| //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for expressions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "TreeTransform.h" |
| #include "UsedDeclVisitor.h" |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTLambda.h" |
| #include "clang/AST/ASTMutationListener.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/EvaluatedExprVisitor.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/ExprOpenMP.h" |
| #include "clang/AST/OperationKinds.h" |
| #include "clang/AST/ParentMapContext.h" |
| #include "clang/AST/RecursiveASTVisitor.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/DiagnosticSema.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/LiteralSupport.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Sema/AnalysisBasedWarnings.h" |
| #include "clang/Sema/DeclSpec.h" |
| #include "clang/Sema/DelayedDiagnostic.h" |
| #include "clang/Sema/Designator.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/Overload.h" |
| #include "clang/Sema/ParsedTemplate.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/SemaFixItUtils.h" |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/Template.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/ConvertUTF.h" |
| #include "llvm/Support/SaveAndRestore.h" |
| |
| using namespace clang; |
| using namespace sema; |
| using llvm::RoundingMode; |
| |
| /// Determine whether the use of this declaration is valid, without |
| /// emitting diagnostics. |
| bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) { |
| // See if this is an auto-typed variable whose initializer we are parsing. |
| if (ParsingInitForAutoVars.count(D)) |
| return false; |
| |
| // See if this is a deleted function. |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->isDeleted()) |
| return false; |
| |
| // If the function has a deduced return type, and we can't deduce it, |
| // then we can't use it either. |
| if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && |
| DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false)) |
| return false; |
| |
| // See if this is an aligned allocation/deallocation function that is |
| // unavailable. |
| if (TreatUnavailableAsInvalid && |
| isUnavailableAlignedAllocationFunction(*FD)) |
| return false; |
| } |
| |
| // See if this function is unavailable. |
| if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable && |
| cast<Decl>(CurContext)->getAvailability() != AR_Unavailable) |
| return false; |
| |
| if (isa<UnresolvedUsingIfExistsDecl>(D)) |
| return false; |
| |
| return true; |
| } |
| |
| static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) { |
| // Warn if this is used but marked unused. |
| if (const auto *A = D->getAttr<UnusedAttr>()) { |
| // [[maybe_unused]] should not diagnose uses, but __attribute__((unused)) |
| // should diagnose them. |
| if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused && |
| A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) { |
| const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext()); |
| if (DC && !DC->hasAttr<UnusedAttr>()) |
| S.Diag(Loc, diag::warn_used_but_marked_unused) << D; |
| } |
| } |
| } |
| |
| /// Emit a note explaining that this function is deleted. |
| void Sema::NoteDeletedFunction(FunctionDecl *Decl) { |
| assert(Decl && Decl->isDeleted()); |
| |
| if (Decl->isDefaulted()) { |
| // If the method was explicitly defaulted, point at that declaration. |
| if (!Decl->isImplicit()) |
| Diag(Decl->getLocation(), diag::note_implicitly_deleted); |
| |
| // Try to diagnose why this special member function was implicitly |
| // deleted. This might fail, if that reason no longer applies. |
| DiagnoseDeletedDefaultedFunction(Decl); |
| return; |
| } |
| |
| auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl); |
| if (Ctor && Ctor->isInheritingConstructor()) |
| return NoteDeletedInheritingConstructor(Ctor); |
| |
| Diag(Decl->getLocation(), diag::note_availability_specified_here) |
| << Decl << 1; |
| } |
| |
| /// Determine whether a FunctionDecl was ever declared with an |
| /// explicit storage class. |
| static bool hasAnyExplicitStorageClass(const FunctionDecl *D) { |
| for (auto I : D->redecls()) { |
| if (I->getStorageClass() != SC_None) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Check whether we're in an extern inline function and referring to a |
| /// variable or function with internal linkage (C11 6.7.4p3). |
| /// |
| /// This is only a warning because we used to silently accept this code, but |
| /// in many cases it will not behave correctly. This is not enabled in C++ mode |
| /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6) |
| /// and so while there may still be user mistakes, most of the time we can't |
| /// prove that there are errors. |
| static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S, |
| const NamedDecl *D, |
| SourceLocation Loc) { |
| // This is disabled under C++; there are too many ways for this to fire in |
| // contexts where the warning is a false positive, or where it is technically |
| // correct but benign. |
| if (S.getLangOpts().CPlusPlus) |
| return; |
| |
| // Check if this is an inlined function or method. |
| FunctionDecl *Current = S.getCurFunctionDecl(); |
| if (!Current) |
| return; |
| if (!Current->isInlined()) |
| return; |
| if (!Current->isExternallyVisible()) |
| return; |
| |
| // Check if the decl has internal linkage. |
| if (D->getFormalLinkage() != InternalLinkage) |
| return; |
| |
| // Downgrade from ExtWarn to Extension if |
| // (1) the supposedly external inline function is in the main file, |
| // and probably won't be included anywhere else. |
| // (2) the thing we're referencing is a pure function. |
| // (3) the thing we're referencing is another inline function. |
| // This last can give us false negatives, but it's better than warning on |
| // wrappers for simple C library functions. |
| const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D); |
| bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc); |
| if (!DowngradeWarning && UsedFn) |
| DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>(); |
| |
| S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet |
| : diag::ext_internal_in_extern_inline) |
| << /*IsVar=*/!UsedFn << D; |
| |
| S.MaybeSuggestAddingStaticToDecl(Current); |
| |
| S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at) |
| << D; |
| } |
| |
| void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) { |
| const FunctionDecl *First = Cur->getFirstDecl(); |
| |
| // Suggest "static" on the function, if possible. |
| if (!hasAnyExplicitStorageClass(First)) { |
| SourceLocation DeclBegin = First->getSourceRange().getBegin(); |
| Diag(DeclBegin, diag::note_convert_inline_to_static) |
| << Cur << FixItHint::CreateInsertion(DeclBegin, "static "); |
| } |
| } |
| |
| /// Determine whether the use of this declaration is valid, and |
| /// emit any corresponding diagnostics. |
| /// |
| /// This routine diagnoses various problems with referencing |
| /// declarations that can occur when using a declaration. For example, |
| /// it might warn if a deprecated or unavailable declaration is being |
| /// used, or produce an error (and return true) if a C++0x deleted |
| /// function is being used. |
| /// |
| /// \returns true if there was an error (this declaration cannot be |
| /// referenced), false otherwise. |
| /// |
| bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs, |
| const ObjCInterfaceDecl *UnknownObjCClass, |
| bool ObjCPropertyAccess, |
| bool AvoidPartialAvailabilityChecks, |
| ObjCInterfaceDecl *ClassReceiver) { |
| SourceLocation Loc = Locs.front(); |
| if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) { |
| // If there were any diagnostics suppressed by template argument deduction, |
| // emit them now. |
| auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl()); |
| if (Pos != SuppressedDiagnostics.end()) { |
| for (const PartialDiagnosticAt &Suppressed : Pos->second) |
| Diag(Suppressed.first, Suppressed.second); |
| |
| // Clear out the list of suppressed diagnostics, so that we don't emit |
| // them again for this specialization. However, we don't obsolete this |
| // entry from the table, because we want to avoid ever emitting these |
| // diagnostics again. |
| Pos->second.clear(); |
| } |
| |
| // C++ [basic.start.main]p3: |
| // The function 'main' shall not be used within a program. |
| if (cast<FunctionDecl>(D)->isMain()) |
| Diag(Loc, diag::ext_main_used); |
| |
| diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc); |
| } |
| |
| // See if this is an auto-typed variable whose initializer we are parsing. |
| if (ParsingInitForAutoVars.count(D)) { |
| if (isa<BindingDecl>(D)) { |
| Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer) |
| << D->getDeclName(); |
| } else { |
| Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer) |
| << D->getDeclName() << cast<VarDecl>(D)->getType(); |
| } |
| return true; |
| } |
| |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| // See if this is a deleted function. |
| if (FD->isDeleted()) { |
| auto *Ctor = dyn_cast<CXXConstructorDecl>(FD); |
| if (Ctor && Ctor->isInheritingConstructor()) |
| Diag(Loc, diag::err_deleted_inherited_ctor_use) |
| << Ctor->getParent() |
| << Ctor->getInheritedConstructor().getConstructor()->getParent(); |
| else |
| Diag(Loc, diag::err_deleted_function_use); |
| NoteDeletedFunction(FD); |
| return true; |
| } |
| |
| // [expr.prim.id]p4 |
| // A program that refers explicitly or implicitly to a function with a |
| // trailing requires-clause whose constraint-expression is not satisfied, |
| // other than to declare it, is ill-formed. [...] |
| // |
| // See if this is a function with constraints that need to be satisfied. |
| // Check this before deducing the return type, as it might instantiate the |
| // definition. |
| if (FD->getTrailingRequiresClause()) { |
| ConstraintSatisfaction Satisfaction; |
| if (CheckFunctionConstraints(FD, Satisfaction, Loc)) |
| // A diagnostic will have already been generated (non-constant |
| // constraint expression, for example) |
| return true; |
| if (!Satisfaction.IsSatisfied) { |
| Diag(Loc, |
| diag::err_reference_to_function_with_unsatisfied_constraints) |
| << D; |
| DiagnoseUnsatisfiedConstraint(Satisfaction); |
| return true; |
| } |
| } |
| |
| // If the function has a deduced return type, and we can't deduce it, |
| // then we can't use it either. |
| if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && |
| DeduceReturnType(FD, Loc)) |
| return true; |
| |
| if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD)) |
| return true; |
| |
| if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD)) |
| return true; |
| } |
| |
| if (auto *MD = dyn_cast<CXXMethodDecl>(D)) { |
| // Lambdas are only default-constructible or assignable in C++2a onwards. |
| if (MD->getParent()->isLambda() && |
| ((isa<CXXConstructorDecl>(MD) && |
| cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) || |
| MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) { |
| Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign) |
| << !isa<CXXConstructorDecl>(MD); |
| } |
| } |
| |
| auto getReferencedObjCProp = [](const NamedDecl *D) -> |
| const ObjCPropertyDecl * { |
| if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) |
| return MD->findPropertyDecl(); |
| return nullptr; |
| }; |
| if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) { |
| if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc)) |
| return true; |
| } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) { |
| return true; |
| } |
| |
| // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions |
| // Only the variables omp_in and omp_out are allowed in the combiner. |
| // Only the variables omp_priv and omp_orig are allowed in the |
| // initializer-clause. |
| auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext); |
| if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) && |
| isa<VarDecl>(D)) { |
| Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction) |
| << getCurFunction()->HasOMPDeclareReductionCombiner; |
| Diag(D->getLocation(), diag::note_entity_declared_at) << D; |
| return true; |
| } |
| |
| // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions |
| // List-items in map clauses on this construct may only refer to the declared |
| // variable var and entities that could be referenced by a procedure defined |
| // at the same location |
| if (LangOpts.OpenMP && isa<VarDecl>(D) && |
| !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) { |
| Diag(Loc, diag::err_omp_declare_mapper_wrong_var) |
| << getOpenMPDeclareMapperVarName(); |
| Diag(D->getLocation(), diag::note_entity_declared_at) << D; |
| return true; |
| } |
| |
| if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) { |
| Diag(Loc, diag::err_use_of_empty_using_if_exists); |
| Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here); |
| return true; |
| } |
| |
| DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess, |
| AvoidPartialAvailabilityChecks, ClassReceiver); |
| |
| DiagnoseUnusedOfDecl(*this, D, Loc); |
| |
| diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc); |
| |
| if (auto *VD = dyn_cast<ValueDecl>(D)) |
| checkTypeSupport(VD->getType(), Loc, VD); |
| |
| if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) { |
| if (!Context.getTargetInfo().isTLSSupported()) |
| if (const auto *VD = dyn_cast<VarDecl>(D)) |
| if (VD->getTLSKind() != VarDecl::TLS_None) |
| targetDiag(*Locs.begin(), diag::err_thread_unsupported); |
| } |
| |
| if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) && |
| !isUnevaluatedContext()) { |
| // C++ [expr.prim.req.nested] p3 |
| // A local parameter shall only appear as an unevaluated operand |
| // (Clause 8) within the constraint-expression. |
| Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context) |
| << D; |
| Diag(D->getLocation(), diag::note_entity_declared_at) << D; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// DiagnoseSentinelCalls - This routine checks whether a call or |
| /// message-send is to a declaration with the sentinel attribute, and |
| /// if so, it checks that the requirements of the sentinel are |
| /// satisfied. |
| void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, |
| ArrayRef<Expr *> Args) { |
| const SentinelAttr *attr = D->getAttr<SentinelAttr>(); |
| if (!attr) |
| return; |
| |
| // The number of formal parameters of the declaration. |
| unsigned numFormalParams; |
| |
| // The kind of declaration. This is also an index into a %select in |
| // the diagnostic. |
| enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType; |
| |
| if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { |
| numFormalParams = MD->param_size(); |
| calleeType = CT_Method; |
| } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| numFormalParams = FD->param_size(); |
| calleeType = CT_Function; |
| } else if (isa<VarDecl>(D)) { |
| QualType type = cast<ValueDecl>(D)->getType(); |
| const FunctionType *fn = nullptr; |
| if (const PointerType *ptr = type->getAs<PointerType>()) { |
| fn = ptr->getPointeeType()->getAs<FunctionType>(); |
| if (!fn) return; |
| calleeType = CT_Function; |
| } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) { |
| fn = ptr->getPointeeType()->castAs<FunctionType>(); |
| calleeType = CT_Block; |
| } else { |
| return; |
| } |
| |
| if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) { |
| numFormalParams = proto->getNumParams(); |
| } else { |
| numFormalParams = 0; |
| } |
| } else { |
| return; |
| } |
| |
| // "nullPos" is the number of formal parameters at the end which |
| // effectively count as part of the variadic arguments. This is |
| // useful if you would prefer to not have *any* formal parameters, |
| // but the language forces you to have at least one. |
| unsigned nullPos = attr->getNullPos(); |
| assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel"); |
| numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos); |
