniformedLinearThis = E; |
| if (E->isValueDependent() || E->isTypeDependent() || |
| E->isInstantiationDependent() || E->containsUnexpandedParameterPack()) |
| continue; |
| (void)CheckOpenMPLinearDecl(/*D=*/nullptr, E->getExprLoc(), LinKind, |
| E->getType(), /*IsDeclareSimd=*/true); |
| continue; |
| } |
| Diag(E->getExprLoc(), diag::err_omp_param_or_this_in_clause) |
| << FD->getDeclName() << (isa<CXXMethodDecl>(ADecl) ? 1 : 0); |
| } |
| Expr *Step = nullptr; |
| Expr *NewStep = nullptr; |
| SmallVector<Expr *, 4> NewSteps; |
| for (Expr *E : Steps) { |
| // Skip the same step expression, it was checked already. |
| if (Step == E || !E) { |
| NewSteps.push_back(E ? NewStep : nullptr); |
| continue; |
| } |
| Step = E; |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(Step)) |
| if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { |
| const VarDecl *CanonPVD = PVD->getCanonicalDecl(); |
| if (UniformedArgs.count(CanonPVD) == 0) { |
| Diag(Step->getExprLoc(), diag::err_omp_expected_uniform_param) |
| << Step->getSourceRange(); |
| } else if (E->isValueDependent() || E->isTypeDependent() || |
| E->isInstantiationDependent() || |
| E->containsUnexpandedParameterPack() || |
| CanonPVD->getType()->hasIntegerRepresentation()) { |
| NewSteps.push_back(Step); |
| } else { |
| Diag(Step->getExprLoc(), diag::err_omp_expected_int_param) |
| << Step->getSourceRange(); |
| } |
| continue; |
| } |
| NewStep = Step; |
| if (Step && !Step->isValueDependent() && !Step->isTypeDependent() && |
| !Step->isInstantiationDependent() && |
| !Step->containsUnexpandedParameterPack()) { |
| NewStep = PerformOpenMPImplicitIntegerConversion(Step->getExprLoc(), Step) |
| .get(); |
| if (NewStep) |
| NewStep = |
| VerifyIntegerConstantExpression(NewStep, /*FIXME*/ AllowFold).get(); |
| } |
| NewSteps.push_back(NewStep); |
| } |
| auto *NewAttr = OMPDeclareSimdDeclAttr::CreateImplicit( |
| Context, BS, SL.get(), const_cast<Expr **>(Uniforms.data()), |
| Uniforms.size(), const_cast<Expr **>(Aligneds.data()), Aligneds.size(), |
| const_cast<Expr **>(NewAligns.data()), NewAligns.size(), |
| const_cast<Expr **>(Linears.data()), Linears.size(), |
| const_cast<unsigned *>(LinModifiers.data()), LinModifiers.size(), |
| NewSteps.data(), NewSteps.size(), SR); |
| ADecl->addAttr(NewAttr); |
| return DG; |
| } |
| |
| static void setPrototype(Sema &S, FunctionDecl *FD, FunctionDecl *FDWithProto, |
| QualType NewType) { |
| assert(NewType->isFunctionProtoType() && |
| "Expected function type with prototype."); |
| assert(FD->getType()->isFunctionNoProtoType() && |
| "Expected function with type with no prototype."); |
| assert(FDWithProto->getType()->isFunctionProtoType() && |
| "Expected function with prototype."); |
| // Synthesize parameters with the same types. |
| FD->setType(NewType); |
| SmallVector<ParmVarDecl *, 16> Params; |
| for (const ParmVarDecl *P : FDWithProto->parameters()) { |
| auto *Param = ParmVarDecl::Create(S.getASTContext(), FD, SourceLocation(), |
| SourceLocation(), nullptr, P->getType(), |
| /*TInfo=*/nullptr, SC_None, nullptr); |
| Param->setScopeInfo(0, Params.size()); |
| Param->setImplicit(); |
| Params.push_back(Param); |
| } |
| |
| FD->setParams(Params); |
| } |
| |
| void Sema::ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Decl *D) { |
| if (D->isInvalidDecl()) |
| return; |
| FunctionDecl *FD = nullptr; |
| if (auto *UTemplDecl = dyn_cast<FunctionTemplateDecl>(D)) |
| FD = UTemplDecl->getTemplatedDecl(); |
| else |
| FD = cast<FunctionDecl>(D); |
| assert(FD && "Expected a function declaration!"); |
| |
| // If we are instantiating templates we do *not* apply scoped assumptions but |
| // only global ones. We apply scoped assumption to the template definition |
| // though. |
| if (!inTemplateInstantiation()) { |
| for (AssumptionAttr *AA : OMPAssumeScoped) |
| FD->addAttr(AA); |
| } |
| for (AssumptionAttr *AA : OMPAssumeGlobal) |
| FD->addAttr(AA); |
| } |
| |
| Sema::OMPDeclareVariantScope::OMPDeclareVariantScope(OMPTraitInfo &TI) |
| : TI(&TI), NameSuffix(TI.getMangledName()) {} |
| |
| void Sema::ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope( |
| Scope *S, Declarator &D, MultiTemplateParamsArg TemplateParamLists, |
| SmallVectorImpl<FunctionDecl *> &Bases) { |
| if (!D.getIdentifier()) |
| return; |
| |
| OMPDeclareVariantScope &DVScope = OMPDeclareVariantScopes.back(); |
| |
| // Template specialization is an extension, check if we do it. |
| bool IsTemplated = !TemplateParamLists.empty(); |
| if (IsTemplated & |
| !DVScope.TI->isExtensionActive( |
| llvm::omp::TraitProperty::implementation_extension_allow_templates)) |
| return; |
| |
| IdentifierInfo *BaseII = D.getIdentifier(); |
| LookupResult Lookup(*this, DeclarationName(BaseII), D.getIdentifierLoc(), |
| LookupOrdinaryName); |
| LookupParsedName(Lookup, S, &D.getCXXScopeSpec()); |
| |
| TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); |
| QualType FType = TInfo->getType(); |
| |
| bool IsConstexpr = |
| D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr; |
| bool IsConsteval = |
| D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Consteval; |
| |
| for (auto *Candidate : Lookup) { |
| auto *CandidateDecl = Candidate->getUnderlyingDecl(); |
| FunctionDecl *UDecl = nullptr; |
| if (IsTemplated && isa<FunctionTemplateDecl>(CandidateDecl)) { |
| auto *FTD = cast<FunctionTemplateDecl>(CandidateDecl); |
| if (FTD->getTemplateParameters()->size() == TemplateParamLists.size()) |
| UDecl = FTD->getTemplatedDecl(); |
| } else if (!IsTemplated) |
| UDecl = dyn_cast<FunctionDecl>(CandidateDecl); |
| if (!UDecl) |
| continue; |
| |
| // Don't specialize constexpr/consteval functions with |
| // non-constexpr/consteval functions. |
| if (UDecl->isConstexpr() && !IsConstexpr) |
| continue; |
| if (UDecl->isConsteval() && !IsConsteval) |
| continue; |
| |
| QualType UDeclTy = UDecl->getType(); |
| if (!UDeclTy->isDependentType()) { |
| QualType NewType = Context.mergeFunctionTypes( |
| FType, UDeclTy, /* OfBlockPointer */ false, |
| /* Unqualified */ false, /* AllowCXX */ true); |
| if (NewType.isNull()) |
| continue; |
| } |
| |
| // Found a base! |
| Bases.push_back(UDecl); |
| } |
| |
| bool UseImplicitBase = !DVScope.TI->isExtensionActive( |
| llvm::omp::TraitProperty::implementation_extension_disable_implicit_base); |
| // If no base was found we create a declaration that we use as base. |
| if (Bases.empty() && UseImplicitBase) { |
| D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration); |
| Decl *BaseD = HandleDeclarator(S, D, TemplateParamLists); |
| BaseD->setImplicit(true); |
| if (auto *BaseTemplD = dyn_cast<FunctionTemplateDecl>(BaseD)) |
| Bases.push_back(BaseTemplD->getTemplatedDecl()); |
| else |
| Bases.push_back(cast<FunctionDecl>(BaseD)); |
| } |
| |
| std::string MangledName; |
| MangledName += D.getIdentifier()->getName(); |
| MangledName += getOpenMPVariantManglingSeparatorStr(); |
| MangledName += DVScope.NameSuffix; |
| IdentifierInfo &VariantII = Context.Idents.get(MangledName); |
| |
| VariantII.setMangledOpenMPVariantName(true); |
| D.SetIdentifier(&VariantII, D.getBeginLoc()); |
| } |
| |
| void Sema::ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope( |
| Decl *D, SmallVectorImpl<FunctionDecl *> &Bases) { |
| // Do not mark function as is used to prevent its emission if this is the |
| // only place where it is used. |
| EnterExpressionEvaluationContext Unevaluated( |
| *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| |
| FunctionDecl *FD = nullptr; |
| if (auto *UTemplDecl = dyn_cast<FunctionTemplateDecl>(D)) |
| FD = UTemplDecl->getTemplatedDecl(); |
| else |
| FD = cast<FunctionDecl>(D); |
| auto *VariantFuncRef = DeclRefExpr::Create( |
| Context, NestedNameSpecifierLoc(), SourceLocation(), FD, |
| /* RefersToEnclosingVariableOrCapture */ false, |
| /* NameLoc */ FD->getLocation(), FD->getType(), |
| ExprValueKind::VK_PRValue); |
| |
| OMPDeclareVariantScope &DVScope = OMPDeclareVariantScopes.back(); |
| auto *OMPDeclareVariantA = OMPDeclareVariantAttr::CreateImplicit( |
| Context, VariantFuncRef, DVScope.TI, |
| /*NothingArgs=*/nullptr, /*NothingArgsSize=*/0, |
| /*NeedDevicePtrArgs=*/nullptr, /*NeedDevicePtrArgsSize=*/0, |
| /*AppendArgs=*/nullptr, /*AppendArgsSize=*/0); |
| for (FunctionDecl *BaseFD : Bases) |
| BaseFD->addAttr(OMPDeclareVariantA); |
| } |
| |
| ExprResult Sema::ActOnOpenMPCall(ExprResult Call, Scope *Scope, |
| SourceLocation LParenLoc, |
| MultiExprArg ArgExprs, |
| SourceLocation RParenLoc, Expr *ExecConfig) { |
| // The common case is a regular call we do not want to specialize at all. Try |
| // to make that case fast by bailing early. |
| CallExpr *CE = dyn_cast<CallExpr>(Call.get()); |
| if (!CE) |
| return Call; |
| |
| FunctionDecl *CalleeFnDecl = CE->getDirectCallee(); |
| if (!CalleeFnDecl) |
| return Call; |
| |
| if (!CalleeFnDecl->hasAttr<OMPDeclareVariantAttr>()) |
| return Call; |
| |
| ASTContext &Context = getASTContext(); |
| std::function<void(StringRef)> DiagUnknownTrait = [this, |
| CE](StringRef ISATrait) { |
| // TODO Track the selector locations in a way that is accessible here to |
| // improve the diagnostic location. |
| Diag(CE->getBeginLoc(), diag::warn_unknown_declare_variant_isa_trait) |
| << ISATrait; |
| }; |
| TargetOMPContext OMPCtx(Context, std::move(DiagUnknownTrait), |
| getCurFunctionDecl(), DSAStack->getConstructTraits()); |
| |
| QualType CalleeFnType = CalleeFnDecl->getType(); |
| |
| SmallVector<Expr *, 4> Exprs; |
| SmallVector<VariantMatchInfo, 4> VMIs; |
| while (CalleeFnDecl) { |
| for (OMPDeclareVariantAttr *A : |
| CalleeFnDecl->specific_attrs<OMPDeclareVariantAttr>()) { |
| Expr *VariantRef = A->getVariantFuncRef(); |
| |
| VariantMatchInfo VMI; |
| OMPTraitInfo &TI = A->getTraitInfo(); |
| TI.getAsVariantMatchInfo(Context, VMI); |
| if (!isVariantApplicableInContext(VMI, OMPCtx, |
| /* DeviceSetOnly */ false)) |
| continue; |
| |
| VMIs.push_back(VMI); |
| Exprs.push_back(VariantRef); |
| } |
| |
| CalleeFnDecl = CalleeFnDecl->getPreviousDecl(); |
| } |
| |
| ExprResult NewCall; |
| do { |
| int BestIdx = getBestVariantMatchForContext(VMIs, OMPCtx); |
| if (BestIdx < 0) |
| return Call; |
| Expr *BestExpr = cast<DeclRefExpr>(Exprs[BestIdx]); |
| Decl *BestDecl = cast<DeclRefExpr>(BestExpr)->getDecl(); |
| |
| { |
| // Try to build a (member) call expression for the current best applicable |
| // variant expression. We allow this to fail in which case we continue |
| // with the next best variant expression. The fail case is part of the |
| // implementation defined behavior in the OpenMP standard when it talks |
| // about what differences in the function prototypes: "Any differences |
| // that the specific OpenMP context requires in the prototype of the |
| // variant from the base function prototype are implementation defined." |
| // This wording is there to allow the specialized variant to have a |
| // different type than the base function. This is intended and OK but if |
| // we cannot create a call the difference is not in the "implementation |
| // defined range" we allow. |
| Sema::TentativeAnalysisScope Trap(*this); |
| |
| if (auto *SpecializedMethod = dyn_cast<CXXMethodDecl>(BestDecl)) { |
| auto *MemberCall = dyn_cast<CXXMemberCallExpr>(CE); |
| BestExpr = MemberExpr::CreateImplicit( |
| Context, MemberCall->getImplicitObjectArgument(), |
| /* IsArrow */ false, SpecializedMethod, Context.BoundMemberTy, |
| MemberCall->getValueKind(), MemberCall->getObjectKind()); |
| } |
| NewCall = BuildCallExpr(Scope, BestExpr, LParenLoc, ArgExprs, RParenLoc, |
| ExecConfig); |
| if (NewCall.isUsable()) { |
| if (CallExpr *NCE = dyn_cast<CallExpr>(NewCall.get())) { |
| FunctionDecl *NewCalleeFnDecl = NCE->getDirectCallee(); |
| QualType NewType = Context.mergeFunctionTypes( |
| CalleeFnType, NewCalleeFnDecl->getType(), |
| /* OfBlockPointer */ false, |
| /* Unqualified */ false, /* AllowCXX */ true); |
| if (!NewType.isNull()) |
| break; |
| // Don't use the call if the function type was not compatible. |
| NewCall = nullptr; |
| } |
| } |
| } |
| |
| VMIs.erase(VMIs.begin() + BestIdx); |
| Exprs.erase(Exprs.begin() + BestIdx); |
| } while (!VMIs.empty()); |
| |
| if (!NewCall.isUsable()) |
| return Call; |
| return PseudoObjectExpr::Create(Context, CE, {NewCall.get()}, 0); |
| } |
| |
| Optional<std::pair<FunctionDecl *, Expr *>> |
| Sema::checkOpenMPDeclareVariantFunction(Sema::DeclGroupPtrTy DG, |
| Expr *VariantRef, OMPTraitInfo &TI, |
| unsigned NumAppendArgs, |
| SourceRange SR) { |
| if (!DG || DG.get().isNull()) |
| return None; |
| |
| const int VariantId = 1; |
| // Must be applied only to single decl. |
| if (!DG.get().isSingleDecl()) { |
| Diag(SR.getBegin(), diag::err_omp_single_decl_in_declare_simd_variant) |
| << VariantId << SR; |
| return None; |
| } |
| Decl *ADecl = DG.get().getSingleDecl(); |
| if (auto *FTD = dyn_cast<FunctionTemplateDecl>(ADecl)) |
| ADecl = FTD->getTemplatedDecl(); |
| |
| // Decl must be a function. |
| auto *FD = dyn_cast<FunctionDecl>(ADecl); |
| if (!FD) { |
| Diag(ADecl->getLocation(), diag::err_omp_function_expected) |
| << VariantId << SR; |
| return None; |
| } |
| |
| auto &&HasMultiVersionAttributes = [](const FunctionDecl *FD) { |
| return FD->hasAttrs() && |
| (FD->hasAttr<CPUDispatchAttr>() || FD->hasAttr<CPUSpecificAttr>() || |
| FD->hasAttr<TargetAttr>()); |
| }; |
| // OpenMP is not compatible with CPU-specific attributes. |
| if (HasMultiVersionAttributes(FD)) { |
| Diag(FD->getLocation(), diag::err_omp_declare_variant_incompat_attributes) |
| << SR; |
| return None; |
| } |
| |
| // Allow #pragma omp declare variant only if the function is not used. |
| if (FD->isUsed(false)) |
| Diag(SR.getBegin(), diag::warn_omp_declare_variant_after_used) |
| << FD->getLocation(); |
| |
| // Check if the function was emitted already. |
| const FunctionDecl *Definition; |
| if (!FD->isThisDeclarationADefinition() && FD->isDefined(Definition) && |
| (LangOpts.EmitAllDecls || Context.DeclMustBeEmitted(Definition))) |
| Diag(SR.getBegin(), diag::warn_omp_declare_variant_after_emitted) |
| << FD->getLocation(); |
| |
| // The VariantRef must point to function. |
| if (!VariantRef) { |
| Diag(SR.getBegin(), diag::err_omp_function_expected) << VariantId; |
| return None; |
| } |
| |
| auto ShouldDelayChecks = [](Expr *&E, bool) { |
| return E && (E->isTypeDependent() || E->isValueDependent() || |
| E->containsUnexpandedParameterPack() || |
| E->isInstantiationDependent()); |
| }; |
| // Do not check templates, wait until instantiation. |
| if (FD->isDependentContext() || ShouldDelayChecks(VariantRef, false) || |
| TI.anyScoreOrCondition(ShouldDelayChecks)) |
| return std::make_pair(FD, VariantRef); |
| |
| // Deal with non-constant score and user condition expressions. |
| auto HandleNonConstantScoresAndConditions = [this](Expr *&E, |
| bool IsScore) -> bool { |
| if (!E || E->isIntegerConstantExpr(Context)) |
| return false; |
| |
| if (IsScore) { |
| // We warn on non-constant scores and pretend they were not present. |
| Diag(E->getExprLoc(), diag::warn_omp_declare_variant_score_not_constant) |
| << E; |
| E = nullptr; |
| } else { |
| // We could replace a non-constant user condition with "false" but we |
| // will soon need to handle these anyway for the dynamic version of |
| // OpenMP context selectors. |
| Diag(E->getExprLoc(), |
| diag::err_omp_declare_variant_user_condition_not_constant) |
| << E; |
| } |
| return true; |
| }; |
| if (TI.anyScoreOrCondition(HandleNonConstantScoresAndConditions)) |
| return None; |
| |
| QualType AdjustedFnType = FD->getType(); |
| if (NumAppendArgs) { |
| if (isa<FunctionNoProtoType>(FD->getType())) { |
| Diag(FD->getLocation(), diag::err_omp_declare_variant_prototype_required) |
| << SR; |
| return None; |
| } |
| // Adjust the function type to account for an extra omp_interop_t for each |
| // specified in the append_args clause. |
| const TypeDecl *TD = nullptr; |
| LookupResult Result(*this, &Context.Idents.get("omp_interop_t"), |
| SR.getBegin(), Sema::LookupOrdinaryName); |
| if (LookupName(Result, getCurScope())) { |
| NamedDecl *ND = Result.getFoundDecl(); |
| TD = dyn_cast_or_null<TypeDecl>(ND); |
| } |
| if (!TD) { |
| Diag(SR.getBegin(), diag::err_omp_interop_type_not_found) << SR; |
| return None; |
| } |
| QualType InteropType = QualType(TD->getTypeForDecl(), 0); |
| auto *PTy = cast<FunctionProtoType>(FD->getType()); |
| if (PTy->isVariadic()) { |
| Diag(FD->getLocation(), diag::err_omp_append_args_with_varargs) << SR; |
| return None; |
| } |
| llvm::SmallVector<QualType, 8> Params; |
| Params.append(PTy->param_type_begin(), PTy->param_type_end()); |
| Params.insert(Params.end(), NumAppendArgs, InteropType); |
| AdjustedFnType = Context.getFunctionType(PTy->getReturnType(), Params, |
| PTy->getExtProtoInfo()); |
| } |
| |
| // Convert VariantRef expression to the type of the original function to |
| // resolve possible conflicts. |
| ExprResult VariantRefCast = VariantRef; |
| if (LangOpts.CPlusPlus) { |
| QualType FnPtrType; |
| auto *Method = dyn_cast<CXXMethodDecl>(FD); |
| if (Method && !Method->isStatic()) { |
| const Type *ClassType = |
| Context.getTypeDeclType(Method->getParent()).getTypePtr(); |
| FnPtrType = Context.getMemberPointerType(AdjustedFnType, ClassType); |
| ExprResult ER; |
| { |
| // Build adrr_of unary op to correctly handle type checks for member |
| // functions. |
| Sema::TentativeAnalysisScope Trap(*this); |
| ER = CreateBuiltinUnaryOp(VariantRef->getBeginLoc(), UO_AddrOf, |
| VariantRef); |
| } |
| if (!ER.isUsable()) { |
| Diag(VariantRef->getExprLoc(), diag::err_omp_function_expected) |
| << VariantId << VariantRef->getSourceRange(); |
| return None; |
| } |
| VariantRef = ER.get(); |
| } else { |
| FnPtrType = Context.getPointerType(AdjustedFnType); |
| } |
| QualType VarianPtrType = Context.getPointerType(VariantRef->getType()); |
| if (VarianPtrType.getUnqualifiedType() != FnPtrType.getUnqualifiedType()) { |
| ImplicitConversionSequence ICS = TryImplicitConversion( |
| VariantRef, FnPtrType.getUnqualifiedType(), |
| /*SuppressUserConversions=*/false, AllowedExplicit::None, |
| /*InOverloadResolution=*/false, |
| /*CStyle=*/false, |
| /*AllowObjCWritebackConversion=*/false); |
| if (ICS.isFailure()) { |
| Diag(VariantRef->getExprLoc(), |
| diag::err_omp_declare_variant_incompat_types) |
| << VariantRef->getType() |
| << ((Method && !Method->isStatic()) ? FnPtrType : FD->getType()) |
| << (NumAppendArgs ? 1 : 0) << VariantRef->getSourceRange(); |
| return None; |
| } |
| VariantRefCast = PerformImplicitConversion( |
| VariantRef, FnPtrType.getUnqualifiedType(), AA_Converting); |
| if (!VariantRefCast.isUsable()) |
| return None; |
| } |
| // Drop previously built artificial addr_of unary op for member functions. |
| if (Method && !Method->isStatic()) { |
| Expr *PossibleAddrOfVariantRef = VariantRefCast.get(); |
| if (auto *UO = dyn_cast<UnaryOperator>( |
| PossibleAddrOfVariantRef->IgnoreImplicit())) |
| VariantRefCast = UO->getSubExpr(); |
| } |
| } |
| |
| ExprResult ER = CheckPlaceholderExpr(VariantRefCast.get()); |
| if (!ER.isUsable() || |
| !ER.get()->IgnoreParenImpCasts()->getType()->isFunctionType()) { |
| Diag(VariantRef->getExprLoc(), diag::err_omp_function_expected) |
| << VariantId << VariantRef->getSourceRange(); |
| return None; |
| } |
| |
| // The VariantRef must point to function. |
| auto *DRE = dyn_cast<DeclRefExpr>(ER.get()->IgnoreParenImpCasts()); |
| if (!DRE) { |
| Diag(VariantRef->getExprLoc(), diag::err_omp_function_expected) |
| << VariantId << VariantRef->getSourceRange(); |
| return None; |
| } |
| auto *NewFD = dyn_cast_or_null<FunctionDecl>(DRE->getDecl()); |
| if (!NewFD) { |
| Diag(VariantRef->getExprLoc(), diag::err_omp_function_expected) |
| << VariantId << VariantRef->getSourceRange(); |
| return None; |
| } |
| |
| // Check if function types are compatible in C. |
| if (!LangOpts.CPlusPlus) { |
| QualType NewType = |
| Context.mergeFunctionTypes(AdjustedFnType, NewFD->getType()); |
| if (NewType.isNull()) { |
| Diag(VariantRef->getExprLoc(), |
| diag::err_omp_declare_variant_incompat_types) |
| << NewFD->getType() << FD->getType() << (NumAppendArgs ? 1 : 0) |
| << VariantRef->getSourceRange(); |
| return None; |
| } |
| if (NewType->isFunctionProtoType()) { |
| if (FD->getType()->isFunctionNoProtoType()) |
| setPrototype(*this, FD, NewFD, NewType); |
| else if (NewFD->getType()->isFunctionNoProtoType()) |
| setPrototype(*this, NewFD, FD, NewType); |
| } |
| } |
| |
| // Check if variant function is not marked with declare variant directive. |
| if (NewFD->hasAttrs() && NewFD->hasAttr<OMPDeclareVariantAttr>()) { |
| Diag(VariantRef->getExprLoc(), |
| diag::warn_omp_declare_variant_marked_as_declare_variant) |
| << VariantRef->getSourceRange(); |
| SourceRange SR = |
| NewFD->specific_attr_begin<OMPDeclareVariantAttr>()->getRange(); |
| Diag(SR.getBegin(), diag::note_omp_marked_declare_variant_here) << SR; |
| return None; |
| } |
| |
| enum DoesntSupport { |
| VirtFuncs = 1, |
| Constructors = 3, |
| Destructors = 4, |
| DeletedFuncs = 5, |
| DefaultedFuncs = 6, |
| ConstexprFuncs = 7, |
| ConstevalFuncs = 8, |
| }; |
| if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { |
| if (CXXFD->isVirtual()) { |
| Diag(FD->getLocation(), diag::err_omp_declare_variant_doesnt_support) |
| << VirtFuncs; |
| return None; |
| } |
| |
| if (isa<CXXConstructorDecl>(FD)) { |
| Diag(FD->getLocation(), diag::err_omp_declare_variant_doesnt_support) |
| << Constructors; |
| return None; |
| } |
| |
| if (isa<CXXDestructorDecl>(FD)) { |
| Diag(FD->getLocation(), diag::err_omp_declare_variant_doesnt_support) |
| << Destructors; |
| return None; |
| } |
| } |
| |
| if (FD->isDeleted()) { |
| Diag(FD->getLocation(), diag::err_omp_declare_variant_doesnt_support) |
| << DeletedFuncs; |
| return None; |
| } |
| |
| if (FD->isDefaulted()) { |
| Diag(FD->getLocation(), diag::err_omp_declare_variant_doesnt_support) |
| << DefaultedFuncs; |
| return None; |
| } |
| |
| if (FD->isConstexpr()) { |
| Diag(FD->getLocation(), diag::err_omp_declare_variant_doesnt_support) |
| << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs); |
| return None; |
| } |
| |
| // Check general compatibility. |
| if (areMultiversionVariantFunctionsCompatible( |
| FD, NewFD, PartialDiagnostic::NullDiagnostic(), |
| PartialDiagnosticAt(SourceLocation(), |
| PartialDiagnostic::NullDiagnostic()), |
| PartialDiagnosticAt( |
| VariantRef->getExprLoc(), |
| PDiag(diag::err_omp_declare_variant_doesnt_support)), |
| PartialDiagnosticAt(VariantRef->getExprLoc(), |
| PDiag(diag::err_omp_declare_variant_diff) |
| << FD->getLocation()), |
| /*TemplatesSupported=*/true, /*ConstexprSupported=*/false, |
| /*CLinkageMayDiffer=*/true)) |
| return None; |
| return std::make_pair(FD, cast<Expr>(DRE)); |
| } |
| |
| void Sema::ActOnOpenMPDeclareVariantDirective( |
| FunctionDecl *FD, Expr *VariantRef, OMPTraitInfo &TI, |
| ArrayRef<Expr *> AdjustArgsNothing, |
| ArrayRef<Expr *> AdjustArgsNeedDevicePtr, |
| ArrayRef<OMPDeclareVariantAttr::InteropType> AppendArgs, |
| SourceLocation AdjustArgsLoc, SourceLocation AppendArgsLoc, |
| SourceRange SR) { |
| |
| // OpenMP 5.1 [2.3.5, declare variant directive, Restrictions] |
| // An adjust_args clause or append_args clause can only be specified if the |
| // dispatch selector of the construct selector set appears in the match |
| // clause. |
| |
| SmallVector<Expr *, 8> AllAdjustArgs; |
| llvm::append_range(AllAdjustArgs, AdjustArgsNothing); |
| llvm::append_range(AllAdjustArgs, AdjustArgsNeedDevicePtr); |
| |
| if (!AllAdjustArgs.empty() || !AppendArgs.empty()) { |
| VariantMatchInfo VMI; |
| TI.getAsVariantMatchInfo(Context, VMI); |
| if (!llvm::is_contained( |
| VMI.ConstructTraits, |
| llvm::omp::TraitProperty::construct_dispatch_dispatch)) { |
| if (!AllAdjustArgs.empty()) |
| Diag(AdjustArgsLoc, diag::err_omp_clause_requires_dispatch_construct) |
| << getOpenMPClauseName(OMPC_adjust_args); |
| if (!AppendArgs.empty()) |
| Diag(AppendArgsLoc, diag::err_omp_clause_requires_dispatch_construct) |
| << getOpenMPClauseName(OMPC_append_args); |
| return; |
| } |
| } |
| |
| // OpenMP 5.1 [2.3.5, declare variant directive, Restrictions] |
| // Each argument can only appear in a single adjust_args clause for each |
| // declare variant directive. |
| llvm::SmallPtrSet<const VarDecl *, 4> AdjustVars; |
| |
| for (Expr *E : AllAdjustArgs) { |
| E = E->IgnoreParenImpCasts(); |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { |
| if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) { |
| const VarDecl *CanonPVD = PVD->getCanonicalDecl(); |
| if (FD->getNumParams() > PVD->getFunctionScopeIndex() && |
| FD->getParamDecl(PVD->getFunctionScopeIndex()) |
| ->getCanonicalDecl() == CanonPVD) { |
| // It's a parameter of the function, check duplicates. |
| if (!AdjustVars.insert(CanonPVD).second) { |
| Diag(DRE->getLocation(), diag::err_omp_adjust_arg_multiple_clauses) |
| << PVD; |
| return; |
| } |
| continue; |
| } |
| } |
| } |
| // Anything that is not a function parameter is an error. |
| Diag(E->getExprLoc(), diag::err_omp_param_or_this_in_clause) << FD << 0; |
| return; |
| } |
| |
| auto *NewAttr = OMPDeclareVariantAttr::CreateImplicit( |
| Context, VariantRef, &TI, const_cast<Expr **>(AdjustArgsNothing.data()), |
| AdjustArgsNothing.size(), |
| const_cast<Expr **>(AdjustArgsNeedDevicePtr.data()), |
| AdjustArgsNeedDevicePtr.size(), |
| const_cast<OMPDeclareVariantAttr::InteropType *>(AppendArgs.data()), |
| AppendArgs.size(), SR); |
| FD->addAttr(NewAttr); |
| } |
| |
| StmtResult Sema::ActOnOpenMPParallelDirective(ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| return OMPParallelDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt, |
| DSAStack->getTaskgroupReductionRef(), |
| DSAStack->isCancelRegion()); |
| } |
| |
| namespace { |