| |
| // The number of arguments which should follow the sentinel. |
| unsigned numArgsAfterSentinel = attr->getSentinel(); |
| |
| // If there aren't enough arguments for all the formal parameters, |
| // the sentinel, and the args after the sentinel, complain. |
| if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) { |
| Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); |
| Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType); |
| return; |
| } |
| |
| // Otherwise, find the sentinel expression. |
| Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1]; |
| if (!sentinelExpr) return; |
| if (sentinelExpr->isValueDependent()) return; |
| if (Context.isSentinelNullExpr(sentinelExpr)) return; |
| |
| // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr', |
| // or 'NULL' if those are actually defined in the context. Only use |
| // 'nil' for ObjC methods, where it's much more likely that the |
| // variadic arguments form a list of object pointers. |
| SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc()); |
| std::string NullValue; |
| if (calleeType == CT_Method && PP.isMacroDefined("nil")) |
| NullValue = "nil"; |
| else if (getLangOpts().CPlusPlus11) |
| NullValue = "nullptr"; |
| else if (PP.isMacroDefined("NULL")) |
| NullValue = "NULL"; |
| else |
| NullValue = "(void*) 0"; |
| |
| if (MissingNilLoc.isInvalid()) |
| Diag(Loc, diag::warn_missing_sentinel) << int(calleeType); |
| else |
| Diag(MissingNilLoc, diag::warn_missing_sentinel) |
| << int(calleeType) |
| << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue); |
| Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType); |
| } |
| |
| SourceRange Sema::getExprRange(Expr *E) const { |
| return E ? E->getSourceRange() : SourceRange(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Standard Promotions and Conversions |
| //===----------------------------------------------------------------------===// |
| |
| /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). |
| ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) { |
| // Handle any placeholder expressions which made it here. |
| if (E->getType()->isPlaceholderType()) { |
| ExprResult result = CheckPlaceholderExpr(E); |
| if (result.isInvalid()) return ExprError(); |
| E = result.get(); |
| } |
| |
| QualType Ty = E->getType(); |
| assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"); |
| |
| if (Ty->isFunctionType()) { |
| if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts())) |
| if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) |
| if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc())) |
| return ExprError(); |
| |
| E = ImpCastExprToType(E, Context.getPointerType(Ty), |
| CK_FunctionToPointerDecay).get(); |
| } else if (Ty->isArrayType()) { |
| // In C90 mode, arrays only promote to pointers if the array expression is |
| // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has |
| // type 'array of type' is converted to an expression that has type 'pointer |
| // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression |
| // that has type 'array of type' ...". The relevant change is "an lvalue" |
| // (C90) to "an expression" (C99). |
| // |
| // C++ 4.2p1: |
| // An lvalue or rvalue of type "array of N T" or "array of unknown bound of |
| // T" can be converted to an rvalue of type "pointer to T". |
| // |
| if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) { |
| ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty), |
| CK_ArrayToPointerDecay); |
| if (Res.isInvalid()) |
| return ExprError(); |
| E = Res.get(); |
| } |
| } |
| return E; |
| } |
| |
| static void CheckForNullPointerDereference(Sema &S, Expr *E) { |
| // Check to see if we are dereferencing a null pointer. If so, |
| // and if not volatile-qualified, this is undefined behavior that the |
| // optimizer will delete, so warn about it. People sometimes try to use this |
| // to get a deterministic trap and are surprised by clang's behavior. This |
| // only handles the pattern "*null", which is a very syntactic check. |
| const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()); |
| if (UO && UO->getOpcode() == UO_Deref && |
| UO->getSubExpr()->getType()->isPointerType()) { |
| const LangAS AS = |
| UO->getSubExpr()->getType()->getPointeeType().getAddressSpace(); |
| if ((!isTargetAddressSpace(AS) || |
| (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) && |
| UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant( |
| S.Context, Expr::NPC_ValueDependentIsNotNull) && |
| !UO->getType().isVolatileQualified()) { |
| S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, |
| S.PDiag(diag::warn_indirection_through_null) |
| << UO->getSubExpr()->getSourceRange()); |
| S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, |
| S.PDiag(diag::note_indirection_through_null)); |
| } |
| } |
| } |
| |
| static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE, |
| SourceLocation AssignLoc, |
| const Expr* RHS) { |
| const ObjCIvarDecl *IV = OIRE->getDecl(); |
| if (!IV) |
| return; |
| |
| DeclarationName MemberName = IV->getDeclName(); |
| IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); |
| if (!Member || !Member->isStr("isa")) |
| return; |
| |
| const Expr *Base = OIRE->getBase(); |
| QualType BaseType = Base->getType(); |
| if (OIRE->isArrow()) |
| BaseType = BaseType->getPointeeType(); |
| if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) |
| if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) { |
| ObjCInterfaceDecl *ClassDeclared = nullptr; |
| ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); |
| if (!ClassDeclared->getSuperClass() |
| && (*ClassDeclared->ivar_begin()) == IV) { |
| if (RHS) { |
| NamedDecl *ObjectSetClass = |
| S.LookupSingleName(S.TUScope, |
| &S.Context.Idents.get("object_setClass"), |
| SourceLocation(), S.LookupOrdinaryName); |
| if (ObjectSetClass) { |
| SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc()); |
| S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) |
| << FixItHint::CreateInsertion(OIRE->getBeginLoc(), |
| "object_setClass(") |
| << FixItHint::CreateReplacement( |
| SourceRange(OIRE->getOpLoc(), AssignLoc), ",") |
| << FixItHint::CreateInsertion(RHSLocEnd, ")"); |
| } |
| else |
| S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign); |
| } else { |
| NamedDecl *ObjectGetClass = |
| S.LookupSingleName(S.TUScope, |
| &S.Context.Idents.get("object_getClass"), |
| SourceLocation(), S.LookupOrdinaryName); |
| if (ObjectGetClass) |
| S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) |
| << FixItHint::CreateInsertion(OIRE->getBeginLoc(), |
| "object_getClass(") |
| << FixItHint::CreateReplacement( |
| SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")"); |
| else |
| S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use); |
| } |
| S.Diag(IV->getLocation(), diag::note_ivar_decl); |
| } |
| } |
| } |
| |
| ExprResult Sema::DefaultLvalueConversion(Expr *E) { |
| // Handle any placeholder expressions which made it here. |
| if (E->getType()->isPlaceholderType()) { |
| ExprResult result = CheckPlaceholderExpr(E); |
| if (result.isInvalid()) return ExprError(); |
| E = result.get(); |
| } |
| |
| // C++ [conv.lval]p1: |
| // A glvalue of a non-function, non-array type T can be |
| // converted to a prvalue. |
| if (!E->isGLValue()) return E; |
| |
| QualType T = E->getType(); |
| assert(!T.isNull() && "r-value conversion on typeless expression?"); |
| |
| // lvalue-to-rvalue conversion cannot be applied to function or array types. |
| if (T->isFunctionType() || T->isArrayType()) |
| return E; |
| |
| // We don't want to throw lvalue-to-rvalue casts on top of |
| // expressions of certain types in C++. |
| if (getLangOpts().CPlusPlus && |
| (E->getType() == Context.OverloadTy || |
| T->isDependentType() || |
| T->isRecordType())) |
| return E; |
| |
| // The C standard is actually really unclear on this point, and |
| // DR106 tells us what the result should be but not why. It's |
| // generally best to say that void types just doesn't undergo |
| // lvalue-to-rvalue at all. Note that expressions of unqualified |
| // 'void' type are never l-values, but qualified void can be. |
| if (T->isVoidType()) |
| return E; |
| |
| // OpenCL usually rejects direct accesses to values of 'half' type. |
| if (getLangOpts().OpenCL && |
| !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) && |
| T->isHalfType()) { |
| Diag(E->getExprLoc(), diag::err_opencl_half_load_store) |
| << 0 << T; |
| return ExprError(); |
| } |
| |
| CheckForNullPointerDereference(*this, E); |
| if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) { |
| NamedDecl *ObjectGetClass = LookupSingleName(TUScope, |
| &Context.Idents.get("object_getClass"), |
| SourceLocation(), LookupOrdinaryName); |
| if (ObjectGetClass) |
| Diag(E->getExprLoc(), diag::warn_objc_isa_use) |
| << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(") |
| << FixItHint::CreateReplacement( |
| SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")"); |
| else |
| Diag(E->getExprLoc(), diag::warn_objc_isa_use); |
| } |
| else if (const ObjCIvarRefExpr *OIRE = |
| dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts())) |
| DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr); |
| |
| // C++ [conv.lval]p1: |
| // [...] If T is a non-class type, the type of the prvalue is the |
| // cv-unqualified version of T. Otherwise, the type of the |
| // rvalue is T. |
| // |
| // C99 6.3.2.1p2: |
| // If the lvalue has qualified type, the value has the unqualified |
| // version of the type of the lvalue; otherwise, the value has the |
| // type of the lvalue. |
| if (T.hasQualifiers()) |
| T = T.getUnqualifiedType(); |
| |
| // Under the MS ABI, lock down the inheritance model now. |
| if (T->isMemberPointerType() && |
| Context.getTargetInfo().getCXXABI().isMicrosoft()) |
| (void)isCompleteType(E->getExprLoc(), T); |
| |
| ExprResult Res = CheckLValueToRValueConversionOperand(E); |
| if (Res.isInvalid()) |
| return Res; |
| E = Res.get(); |
| |
| // Loading a __weak object implicitly retains the value, so we need a cleanup to |
| // balance that. |
| if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak) |
| Cleanup.setExprNeedsCleanups(true); |
| |
| if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) |
| Cleanup.setExprNeedsCleanups(true); |
| |
| // C++ [conv.lval]p3: |
| // If T is cv std::nullptr_t, the result is a null pointer constant. |
| CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue; |
| Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue, |
| CurFPFeatureOverrides()); |
| |
| // C11 6.3.2.1p2: |
| // ... if the lvalue has atomic type, the value has the non-atomic version |
| // of the type of the lvalue ... |
| if (const AtomicType *Atomic = T->getAs<AtomicType>()) { |
| T = Atomic->getValueType().getUnqualifiedType(); |
| Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(), |
| nullptr, VK_PRValue, FPOptionsOverride()); |
| } |
| |
| return Res; |
| } |
| |
| ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) { |
| ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose); |
| if (Res.isInvalid()) |
| return ExprError(); |
| Res = DefaultLvalueConversion(Res.get()); |
| if (Res.isInvalid()) |
| return ExprError(); |
| return Res; |
| } |
| |
| /// CallExprUnaryConversions - a special case of an unary conversion |
| /// performed on a function designator of a call expression. |
| ExprResult Sema::CallExprUnaryConversions(Expr *E) { |
| QualType Ty = E->getType(); |
| ExprResult Res = E; |
| // Only do implicit cast for a function type, but not for a pointer |
| // to function type. |
| if (Ty->isFunctionType()) { |
| Res = ImpCastExprToType(E, Context.getPointerType(Ty), |
| CK_FunctionToPointerDecay); |
| if (Res.isInvalid()) |
| return ExprError(); |
| } |
| Res = DefaultLvalueConversion(Res.get()); |
| if (Res.isInvalid()) |
| return ExprError(); |
| return Res.get(); |
| } |
| |
| /// UsualUnaryConversions - Performs various conversions that are common to most |
| /// operators (C99 6.3). The conversions of array and function types are |
| /// sometimes suppressed. For example, the array->pointer conversion doesn't |
| /// apply if the array is an argument to the sizeof or address (&) operators. |
| /// In these instances, this routine should *not* be called. |
| ExprResult Sema::UsualUnaryConversions(Expr *E) { |
| // First, convert to an r-value. |
| ExprResult Res = DefaultFunctionArrayLvalueConversion(E); |
| if (Res.isInvalid()) |
| return ExprError(); |
| E = Res.get(); |
| |
| QualType Ty = E->getType(); |
| assert(!Ty.isNull() && "UsualUnaryConversions - missing type"); |
| |
| // Half FP have to be promoted to float unless it is natively supported |
| if (Ty->isHalfType() && !getLangOpts().NativeHalfType) |
| return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast); |
| |
| // Try to perform integral promotions if the object has a theoretically |
| // promotable type. |
| if (Ty->isIntegralOrUnscopedEnumerationType()) { |
| // C99 6.3.1.1p2: |
| // |
| // The following may be used in an expression wherever an int or |
| // unsigned int may be used: |
| // - an object or expression with an integer type whose integer |
| // conversion rank is less than or equal to the rank of int |
| // and unsigned int. |
| // - A bit-field of type _Bool, int, signed int, or unsigned int. |
| // |
| // If an int can represent all values of the original type, the |
| // value is converted to an int; otherwise, it is converted to an |
| // unsigned int. These are called the integer promotions. All |
| // other types are unchanged by the integer promotions. |
| |
| QualType PTy = Context.isPromotableBitField(E); |
| if (!PTy.isNull()) { |
| E = ImpCastExprToType(E, PTy, CK_IntegralCast).get(); |
| return E; |
| } |
| if (Ty->isPromotableIntegerType()) { |
| QualType PT = Context.getPromotedIntegerType(Ty); |
| E = ImpCastExprToType(E, PT, CK_IntegralCast).get(); |
| return E; |
| } |
| } |
| return E; |
| } |
| |
| /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that |
| /// do not have a prototype. Arguments that have type float or __fp16 |
| /// are promoted to double. All other argument types are converted by |
| /// UsualUnaryConversions(). |
| ExprResult Sema::DefaultArgumentPromotion(Expr *E) { |
| QualType Ty = E->getType(); |
| assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type"); |
| |
| ExprResult Res = UsualUnaryConversions(E); |
| if (Res.isInvalid()) |
| return ExprError(); |
| E = Res.get(); |
| |
| // If this is a 'float' or '__fp16' (CVR qualified or typedef) |
| // promote to double. |
| // Note that default argument promotion applies only to float (and |
| // half/fp16); it does not apply to _Float16. |
| const BuiltinType *BTy = Ty->getAs<BuiltinType>(); |
| if (BTy && (BTy->getKind() == BuiltinType::Half || |
| BTy->getKind() == BuiltinType::Float)) { |
| if (getLangOpts().OpenCL && |
| !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) { |
| if (BTy->getKind() == BuiltinType::Half) { |
| E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get(); |
| } |
| } else { |
| E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get(); |
| } |
| } |
| if (BTy && |
| getLangOpts().getExtendIntArgs() == |
| LangOptions::ExtendArgsKind::ExtendTo64 && |
| Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() && |
| Context.getTypeSizeInChars(BTy) < |
| Context.getTypeSizeInChars(Context.LongLongTy)) { |
| E = (Ty->isUnsignedIntegerType()) |
| ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast) |
| .get() |
| : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get(); |
| assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() && |
| "Unexpected typesize for LongLongTy"); |
| } |
| |
| // C++ performs lvalue-to-rvalue conversion as a default argument |
| // promotion, even on class types, but note: |
| // C++11 [conv.lval]p2: |
| // When an lvalue-to-rvalue conversion occurs in an unevaluated |
| // operand or a subexpression thereof the value contained in the |
| // referenced object is not accessed. Otherwise, if the glvalue |
| // has a class type, the conversion copy-initializes a temporary |
| // of type T from the glvalue and the result of the conversion |
| // is a prvalue for the temporary. |
| // FIXME: add some way to gate this entire thing for correctness in |
| // potentially potentially evaluated contexts. |
| if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) { |
| ExprResult Temp = PerformCopyInitialization( |
| InitializedEntity::InitializeTemporary(E->getType()), |
| E->getExprLoc(), E); |
| if (Temp.isInvalid()) |
| return ExprError(); |
| E = Temp.get(); |
| } |
| |
| return E; |
| } |
| |
| /// Determine the degree of POD-ness for an expression. |
| /// Incomplete types are considered POD, since this check can be performed |
| /// when we're in an unevaluated context. |
| Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) { |
| if (Ty->isIncompleteType()) { |
| // C++11 [expr.call]p7: |
| // After these conversions, if the argument does not have arithmetic, |
| // enumeration, pointer, pointer to member, or class type, the program |
| // is ill-formed. |
| // |
| // Since we've already performed array-to-pointer and function-to-pointer |
| // decay, the only such type in C++ is cv void. This also handles |
| // initializer lists as variadic arguments. |
| if (Ty->isVoidType()) |
| return VAK_Invalid; |
| |
| if (Ty->isObjCObjectType()) |
| return VAK_Invalid; |
| return VAK_Valid; |
| } |
| |
| if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) |
| return VAK_Invalid; |
| |
| if (Ty.isCXX98PODType(Context)) |
| return VAK_Valid; |
| |
| // C++11 [expr.call]p7: |
| // Passing a potentially-evaluated argument of class type (Clause 9) |
| // having a non-trivial copy constructor, a non-trivial move constructor, |
| // or a non-trivial destructor, with no corresponding parameter, |
| // is conditionally-supported with implementation-defined semantics. |
| if (getLangOpts().CPlusPlus11 && !Ty->isDependentType()) |
| if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl()) |
| if (!Record->hasNonTrivialCopyConstructor() && |
| !Record->hasNonTrivialMoveConstructor() && |
| !Record->hasNonTrivialDestructor()) |
| return VAK_ValidInCXX11; |
| |
| if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType()) |
| return VAK_Valid; |
| |
| if (Ty->isObjCObjectType()) |
| return VAK_Invalid; |
| |
| if (getLangOpts().MSVCCompat) |
| return VAK_MSVCUndefined; |
| |
| // FIXME: In C++11, these cases are conditionally-supported, meaning we're |
| // permitted to reject them. We should consider doing so. |
| return VAK_Undefined; |
| } |
| |
| void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) { |
| // Don't allow one to pass an Objective-C interface to a vararg. |
| const QualType &Ty = E->getType(); |
| VarArgKind VAK = isValidVarArgType(Ty); |
| |
| // Complain about passing non-POD types through varargs. |
| switch (VAK) { |
| case VAK_ValidInCXX11: |
| DiagRuntimeBehavior( |
| E->getBeginLoc(), nullptr, |
| PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT); |
| LLVM_FALLTHROUGH; |
| case VAK_Valid: |
| if (Ty->isRecordType()) { |
| // This is unlikely to be what the user intended. If the class has a |
| // 'c_str' member function, the user probably meant to call that. |
| DiagRuntimeBehavior(E->getBeginLoc(), nullptr, |
| PDiag(diag::warn_pass_class_arg_to_vararg) |
| << Ty << CT << hasCStrMethod(E) << ".c_str()"); |
| } |
| break; |
| |
| case VAK_Undefined: |
| case VAK_MSVCUndefined: |
| DiagRuntimeBehavior(E->getBeginLoc(), nullptr, |
| PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg) |
| << getLangOpts().CPlusPlus11 << Ty << CT); |
| break; |
| |
| case VAK_Invalid: |
| if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) |
| Diag(E->getBeginLoc(), |
| diag::err_cannot_pass_non_trivial_c_struct_to_vararg) |
| << Ty << CT; |
| else if (Ty->isObjCObjectType()) |
| DiagRuntimeBehavior(E->getBeginLoc(), nullptr, |
| PDiag(diag::err_cannot_pass_objc_interface_to_vararg) |
| << Ty << CT); |
| else |
| Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg) |
| << isa<InitListExpr>(E) << Ty << CT; |
| break; |
| } |
| } |
| |
| /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but |
| /// will create a trap if the resulting type is not a POD type. |
| ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT, |
| FunctionDecl *FDecl) { |
| if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) { |
| // Strip the unbridged-cast placeholder expression off, if applicable. |
| if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast && |
| (CT == VariadicMethod || |
| (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) { |
| E = stripARCUnbridgedCast(E); |
| |
| // Otherwise, do normal placeholder checking. |
| } else { |
| ExprResult ExprRes = CheckPlaceholderExpr(E); |
| if (ExprRes.isInvalid()) |
| return ExprError(); |
| E = ExprRes.get(); |
| } |
| } |
| |
| ExprResult ExprRes = DefaultArgumentPromotion(E); |
| if (ExprRes.isInvalid()) |
| return ExprError(); |
| |
| // Copy blocks to the heap. |
| if (ExprRes.get()->getType()->isBlockPointerType()) |
| maybeExtendBlockObject(ExprRes); |
| |
| E = ExprRes.get(); |
| |
| // Diagnostics regarding non-POD argument types are |
| // emitted along with format string checking in Sema::CheckFunctionCall(). |
| if (isValidVarArgType(E->getType()) == VAK_Undefined) { |
| // Turn this into a trap. |
| CXXScopeSpec SS; |
| SourceLocation TemplateKWLoc; |
| UnqualifiedId Name; |
| Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"), |
| E->getBeginLoc()); |
| ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name, |
| /*HasTrailingLParen=*/true, |
| /*IsAddressOfOperand=*/false); |
| if (TrapFn.isInvalid()) |
| return ExprError(); |
| |
| ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(), |
| None, E->getEndLoc()); |
| if (Call.isInvalid()) |
| return ExprError(); |
| |
| ExprResult Comma = |
| ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E); |
| if (Comma.isInvalid()) |
| return ExprError(); |
| return Comma.get(); |
| } |
| |
| if (!getLangOpts().CPlusPlus && |
| RequireCompleteType(E->getExprLoc(), E->getType(), |
| diag::err_call_incomplete_argument)) |
| return ExprError(); |
| |
| return E; |
| } |
| |
| /// Converts an integer to complex float type. Helper function of |
| /// UsualArithmeticConversions() |
| /// |
| /// \return false if the integer expression is an integer type and is |
| /// successfully converted to the complex type. |
| static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr, |
| ExprResult &ComplexExpr, |
| QualType IntTy, |
| QualType ComplexTy, |
| bool SkipCast) { |
| if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true; |
| if (SkipCast) return false; |
| if (IntTy->isIntegerType()) { |
| QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType(); |
| IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating); |
| IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy, |
| CK_FloatingRealToComplex); |
| } else { |
| assert(IntTy->isComplexIntegerType()); |
| IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy, |
| CK_IntegralComplexToFloatingComplex); |
| } |
| return false; |
| } |
| |
| /// Handle arithmetic conversion with complex types. Helper function of |
| /// UsualArithmeticConversions() |
| static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, QualType LHSType, |
| QualType RHSType, |
| bool IsCompAssign) { |
| // if we have an integer operand, the result is the complex type. |
| if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType, |
| /*skipCast*/false)) |
| return LHSType; |
| if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType, |
| /*skipCast*/IsCompAssign)) |
| return RHSType; |
| |
| // This handles complex/complex, complex/float, or float/complex. |
| // When both operands are complex, the shorter operand is converted to the |
| // type of the longer, and that is the type of the result. This corresponds |
| // to what is done when combining two real floating-point operands. |
| // The fun begins when size promotion occur across type domains. |
| // From H&S 6.3.4: When one operand is complex and the other is a real |
| // floating-point type, the less precise type is converted, within it's |
| // real or complex domain, to the precision of the other type. For example, |
| // when combining a "long double" with a "double _Complex", the |
| // "double _Complex" is promoted to "long double _Complex". |
| |
| // Compute the rank of the two types, regardless of whether they are complex. |
| int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType); |
| |
| auto *LHSComplexType = dyn_cast<ComplexType>(LHSType); |
| auto *RHSComplexType = dyn_cast<ComplexType>(RHSType); |
| QualType LHSElementType = |
| LHSComplexType ? LHSComplexType->getElementType() : LHSType; |
| QualType RHSElementType = |
| RHSComplexType ? RHSComplexType->getElementType() : RHSType; |
| |
| QualType ResultType = S.Context.getComplexType(LHSElementType); |
| if (Order < 0) { |
| // Promote the precision of the LHS if not an assignment. |
| ResultType = S.Context.getComplexType(RHSElementType); |
| if (!IsCompAssign) { |
| if (LHSComplexType) |
| LHS = |
| S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast); |
| else |
| LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast); |
| } |
| } else if (Order > 0) { |
| // Promote the precision of the RHS. |
| if (RHSComplexType) |
| RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast); |
| else |
| RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast); |
| } |
| return ResultType; |
| } |
| |
| /// Handle arithmetic conversion from integer to float. Helper function |
| /// of UsualArithmeticConversions() |
| static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr, |
| ExprResult &IntExpr, |
| QualType FloatTy, QualType IntTy, |
| bool ConvertFloat, bool ConvertInt) { |
| if (IntTy->isIntegerType()) { |
| if (ConvertInt) |
| // Convert intExpr to the lhs floating point type. |
| IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy, |
| CK_IntegralToFloating); |
| return FloatTy; |
| } |
| |
| // Convert both sides to the appropriate complex float. |
| assert(IntTy->isComplexIntegerType()); |
| QualType result = S.Context.getComplexType(FloatTy); |
| |
| // _Complex int -> _Complex float |
| if (ConvertInt) |
| IntExpr = S.ImpCastExprToType(IntExpr.get(), result, |
| CK_IntegralComplexToFloatingComplex); |
| |
| // float -> _Complex float |
| if (ConvertFloat) |
| FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result, |
| CK_FloatingRealToComplex); |
| |
| return result; |
| } |
| |
| /// Handle arithmethic conversion with floating point types. Helper |
| /// function of UsualArithmeticConversions() |
| static QualType handleFloatConversion(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, QualType LHSType, |
| QualType RHSType, bool IsCompAssign) { |
| bool LHSFloat = LHSType->isRealFloatingType(); |
| bool RHSFloat = RHSType->isRealFloatingType(); |
| |
| // N1169 4.1.4: If one of the operands has a floating type and the other |
| // operand has a fixed-point type, the fixed-point operand |
| // is converted to the floating type [...] |
| if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) { |
| if (LHSFloat) |
| RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating); |
| else if (!IsCompAssign) |
| LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating); |
| return LHSFloat ? LHSType : RHSType; |
| } |
| |
| // If we have two real floating types, convert the smaller operand |
| // to the bigger result. |
| if (LHSFloat && RHSFloat) { |
| int order = S.Context.getFloatingTypeOrder(LHSType, RHSType); |
| if (order > 0) { |
| RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast); |
| return LHSType; |
| } |
| |
| assert(order < 0 && "illegal float comparison"); |
| if (!IsCompAssign) |
| LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast); |
| return RHSType; |
| } |
| |
| if (LHSFloat) { |
| // Half FP has to be promoted to float unless it is natively supported |
| if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType) |
| LHSType = S.Context.FloatTy; |
| |
| return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType, |
| /*ConvertFloat=*/!IsCompAssign, |
| /*ConvertInt=*/ true); |
| } |
| assert(RHSFloat); |
| return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType, |
| /*ConvertFloat=*/ true, |
| /*ConvertInt=*/!IsCompAssign); |
| } |
| |
| /// Diagnose attempts to convert between __float128, __ibm128 and |
| /// long double if there is no support for such conversion. |
| /// Helper function of UsualArithmeticConversions(). |
| static bool unsupportedTypeConversion(const Sema &S, QualType LHSType, |
| QualType RHSType) { |
| // No issue if either is not a floating point type. |
| if (!LHSType->isFloatingType() || !RHSType->isFloatingType()) |
| return false; |
| |
| // No issue if both have the same 128-bit float semantics. |
| auto *LHSComplex = LHSType->getAs<ComplexType>(); |
| auto *RHSComplex = RHSType->getAs<ComplexType>(); |
| |
| QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType; |
| QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType; |
| |
| const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem); |
| const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem); |
| |
| if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() || |
| &RHSSem != &llvm::APFloat::IEEEquad()) && |
| (&LHSSem != &llvm::APFloat::IEEEquad() || |
| &RHSSem != &llvm::APFloat::PPCDoubleDouble())) |
| return false; |
| |
| return true; |
| } |
| |
| typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType); |
| |
| namespace { |
| /// These helper callbacks are placed in an anonymous namespace to |
| /// permit their use as function template parameters. |
| ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) { |
| return S.ImpCastExprToType(op, toType, CK_IntegralCast); |
| } |
| |
| ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) { |
| return S.ImpCastExprToType(op, S.Context.getComplexType(toType), |
| CK_IntegralComplexCast); |
| } |
| } |
| |
| /// Handle integer arithmetic conversions. Helper function of |
| /// UsualArithmeticConversions() |
| template <PerformCastFn doLHSCast, PerformCastFn doRHSCast> |
| static QualType handleIntegerConversion(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, QualType LHSType, |
| QualType RHSType, bool IsCompAssign) { |
| // The rules for this case are in C99 6.3.1.8 |
| int order = S.Context.getIntegerTypeOrder(LHSType, RHSType); |
| bool LHSSigned = LHSType->hasSignedIntegerRepresentation(); |
| bool RHSSigned = RHSType->hasSignedIntegerRepresentation(); |
| if (LHSSigned == RHSSigned) { |
| // Same signedness; use the higher-ranked type |
| if (order >= 0) { |
| RHS = (*doRHSCast)(S, RHS.get(), LHSType); |
| return LHSType; |
| } else if (!IsCompAssign) |
| LHS = (*doLHSCast)(S, LHS.get(), RHSType); |
| return RHSType; |
| } else if (order != (LHSSigned ? 1 : -1)) { |
| // The unsigned type has greater than or equal rank to the |
| // signed type, so use the unsigned type |
| if (RHSSigned) { |
| RHS = (*doRHSCast)(S, RHS.get(), LHSType); |
| return LHSType; |
| } else if (!IsCompAssign) |
| LHS = (*doLHSCast)(S, LHS.get(), RHSType); |
| return RHSType; |
| } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) { |
| // The two types are different widths; if we are here, that |
| // means the signed type is larger than the unsigned type, so |
| // use the signed type. |
| if (LHSSigned) { |
| RHS = (*doRHSCast)(S, RHS.get(), LHSType); |
| return LHSType; |
| } else if (!IsCompAssign) |
| LHS = (*doLHSCast)(S, LHS.get(), RHSType); |
| return RHSType; |
| } else { |
| // The signed type is higher-ranked than the unsigned type, |
| // but isn't actually any bigger (like unsigned int and long |