| /// Iteration space of a single for loop. |
| struct LoopIterationSpace final { |
| /// True if the condition operator is the strict compare operator (<, > or |
| /// !=). |
| bool IsStrictCompare = false; |
| /// Condition of the loop. |
| Expr *PreCond = nullptr; |
| /// This expression calculates the number of iterations in the loop. |
| /// It is always possible to calculate it before starting the loop. |
| Expr *NumIterations = nullptr; |
| /// The loop counter variable. |
| Expr *CounterVar = nullptr; |
| /// Private loop counter variable. |
| Expr *PrivateCounterVar = nullptr; |
| /// This is initializer for the initial value of #CounterVar. |
| Expr *CounterInit = nullptr; |
| /// This is step for the #CounterVar used to generate its update: |
| /// #CounterVar = #CounterInit + #CounterStep * CurrentIteration. |
| Expr *CounterStep = nullptr; |
| /// Should step be subtracted? |
| bool Subtract = false; |
| /// Source range of the loop init. |
| SourceRange InitSrcRange; |
| /// Source range of the loop condition. |
| SourceRange CondSrcRange; |
| /// Source range of the loop increment. |
| SourceRange IncSrcRange; |
| /// Minimum value that can have the loop control variable. Used to support |
| /// non-rectangular loops. Applied only for LCV with the non-iterator types, |
| /// since only such variables can be used in non-loop invariant expressions. |
| Expr *MinValue = nullptr; |
| /// Maximum value that can have the loop control variable. Used to support |
| /// non-rectangular loops. Applied only for LCV with the non-iterator type, |
| /// since only such variables can be used in non-loop invariant expressions. |
| Expr *MaxValue = nullptr; |
| /// true, if the lower bound depends on the outer loop control var. |
| bool IsNonRectangularLB = false; |
| /// true, if the upper bound depends on the outer loop control var. |
| bool IsNonRectangularUB = false; |
| /// Index of the loop this loop depends on and forms non-rectangular loop |
| /// nest. |
| unsigned LoopDependentIdx = 0; |
| /// Final condition for the non-rectangular loop nest support. It is used to |
| /// check that the number of iterations for this particular counter must be |
| /// finished. |
| Expr *FinalCondition = nullptr; |
| }; |
| |
| /// Helper class for checking canonical form of the OpenMP loops and |
| /// extracting iteration space of each loop in the loop nest, that will be used |
| /// for IR generation. |
| class OpenMPIterationSpaceChecker { |
| /// Reference to Sema. |
| Sema &SemaRef; |
| /// Does the loop associated directive support non-rectangular loops? |
| bool SupportsNonRectangular; |
| /// Data-sharing stack. |
| DSAStackTy &Stack; |
| /// A location for diagnostics (when there is no some better location). |
| SourceLocation DefaultLoc; |
| /// A location for diagnostics (when increment is not compatible). |
| SourceLocation ConditionLoc; |
| /// A source location for referring to loop init later. |
| SourceRange InitSrcRange; |
| /// A source location for referring to condition later. |
| SourceRange ConditionSrcRange; |
| /// A source location for referring to increment later. |
| SourceRange IncrementSrcRange; |
| /// Loop variable. |
| ValueDecl *LCDecl = nullptr; |
| /// Reference to loop variable. |
| Expr *LCRef = nullptr; |
| /// Lower bound (initializer for the var). |
| Expr *LB = nullptr; |
| /// Upper bound. |
| Expr *UB = nullptr; |
| /// Loop step (increment). |
| Expr *Step = nullptr; |
| /// This flag is true when condition is one of: |
| /// Var < UB |
| /// Var <= UB |
| /// UB > Var |
| /// UB >= Var |
| /// This will have no value when the condition is != |
| llvm::Optional<bool> TestIsLessOp; |
| /// This flag is true when condition is strict ( < or > ). |
| bool TestIsStrictOp = false; |
| /// This flag is true when step is subtracted on each iteration. |
| bool SubtractStep = false; |
| /// The outer loop counter this loop depends on (if any). |
| const ValueDecl *DepDecl = nullptr; |
| /// Contains number of loop (starts from 1) on which loop counter init |
| /// expression of this loop depends on. |
| Optional<unsigned> InitDependOnLC; |
| /// Contains number of loop (starts from 1) on which loop counter condition |
| /// expression of this loop depends on. |
| Optional<unsigned> CondDependOnLC; |
| /// Checks if the provide statement depends on the loop counter. |
| Optional<unsigned> doesDependOnLoopCounter(const Stmt *S, bool IsInitializer); |
| /// Original condition required for checking of the exit condition for |
| /// non-rectangular loop. |
| Expr *Condition = nullptr; |
| |
| public: |
| OpenMPIterationSpaceChecker(Sema &SemaRef, bool SupportsNonRectangular, |
| DSAStackTy &Stack, SourceLocation DefaultLoc) |
| : SemaRef(SemaRef), SupportsNonRectangular(SupportsNonRectangular), |
| Stack(Stack), DefaultLoc(DefaultLoc), ConditionLoc(DefaultLoc) {} |
| /// Check init-expr for canonical loop form and save loop counter |
| /// variable - #Var and its initialization value - #LB. |
| bool checkAndSetInit(Stmt *S, bool EmitDiags = true); |
| /// Check test-expr for canonical form, save upper-bound (#UB), flags |
| /// for less/greater and for strict/non-strict comparison. |
| bool checkAndSetCond(Expr *S); |
| /// Check incr-expr for canonical loop form and return true if it |
| /// does not conform, otherwise save loop step (#Step). |
| bool checkAndSetInc(Expr *S); |
| /// Return the loop counter variable. |
| ValueDecl *getLoopDecl() const { return LCDecl; } |
| /// Return the reference expression to loop counter variable. |
| Expr *getLoopDeclRefExpr() const { return LCRef; } |
| /// Source range of the loop init. |
| SourceRange getInitSrcRange() const { return InitSrcRange; } |
| /// Source range of the loop condition. |
| SourceRange getConditionSrcRange() const { return ConditionSrcRange; } |
| /// Source range of the loop increment. |
| SourceRange getIncrementSrcRange() const { return IncrementSrcRange; } |
| /// True if the step should be subtracted. |
| bool shouldSubtractStep() const { return SubtractStep; } |
| /// True, if the compare operator is strict (<, > or !=). |
| bool isStrictTestOp() const { return TestIsStrictOp; } |
| /// Build the expression to calculate the number of iterations. |
| Expr *buildNumIterations( |
| Scope *S, ArrayRef<LoopIterationSpace> ResultIterSpaces, bool LimitedType, |
| llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) const; |
| /// Build the precondition expression for the loops. |
| Expr * |
| buildPreCond(Scope *S, Expr *Cond, |
| llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) const; |
| /// Build reference expression to the counter be used for codegen. |
| DeclRefExpr * |
| buildCounterVar(llvm::MapVector<const Expr *, DeclRefExpr *> &Captures, |
| DSAStackTy &DSA) const; |
| /// Build reference expression to the private counter be used for |
| /// codegen. |
| Expr *buildPrivateCounterVar() const; |
| /// Build initialization of the counter be used for codegen. |
| Expr *buildCounterInit() const; |
| /// Build step of the counter be used for codegen. |
| Expr *buildCounterStep() const; |
| /// Build loop data with counter value for depend clauses in ordered |
| /// directives. |
| Expr * |
| buildOrderedLoopData(Scope *S, Expr *Counter, |
| llvm::MapVector<const Expr *, DeclRefExpr *> &Captures, |
| SourceLocation Loc, Expr *Inc = nullptr, |
| OverloadedOperatorKind OOK = OO_Amp); |
| /// Builds the minimum value for the loop counter. |
| std::pair<Expr *, Expr *> buildMinMaxValues( |
| Scope *S, llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) const; |
| /// Builds final condition for the non-rectangular loops. |
| Expr *buildFinalCondition(Scope *S) const; |
| /// Return true if any expression is dependent. |
| bool dependent() const; |
| /// Returns true if the initializer forms non-rectangular loop. |
| bool doesInitDependOnLC() const { return InitDependOnLC.hasValue(); } |
| /// Returns true if the condition forms non-rectangular loop. |
| bool doesCondDependOnLC() const { return CondDependOnLC.hasValue(); } |
| /// Returns index of the loop we depend on (starting from 1), or 0 otherwise. |
| unsigned getLoopDependentIdx() const { |
| return InitDependOnLC.getValueOr(CondDependOnLC.getValueOr(0)); |
| } |
| |
| private: |
| /// Check the right-hand side of an assignment in the increment |
| /// expression. |
| bool checkAndSetIncRHS(Expr *RHS); |
| /// Helper to set loop counter variable and its initializer. |
| bool setLCDeclAndLB(ValueDecl *NewLCDecl, Expr *NewDeclRefExpr, Expr *NewLB, |
| bool EmitDiags); |
| /// Helper to set upper bound. |
| bool setUB(Expr *NewUB, llvm::Optional<bool> LessOp, bool StrictOp, |
| SourceRange SR, SourceLocation SL); |
| /// Helper to set loop increment. |
| bool setStep(Expr *NewStep, bool Subtract); |
| }; |
| |
| bool OpenMPIterationSpaceChecker::dependent() const { |
| if (!LCDecl) { |
| assert(!LB && !UB && !Step); |
| return false; |
| } |
| return LCDecl->getType()->isDependentType() || |
| (LB && LB->isValueDependent()) || (UB && UB->isValueDependent()) || |
| (Step && Step->isValueDependent()); |
| } |
| |
| bool OpenMPIterationSpaceChecker::setLCDeclAndLB(ValueDecl *NewLCDecl, |
| Expr *NewLCRefExpr, |
| Expr *NewLB, bool EmitDiags) { |
| // State consistency checking to ensure correct usage. |
| assert(LCDecl == nullptr && LB == nullptr && LCRef == nullptr && |
| UB == nullptr && Step == nullptr && !TestIsLessOp && !TestIsStrictOp); |
| if (!NewLCDecl || !NewLB || NewLB->containsErrors()) |
| return true; |
| LCDecl = getCanonicalDecl(NewLCDecl); |
| LCRef = NewLCRefExpr; |
| if (auto *CE = dyn_cast_or_null<CXXConstructExpr>(NewLB)) |
| if (const CXXConstructorDecl *Ctor = CE->getConstructor()) |
| if ((Ctor->isCopyOrMoveConstructor() || |
| Ctor->isConvertingConstructor(/*AllowExplicit=*/false)) && |
| CE->getNumArgs() > 0 && CE->getArg(0) != nullptr) |
| NewLB = CE->getArg(0)->IgnoreParenImpCasts(); |
| LB = NewLB; |
| if (EmitDiags) |
| InitDependOnLC = doesDependOnLoopCounter(LB, /*IsInitializer=*/true); |
| return false; |
| } |
| |
| bool OpenMPIterationSpaceChecker::setUB(Expr *NewUB, |
| llvm::Optional<bool> LessOp, |
| bool StrictOp, SourceRange SR, |
| SourceLocation SL) { |
| // State consistency checking to ensure correct usage. |
| assert(LCDecl != nullptr && LB != nullptr && UB == nullptr && |
| Step == nullptr && !TestIsLessOp && !TestIsStrictOp); |
| if (!NewUB || NewUB->containsErrors()) |
| return true; |
| UB = NewUB; |
| if (LessOp) |
| TestIsLessOp = LessOp; |
| TestIsStrictOp = StrictOp; |
| ConditionSrcRange = SR; |
| ConditionLoc = SL; |
| CondDependOnLC = doesDependOnLoopCounter(UB, /*IsInitializer=*/false); |
| return false; |
| } |
| |
| bool OpenMPIterationSpaceChecker::setStep(Expr *NewStep, bool Subtract) { |
| // State consistency checking to ensure correct usage. |
| assert(LCDecl != nullptr && LB != nullptr && Step == nullptr); |
| if (!NewStep || NewStep->containsErrors()) |
| return true; |
| if (!NewStep->isValueDependent()) { |
| // Check that the step is integer expression. |
| SourceLocation StepLoc = NewStep->getBeginLoc(); |
| ExprResult Val = SemaRef.PerformOpenMPImplicitIntegerConversion( |
| StepLoc, getExprAsWritten(NewStep)); |
| if (Val.isInvalid()) |
| return true; |
| NewStep = Val.get(); |
| |
| // OpenMP [2.6, Canonical Loop Form, Restrictions] |
| // If test-expr is of form var relational-op b and relational-op is < or |
| // <= then incr-expr must cause var to increase on each iteration of the |
| // loop. If test-expr is of form var relational-op b and relational-op is |
| // > or >= then incr-expr must cause var to decrease on each iteration of |
| // the loop. |
| // If test-expr is of form b relational-op var and relational-op is < or |
| // <= then incr-expr must cause var to decrease on each iteration of the |
| // loop. If test-expr is of form b relational-op var and relational-op is |
| // > or >= then incr-expr must cause var to increase on each iteration of |
| // the loop. |
| Optional<llvm::APSInt> Result = |
| NewStep->getIntegerConstantExpr(SemaRef.Context); |
| bool IsUnsigned = !NewStep->getType()->hasSignedIntegerRepresentation(); |
| bool IsConstNeg = |
| Result && Result->isSigned() && (Subtract != Result->isNegative()); |
| bool IsConstPos = |
| Result && Result->isSigned() && (Subtract == Result->isNegative()); |
| bool IsConstZero = Result && !Result->getBoolValue(); |
| |
| // != with increment is treated as <; != with decrement is treated as > |
| if (!TestIsLessOp.hasValue()) |
| TestIsLessOp = IsConstPos || (IsUnsigned && !Subtract); |
| if (UB && (IsConstZero || |
| (TestIsLessOp.getValue() ? |
| (IsConstNeg || (IsUnsigned && Subtract)) : |
| (IsConstPos || (IsUnsigned && !Subtract))))) { |
| SemaRef.Diag(NewStep->getExprLoc(), |
| diag::err_omp_loop_incr_not_compatible) |
| << LCDecl << TestIsLessOp.getValue() << NewStep->getSourceRange(); |
| SemaRef.Diag(ConditionLoc, |
| diag::note_omp_loop_cond_requres_compatible_incr) |
| << TestIsLessOp.getValue() << ConditionSrcRange; |
| return true; |
| } |
| if (TestIsLessOp.getValue() == Subtract) { |
| NewStep = |
| SemaRef.CreateBuiltinUnaryOp(NewStep->getExprLoc(), UO_Minus, NewStep) |
| .get(); |
| Subtract = !Subtract; |
| } |
| } |
| |
| Step = NewStep; |
| SubtractStep = Subtract; |
| return false; |
| } |
| |
| namespace { |
| /// Checker for the non-rectangular loops. Checks if the initializer or |
| /// condition expression references loop counter variable. |
| class LoopCounterRefChecker final |
| : public ConstStmtVisitor<LoopCounterRefChecker, bool> { |
| Sema &SemaRef; |
| DSAStackTy &Stack; |
| const ValueDecl *CurLCDecl = nullptr; |
| const ValueDecl *DepDecl = nullptr; |
| const ValueDecl *PrevDepDecl = nullptr; |
| bool IsInitializer = true; |
| bool SupportsNonRectangular; |
| unsigned BaseLoopId = 0; |
| bool checkDecl(const Expr *E, const ValueDecl *VD) { |
| if (getCanonicalDecl(VD) == getCanonicalDecl(CurLCDecl)) { |
| SemaRef.Diag(E->getExprLoc(), diag::err_omp_stmt_depends_on_loop_counter) |
| << (IsInitializer ? 0 : 1); |
| return false; |
| } |
| const auto &&Data = Stack.isLoopControlVariable(VD); |
| // OpenMP, 2.9.1 Canonical Loop Form, Restrictions. |
| // The type of the loop iterator on which we depend may not have a random |
| // access iterator type. |
| if (Data.first && VD->getType()->isRecordType()) { |
| SmallString<128> Name; |
| llvm::raw_svector_ostream OS(Name); |
| VD->getNameForDiagnostic(OS, SemaRef.getPrintingPolicy(), |
| /*Qualified=*/true); |
| SemaRef.Diag(E->getExprLoc(), |
| diag::err_omp_wrong_dependency_iterator_type) |
| << OS.str(); |
| SemaRef.Diag(VD->getLocation(), diag::note_previous_decl) << VD; |
| return false; |
| } |
| if (Data.first && !SupportsNonRectangular) { |
| SemaRef.Diag(E->getExprLoc(), diag::err_omp_invariant_dependency); |
| return false; |
| } |
| if (Data.first && |
| (DepDecl || (PrevDepDecl && |
| getCanonicalDecl(VD) != getCanonicalDecl(PrevDepDecl)))) { |
| if (!DepDecl && PrevDepDecl) |
| DepDecl = PrevDepDecl; |
| SmallString<128> Name; |
| llvm::raw_svector_ostream OS(Name); |
| DepDecl->getNameForDiagnostic(OS, SemaRef.getPrintingPolicy(), |
| /*Qualified=*/true); |
| SemaRef.Diag(E->getExprLoc(), |
| diag::err_omp_invariant_or_linear_dependency) |
| << OS.str(); |
| return false; |
| } |
| if (Data.first) { |
| DepDecl = VD; |
| BaseLoopId = Data.first; |
| } |
| return Data.first; |
| } |
| |
| public: |
| bool VisitDeclRefExpr(const DeclRefExpr *E) { |
| const ValueDecl *VD = E->getDecl(); |
| if (isa<VarDecl>(VD)) |
| return checkDecl(E, VD); |
| return false; |
| } |
| bool VisitMemberExpr(const MemberExpr *E) { |
| if (isa<CXXThisExpr>(E->getBase()->IgnoreParens())) { |
| const ValueDecl *VD = E->getMemberDecl(); |
| if (isa<VarDecl>(VD) || isa<FieldDecl>(VD)) |
| return checkDecl(E, VD); |
| } |
| return false; |
| } |
| bool VisitStmt(const Stmt *S) { |
| bool Res = false; |
| for (const Stmt *Child : S->children()) |
| Res = (Child && Visit(Child)) || Res; |
| return Res; |
| } |
| explicit LoopCounterRefChecker(Sema &SemaRef, DSAStackTy &Stack, |
| const ValueDecl *CurLCDecl, bool IsInitializer, |
| const ValueDecl *PrevDepDecl = nullptr, |
| bool SupportsNonRectangular = true) |
| : SemaRef(SemaRef), Stack(Stack), CurLCDecl(CurLCDecl), |
| PrevDepDecl(PrevDepDecl), IsInitializer(IsInitializer), |
| SupportsNonRectangular(SupportsNonRectangular) {} |
| unsigned getBaseLoopId() const { |
| assert(CurLCDecl && "Expected loop dependency."); |
| return BaseLoopId; |
| } |
| const ValueDecl *getDepDecl() const { |
| assert(CurLCDecl && "Expected loop dependency."); |
| return DepDecl; |
| } |
| }; |
| } // namespace |
| |
| Optional<unsigned> |
| OpenMPIterationSpaceChecker::doesDependOnLoopCounter(const Stmt *S, |
| bool IsInitializer) { |
| // Check for the non-rectangular loops. |
| LoopCounterRefChecker LoopStmtChecker(SemaRef, Stack, LCDecl, IsInitializer, |
| DepDecl, SupportsNonRectangular); |
| if (LoopStmtChecker.Visit(S)) { |
| DepDecl = LoopStmtChecker.getDepDecl(); |
| return LoopStmtChecker.getBaseLoopId(); |
| } |
| return llvm::None; |
| } |
| |
| bool OpenMPIterationSpaceChecker::checkAndSetInit(Stmt *S, bool EmitDiags) { |
| // Check init-expr for canonical loop form and save loop counter |
| // variable - #Var and its initialization value - #LB. |
| // OpenMP [2.6] Canonical loop form. init-expr may be one of the following: |
| // var = lb |
| // integer-type var = lb |
| // random-access-iterator-type var = lb |
| // pointer-type var = lb |
| // |
| if (!S) { |
| if (EmitDiags) { |
| SemaRef.Diag(DefaultLoc, diag::err_omp_loop_not_canonical_init); |
| } |
| return true; |
| } |
| if (auto *ExprTemp = dyn_cast<ExprWithCleanups>(S)) |
| if (!ExprTemp->cleanupsHaveSideEffects()) |
| S = ExprTemp->getSubExpr(); |
| |
| InitSrcRange = S->getSourceRange(); |
| if (Expr *E = dyn_cast<Expr>(S)) |
| S = E->IgnoreParens(); |
| if (auto *BO = dyn_cast<BinaryOperator>(S)) { |
| if (BO->getOpcode() == BO_Assign) { |
| Expr *LHS = BO->getLHS()->IgnoreParens(); |
| if (auto *DRE = dyn_cast<DeclRefExpr>(LHS)) { |
| if (auto *CED = dyn_cast<OMPCapturedExprDecl>(DRE->getDecl())) |
| if (auto *ME = dyn_cast<MemberExpr>(getExprAsWritten(CED->getInit()))) |
| return setLCDeclAndLB(ME->getMemberDecl(), ME, BO->getRHS(), |
| EmitDiags); |
| return setLCDeclAndLB(DRE->getDecl(), DRE, BO->getRHS(), EmitDiags); |
| } |
| if (auto *ME = dyn_cast<MemberExpr>(LHS)) { |
| if (ME->isArrow() && |
| isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts())) |
| return setLCDeclAndLB(ME->getMemberDecl(), ME, BO->getRHS(), |
| EmitDiags); |
| } |
| } |
| } else if (auto *DS = dyn_cast<DeclStmt>(S)) { |
| if (DS->isSingleDecl()) { |
| if (auto *Var = dyn_cast_or_null<VarDecl>(DS->getSingleDecl())) { |
| if (Var->hasInit() && !Var->getType()->isReferenceType()) { |
| // Accept non-canonical init form here but emit ext. warning. |
| if (Var->getInitStyle() != VarDecl::CInit && EmitDiags) |
| SemaRef.Diag(S->getBeginLoc(), |
| diag::ext_omp_loop_not_canonical_init) |
| << S->getSourceRange(); |
| return setLCDeclAndLB( |
| Var, |
| buildDeclRefExpr(SemaRef, Var, |
| Var->getType().getNonReferenceType(), |
| DS->getBeginLoc()), |
| Var->getInit(), EmitDiags); |
| } |
| } |
| } |
| } else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(S)) { |
| if (CE->getOperator() == OO_Equal) { |
| Expr *LHS = CE->getArg(0); |
| if (auto *DRE = dyn_cast<DeclRefExpr>(LHS)) { |
| if (auto *CED = dyn_cast<OMPCapturedExprDecl>(DRE->getDecl())) |
| if (auto *ME = dyn_cast<MemberExpr>(getExprAsWritten(CED->getInit()))) |
| return setLCDeclAndLB(ME->getMemberDecl(), ME, BO->getRHS(), |
| EmitDiags); |
| return setLCDeclAndLB(DRE->getDecl(), DRE, CE->getArg(1), EmitDiags); |
| } |
| if (auto *ME = dyn_cast<MemberExpr>(LHS)) { |
| if (ME->isArrow() && |
| isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts())) |
| return setLCDeclAndLB(ME->getMemberDecl(), ME, BO->getRHS(), |
| EmitDiags); |
| } |
| } |
| } |
| |
| if (dependent() || SemaRef.CurContext->isDependentContext()) |
| return false; |
| if (EmitDiags) { |
| SemaRef.Diag(S->getBeginLoc(), diag::err_omp_loop_not_canonical_init) |
| << S->getSourceRange(); |
| } |
| return true; |
| } |
| |
| /// Ignore parenthesizes, implicit casts, copy constructor and return the |
| /// variable (which may be the loop variable) if possible. |
| static const ValueDecl *getInitLCDecl(const Expr *E) { |
| if (!E) |
| return nullptr; |
| E = getExprAsWritten(E); |
| if (const auto *CE = dyn_cast_or_null<CXXConstructExpr>(E)) |
| if (const CXXConstructorDecl *Ctor = CE->getConstructor()) |
| if ((Ctor->isCopyOrMoveConstructor() || |
| Ctor->isConvertingConstructor(/*AllowExplicit=*/false)) && |
| CE->getNumArgs() > 0 && CE->getArg(0) != nullptr) |
| E = CE->getArg(0)->IgnoreParenImpCasts(); |
| if (const auto *DRE = dyn_cast_or_null<DeclRefExpr>(E)) { |
| if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) |
| return getCanonicalDecl(VD); |
| } |
| if (const auto *ME = dyn_cast_or_null<MemberExpr>(E)) |
| if (ME->isArrow() && isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts())) |
| return getCanonicalDecl(ME->getMemberDecl()); |
| return nullptr; |
| } |
| |
| bool OpenMPIterationSpaceChecker::checkAndSetCond(Expr *S) { |
| // Check test-expr for canonical form, save upper-bound UB, flags for |
| // less/greater and for strict/non-strict comparison. |
| // OpenMP [2.9] Canonical loop form. Test-expr may be one of the following: |
| // var relational-op b |
| // b relational-op var |
| // |
| bool IneqCondIsCanonical = SemaRef.getLangOpts().OpenMP >= 50; |
| if (!S) { |
| SemaRef.Diag(DefaultLoc, diag::err_omp_loop_not_canonical_cond) |
| << (IneqCondIsCanonical ? 1 : 0) << LCDecl; |
| return true; |
| } |
| Condition = S; |
| S = getExprAsWritten(S); |
| SourceLocation CondLoc = S->getBeginLoc(); |
| auto &&CheckAndSetCond = [this, IneqCondIsCanonical]( |
| BinaryOperatorKind Opcode, const Expr *LHS, |
| const Expr *RHS, SourceRange SR, |
| SourceLocation OpLoc) -> llvm::Optional<bool> { |
| if (BinaryOperator::isRelationalOp(Opcode)) { |
| if (getInitLCDecl(LHS) == LCDecl) |
| return setUB(const_cast<Expr *>(RHS), |
| (Opcode == BO_LT || Opcode == BO_LE), |
| (Opcode == BO_LT || Opcode == BO_GT), SR, OpLoc); |
| if (getInitLCDecl(RHS) == LCDecl) |
| return setUB(const_cast<Expr *>(LHS), |
| (Opcode == BO_GT || Opcode == BO_GE), |
| (Opcode == BO_LT || Opcode == BO_GT), SR, OpLoc); |
| } else if (IneqCondIsCanonical && Opcode == BO_NE) { |
| return setUB(const_cast<Expr *>(getInitLCDecl(LHS) == LCDecl ? RHS : LHS), |
| /*LessOp=*/llvm::None, |
| /*StrictOp=*/true, SR, OpLoc); |
| } |
| return llvm::None; |
| }; |
| llvm::Optional<bool> Res; |
| if (auto *RBO = dyn_cast<CXXRewrittenBinaryOperator>(S)) { |
| CXXRewrittenBinaryOperator::DecomposedForm DF = RBO->getDecomposedForm(); |
| Res = CheckAndSetCond(DF.Opcode, DF.LHS, DF.RHS, RBO->getSourceRange(), |
| RBO->getOperatorLoc()); |
| } else if (auto *BO = dyn_cast<BinaryOperator>(S)) { |
| Res = CheckAndSetCond(BO->getOpcode(), BO->getLHS(), BO->getRHS(), |
| BO->getSourceRange(), BO->getOperatorLoc()); |
| } else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(S)) { |
| if (CE->getNumArgs() == 2) { |
| Res = CheckAndSetCond( |
| BinaryOperator::getOverloadedOpcode(CE->getOperator()), CE->getArg(0), |
| CE->getArg(1), CE->getSourceRange(), CE->getOperatorLoc()); |
| } |
| } |
| if (Res.hasValue()) |
| return *Res; |
| if (dependent() || SemaRef.CurContext->isDependentContext()) |
| return false; |
| SemaRef.Diag(CondLoc, diag::err_omp_loop_not_canonical_cond) |
| << (IneqCondIsCanonical ? 1 : 0) << S->getSourceRange() << LCDecl; |
| return true; |
| } |
| |
| bool OpenMPIterationSpaceChecker::checkAndSetIncRHS(Expr *RHS) { |
| // RHS of canonical loop form increment can be: |
| // var + incr |
| // incr + var |
| // var - incr |
| // |
| RHS = RHS->IgnoreParenImpCasts(); |
| if (auto *BO = dyn_cast<BinaryOperator>(RHS)) { |
| if (BO->isAdditiveOp()) { |
| bool IsAdd = BO->getOpcode() == BO_Add; |
| if (getInitLCDecl(BO->getLHS()) == LCDecl) |
| return setStep(BO->getRHS(), !IsAdd); |
| if (IsAdd && getInitLCDecl(BO->getRHS()) == LCDecl) |
| return setStep(BO->getLHS(), /*Subtract=*/false); |
| } |
| } else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(RHS)) { |
| bool IsAdd = CE->getOperator() == OO_Plus; |
| if ((IsAdd || CE->getOperator() == OO_Minus) && CE->getNumArgs() == 2) { |
| if (getInitLCDecl(CE->getArg(0)) == LCDecl) |
| return setStep(CE->getArg(1), !IsAdd); |
| if (IsAdd && getInitLCDecl(CE->getArg(1)) == LCDecl) |
| return setStep(CE->getArg(0), /*Subtract=*/false); |
| } |
| } |
| if (dependent() || SemaRef.CurContext->isDependentContext()) |
| return false; |
| SemaRef.Diag(RHS->getBeginLoc(), diag::err_omp_loop_not_canonical_incr) |
| << RHS->getSourceRange() << LCDecl; |
| return true; |
| } |
| |
| bool OpenMPIterationSpaceChecker::checkAndSetInc(Expr *S) { |
| // Check incr-expr for canonical loop form and return true if it |
| // does not conform. |
| // OpenMP [2.6] Canonical loop form. Test-expr may be one of the following: |
| // ++var |
| // var++ |
| // --var |
| // var-- |
| // var += incr |
| // var -= incr |
| // var = var + incr |
| // var = incr + var |
| // var = var - incr |
| // |
| if (!S) { |
| SemaRef.Diag(DefaultLoc, diag::err_omp_loop_not_canonical_incr) << LCDecl; |
| return true; |
| } |
| if (auto *ExprTemp = dyn_cast<ExprWithCleanups>(S)) |
| if (!ExprTemp->cleanupsHaveSideEffects()) |
| S = ExprTemp->getSubExpr(); |
| |
| IncrementSrcRange = S->getSourceRange(); |
| S = S->IgnoreParens(); |
| if (auto *UO = dyn_cast<UnaryOperator>(S)) { |
| if (UO->isIncrementDecrementOp() && |
| getInitLCDecl(UO->getSubExpr()) == LCDecl) |
| return setStep(SemaRef |
| .ActOnIntegerConstant(UO->getBeginLoc(), |