| // on most 32-bit systems). Use the unsigned type corresponding |
| // to the signed type. |
| QualType result = |
| S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType); |
| RHS = (*doRHSCast)(S, RHS.get(), result); |
| if (!IsCompAssign) |
| LHS = (*doLHSCast)(S, LHS.get(), result); |
| return result; |
| } |
| } |
| |
| /// Handle conversions with GCC complex int extension. Helper function |
| /// of UsualArithmeticConversions() |
| static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, QualType LHSType, |
| QualType RHSType, |
| bool IsCompAssign) { |
| const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType(); |
| const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType(); |
| |
| if (LHSComplexInt && RHSComplexInt) { |
| QualType LHSEltType = LHSComplexInt->getElementType(); |
| QualType RHSEltType = RHSComplexInt->getElementType(); |
| QualType ScalarType = |
| handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast> |
| (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign); |
| |
| return S.Context.getComplexType(ScalarType); |
| } |
| |
| if (LHSComplexInt) { |
| QualType LHSEltType = LHSComplexInt->getElementType(); |
| QualType ScalarType = |
| handleIntegerConversion<doComplexIntegralCast, doIntegralCast> |
| (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign); |
| QualType ComplexType = S.Context.getComplexType(ScalarType); |
| RHS = S.ImpCastExprToType(RHS.get(), ComplexType, |
| CK_IntegralRealToComplex); |
| |
| return ComplexType; |
| } |
| |
| assert(RHSComplexInt); |
| |
| QualType RHSEltType = RHSComplexInt->getElementType(); |
| QualType ScalarType = |
| handleIntegerConversion<doIntegralCast, doComplexIntegralCast> |
| (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign); |
| QualType ComplexType = S.Context.getComplexType(ScalarType); |
| |
| if (!IsCompAssign) |
| LHS = S.ImpCastExprToType(LHS.get(), ComplexType, |
| CK_IntegralRealToComplex); |
| return ComplexType; |
| } |
| |
| /// Return the rank of a given fixed point or integer type. The value itself |
| /// doesn't matter, but the values must be increasing with proper increasing |
| /// rank as described in N1169 4.1.1. |
| static unsigned GetFixedPointRank(QualType Ty) { |
| const auto *BTy = Ty->getAs<BuiltinType>(); |
| assert(BTy && "Expected a builtin type."); |
| |
| switch (BTy->getKind()) { |
| case BuiltinType::ShortFract: |
| case BuiltinType::UShortFract: |
| case BuiltinType::SatShortFract: |
| case BuiltinType::SatUShortFract: |
| return 1; |
| case BuiltinType::Fract: |
| case BuiltinType::UFract: |
| case BuiltinType::SatFract: |
| case BuiltinType::SatUFract: |
| return 2; |
| case BuiltinType::LongFract: |
| case BuiltinType::ULongFract: |
| case BuiltinType::SatLongFract: |
| case BuiltinType::SatULongFract: |
| return 3; |
| case BuiltinType::ShortAccum: |
| case BuiltinType::UShortAccum: |
| case BuiltinType::SatShortAccum: |
| case BuiltinType::SatUShortAccum: |
| return 4; |
| case BuiltinType::Accum: |
| case BuiltinType::UAccum: |
| case BuiltinType::SatAccum: |
| case BuiltinType::SatUAccum: |
| return 5; |
| case BuiltinType::LongAccum: |
| case BuiltinType::ULongAccum: |
| case BuiltinType::SatLongAccum: |
| case BuiltinType::SatULongAccum: |
| return 6; |
| default: |
| if (BTy->isInteger()) |
| return 0; |
| llvm_unreachable("Unexpected fixed point or integer type"); |
| } |
| } |
| |
| /// handleFixedPointConversion - Fixed point operations between fixed |
| /// point types and integers or other fixed point types do not fall under |
| /// usual arithmetic conversion since these conversions could result in loss |
| /// of precsision (N1169 4.1.4). These operations should be calculated with |
| /// the full precision of their result type (N1169 4.1.6.2.1). |
| static QualType handleFixedPointConversion(Sema &S, QualType LHSTy, |
| QualType RHSTy) { |
| assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && |
| "Expected at least one of the operands to be a fixed point type"); |
| assert((LHSTy->isFixedPointOrIntegerType() || |
| RHSTy->isFixedPointOrIntegerType()) && |
| "Special fixed point arithmetic operation conversions are only " |
| "applied to ints or other fixed point types"); |
| |
| // If one operand has signed fixed-point type and the other operand has |
| // unsigned fixed-point type, then the unsigned fixed-point operand is |
| // converted to its corresponding signed fixed-point type and the resulting |
| // type is the type of the converted operand. |
| if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType()) |
| LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy); |
| else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType()) |
| RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy); |
| |
| // The result type is the type with the highest rank, whereby a fixed-point |
| // conversion rank is always greater than an integer conversion rank; if the |
| // type of either of the operands is a saturating fixedpoint type, the result |
| // type shall be the saturating fixed-point type corresponding to the type |
| // with the highest rank; the resulting value is converted (taking into |
| // account rounding and overflow) to the precision of the resulting type. |
| // Same ranks between signed and unsigned types are resolved earlier, so both |
| // types are either signed or both unsigned at this point. |
| unsigned LHSTyRank = GetFixedPointRank(LHSTy); |
| unsigned RHSTyRank = GetFixedPointRank(RHSTy); |
| |
| QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy; |
| |
| if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType()) |
| ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy); |
| |
| return ResultTy; |
| } |
| |
| /// Check that the usual arithmetic conversions can be performed on this pair of |
| /// expressions that might be of enumeration type. |
| static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS, |
| SourceLocation Loc, |
| Sema::ArithConvKind ACK) { |
| // C++2a [expr.arith.conv]p1: |
| // If one operand is of enumeration type and the other operand is of a |
| // different enumeration type or a floating-point type, this behavior is |
| // deprecated ([depr.arith.conv.enum]). |
| // |
| // Warn on this in all language modes. Produce a deprecation warning in C++20. |
| // Eventually we will presumably reject these cases (in C++23 onwards?). |
| QualType L = LHS->getType(), R = RHS->getType(); |
| bool LEnum = L->isUnscopedEnumerationType(), |
| REnum = R->isUnscopedEnumerationType(); |
| bool IsCompAssign = ACK == Sema::ACK_CompAssign; |
| if ((!IsCompAssign && LEnum && R->isFloatingType()) || |
| (REnum && L->isFloatingType())) { |
| S.Diag(Loc, S.getLangOpts().CPlusPlus20 |
| ? diag::warn_arith_conv_enum_float_cxx20 |
| : diag::warn_arith_conv_enum_float) |
| << LHS->getSourceRange() << RHS->getSourceRange() |
| << (int)ACK << LEnum << L << R; |
| } else if (!IsCompAssign && LEnum && REnum && |
| !S.Context.hasSameUnqualifiedType(L, R)) { |
| unsigned DiagID; |
| if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() || |
| !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) { |
| // If either enumeration type is unnamed, it's less likely that the |
| // user cares about this, but this situation is still deprecated in |
| // C++2a. Use a different warning group. |
| DiagID = S.getLangOpts().CPlusPlus20 |
| ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20 |
| : diag::warn_arith_conv_mixed_anon_enum_types; |
| } else if (ACK == Sema::ACK_Conditional) { |
| // Conditional expressions are separated out because they have |
| // historically had a different warning flag. |
| DiagID = S.getLangOpts().CPlusPlus20 |
| ? diag::warn_conditional_mixed_enum_types_cxx20 |
| : diag::warn_conditional_mixed_enum_types; |
| } else if (ACK == Sema::ACK_Comparison) { |
| // Comparison expressions are separated out because they have |
| // historically had a different warning flag. |
| DiagID = S.getLangOpts().CPlusPlus20 |
| ? diag::warn_comparison_mixed_enum_types_cxx20 |
| : diag::warn_comparison_mixed_enum_types; |
| } else { |
| DiagID = S.getLangOpts().CPlusPlus20 |
| ? diag::warn_arith_conv_mixed_enum_types_cxx20 |
| : diag::warn_arith_conv_mixed_enum_types; |
| } |
| S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange() |
| << (int)ACK << L << R; |
| } |
| } |
| |
| /// UsualArithmeticConversions - Performs various conversions that are common to |
| /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this |
| /// routine returns the first non-arithmetic type found. The client is |
| /// responsible for emitting appropriate error diagnostics. |
| QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| ArithConvKind ACK) { |
| checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK); |
| |
| if (ACK != ACK_CompAssign) { |
| LHS = UsualUnaryConversions(LHS.get()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| } |
| |
| RHS = UsualUnaryConversions(RHS.get()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| |
| // For conversion purposes, we ignore any qualifiers. |
| // For example, "const float" and "float" are equivalent. |
| QualType LHSType = |
| Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType(); |
| QualType RHSType = |
| Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType(); |
| |
| // For conversion purposes, we ignore any atomic qualifier on the LHS. |
| if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>()) |
| LHSType = AtomicLHS->getValueType(); |
| |
| // If both types are identical, no conversion is needed. |
| if (LHSType == RHSType) |
| return LHSType; |
| |
| // If either side is a non-arithmetic type (e.g. a pointer), we are done. |
| // The caller can deal with this (e.g. pointer + int). |
| if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType()) |
| return QualType(); |
| |
| // Apply unary and bitfield promotions to the LHS's type. |
| QualType LHSUnpromotedType = LHSType; |
| if (LHSType->isPromotableIntegerType()) |
| LHSType = Context.getPromotedIntegerType(LHSType); |
| QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get()); |
| if (!LHSBitfieldPromoteTy.isNull()) |
| LHSType = LHSBitfieldPromoteTy; |
| if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign) |
| LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast); |
| |
| // If both types are identical, no conversion is needed. |
| if (LHSType == RHSType) |
| return LHSType; |
| |
| // At this point, we have two different arithmetic types. |
| |
| // Diagnose attempts to convert between __ibm128, __float128 and long double |
| // where such conversions currently can't be handled. |
| if (unsupportedTypeConversion(*this, LHSType, RHSType)) |
| return QualType(); |
| |
| // Handle complex types first (C99 6.3.1.8p1). |
| if (LHSType->isComplexType() || RHSType->isComplexType()) |
| return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType, |
| ACK == ACK_CompAssign); |
| |
| // Now handle "real" floating types (i.e. float, double, long double). |
| if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) |
| return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType, |
| ACK == ACK_CompAssign); |
| |
| // Handle GCC complex int extension. |
| if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType()) |
| return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType, |
| ACK == ACK_CompAssign); |
| |
| if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) |
| return handleFixedPointConversion(*this, LHSType, RHSType); |
| |
| // Finally, we have two differing integer types. |
| return handleIntegerConversion<doIntegralCast, doIntegralCast> |
| (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Semantic Analysis for various Expression Types |
| //===----------------------------------------------------------------------===// |
| |
| |
| ExprResult |
| Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc, |
| SourceLocation DefaultLoc, |
| SourceLocation RParenLoc, |
| Expr *ControllingExpr, |
| ArrayRef<ParsedType> ArgTypes, |
| ArrayRef<Expr *> ArgExprs) { |
| unsigned NumAssocs = ArgTypes.size(); |
| assert(NumAssocs == ArgExprs.size()); |
| |
| TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs]; |
| for (unsigned i = 0; i < NumAssocs; ++i) { |
| if (ArgTypes[i]) |
| (void) GetTypeFromParser(ArgTypes[i], &Types[i]); |
| else |
| Types[i] = nullptr; |
| } |
| |
| ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, |
| ControllingExpr, |
| llvm::makeArrayRef(Types, NumAssocs), |
| ArgExprs); |
| delete [] Types; |
| return ER; |
| } |
| |
| ExprResult |
| Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc, |
| SourceLocation DefaultLoc, |
| SourceLocation RParenLoc, |
| Expr *ControllingExpr, |
| ArrayRef<TypeSourceInfo *> Types, |
| ArrayRef<Expr *> Exprs) { |
| unsigned NumAssocs = Types.size(); |
| assert(NumAssocs == Exprs.size()); |
| |
| // Decay and strip qualifiers for the controlling expression type, and handle |
| // placeholder type replacement. See committee discussion from WG14 DR423. |
| { |
| EnterExpressionEvaluationContext Unevaluated( |
| *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr); |
| if (R.isInvalid()) |
| return ExprError(); |
| ControllingExpr = R.get(); |
| } |
| |
| // The controlling expression is an unevaluated operand, so side effects are |
| // likely unintended. |
| if (!inTemplateInstantiation() && |
| ControllingExpr->HasSideEffects(Context, false)) |
| Diag(ControllingExpr->getExprLoc(), |
| diag::warn_side_effects_unevaluated_context); |
| |
| bool TypeErrorFound = false, |
| IsResultDependent = ControllingExpr->isTypeDependent(), |
| ContainsUnexpandedParameterPack |
| = ControllingExpr->containsUnexpandedParameterPack(); |
| |
| for (unsigned i = 0; i < NumAssocs; ++i) { |
| if (Exprs[i]->containsUnexpandedParameterPack()) |
| ContainsUnexpandedParameterPack = true; |
| |
| if (Types[i]) { |
| if (Types[i]->getType()->containsUnexpandedParameterPack()) |
| ContainsUnexpandedParameterPack = true; |
| |
| if (Types[i]->getType()->isDependentType()) { |
| IsResultDependent = true; |
| } else { |
| // C11 6.5.1.1p2 "The type name in a generic association shall specify a |
| // complete object type other than a variably modified type." |
| unsigned D = 0; |
| if (Types[i]->getType()->isIncompleteType()) |
| D = diag::err_assoc_type_incomplete; |
| else if (!Types[i]->getType()->isObjectType()) |
| D = diag::err_assoc_type_nonobject; |
| else if (Types[i]->getType()->isVariablyModifiedType()) |
| D = diag::err_assoc_type_variably_modified; |
| |
| if (D != 0) { |
| Diag(Types[i]->getTypeLoc().getBeginLoc(), D) |
| << Types[i]->getTypeLoc().getSourceRange() |
| << Types[i]->getType(); |
| TypeErrorFound = true; |
| } |
| |
| // C11 6.5.1.1p2 "No two generic associations in the same generic |
| // selection shall specify compatible types." |
| for (unsigned j = i+1; j < NumAssocs; ++j) |
| if (Types[j] && !Types[j]->getType()->isDependentType() && |
| Context.typesAreCompatible(Types[i]->getType(), |
| Types[j]->getType())) { |
| Diag(Types[j]->getTypeLoc().getBeginLoc(), |
| diag::err_assoc_compatible_types) |
| << Types[j]->getTypeLoc().getSourceRange() |
| << Types[j]->getType() |
| << Types[i]->getType(); |
| Diag(Types[i]->getTypeLoc().getBeginLoc(), |
| diag::note_compat_assoc) |
| << Types[i]->getTypeLoc().getSourceRange() |
| << Types[i]->getType(); |
| TypeErrorFound = true; |
| } |
| } |
| } |
| } |
| if (TypeErrorFound) |
| return ExprError(); |
| |
| // If we determined that the generic selection is result-dependent, don't |
| // try to compute the result expression. |
| if (IsResultDependent) |
| return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types, |
| Exprs, DefaultLoc, RParenLoc, |
| ContainsUnexpandedParameterPack); |
| |
| SmallVector<unsigned, 1> CompatIndices; |
| unsigned DefaultIndex = -1U; |
| for (unsigned i = 0; i < NumAssocs; ++i) { |
| if (!Types[i]) |
| DefaultIndex = i; |
| else if (Context.typesAreCompatible(ControllingExpr->getType(), |
| Types[i]->getType())) |
| CompatIndices.push_back(i); |
| } |
| |
| // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have |
| // type compatible with at most one of the types named in its generic |
| // association list." |
| if (CompatIndices.size() > 1) { |
| // We strip parens here because the controlling expression is typically |
| // parenthesized in macro definitions. |
| ControllingExpr = ControllingExpr->IgnoreParens(); |
| Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match) |
| << ControllingExpr->getSourceRange() << ControllingExpr->getType() |
| << (unsigned)CompatIndices.size(); |
| for (unsigned I : CompatIndices) { |
| Diag(Types[I]->getTypeLoc().getBeginLoc(), |
| diag::note_compat_assoc) |
| << Types[I]->getTypeLoc().getSourceRange() |
| << Types[I]->getType(); |
| } |
| return ExprError(); |
| } |
| |
| // C11 6.5.1.1p2 "If a generic selection has no default generic association, |
| // its controlling expression shall have type compatible with exactly one of |
| // the types named in its generic association list." |
| if (DefaultIndex == -1U && CompatIndices.size() == 0) { |
| // We strip parens here because the controlling expression is typically |
| // parenthesized in macro definitions. |
| ControllingExpr = ControllingExpr->IgnoreParens(); |
| Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match) |
| << ControllingExpr->getSourceRange() << ControllingExpr->getType(); |
| return ExprError(); |
| } |
| |
| // C11 6.5.1.1p3 "If a generic selection has a generic association with a |
| // type name that is compatible with the type of the controlling expression, |
| // then the result expression of the generic selection is the expression |
| // in that generic association. Otherwise, the result expression of the |
| // generic selection is the expression in the default generic association." |
| unsigned ResultIndex = |
| CompatIndices.size() ? CompatIndices[0] : DefaultIndex; |
| |
| return GenericSelectionExpr::Create( |
| Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc, |
| ContainsUnexpandedParameterPack, ResultIndex); |
| } |
| |
| /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the |
| /// location of the token and the offset of the ud-suffix within it. |
| static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc, |
| unsigned Offset) { |
| return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(), |
| S.getLangOpts()); |
| } |
| |
| /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up |
| /// the corresponding cooked (non-raw) literal operator, and build a call to it. |
| static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope, |
| IdentifierInfo *UDSuffix, |
| SourceLocation UDSuffixLoc, |
| ArrayRef<Expr*> Args, |
| SourceLocation LitEndLoc) { |
| assert(Args.size() <= 2 && "too many arguments for literal operator"); |
| |
| QualType ArgTy[2]; |
| for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { |
| ArgTy[ArgIdx] = Args[ArgIdx]->getType(); |
| if (ArgTy[ArgIdx]->isArrayType()) |
| ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]); |
| } |
| |
| DeclarationName OpName = |
| S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); |
| DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); |
| OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); |
| |
| LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName); |
| if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()), |
| /*AllowRaw*/ false, /*AllowTemplate*/ false, |
| /*AllowStringTemplatePack*/ false, |
| /*DiagnoseMissing*/ true) == Sema::LOLR_Error) |
| return ExprError(); |
| |
| return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc); |
| } |
| |
| /// ActOnStringLiteral - The specified tokens were lexed as pasted string |
| /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string |
| /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from |
| /// multiple tokens. However, the common case is that StringToks points to one |
| /// string. |
| /// |
| ExprResult |
| Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) { |
| assert(!StringToks.empty() && "Must have at least one string!"); |
| |
| StringLiteralParser Literal(StringToks, PP); |
| if (Literal.hadError) |
| return ExprError(); |
| |
| SmallVector<SourceLocation, 4> StringTokLocs; |
| for (const Token &Tok : StringToks) |
| StringTokLocs.push_back(Tok.getLocation()); |
| |
| QualType CharTy = Context.CharTy; |
| StringLiteral::StringKind Kind = StringLiteral::Ascii; |
| if (Literal.isWide()) { |
| CharTy = Context.getWideCharType(); |
| Kind = StringLiteral::Wide; |
| } else if (Literal.isUTF8()) { |
| if (getLangOpts().Char8) |
| CharTy = Context.Char8Ty; |
| Kind = StringLiteral::UTF8; |
| } else if (Literal.isUTF16()) { |
| CharTy = Context.Char16Ty; |
| Kind = StringLiteral::UTF16; |
| } else if (Literal.isUTF32()) { |
| CharTy = Context.Char32Ty; |
| Kind = StringLiteral::UTF32; |
| } else if (Literal.isPascal()) { |
| CharTy = Context.UnsignedCharTy; |
| } |
| |
| // Warn on initializing an array of char from a u8 string literal; this |
| // becomes ill-formed in C++2a. |
| if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 && |
| !getLangOpts().Char8 && Kind == StringLiteral::UTF8) { |
| Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string); |
| |
| // Create removals for all 'u8' prefixes in the string literal(s). This |
| // ensures C++2a compatibility (but may change the program behavior when |
| // built by non-Clang compilers for which the execution character set is |
| // not always UTF-8). |
| auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8); |
| SourceLocation RemovalDiagLoc; |
| for (const Token &Tok : StringToks) { |
| if (Tok.getKind() == tok::utf8_string_literal) { |
| if (RemovalDiagLoc.isInvalid()) |
| RemovalDiagLoc = Tok.getLocation(); |
| RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange( |
| Tok.getLocation(), |
| Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2, |
| getSourceManager(), getLangOpts()))); |
| } |
| } |
| Diag(RemovalDiagLoc, RemovalDiag); |
| } |
| |
| QualType StrTy = |
| Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars()); |
| |
| // Pass &StringTokLocs[0], StringTokLocs.size() to factory! |
| StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(), |
| Kind, Literal.Pascal, StrTy, |
| &StringTokLocs[0], |
| StringTokLocs.size()); |
| if (Literal.getUDSuffix().empty()) |
| return Lit; |
| |
| // We're building a user-defined literal. |
| IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); |
| SourceLocation UDSuffixLoc = |
| getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()], |
| Literal.getUDSuffixOffset()); |
| |
| // Make sure we're allowed user-defined literals here. |
| if (!UDLScope) |
| return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl)); |
| |
| // C++11 [lex.ext]p5: The literal L is treated as a call of the form |
| // operator "" X (str, len) |
| QualType SizeType = Context.getSizeType(); |
| |
| DeclarationName OpName = |
| Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); |
| DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); |
| OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); |
| |
| QualType ArgTy[] = { |
| Context.getArrayDecayedType(StrTy), SizeType |
| }; |
| |
| LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName); |
| switch (LookupLiteralOperator(UDLScope, R, ArgTy, |
| /*AllowRaw*/ false, /*AllowTemplate*/ true, |
| /*AllowStringTemplatePack*/ true, |
| /*DiagnoseMissing*/ true, Lit)) { |
| |
| case LOLR_Cooked: { |
| llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars()); |
| IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType, |
| StringTokLocs[0]); |
| Expr *Args[] = { Lit, LenArg }; |
| |
| return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back()); |
| } |
| |
| case LOLR_Template: { |
| TemplateArgumentListInfo ExplicitArgs; |
| TemplateArgument Arg(Lit); |
| TemplateArgumentLocInfo ArgInfo(Lit); |
| ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); |
| return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(), |
| &ExplicitArgs); |
| } |
| |
| case LOLR_StringTemplatePack: { |
| TemplateArgumentListInfo ExplicitArgs; |
| |
| unsigned CharBits = Context.getIntWidth(CharTy); |
| bool CharIsUnsigned = CharTy->isUnsignedIntegerType(); |
| llvm::APSInt Value(CharBits, CharIsUnsigned); |
| |
| TemplateArgument TypeArg(CharTy); |
| TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy)); |
| ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo)); |
| |
| for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) { |
| Value = Lit->getCodeUnit(I); |
| TemplateArgument Arg(Context, Value, CharTy); |
| TemplateArgumentLocInfo ArgInfo; |
| ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); |
| } |
| return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(), |
| &ExplicitArgs); |
| } |
| case LOLR_Raw: |
| case LOLR_ErrorNoDiagnostic: |
| llvm_unreachable("unexpected literal operator lookup result"); |
| case LOLR_Error: |
| return ExprError(); |
| } |
| llvm_unreachable("unexpected literal operator lookup result"); |
| } |
| |
| DeclRefExpr * |
| Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, |
| SourceLocation Loc, |
| const CXXScopeSpec *SS) { |
| DeclarationNameInfo NameInfo(D->getDeclName(), Loc); |
| return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS); |
| } |
| |
| DeclRefExpr * |
| Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, |
| const DeclarationNameInfo &NameInfo, |
| const CXXScopeSpec *SS, NamedDecl *FoundD, |
| SourceLocation TemplateKWLoc, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| NestedNameSpecifierLoc NNS = |
| SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(); |
| return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc, |
| TemplateArgs); |
| } |
| |
| // CUDA/HIP: Check whether a captured reference variable is referencing a |
| // host variable in a device or host device lambda. |
| static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S, |
| VarDecl *VD) { |
| if (!S.getLangOpts().CUDA || !VD->hasInit()) |
| return false; |
| assert(VD->getType()->isReferenceType()); |
| |
| // Check whether the reference variable is referencing a host variable. |
| auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit()); |
| if (!DRE) |
| return false; |
| auto *Referee = dyn_cast<VarDecl>(DRE->getDecl()); |
| if (!Referee || !Referee->hasGlobalStorage() || |
| Referee->hasAttr<CUDADeviceAttr>()) |
| return false; |
| |
| // Check whether the current function is a device or host device lambda. |
| // Check whether the reference variable is a capture by getDeclContext() |
| // since refersToEnclosingVariableOrCapture() is not ready at this point. |
| auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext); |
| if (MD && MD->getParent()->isLambda() && |
| MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() && |
| VD->getDeclContext() != MD) |
| return true; |
| |
| return false; |
| } |
| |
| NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) { |
| // A declaration named in an unevaluated operand never constitutes an odr-use. |
| if (isUnevaluatedContext()) |
| return NOUR_Unevaluated; |
| |
| // C++2a [basic.def.odr]p4: |
| // A variable x whose name appears as a potentially-evaluated expression e |
| // is odr-used by e unless [...] x is a reference that is usable in |
| // constant expressions. |
| // CUDA/HIP: |
| // If a reference variable referencing a host variable is captured in a |
| // device or host device lambda, the value of the referee must be copied |
| // to the capture and the reference variable must be treated as odr-use |
| // since the value of the referee is not known at compile time and must |
| // be loaded from the captured. |
| if (VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| if (VD->getType()->isReferenceType() && |
| !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) && |
| !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) && |
| VD->isUsableInConstantExpressions(Context)) |
| return NOUR_Constant; |
| } |
| |
| // All remaining non-variable cases constitute an odr-use. For variables, we |
| // need to wait and see how the expression is used. |
| return NOUR_None; |
| } |
| |
| /// BuildDeclRefExpr - Build an expression that references a |
| /// declaration that does not require a closure capture. |
| DeclRefExpr * |
| Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, |
| const DeclarationNameInfo &NameInfo, |
| NestedNameSpecifierLoc NNS, NamedDecl *FoundD, |
| SourceLocation TemplateKWLoc, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| bool RefersToCapturedVariable = |
| isa<VarDecl>(D) && |
| NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc()); |
| |
| DeclRefExpr *E = DeclRefExpr::Create( |
| Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty, |
| VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D)); |
| MarkDeclRefReferenced(E); |
| |
| // C++ [except.spec]p17: |
| // An exception-specification is considered to be needed when: |
| // - in an expression, the function is the unique lookup result or |
| // the selected member of a set of overloaded functions. |
| // |
| // We delay doing this until after we've built the function reference and |
| // marked it as used so that: |
| // a) if the function is defaulted, we get errors from defining it before / |
| // instead of errors from computing its exception specification, and |
| // b) if the function is a defaulted comparison, we can use the body we |
| // build when defining it as input to the exception specification |
| // computation rather than computing a new body. |
| if (auto *FPT = Ty->getAs<FunctionProtoType>()) { |
| if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { |
| if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT)) |
| E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers())); |
| } |
| } |
| |
| if (getLangOpts().ObjCWeak && isa<VarDecl>(D) && |
| Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() && |
| !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc())) |
| getCurFunction()->recordUseOfWeak(E); |
| |
| FieldDecl *FD = dyn_cast<FieldDecl>(D); |
| if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D)) |
| FD = IFD->getAnonField(); |
| if (FD) { |
| UnusedPrivateFields.remove(FD); |
| // Just in case we're building an illegal pointer-to-member. |
| if (FD->isBitField()) |
| E->setObjectKind(OK_BitField); |
| } |
| |
| // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier |
| // designates a bit-field. |
| if (auto *BD = dyn_cast<BindingDecl>(D)) |
| if (auto *BE = BD->getBinding()) |
| E->setObjectKind(BE->getObjectKind()); |
| |
| return E; |
| } |
| |
| /// Decomposes the given name into a DeclarationNameInfo, its location, and |
| /// possibly a list of template arguments. |
| /// |
| /// If this produces template arguments, it is permitted to call |
| /// DecomposeTemplateName. |
| /// |
| /// This actually loses a lot of source location information for |
| /// non-standard name kinds; we should consider preserving that in |
| /// some way. |
| void |
| Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id, |
| TemplateArgumentListInfo &Buffer, |
| DeclarationNameInfo &NameInfo, |
| const TemplateArgumentListInfo *&TemplateArgs) { |
| if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) { |
| Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc); |
| Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc); |
| |
| ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(), |
| Id.TemplateId->NumArgs); |
| translateTemplateArguments(TemplateArgsPtr, Buffer); |
| |
| TemplateName TName = Id.TemplateId->Template.get(); |
| SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc; |
| NameInfo = Context.getNameForTemplate(TName, TNameLoc); |
| TemplateArgs = &Buffer; |
| } else { |
| NameInfo = GetNameFromUnqualifiedId(Id); |
| TemplateArgs = nullptr; |
| } |
| } |
| |