| (UO->isDecrementOp() ? -1 : 1)) |
| .get(), |
| /*Subtract=*/false); |
| } else if (auto *BO = dyn_cast<BinaryOperator>(S)) { |
| switch (BO->getOpcode()) { |
| case BO_AddAssign: |
| case BO_SubAssign: |
| if (getInitLCDecl(BO->getLHS()) == LCDecl) |
| return setStep(BO->getRHS(), BO->getOpcode() == BO_SubAssign); |
| break; |
| case BO_Assign: |
| if (getInitLCDecl(BO->getLHS()) == LCDecl) |
| return checkAndSetIncRHS(BO->getRHS()); |
| break; |
| default: |
| break; |
| } |
| } else if (auto *CE = dyn_cast<CXXOperatorCallExpr>(S)) { |
| switch (CE->getOperator()) { |
| case OO_PlusPlus: |
| case OO_MinusMinus: |
| if (getInitLCDecl(CE->getArg(0)) == LCDecl) |
| return setStep(SemaRef |
| .ActOnIntegerConstant( |
| CE->getBeginLoc(), |
| ((CE->getOperator() == OO_MinusMinus) ? -1 : 1)) |
| .get(), |
| /*Subtract=*/false); |
| break; |
| case OO_PlusEqual: |
| case OO_MinusEqual: |
| if (getInitLCDecl(CE->getArg(0)) == LCDecl) |
| return setStep(CE->getArg(1), CE->getOperator() == OO_MinusEqual); |
| break; |
| case OO_Equal: |
| if (getInitLCDecl(CE->getArg(0)) == LCDecl) |
| return checkAndSetIncRHS(CE->getArg(1)); |
| break; |
| default: |
| break; |
| } |
| } |
| if (dependent() || SemaRef.CurContext->isDependentContext()) |
| return false; |
| SemaRef.Diag(S->getBeginLoc(), diag::err_omp_loop_not_canonical_incr) |
| << S->getSourceRange() << LCDecl; |
| return true; |
| } |
| |
| static ExprResult |
| tryBuildCapture(Sema &SemaRef, Expr *Capture, |
| llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) { |
| if (SemaRef.CurContext->isDependentContext() || Capture->containsErrors()) |
| return Capture; |
| if (Capture->isEvaluatable(SemaRef.Context, Expr::SE_AllowSideEffects)) |
| return SemaRef.PerformImplicitConversion( |
| Capture->IgnoreImpCasts(), Capture->getType(), Sema::AA_Converting, |
| /*AllowExplicit=*/true); |
| auto I = Captures.find(Capture); |
| if (I != Captures.end()) |
| return buildCapture(SemaRef, Capture, I->second); |
| DeclRefExpr *Ref = nullptr; |
| ExprResult Res = buildCapture(SemaRef, Capture, Ref); |
| Captures[Capture] = Ref; |
| return Res; |
| } |
| |
| /// Calculate number of iterations, transforming to unsigned, if number of |
| /// iterations may be larger than the original type. |
| static Expr * |
| calculateNumIters(Sema &SemaRef, Scope *S, SourceLocation DefaultLoc, |
| Expr *Lower, Expr *Upper, Expr *Step, QualType LCTy, |
| bool TestIsStrictOp, bool RoundToStep, |
| llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) { |
| ExprResult NewStep = tryBuildCapture(SemaRef, Step, Captures); |
| if (!NewStep.isUsable()) |
| return nullptr; |
| llvm::APSInt LRes, SRes; |
| bool IsLowerConst = false, IsStepConst = false; |
| if (Optional<llvm::APSInt> Res = Lower->getIntegerConstantExpr(SemaRef.Context)) { |
| LRes = *Res; |
| IsLowerConst = true; |
| } |
| if (Optional<llvm::APSInt> Res = Step->getIntegerConstantExpr(SemaRef.Context)) { |
| SRes = *Res; |
| IsStepConst = true; |
| } |
| bool NoNeedToConvert = IsLowerConst && !RoundToStep && |
| ((!TestIsStrictOp && LRes.isNonNegative()) || |
| (TestIsStrictOp && LRes.isStrictlyPositive())); |
| bool NeedToReorganize = false; |
| // Check if any subexpressions in Lower -Step [+ 1] lead to overflow. |
| if (!NoNeedToConvert && IsLowerConst && |
| (TestIsStrictOp || (RoundToStep && IsStepConst))) { |
| NoNeedToConvert = true; |
| if (RoundToStep) { |
| unsigned BW = LRes.getBitWidth() > SRes.getBitWidth() |
| ? LRes.getBitWidth() |
| : SRes.getBitWidth(); |
| LRes = LRes.extend(BW + 1); |
| LRes.setIsSigned(true); |
| SRes = SRes.extend(BW + 1); |
| SRes.setIsSigned(true); |
| LRes -= SRes; |
| NoNeedToConvert = LRes.trunc(BW).extend(BW + 1) == LRes; |
| LRes = LRes.trunc(BW); |
| } |
| if (TestIsStrictOp) { |
| unsigned BW = LRes.getBitWidth(); |
| LRes = LRes.extend(BW + 1); |
| LRes.setIsSigned(true); |
| ++LRes; |
| NoNeedToConvert = |
| NoNeedToConvert && LRes.trunc(BW).extend(BW + 1) == LRes; |
| // truncate to the original bitwidth. |
| LRes = LRes.trunc(BW); |
| } |
| NeedToReorganize = NoNeedToConvert; |
| } |
| llvm::APSInt URes; |
| bool IsUpperConst = false; |
| if (Optional<llvm::APSInt> Res = Upper->getIntegerConstantExpr(SemaRef.Context)) { |
| URes = *Res; |
| IsUpperConst = true; |
| } |
| if (NoNeedToConvert && IsLowerConst && IsUpperConst && |
| (!RoundToStep || IsStepConst)) { |
| unsigned BW = LRes.getBitWidth() > URes.getBitWidth() ? LRes.getBitWidth() |
| : URes.getBitWidth(); |
| LRes = LRes.extend(BW + 1); |
| LRes.setIsSigned(true); |
| URes = URes.extend(BW + 1); |
| URes.setIsSigned(true); |
| URes -= LRes; |
| NoNeedToConvert = URes.trunc(BW).extend(BW + 1) == URes; |
| NeedToReorganize = NoNeedToConvert; |
| } |
| // If the boundaries are not constant or (Lower - Step [+ 1]) is not constant |
| // or less than zero (Upper - (Lower - Step [+ 1]) may overflow) - promote to |
| // unsigned. |
| if ((!NoNeedToConvert || (LRes.isNegative() && !IsUpperConst)) && |
| !LCTy->isDependentType() && LCTy->isIntegerType()) { |
| QualType LowerTy = Lower->getType(); |
| QualType UpperTy = Upper->getType(); |
| uint64_t LowerSize = SemaRef.Context.getTypeSize(LowerTy); |
| uint64_t UpperSize = SemaRef.Context.getTypeSize(UpperTy); |
| if ((LowerSize <= UpperSize && UpperTy->hasSignedIntegerRepresentation()) || |
| (LowerSize > UpperSize && LowerTy->hasSignedIntegerRepresentation())) { |
| QualType CastType = SemaRef.Context.getIntTypeForBitwidth( |
| LowerSize > UpperSize ? LowerSize : UpperSize, /*Signed=*/0); |
| Upper = |
| SemaRef |
| .PerformImplicitConversion( |
| SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Upper).get(), |
| CastType, Sema::AA_Converting) |
| .get(); |
| Lower = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Lower).get(); |
| NewStep = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, NewStep.get()); |
| } |
| } |
| if (!Lower || !Upper || NewStep.isInvalid()) |
| return nullptr; |
| |
| ExprResult Diff; |
| // If need to reorganize, then calculate the form as Upper - (Lower - Step [+ |
| // 1]). |
| if (NeedToReorganize) { |
| Diff = Lower; |
| |
| if (RoundToStep) { |
| // Lower - Step |
| Diff = |
| SemaRef.BuildBinOp(S, DefaultLoc, BO_Sub, Diff.get(), NewStep.get()); |
| if (!Diff.isUsable()) |
| return nullptr; |
| } |
| |
| // Lower - Step [+ 1] |
| if (TestIsStrictOp) |
| Diff = SemaRef.BuildBinOp( |
| S, DefaultLoc, BO_Add, Diff.get(), |
| SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get()); |
| if (!Diff.isUsable()) |
| return nullptr; |
| |
| Diff = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Diff.get()); |
| if (!Diff.isUsable()) |
| return nullptr; |
| |
| // Upper - (Lower - Step [+ 1]). |
| Diff = SemaRef.BuildBinOp(S, DefaultLoc, BO_Sub, Upper, Diff.get()); |
| if (!Diff.isUsable()) |
| return nullptr; |
| } else { |
| Diff = SemaRef.BuildBinOp(S, DefaultLoc, BO_Sub, Upper, Lower); |
| |
| if (!Diff.isUsable() && LCTy->getAsCXXRecordDecl()) { |
| // BuildBinOp already emitted error, this one is to point user to upper |
| // and lower bound, and to tell what is passed to 'operator-'. |
| SemaRef.Diag(Upper->getBeginLoc(), diag::err_omp_loop_diff_cxx) |
| << Upper->getSourceRange() << Lower->getSourceRange(); |
| return nullptr; |
| } |
| |
| if (!Diff.isUsable()) |
| return nullptr; |
| |
| // Upper - Lower [- 1] |
| if (TestIsStrictOp) |
| Diff = SemaRef.BuildBinOp( |
| S, DefaultLoc, BO_Sub, Diff.get(), |
| SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get()); |
| if (!Diff.isUsable()) |
| return nullptr; |
| |
| if (RoundToStep) { |
| // Upper - Lower [- 1] + Step |
| Diff = |
| SemaRef.BuildBinOp(S, DefaultLoc, BO_Add, Diff.get(), NewStep.get()); |
| if (!Diff.isUsable()) |
| return nullptr; |
| } |
| } |
| |
| // Parentheses (for dumping/debugging purposes only). |
| Diff = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Diff.get()); |
| if (!Diff.isUsable()) |
| return nullptr; |
| |
| // (Upper - Lower [- 1] + Step) / Step or (Upper - Lower) / Step |
| Diff = SemaRef.BuildBinOp(S, DefaultLoc, BO_Div, Diff.get(), NewStep.get()); |
| if (!Diff.isUsable()) |
| return nullptr; |
| |
| return Diff.get(); |
| } |
| |
| /// Build the expression to calculate the number of iterations. |
| Expr *OpenMPIterationSpaceChecker::buildNumIterations( |
| Scope *S, ArrayRef<LoopIterationSpace> ResultIterSpaces, bool LimitedType, |
| llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) const { |
| QualType VarType = LCDecl->getType().getNonReferenceType(); |
| if (!VarType->isIntegerType() && !VarType->isPointerType() && |
| !SemaRef.getLangOpts().CPlusPlus) |
| return nullptr; |
| Expr *LBVal = LB; |
| Expr *UBVal = UB; |
| // LB = TestIsLessOp.getValue() ? min(LB(MinVal), LB(MaxVal)) : |
| // max(LB(MinVal), LB(MaxVal)) |
| if (InitDependOnLC) { |
| const LoopIterationSpace &IS = ResultIterSpaces[*InitDependOnLC - 1]; |
| if (!IS.MinValue || !IS.MaxValue) |
| return nullptr; |
| // OuterVar = Min |
| ExprResult MinValue = |
| SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, IS.MinValue); |
| if (!MinValue.isUsable()) |
| return nullptr; |
| |
| ExprResult LBMinVal = SemaRef.BuildBinOp(S, DefaultLoc, BO_Assign, |
| IS.CounterVar, MinValue.get()); |
| if (!LBMinVal.isUsable()) |
| return nullptr; |
| // OuterVar = Min, LBVal |
| LBMinVal = |
| SemaRef.BuildBinOp(S, DefaultLoc, BO_Comma, LBMinVal.get(), LBVal); |
| if (!LBMinVal.isUsable()) |
| return nullptr; |
| // (OuterVar = Min, LBVal) |
| LBMinVal = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, LBMinVal.get()); |
| if (!LBMinVal.isUsable()) |
| return nullptr; |
| |
| // OuterVar = Max |
| ExprResult MaxValue = |
| SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, IS.MaxValue); |
| if (!MaxValue.isUsable()) |
| return nullptr; |
| |
| ExprResult LBMaxVal = SemaRef.BuildBinOp(S, DefaultLoc, BO_Assign, |
| IS.CounterVar, MaxValue.get()); |
| if (!LBMaxVal.isUsable()) |
| return nullptr; |
| // OuterVar = Max, LBVal |
| LBMaxVal = |
| SemaRef.BuildBinOp(S, DefaultLoc, BO_Comma, LBMaxVal.get(), LBVal); |
| if (!LBMaxVal.isUsable()) |
| return nullptr; |
| // (OuterVar = Max, LBVal) |
| LBMaxVal = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, LBMaxVal.get()); |
| if (!LBMaxVal.isUsable()) |
| return nullptr; |
| |
| Expr *LBMin = tryBuildCapture(SemaRef, LBMinVal.get(), Captures).get(); |
| Expr *LBMax = tryBuildCapture(SemaRef, LBMaxVal.get(), Captures).get(); |
| if (!LBMin || !LBMax) |
| return nullptr; |
| // LB(MinVal) < LB(MaxVal) |
| ExprResult MinLessMaxRes = |
| SemaRef.BuildBinOp(S, DefaultLoc, BO_LT, LBMin, LBMax); |
| if (!MinLessMaxRes.isUsable()) |
| return nullptr; |
| Expr *MinLessMax = |
| tryBuildCapture(SemaRef, MinLessMaxRes.get(), Captures).get(); |
| if (!MinLessMax) |
| return nullptr; |
| if (TestIsLessOp.getValue()) { |
| // LB(MinVal) < LB(MaxVal) ? LB(MinVal) : LB(MaxVal) - min(LB(MinVal), |
| // LB(MaxVal)) |
| ExprResult MinLB = SemaRef.ActOnConditionalOp(DefaultLoc, DefaultLoc, |
| MinLessMax, LBMin, LBMax); |
| if (!MinLB.isUsable()) |
| return nullptr; |
| LBVal = MinLB.get(); |
| } else { |
| // LB(MinVal) < LB(MaxVal) ? LB(MaxVal) : LB(MinVal) - max(LB(MinVal), |
| // LB(MaxVal)) |
| ExprResult MaxLB = SemaRef.ActOnConditionalOp(DefaultLoc, DefaultLoc, |
| MinLessMax, LBMax, LBMin); |
| if (!MaxLB.isUsable()) |
| return nullptr; |
| LBVal = MaxLB.get(); |
| } |
| } |
| // UB = TestIsLessOp.getValue() ? max(UB(MinVal), UB(MaxVal)) : |
| // min(UB(MinVal), UB(MaxVal)) |
| if (CondDependOnLC) { |
| const LoopIterationSpace &IS = ResultIterSpaces[*CondDependOnLC - 1]; |
| if (!IS.MinValue || !IS.MaxValue) |
| return nullptr; |
| // OuterVar = Min |
| ExprResult MinValue = |
| SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, IS.MinValue); |
| if (!MinValue.isUsable()) |
| return nullptr; |
| |
| ExprResult UBMinVal = SemaRef.BuildBinOp(S, DefaultLoc, BO_Assign, |
| IS.CounterVar, MinValue.get()); |
| if (!UBMinVal.isUsable()) |
| return nullptr; |
| // OuterVar = Min, UBVal |
| UBMinVal = |
| SemaRef.BuildBinOp(S, DefaultLoc, BO_Comma, UBMinVal.get(), UBVal); |
| if (!UBMinVal.isUsable()) |
| return nullptr; |
| // (OuterVar = Min, UBVal) |
| UBMinVal = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, UBMinVal.get()); |
| if (!UBMinVal.isUsable()) |
| return nullptr; |
| |
| // OuterVar = Max |
| ExprResult MaxValue = |
| SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, IS.MaxValue); |
| if (!MaxValue.isUsable()) |
| return nullptr; |
| |
| ExprResult UBMaxVal = SemaRef.BuildBinOp(S, DefaultLoc, BO_Assign, |
| IS.CounterVar, MaxValue.get()); |
| if (!UBMaxVal.isUsable()) |
| return nullptr; |
| // OuterVar = Max, UBVal |
| UBMaxVal = |
| SemaRef.BuildBinOp(S, DefaultLoc, BO_Comma, UBMaxVal.get(), UBVal); |
| if (!UBMaxVal.isUsable()) |
| return nullptr; |
| // (OuterVar = Max, UBVal) |
| UBMaxVal = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, UBMaxVal.get()); |
| if (!UBMaxVal.isUsable()) |
| return nullptr; |
| |
| Expr *UBMin = tryBuildCapture(SemaRef, UBMinVal.get(), Captures).get(); |
| Expr *UBMax = tryBuildCapture(SemaRef, UBMaxVal.get(), Captures).get(); |
| if (!UBMin || !UBMax) |
| return nullptr; |
| // UB(MinVal) > UB(MaxVal) |
| ExprResult MinGreaterMaxRes = |
| SemaRef.BuildBinOp(S, DefaultLoc, BO_GT, UBMin, UBMax); |
| if (!MinGreaterMaxRes.isUsable()) |
| return nullptr; |
| Expr *MinGreaterMax = |
| tryBuildCapture(SemaRef, MinGreaterMaxRes.get(), Captures).get(); |
| if (!MinGreaterMax) |
| return nullptr; |
| if (TestIsLessOp.getValue()) { |
| // UB(MinVal) > UB(MaxVal) ? UB(MinVal) : UB(MaxVal) - max(UB(MinVal), |
| // UB(MaxVal)) |
| ExprResult MaxUB = SemaRef.ActOnConditionalOp( |
| DefaultLoc, DefaultLoc, MinGreaterMax, UBMin, UBMax); |
| if (!MaxUB.isUsable()) |
| return nullptr; |
| UBVal = MaxUB.get(); |
| } else { |
| // UB(MinVal) > UB(MaxVal) ? UB(MaxVal) : UB(MinVal) - min(UB(MinVal), |
| // UB(MaxVal)) |
| ExprResult MinUB = SemaRef.ActOnConditionalOp( |
| DefaultLoc, DefaultLoc, MinGreaterMax, UBMax, UBMin); |
| if (!MinUB.isUsable()) |
| return nullptr; |
| UBVal = MinUB.get(); |
| } |
| } |
| Expr *UBExpr = TestIsLessOp.getValue() ? UBVal : LBVal; |
| Expr *LBExpr = TestIsLessOp.getValue() ? LBVal : UBVal; |
| Expr *Upper = tryBuildCapture(SemaRef, UBExpr, Captures).get(); |
| Expr *Lower = tryBuildCapture(SemaRef, LBExpr, Captures).get(); |
| if (!Upper || !Lower) |
| return nullptr; |
| |
| ExprResult Diff = calculateNumIters(SemaRef, S, DefaultLoc, Lower, Upper, |
| Step, VarType, TestIsStrictOp, |
| /*RoundToStep=*/true, Captures); |
| if (!Diff.isUsable()) |
| return nullptr; |
| |
| // OpenMP runtime requires 32-bit or 64-bit loop variables. |
| QualType Type = Diff.get()->getType(); |
| ASTContext &C = SemaRef.Context; |
| bool UseVarType = VarType->hasIntegerRepresentation() && |
| C.getTypeSize(Type) > C.getTypeSize(VarType); |
| if (!Type->isIntegerType() || UseVarType) { |
| unsigned NewSize = |
| UseVarType ? C.getTypeSize(VarType) : C.getTypeSize(Type); |
| bool IsSigned = UseVarType ? VarType->hasSignedIntegerRepresentation() |
| : Type->hasSignedIntegerRepresentation(); |
| Type = C.getIntTypeForBitwidth(NewSize, IsSigned); |
| if (!SemaRef.Context.hasSameType(Diff.get()->getType(), Type)) { |
| Diff = SemaRef.PerformImplicitConversion( |
| Diff.get(), Type, Sema::AA_Converting, /*AllowExplicit=*/true); |
| if (!Diff.isUsable()) |
| return nullptr; |
| } |
| } |
| if (LimitedType) { |
| unsigned NewSize = (C.getTypeSize(Type) > 32) ? 64 : 32; |
| if (NewSize != C.getTypeSize(Type)) { |
| if (NewSize < C.getTypeSize(Type)) { |
| assert(NewSize == 64 && "incorrect loop var size"); |
| SemaRef.Diag(DefaultLoc, diag::warn_omp_loop_64_bit_var) |
| << InitSrcRange << ConditionSrcRange; |
| } |
| QualType NewType = C.getIntTypeForBitwidth( |
| NewSize, Type->hasSignedIntegerRepresentation() || |
| C.getTypeSize(Type) < NewSize); |
| if (!SemaRef.Context.hasSameType(Diff.get()->getType(), NewType)) { |
| Diff = SemaRef.PerformImplicitConversion(Diff.get(), NewType, |
| Sema::AA_Converting, true); |
| if (!Diff.isUsable()) |
| return nullptr; |
| } |
| } |
| } |
| |
| return Diff.get(); |
| } |
| |
| std::pair<Expr *, Expr *> OpenMPIterationSpaceChecker::buildMinMaxValues( |
| Scope *S, llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) const { |
| // Do not build for iterators, they cannot be used in non-rectangular loop |
| // nests. |
| if (LCDecl->getType()->isRecordType()) |
| return std::make_pair(nullptr, nullptr); |
| // If we subtract, the min is in the condition, otherwise the min is in the |
| // init value. |
| Expr *MinExpr = nullptr; |
| Expr *MaxExpr = nullptr; |
| Expr *LBExpr = TestIsLessOp.getValue() ? LB : UB; |
| Expr *UBExpr = TestIsLessOp.getValue() ? UB : LB; |
| bool LBNonRect = TestIsLessOp.getValue() ? InitDependOnLC.hasValue() |
| : CondDependOnLC.hasValue(); |
| bool UBNonRect = TestIsLessOp.getValue() ? CondDependOnLC.hasValue() |
| : InitDependOnLC.hasValue(); |
| Expr *Lower = |
| LBNonRect ? LBExpr : tryBuildCapture(SemaRef, LBExpr, Captures).get(); |
| Expr *Upper = |
| UBNonRect ? UBExpr : tryBuildCapture(SemaRef, UBExpr, Captures).get(); |
| if (!Upper || !Lower) |
| return std::make_pair(nullptr, nullptr); |
| |
| if (TestIsLessOp.getValue()) |
| MinExpr = Lower; |
| else |
| MaxExpr = Upper; |
| |
| // Build minimum/maximum value based on number of iterations. |
| QualType VarType = LCDecl->getType().getNonReferenceType(); |
| |
| ExprResult Diff = calculateNumIters(SemaRef, S, DefaultLoc, Lower, Upper, |
| Step, VarType, TestIsStrictOp, |
| /*RoundToStep=*/false, Captures); |
| if (!Diff.isUsable()) |
| return std::make_pair(nullptr, nullptr); |
| |
| // ((Upper - Lower [- 1]) / Step) * Step |
| // Parentheses (for dumping/debugging purposes only). |
| Diff = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Diff.get()); |
| if (!Diff.isUsable()) |
| return std::make_pair(nullptr, nullptr); |
| |
| ExprResult NewStep = tryBuildCapture(SemaRef, Step, Captures); |
| if (!NewStep.isUsable()) |
| return std::make_pair(nullptr, nullptr); |
| Diff = SemaRef.BuildBinOp(S, DefaultLoc, BO_Mul, Diff.get(), NewStep.get()); |
| if (!Diff.isUsable()) |
| return std::make_pair(nullptr, nullptr); |
| |
| // Parentheses (for dumping/debugging purposes only). |
| Diff = SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Diff.get()); |
| if (!Diff.isUsable()) |
| return std::make_pair(nullptr, nullptr); |
| |
| // Convert to the ptrdiff_t, if original type is pointer. |
| if (VarType->isAnyPointerType() && |
| !SemaRef.Context.hasSameType( |
| Diff.get()->getType(), |
| SemaRef.Context.getUnsignedPointerDiffType())) { |
| Diff = SemaRef.PerformImplicitConversion( |
| Diff.get(), SemaRef.Context.getUnsignedPointerDiffType(), |
| Sema::AA_Converting, /*AllowExplicit=*/true); |
| } |
| if (!Diff.isUsable()) |
| return std::make_pair(nullptr, nullptr); |
| |
| if (TestIsLessOp.getValue()) { |
| // MinExpr = Lower; |
| // MaxExpr = Lower + (((Upper - Lower [- 1]) / Step) * Step) |
| Diff = SemaRef.BuildBinOp( |
| S, DefaultLoc, BO_Add, |
| SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Lower).get(), |
| Diff.get()); |
| if (!Diff.isUsable()) |
| return std::make_pair(nullptr, nullptr); |
| } else { |
| // MaxExpr = Upper; |
| // MinExpr = Upper - (((Upper - Lower [- 1]) / Step) * Step) |
| Diff = SemaRef.BuildBinOp( |
| S, DefaultLoc, BO_Sub, |
| SemaRef.ActOnParenExpr(DefaultLoc, DefaultLoc, Upper).get(), |
| Diff.get()); |
| if (!Diff.isUsable()) |
| return std::make_pair(nullptr, nullptr); |
| } |
| |
| // Convert to the original type. |
| if (SemaRef.Context.hasSameType(Diff.get()->getType(), VarType)) |
| Diff = SemaRef.PerformImplicitConversion(Diff.get(), VarType, |
| Sema::AA_Converting, |
| /*AllowExplicit=*/true); |
| if (!Diff.isUsable()) |
| return std::make_pair(nullptr, nullptr); |
| |
| Sema::TentativeAnalysisScope Trap(SemaRef); |
| Diff = SemaRef.ActOnFinishFullExpr(Diff.get(), /*DiscardedValue=*/false); |
| if (!Diff.isUsable()) |
| return std::make_pair(nullptr, nullptr); |
| |
| if (TestIsLessOp.getValue()) |
| MaxExpr = Diff.get(); |
| else |
| MinExpr = Diff.get(); |
| |
| return std::make_pair(MinExpr, MaxExpr); |
| } |
| |
| Expr *OpenMPIterationSpaceChecker::buildFinalCondition(Scope *S) const { |
| if (InitDependOnLC || CondDependOnLC) |
| return Condition; |
| return nullptr; |
| } |
| |
| Expr *OpenMPIterationSpaceChecker::buildPreCond( |
| Scope *S, Expr *Cond, |
| llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) const { |
| // Do not build a precondition when the condition/initialization is dependent |
| // to prevent pessimistic early loop exit. |
| // TODO: this can be improved by calculating min/max values but not sure that |
| // it will be very effective. |
| if (CondDependOnLC || InitDependOnLC) |
| return SemaRef.PerformImplicitConversion( |
| SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get(), |
| SemaRef.Context.BoolTy, /*Action=*/Sema::AA_Casting, |
| /*AllowExplicit=*/true).get(); |
| |
| // Try to build LB <op> UB, where <op> is <, >, <=, or >=. |
| Sema::TentativeAnalysisScope Trap(SemaRef); |
| |
| ExprResult NewLB = tryBuildCapture(SemaRef, LB, Captures); |
| ExprResult NewUB = tryBuildCapture(SemaRef, UB, Captures); |
| if (!NewLB.isUsable() || !NewUB.isUsable()) |
| return nullptr; |
| |
| ExprResult CondExpr = |
| SemaRef.BuildBinOp(S, DefaultLoc, |
| TestIsLessOp.getValue() ? |
| (TestIsStrictOp ? BO_LT : BO_LE) : |
| (TestIsStrictOp ? BO_GT : BO_GE), |
| NewLB.get(), NewUB.get()); |
| if (CondExpr.isUsable()) { |
| if (!SemaRef.Context.hasSameUnqualifiedType(CondExpr.get()->getType(), |
| SemaRef.Context.BoolTy)) |
| CondExpr = SemaRef.PerformImplicitConversion( |
| CondExpr.get(), SemaRef.Context.BoolTy, /*Action=*/Sema::AA_Casting, |
| /*AllowExplicit=*/true); |
| } |
| |
| // Otherwise use original loop condition and evaluate it in runtime. |
| return CondExpr.isUsable() ? CondExpr.get() : Cond; |
| } |
| |
| /// Build reference expression to the counter be used for codegen. |
| DeclRefExpr *OpenMPIterationSpaceChecker::buildCounterVar( |
| llvm::MapVector<const Expr *, DeclRefExpr *> &Captures, |
| DSAStackTy &DSA) const { |
| auto *VD = dyn_cast<VarDecl>(LCDecl); |
| if (!VD) { |
| VD = SemaRef.isOpenMPCapturedDecl(LCDecl); |
| DeclRefExpr *Ref = buildDeclRefExpr( |
| SemaRef, VD, VD->getType().getNonReferenceType(), DefaultLoc); |
| const DSAStackTy::DSAVarData Data = |
| DSA.getTopDSA(LCDecl, /*FromParent=*/false); |
| // If the loop control decl is explicitly marked as private, do not mark it |
| // as captured again. |
| if (!isOpenMPPrivate(Data.CKind) || !Data.RefExpr) |
| Captures.insert(std::make_pair(LCRef, Ref)); |
| return Ref; |
| } |
| return cast<DeclRefExpr>(LCRef); |
| } |
| |
| Expr *OpenMPIterationSpaceChecker::buildPrivateCounterVar() const { |
| if (LCDecl && !LCDecl->isInvalidDecl()) { |
| QualType Type = LCDecl->getType().getNonReferenceType(); |
| VarDecl *PrivateVar = buildVarDecl( |
| SemaRef, DefaultLoc, Type, LCDecl->getName(), |
| LCDecl->hasAttrs() ? &LCDecl->getAttrs() : nullptr, |
| isa<VarDecl>(LCDecl) |
| ? buildDeclRefExpr(SemaRef, cast<VarDecl>(LCDecl), Type, DefaultLoc) |
| : nullptr); |
| if (PrivateVar->isInvalidDecl()) |
| return nullptr; |
| return buildDeclRefExpr(SemaRef, PrivateVar, Type, DefaultLoc); |
| } |
| return nullptr; |
| } |
| |
| /// Build initialization of the counter to be used for codegen. |
| Expr *OpenMPIterationSpaceChecker::buildCounterInit() const { return LB; } |
| |
| /// Build step of the counter be used for codegen. |
| Expr *OpenMPIterationSpaceChecker::buildCounterStep() const { return Step; } |
| |
| Expr *OpenMPIterationSpaceChecker::buildOrderedLoopData( |
| Scope *S, Expr *Counter, |
| llvm::MapVector<const Expr *, DeclRefExpr *> &Captures, SourceLocation Loc, |
| Expr *Inc, OverloadedOperatorKind OOK) { |
| Expr *Cnt = SemaRef.DefaultLvalueConversion(Counter).get(); |
| if (!Cnt) |
| return nullptr; |
| if (Inc) { |
| assert((OOK == OO_Plus || OOK == OO_Minus) && |
| "Expected only + or - operations for depend clauses."); |
| BinaryOperatorKind BOK = (OOK == OO_Plus) ? BO_Add : BO_Sub; |
| Cnt = SemaRef.BuildBinOp(S, Loc, BOK, Cnt, Inc).get(); |
| if (!Cnt) |
| return nullptr; |
| } |
| QualType VarType = LCDecl->getType().getNonReferenceType(); |
| if (!VarType->isIntegerType() && !VarType->isPointerType() && |
| !SemaRef.getLangOpts().CPlusPlus) |
| return nullptr; |
| // Upper - Lower |
| Expr *Upper = TestIsLessOp.getValue() |
| ? Cnt |
| : tryBuildCapture(SemaRef, LB, Captures).get(); |
| Expr *Lower = TestIsLessOp.getValue() |
| ? tryBuildCapture(SemaRef, LB, Captures).get() |
| : Cnt; |
| if (!Upper || !Lower) |
| return nullptr; |
| |
| ExprResult Diff = calculateNumIters( |
| SemaRef, S, DefaultLoc, Lower, Upper, Step, VarType, |
| /*TestIsStrictOp=*/false, /*RoundToStep=*/false, Captures); |
| if (!Diff.isUsable()) |
| return nullptr; |
| |
| return Diff.get(); |
| } |
| } // namespace |
| |
| void Sema::ActOnOpenMPLoopInitialization(SourceLocation ForLoc, Stmt *Init) { |
| assert(getLangOpts().OpenMP && "OpenMP is not active."); |
| assert(Init && "Expected loop in canonical form."); |
| unsigned AssociatedLoops = DSAStack->getAssociatedLoops(); |
| if (AssociatedLoops > 0 && |
| isOpenMPLoopDirective(DSAStack->getCurrentDirective())) { |
| DSAStack->loopStart(); |
| OpenMPIterationSpaceChecker ISC(*this, /*SupportsNonRectangular=*/true, |
| *DSAStack, ForLoc); |
| if (!ISC.checkAndSetInit(Init, /*EmitDiags=*/false)) { |
| if (ValueDecl *D = ISC.getLoopDecl()) { |
| auto *VD = dyn_cast<VarDecl>(D); |
| DeclRefExpr *PrivateRef = nullptr; |
| if (!VD) { |
| if (VarDecl *Private = isOpenMPCapturedDecl(D)) { |
| VD = Private; |
| } else { |
| PrivateRef = buildCapture(*this, D, ISC.getLoopDeclRefExpr(), |
| /*WithInit=*/false); |
| VD = cast<VarDecl>(PrivateRef->getDecl()); |
| } |
| } |
| DSAStack->addLoopControlVariable(D, VD); |
| const Decl *LD = DSAStack->getPossiblyLoopCunter(); |
| if (LD != D->getCanonicalDecl()) { |
| DSAStack->resetPossibleLoopCounter(); |
| if (auto *Var = dyn_cast_or_null<VarDecl>(LD)) |
| MarkDeclarationsReferencedInExpr( |
| buildDeclRefExpr(*this, const_cast<VarDecl *>(Var), |
| Var->getType().getNonLValueExprType(Context), |
| ForLoc, /*RefersToCapture=*/true)); |
| } |
| OpenMPDirectiveKind DKind = DSAStack->getCurrentDirective(); |
| // OpenMP [2.14.1.1, Data-sharing Attribute Rules for Variables |
| // Referenced in a Construct, C/C++]. The loop iteration variable in the |
| // associated for-loop of a simd construct with just one associated |
| // for-loop may be listed in a linear clause with a constant-linear-step |
| // that is the increment of the associated for-loop. The loop iteration |
| // variable(s) in the associated for-loop(s) of a for or parallel for |
| // construct may be listed in a private or lastprivate clause. |
| DSAStackTy::DSAVarData DVar = |
| DSAStack->getTopDSA(D, /*FromParent=*/false); |
| // If LoopVarRefExpr is nullptr it means the corresponding loop variable |
| // is declared in the loop and it is predetermined as a private. |
| Expr *LoopDeclRefExpr = ISC.getLoopDeclRefExpr(); |
| OpenMPClauseKind PredeterminedCKind = |
| isOpenMPSimdDirective(DKind) |
| ? (DSAStack->hasMutipleLoops() ? OMPC_lastprivate : OMPC_linear) |
| : OMPC_private; |
| if (((isOpenMPSimdDirective(DKind) && DVar.CKind != OMPC_unknown && |
| DVar.CKind != PredeterminedCKind && DVar.RefExpr && |
| (LangOpts.OpenMP <= 45 || (DVar.CKind != OMPC_lastprivate && |
| DVar.CKind != OMPC_private))) || |
| ((isOpenMPWorksharingDirective(DKind) || DKind == OMPD_taskloop || |
| DKind == OMPD_master_taskloop || |
| DKind == OMPD_parallel_master_taskloop || |
| isOpenMPDistributeDirective(DKind)) && |
| !isOpenMPSimdDirective(DKind) && DVar.CKind != OMPC_unknown && |
| DVar.CKind != OMPC_private && DVar.CKind != OMPC_lastprivate)) && |
| (DVar.CKind != OMPC_private || DVar.RefExpr)) { |
| Diag(Init->getBeginLoc(), diag::err_omp_loop_var_dsa) |
| << getOpenMPClauseName(DVar.CKind) |
| << getOpenMPDirectiveName(DKind) |
| << getOpenMPClauseName(PredeterminedCKind); |
| if (DVar.RefExpr == nullptr) |
| DVar.CKind = PredeterminedCKind; |
| reportOriginalDsa(*this, DSAStack, D, DVar, |
| /*IsLoopIterVar=*/true); |
| } else if (LoopDeclRefExpr) { |
| // Make the loop iteration variable private (for worksharing |
| // constructs), linear (for simd directives with the only one |
| // associated loop) or lastprivate (for simd directives with several |
| // collapsed or ordered loops). |
| if (DVar.CKind == OMPC_unknown) |
| DSAStack->addDSA(D, LoopDeclRefExpr, PredeterminedCKind, |
| PrivateRef); |
| } |
| } |
| } |
| DSAStack->setAssociatedLoops(AssociatedLoops - 1); |
| } |
| } |
| |
| /// Called on a for stmt to check and extract its iteration space |
| /// for further processing (such as collapsing). |
| static bool checkOpenMPIterationSpace( |
| OpenMPDirectiveKind DKind, Stmt *S, Sema &SemaRef, DSAStackTy &DSA, |
| unsigned CurrentNestedLoopCount, unsigned NestedLoopCount, |
| unsigned TotalNestedLoopCount, Expr *CollapseLoopCountExpr, |
| Expr *OrderedLoopCountExpr, |
| Sema::VarsWithInheritedDSAType &VarsWithImplicitDSA, |
| llvm::MutableArrayRef<LoopIterationSpace> ResultIterSpaces, |
| llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) { |
| bool SupportsNonRectangular = !isOpenMPLoopTransformationDirective(DKind); |
| // OpenMP [2.9.1, Canonical Loop Form] |
| // for (init-expr; test-expr; incr-expr) structured-block |
| // for (range-decl: range-expr) structured-block |
| if (auto *CanonLoop = dyn_cast_or_null<OMPCanonicalLoop>(S)) |
| S = CanonLoop->getLoopStmt(); |
| auto *For = dyn_cast_or_null<ForStmt>(S); |
| auto *CXXFor = dyn_cast_or_null<CXXForRangeStmt>(S); |
| // Ranged for is supported only in OpenMP 5.0. |
| if (!For && (SemaRef.LangOpts.OpenMP <= 45 || !CXXFor)) { |
| SemaRef.Diag(S->getBeginLoc(), diag::err_omp_not_for) |
| << (CollapseLoopCountExpr != nullptr || OrderedLoopCountExpr != nullptr) |
| << getOpenMPDirectiveName(DKind) << TotalNestedLoopCount |
| << (CurrentNestedLoopCount > 0) << CurrentNestedLoopCount; |
| if (TotalNestedLoopCount > 1) { |
| if (CollapseLoopCountExpr && OrderedLoopCountExpr) |
| SemaRef.Diag(DSA.getConstructLoc(), |
| diag::note_omp_collapse_ordered_expr) |
| << 2 << CollapseLoopCountExpr->getSourceRange() |
| << OrderedLoopCountExpr->getSourceRange(); |
| else if (CollapseLoopCountExpr) |
| SemaRef.Diag(CollapseLoopCountExpr->getExprLoc(), |
| diag::note_omp_collapse_ordered_expr) |
| << 0 << CollapseLoopCountExpr->getSourceRange(); |
| else |
| SemaRef.Diag(OrderedLoopCountExpr->getExprLoc(), |
| diag::note_omp_collapse_ordered_expr) |
| << 1 << OrderedLoopCountExpr->getSourceRange(); |
| } |
| return true; |
| } |
| assert(((For && For->getBody()) || (CXXFor && CXXFor->getBody())) && |
| "No loop body."); |
| |
| OpenMPIterationSpaceChecker ISC(SemaRef, SupportsNonRectangular, DSA, |
| For ? For->getForLoc() : CXXFor->getForLoc()); |
| |
| // Check init. |
| Stmt *Init = For ? For->getInit() : CXXFor->getBeginStmt(); |
| if (ISC.checkAndSetInit(Init)) |
| return true; |
| |
| bool HasErrors = false; |
| |
| // Check loop variable's type. |
| if (ValueDecl *LCDecl = ISC.getLoopDecl()) { |
| // OpenMP [2.6, Canonical Loop Form] |
| // Var is one of the following: |
| // A variable of signed or unsigned integer type. |
| // For C++, a variable of a random access iterator type. |
| // For C, a variable of a pointer type. |
| QualType VarType = LCDecl->getType().getNonReferenceType(); |
| if (!VarType->isDependentType() && !VarType->isIntegerType() && |
| !VarType->isPointerType() && |
| !(SemaRef.getLangOpts().CPlusPlus && VarType->isOverloadableType())) { |
| SemaRef.Diag(Init->getBeginLoc(), diag::err_omp_loop_variable_type) |
| << SemaRef.getLangOpts().CPlusPlus; |
| HasErrors = true; |
| } |
| |
| // OpenMP, 2.14.1.1 Data-sharing Attribute Rules for Variables Referenced in |
| // a Construct |
| // The loop iteration variable(s) in the associated for-loop(s) of a for or |
| // parallel for construct is (are) private. |
| // The loop iteration variable in the associated for-loop of a simd |
| // construct with just one associated for-loop is linear with a |
| // constant-linear-step that is the increment of the associated for-loop. |
| // Exclude loop var from the list of variables with implicitly defined data |
| // sharing attributes. |
| VarsWithImplicitDSA.erase(LCDecl); |
| |
| assert(isOpenMPLoopDirective(DKind) && "DSA for non-loop vars"); |
| |
| // Check test-expr. |
| HasErrors |= ISC.checkAndSetCond(For ? For->getCond() : CXXFor->getCond()); |
| |
| // Check incr-expr. |
| HasErrors |= ISC.checkAndSetInc(For ? For->getInc() : CXXFor->getInc()); |
| } |
| |
| if (ISC.dependent() || SemaRef.CurContext->isDependentContext() || HasErrors) |
| return HasErrors; |
| |
| // Build the loop's iteration space representation. |
| ResultIterSpaces[CurrentNestedLoopCount].PreCond = ISC.buildPreCond( |
| DSA.getCurScope(), For ? For->getCond() : CXXFor->getCond(), Captures); |
| ResultIterSpaces[CurrentNestedLoopCount].NumIterations = |
| ISC.buildNumIterations(DSA.getCurScope(), ResultIterSpaces, |
| (isOpenMPWorksharingDirective(DKind) || |
| isOpenMPGenericLoopDirective(DKind) || |
| isOpenMPTaskLoopDirective(DKind) || |
| isOpenMPDistributeDirective(DKind) || |
| isOpenMPLoopTransformationDirective(DKind)), |
| Captures); |
| ResultIterSpaces[CurrentNestedLoopCount].CounterVar = |
| ISC.buildCounterVar(Captures, DSA); |
| ResultIterSpaces[CurrentNestedLoopCount].PrivateCounterVar = |
| ISC.buildPrivateCounterVar(); |
| ResultIterSpaces[CurrentNestedLoopCount].CounterInit = ISC.buildCounterInit(); |
| ResultIterSpaces[CurrentNestedLoopCount].CounterStep = ISC.buildCounterStep(); |
| ResultIterSpaces[CurrentNestedLoopCount].InitSrcRange = ISC.getInitSrcRange(); |
| ResultIterSpaces[CurrentNestedLoopCount].CondSrcRange = |
| ISC.getConditionSrcRange(); |
| ResultIterSpaces[CurrentNestedLoopCount].IncSrcRange = |
| ISC.getIncrementSrcRange(); |
| ResultIterSpaces[CurrentNestedLoopCount].Subtract = ISC.shouldSubtractStep(); |
| ResultIterSpaces[CurrentNestedLoopCount].IsStrictCompare = |
| ISC.isStrictTestOp(); |
| std::tie(ResultIterSpaces[CurrentNestedLoopCount].MinValue, |
| ResultIterSpaces[CurrentNestedLoopCount].MaxValue) = |
| ISC.buildMinMaxValues(DSA.getCurScope(), Captures); |
| ResultIterSpaces[CurrentNestedLoopCount].FinalCondition = |
| ISC.buildFinalCondition(DSA.getCurScope()); |
| ResultIterSpaces[CurrentNestedLoopCount].IsNonRectangularLB = |
| ISC.doesInitDependOnLC(); |
| ResultIterSpaces[CurrentNestedLoopCount].IsNonRectangularUB = |
| ISC.doesCondDependOnLC(); |
| ResultIterSpaces[CurrentNestedLoopCount].LoopDependentIdx = |
| ISC.getLoopDependentIdx(); |
| |
| HasErrors |= |
| (ResultIterSpaces[CurrentNestedLoopCount].PreCond == nullptr || |
| ResultIterSpaces[CurrentNestedLoopCount].NumIterations == nullptr || |
| ResultIterSpaces[CurrentNestedLoopCount].CounterVar == nullptr || |
| ResultIterSpaces[CurrentNestedLoopCount].PrivateCounterVar == nullptr || |
| ResultIterSpaces[CurrentNestedLoopCount].CounterInit == nullptr || |
| ResultIterSpaces[CurrentNestedLoopCount].CounterStep == nullptr); |
| if (!HasErrors && DSA.isOrderedRegion()) { |
| if (DSA.getOrderedRegionParam().second->getNumForLoops()) { |
| if (CurrentNestedLoopCount < |
| DSA.getOrderedRegionParam().second->getLoopNumIterations().size()) { |
| DSA.getOrderedRegionParam().second->setLoopNumIterations( |
| CurrentNestedLoopCount, |
| ResultIterSpaces[CurrentNestedLoopCount].NumIterations); |
| DSA.getOrderedRegionParam().second->setLoopCounter( |
| CurrentNestedLoopCount, |
| ResultIterSpaces[CurrentNestedLoopCount].CounterVar); |
| } |
| } |
| for (auto &Pair : DSA.getDoacrossDependClauses()) { |
| if (CurrentNestedLoopCount >= Pair.first->getNumLoops()) { |
| // Erroneous case - clause has some problems. |
| continue; |
| } |
| if (Pair.first->getDependencyKind() == OMPC_DEPEND_sink && |
| Pair.second.size() <= CurrentNestedLoopCount) { |
| // Erroneous case - clause has some problems. |
| Pair.first->setLoopData(CurrentNestedLoopCount, nullptr); |
| continue; |
| } |
| Expr *CntValue; |
| if (Pair.first->getDependencyKind() == OMPC_DEPEND_source) |
| CntValue = ISC.buildOrderedLoopData( |
| DSA.getCurScope(), |
| ResultIterSpaces[CurrentNestedLoopCount].CounterVar, Captures, |
| Pair.first->getDependencyLoc()); |
| else |
| CntValue = ISC.buildOrderedLoopData( |
| DSA.getCurScope(), |
| ResultIterSpaces[CurrentNestedLoopCount].CounterVar, Captures, |
| Pair.first->getDependencyLoc(), |
| Pair.second[CurrentNestedLoopCount].first, |
| Pair.second[CurrentNestedLoopCount].second); |
| Pair.first->setLoopData(CurrentNestedLoopCount, CntValue); |
| } |
| } |
| |
| return HasErrors; |
| } |
| |
| /// Build 'VarRef = Start. |
| static ExprResult |
| buildCounterInit(Sema &SemaRef, Scope *S, SourceLocation Loc, ExprResult VarRef, |
| ExprResult Start, bool IsNonRectangularLB, |
| llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) { |
| // Build 'VarRef = Start. |
| ExprResult NewStart = IsNonRectangularLB |
| ? Start.get() |
| : tryBuildCapture(SemaRef, Start.get(), Captures); |
| if (!NewStart.isUsable()) |
| return ExprError(); |
| if (!SemaRef.Context.hasSameType(NewStart.get()->getType(), |
| VarRef.get()->getType())) { |
| NewStart = SemaRef.PerformImplicitConversion( |
| NewStart.get(), VarRef.get()->getType(), Sema::AA_Converting, |
| /*AllowExplicit=*/true); |
| if (!NewStart.isUsable()) |
| return ExprError(); |
| } |
| |
| ExprResult Init = |
| SemaRef.BuildBinOp(S, Loc, BO_Assign, VarRef.get(), NewStart.get()); |
| return Init; |
| } |
| |
| /// Build 'VarRef = Start + Iter * Step'. |
| static ExprResult buildCounterUpdate( |
| Sema &SemaRef, Scope *S, SourceLocation Loc, ExprResult VarRef, |
| ExprResult Start, ExprResult Iter, ExprResult Step, bool Subtract, |
| bool IsNonRectangularLB, |
| llvm::MapVector<const Expr *, DeclRefExpr *> *Captures = nullptr) { |
| // Add parentheses (for debugging purposes only). |
| Iter = SemaRef.ActOnParenExpr(Loc, Loc, Iter.get()); |
| if (!VarRef.isUsable() || !Start.isUsable() || !Iter.isUsable() || |
| !Step.isUsable()) |
| return ExprError(); |
| |
| ExprResult NewStep = Step; |
| if (Captures) |
| NewStep = tryBuildCapture(SemaRef, Step.get(), *Captures); |
| if (NewStep.isInvalid()) |
| return ExprError(); |
| ExprResult Update = |
| SemaRef.BuildBinOp(S, Loc, BO_Mul, Iter.get(), NewStep.get()); |
| if (!Update.isUsable()) |
| return ExprError(); |
| |
| // Try to build 'VarRef = Start, VarRef (+|-)= Iter * Step' or |
| // 'VarRef = Start (+|-) Iter * Step'. |
| if (!Start.isUsable()) |
| return ExprError(); |
| ExprResult NewStart = SemaRef.ActOnParenExpr(Loc, Loc, Start.get()); |
| if (!NewStart.isUsable()) |
| return ExprError(); |
| if (Captures && !IsNonRectangularLB) |
| NewStart = tryBuildCapture(SemaRef, Start.get(), *Captures); |
| if (NewStart.isInvalid()) |
| return ExprError(); |
| |
| // First attempt: try to build 'VarRef = Start, VarRef += Iter * Step'. |
| ExprResult SavedUpdate = Update; |
| ExprResult UpdateVal; |
| if (VarRef.get()->getType()->isOverloadableType() || |
| NewStart.get()->getType()->isOverloadableType() || |
| Update.get()->getType()->isOverloadableType()) { |
| Sema::TentativeAnalysisScope Trap(SemaRef); |
| |
| Update = |
| SemaRef.BuildBinOp(S, Loc, BO_Assign, VarRef.get(), NewStart.get()); |
| if (Update.isUsable()) { |
| UpdateVal = |
| SemaRef.BuildBinOp(S, Loc, Subtract ? BO_SubAssign : BO_AddAssign, |
| VarRef.get(), SavedUpdate.get()); |
| if (UpdateVal.isUsable()) { |
| Update = SemaRef.CreateBuiltinBinOp(Loc, BO_Comma, Update.get(), |
| UpdateVal.get()); |
| } |
| } |
| } |
| |
| // Second attempt: try to build 'VarRef = Start (+|-) Iter * Step'. |
| if (!Update.isUsable() || !UpdateVal.isUsable()) { |
| Update = SemaRef.BuildBinOp(S, Loc, Subtract ? BO_Sub : BO_Add, |
| NewStart.get(), SavedUpdate.get()); |
| if (!Update.isUsable()) |
| return ExprError(); |
| |
| if (!SemaRef.Context.hasSameType(Update.get()->getType(), |
| VarRef.get()->getType())) { |
| Update = SemaRef.PerformImplicitConversion( |
| Update.get(), VarRef.get()->getType(), Sema::AA_Converting, true); |
| if (!Update.isUsable()) |
| return ExprError(); |
| } |
| |
| Update = SemaRef.BuildBinOp(S, Loc, BO_Assign, VarRef.get(), Update.get()); |
| } |
| return Update; |
| } |
| |
| /// Convert integer expression \a E to make it have at least \a Bits |
| /// bits. |
| static ExprResult widenIterationCount(unsigned Bits, Expr *E, Sema &SemaRef) { |
| if (E == nullptr) |
| return ExprError(); |
| ASTContext &C = SemaRef.Context; |
| QualType OldType = E->getType(); |
| unsigned HasBits = C.getTypeSize(OldType); |
| if (HasBits >= Bits) |
| return ExprResult(E); |
| // OK to convert to signed, because new type has more bits than old. |
| QualType NewType = C.getIntTypeForBitwidth(Bits, /* Signed */ true); |
| return SemaRef.PerformImplicitConversion(E, NewType, Sema::AA_Converting, |
| true); |
| } |
| |
| /// Check if the given expression \a E is a constant integer that fits |
| /// into \a Bits bits. |
| static bool fitsInto(unsigned Bits, bool Signed, const Expr *E, Sema &SemaRef) { |
| if (E == nullptr) |
| return false; |
| if (Optional<llvm::APSInt> Result = |
| E->getIntegerConstantExpr(SemaRef.Context)) |
| return Signed ? Result->isSignedIntN(Bits) : Result->isIntN(Bits); |
| return false; |
| } |
| |
| /// Build preinits statement for the given declarations. |
| static Stmt *buildPreInits(ASTContext &Context, |
| MutableArrayRef<Decl *> PreInits) { |
| if (!PreInits.empty()) { |
| return new (Context) DeclStmt( |
| DeclGroupRef::Create(Context, PreInits.begin(), PreInits.size()), |
| SourceLocation(), SourceLocation()); |
| } |
| return nullptr; |
| } |
| |
| /// Build preinits statement for the given declarations. |
| static Stmt * |
| buildPreInits(ASTContext &Context, |
| const llvm::MapVector<const Expr *, DeclRefExpr *> &Captures) { |
| if (!Captures.empty()) { |
| SmallVector<Decl *, 16> PreInits; |
| for (const auto &Pair : Captures) |
| PreInits.push_back(Pair.second->getDecl()); |
| return buildPreInits(Context, PreInits); |
| } |
| return nullptr; |
| } |
| |
| /// Build postupdate expression for the given list of postupdates expressions. |
| static Expr *buildPostUpdate(Sema &S, ArrayRef<Expr *> PostUpdates) { |
| Expr *PostUpdate = nullptr; |
| if (!PostUpdates.empty()) { |
| for (Expr *E : PostUpdates) { |
| Expr *ConvE = S.BuildCStyleCastExpr( |
| E->getExprLoc(), |
| S.Context.getTrivialTypeSourceInfo(S.Context.VoidTy), |
| E->getExprLoc(), E) |
| .get(); |
| PostUpdate = PostUpdate |
| ? S.CreateBuiltinBinOp(ConvE->getExprLoc(), BO_Comma, |
| PostUpdate, ConvE) |
| .get() |
| : ConvE; |
| } |
| } |
| return PostUpdate; |
| } |
| |
| /// Called on a for stmt to check itself and nested loops (if any). |
| /// \return Returns 0 if one of the collapsed stmts is not canonical for loop, |
| /// number of collapsed loops otherwise. |
| static unsigned |
| checkOpenMPLoop(OpenMPDirectiveKind DKind, Expr *CollapseLoopCountExpr, |
| Expr *OrderedLoopCountExpr, Stmt *AStmt, Sema &SemaRef, |
| DSAStackTy &DSA, |
| Sema::VarsWithInheritedDSAType &VarsWithImplicitDSA, |
| OMPLoopBasedDirective::HelperExprs &Built) { |
| unsigned NestedLoopCount = 1; |
| bool SupportsNonPerfectlyNested = (SemaRef.LangOpts.OpenMP >= 50) && |
| !isOpenMPLoopTransformationDirective(DKind); |
| |
| if (CollapseLoopCountExpr) { |
| // Found 'collapse' clause - calculate collapse number. |
| Expr::EvalResult Result; |
| if (!CollapseLoopCountExpr->isValueDependent() && |
| CollapseLoopCountExpr->EvaluateAsInt(Result, SemaRef.getASTContext())) { |
| NestedLoopCount = Result.Val.getInt().getLimitedValue(); |
| } else { |
| Built.clear(/*Size=*/1); |
| return 1; |
| } |
| } |
| unsigned OrderedLoopCount = 1; |
| if (OrderedLoopCountExpr) { |
| // Found 'ordered' clause - calculate collapse number. |
| Expr::EvalResult EVResult; |
| if (!OrderedLoopCountExpr->isValueDependent() && |
| OrderedLoopCountExpr->EvaluateAsInt(EVResult, |
| SemaRef.getASTContext())) { |
| llvm::APSInt Result = EVResult.Val.getInt(); |
| if (Result.getLimitedValue() < NestedLoopCount) { |
| SemaRef.Diag(OrderedLoopCountExpr->getExprLoc(), |
| diag::err_omp_wrong_ordered_loop_count) |
| << OrderedLoopCountExpr->getSourceRange(); |
| SemaRef.Diag(CollapseLoopCountExpr->getExprLoc(), |
| diag::note_collapse_loop_count) |
| << CollapseLoopCountExpr->getSourceRange(); |
| } |
| OrderedLoopCount = Result.getLimitedValue(); |
| } else { |
| Built.clear(/*Size=*/1); |
| return 1; |
| } |
| } |
| // This is helper routine for loop directives (e.g., 'for', 'simd', |
| // 'for simd', etc.). |
| llvm::MapVector<const Expr *, DeclRefExpr *> Captures; |
| unsigned NumLoops = std::max(OrderedLoopCount, NestedLoopCount); |
| SmallVector<LoopIterationSpace, 4> IterSpaces(NumLoops); |
| if (!OMPLoopBasedDirective::doForAllLoops( |
| AStmt->IgnoreContainers(!isOpenMPLoopTransformationDirective(DKind)), |
| SupportsNonPerfectlyNested, NumLoops, |
| [DKind, &SemaRef, &DSA, NumLoops, NestedLoopCount, |
| CollapseLoopCountExpr, OrderedLoopCountExpr, &VarsWithImplicitDSA, |
| &IterSpaces, &Captures](unsigned Cnt, Stmt *CurStmt) { |
| if (checkOpenMPIterationSpace( |
| DKind, CurStmt, SemaRef, DSA, Cnt, NestedLoopCount, |
| NumLoops, CollapseLoopCountExpr, OrderedLoopCountExpr, |
| VarsWithImplicitDSA, IterSpaces, Captures)) |
| return true; |
| if (Cnt > 0 && Cnt >= NestedLoopCount && |
| IterSpaces[Cnt].CounterVar) { |
| // Handle initialization of captured loop iterator variables. |
| auto *DRE = cast<DeclRefExpr>(IterSpaces[Cnt].CounterVar); |
| if (isa<OMPCapturedExprDecl>(DRE->getDecl())) { |
| Captures[DRE] = DRE; |
| } |
| } |
| return false; |
| }, |
| [&SemaRef, &Captures](OMPLoopTransformationDirective *Transform) { |
| Stmt *DependentPreInits = Transform->getPreInits(); |
| if (!DependentPreInits) |
| return; |
| for (Decl *C : cast<DeclStmt>(DependentPreInits)->getDeclGroup()) { |
| auto *D = cast<VarDecl>(C); |
| DeclRefExpr *Ref = buildDeclRefExpr(SemaRef, D, D->getType(), |
| Transform->getBeginLoc()); |
| Captures[Ref] = Ref; |
| } |
| })) |
| return 0; |
| |
| Built.clear(/* size */ NestedLoopCount); |
| |
| if (SemaRef.CurContext->isDependentContext()) |
| return NestedLoopCount; |
| |
| // An example of what is generated for the following code: |
| // |
| // #pragma omp simd collapse(2) ordered(2) |
| // for (i = 0; i < NI; ++i) |
| // for (k = 0; k < NK; ++k) |
| // for (j = J0; j < NJ; j+=2) { |
| // <loop body> |
| // } |
| // |
| // We generate the code below. |
| // Note: the loop body may be outlined in CodeGen. |
| // Note: some counters may be C++ classes, operator- is used to find number of |
| // iterations and operator+= to calculate counter value. |
| // Note: decltype(NumIterations) must be integer type (in 'omp for', only i32 |
| // or i64 is currently supported). |
| // |
| // #define NumIterations (NI * ((NJ - J0 - 1 + 2) / 2)) |
| // for (int[32|64]_t IV = 0; IV < NumIterations; ++IV ) { |
| // .local.i = IV / ((NJ - J0 - 1 + 2) / 2); |
| // .local.j = J0 + (IV % ((NJ - J0 - 1 + 2) / 2)) * 2; |
| // // similar updates for vars in clauses (e.g. 'linear') |
| // <loop body (using local i and j)> |
| // } |
| // i = NI; // assign final values of counters |
| // j = NJ; |
| // |
| |
| // Last iteration number is (I1 * I2 * ... In) - 1, where I1, I2 ... In are |
| // the iteration counts of the collapsed for loops. |
| // Precondition tests if there is at least one iteration (all conditions are |
| // true). |
| auto PreCond = ExprResult(IterSpaces[0].PreCond); |
| Expr *N0 = IterSpaces[0].NumIterations; |
| ExprResult LastIteration32 = |
| widenIterationCount(/*Bits=*/32, |
| SemaRef |
| .PerformImplicitConversion( |
| N0->IgnoreImpCasts(), N0->getType(), |
| Sema::AA_Converting, /*AllowExplicit=*/true) |
| .get(), |
| SemaRef); |
| ExprResult LastIteration64 = widenIterationCount( |
| /*Bits=*/64, |
| SemaRef |
| .PerformImplicitConversion(N0->IgnoreImpCasts(), N0->getType(), |
| Sema::AA_Converting, |
| /*AllowExplicit=*/true) |
| .get(), |
| SemaRef); |
| |
| if (!LastIteration32.isUsable() || !LastIteration64.isUsable()) |
| return NestedLoopCount; |
| |
| ASTContext &C = SemaRef.Context; |
| bool AllCountsNeedLessThan32Bits = C.getTypeSize(N0->getType()) < 32; |
| |
| Scope *CurScope = DSA.getCurScope(); |
| for (unsigned Cnt = 1; Cnt < NestedLoopCount; ++Cnt) { |
| if (PreCond.isUsable()) { |
| PreCond = |
| SemaRef.BuildBinOp(CurScope, PreCond.get()->getExprLoc(), BO_LAnd, |
| PreCond.get(), IterSpaces[Cnt].PreCond); |
| } |
| Expr *N = IterSpaces[Cnt].NumIterations; |
| SourceLocation Loc = N->getExprLoc(); |
| AllCountsNeedLessThan32Bits &= C.getTypeSize(N->getType()) < 32; |
| if (LastIteration32.isUsable()) |
| LastIteration32 = SemaRef.BuildBinOp( |
| CurScope, Loc, BO_Mul, LastIteration32.get(), |
| SemaRef |
| .PerformImplicitConversion(N->IgnoreImpCasts(), N->getType(), |
| Sema::AA_Converting, |
| /*AllowExplicit=*/true) |
| .get()); |
| if (LastIteration64.isUsable()) |
| LastIteration64 = SemaRef.BuildBinOp( |
| CurScope, Loc, BO_Mul, LastIteration64.get(), |
| SemaRef |
| .PerformImplicitConversion(N->IgnoreImpCasts(), N->getType(), |
| Sema::AA_Converting, |
| /*AllowExplicit=*/true) |
| .get()); |
| } |
| |
| // Choose either the 32-bit or 64-bit version. |
| ExprResult LastIteration = LastIteration64; |
| if (SemaRef.getLangOpts().OpenMPOptimisticCollapse || |
| (LastIteration32.isUsable() && |
| C.getTypeSize(LastIteration32.get()->getType()) == 32 && |
| (AllCountsNeedLessThan32Bits || NestedLoopCount == 1 || |
| fitsInto( |
| /*Bits=*/32, |
| LastIteration32.get()->getType()->hasSignedIntegerRepresentation(), |
| LastIteration64.get(), SemaRef)))) |
| LastIteration = LastIteration32; |
| QualType VType = LastIteration.get()->getType(); |
| QualType RealVType = VType; |
| QualType StrideVType = VType; |
| if (isOpenMPTaskLoopDirective(DKind)) { |
| VType = |
| SemaRef.Context.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0); |
| StrideVType = |
| SemaRef.Context.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); |
| } |
| |
| if (!LastIteration.isUsable()) |
| return 0; |
| |
| // Save the number of iterations. |
| ExprResult NumIterations = LastIteration; |
| { |
| LastIteration = SemaRef.BuildBinOp( |
| CurScope, LastIteration.get()->getExprLoc(), BO_Sub, |
| LastIteration.get(), |
| SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get()); |
| if (!LastIteration.isUsable()) |
| return 0; |
| } |
| |
| // Calculate the last iteration number beforehand instead of doing this on |
| // each iteration. Do not do this if the number of iterations may be kfold-ed. |
| bool IsConstant = LastIteration.get()->isIntegerConstantExpr(SemaRef.Context); |
| ExprResult CalcLastIteration; |
| if (!IsConstant) { |
| ExprResult SaveRef = |
| tryBuildCapture(SemaRef, LastIteration.get(), Captures); |
| LastIteration = SaveRef; |
| |
| // Prepare SaveRef + 1. |
| NumIterations = SemaRef.BuildBinOp( |
| CurScope, SaveRef.get()->getExprLoc(), BO_Add, SaveRef.get(), |
| SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get()); |
| if (!NumIterations.isUsable()) |
| return 0; |
| } |
| |
| SourceLocation InitLoc = IterSpaces[0].InitSrcRange.getBegin(); |
| |
| // Build variables passed into runtime, necessary for worksharing directives. |
| ExprResult LB, UB, IL, ST, EUB, CombLB, CombUB, PrevLB, PrevUB, CombEUB; |
| if (isOpenMPWorksharingDirective(DKind) || isOpenMPTaskLoopDirective(DKind) || |
| isOpenMPDistributeDirective(DKind) || |
| isOpenMPGenericLoopDirective(DKind) || |