| static void emitEmptyLookupTypoDiagnostic( |
| const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS, |
| DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args, |
| unsigned DiagnosticID, unsigned DiagnosticSuggestID) { |
| DeclContext *Ctx = |
| SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false); |
| if (!TC) { |
| // Emit a special diagnostic for failed member lookups. |
| // FIXME: computing the declaration context might fail here (?) |
| if (Ctx) |
| SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx |
| << SS.getRange(); |
| else |
| SemaRef.Diag(TypoLoc, DiagnosticID) << Typo; |
| return; |
| } |
| |
| std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts()); |
| bool DroppedSpecifier = |
| TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr; |
| unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>() |
| ? diag::note_implicit_param_decl |
| : diag::note_previous_decl; |
| if (!Ctx) |
| SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo, |
| SemaRef.PDiag(NoteID)); |
| else |
| SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest) |
| << Typo << Ctx << DroppedSpecifier |
| << SS.getRange(), |
| SemaRef.PDiag(NoteID)); |
| } |
| |
| /// Diagnose a lookup that found results in an enclosing class during error |
| /// recovery. This usually indicates that the results were found in a dependent |
| /// base class that could not be searched as part of a template definition. |
| /// Always issues a diagnostic (though this may be only a warning in MS |
| /// compatibility mode). |
| /// |
| /// Return \c true if the error is unrecoverable, or \c false if the caller |
| /// should attempt to recover using these lookup results. |
| bool Sema::DiagnoseDependentMemberLookup(LookupResult &R) { |
| // During a default argument instantiation the CurContext points |
| // to a CXXMethodDecl; but we can't apply a this-> fixit inside a |
| // function parameter list, hence add an explicit check. |
| bool isDefaultArgument = |
| !CodeSynthesisContexts.empty() && |
| CodeSynthesisContexts.back().Kind == |
| CodeSynthesisContext::DefaultFunctionArgumentInstantiation; |
| CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext); |
| bool isInstance = CurMethod && CurMethod->isInstance() && |
| R.getNamingClass() == CurMethod->getParent() && |
| !isDefaultArgument; |
| |
| // There are two ways we can find a class-scope declaration during template |
| // instantiation that we did not find in the template definition: if it is a |
| // member of a dependent base class, or if it is declared after the point of |
| // use in the same class. Distinguish these by comparing the class in which |
| // the member was found to the naming class of the lookup. |
| unsigned DiagID = diag::err_found_in_dependent_base; |
| unsigned NoteID = diag::note_member_declared_at; |
| if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) { |
| DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class |
| : diag::err_found_later_in_class; |
| } else if (getLangOpts().MSVCCompat) { |
| DiagID = diag::ext_found_in_dependent_base; |
| NoteID = diag::note_dependent_member_use; |
| } |
| |
| if (isInstance) { |
| // Give a code modification hint to insert 'this->'. |
| Diag(R.getNameLoc(), DiagID) |
| << R.getLookupName() |
| << FixItHint::CreateInsertion(R.getNameLoc(), "this->"); |
| CheckCXXThisCapture(R.getNameLoc()); |
| } else { |
| // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming |
| // they're not shadowed). |
| Diag(R.getNameLoc(), DiagID) << R.getLookupName(); |
| } |
| |
| for (NamedDecl *D : R) |
| Diag(D->getLocation(), NoteID); |
| |
| // Return true if we are inside a default argument instantiation |
| // and the found name refers to an instance member function, otherwise |
| // the caller will try to create an implicit member call and this is wrong |
| // for default arguments. |
| // |
| // FIXME: Is this special case necessary? We could allow the caller to |
| // diagnose this. |
| if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) { |
| Diag(R.getNameLoc(), diag::err_member_call_without_object); |
| return true; |
| } |
| |
| // Tell the callee to try to recover. |
| return false; |
| } |
| |
| /// Diagnose an empty lookup. |
| /// |
| /// \return false if new lookup candidates were found |
| bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R, |
| CorrectionCandidateCallback &CCC, |
| TemplateArgumentListInfo *ExplicitTemplateArgs, |
| ArrayRef<Expr *> Args, TypoExpr **Out) { |
| DeclarationName Name = R.getLookupName(); |
| |
| unsigned diagnostic = diag::err_undeclared_var_use; |
| unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest; |
| if (Name.getNameKind() == DeclarationName::CXXOperatorName || |
| Name.getNameKind() == DeclarationName::CXXLiteralOperatorName || |
| Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { |
| diagnostic = diag::err_undeclared_use; |
| diagnostic_suggest = diag::err_undeclared_use_suggest; |
| } |
| |
| // If the original lookup was an unqualified lookup, fake an |
| // unqualified lookup. This is useful when (for example) the |
| // original lookup would not have found something because it was a |
| // dependent name. |
| DeclContext *DC = SS.isEmpty() ? CurContext : nullptr; |
| while (DC) { |
| if (isa<CXXRecordDecl>(DC)) { |
| LookupQualifiedName(R, DC); |
| |
| if (!R.empty()) { |
| // Don't give errors about ambiguities in this lookup. |
| R.suppressDiagnostics(); |
| |
| // If there's a best viable function among the results, only mention |
| // that one in the notes. |
| OverloadCandidateSet Candidates(R.getNameLoc(), |
| OverloadCandidateSet::CSK_Normal); |
| AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates); |
| OverloadCandidateSet::iterator Best; |
| if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) == |
| OR_Success) { |
| R.clear(); |
| R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess()); |
| R.resolveKind(); |
| } |
| |
| return DiagnoseDependentMemberLookup(R); |
| } |
| |
| R.clear(); |
| } |
| |
| DC = DC->getLookupParent(); |
| } |
| |
| // We didn't find anything, so try to correct for a typo. |
| TypoCorrection Corrected; |
| if (S && Out) { |
| SourceLocation TypoLoc = R.getNameLoc(); |
| assert(!ExplicitTemplateArgs && |
| "Diagnosing an empty lookup with explicit template args!"); |
| *Out = CorrectTypoDelayed( |
| R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, |
| [=](const TypoCorrection &TC) { |
| emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args, |
| diagnostic, diagnostic_suggest); |
| }, |
| nullptr, CTK_ErrorRecovery); |
| if (*Out) |
| return true; |
| } else if (S && |
| (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), |
| S, &SS, CCC, CTK_ErrorRecovery))) { |
| std::string CorrectedStr(Corrected.getAsString(getLangOpts())); |
| bool DroppedSpecifier = |
| Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr; |
| R.setLookupName(Corrected.getCorrection()); |
| |
| bool AcceptableWithRecovery = false; |
| bool AcceptableWithoutRecovery = false; |
| NamedDecl *ND = Corrected.getFoundDecl(); |
| if (ND) { |
| if (Corrected.isOverloaded()) { |
| OverloadCandidateSet OCS(R.getNameLoc(), |
| OverloadCandidateSet::CSK_Normal); |
| OverloadCandidateSet::iterator Best; |
| for (NamedDecl *CD : Corrected) { |
| if (FunctionTemplateDecl *FTD = |
| dyn_cast<FunctionTemplateDecl>(CD)) |
| AddTemplateOverloadCandidate( |
| FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs, |
| Args, OCS); |
| else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD)) |
| if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0) |
| AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), |
| Args, OCS); |
| } |
| switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) { |
| case OR_Success: |
| ND = Best->FoundDecl; |
| Corrected.setCorrectionDecl(ND); |
| break; |
| default: |
| // FIXME: Arbitrarily pick the first declaration for the note. |
| Corrected.setCorrectionDecl(ND); |
| break; |
| } |
| } |
| R.addDecl(ND); |
| if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) { |
| CXXRecordDecl *Record = nullptr; |
| if (Corrected.getCorrectionSpecifier()) { |
| const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType(); |
| Record = Ty->getAsCXXRecordDecl(); |
| } |
| if (!Record) |
| Record = cast<CXXRecordDecl>( |
| ND->getDeclContext()->getRedeclContext()); |
| R.setNamingClass(Record); |
| } |
| |
| auto *UnderlyingND = ND->getUnderlyingDecl(); |
| AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) || |
| isa<FunctionTemplateDecl>(UnderlyingND); |
| // FIXME: If we ended up with a typo for a type name or |
| // Objective-C class name, we're in trouble because the parser |
| // is in the wrong place to recover. Suggest the typo |
| // correction, but don't make it a fix-it since we're not going |
| // to recover well anyway. |
| AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) || |
| getAsTypeTemplateDecl(UnderlyingND) || |
| isa<ObjCInterfaceDecl>(UnderlyingND); |
| } else { |
| // FIXME: We found a keyword. Suggest it, but don't provide a fix-it |
| // because we aren't able to recover. |
| AcceptableWithoutRecovery = true; |
| } |
| |
| if (AcceptableWithRecovery || AcceptableWithoutRecovery) { |
| unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>() |
| ? diag::note_implicit_param_decl |
| : diag::note_previous_decl; |
| if (SS.isEmpty()) |
| diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name, |
| PDiag(NoteID), AcceptableWithRecovery); |
| else |
| diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) |
| << Name << computeDeclContext(SS, false) |
| << DroppedSpecifier << SS.getRange(), |
| PDiag(NoteID), AcceptableWithRecovery); |
| |
| // Tell the callee whether to try to recover. |
| return !AcceptableWithRecovery; |
| } |
| } |
| R.clear(); |
| |
| // Emit a special diagnostic for failed member lookups. |
| // FIXME: computing the declaration context might fail here (?) |
| if (!SS.isEmpty()) { |
| Diag(R.getNameLoc(), diag::err_no_member) |
| << Name << computeDeclContext(SS, false) |
| << SS.getRange(); |
| return true; |
| } |
| |
| // Give up, we can't recover. |
| Diag(R.getNameLoc(), diagnostic) << Name; |
| return true; |
| } |
| |
| /// In Microsoft mode, if we are inside a template class whose parent class has |
| /// dependent base classes, and we can't resolve an unqualified identifier, then |
| /// assume the identifier is a member of a dependent base class. We can only |
| /// recover successfully in static methods, instance methods, and other contexts |
| /// where 'this' is available. This doesn't precisely match MSVC's |
| /// instantiation model, but it's close enough. |
| static Expr * |
| recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context, |
| DeclarationNameInfo &NameInfo, |
| SourceLocation TemplateKWLoc, |
| const TemplateArgumentListInfo *TemplateArgs) { |
| // Only try to recover from lookup into dependent bases in static methods or |
| // contexts where 'this' is available. |
| QualType ThisType = S.getCurrentThisType(); |
| const CXXRecordDecl *RD = nullptr; |
| if (!ThisType.isNull()) |
| RD = ThisType->getPointeeType()->getAsCXXRecordDecl(); |
| else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext)) |
| RD = MD->getParent(); |
| if (!RD || !RD->hasAnyDependentBases()) |
| return nullptr; |
| |
| // Diagnose this as unqualified lookup into a dependent base class. If 'this' |
| // is available, suggest inserting 'this->' as a fixit. |
| SourceLocation Loc = NameInfo.getLoc(); |
| auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base); |
| DB << NameInfo.getName() << RD; |
| |
| if (!ThisType.isNull()) { |
| DB << FixItHint::CreateInsertion(Loc, "this->"); |
| return CXXDependentScopeMemberExpr::Create( |
| Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true, |
| /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc, |
| /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs); |
| } |
| |
| // Synthesize a fake NNS that points to the derived class. This will |
| // perform name lookup during template instantiation. |
| CXXScopeSpec SS; |
| auto *NNS = |
| NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl()); |
| SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc)); |
| return DependentScopeDeclRefExpr::Create( |
| Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, |
| TemplateArgs); |
| } |
| |
| ExprResult |
| Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS, |
| SourceLocation TemplateKWLoc, UnqualifiedId &Id, |
| bool HasTrailingLParen, bool IsAddressOfOperand, |
| CorrectionCandidateCallback *CCC, |
| bool IsInlineAsmIdentifier, Token *KeywordReplacement) { |
| assert(!(IsAddressOfOperand && HasTrailingLParen) && |
| "cannot be direct & operand and have a trailing lparen"); |
| if (SS.isInvalid()) |
| return ExprError(); |
| |
| TemplateArgumentListInfo TemplateArgsBuffer; |
| |
| // Decompose the UnqualifiedId into the following data. |
| DeclarationNameInfo NameInfo; |
| const TemplateArgumentListInfo *TemplateArgs; |
| DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs); |
| |
| DeclarationName Name = NameInfo.getName(); |
| IdentifierInfo *II = Name.getAsIdentifierInfo(); |
| SourceLocation NameLoc = NameInfo.getLoc(); |
| |
| if (II && II->isEditorPlaceholder()) { |
| // FIXME: When typed placeholders are supported we can create a typed |
| // placeholder expression node. |
| return ExprError(); |
| } |
| |
| // C++ [temp.dep.expr]p3: |
| // An id-expression is type-dependent if it contains: |
| // -- an identifier that was declared with a dependent type, |
| // (note: handled after lookup) |
| // -- a template-id that is dependent, |
| // (note: handled in BuildTemplateIdExpr) |
| // -- a conversion-function-id that specifies a dependent type, |
| // -- a nested-name-specifier that contains a class-name that |
| // names a dependent type. |
| // Determine whether this is a member of an unknown specialization; |
| // we need to handle these differently. |
| bool DependentID = false; |
| if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && |
| Name.getCXXNameType()->isDependentType()) { |
| DependentID = true; |
| } else if (SS.isSet()) { |
| if (DeclContext *DC = computeDeclContext(SS, false)) { |
| if (RequireCompleteDeclContext(SS, DC)) |
| return ExprError(); |
| } else { |
| DependentID = true; |
| } |
| } |
| |
| if (DependentID) |
| return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, |
| IsAddressOfOperand, TemplateArgs); |
| |
| // Perform the required lookup. |
| LookupResult R(*this, NameInfo, |
| (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam) |
| ? LookupObjCImplicitSelfParam |
| : LookupOrdinaryName); |
| if (TemplateKWLoc.isValid() || TemplateArgs) { |
| // Lookup the template name again to correctly establish the context in |
| // which it was found. This is really unfortunate as we already did the |
| // lookup to determine that it was a template name in the first place. If |
| // this becomes a performance hit, we can work harder to preserve those |
| // results until we get here but it's likely not worth it. |
| bool MemberOfUnknownSpecialization; |
| AssumedTemplateKind AssumedTemplate; |
| if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false, |
| MemberOfUnknownSpecialization, TemplateKWLoc, |
| &AssumedTemplate)) |
| return ExprError(); |
| |
| if (MemberOfUnknownSpecialization || |
| (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)) |
| return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, |
| IsAddressOfOperand, TemplateArgs); |
| } else { |
| bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl(); |
| LookupParsedName(R, S, &SS, !IvarLookupFollowUp); |
| |
| // If the result might be in a dependent base class, this is a dependent |
| // id-expression. |
| if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) |
| return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, |
| IsAddressOfOperand, TemplateArgs); |
| |