| isOpenMPLoopTransformationDirective(DKind)) { |
| // Lower bound variable, initialized with zero. |
| VarDecl *LBDecl = buildVarDecl(SemaRef, InitLoc, VType, ".omp.lb"); |
| LB = buildDeclRefExpr(SemaRef, LBDecl, VType, InitLoc); |
| SemaRef.AddInitializerToDecl(LBDecl, |
| SemaRef.ActOnIntegerConstant(InitLoc, 0).get(), |
| /*DirectInit*/ false); |
| |
| // Upper bound variable, initialized with last iteration number. |
| VarDecl *UBDecl = buildVarDecl(SemaRef, InitLoc, VType, ".omp.ub"); |
| UB = buildDeclRefExpr(SemaRef, UBDecl, VType, InitLoc); |
| SemaRef.AddInitializerToDecl(UBDecl, LastIteration.get(), |
| /*DirectInit*/ false); |
| |
| // A 32-bit variable-flag where runtime returns 1 for the last iteration. |
| // This will be used to implement clause 'lastprivate'. |
| QualType Int32Ty = SemaRef.Context.getIntTypeForBitwidth(32, true); |
| VarDecl *ILDecl = buildVarDecl(SemaRef, InitLoc, Int32Ty, ".omp.is_last"); |
| IL = buildDeclRefExpr(SemaRef, ILDecl, Int32Ty, InitLoc); |
| SemaRef.AddInitializerToDecl(ILDecl, |
| SemaRef.ActOnIntegerConstant(InitLoc, 0).get(), |
| /*DirectInit*/ false); |
| |
| // Stride variable returned by runtime (we initialize it to 1 by default). |
| VarDecl *STDecl = |
| buildVarDecl(SemaRef, InitLoc, StrideVType, ".omp.stride"); |
| ST = buildDeclRefExpr(SemaRef, STDecl, StrideVType, InitLoc); |
| SemaRef.AddInitializerToDecl(STDecl, |
| SemaRef.ActOnIntegerConstant(InitLoc, 1).get(), |
| /*DirectInit*/ false); |
| |
| // Build expression: UB = min(UB, LastIteration) |
| // It is necessary for CodeGen of directives with static scheduling. |
| ExprResult IsUBGreater = SemaRef.BuildBinOp(CurScope, InitLoc, BO_GT, |
| UB.get(), LastIteration.get()); |
| ExprResult CondOp = SemaRef.ActOnConditionalOp( |
| LastIteration.get()->getExprLoc(), InitLoc, IsUBGreater.get(), |
| LastIteration.get(), UB.get()); |
| EUB = SemaRef.BuildBinOp(CurScope, InitLoc, BO_Assign, UB.get(), |
| CondOp.get()); |
| EUB = SemaRef.ActOnFinishFullExpr(EUB.get(), /*DiscardedValue*/ false); |
| |
| // If we have a combined directive that combines 'distribute', 'for' or |
| // 'simd' we need to be able to access the bounds of the schedule of the |
| // enclosing region. E.g. in 'distribute parallel for' the bounds obtained |
| // by scheduling 'distribute' have to be passed to the schedule of 'for'. |
| if (isOpenMPLoopBoundSharingDirective(DKind)) { |
| // Lower bound variable, initialized with zero. |
| VarDecl *CombLBDecl = |
| buildVarDecl(SemaRef, InitLoc, VType, ".omp.comb.lb"); |
| CombLB = buildDeclRefExpr(SemaRef, CombLBDecl, VType, InitLoc); |
| SemaRef.AddInitializerToDecl( |
| CombLBDecl, SemaRef.ActOnIntegerConstant(InitLoc, 0).get(), |
| /*DirectInit*/ false); |
| |
| // Upper bound variable, initialized with last iteration number. |
| VarDecl *CombUBDecl = |
| buildVarDecl(SemaRef, InitLoc, VType, ".omp.comb.ub"); |
| CombUB = buildDeclRefExpr(SemaRef, CombUBDecl, VType, InitLoc); |
| SemaRef.AddInitializerToDecl(CombUBDecl, LastIteration.get(), |
| /*DirectInit*/ false); |
| |
| ExprResult CombIsUBGreater = SemaRef.BuildBinOp( |
| CurScope, InitLoc, BO_GT, CombUB.get(), LastIteration.get()); |
| ExprResult CombCondOp = |
| SemaRef.ActOnConditionalOp(InitLoc, InitLoc, CombIsUBGreater.get(), |
| LastIteration.get(), CombUB.get()); |
| CombEUB = SemaRef.BuildBinOp(CurScope, InitLoc, BO_Assign, CombUB.get(), |
| CombCondOp.get()); |
| CombEUB = |
| SemaRef.ActOnFinishFullExpr(CombEUB.get(), /*DiscardedValue*/ false); |
| |
| const CapturedDecl *CD = cast<CapturedStmt>(AStmt)->getCapturedDecl(); |
| // We expect to have at least 2 more parameters than the 'parallel' |
| // directive does - the lower and upper bounds of the previous schedule. |
| assert(CD->getNumParams() >= 4 && |
| "Unexpected number of parameters in loop combined directive"); |
| |
| // Set the proper type for the bounds given what we learned from the |
| // enclosed loops. |
| ImplicitParamDecl *PrevLBDecl = CD->getParam(/*PrevLB=*/2); |
| ImplicitParamDecl *PrevUBDecl = CD->getParam(/*PrevUB=*/3); |
| |
| // Previous lower and upper bounds are obtained from the region |
| // parameters. |
| PrevLB = |
| buildDeclRefExpr(SemaRef, PrevLBDecl, PrevLBDecl->getType(), InitLoc); |
| PrevUB = |
| buildDeclRefExpr(SemaRef, PrevUBDecl, PrevUBDecl->getType(), InitLoc); |
| } |
| } |
| |
| // Build the iteration variable and its initialization before loop. |
| ExprResult IV; |
| ExprResult Init, CombInit; |
| { |
| VarDecl *IVDecl = buildVarDecl(SemaRef, InitLoc, RealVType, ".omp.iv"); |
| IV = buildDeclRefExpr(SemaRef, IVDecl, RealVType, InitLoc); |
| Expr *RHS = (isOpenMPWorksharingDirective(DKind) || |
| isOpenMPGenericLoopDirective(DKind) || |
| isOpenMPTaskLoopDirective(DKind) || |
| isOpenMPDistributeDirective(DKind) || |
| isOpenMPLoopTransformationDirective(DKind)) |
| ? LB.get() |
| : SemaRef.ActOnIntegerConstant(SourceLocation(), 0).get(); |
| Init = SemaRef.BuildBinOp(CurScope, InitLoc, BO_Assign, IV.get(), RHS); |
| Init = SemaRef.ActOnFinishFullExpr(Init.get(), /*DiscardedValue*/ false); |
| |
| if (isOpenMPLoopBoundSharingDirective(DKind)) { |
| Expr *CombRHS = |
| (isOpenMPWorksharingDirective(DKind) || |
| isOpenMPGenericLoopDirective(DKind) || |
| isOpenMPTaskLoopDirective(DKind) || |
| isOpenMPDistributeDirective(DKind)) |
| ? CombLB.get() |
| : SemaRef.ActOnIntegerConstant(SourceLocation(), 0).get(); |
| CombInit = |
| SemaRef.BuildBinOp(CurScope, InitLoc, BO_Assign, IV.get(), CombRHS); |
| CombInit = |
| SemaRef.ActOnFinishFullExpr(CombInit.get(), /*DiscardedValue*/ false); |
| } |
| } |
| |
| bool UseStrictCompare = |
| RealVType->hasUnsignedIntegerRepresentation() && |
| llvm::all_of(IterSpaces, [](const LoopIterationSpace &LIS) { |
| return LIS.IsStrictCompare; |
| }); |
| // Loop condition (IV < NumIterations) or (IV <= UB or IV < UB + 1 (for |
| // unsigned IV)) for worksharing loops. |
| SourceLocation CondLoc = AStmt->getBeginLoc(); |
| Expr *BoundUB = UB.get(); |
| if (UseStrictCompare) { |
| BoundUB = |
| SemaRef |
| .BuildBinOp(CurScope, CondLoc, BO_Add, BoundUB, |
| SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get()) |
| .get(); |
| BoundUB = |
| SemaRef.ActOnFinishFullExpr(BoundUB, /*DiscardedValue*/ false).get(); |
| } |
| ExprResult Cond = |
| (isOpenMPWorksharingDirective(DKind) || |
| isOpenMPGenericLoopDirective(DKind) || |
| isOpenMPTaskLoopDirective(DKind) || isOpenMPDistributeDirective(DKind) || |
| isOpenMPLoopTransformationDirective(DKind)) |
| ? SemaRef.BuildBinOp(CurScope, CondLoc, |
| UseStrictCompare ? BO_LT : BO_LE, IV.get(), |
| BoundUB) |
| : SemaRef.BuildBinOp(CurScope, CondLoc, BO_LT, IV.get(), |
| NumIterations.get()); |
| ExprResult CombDistCond; |
| if (isOpenMPLoopBoundSharingDirective(DKind)) { |
| CombDistCond = SemaRef.BuildBinOp(CurScope, CondLoc, BO_LT, IV.get(), |
| NumIterations.get()); |
| } |
| |
| ExprResult CombCond; |
| if (isOpenMPLoopBoundSharingDirective(DKind)) { |
| Expr *BoundCombUB = CombUB.get(); |
| if (UseStrictCompare) { |
| BoundCombUB = |
| SemaRef |
| .BuildBinOp( |
| CurScope, CondLoc, BO_Add, BoundCombUB, |
| SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get()) |
| .get(); |
| BoundCombUB = |
| SemaRef.ActOnFinishFullExpr(BoundCombUB, /*DiscardedValue*/ false) |
| .get(); |
| } |
| CombCond = |
| SemaRef.BuildBinOp(CurScope, CondLoc, UseStrictCompare ? BO_LT : BO_LE, |
| IV.get(), BoundCombUB); |
| } |
| // Loop increment (IV = IV + 1) |
| SourceLocation IncLoc = AStmt->getBeginLoc(); |
| ExprResult Inc = |
| SemaRef.BuildBinOp(CurScope, IncLoc, BO_Add, IV.get(), |
| SemaRef.ActOnIntegerConstant(IncLoc, 1).get()); |
| if (!Inc.isUsable()) |
| return 0; |
| Inc = SemaRef.BuildBinOp(CurScope, IncLoc, BO_Assign, IV.get(), Inc.get()); |
| Inc = SemaRef.ActOnFinishFullExpr(Inc.get(), /*DiscardedValue*/ false); |
| if (!Inc.isUsable()) |
| return 0; |
| |
| // Increments for worksharing loops (LB = LB + ST; UB = UB + ST). |
| // Used for directives with static scheduling. |
| // In combined construct, add combined version that use CombLB and CombUB |
| // base variables for the update |
| ExprResult NextLB, NextUB, CombNextLB, CombNextUB; |
| if (isOpenMPWorksharingDirective(DKind) || isOpenMPTaskLoopDirective(DKind) || |
| isOpenMPGenericLoopDirective(DKind) || |
| isOpenMPDistributeDirective(DKind) || |
| isOpenMPLoopTransformationDirective(DKind)) { |
| // LB + ST |
| NextLB = SemaRef.BuildBinOp(CurScope, IncLoc, BO_Add, LB.get(), ST.get()); |
| if (!NextLB.isUsable()) |
| return 0; |
| // LB = LB + ST |
| NextLB = |
| SemaRef.BuildBinOp(CurScope, IncLoc, BO_Assign, LB.get(), NextLB.get()); |
| NextLB = |
| SemaRef.ActOnFinishFullExpr(NextLB.get(), /*DiscardedValue*/ false); |
| if (!NextLB.isUsable()) |
| return 0; |
| // UB + ST |
| NextUB = SemaRef.BuildBinOp(CurScope, IncLoc, BO_Add, UB.get(), ST.get()); |
| if (!NextUB.isUsable()) |
| return 0; |
| // UB = UB + ST |
| NextUB = |
| SemaRef.BuildBinOp(CurScope, IncLoc, BO_Assign, UB.get(), NextUB.get()); |
| NextUB = |
| SemaRef.ActOnFinishFullExpr(NextUB.get(), /*DiscardedValue*/ false); |
| if (!NextUB.isUsable()) |
| return 0; |
| if (isOpenMPLoopBoundSharingDirective(DKind)) { |
| CombNextLB = |
| SemaRef.BuildBinOp(CurScope, IncLoc, BO_Add, CombLB.get(), ST.get()); |
| if (!NextLB.isUsable()) |
| return 0; |
| // LB = LB + ST |
| CombNextLB = SemaRef.BuildBinOp(CurScope, IncLoc, BO_Assign, CombLB.get(), |
| CombNextLB.get()); |
| CombNextLB = SemaRef.ActOnFinishFullExpr(CombNextLB.get(), |
| /*DiscardedValue*/ false); |
| if (!CombNextLB.isUsable()) |
| return 0; |
| // UB + ST |
| CombNextUB = |
| SemaRef.BuildBinOp(CurScope, IncLoc, BO_Add, CombUB.get(), ST.get()); |
| if (!CombNextUB.isUsable()) |
| return 0; |
| // UB = UB + ST |
| CombNextUB = SemaRef.BuildBinOp(CurScope, IncLoc, BO_Assign, CombUB.get(), |
| CombNextUB.get()); |
| CombNextUB = SemaRef.ActOnFinishFullExpr(CombNextUB.get(), |
| /*DiscardedValue*/ false); |
| if (!CombNextUB.isUsable()) |
| return 0; |
| } |
| } |
| |
| // Create increment expression for distribute loop when combined in a same |
| // directive with for as IV = IV + ST; ensure upper bound expression based |
| // on PrevUB instead of NumIterations - used to implement 'for' when found |
| // in combination with 'distribute', like in 'distribute parallel for' |
| SourceLocation DistIncLoc = AStmt->getBeginLoc(); |
| ExprResult DistCond, DistInc, PrevEUB, ParForInDistCond; |
| if (isOpenMPLoopBoundSharingDirective(DKind)) { |
| DistCond = SemaRef.BuildBinOp( |
| CurScope, CondLoc, UseStrictCompare ? BO_LT : BO_LE, IV.get(), BoundUB); |
| assert(DistCond.isUsable() && "distribute cond expr was not built"); |
| |
| DistInc = |
| SemaRef.BuildBinOp(CurScope, DistIncLoc, BO_Add, IV.get(), ST.get()); |
| assert(DistInc.isUsable() && "distribute inc expr was not built"); |
| DistInc = SemaRef.BuildBinOp(CurScope, DistIncLoc, BO_Assign, IV.get(), |
| DistInc.get()); |
| DistInc = |
| SemaRef.ActOnFinishFullExpr(DistInc.get(), /*DiscardedValue*/ false); |
| assert(DistInc.isUsable() && "distribute inc expr was not built"); |
| |
| // Build expression: UB = min(UB, prevUB) for #for in composite or combined |
| // construct |
| ExprResult NewPrevUB = PrevUB; |
| SourceLocation DistEUBLoc = AStmt->getBeginLoc(); |
| if (!SemaRef.Context.hasSameType(UB.get()->getType(), |
| PrevUB.get()->getType())) { |
| NewPrevUB = SemaRef.BuildCStyleCastExpr( |
| DistEUBLoc, |
| SemaRef.Context.getTrivialTypeSourceInfo(UB.get()->getType()), |
| DistEUBLoc, NewPrevUB.get()); |
| if (!NewPrevUB.isUsable()) |
| return 0; |
| } |
| ExprResult IsUBGreater = SemaRef.BuildBinOp(CurScope, DistEUBLoc, BO_GT, |
| UB.get(), NewPrevUB.get()); |
| ExprResult CondOp = SemaRef.ActOnConditionalOp( |
| DistEUBLoc, DistEUBLoc, IsUBGreater.get(), NewPrevUB.get(), UB.get()); |
| PrevEUB = SemaRef.BuildBinOp(CurScope, DistIncLoc, BO_Assign, UB.get(), |
| CondOp.get()); |
| PrevEUB = |
| SemaRef.ActOnFinishFullExpr(PrevEUB.get(), /*DiscardedValue*/ false); |
| |
| // Build IV <= PrevUB or IV < PrevUB + 1 for unsigned IV to be used in |
| // parallel for is in combination with a distribute directive with |
| // schedule(static, 1) |
| Expr *BoundPrevUB = PrevUB.get(); |
| if (UseStrictCompare) { |
| BoundPrevUB = |
| SemaRef |
| .BuildBinOp( |
| CurScope, CondLoc, BO_Add, BoundPrevUB, |
| SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get()) |
| .get(); |
| BoundPrevUB = |
| SemaRef.ActOnFinishFullExpr(BoundPrevUB, /*DiscardedValue*/ false) |
| .get(); |
| } |
| ParForInDistCond = |
| SemaRef.BuildBinOp(CurScope, CondLoc, UseStrictCompare ? BO_LT : BO_LE, |
| IV.get(), BoundPrevUB); |
| } |
| |
| // Build updates and final values of the loop counters. |
| bool HasErrors = false; |
| Built.Counters.resize(NestedLoopCount); |
| Built.Inits.resize(NestedLoopCount); |
| Built.Updates.resize(NestedLoopCount); |
| Built.Finals.resize(NestedLoopCount); |
| Built.DependentCounters.resize(NestedLoopCount); |
| Built.DependentInits.resize(NestedLoopCount); |
| Built.FinalsConditions.resize(NestedLoopCount); |
| { |
| // We implement the following algorithm for obtaining the |
| // original loop iteration variable values based on the |
| // value of the collapsed loop iteration variable IV. |
| // |
| // Let n+1 be the number of collapsed loops in the nest. |
| // Iteration variables (I0, I1, .... In) |
| // Iteration counts (N0, N1, ... Nn) |
| // |
| // Acc = IV; |
| // |
| // To compute Ik for loop k, 0 <= k <= n, generate: |
| // Prod = N(k+1) * N(k+2) * ... * Nn; |
| // Ik = Acc / Prod; |
| // Acc -= Ik * Prod; |
| // |
| ExprResult Acc = IV; |
| for (unsigned int Cnt = 0; Cnt < NestedLoopCount; ++Cnt) { |
| LoopIterationSpace &IS = IterSpaces[Cnt]; |
| SourceLocation UpdLoc = IS.IncSrcRange.getBegin(); |
| ExprResult Iter; |
| |
| // Compute prod |
| ExprResult Prod = |
| SemaRef.ActOnIntegerConstant(SourceLocation(), 1).get(); |
| for (unsigned int K = Cnt+1; K < NestedLoopCount; ++K) |
| Prod = SemaRef.BuildBinOp(CurScope, UpdLoc, BO_Mul, Prod.get(), |
| IterSpaces[K].NumIterations); |
| |
| // Iter = Acc / Prod |
| // If there is at least one more inner loop to avoid |
| // multiplication by 1. |
| if (Cnt + 1 < NestedLoopCount) |
| Iter = SemaRef.BuildBinOp(CurScope, UpdLoc, BO_Div, |
| Acc.get(), Prod.get()); |
| else |
| Iter = Acc; |
| if (!Iter.isUsable()) { |
| HasErrors = true; |
| break; |
| } |
| |
| // Update Acc: |
| // Acc -= Iter * Prod |
| // Check if there is at least one more inner loop to avoid |
| // multiplication by 1. |
| if (Cnt + 1 < NestedLoopCount) |
| Prod = SemaRef.BuildBinOp(CurScope, UpdLoc, BO_Mul, |
| Iter.get(), Prod.get()); |
| else |
| Prod = Iter; |
| Acc = SemaRef.BuildBinOp(CurScope, UpdLoc, BO_Sub, |
| Acc.get(), Prod.get()); |
| |
| // Build update: IS.CounterVar(Private) = IS.Start + Iter * IS.Step |
| auto *VD = cast<VarDecl>(cast<DeclRefExpr>(IS.CounterVar)->getDecl()); |
| DeclRefExpr *CounterVar = buildDeclRefExpr( |
| SemaRef, VD, IS.CounterVar->getType(), IS.CounterVar->getExprLoc(), |
| /*RefersToCapture=*/true); |
| ExprResult Init = |
| buildCounterInit(SemaRef, CurScope, UpdLoc, CounterVar, |
| IS.CounterInit, IS.IsNonRectangularLB, Captures); |
| if (!Init.isUsable()) { |
| HasErrors = true; |
| break; |
| } |
| ExprResult Update = buildCounterUpdate( |
| SemaRef, CurScope, UpdLoc, CounterVar, IS.CounterInit, Iter, |
| IS.CounterStep, IS.Subtract, IS.IsNonRectangularLB, &Captures); |
| if (!Update.isUsable()) { |
| HasErrors = true; |
| break; |
| } |
| |
| // Build final: IS.CounterVar = IS.Start + IS.NumIters * IS.Step |
| ExprResult Final = |
| buildCounterUpdate(SemaRef, CurScope, UpdLoc, CounterVar, |
| IS.CounterInit, IS.NumIterations, IS.CounterStep, |
| IS.Subtract, IS.IsNonRectangularLB, &Captures); |
| if (!Final.isUsable()) { |
| HasErrors = true; |
| break; |
| } |
| |
| if (!Update.isUsable() || !Final.isUsable()) { |
| HasErrors = true; |
| break; |
| } |
| // Save results |
| Built.Counters[Cnt] = IS.CounterVar; |
| Built.PrivateCounters[Cnt] = IS.PrivateCounterVar; |
| Built.Inits[Cnt] = Init.get(); |
| Built.Updates[Cnt] = Update.get(); |
| Built.Finals[Cnt] = Final.get(); |
| Built.DependentCounters[Cnt] = nullptr; |
| Built.DependentInits[Cnt] = nullptr; |
| Built.FinalsConditions[Cnt] = nullptr; |
| if (IS.IsNonRectangularLB || IS.IsNonRectangularUB) { |
| Built.DependentCounters[Cnt] = |
| Built.Counters[NestedLoopCount - 1 - IS.LoopDependentIdx]; |
| Built.DependentInits[Cnt] = |
| Built.Inits[NestedLoopCount - 1 - IS.LoopDependentIdx]; |
| Built.FinalsConditions[Cnt] = IS.FinalCondition; |
| } |
| } |
| } |
| |
| if (HasErrors) |
| return 0; |
| |
| // Save results |
| Built.IterationVarRef = IV.get(); |
| Built.LastIteration = LastIteration.get(); |
| Built.NumIterations = NumIterations.get(); |
| Built.CalcLastIteration = SemaRef |
| .ActOnFinishFullExpr(CalcLastIteration.get(), |
| /*DiscardedValue=*/false) |
| .get(); |
| Built.PreCond = PreCond.get(); |
| Built.PreInits = buildPreInits(C, Captures); |
| Built.Cond = Cond.get(); |
| Built.Init = Init.get(); |
| Built.Inc = Inc.get(); |
| Built.LB = LB.get(); |
| Built.UB = UB.get(); |
| Built.IL = IL.get(); |
| Built.ST = ST.get(); |
| Built.EUB = EUB.get(); |
| Built.NLB = NextLB.get(); |
| Built.NUB = NextUB.get(); |
| Built.PrevLB = PrevLB.get(); |
| Built.PrevUB = PrevUB.get(); |
| Built.DistInc = DistInc.get(); |
| Built.PrevEUB = PrevEUB.get(); |
| Built.DistCombinedFields.LB = CombLB.get(); |
| Built.DistCombinedFields.UB = CombUB.get(); |
| Built.DistCombinedFields.EUB = CombEUB.get(); |
| Built.DistCombinedFields.Init = CombInit.get(); |
| Built.DistCombinedFields.Cond = CombCond.get(); |
| Built.DistCombinedFields.NLB = CombNextLB.get(); |
| Built.DistCombinedFields.NUB = CombNextUB.get(); |
| Built.DistCombinedFields.DistCond = CombDistCond.get(); |
| Built.DistCombinedFields.ParForInDistCond = ParForInDistCond.get(); |
| |
| return NestedLoopCount; |
| } |
| |
| static Expr *getCollapseNumberExpr(ArrayRef<OMPClause *> Clauses) { |
| auto CollapseClauses = |
| OMPExecutableDirective::getClausesOfKind<OMPCollapseClause>(Clauses); |
| if (CollapseClauses.begin() != CollapseClauses.end()) |
| return (*CollapseClauses.begin())->getNumForLoops(); |
| return nullptr; |
| } |
| |
| static Expr *getOrderedNumberExpr(ArrayRef<OMPClause *> Clauses) { |
| auto OrderedClauses = |
| OMPExecutableDirective::getClausesOfKind<OMPOrderedClause>(Clauses); |
| if (OrderedClauses.begin() != OrderedClauses.end()) |
| return (*OrderedClauses.begin())->getNumForLoops(); |
| return nullptr; |
| } |
| |
| static bool checkSimdlenSafelenSpecified(Sema &S, |
| const ArrayRef<OMPClause *> Clauses) { |
| const OMPSafelenClause *Safelen = nullptr; |
| const OMPSimdlenClause *Simdlen = nullptr; |
| |
| for (const OMPClause *Clause : Clauses) { |
| if (Clause->getClauseKind() == OMPC_safelen) |
| Safelen = cast<OMPSafelenClause>(Clause); |
| else if (Clause->getClauseKind() == OMPC_simdlen) |
| Simdlen = cast<OMPSimdlenClause>(Clause); |
| if (Safelen && Simdlen) |
| break; |
| } |
| |
| if (Simdlen && Safelen) { |
| const Expr *SimdlenLength = Simdlen->getSimdlen(); |
| const Expr *SafelenLength = Safelen->getSafelen(); |
| if (SimdlenLength->isValueDependent() || SimdlenLength->isTypeDependent() || |
| SimdlenLength->isInstantiationDependent() || |
| SimdlenLength->containsUnexpandedParameterPack()) |
| return false; |
| if (SafelenLength->isValueDependent() || SafelenLength->isTypeDependent() || |
| SafelenLength->isInstantiationDependent() || |
| SafelenLength->containsUnexpandedParameterPack()) |
| return false; |
| Expr::EvalResult SimdlenResult, SafelenResult; |
| SimdlenLength->EvaluateAsInt(SimdlenResult, S.Context); |
| SafelenLength->EvaluateAsInt(SafelenResult, S.Context); |
| llvm::APSInt SimdlenRes = SimdlenResult.Val.getInt(); |
| llvm::APSInt SafelenRes = SafelenResult.Val.getInt(); |
| // OpenMP 4.5 [2.8.1, simd Construct, Restrictions] |
| // If both simdlen and safelen clauses are specified, the value of the |
| // simdlen parameter must be less than or equal to the value of the safelen |
| // parameter. |
| if (SimdlenRes > SafelenRes) { |
| S.Diag(SimdlenLength->getExprLoc(), |
| diag::err_omp_wrong_simdlen_safelen_values) |
| << SimdlenLength->getSourceRange() << SafelenLength->getSourceRange(); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| StmtResult |
| Sema::ActOnOpenMPSimdDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt, |
| SourceLocation StartLoc, SourceLocation EndLoc, |
| VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| assert(isa<CapturedStmt>(AStmt) && "Captured statement expected"); |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' or 'ordered' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = checkOpenMPLoop( |
| OMPD_simd, getCollapseNumberExpr(Clauses), getOrderedNumberExpr(Clauses), |
| AStmt, *this, *DSAStack, VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp simd loop exprs were not built"); |
| |
| if (!CurContext->isDependentContext()) { |
| // Finalize the clauses that need pre-built expressions for CodeGen. |
| for (OMPClause *C : Clauses) { |
| if (auto *LC = dyn_cast<OMPLinearClause>(C)) |
| if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef), |
| B.NumIterations, *this, CurScope, |
| DSAStack)) |
| return StmtError(); |
| } |
| } |
| |
| if (checkSimdlenSafelenSpecified(*this, Clauses)) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPSimdDirective::Create(Context, StartLoc, EndLoc, NestedLoopCount, |
| Clauses, AStmt, B); |
| } |
| |
| StmtResult |
| Sema::ActOnOpenMPForDirective(ArrayRef<OMPClause *> Clauses, Stmt *AStmt, |
| SourceLocation StartLoc, SourceLocation EndLoc, |
| VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| assert(isa<CapturedStmt>(AStmt) && "Captured statement expected"); |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' or 'ordered' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = checkOpenMPLoop( |
| OMPD_for, getCollapseNumberExpr(Clauses), getOrderedNumberExpr(Clauses), |
| AStmt, *this, *DSAStack, VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp for loop exprs were not built"); |
| |
| if (!CurContext->isDependentContext()) { |
| // Finalize the clauses that need pre-built expressions for CodeGen. |
| for (OMPClause *C : Clauses) { |
| if (auto *LC = dyn_cast<OMPLinearClause>(C)) |
| if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef), |
| B.NumIterations, *this, CurScope, |
| DSAStack)) |
| return StmtError(); |
| } |
| } |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPForDirective::Create( |
| Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B, |
| DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion()); |
| } |
| |
| StmtResult Sema::ActOnOpenMPForSimdDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| assert(isa<CapturedStmt>(AStmt) && "Captured statement expected"); |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' or 'ordered' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = |
| checkOpenMPLoop(OMPD_for_simd, getCollapseNumberExpr(Clauses), |
| getOrderedNumberExpr(Clauses), AStmt, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp for simd loop exprs were not built"); |
| |
| if (!CurContext->isDependentContext()) { |
| // Finalize the clauses that need pre-built expressions for CodeGen. |
| for (OMPClause *C : Clauses) { |
| if (auto *LC = dyn_cast<OMPLinearClause>(C)) |
| if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef), |
| B.NumIterations, *this, CurScope, |
| DSAStack)) |
| return StmtError(); |
| } |
| } |
| |
| if (checkSimdlenSafelenSpecified(*this, Clauses)) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPForSimdDirective::Create(Context, StartLoc, EndLoc, NestedLoopCount, |
| Clauses, AStmt, B); |
| } |
| |
| StmtResult Sema::ActOnOpenMPSectionsDirective(ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| if (!AStmt) |
| return StmtError(); |
| |
| assert(isa<CapturedStmt>(AStmt) && "Captured statement expected"); |
| auto BaseStmt = AStmt; |
| while (auto *CS = dyn_cast_or_null<CapturedStmt>(BaseStmt)) |
| BaseStmt = CS->getCapturedStmt(); |
| if (auto *C = dyn_cast_or_null<CompoundStmt>(BaseStmt)) { |
| auto S = C->children(); |
| if (S.begin() == S.end()) |
| return StmtError(); |
| // All associated statements must be '#pragma omp section' except for |
| // the first one. |
| for (Stmt *SectionStmt : llvm::make_range(std::next(S.begin()), S.end())) { |
| if (!SectionStmt || !isa<OMPSectionDirective>(SectionStmt)) { |
| if (SectionStmt) |
| Diag(SectionStmt->getBeginLoc(), |
| diag::err_omp_sections_substmt_not_section); |
| return StmtError(); |
| } |
| cast<OMPSectionDirective>(SectionStmt) |
| ->setHasCancel(DSAStack->isCancelRegion()); |
| } |
| } else { |
| Diag(AStmt->getBeginLoc(), diag::err_omp_sections_not_compound_stmt); |
| return StmtError(); |
| } |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| return OMPSectionsDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt, |
| DSAStack->getTaskgroupReductionRef(), |
| DSAStack->isCancelRegion()); |
| } |
| |
| StmtResult Sema::ActOnOpenMPSectionDirective(Stmt *AStmt, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| if (!AStmt) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| DSAStack->setParentCancelRegion(DSAStack->isCancelRegion()); |
| |
| return OMPSectionDirective::Create(Context, StartLoc, EndLoc, AStmt, |
| DSAStack->isCancelRegion()); |
| } |
| |
| static Expr *getDirectCallExpr(Expr *E) { |
| E = E->IgnoreParenCasts()->IgnoreImplicit(); |
| if (auto *CE = dyn_cast<CallExpr>(E)) |
| if (CE->getDirectCallee()) |
| return E; |
| return nullptr; |
| } |
| |
| StmtResult Sema::ActOnOpenMPDispatchDirective(ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| if (!AStmt) |
| return StmtError(); |
| |
| Stmt *S = cast<CapturedStmt>(AStmt)->getCapturedStmt(); |
| |