| // If this reference is in an Objective-C method, then we need to do |
| // some special Objective-C lookup, too. |
| if (IvarLookupFollowUp) { |
| ExprResult E(LookupInObjCMethod(R, S, II, true)); |
| if (E.isInvalid()) |
| return ExprError(); |
| |
| if (Expr *Ex = E.getAs<Expr>()) |
| return Ex; |
| } |
| } |
| |
| if (R.isAmbiguous()) |
| return ExprError(); |
| |
| // This could be an implicitly declared function reference (legal in C90, |
| // extension in C99, forbidden in C++). |
| if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) { |
| NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S); |
| if (D) R.addDecl(D); |
| } |
| |
| // Determine whether this name might be a candidate for |
| // argument-dependent lookup. |
| bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen); |
| |
| if (R.empty() && !ADL) { |
| if (SS.isEmpty() && getLangOpts().MSVCCompat) { |
| if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo, |
| TemplateKWLoc, TemplateArgs)) |
| return E; |
| } |
| |
| // Don't diagnose an empty lookup for inline assembly. |
| if (IsInlineAsmIdentifier) |
| return ExprError(); |
| |
| // If this name wasn't predeclared and if this is not a function |
| // call, diagnose the problem. |
| TypoExpr *TE = nullptr; |
| DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep() |
| : nullptr); |
| DefaultValidator.IsAddressOfOperand = IsAddressOfOperand; |
| assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && |
| "Typo correction callback misconfigured"); |
| if (CCC) { |
| // Make sure the callback knows what the typo being diagnosed is. |
| CCC->setTypoName(II); |
| if (SS.isValid()) |
| CCC->setTypoNNS(SS.getScopeRep()); |
| } |
| // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for |
| // a template name, but we happen to have always already looked up the name |
| // before we get here if it must be a template name. |
| if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr, |
| None, &TE)) { |
| if (TE && KeywordReplacement) { |
| auto &State = getTypoExprState(TE); |
| auto BestTC = State.Consumer->getNextCorrection(); |
| if (BestTC.isKeyword()) { |
| auto *II = BestTC.getCorrectionAsIdentifierInfo(); |
| if (State.DiagHandler) |
| State.DiagHandler(BestTC); |
| KeywordReplacement->startToken(); |
| KeywordReplacement->setKind(II->getTokenID()); |
| KeywordReplacement->setIdentifierInfo(II); |
| KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin()); |
| // Clean up the state associated with the TypoExpr, since it has |
| // now been diagnosed (without a call to CorrectDelayedTyposInExpr). |
| clearDelayedTypo(TE); |
| // Signal that a correction to a keyword was performed by returning a |
| // valid-but-null ExprResult. |
| return (Expr*)nullptr; |
| } |
| State.Consumer->resetCorrectionStream(); |
| } |
| return TE ? TE : ExprError(); |
| } |
| |
| assert(!R.empty() && |
| "DiagnoseEmptyLookup returned false but added no results"); |
| |
| // If we found an Objective-C instance variable, let |
| // LookupInObjCMethod build the appropriate expression to |
| // reference the ivar. |
| if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) { |
| R.clear(); |
| ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier())); |
| // In a hopelessly buggy code, Objective-C instance variable |
| // lookup fails and no expression will be built to reference it. |
| if (!E.isInvalid() && !E.get()) |
| return ExprError(); |
| return E; |
| } |
| } |
| |
| // This is guaranteed from this point on. |
| assert(!R.empty() || ADL); |
| |
| // Check whether this might be a C++ implicit instance member access. |
| // C++ [class.mfct.non-static]p3: |
| // When an id-expression that is not part of a class member access |
| // syntax and not used to form a pointer to member is used in the |
| // body of a non-static member function of class X, if name lookup |
| // resolves the name in the id-expression to a non-static non-type |
| // member of some class C, the id-expression is transformed into a |
| // class member access expression using (*this) as the |
| // postfix-expression to the left of the . operator. |
| // |
| // But we don't actually need to do this for '&' operands if R |
| // resolved to a function or overloaded function set, because the |
| // expression is ill-formed if it actually works out to be a |
| // non-static member function: |
| // |
| // C++ [expr.ref]p4: |
| // Otherwise, if E1.E2 refers to a non-static member function. . . |
| // [t]he expression can be used only as the left-hand operand of a |
| // member function call. |
| // |
| // There are other safeguards against such uses, but it's important |
| // to get this right here so that we don't end up making a |
| // spuriously dependent expression if we're inside a dependent |
| // instance method. |
| if (!R.empty() && (*R.begin())->isCXXClassMember()) { |
| bool MightBeImplicitMember; |
| if (!IsAddressOfOperand) |
| MightBeImplicitMember = true; |
| else if (!SS.isEmpty()) |
| MightBeImplicitMember = false; |
| else if (R.isOverloadedResult()) |
| MightBeImplicitMember = false; |
| else if (R.isUnresolvableResult()) |
| MightBeImplicitMember = true; |
| else |
| MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) || |
| isa<IndirectFieldDecl>(R.getFoundDecl()) || |
| isa<MSPropertyDecl>(R.getFoundDecl()); |
| |
| if (MightBeImplicitMember) |
| return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, |
| R, TemplateArgs, S); |
| } |
| |
| if (TemplateArgs || TemplateKWLoc.isValid()) { |
| |
| // In C++1y, if this is a variable template id, then check it |
| // in BuildTemplateIdExpr(). |
| // The single lookup result must be a variable template declaration. |
| if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId && |
| Id.TemplateId->Kind == TNK_Var_template) { |
| assert(R.getAsSingle<VarTemplateDecl>() && |
| "There should only be one declaration found."); |
| } |
| |
| return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs); |
| } |
| |
| return BuildDeclarationNameExpr(SS, R, ADL); |
| } |
| |
| /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified |
| /// declaration name, generally during template instantiation. |
| /// There's a large number of things which don't need to be done along |
| /// this path. |
| ExprResult Sema::BuildQualifiedDeclarationNameExpr( |
| CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, |
| bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) { |
| DeclContext *DC = computeDeclContext(SS, false); |
| if (!DC) |
| return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), |
| NameInfo, /*TemplateArgs=*/nullptr); |
| |
| if (RequireCompleteDeclContext(SS, DC)) |
| return ExprError(); |
| |
| LookupResult R(*this, NameInfo, LookupOrdinaryName); |
| LookupQualifiedName(R, DC); |
| |
| if (R.isAmbiguous()) |
| return ExprError(); |
| |
| if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) |
| return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), |
| NameInfo, /*TemplateArgs=*/nullptr); |
| |
| if (R.empty()) { |
| // Don't diagnose problems with invalid record decl, the secondary no_member |
| // diagnostic during template instantiation is likely bogus, e.g. if a class |
| // is invalid because it's derived from an invalid base class, then missing |
| // members were likely supposed to be inherited. |
| if (const auto *CD = dyn_cast<CXXRecordDecl>(DC)) |
| if (CD->isInvalidDecl()) |
| return ExprError(); |
| Diag(NameInfo.getLoc(), diag::err_no_member) |
| << NameInfo.getName() << DC << SS.getRange(); |
| return ExprError(); |
| } |
| |
| if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) { |
| // Diagnose a missing typename if this resolved unambiguously to a type in |
| // a dependent context. If we can recover with a type, downgrade this to |
| // a warning in Microsoft compatibility mode. |
| unsigned DiagID = diag::err_typename_missing; |
| if (RecoveryTSI && getLangOpts().MSVCCompat) |
| DiagID = diag::ext_typename_missing; |
| SourceLocation Loc = SS.getBeginLoc(); |
| auto D = Diag(Loc, DiagID); |
| D << SS.getScopeRep() << NameInfo.getName().getAsString() |
| << SourceRange(Loc, NameInfo.getEndLoc()); |
| |
| // Don't recover if the caller isn't expecting us to or if we're in a SFINAE |
| // context. |
| if (!RecoveryTSI) |
| return ExprError(); |
| |
| // Only issue the fixit if we're prepared to recover. |
| D << FixItHint::CreateInsertion(Loc, "typename "); |
| |
| // Recover by pretending this was an elaborated type. |
| QualType Ty = Context.getTypeDeclType(TD); |
| TypeLocBuilder TLB; |
| TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc()); |
| |
| QualType ET = getElaboratedType(ETK_None, SS, Ty); |
| ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET); |
| QTL.setElaboratedKeywordLoc(SourceLocation()); |
| QTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
| |
| *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET); |
| |
| return ExprEmpty(); |
| } |
| |
| // Defend against this resolving to an implicit member access. We usually |
| // won't get here if this might be a legitimate a class member (we end up in |
| // BuildMemberReferenceExpr instead), but this can be valid if we're forming |
| // a pointer-to-member or in an unevaluated context in C++11. |
| if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand) |
| return BuildPossibleImplicitMemberExpr(SS, |
| /*TemplateKWLoc=*/SourceLocation(), |
| R, /*TemplateArgs=*/nullptr, S); |
| |
| return BuildDeclarationNameExpr(SS, R, /* ADL */ false); |
| } |
| |
| /// The parser has read a name in, and Sema has detected that we're currently |
| /// inside an ObjC method. Perform some additional checks and determine if we |
| /// should form a reference to an ivar. |
| /// |
| /// Ideally, most of this would be done by lookup, but there's |
| /// actually quite a lot of extra work involved. |
| DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S, |
| IdentifierInfo *II) { |
| SourceLocation Loc = Lookup.getNameLoc(); |
| ObjCMethodDecl *CurMethod = getCurMethodDecl(); |
| |
| // Check for error condition which is already reported. |
| if (!CurMethod) |
| return DeclResult(true); |
| |
| // There are two cases to handle here. 1) scoped lookup could have failed, |
| // in which case we should look for an ivar. 2) scoped lookup could have |
| // found a decl, but that decl is outside the current instance method (i.e. |
| // a global variable). In these two cases, we do a lookup for an ivar with |
| // this name, if the lookup sucedes, we replace it our current decl. |
| |
| // If we're in a class method, we don't normally want to look for |
| // ivars. But if we don't find anything else, and there's an |
| // ivar, that's an error. |
| bool IsClassMethod = CurMethod->isClassMethod(); |
| |
| bool LookForIvars; |
| if (Lookup.empty()) |
| LookForIvars = true; |
| else if (IsClassMethod) |
| LookForIvars = false; |
| else |
| LookForIvars = (Lookup.isSingleResult() && |
| Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()); |
| ObjCInterfaceDecl *IFace = nullptr; |
| if (LookForIvars) { |
| IFace = CurMethod->getClassInterface(); |
| ObjCInterfaceDecl *ClassDeclared; |
| ObjCIvarDecl *IV = nullptr; |
| if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) { |
| // Diagnose using an ivar in a class method. |
| if (IsClassMethod) { |
| Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName(); |
| return DeclResult(true); |
| } |
| |
| // Diagnose the use of an ivar outside of the declaring class. |
| if (IV->getAccessControl() == ObjCIvarDecl::Private && |
| !declaresSameEntity(ClassDeclared, IFace) && |
| !getLangOpts().DebuggerSupport) |
| Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName(); |
| |
| // Success. |
| return IV; |
| } |
| } else if (CurMethod->isInstanceMethod()) { |
| // We should warn if a local variable hides an ivar. |
| if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) { |
| ObjCInterfaceDecl *ClassDeclared; |
| if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { |
| if (IV->getAccessControl() != ObjCIvarDecl::Private || |
| declaresSameEntity(IFace, ClassDeclared)) |
| Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName(); |
| } |
| } |
| } else if (Lookup.isSingleResult() && |
| Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) { |
| // If accessing a stand-alone ivar in a class method, this is an error. |
| if (const ObjCIvarDecl *IV = |
| dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) { |
| Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName(); |
| return DeclResult(true); |
| } |
| } |
| |
| // Didn't encounter an error, didn't find an ivar. |
| return DeclResult(false); |
| } |
| |
| ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc, |
| ObjCIvarDecl *IV) { |
| ObjCMethodDecl *CurMethod = getCurMethodDecl(); |
| assert(CurMethod && CurMethod->isInstanceMethod() && |
| "should not reference ivar from this context"); |
| |
| ObjCInterfaceDecl *IFace = CurMethod->getClassInterface(); |
| assert(IFace && "should not reference ivar from this context"); |
| |
| // If we're referencing an invalid decl, just return this as a silent |
| // error node. The error diagnostic was already emitted on the decl. |
| if (IV->isInvalidDecl()) |
| return ExprError(); |
| |
| // Check if referencing a field with __attribute__((deprecated)). |
| if (DiagnoseUseOfDecl(IV, Loc)) |
| return ExprError(); |
| |
| // FIXME: This should use a new expr for a direct reference, don't |
| // turn this into Self->ivar, just return a BareIVarExpr or something. |
| IdentifierInfo &II = Context.Idents.get("self"); |
| UnqualifiedId SelfName; |
| SelfName.setImplicitSelfParam(&II); |
| CXXScopeSpec SelfScopeSpec; |
| SourceLocation TemplateKWLoc; |
| ExprResult SelfExpr = |
| ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName, |
| /*HasTrailingLParen=*/false, |
| /*IsAddressOfOperand=*/false); |
| if (SelfExpr.isInvalid()) |
| return ExprError(); |
| |
| SelfExpr = DefaultLvalueConversion(SelfExpr.get()); |
| if (SelfExpr.isInvalid()) |
| return ExprError(); |
| |
| MarkAnyDeclReferenced(Loc, IV, true); |
| |
| ObjCMethodFamily MF = CurMethod->getMethodFamily(); |
| if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize && |
| !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV)) |
| Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName(); |
| |
| ObjCIvarRefExpr *Result = new (Context) |
| ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc, |
| IV->getLocation(), SelfExpr.get(), true, true); |
| |
| if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { |
| if (!isUnevaluatedContext() && |
| !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) |
| getCurFunction()->recordUseOfWeak(Result); |
| } |
| if (getLangOpts().ObjCAutoRefCount) |
| if (const BlockDecl *BD = CurContext->getInnermostBlockDecl()) |
| ImplicitlyRetainedSelfLocs.push_back({Loc, BD}); |
| |
| return Result; |
| } |
| |
| /// The parser has read a name in, and Sema has detected that we're currently |
| /// inside an ObjC method. Perform some additional checks and determine if we |
| /// should form a reference to an ivar. If so, build an expression referencing |
| /// that ivar. |
| ExprResult |
| Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S, |
| IdentifierInfo *II, bool AllowBuiltinCreation) { |
| // FIXME: Integrate this lookup step into LookupParsedName. |
| DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II); |
| if (Ivar.isInvalid()) |
| return ExprError(); |
| if (Ivar.isUsable()) |
| return BuildIvarRefExpr(S, Lookup.getNameLoc(), |
| cast<ObjCIvarDecl>(Ivar.get())); |
| |
| if (Lookup.empty() && II && AllowBuiltinCreation) |
| LookupBuiltin(Lookup); |
| |
| // Sentinel value saying that we didn't do anything special. |
| return ExprResult(false); |
| } |
| |
| /// Cast a base object to a member's actual type. |
| /// |
| /// There are two relevant checks: |
| /// |
| /// C++ [class.access.base]p7: |
| /// |
| /// If a class member access operator [...] is used to access a non-static |