| // 5.1 OpenMP |
| // expression-stmt : an expression statement with one of the following forms: |
| // expression = target-call ( [expression-list] ); |
| // target-call ( [expression-list] ); |
| |
| SourceLocation TargetCallLoc; |
| |
| if (!CurContext->isDependentContext()) { |
| Expr *TargetCall = nullptr; |
| |
| auto *E = dyn_cast<Expr>(S); |
| if (!E) { |
| Diag(S->getBeginLoc(), diag::err_omp_dispatch_statement_call); |
| return StmtError(); |
| } |
| |
| E = E->IgnoreParenCasts()->IgnoreImplicit(); |
| |
| if (auto *BO = dyn_cast<BinaryOperator>(E)) { |
| if (BO->getOpcode() == BO_Assign) |
| TargetCall = getDirectCallExpr(BO->getRHS()); |
| } else { |
| if (auto *COCE = dyn_cast<CXXOperatorCallExpr>(E)) |
| if (COCE->getOperator() == OO_Equal) |
| TargetCall = getDirectCallExpr(COCE->getArg(1)); |
| if (!TargetCall) |
| TargetCall = getDirectCallExpr(E); |
| } |
| if (!TargetCall) { |
| Diag(E->getBeginLoc(), diag::err_omp_dispatch_statement_call); |
| return StmtError(); |
| } |
| TargetCallLoc = TargetCall->getExprLoc(); |
| } |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| return OMPDispatchDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt, |
| TargetCallLoc); |
| } |
| |
| StmtResult Sema::ActOnOpenMPGenericLoopDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| // OpenMP 5.1 [2.11.7, loop construct] |
| // A list item may not appear in a lastprivate clause unless it is the |
| // loop iteration variable of a loop that is associated with the construct. |
| for (OMPClause *C : Clauses) { |
| if (auto *LPC = dyn_cast<OMPLastprivateClause>(C)) { |
| for (Expr *RefExpr : LPC->varlists()) { |
| SourceLocation ELoc; |
| SourceRange ERange; |
| Expr *SimpleRefExpr = RefExpr; |
| auto Res = getPrivateItem(*this, SimpleRefExpr, ELoc, ERange); |
| if (ValueDecl *D = Res.first) { |
| auto &&Info = DSAStack->isLoopControlVariable(D); |
| if (!Info.first) { |
| Diag(ELoc, diag::err_omp_lastprivate_loop_var_non_loop_iteration); |
| return StmtError(); |
| } |
| } |
| } |
| } |
| } |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| |
| OMPLoopDirective::HelperExprs B; |
| // In presence of clause 'collapse', it will define the nested loops number. |
| unsigned NestedLoopCount = checkOpenMPLoop( |
| OMPD_loop, getCollapseNumberExpr(Clauses), getOrderedNumberExpr(Clauses), |
| AStmt, *this, *DSAStack, VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp loop exprs were not built"); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPGenericLoopDirective::Create(Context, StartLoc, EndLoc, |
| NestedLoopCount, Clauses, AStmt, B); |
| } |
| |
| StmtResult Sema::ActOnOpenMPSingleDirective(ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| if (!AStmt) |
| return StmtError(); |
| |
| assert(isa<CapturedStmt>(AStmt) && "Captured statement expected"); |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| // OpenMP [2.7.3, single Construct, Restrictions] |
| // The copyprivate clause must not be used with the nowait clause. |
| const OMPClause *Nowait = nullptr; |
| const OMPClause *Copyprivate = nullptr; |
| for (const OMPClause *Clause : Clauses) { |
| if (Clause->getClauseKind() == OMPC_nowait) |
| Nowait = Clause; |
| else if (Clause->getClauseKind() == OMPC_copyprivate) |
| Copyprivate = Clause; |
| if (Copyprivate && Nowait) { |
| Diag(Copyprivate->getBeginLoc(), |
| diag::err_omp_single_copyprivate_with_nowait); |
| Diag(Nowait->getBeginLoc(), diag::note_omp_nowait_clause_here); |
| return StmtError(); |
| } |
| } |
| |
| return OMPSingleDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt); |
| } |
| |
| StmtResult Sema::ActOnOpenMPMasterDirective(Stmt *AStmt, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| if (!AStmt) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| return OMPMasterDirective::Create(Context, StartLoc, EndLoc, AStmt); |
| } |
| |
| StmtResult Sema::ActOnOpenMPMaskedDirective(ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| if (!AStmt) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| return OMPMaskedDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt); |
| } |
| |
| StmtResult Sema::ActOnOpenMPCriticalDirective( |
| const DeclarationNameInfo &DirName, ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, SourceLocation StartLoc, SourceLocation EndLoc) { |
| if (!AStmt) |
| return StmtError(); |
| |
| bool ErrorFound = false; |
| llvm::APSInt Hint; |
| SourceLocation HintLoc; |
| bool DependentHint = false; |
| for (const OMPClause *C : Clauses) { |
| if (C->getClauseKind() == OMPC_hint) { |
| if (!DirName.getName()) { |
| Diag(C->getBeginLoc(), diag::err_omp_hint_clause_no_name); |
| ErrorFound = true; |
| } |
| Expr *E = cast<OMPHintClause>(C)->getHint(); |
| if (E->isTypeDependent() || E->isValueDependent() || |
| E->isInstantiationDependent()) { |
| DependentHint = true; |
| } else { |
| Hint = E->EvaluateKnownConstInt(Context); |
| HintLoc = C->getBeginLoc(); |
| } |
| } |
| } |
| if (ErrorFound) |
| return StmtError(); |
| const auto Pair = DSAStack->getCriticalWithHint(DirName); |
| if (Pair.first && DirName.getName() && !DependentHint) { |
| if (llvm::APSInt::compareValues(Hint, Pair.second) != 0) { |
| Diag(StartLoc, diag::err_omp_critical_with_hint); |
| if (HintLoc.isValid()) |
| Diag(HintLoc, diag::note_omp_critical_hint_here) |
| << 0 << toString(Hint, /*Radix=*/10, /*Signed=*/false); |
| else |
| Diag(StartLoc, diag::note_omp_critical_no_hint) << 0; |
| if (const auto *C = Pair.first->getSingleClause<OMPHintClause>()) { |
| Diag(C->getBeginLoc(), diag::note_omp_critical_hint_here) |
| << 1 |
| << toString(C->getHint()->EvaluateKnownConstInt(Context), |
| /*Radix=*/10, /*Signed=*/false); |
| } else { |
| Diag(Pair.first->getBeginLoc(), diag::note_omp_critical_no_hint) << 1; |
| } |
| } |
| } |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| auto *Dir = OMPCriticalDirective::Create(Context, DirName, StartLoc, EndLoc, |
| Clauses, AStmt); |
| if (!Pair.first && DirName.getName() && !DependentHint) |
| DSAStack->addCriticalWithHint(Dir, Hint); |
| return Dir; |
| } |
| |
| StmtResult Sema::ActOnOpenMPParallelForDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' or 'ordered' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = |
| checkOpenMPLoop(OMPD_parallel_for, getCollapseNumberExpr(Clauses), |
| getOrderedNumberExpr(Clauses), AStmt, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp parallel for loop exprs were not built"); |
| |
| if (!CurContext->isDependentContext()) { |
| // Finalize the clauses that need pre-built expressions for CodeGen. |
| for (OMPClause *C : Clauses) { |
| if (auto *LC = dyn_cast<OMPLinearClause>(C)) |
| if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef), |
| B.NumIterations, *this, CurScope, |
| DSAStack)) |
| return StmtError(); |
| } |
| } |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPParallelForDirective::Create( |
| Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B, |
| DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion()); |
| } |
| |
| StmtResult Sema::ActOnOpenMPParallelForSimdDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' or 'ordered' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = |
| checkOpenMPLoop(OMPD_parallel_for_simd, getCollapseNumberExpr(Clauses), |
| getOrderedNumberExpr(Clauses), AStmt, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| if (!CurContext->isDependentContext()) { |
| // Finalize the clauses that need pre-built expressions for CodeGen. |
| for (OMPClause *C : Clauses) { |
| if (auto *LC = dyn_cast<OMPLinearClause>(C)) |
| if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef), |
| B.NumIterations, *this, CurScope, |
| DSAStack)) |
| return StmtError(); |
| } |
| } |
| |
| if (checkSimdlenSafelenSpecified(*this, Clauses)) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPParallelForSimdDirective::Create( |
| Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B); |
| } |
| |
| StmtResult |
| Sema::ActOnOpenMPParallelMasterDirective(ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| if (!AStmt) |
| return StmtError(); |
| |
| assert(isa<CapturedStmt>(AStmt) && "Captured statement expected"); |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| return OMPParallelMasterDirective::Create( |
| Context, StartLoc, EndLoc, Clauses, AStmt, |
| DSAStack->getTaskgroupReductionRef()); |
| } |
| |
| StmtResult |
| Sema::ActOnOpenMPParallelSectionsDirective(ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| if (!AStmt) |
| return StmtError(); |
| |
| assert(isa<CapturedStmt>(AStmt) && "Captured statement expected"); |
| auto BaseStmt = AStmt; |
| while (auto *CS = dyn_cast_or_null<CapturedStmt>(BaseStmt)) |
| BaseStmt = CS->getCapturedStmt(); |
| if (auto *C = dyn_cast_or_null<CompoundStmt>(BaseStmt)) { |
| auto S = C->children(); |
| if (S.begin() == S.end()) |
| return StmtError(); |
| // All associated statements must be '#pragma omp section' except for |
| // the first one. |
| for (Stmt *SectionStmt : llvm::make_range(std::next(S.begin()), S.end())) { |
| if (!SectionStmt || !isa<OMPSectionDirective>(SectionStmt)) { |
| if (SectionStmt) |
| Diag(SectionStmt->getBeginLoc(), |
| diag::err_omp_parallel_sections_substmt_not_section); |
| return StmtError(); |
| } |
| cast<OMPSectionDirective>(SectionStmt) |
| ->setHasCancel(DSAStack->isCancelRegion()); |
| } |
| } else { |
| Diag(AStmt->getBeginLoc(), |
| diag::err_omp_parallel_sections_not_compound_stmt); |
| return StmtError(); |
| } |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| return OMPParallelSectionsDirective::Create( |
| Context, StartLoc, EndLoc, Clauses, AStmt, |
| DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion()); |
| } |
| |
| /// Find and diagnose mutually exclusive clause kinds. |
| static bool checkMutuallyExclusiveClauses( |
| Sema &S, ArrayRef<OMPClause *> Clauses, |
| ArrayRef<OpenMPClauseKind> MutuallyExclusiveClauses) { |
| const OMPClause *PrevClause = nullptr; |
| bool ErrorFound = false; |
| for (const OMPClause *C : Clauses) { |
| if (llvm::is_contained(MutuallyExclusiveClauses, C->getClauseKind())) { |
| if (!PrevClause) { |
| PrevClause = C; |
| } else if (PrevClause->getClauseKind() != C->getClauseKind()) { |
| S.Diag(C->getBeginLoc(), diag::err_omp_clauses_mutually_exclusive) |
| << getOpenMPClauseName(C->getClauseKind()) |
| << getOpenMPClauseName(PrevClause->getClauseKind()); |
| S.Diag(PrevClause->getBeginLoc(), diag::note_omp_previous_clause) |
| << getOpenMPClauseName(PrevClause->getClauseKind()); |
| ErrorFound = true; |
| } |
| } |
| } |
| return ErrorFound; |
| } |
| |
| StmtResult Sema::ActOnOpenMPTaskDirective(ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| if (!AStmt) |
| return StmtError(); |
| |
| // OpenMP 5.0, 2.10.1 task Construct |
| // If a detach clause appears on the directive, then a mergeable clause cannot |
| // appear on the same directive. |
| if (checkMutuallyExclusiveClauses(*this, Clauses, |
| {OMPC_detach, OMPC_mergeable})) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| return OMPTaskDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt, |
| DSAStack->isCancelRegion()); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTaskyieldDirective(SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| return OMPTaskyieldDirective::Create(Context, StartLoc, EndLoc); |
| } |
| |
| StmtResult Sema::ActOnOpenMPBarrierDirective(SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| return OMPBarrierDirective::Create(Context, StartLoc, EndLoc); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTaskwaitDirective(ArrayRef<OMPClause *> Clauses, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| return OMPTaskwaitDirective::Create(Context, StartLoc, EndLoc, Clauses); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTaskgroupDirective(ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| if (!AStmt) |
| return StmtError(); |
| |
| assert(isa<CapturedStmt>(AStmt) && "Captured statement expected"); |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| return OMPTaskgroupDirective::Create(Context, StartLoc, EndLoc, Clauses, |
| AStmt, |
| DSAStack->getTaskgroupReductionRef()); |
| } |
| |
| StmtResult Sema::ActOnOpenMPFlushDirective(ArrayRef<OMPClause *> Clauses, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| OMPFlushClause *FC = nullptr; |
| OMPClause *OrderClause = nullptr; |
| for (OMPClause *C : Clauses) { |
| if (C->getClauseKind() == OMPC_flush) |
| FC = cast<OMPFlushClause>(C); |
| else |
| OrderClause = C; |
| } |
| OpenMPClauseKind MemOrderKind = OMPC_unknown; |
| SourceLocation MemOrderLoc; |
| for (const OMPClause *C : Clauses) { |
| if (C->getClauseKind() == OMPC_acq_rel || |
| C->getClauseKind() == OMPC_acquire || |
| C->getClauseKind() == OMPC_release) { |
| if (MemOrderKind != OMPC_unknown) { |
| Diag(C->getBeginLoc(), diag::err_omp_several_mem_order_clauses) |
| << getOpenMPDirectiveName(OMPD_flush) << 1 |
| << SourceRange(C->getBeginLoc(), C->getEndLoc()); |
| Diag(MemOrderLoc, diag::note_omp_previous_mem_order_clause) |
| << getOpenMPClauseName(MemOrderKind); |
| } else { |
| MemOrderKind = C->getClauseKind(); |
| MemOrderLoc = C->getBeginLoc(); |
| } |
| } |
| } |
| if (FC && OrderClause) { |
| Diag(FC->getLParenLoc(), diag::err_omp_flush_order_clause_and_list) |
| << getOpenMPClauseName(OrderClause->getClauseKind()); |
| Diag(OrderClause->getBeginLoc(), diag::note_omp_flush_order_clause_here) |
| << getOpenMPClauseName(OrderClause->getClauseKind()); |
| return StmtError(); |
| } |
| return OMPFlushDirective::Create(Context, StartLoc, EndLoc, Clauses); |
| } |
| |
| StmtResult Sema::ActOnOpenMPDepobjDirective(ArrayRef<OMPClause *> Clauses, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| if (Clauses.empty()) { |
| Diag(StartLoc, diag::err_omp_depobj_expected); |
| return StmtError(); |
| } else if (Clauses[0]->getClauseKind() != OMPC_depobj) { |
| Diag(Clauses[0]->getBeginLoc(), diag::err_omp_depobj_expected); |
| return StmtError(); |
| } |
| // Only depobj expression and another single clause is allowed. |
| if (Clauses.size() > 2) { |
| Diag(Clauses[2]->getBeginLoc(), |
| diag::err_omp_depobj_single_clause_expected); |
| return StmtError(); |
| } else if (Clauses.size() < 1) { |
| Diag(Clauses[0]->getEndLoc(), diag::err_omp_depobj_single_clause_expected); |
| return StmtError(); |
| } |
| return OMPDepobjDirective::Create(Context, StartLoc, EndLoc, Clauses); |
| } |
| |
| StmtResult Sema::ActOnOpenMPScanDirective(ArrayRef<OMPClause *> Clauses, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| // Check that exactly one clause is specified. |
| if (Clauses.size() != 1) { |
| Diag(Clauses.empty() ? EndLoc : Clauses[1]->getBeginLoc(), |
| diag::err_omp_scan_single_clause_expected); |
| return StmtError(); |
| } |
| // Check that scan directive is used in the scopeof the OpenMP loop body. |
| if (Scope *S = DSAStack->getCurScope()) { |
| Scope *ParentS = S->getParent(); |
| if (!ParentS || ParentS->getParent() != ParentS->getBreakParent() || |
| !ParentS->getBreakParent()->isOpenMPLoopScope()) |
| return StmtError(Diag(StartLoc, diag::err_omp_orphaned_device_directive) |
| << getOpenMPDirectiveName(OMPD_scan) << 5); |
| } |
| // Check that only one instance of scan directives is used in the same outer |
| // region. |
| if (DSAStack->doesParentHasScanDirective()) { |
| Diag(StartLoc, diag::err_omp_several_directives_in_region) << "scan"; |
| Diag(DSAStack->getParentScanDirectiveLoc(), |
| diag::note_omp_previous_directive) |
| << "scan"; |
| return StmtError(); |
| } |
| DSAStack->setParentHasScanDirective(StartLoc); |
| return OMPScanDirective::Create(Context, StartLoc, EndLoc, Clauses); |
| } |
| |
| StmtResult Sema::ActOnOpenMPOrderedDirective(ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| const OMPClause *DependFound = nullptr; |
| const OMPClause *DependSourceClause = nullptr; |
| const OMPClause *DependSinkClause = nullptr; |
| bool ErrorFound = false; |
| const OMPThreadsClause *TC = nullptr; |
| const OMPSIMDClause *SC = nullptr; |
| for (const OMPClause *C : Clauses) { |
| if (auto *DC = dyn_cast<OMPDependClause>(C)) { |
| DependFound = C; |
| if (DC->getDependencyKind() == OMPC_DEPEND_source) { |
| if (DependSourceClause) { |
| Diag(C->getBeginLoc(), diag::err_omp_more_one_clause) |
| << getOpenMPDirectiveName(OMPD_ordered) |
| << getOpenMPClauseName(OMPC_depend) << 2; |
| ErrorFound = true; |
| } else { |
| DependSourceClause = C; |
| } |
| if (DependSinkClause) { |
| Diag(C->getBeginLoc(), diag::err_omp_depend_sink_source_not_allowed) |
| << 0; |
| ErrorFound = true; |
| } |
| } else if (DC->getDependencyKind() == OMPC_DEPEND_sink) { |
| if (DependSourceClause) { |
| Diag(C->getBeginLoc(), diag::err_omp_depend_sink_source_not_allowed) |
| << 1; |
| ErrorFound = true; |
| } |
| DependSinkClause = C; |
| } |
| } else if (C->getClauseKind() == OMPC_threads) { |
| TC = cast<OMPThreadsClause>(C); |
| } else if (C->getClauseKind() == OMPC_simd) { |
| SC = cast<OMPSIMDClause>(C); |
| } |
| } |
| if (!ErrorFound && !SC && |
| isOpenMPSimdDirective(DSAStack->getParentDirective())) { |
| // OpenMP [2.8.1,simd Construct, Restrictions] |
| // An ordered construct with the simd clause is the only OpenMP construct |
| // that can appear in the simd region. |
| Diag(StartLoc, diag::err_omp_prohibited_region_simd) |
| << (LangOpts.OpenMP >= 50 ? 1 : 0); |
| ErrorFound = true; |
| } else if (DependFound && (TC || SC)) { |
| Diag(DependFound->getBeginLoc(), diag::err_omp_depend_clause_thread_simd) |
| << getOpenMPClauseName(TC ? TC->getClauseKind() : SC->getClauseKind()); |
| ErrorFound = true; |
| } else if (DependFound && !DSAStack->getParentOrderedRegionParam().first) { |
| Diag(DependFound->getBeginLoc(), |
| diag::err_omp_ordered_directive_without_param); |
| ErrorFound = true; |
| } else if (TC || Clauses.empty()) { |
| if (const Expr *Param = DSAStack->getParentOrderedRegionParam().first) { |
| SourceLocation ErrLoc = TC ? TC->getBeginLoc() : StartLoc; |
| Diag(ErrLoc, diag::err_omp_ordered_directive_with_param) |
| << (TC != nullptr); |
| Diag(Param->getBeginLoc(), diag::note_omp_ordered_param) << 1; |
| ErrorFound = true; |
| } |
| } |
| if ((!AStmt && !DependFound) || ErrorFound) |
| return StmtError(); |
| |
| // OpenMP 5.0, 2.17.9, ordered Construct, Restrictions. |
| // During execution of an iteration of a worksharing-loop or a loop nest |
| // within a worksharing-loop, simd, or worksharing-loop SIMD region, a thread |
| // must not execute more than one ordered region corresponding to an ordered |
| // construct without a depend clause. |
| if (!DependFound) { |
| if (DSAStack->doesParentHasOrderedDirective()) { |
| Diag(StartLoc, diag::err_omp_several_directives_in_region) << "ordered"; |
| Diag(DSAStack->getParentOrderedDirectiveLoc(), |
| diag::note_omp_previous_directive) |
| << "ordered"; |
| return StmtError(); |
| } |
| DSAStack->setParentHasOrderedDirective(StartLoc); |
| } |
| |
| if (AStmt) { |
| assert(isa<CapturedStmt>(AStmt) && "Captured statement expected"); |
| |
| setFunctionHasBranchProtectedScope(); |
| } |
| |
| return OMPOrderedDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt); |
| } |
| |
| namespace { |
| /// Helper class for checking expression in 'omp atomic [update]' |
| /// construct. |
| class OpenMPAtomicUpdateChecker { |
| /// Error results for atomic update expressions. |
| enum ExprAnalysisErrorCode { |
| /// A statement is not an expression statement. |
| NotAnExpression, |
| /// Expression is not builtin binary or unary operation. |
| NotABinaryOrUnaryExpression, |
| /// Unary operation is not post-/pre- increment/decrement operation. |
| NotAnUnaryIncDecExpression, |
| /// An expression is not of scalar type. |
| NotAScalarType, |
| /// A binary operation is not an assignment operation. |
| NotAnAssignmentOp, |
| /// RHS part of the binary operation is not a binary expression. |
| NotABinaryExpression, |
| /// RHS part is not additive/multiplicative/shift/biwise binary |
| /// expression. |
| NotABinaryOperator, |
| /// RHS binary operation does not have reference to the updated LHS |
| /// part. |
| NotAnUpdateExpression, |
| /// No errors is found. |
| NoError |
| }; |
| /// Reference to Sema. |
| Sema &SemaRef; |
| /// A location for note diagnostics (when error is found). |
| SourceLocation NoteLoc; |
| /// 'x' lvalue part of the source atomic expression. |
| Expr *X; |
| /// 'expr' rvalue part of the source atomic expression. |
| Expr *E; |
| /// Helper expression of the form |
| /// 'OpaqueValueExpr(x) binop OpaqueValueExpr(expr)' or |
| /// 'OpaqueValueExpr(expr) binop OpaqueValueExpr(x)'. |
| Expr *UpdateExpr; |
| /// Is 'x' a LHS in a RHS part of full update expression. It is |
| /// important for non-associative operations. |
| bool IsXLHSInRHSPart; |
| BinaryOperatorKind Op; |
| SourceLocation OpLoc; |
| /// true if the source expression is a postfix unary operation, false |
| /// if it is a prefix unary operation. |
| bool IsPostfixUpdate; |
| |
| public: |
| OpenMPAtomicUpdateChecker(Sema &SemaRef) |
| : SemaRef(SemaRef), X(nullptr), E(nullptr), UpdateExpr(nullptr), |
| IsXLHSInRHSPart(false), Op(BO_PtrMemD), IsPostfixUpdate(false) {} |
| /// Check specified statement that it is suitable for 'atomic update' |
| /// constructs and extract 'x', 'expr' and Operation from the original |
| /// expression. If DiagId and NoteId == 0, then only check is performed |
| /// without error notification. |
| /// \param DiagId Diagnostic which should be emitted if error is found. |
| /// \param NoteId Diagnostic note for the main error message. |
| /// \return true if statement is not an update expression, false otherwise. |
| bool checkStatement(Stmt *S, unsigned DiagId = 0, unsigned NoteId = 0); |
| /// Return the 'x' lvalue part of the source atomic expression. |
| Expr *getX() const { return X; } |
| /// Return the 'expr' rvalue part of the source atomic expression. |
| Expr *getExpr() const { return E; } |
| /// Return the update expression used in calculation of the updated |
| /// value. Always has form 'OpaqueValueExpr(x) binop OpaqueValueExpr(expr)' or |
| /// 'OpaqueValueExpr(expr) binop OpaqueValueExpr(x)'. |
| Expr *getUpdateExpr() const { return UpdateExpr; } |
| /// Return true if 'x' is LHS in RHS part of full update expression, |
| /// false otherwise. |
| bool isXLHSInRHSPart() const { return IsXLHSInRHSPart; } |
| |
| /// true if the source expression is a postfix unary operation, false |
| /// if it is a prefix unary operation. |
| bool isPostfixUpdate() const { return IsPostfixUpdate; } |
| |
| private: |
| bool checkBinaryOperation(BinaryOperator *AtomicBinOp, unsigned DiagId = 0, |
| unsigned NoteId = 0); |
| }; |
| } // namespace |
| |
| bool OpenMPAtomicUpdateChecker::checkBinaryOperation( |
| BinaryOperator *AtomicBinOp, unsigned DiagId, unsigned NoteId) { |
| ExprAnalysisErrorCode ErrorFound = NoError; |
| SourceLocation ErrorLoc, NoteLoc; |
| SourceRange ErrorRange, NoteRange; |
| // Allowed constructs are: |
| // x = x binop expr; |
| // x = expr binop x; |
| if (AtomicBinOp->getOpcode() == BO_Assign) { |
| X = AtomicBinOp->getLHS(); |
| if (const auto *AtomicInnerBinOp = dyn_cast<BinaryOperator>( |
| AtomicBinOp->getRHS()->IgnoreParenImpCasts())) { |
| if (AtomicInnerBinOp->isMultiplicativeOp() || |
| AtomicInnerBinOp->isAdditiveOp() || AtomicInnerBinOp->isShiftOp() || |
| AtomicInnerBinOp->isBitwiseOp()) { |
| Op = AtomicInnerBinOp->getOpcode(); |
| OpLoc = AtomicInnerBinOp->getOperatorLoc(); |
| Expr *LHS = AtomicInnerBinOp->getLHS(); |
| Expr *RHS = AtomicInnerBinOp->getRHS(); |
| llvm::FoldingSetNodeID XId, LHSId, RHSId; |
| X->IgnoreParenImpCasts()->Profile(XId, SemaRef.getASTContext(), |
| /*Canonical=*/true); |
| LHS->IgnoreParenImpCasts()->Profile(LHSId, SemaRef.getASTContext(), |
| /*Canonical=*/true); |
| RHS->IgnoreParenImpCasts()->Profile(RHSId, SemaRef.getASTContext(), |
| /*Canonical=*/true); |
| if (XId == LHSId) { |
| E = RHS; |
| IsXLHSInRHSPart = true; |
| } else if (XId == RHSId) { |
| E = LHS; |
| IsXLHSInRHSPart = false; |
| } else { |
| ErrorLoc = AtomicInnerBinOp->getExprLoc(); |
| ErrorRange = AtomicInnerBinOp->getSourceRange(); |
| NoteLoc = X->getExprLoc(); |
| NoteRange = X->getSourceRange(); |
| ErrorFound = NotAnUpdateExpression; |
| } |
| } else { |
| ErrorLoc = AtomicInnerBinOp->getExprLoc(); |
| ErrorRange = AtomicInnerBinOp->getSourceRange(); |
| NoteLoc = AtomicInnerBinOp->getOperatorLoc(); |
| NoteRange = SourceRange(NoteLoc, NoteLoc); |
| ErrorFound = NotABinaryOperator; |
| } |
| } else { |
| NoteLoc = ErrorLoc = AtomicBinOp->getRHS()->getExprLoc(); |
| NoteRange = ErrorRange = AtomicBinOp->getRHS()->getSourceRange(); |
| ErrorFound = NotABinaryExpression; |
| } |
| } else { |
| ErrorLoc = AtomicBinOp->getExprLoc(); |
| ErrorRange = AtomicBinOp->getSourceRange(); |
| NoteLoc = AtomicBinOp->getOperatorLoc(); |
| NoteRange = SourceRange(NoteLoc, NoteLoc); |
| ErrorFound = NotAnAssignmentOp; |
| } |
| if (ErrorFound != NoError && DiagId != 0 && NoteId != 0) { |
| SemaRef.Diag(ErrorLoc, DiagId) << ErrorRange; |
| SemaRef.Diag(NoteLoc, NoteId) << ErrorFound << NoteRange; |
| return true; |
| } |
| if (SemaRef.CurContext->isDependentContext()) |
| E = X = UpdateExpr = nullptr; |
| return ErrorFound != NoError; |
| } |
| |
| bool OpenMPAtomicUpdateChecker::checkStatement(Stmt *S, unsigned DiagId, |
| unsigned NoteId) { |
| ExprAnalysisErrorCode ErrorFound = NoError; |
| SourceLocation ErrorLoc, NoteLoc; |
| SourceRange ErrorRange, NoteRange; |
| // Allowed constructs are: |
| // x++; |
| // x--; |
| // ++x; |
| // --x; |
| // x binop= expr; |
| // x = x binop expr; |
| // x = expr binop x; |
| if (auto *AtomicBody = dyn_cast<Expr>(S)) { |
| AtomicBody = AtomicBody->IgnoreParenImpCasts(); |
| if (AtomicBody->getType()->isScalarType() || |
| AtomicBody->isInstantiationDependent()) { |
| if (const auto *AtomicCompAssignOp = dyn_cast<CompoundAssignOperator>( |
| AtomicBody->IgnoreParenImpCasts())) { |
| // Check for Compound Assignment Operation |
| Op = BinaryOperator::getOpForCompoundAssignment( |
| AtomicCompAssignOp->getOpcode()); |
| OpLoc = AtomicCompAssignOp->getOperatorLoc(); |
| E = AtomicCompAssignOp->getRHS(); |
| X = AtomicCompAssignOp->getLHS()->IgnoreParens(); |
| IsXLHSInRHSPart = true; |
| } else if (auto *AtomicBinOp = dyn_cast<BinaryOperator>( |
| AtomicBody->IgnoreParenImpCasts())) { |
| // Check for Binary Operation |
| if (checkBinaryOperation(AtomicBinOp, DiagId, NoteId)) |
| return true; |
| } else if (const auto *AtomicUnaryOp = dyn_cast<UnaryOperator>( |
| AtomicBody->IgnoreParenImpCasts())) { |
| // Check for Unary Operation |
| if (AtomicUnaryOp->isIncrementDecrementOp()) { |
| IsPostfixUpdate = AtomicUnaryOp->isPostfix(); |
| Op = AtomicUnaryOp->isIncrementOp() ? BO_Add : BO_Sub; |
| OpLoc = AtomicUnaryOp->getOperatorLoc(); |
| X = AtomicUnaryOp->getSubExpr()->IgnoreParens(); |
| E = SemaRef.ActOnIntegerConstant(OpLoc, /*uint64_t Val=*/1).get(); |
| IsXLHSInRHSPart = true; |
| } else { |
| ErrorFound = NotAnUnaryIncDecExpression; |
| ErrorLoc = AtomicUnaryOp->getExprLoc(); |
| ErrorRange = AtomicUnaryOp->getSourceRange(); |
| NoteLoc = AtomicUnaryOp->getOperatorLoc(); |
| NoteRange = SourceRange(NoteLoc, NoteLoc); |
| } |
| } else if (!AtomicBody->isInstantiationDependent()) { |
| ErrorFound = NotABinaryOrUnaryExpression; |
| NoteLoc = ErrorLoc = AtomicBody->getExprLoc(); |
| NoteRange = ErrorRange = AtomicBody->getSourceRange(); |
| } |
| } else { |
| ErrorFound = NotAScalarType; |
| NoteLoc = ErrorLoc = AtomicBody->getBeginLoc(); |
| NoteRange = ErrorRange = SourceRange(NoteLoc, NoteLoc); |
| } |
| } else { |
| ErrorFound = NotAnExpression; |
| NoteLoc = ErrorLoc = S->getBeginLoc(); |
| NoteRange = ErrorRange = SourceRange(NoteLoc, NoteLoc); |
| } |
| if (ErrorFound != NoError && DiagId != 0 && NoteId != 0) { |
| SemaRef.Diag(ErrorLoc, DiagId) << ErrorRange; |
| SemaRef.Diag(NoteLoc, NoteId) << ErrorFound << NoteRange; |
| return true; |
| } |
| if (SemaRef.CurContext->isDependentContext()) |
| E = X = UpdateExpr = nullptr; |
| if (ErrorFound == NoError && E && X) { |
| // Build an update expression of form 'OpaqueValueExpr(x) binop |
| // OpaqueValueExpr(expr)' or 'OpaqueValueExpr(expr) binop |
| // OpaqueValueExpr(x)' and then cast it to the type of the 'x' expression. |
| auto *OVEX = new (SemaRef.getASTContext()) |
| OpaqueValueExpr(X->getExprLoc(), X->getType(), VK_PRValue); |
| auto *OVEExpr = new (SemaRef.getASTContext()) |
| OpaqueValueExpr(E->getExprLoc(), E->getType(), VK_PRValue); |
| ExprResult Update = |
| SemaRef.CreateBuiltinBinOp(OpLoc, Op, IsXLHSInRHSPart ? OVEX : OVEExpr, |
| IsXLHSInRHSPart ? OVEExpr : OVEX); |
| if (Update.isInvalid()) |
| return true; |
| Update = SemaRef.PerformImplicitConversion(Update.get(), X->getType(), |
| Sema::AA_Casting); |
| if (Update.isInvalid()) |
| return true; |
| UpdateExpr = Update.get(); |
| } |
| return ErrorFound != NoError; |
| } |
| |
| StmtResult Sema::ActOnOpenMPAtomicDirective(ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| // Register location of the first atomic directive. |
| DSAStack->addAtomicDirectiveLoc(StartLoc); |
| if (!AStmt) |
| return StmtError(); |
| |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| OpenMPClauseKind AtomicKind = OMPC_unknown; |
| SourceLocation AtomicKindLoc; |
| OpenMPClauseKind MemOrderKind = OMPC_unknown; |
| SourceLocation MemOrderLoc; |
| for (const OMPClause *C : Clauses) { |
| if (C->getClauseKind() == OMPC_read || C->getClauseKind() == OMPC_write || |
| C->getClauseKind() == OMPC_update || |
| C->getClauseKind() == OMPC_capture) { |
| if (AtomicKind != OMPC_unknown) { |
| Diag(C->getBeginLoc(), diag::err_omp_atomic_several_clauses) |
| << SourceRange(C->getBeginLoc(), C->getEndLoc()); |
| Diag(AtomicKindLoc, diag::note_omp_previous_mem_order_clause) |
| << getOpenMPClauseName(AtomicKind); |
| } else { |
| AtomicKind = C->getClauseKind(); |
| AtomicKindLoc = C->getBeginLoc(); |
| } |
| } |
| if (C->getClauseKind() == OMPC_seq_cst || |
| C->getClauseKind() == OMPC_acq_rel || |
| C->getClauseKind() == OMPC_acquire || |
| C->getClauseKind() == OMPC_release || |
| C->getClauseKind() == OMPC_relaxed) { |
| if (MemOrderKind != OMPC_unknown) { |
| Diag(C->getBeginLoc(), diag::err_omp_several_mem_order_clauses) |
| << getOpenMPDirectiveName(OMPD_atomic) << 0 |
| << SourceRange(C->getBeginLoc(), C->getEndLoc()); |
| Diag(MemOrderLoc, diag::note_omp_previous_mem_order_clause) |
| << getOpenMPClauseName(MemOrderKind); |
| } else { |
| MemOrderKind = C->getClauseKind(); |
| MemOrderLoc = C->getBeginLoc(); |
| } |
| } |
| } |
| // OpenMP 5.0, 2.17.7 atomic Construct, Restrictions |
| // If atomic-clause is read then memory-order-clause must not be acq_rel or |
| // release. |
| // If atomic-clause is write then memory-order-clause must not be acq_rel or |
| // acquire. |
| // If atomic-clause is update or not present then memory-order-clause must not |
| // be acq_rel or acquire. |
| if ((AtomicKind == OMPC_read && |
| (MemOrderKind == OMPC_acq_rel || MemOrderKind == OMPC_release)) || |
| ((AtomicKind == OMPC_write || AtomicKind == OMPC_update || |
| AtomicKind == OMPC_unknown) && |
| (MemOrderKind == OMPC_acq_rel || MemOrderKind == OMPC_acquire))) { |
| SourceLocation Loc = AtomicKindLoc; |
| if (AtomicKind == OMPC_unknown) |
| Loc = StartLoc; |
| Diag(Loc, diag::err_omp_atomic_incompatible_mem_order_clause) |
| << getOpenMPClauseName(AtomicKind) |
| << (AtomicKind == OMPC_unknown ? 1 : 0) |
| << getOpenMPClauseName(MemOrderKind); |
| Diag(MemOrderLoc, diag::note_omp_previous_mem_order_clause) |
| << getOpenMPClauseName(MemOrderKind); |
| } |
| |
| Stmt *Body = AStmt; |
| if (auto *EWC = dyn_cast<ExprWithCleanups>(Body)) |
| Body = EWC->getSubExpr(); |
| |
| Expr *X = nullptr; |
| Expr *V = nullptr; |
| Expr *E = nullptr; |
| Expr *UE = nullptr; |
| bool IsXLHSInRHSPart = false; |
| bool IsPostfixUpdate = false; |
| // OpenMP [2.12.6, atomic Construct] |
| // In the next expressions: |
| // * x and v (as applicable) are both l-value expressions with scalar type. |
| // * During the execution of an atomic region, multiple syntactic |
| // occurrences of x must designate the same storage location. |
| // * Neither of v and expr (as applicable) may access the storage location |
| // designated by x. |
| // * Neither of x and expr (as applicable) may access the storage location |
| // designated by v. |
| // * expr is an expression with scalar type. |
| // * binop is one of +, *, -, /, &, ^, |, <<, or >>. |
| // * binop, binop=, ++, and -- are not overloaded operators. |
| // * The expression x binop expr must be numerically equivalent to x binop |
| // (expr). This requirement is satisfied if the operators in expr have |
| // precedence greater than binop, or by using parentheses around expr or |
| // subexpressions of expr. |
| // * The expression expr binop x must be numerically equivalent to (expr) |
| // binop x. This requirement is satisfied if the operators in expr have |
| // precedence equal to or greater than binop, or by using parentheses around |
| // expr or subexpressions of expr. |
| // * For forms that allow multiple occurrences of x, the number of times |
| // that x is evaluated is unspecified. |
| if (AtomicKind == OMPC_read) { |
| enum { |
| NotAnExpression, |
| NotAnAssignmentOp, |
| NotAScalarType, |
| NotAnLValue, |
| NoError |
| } ErrorFound = NoError; |
| SourceLocation ErrorLoc, NoteLoc; |
| SourceRange ErrorRange, NoteRange; |
| // If clause is read: |
| // v = x; |
| if (const auto *AtomicBody = dyn_cast<Expr>(Body)) { |
| const auto *AtomicBinOp = |
| dyn_cast<BinaryOperator>(AtomicBody->IgnoreParenImpCasts()); |
| if (AtomicBinOp && AtomicBinOp->getOpcode() == BO_Assign) { |
| X = AtomicBinOp->getRHS()->IgnoreParenImpCasts(); |
| V = AtomicBinOp->getLHS()->IgnoreParenImpCasts(); |
| if ((X->isInstantiationDependent() || X->getType()->isScalarType()) && |
| (V->isInstantiationDependent() || V->getType()->isScalarType())) { |
| if (!X->isLValue() || !V->isLValue()) { |
| const Expr *NotLValueExpr = X->isLValue() ? V : X; |
| ErrorFound = NotAnLValue; |
| ErrorLoc = AtomicBinOp->getExprLoc(); |
| ErrorRange = AtomicBinOp->getSourceRange(); |
| NoteLoc = NotLValueExpr->getExprLoc(); |
| NoteRange = NotLValueExpr->getSourceRange(); |
| } |
| } else if (!X->isInstantiationDependent() || |
| !V->isInstantiationDependent()) { |
| const Expr *NotScalarExpr = |
| (X->isInstantiationDependent() || X->getType()->isScalarType()) |
| ? V |
| : X; |
| ErrorFound = NotAScalarType; |
| ErrorLoc = AtomicBinOp->getExprLoc(); |
| ErrorRange = AtomicBinOp->getSourceRange(); |
| NoteLoc = NotScalarExpr->getExprLoc(); |
| NoteRange = NotScalarExpr->getSourceRange(); |
| } |
| } else if (!AtomicBody->isInstantiationDependent()) { |
| ErrorFound = NotAnAssignmentOp; |
| ErrorLoc = AtomicBody->getExprLoc(); |
| ErrorRange = AtomicBody->getSourceRange(); |
| NoteLoc = AtomicBinOp ? AtomicBinOp->getOperatorLoc() |
| : AtomicBody->getExprLoc(); |
| NoteRange = AtomicBinOp ? AtomicBinOp->getSourceRange() |
| : AtomicBody->getSourceRange(); |
| } |
| } else { |
| ErrorFound = NotAnExpression; |
| NoteLoc = ErrorLoc = Body->getBeginLoc(); |
| NoteRange = ErrorRange = SourceRange(NoteLoc, NoteLoc); |
| } |
| if (ErrorFound != NoError) { |
| Diag(ErrorLoc, diag::err_omp_atomic_read_not_expression_statement) |
| << ErrorRange; |
| Diag(NoteLoc, diag::note_omp_atomic_read_write) << ErrorFound |
| << NoteRange; |
| return StmtError(); |
| } |
| if (CurContext->isDependentContext()) |
| V = X = nullptr; |
| } else if (AtomicKind == OMPC_write) { |
| enum { |
| NotAnExpression, |
| NotAnAssignmentOp, |
| NotAScalarType, |
| NotAnLValue, |
| NoError |
| } ErrorFound = NoError; |
| SourceLocation ErrorLoc, NoteLoc; |
| SourceRange ErrorRange, NoteRange; |
| // If clause is write: |
| // x = expr; |
| if (const auto *AtomicBody = dyn_cast<Expr>(Body)) { |
| const auto *AtomicBinOp = |
| dyn_cast<BinaryOperator>(AtomicBody->IgnoreParenImpCasts()); |
| if (AtomicBinOp && AtomicBinOp->getOpcode() == BO_Assign) { |
| X = AtomicBinOp->getLHS(); |
| E = AtomicBinOp->getRHS(); |
| if ((X->isInstantiationDependent() || X->getType()->isScalarType()) && |
| (E->isInstantiationDependent() || E->getType()->isScalarType())) { |
| if (!X->isLValue()) { |
| ErrorFound = NotAnLValue; |
| ErrorLoc = AtomicBinOp->getExprLoc(); |
| ErrorRange = AtomicBinOp->getSourceRange(); |
| NoteLoc = X->getExprLoc(); |
| NoteRange = X->getSourceRange(); |
| } |
| } else if (!X->isInstantiationDependent() || |
| !E->isInstantiationDependent()) { |
| const Expr *NotScalarExpr = |
| (X->isInstantiationDependent() || X->getType()->isScalarType()) |
| ? E |
| : X; |
| ErrorFound = NotAScalarType; |
| ErrorLoc = AtomicBinOp->getExprLoc(); |
| ErrorRange = AtomicBinOp->getSourceRange(); |
| NoteLoc = NotScalarExpr->getExprLoc(); |
| NoteRange = NotScalarExpr->getSourceRange(); |
| } |
| } else if (!AtomicBody->isInstantiationDependent()) { |
| ErrorFound = NotAnAssignmentOp; |
| ErrorLoc = AtomicBody->getExprLoc(); |
| ErrorRange = AtomicBody->getSourceRange(); |
| NoteLoc = AtomicBinOp ? AtomicBinOp->getOperatorLoc() |
| : AtomicBody->getExprLoc(); |
| NoteRange = AtomicBinOp ? AtomicBinOp->getSourceRange() |
| : AtomicBody->getSourceRange(); |
| } |
| } else { |
| ErrorFound = NotAnExpression; |
| NoteLoc = ErrorLoc = Body->getBeginLoc(); |
| NoteRange = ErrorRange = SourceRange(NoteLoc, NoteLoc); |
| } |
| if (ErrorFound != NoError) { |
| Diag(ErrorLoc, diag::err_omp_atomic_write_not_expression_statement) |
| << ErrorRange; |
| Diag(NoteLoc, diag::note_omp_atomic_read_write) << ErrorFound |
| << NoteRange; |
| return StmtError(); |
| } |
| if (CurContext->isDependentContext()) |
| E = X = nullptr; |
| } else if (AtomicKind == OMPC_update || AtomicKind == OMPC_unknown) { |
| // If clause is update: |
| // x++; |
| // x--; |
| // ++x; |
| // --x; |
| // x binop= expr; |
| // x = x binop expr; |
| // x = expr binop x; |
| OpenMPAtomicUpdateChecker Checker(*this); |
| if (Checker.checkStatement( |
| Body, (AtomicKind == OMPC_update) |
| ? diag::err_omp_atomic_update_not_expression_statement |
| : diag::err_omp_atomic_not_expression_statement, |
| diag::note_omp_atomic_update)) |
| return StmtError(); |
| if (!CurContext->isDependentContext()) { |
| E = Checker.getExpr(); |
| X = Checker.getX(); |
| UE = Checker.getUpdateExpr(); |
| IsXLHSInRHSPart = Checker.isXLHSInRHSPart(); |
| } |
| } else if (AtomicKind == OMPC_capture) { |
| enum { |
| NotAnAssignmentOp, |
| NotACompoundStatement, |
| NotTwoSubstatements, |
| NotASpecificExpression, |
| NoError |
| } ErrorFound = NoError; |
| SourceLocation ErrorLoc, NoteLoc; |
| SourceRange ErrorRange, NoteRange; |
| if (const auto *AtomicBody = dyn_cast<Expr>(Body)) { |
| // If clause is a capture: |
| // v = x++; |
| // v = x--; |
| // v = ++x; |
| // v = --x; |
| // v = x binop= expr; |
| // v = x = x binop expr; |
| // v = x = expr binop x; |
| const auto *AtomicBinOp = |
| dyn_cast<BinaryOperator>(AtomicBody->IgnoreParenImpCasts()); |
| if (AtomicBinOp && AtomicBinOp->getOpcode() == BO_Assign) { |
| V = AtomicBinOp->getLHS(); |
| Body = AtomicBinOp->getRHS()->IgnoreParenImpCasts(); |
| OpenMPAtomicUpdateChecker Checker(*this); |
| if (Checker.checkStatement( |
| Body, diag::err_omp_atomic_capture_not_expression_statement, |
| diag::note_omp_atomic_update)) |
| return StmtError(); |
| E = Checker.getExpr(); |
| X = Checker.getX(); |
| UE = Checker.getUpdateExpr(); |
| IsXLHSInRHSPart = Checker.isXLHSInRHSPart(); |
| IsPostfixUpdate = Checker.isPostfixUpdate(); |
| } else if (!AtomicBody->isInstantiationDependent()) { |
| ErrorLoc = AtomicBody->getExprLoc(); |
| ErrorRange = AtomicBody->getSourceRange(); |
| NoteLoc = AtomicBinOp ? AtomicBinOp->getOperatorLoc() |
| : AtomicBody->getExprLoc(); |
| NoteRange = AtomicBinOp ? AtomicBinOp->getSourceRange() |
| : AtomicBody->getSourceRange(); |
| ErrorFound = NotAnAssignmentOp; |
| } |
| if (ErrorFound != NoError) { |
| Diag(ErrorLoc, diag::err_omp_atomic_capture_not_expression_statement) |
| << ErrorRange; |
| Diag(NoteLoc, diag::note_omp_atomic_capture) << ErrorFound << NoteRange; |
| return StmtError(); |
| } |
| if (CurContext->isDependentContext()) |
| UE = V = E = X = nullptr; |
| } else { |
| // If clause is a capture: |
| // { v = x; x = expr; } |
| // { v = x; x++; } |
| // { v = x; x--; } |
| // { v = x; ++x; } |
| // { v = x; --x; } |
| // { v = x; x binop= expr; } |
| // { v = x; x = x binop expr; } |
| // { v = x; x = expr binop x; } |
| // { x++; v = x; } |
| // { x--; v = x; } |
| // { ++x; v = x; } |
| // { --x; v = x; } |
| // { x binop= expr; v = x; } |
| // { x = x binop expr; v = x; } |
| // { x = expr binop x; v = x; } |
| if (auto *CS = dyn_cast<CompoundStmt>(Body)) { |
| // Check that this is { expr1; expr2; } |
| if (CS->size() == 2) { |
| Stmt *First = CS->body_front(); |
| Stmt *Second = CS->body_back(); |
| if (auto *EWC = dyn_cast<ExprWithCleanups>(First)) |
| First = EWC->getSubExpr()->IgnoreParenImpCasts(); |
| if (auto *EWC = dyn_cast<ExprWithCleanups>(Second)) |
| Second = EWC->getSubExpr()->IgnoreParenImpCasts(); |
| // Need to find what subexpression is 'v' and what is 'x'. |
| OpenMPAtomicUpdateChecker Checker(*this); |
| bool IsUpdateExprFound = !Checker.checkStatement(Second); |
| BinaryOperator *BinOp = nullptr; |
| if (IsUpdateExprFound) { |
| BinOp = dyn_cast<BinaryOperator>(First); |
| IsUpdateExprFound = BinOp && BinOp->getOpcode() == BO_Assign; |
| } |
| if (IsUpdateExprFound && !CurContext->isDependentContext()) { |
| // { v = x; x++; } |
| // { v = x; x--; } |
| // { v = x; ++x; } |
| // { v = x; --x; } |
| // { v = x; x binop= expr; } |
| // { v = x; x = x binop expr; } |
| // { v = x; x = expr binop x; } |
| // Check that the first expression has form v = x. |
| Expr *PossibleX = BinOp->getRHS()->IgnoreParenImpCasts(); |
| llvm::FoldingSetNodeID XId, PossibleXId; |
| Checker.getX()->Profile(XId, Context, /*Canonical=*/true); |
| PossibleX->Profile(PossibleXId, Context, /*Canonical=*/true); |
| IsUpdateExprFound = XId == PossibleXId; |
| if (IsUpdateExprFound) { |
| V = BinOp->getLHS(); |
| X = Checker.getX(); |
| E = Checker.getExpr(); |
| UE = Checker.getUpdateExpr(); |
| IsXLHSInRHSPart = Checker.isXLHSInRHSPart(); |
| IsPostfixUpdate = true; |
| } |
| } |
| if (!IsUpdateExprFound) { |
| IsUpdateExprFound = !Checker.checkStatement(First); |
| BinOp = nullptr; |
| if (IsUpdateExprFound) { |
| BinOp = dyn_cast<BinaryOperator>(Second); |
| IsUpdateExprFound = BinOp && BinOp->getOpcode() == BO_Assign; |
| } |
| if (IsUpdateExprFound && !CurContext->isDependentContext()) { |
| // { x++; v = x; } |
| // { x--; v = x; } |
| // { ++x; v = x; } |
| // { --x; v = x; } |
| // { x binop= expr; v = x; } |
| // { x = x binop expr; v = x; } |
| // { x = expr binop x; v = x; } |
| // Check that the second expression has form v = x. |
| Expr *PossibleX = BinOp->getRHS()->IgnoreParenImpCasts(); |
| llvm::FoldingSetNodeID XId, PossibleXId; |
| Checker.getX()->Profile(XId, Context, /*Canonical=*/true); |
| PossibleX->Profile(PossibleXId, Context, /*Canonical=*/true); |
| IsUpdateExprFound = XId == PossibleXId; |
| if (IsUpdateExprFound) { |
| V = BinOp->getLHS(); |
| X = Checker.getX(); |
| E = Checker.getExpr(); |
| UE = Checker.getUpdateExpr(); |
| IsXLHSInRHSPart = Checker.isXLHSInRHSPart(); |
| IsPostfixUpdate = false; |
| } |
| } |
| } |
| if (!IsUpdateExprFound) { |
| // { v = x; x = expr; } |
| auto *FirstExpr = dyn_cast<Expr>(First); |
| auto *SecondExpr = dyn_cast<Expr>(Second); |
| if (!FirstExpr || !SecondExpr || |
| !(FirstExpr->isInstantiationDependent() || |
| SecondExpr->isInstantiationDependent())) { |
| auto *FirstBinOp = dyn_cast<BinaryOperator>(First); |
| if (!FirstBinOp || FirstBinOp->getOpcode() != BO_Assign) { |
| ErrorFound = NotAnAssignmentOp; |
| NoteLoc = ErrorLoc = FirstBinOp ? FirstBinOp->getOperatorLoc() |
| : First->getBeginLoc(); |
| NoteRange = ErrorRange = FirstBinOp |
| ? FirstBinOp->getSourceRange() |
| : SourceRange(ErrorLoc, ErrorLoc); |
| } else { |
| auto *SecondBinOp = dyn_cast<BinaryOperator>(Second); |
| if (!SecondBinOp || SecondBinOp->getOpcode() != BO_Assign) { |
| ErrorFound = NotAnAssignmentOp; |
| NoteLoc = ErrorLoc = SecondBinOp |
| ? SecondBinOp->getOperatorLoc() |
| : Second->getBeginLoc(); |
| NoteRange = ErrorRange = |
| SecondBinOp ? SecondBinOp->getSourceRange() |
| : SourceRange(ErrorLoc, ErrorLoc); |
| } else { |
| Expr *PossibleXRHSInFirst = |
| FirstBinOp->getRHS()->IgnoreParenImpCasts(); |
| Expr *PossibleXLHSInSecond = |
| SecondBinOp->getLHS()->IgnoreParenImpCasts(); |
| llvm::FoldingSetNodeID X1Id, X2Id; |
| PossibleXRHSInFirst->Profile(X1Id, Context, |
| /*Canonical=*/true); |
| PossibleXLHSInSecond->Profile(X2Id, Context, |
| /*Canonical=*/true); |
| IsUpdateExprFound = X1Id == X2Id; |
| if (IsUpdateExprFound) { |
| V = FirstBinOp->getLHS(); |
| X = SecondBinOp->getLHS(); |
| E = SecondBinOp->getRHS(); |
| UE = nullptr; |
| IsXLHSInRHSPart = false; |
| IsPostfixUpdate = true; |
| } else { |
| ErrorFound = NotASpecificExpression; |
| ErrorLoc = FirstBinOp->getExprLoc(); |
| ErrorRange = FirstBinOp->getSourceRange(); |
| NoteLoc = SecondBinOp->getLHS()->getExprLoc(); |
| NoteRange = SecondBinOp->getRHS()->getSourceRange(); |
| } |
| } |
| } |
| } |
| } |
| } else { |
| NoteLoc = ErrorLoc = Body->getBeginLoc(); |
| NoteRange = ErrorRange = |
| SourceRange(Body->getBeginLoc(), Body->getBeginLoc()); |
| ErrorFound = NotTwoSubstatements; |
| } |
| } else { |
| NoteLoc = ErrorLoc = Body->getBeginLoc(); |
| NoteRange = ErrorRange = |
| SourceRange(Body->getBeginLoc(), Body->getBeginLoc()); |
| ErrorFound = NotACompoundStatement; |
| } |
| if (ErrorFound != NoError) { |
| Diag(ErrorLoc, diag::err_omp_atomic_capture_not_compound_statement) |
| << ErrorRange; |
| Diag(NoteLoc, diag::note_omp_atomic_capture) << ErrorFound << NoteRange; |
| return StmtError(); |
| } |
| if (CurContext->isDependentContext()) |
| UE = V = E = X = nullptr; |
| } |
| } |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| return OMPAtomicDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt, |
| X, V, E, UE, IsXLHSInRHSPart, |
| IsPostfixUpdate); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTargetDirective(ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| // OpenMP [2.16, Nesting of Regions] |
| // If specified, a teams construct must be contained within a target |
| // construct. That target construct must contain no statements or directives |
| // outside of the teams construct. |
| if (DSAStack->hasInnerTeamsRegion()) { |
| const Stmt *S = CS->IgnoreContainers(/*IgnoreCaptured=*/true); |
| bool OMPTeamsFound = true; |
| if (const auto *CS = dyn_cast<CompoundStmt>(S)) { |
| auto I = CS->body_begin(); |
| while (I != CS->body_end()) { |
| const auto *OED = dyn_cast<OMPExecutableDirective>(*I); |
| if (!OED || !isOpenMPTeamsDirective(OED->getDirectiveKind()) || |
| OMPTeamsFound) { |
| |
| OMPTeamsFound = false; |
| break; |
| } |
| ++I; |
| } |
| assert(I != CS->body_end() && "Not found statement"); |
| S = *I; |
| } else { |
| const auto *OED = dyn_cast<OMPExecutableDirective>(S); |
| OMPTeamsFound = OED && isOpenMPTeamsDirective(OED->getDirectiveKind()); |
| } |
| if (!OMPTeamsFound) { |
| Diag(StartLoc, diag::err_omp_target_contains_not_only_teams); |
| Diag(DSAStack->getInnerTeamsRegionLoc(), |
| diag::note_omp_nested_teams_construct_here); |
| Diag(S->getBeginLoc(), diag::note_omp_nested_statement_here) |
| << isa<OMPExecutableDirective>(S); |
| return StmtError(); |
| } |
| } |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| return OMPTargetDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt); |
| } |
| |
| StmtResult |
| Sema::ActOnOpenMPTargetParallelDirective(ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_parallel); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| return OMPTargetParallelDirective::Create( |
| Context, StartLoc, EndLoc, Clauses, AStmt, |
| DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion()); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTargetParallelForDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_parallel_for); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' or 'ordered' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = |
| checkOpenMPLoop(OMPD_target_parallel_for, getCollapseNumberExpr(Clauses), |
| getOrderedNumberExpr(Clauses), CS, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp target parallel for loop exprs were not built"); |
| |
| if (!CurContext->isDependentContext()) { |
| // Finalize the clauses that need pre-built expressions for CodeGen. |
| for (OMPClause *C : Clauses) { |
| if (auto *LC = dyn_cast<OMPLinearClause>(C)) |
| if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef), |
| B.NumIterations, *this, CurScope, |
| DSAStack)) |
| return StmtError(); |
| } |
| } |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPTargetParallelForDirective::Create( |
| Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B, |
| DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion()); |
| } |
| |
| /// Check for existence of a map clause in the list of clauses. |
| static bool hasClauses(ArrayRef<OMPClause *> Clauses, |
| const OpenMPClauseKind K) { |
| return llvm::any_of( |
| Clauses, [K](const OMPClause *C) { return C->getClauseKind() == K; }); |
| } |
| |
| template <typename... Params> |
| static bool hasClauses(ArrayRef<OMPClause *> Clauses, const OpenMPClauseKind K, |
| const Params... ClauseTypes) { |
| return hasClauses(Clauses, K) || hasClauses(Clauses, ClauseTypes...); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTargetDataDirective(ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| if (!AStmt) |
| return StmtError(); |
| |
| assert(isa<CapturedStmt>(AStmt) && "Captured statement expected"); |
| |
| // OpenMP [2.12.2, target data Construct, Restrictions] |
| // At least one map, use_device_addr or use_device_ptr clause must appear on |
| // the directive. |
| if (!hasClauses(Clauses, OMPC_map, OMPC_use_device_ptr) && |
| (LangOpts.OpenMP < 50 || !hasClauses(Clauses, OMPC_use_device_addr))) { |
| StringRef Expected; |
| if (LangOpts.OpenMP < 50) |
| Expected = "'map' or 'use_device_ptr'"; |
| else |
| Expected = "'map', 'use_device_ptr', or 'use_device_addr'"; |
| Diag(StartLoc, diag::err_omp_no_clause_for_directive) |
| << Expected << getOpenMPDirectiveName(OMPD_target_data); |
| return StmtError(); |
| } |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| return OMPTargetDataDirective::Create(Context, StartLoc, EndLoc, Clauses, |
| AStmt); |
| } |
| |
| StmtResult |
| Sema::ActOnOpenMPTargetEnterDataDirective(ArrayRef<OMPClause *> Clauses, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc, Stmt *AStmt) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_enter_data); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| // OpenMP [2.10.2, Restrictions, p. 99] |
| // At least one map clause must appear on the directive. |
| if (!hasClauses(Clauses, OMPC_map)) { |
| Diag(StartLoc, diag::err_omp_no_clause_for_directive) |
| << "'map'" << getOpenMPDirectiveName(OMPD_target_enter_data); |
| return StmtError(); |
| } |
| |
| return OMPTargetEnterDataDirective::Create(Context, StartLoc, EndLoc, Clauses, |
| AStmt); |
| } |
| |
| StmtResult |
| Sema::ActOnOpenMPTargetExitDataDirective(ArrayRef<OMPClause *> Clauses, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc, Stmt *AStmt) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_exit_data); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| // OpenMP [2.10.3, Restrictions, p. 102] |
| // At least one map clause must appear on the directive. |
| if (!hasClauses(Clauses, OMPC_map)) { |
| Diag(StartLoc, diag::err_omp_no_clause_for_directive) |
| << "'map'" << getOpenMPDirectiveName(OMPD_target_exit_data); |
| return StmtError(); |
| } |
| |
| return OMPTargetExitDataDirective::Create(Context, StartLoc, EndLoc, Clauses, |
| AStmt); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTargetUpdateDirective(ArrayRef<OMPClause *> Clauses, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc, |
| Stmt *AStmt) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_update); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| if (!hasClauses(Clauses, OMPC_to, OMPC_from)) { |
| Diag(StartLoc, diag::err_omp_at_least_one_motion_clause_required); |
| return StmtError(); |
| } |
| return OMPTargetUpdateDirective::Create(Context, StartLoc, EndLoc, Clauses, |
| AStmt); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTeamsDirective(ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| DSAStack->setParentTeamsRegionLoc(StartLoc); |
| |
| return OMPTeamsDirective::Create(Context, StartLoc, EndLoc, Clauses, AStmt); |
| } |
| |
| StmtResult |
| Sema::ActOnOpenMPCancellationPointDirective(SourceLocation StartLoc, |
| SourceLocation EndLoc, |
| OpenMPDirectiveKind CancelRegion) { |
| if (DSAStack->isParentNowaitRegion()) { |
| Diag(StartLoc, diag::err_omp_parent_cancel_region_nowait) << 0; |
| return StmtError(); |
| } |
| if (DSAStack->isParentOrderedRegion()) { |
| Diag(StartLoc, diag::err_omp_parent_cancel_region_ordered) << 0; |
| return StmtError(); |
| } |
| return OMPCancellationPointDirective::Create(Context, StartLoc, EndLoc, |
| CancelRegion); |
| } |
| |
| StmtResult Sema::ActOnOpenMPCancelDirective(ArrayRef<OMPClause *> Clauses, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc, |
| OpenMPDirectiveKind CancelRegion) { |
| if (DSAStack->isParentNowaitRegion()) { |
| Diag(StartLoc, diag::err_omp_parent_cancel_region_nowait) << 1; |
| return StmtError(); |
| } |
| if (DSAStack->isParentOrderedRegion()) { |
| Diag(StartLoc, diag::err_omp_parent_cancel_region_ordered) << 1; |
| return StmtError(); |
| } |
| DSAStack->setParentCancelRegion(/*Cancel=*/true); |
| return OMPCancelDirective::Create(Context, StartLoc, EndLoc, Clauses, |
| CancelRegion); |
| } |
| |
| static bool checkReductionClauseWithNogroup(Sema &S, |
| ArrayRef<OMPClause *> Clauses) { |
| const OMPClause *ReductionClause = nullptr; |
| const OMPClause *NogroupClause = nullptr; |
| for (const OMPClause *C : Clauses) { |
| if (C->getClauseKind() == OMPC_reduction) { |
| ReductionClause = C; |
| if (NogroupClause) |
| break; |
| continue; |
| } |
| if (C->getClauseKind() == OMPC_nogroup) { |
| NogroupClause = C; |
| if (ReductionClause) |
| break; |
| continue; |
| } |
| } |
| if (ReductionClause && NogroupClause) { |
| S.Diag(ReductionClause->getBeginLoc(), diag::err_omp_reduction_with_nogroup) |
| << SourceRange(NogroupClause->getBeginLoc(), |
| NogroupClause->getEndLoc()); |
| return true; |
| } |
| return false; |
| } |
| |
| StmtResult Sema::ActOnOpenMPTaskLoopDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| assert(isa<CapturedStmt>(AStmt) && "Captured statement expected"); |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' or 'ordered' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = |
| checkOpenMPLoop(OMPD_taskloop, getCollapseNumberExpr(Clauses), |
| /*OrderedLoopCountExpr=*/nullptr, AStmt, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp for loop exprs were not built"); |
| |
| // OpenMP, [2.9.2 taskloop Construct, Restrictions] |
| // The grainsize clause and num_tasks clause are mutually exclusive and may |
| // not appear on the same taskloop directive. |
| if (checkMutuallyExclusiveClauses(*this, Clauses, |
| {OMPC_grainsize, OMPC_num_tasks})) |
| return StmtError(); |
| // OpenMP, [2.9.2 taskloop Construct, Restrictions] |
| // If a reduction clause is present on the taskloop directive, the nogroup |
| // clause must not be specified. |
| if (checkReductionClauseWithNogroup(*this, Clauses)) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPTaskLoopDirective::Create(Context, StartLoc, EndLoc, |
| NestedLoopCount, Clauses, AStmt, B, |
| DSAStack->isCancelRegion()); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTaskLoopSimdDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| assert(isa<CapturedStmt>(AStmt) && "Captured statement expected"); |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' or 'ordered' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = |
| checkOpenMPLoop(OMPD_taskloop_simd, getCollapseNumberExpr(Clauses), |
| /*OrderedLoopCountExpr=*/nullptr, AStmt, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp for loop exprs were not built"); |
| |
| if (!CurContext->isDependentContext()) { |
| // Finalize the clauses that need pre-built expressions for CodeGen. |
| for (OMPClause *C : Clauses) { |
| if (auto *LC = dyn_cast<OMPLinearClause>(C)) |
| if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef), |
| B.NumIterations, *this, CurScope, |
| DSAStack)) |
| return StmtError(); |
| } |
| } |
| |
| // OpenMP, [2.9.2 taskloop Construct, Restrictions] |
| // The grainsize clause and num_tasks clause are mutually exclusive and may |
| // not appear on the same taskloop directive. |
| if (checkMutuallyExclusiveClauses(*this, Clauses, |
| {OMPC_grainsize, OMPC_num_tasks})) |
| return StmtError(); |
| // OpenMP, [2.9.2 taskloop Construct, Restrictions] |
| // If a reduction clause is present on the taskloop directive, the nogroup |
| // clause must not be specified. |
| if (checkReductionClauseWithNogroup(*this, Clauses)) |
| return StmtError(); |
| if (checkSimdlenSafelenSpecified(*this, Clauses)) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPTaskLoopSimdDirective::Create(Context, StartLoc, EndLoc, |
| NestedLoopCount, Clauses, AStmt, B); |
| } |
| |
| StmtResult Sema::ActOnOpenMPMasterTaskLoopDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| assert(isa<CapturedStmt>(AStmt) && "Captured statement expected"); |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' or 'ordered' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = |
| checkOpenMPLoop(OMPD_master_taskloop, getCollapseNumberExpr(Clauses), |
| /*OrderedLoopCountExpr=*/nullptr, AStmt, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp for loop exprs were not built"); |
| |
| // OpenMP, [2.9.2 taskloop Construct, Restrictions] |
| // The grainsize clause and num_tasks clause are mutually exclusive and may |
| // not appear on the same taskloop directive. |
| if (checkMutuallyExclusiveClauses(*this, Clauses, |
| {OMPC_grainsize, OMPC_num_tasks})) |
| return StmtError(); |
| // OpenMP, [2.9.2 taskloop Construct, Restrictions] |
| // If a reduction clause is present on the taskloop directive, the nogroup |
| // clause must not be specified. |
| if (checkReductionClauseWithNogroup(*this, Clauses)) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPMasterTaskLoopDirective::Create(Context, StartLoc, EndLoc, |
| NestedLoopCount, Clauses, AStmt, B, |
| DSAStack->isCancelRegion()); |
| } |
| |
| StmtResult Sema::ActOnOpenMPMasterTaskLoopSimdDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| assert(isa<CapturedStmt>(AStmt) && "Captured statement expected"); |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' or 'ordered' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = |
| checkOpenMPLoop(OMPD_master_taskloop_simd, getCollapseNumberExpr(Clauses), |
| /*OrderedLoopCountExpr=*/nullptr, AStmt, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp for loop exprs were not built"); |
| |
| if (!CurContext->isDependentContext()) { |
| // Finalize the clauses that need pre-built expressions for CodeGen. |
| for (OMPClause *C : Clauses) { |
| if (auto *LC = dyn_cast<OMPLinearClause>(C)) |
| if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef), |
| B.NumIterations, *this, CurScope, |
| DSAStack)) |
| return StmtError(); |
| } |
| } |
| |
| // OpenMP, [2.9.2 taskloop Construct, Restrictions] |
| // The grainsize clause and num_tasks clause are mutually exclusive and may |
| // not appear on the same taskloop directive. |
| if (checkMutuallyExclusiveClauses(*this, Clauses, |
| {OMPC_grainsize, OMPC_num_tasks})) |
| return StmtError(); |
| // OpenMP, [2.9.2 taskloop Construct, Restrictions] |
| // If a reduction clause is present on the taskloop directive, the nogroup |
| // clause must not be specified. |
| if (checkReductionClauseWithNogroup(*this, Clauses)) |
| return StmtError(); |
| if (checkSimdlenSafelenSpecified(*this, Clauses)) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPMasterTaskLoopSimdDirective::Create( |
| Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B); |
| } |
| |
| StmtResult Sema::ActOnOpenMPParallelMasterTaskLoopDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| assert(isa<CapturedStmt>(AStmt) && "Captured statement expected"); |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = |
| getOpenMPCaptureLevels(OMPD_parallel_master_taskloop); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' or 'ordered' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = checkOpenMPLoop( |
| OMPD_parallel_master_taskloop, getCollapseNumberExpr(Clauses), |
| /*OrderedLoopCountExpr=*/nullptr, CS, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp for loop exprs were not built"); |
| |
| // OpenMP, [2.9.2 taskloop Construct, Restrictions] |
| // The grainsize clause and num_tasks clause are mutually exclusive and may |
| // not appear on the same taskloop directive. |
| if (checkMutuallyExclusiveClauses(*this, Clauses, |
| {OMPC_grainsize, OMPC_num_tasks})) |
| return StmtError(); |
| // OpenMP, [2.9.2 taskloop Construct, Restrictions] |
| // If a reduction clause is present on the taskloop directive, the nogroup |
| // clause must not be specified. |
| if (checkReductionClauseWithNogroup(*this, Clauses)) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPParallelMasterTaskLoopDirective::Create( |
| Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B, |
| DSAStack->isCancelRegion()); |
| } |
| |
| StmtResult Sema::ActOnOpenMPParallelMasterTaskLoopSimdDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| assert(isa<CapturedStmt>(AStmt) && "Captured statement expected"); |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = |
| getOpenMPCaptureLevels(OMPD_parallel_master_taskloop_simd); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' or 'ordered' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = checkOpenMPLoop( |
| OMPD_parallel_master_taskloop_simd, getCollapseNumberExpr(Clauses), |
| /*OrderedLoopCountExpr=*/nullptr, CS, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp for loop exprs were not built"); |
| |
| if (!CurContext->isDependentContext()) { |
| // Finalize the clauses that need pre-built expressions for CodeGen. |
| for (OMPClause *C : Clauses) { |
| if (auto *LC = dyn_cast<OMPLinearClause>(C)) |
| if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef), |
| B.NumIterations, *this, CurScope, |
| DSAStack)) |
| return StmtError(); |
| } |
| } |
| |
| // OpenMP, [2.9.2 taskloop Construct, Restrictions] |
| // The grainsize clause and num_tasks clause are mutually exclusive and may |
| // not appear on the same taskloop directive. |
| if (checkMutuallyExclusiveClauses(*this, Clauses, |
| {OMPC_grainsize, OMPC_num_tasks})) |
| return StmtError(); |
| // OpenMP, [2.9.2 taskloop Construct, Restrictions] |
| // If a reduction clause is present on the taskloop directive, the nogroup |
| // clause must not be specified. |
| if (checkReductionClauseWithNogroup(*this, Clauses)) |
| return StmtError(); |
| if (checkSimdlenSafelenSpecified(*this, Clauses)) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPParallelMasterTaskLoopSimdDirective::Create( |
| Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B); |
| } |
| |
| StmtResult Sema::ActOnOpenMPDistributeDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| assert(isa<CapturedStmt>(AStmt) && "Captured statement expected"); |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = |
| checkOpenMPLoop(OMPD_distribute, getCollapseNumberExpr(Clauses), |
| nullptr /*ordered not a clause on distribute*/, AStmt, |
| *this, *DSAStack, VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp for loop exprs were not built"); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPDistributeDirective::Create(Context, StartLoc, EndLoc, |
| NestedLoopCount, Clauses, AStmt, B); |
| } |
| |
| StmtResult Sema::ActOnOpenMPDistributeParallelForDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = |
| getOpenMPCaptureLevels(OMPD_distribute_parallel_for); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = checkOpenMPLoop( |
| OMPD_distribute_parallel_for, getCollapseNumberExpr(Clauses), |
| nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp for loop exprs were not built"); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPDistributeParallelForDirective::Create( |
| Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B, |
| DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion()); |
| } |
| |
| StmtResult Sema::ActOnOpenMPDistributeParallelForSimdDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = |
| getOpenMPCaptureLevels(OMPD_distribute_parallel_for_simd); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = checkOpenMPLoop( |
| OMPD_distribute_parallel_for_simd, getCollapseNumberExpr(Clauses), |
| nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp for loop exprs were not built"); |
| |
| if (!CurContext->isDependentContext()) { |
| // Finalize the clauses that need pre-built expressions for CodeGen. |
| for (OMPClause *C : Clauses) { |
| if (auto *LC = dyn_cast<OMPLinearClause>(C)) |
| if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef), |
| B.NumIterations, *this, CurScope, |
| DSAStack)) |
| return StmtError(); |
| } |
| } |
| |
| if (checkSimdlenSafelenSpecified(*this, Clauses)) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPDistributeParallelForSimdDirective::Create( |
| Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B); |
| } |
| |
| StmtResult Sema::ActOnOpenMPDistributeSimdDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_distribute_simd); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = |
| checkOpenMPLoop(OMPD_distribute_simd, getCollapseNumberExpr(Clauses), |
| nullptr /*ordered not a clause on distribute*/, CS, *this, |
| *DSAStack, VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp for loop exprs were not built"); |
| |
| if (!CurContext->isDependentContext()) { |
| // Finalize the clauses that need pre-built expressions for CodeGen. |
| for (OMPClause *C : Clauses) { |
| if (auto *LC = dyn_cast<OMPLinearClause>(C)) |
| if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef), |
| B.NumIterations, *this, CurScope, |
| DSAStack)) |
| return StmtError(); |
| } |
| } |
| |
| if (checkSimdlenSafelenSpecified(*this, Clauses)) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPDistributeSimdDirective::Create(Context, StartLoc, EndLoc, |
| NestedLoopCount, Clauses, AStmt, B); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTargetParallelForSimdDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_parallel_for); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' or 'ordered' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = checkOpenMPLoop( |
| OMPD_target_parallel_for_simd, getCollapseNumberExpr(Clauses), |
| getOrderedNumberExpr(Clauses), CS, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp target parallel for simd loop exprs were not built"); |
| |
| if (!CurContext->isDependentContext()) { |
| // Finalize the clauses that need pre-built expressions for CodeGen. |
| for (OMPClause *C : Clauses) { |
| if (auto *LC = dyn_cast<OMPLinearClause>(C)) |
| if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef), |
| B.NumIterations, *this, CurScope, |
| DSAStack)) |
| return StmtError(); |
| } |
| } |
| if (checkSimdlenSafelenSpecified(*this, Clauses)) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPTargetParallelForSimdDirective::Create( |
| Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTargetSimdDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_simd); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' with number of loops, it will define the |
| // nested loops number. |
| unsigned NestedLoopCount = |
| checkOpenMPLoop(OMPD_target_simd, getCollapseNumberExpr(Clauses), |
| getOrderedNumberExpr(Clauses), CS, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp target simd loop exprs were not built"); |
| |
| if (!CurContext->isDependentContext()) { |
| // Finalize the clauses that need pre-built expressions for CodeGen. |
| for (OMPClause *C : Clauses) { |
| if (auto *LC = dyn_cast<OMPLinearClause>(C)) |
| if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef), |
| B.NumIterations, *this, CurScope, |
| DSAStack)) |
| return StmtError(); |
| } |
| } |
| |
| if (checkSimdlenSafelenSpecified(*this, Clauses)) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPTargetSimdDirective::Create(Context, StartLoc, EndLoc, |
| NestedLoopCount, Clauses, AStmt, B); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTeamsDistributeDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_teams_distribute); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = |
| checkOpenMPLoop(OMPD_teams_distribute, getCollapseNumberExpr(Clauses), |
| nullptr /*ordered not a clause on distribute*/, CS, *this, |
| *DSAStack, VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp teams distribute loop exprs were not built"); |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| DSAStack->setParentTeamsRegionLoc(StartLoc); |
| |
| return OMPTeamsDistributeDirective::Create( |
| Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTeamsDistributeSimdDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = |
| getOpenMPCaptureLevels(OMPD_teams_distribute_simd); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = checkOpenMPLoop( |
| OMPD_teams_distribute_simd, getCollapseNumberExpr(Clauses), |
| nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp teams distribute simd loop exprs were not built"); |
| |
| if (!CurContext->isDependentContext()) { |
| // Finalize the clauses that need pre-built expressions for CodeGen. |
| for (OMPClause *C : Clauses) { |
| if (auto *LC = dyn_cast<OMPLinearClause>(C)) |
| if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef), |
| B.NumIterations, *this, CurScope, |
| DSAStack)) |
| return StmtError(); |
| } |
| } |
| |
| if (checkSimdlenSafelenSpecified(*this, Clauses)) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| DSAStack->setParentTeamsRegionLoc(StartLoc); |
| |
| return OMPTeamsDistributeSimdDirective::Create( |
| Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTeamsDistributeParallelForSimdDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| |
| for (int ThisCaptureLevel = |
| getOpenMPCaptureLevels(OMPD_teams_distribute_parallel_for_simd); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = checkOpenMPLoop( |
| OMPD_teams_distribute_parallel_for_simd, getCollapseNumberExpr(Clauses), |
| nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp for loop exprs were not built"); |
| |
| if (!CurContext->isDependentContext()) { |
| // Finalize the clauses that need pre-built expressions for CodeGen. |
| for (OMPClause *C : Clauses) { |
| if (auto *LC = dyn_cast<OMPLinearClause>(C)) |
| if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef), |
| B.NumIterations, *this, CurScope, |
| DSAStack)) |
| return StmtError(); |
| } |
| } |
| |
| if (checkSimdlenSafelenSpecified(*this, Clauses)) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| DSAStack->setParentTeamsRegionLoc(StartLoc); |
| |
| return OMPTeamsDistributeParallelForSimdDirective::Create( |
| Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTeamsDistributeParallelForDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| |
| for (int ThisCaptureLevel = |
| getOpenMPCaptureLevels(OMPD_teams_distribute_parallel_for); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = checkOpenMPLoop( |
| OMPD_teams_distribute_parallel_for, getCollapseNumberExpr(Clauses), |
| nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp for loop exprs were not built"); |
| |
| setFunctionHasBranchProtectedScope(); |
| |
| DSAStack->setParentTeamsRegionLoc(StartLoc); |
| |
| return OMPTeamsDistributeParallelForDirective::Create( |
| Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B, |
| DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion()); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTargetTeamsDirective(ArrayRef<OMPClause *> Clauses, |
| Stmt *AStmt, |
| SourceLocation StartLoc, |
| SourceLocation EndLoc) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| |
| for (int ThisCaptureLevel = getOpenMPCaptureLevels(OMPD_target_teams); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| setFunctionHasBranchProtectedScope(); |
| |
| return OMPTargetTeamsDirective::Create(Context, StartLoc, EndLoc, Clauses, |
| AStmt); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTargetTeamsDistributeDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = |
| getOpenMPCaptureLevels(OMPD_target_teams_distribute); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = checkOpenMPLoop( |
| OMPD_target_teams_distribute, getCollapseNumberExpr(Clauses), |
| nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp target teams distribute loop exprs were not built"); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPTargetTeamsDistributeDirective::Create( |
| Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTargetTeamsDistributeParallelForDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = |
| getOpenMPCaptureLevels(OMPD_target_teams_distribute_parallel_for); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = checkOpenMPLoop( |
| OMPD_target_teams_distribute_parallel_for, getCollapseNumberExpr(Clauses), |
| nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp target teams distribute parallel for loop exprs were not built"); |
| |
| if (!CurContext->isDependentContext()) { |
| // Finalize the clauses that need pre-built expressions for CodeGen. |
| for (OMPClause *C : Clauses) { |
| if (auto *LC = dyn_cast<OMPLinearClause>(C)) |
| if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef), |
| B.NumIterations, *this, CurScope, |
| DSAStack)) |
| return StmtError(); |
| } |
| } |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPTargetTeamsDistributeParallelForDirective::Create( |
| Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B, |
| DSAStack->getTaskgroupReductionRef(), DSAStack->isCancelRegion()); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTargetTeamsDistributeParallelForSimdDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = getOpenMPCaptureLevels( |
| OMPD_target_teams_distribute_parallel_for_simd); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = |
| checkOpenMPLoop(OMPD_target_teams_distribute_parallel_for_simd, |
| getCollapseNumberExpr(Clauses), |
| nullptr /*ordered not a clause on distribute*/, CS, *this, |
| *DSAStack, VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp target teams distribute parallel for simd loop exprs were not " |
| "built"); |
| |
| if (!CurContext->isDependentContext()) { |
| // Finalize the clauses that need pre-built expressions for CodeGen. |
| for (OMPClause *C : Clauses) { |
| if (auto *LC = dyn_cast<OMPLinearClause>(C)) |
| if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef), |
| B.NumIterations, *this, CurScope, |
| DSAStack)) |
| return StmtError(); |
| } |
| } |
| |
| if (checkSimdlenSafelenSpecified(*this, Clauses)) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPTargetTeamsDistributeParallelForSimdDirective::Create( |
| Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B); |
| } |
| |
| StmtResult Sema::ActOnOpenMPTargetTeamsDistributeSimdDirective( |
| ArrayRef<OMPClause *> Clauses, Stmt *AStmt, SourceLocation StartLoc, |
| SourceLocation EndLoc, VarsWithInheritedDSAType &VarsWithImplicitDSA) { |
| if (!AStmt) |
| return StmtError(); |
| |
| auto *CS = cast<CapturedStmt>(AStmt); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| for (int ThisCaptureLevel = |
| getOpenMPCaptureLevels(OMPD_target_teams_distribute_simd); |
| ThisCaptureLevel > 1; --ThisCaptureLevel) { |
| CS = cast<CapturedStmt>(CS->getCapturedStmt()); |
| // 1.2.2 OpenMP Language Terminology |
| // Structured block - An executable statement with a single entry at the |
| // top and a single exit at the bottom. |
| // The point of exit cannot be a branch out of the structured block. |
| // longjmp() and throw() must not violate the entry/exit criteria. |
| CS->getCapturedDecl()->setNothrow(); |
| } |
| |
| OMPLoopBasedDirective::HelperExprs B; |
| // In presence of clause 'collapse' with number of loops, it will |
| // define the nested loops number. |
| unsigned NestedLoopCount = checkOpenMPLoop( |
| OMPD_target_teams_distribute_simd, getCollapseNumberExpr(Clauses), |
| nullptr /*ordered not a clause on distribute*/, CS, *this, *DSAStack, |
| VarsWithImplicitDSA, B); |
| if (NestedLoopCount == 0) |
| return StmtError(); |
| |
| assert((CurContext->isDependentContext() || B.builtAll()) && |
| "omp target teams distribute simd loop exprs were not built"); |
| |
| if (!CurContext->isDependentContext()) { |
| // Finalize the clauses that need pre-built expressions for CodeGen. |
| for (OMPClause *C : Clauses) { |
| if (auto *LC = dyn_cast<OMPLinearClause>(C)) |
| if (FinishOpenMPLinearClause(*LC, cast<DeclRefExpr>(B.IterationVarRef), |
| B.NumIterations, *this, CurScope, |
| DSAStack)) |
| return StmtError(); |
| } |
| } |
| |
| if (checkSimdlenSafelenSpecified(*this, Clauses)) |
| return StmtError(); |
| |
| setFunctionHasBranchProtectedScope(); |
| return OMPTargetTeamsDistributeSimdDirective::Create( |
| Context, StartLoc, EndLoc, NestedLoopCount, Clauses, AStmt, B); |
| } |
| |
|