| /// data member or non-static member function, the reference is ill-formed if |
| /// the left operand [...] cannot be implicitly converted to a pointer to the |
| /// naming class of the right operand. |
| /// |
| /// C++ [expr.ref]p7: |
| /// |
| /// If E2 is a non-static data member or a non-static member function, the |
| /// program is ill-formed if the class of which E2 is directly a member is an |
| /// ambiguous base (11.8) of the naming class (11.9.3) of E2. |
| /// |
| /// Note that the latter check does not consider access; the access of the |
| /// "real" base class is checked as appropriate when checking the access of the |
| /// member name. |
| ExprResult |
| Sema::PerformObjectMemberConversion(Expr *From, |
| NestedNameSpecifier *Qualifier, |
| NamedDecl *FoundDecl, |
| NamedDecl *Member) { |
| CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext()); |
| if (!RD) |
| return From; |
| |
| QualType DestRecordType; |
| QualType DestType; |
| QualType FromRecordType; |
| QualType FromType = From->getType(); |
| bool PointerConversions = false; |
| if (isa<FieldDecl>(Member)) { |
| DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD)); |
| auto FromPtrType = FromType->getAs<PointerType>(); |
| DestRecordType = Context.getAddrSpaceQualType( |
| DestRecordType, FromPtrType |
| ? FromType->getPointeeType().getAddressSpace() |
| : FromType.getAddressSpace()); |
| |
| if (FromPtrType) { |
| DestType = Context.getPointerType(DestRecordType); |
| FromRecordType = FromPtrType->getPointeeType(); |
| PointerConversions = true; |
| } else { |
| DestType = DestRecordType; |
| FromRecordType = FromType; |
| } |
| } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) { |
| if (Method->isStatic()) |
| return From; |
| |
| DestType = Method->getThisType(); |
| DestRecordType = DestType->getPointeeType(); |
| |
| if (FromType->getAs<PointerType>()) { |
| FromRecordType = FromType->getPointeeType(); |
| PointerConversions = true; |
| } else { |
| FromRecordType = FromType; |
| DestType = DestRecordType; |
| } |
| |
| LangAS FromAS = FromRecordType.getAddressSpace(); |
| LangAS DestAS = DestRecordType.getAddressSpace(); |
| if (FromAS != DestAS) { |
| QualType FromRecordTypeWithoutAS = |
| Context.removeAddrSpaceQualType(FromRecordType); |
| QualType FromTypeWithDestAS = |
| Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS); |
| if (PointerConversions) |
| FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS); |
| From = ImpCastExprToType(From, FromTypeWithDestAS, |
| CK_AddressSpaceConversion, From->getValueKind()) |
| .get(); |
| } |
| } else { |
| // No conversion necessary. |
| return From; |
| } |
| |
| if (DestType->isDependentType() || FromType->isDependentType()) |
| return From; |
| |
| // If the unqualified types are the same, no conversion is necessary. |
| if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) |
| return From; |
| |
| SourceRange FromRange = From->getSourceRange(); |
| SourceLocation FromLoc = FromRange.getBegin(); |
| |
| ExprValueKind VK = From->getValueKind(); |
| |
| // C++ [class.member.lookup]p8: |
| // [...] Ambiguities can often be resolved by qualifying a name with its |
| // class name. |
| // |
| // If the member was a qualified name and the qualified referred to a |
| // specific base subobject type, we'll cast to that intermediate type |
| // first and then to the object in which the member is declared. That allows |
| // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as: |
| // |
| // class Base { public: int x; }; |
| // class Derived1 : public Base { }; |
| // class Derived2 : public Base { }; |
| // class VeryDerived : public Derived1, public Derived2 { void f(); }; |
| // |
| // void VeryDerived::f() { |
| // x = 17; // error: ambiguous base subobjects |
| // Derived1::x = 17; // okay, pick the Base subobject of Derived1 |
| // } |
| if (Qualifier && Qualifier->getAsType()) { |
| QualType QType = QualType(Qualifier->getAsType(), 0); |
| assert(QType->isRecordType() && "lookup done with non-record type"); |
| |
| QualType QRecordType = QualType(QType->getAs<RecordType>(), 0); |
| |
| // In C++98, the qualifier type doesn't actually have to be a base |
| // type of the object type, in which case we just ignore it. |
| // Otherwise build the appropriate casts. |
| if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) { |
| CXXCastPath BasePath; |
| if (CheckDerivedToBaseConversion(FromRecordType, QRecordType, |
| FromLoc, FromRange, &BasePath)) |
| return ExprError(); |
| |
| if (PointerConversions) |
| QType = Context.getPointerType(QType); |
| From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase, |
| VK, &BasePath).get(); |
| |
| FromType = QType; |
| FromRecordType = QRecordType; |
| |
| // If the qualifier type was the same as the destination type, |
| // we're done. |
| if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) |
| return From; |
| } |
| } |
| |
| CXXCastPath BasePath; |
| if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType, |
| FromLoc, FromRange, &BasePath, |
| /*IgnoreAccess=*/true)) |
| return ExprError(); |
| |
| return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase, |
| VK, &BasePath); |
| } |
| |
| bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS, |
| const LookupResult &R, |
| bool HasTrailingLParen) { |
| // Only when used directly as the postfix-expression of a call. |
| if (!HasTrailingLParen) |
| return false; |
| |
| // Never if a scope specifier was provided. |
| if (SS.isSet()) |
| return false; |
| |
| // Only in C++ or ObjC++. |
| if (!getLangOpts().CPlusPlus) |
| return false; |
| |
| // Turn off ADL when we find certain kinds of declarations during |
| // normal lookup: |
| for (NamedDecl *D : R) { |
| // C++0x [basic.lookup.argdep]p3: |
| // -- a declaration of a class member |
| // Since using decls preserve this property, we check this on the |
| // original decl. |
| if (D->isCXXClassMember()) |
| return false; |
| |
| // C++0x [basic.lookup.argdep]p3: |
| // -- a block-scope function declaration that is not a |
| // using-declaration |
| // NOTE: we also trigger this for function templates (in fact, we |
| // don't check the decl type at all, since all other decl types |
| // turn off ADL anyway). |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| else if (D->getLexicalDeclContext()->isFunctionOrMethod()) |
| return false; |
| |
| // C++0x [basic.lookup.argdep]p3: |
| // -- a declaration that is neither a function or a function |
| // template |
| // And also for builtin functions. |
| if (isa<FunctionDecl>(D)) { |
| FunctionDecl *FDecl = cast<FunctionDecl>(D); |
| |
| // But also builtin functions. |
| if (FDecl->getBuiltinID() && FDecl->isImplicit()) |
| return false; |
| } else if (!isa<FunctionTemplateDecl>(D)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| /// Diagnoses obvious problems with the use of the given declaration |
| /// as an expression. This is only actually called for lookups that |
| /// were not overloaded, and it doesn't promise that the declaration |
| /// will in fact be used. |
| static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) { |
| if (D->isInvalidDecl()) |
| return true; |
| |
| if (isa<TypedefNameDecl>(D)) { |
| S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName(); |
| return true; |
| } |
| |
| if (isa<ObjCInterfaceDecl>(D)) { |
| S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName(); |
| return true; |
| } |
| |
| if (isa<NamespaceDecl>(D)) { |
| S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Certain multiversion types should be treated as overloaded even when there is |
| // only one result. |
| static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) { |
| assert(R.isSingleResult() && "Expected only a single result"); |
| const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); |
| return FD && |
| (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()); |
| } |
| |
| ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, |
| LookupResult &R, bool NeedsADL, |
| bool AcceptInvalidDecl) { |
| // If this is a single, fully-resolved result and we don't need ADL, |
| // just build an ordinary singleton decl ref. |
| if (!NeedsADL && R.isSingleResult() && |
| !R.getAsSingle<FunctionTemplateDecl>() && |
| !ShouldLookupResultBeMultiVersionOverload(R)) |
| return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(), |
| R.getRepresentativeDecl(), nullptr, |
| AcceptInvalidDecl); |
| |
| // We only need to check the declaration if there's exactly one |
| // result, because in the overloaded case the results can only be |
| // functions and function templates. |
| if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) && |
| CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl())) |
| return ExprError(); |
| |
| // Otherwise, just build an unresolved lookup expression. Suppress |
| // any lookup-related diagnostics; we'll hash these out later, when |
| // we've picked a target. |
| R.suppressDiagnostics(); |
| |
| UnresolvedLookupExpr *ULE |
| = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), |
| SS.getWithLocInContext(Context), |
| R.getLookupNameInfo(), |
| NeedsADL, R.isOverloadedResult(), |
| R.begin(), R.end()); |
| |
| return ULE; |
| } |
| |
| static void diagnoseUncapturableValueReference(Sema &S, SourceLocation loc, |
| ValueDecl *var); |
| |
| /// Complete semantic analysis for a reference to the given declaration. |
| ExprResult Sema::BuildDeclarationNameExpr( |
| const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D, |
| NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs, |
| bool AcceptInvalidDecl) { |
| assert(D && "Cannot refer to a NULL declaration"); |
| assert(!isa<FunctionTemplateDecl>(D) && |
| "Cannot refer unambiguously to a function template"); |
| |
| SourceLocation Loc = NameInfo.getLoc(); |
| if (CheckDeclInExpr(*this, Loc, D)) |
| return ExprError(); |
| |
| if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) { |
| // Specifically diagnose references to class templates that are missing |
| // a template argument list. |
| diagnoseMissingTemplateArguments(TemplateName(Template), Loc); |
| return ExprError(); |
| } |
| |
| // Make sure that we're referring to a value. |
| if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) { |
| Diag(Loc, diag::err_ref_non_value) << D << SS.getRange(); |
| Diag(D->getLocation(), diag::note_declared_at); |
| return ExprError(); |
| } |
| |
| // Check whether this declaration can be used. Note that we suppress |
| // this check when we're going to perform argument-dependent lookup |
| // on this function name, because this might not be the function |
| // that overload resolution actually selects. |
| if (DiagnoseUseOfDecl(D, Loc)) |
| return ExprError(); |
| |
| auto *VD = cast<ValueDecl>(D); |
| |
| // Only create DeclRefExpr's for valid Decl's. |
| if (VD->isInvalidDecl() && !AcceptInvalidDecl) |
| return ExprError(); |
| |
| // Handle members of anonymous structs and unions. If we got here, |
| // and the reference is to a class member indirect field, then this |
| // must be the subject of a pointer-to-member expression. |
| if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD)) |
| if (!indirectField->isCXXClassMember()) |
| return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(), |
| indirectField); |
| |
| QualType type = VD->getType(); |
| if (type.isNull()) |
| return ExprError(); |
| ExprValueKind valueKind = VK_PRValue; |
| |
| // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of |
| // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value, |
| // is expanded by some outer '...' in the context of the use. |
| type = type.getNonPackExpansionType(); |
| |
| switch (D->getKind()) { |
| // Ignore all the non-ValueDecl kinds. |
| #define ABSTRACT_DECL(kind) |
| #define VALUE(type, base) |
| #define DECL(type, base) case Decl::type: |
| #include "clang/AST/DeclNodes.inc" |
| llvm_unreachable("invalid value decl kind"); |
| |
| // These shouldn't make it here. |
| case Decl::ObjCAtDefsField: |
| llvm_unreachable("forming non-member reference to ivar?"); |
| |
| // Enum constants are always r-values and never references. |
| // Unresolved using declarations are dependent. |
| case Decl::EnumConstant: |
| case Decl::UnresolvedUsingValue: |
| case Decl::OMPDeclareReduction: |
| case Decl::OMPDeclareMapper: |
| valueKind = VK_PRValue; |
| break; |
| |
| // Fields and indirect fields that got here must be for |
| // pointer-to-member expressions; we just call them l-values for |
| // internal consistency, because this subexpression doesn't really |
| // exist in the high-level semantics. |
| case Decl::Field: |
| case Decl::IndirectField: |
| case Decl::ObjCIvar: |
| assert(getLangOpts().CPlusPlus && "building reference to field in C?"); |
| |
| // These can't have reference type in well-formed programs, but |
| // for internal consistency we do this anyway. |
| type = type.getNonReferenceType(); |
| valueKind = VK_LValue; |
| break; |
| |
| // Non-type template parameters are either l-values or r-values |
| // depending on the type. |
| case Decl::NonTypeTemplateParm: { |
| if (const ReferenceType *reftype = type->getAs<ReferenceType>()) { |
| type = reftype->getPointeeType(); |
| valueKind = VK_LValue; // even if the parameter is an r-value reference |
| break; |
| } |
| |
| // [expr.prim.id.unqual]p2: |
| // If the entity is a template parameter object for a template |
| // parameter of type T, the type of the expression is const T. |
| // [...] The expression is an lvalue if the entity is a [...] template |
| // parameter object. |
| if (type->isRecordType()) { |
| type = type.getUnqualifiedType().withConst(); |
| valueKind = VK_LValue; |
| break; |
| } |
| |
| // For non-references, we need to strip qualifiers just in case |
| // the template parameter was declared as 'const int' or whatever. |
| valueKind = VK_PRValue; |
| type = type.getUnqualifiedType(); |
| break; |
| } |
| |
| case Decl::Var: |
| case Decl::VarTemplateSpecialization: |
| case Decl::VarTemplatePartialSpecialization: |
| case Decl::Decomposition: |
| case Decl::OMPCapturedExpr: |
| // In C, "extern void blah;" is valid and is an r-value. |
| if (!getLangOpts().CPlusPlus && !type.hasQualifiers() && |
| type->isVoidType()) { |
| valueKind = VK_PRValue; |
| break; |
| } |
| LLVM_FALLTHROUGH; |
| |
| case Decl::ImplicitParam: |
| case Decl::ParmVar: { |
| // These are always l-values. |
| valueKind = VK_LValue; |
| type = type.getNonReferenceType(); |
| |
| // FIXME: Does the addition of const really only apply in |
| // potentially-evaluated contexts? Since the variable isn't actually |
| // captured in an unevaluated context, it seems that the answer is no. |
| if (!isUnevaluatedContext()) { |
| QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc); |
| if (!CapturedType.isNull()) |
| type = CapturedType; |
| } |
| |
| break; |
| } |
| |
| case Decl::Binding: { |
| // These are always lvalues. |
| valueKind = VK_LValue; |
| type = type.getNonReferenceType(); |
| // FIXME: Support lambda-capture of BindingDecls, once CWG actually |
| // decides how that's supposed to work. |
| auto *BD = cast<BindingDecl>(VD); |
| if (BD->getDeclContext() != CurContext) { |
| auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl()); |
| if (DD && DD->hasLocalStorage()) |
| diagnoseUncapturableValueReference(*this, Loc, BD); |
| } |
| break; |
| } |
| |
| case Decl::Function: { |
| if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) { |
| if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) { |
| type = Context.BuiltinFnTy; |
| valueKind = VK_PRValue; |
| break; |
| } |
| } |
| |
| const FunctionType *fty = type->castAs<FunctionType>(); |
| |
| // If we're referring to a function with an __unknown_anytype |
| // result type, make the entire expression __unknown_anytype. |
| if (fty->getReturnType() == Context.UnknownAnyTy) { |
| type = Context.UnknownAnyTy; |
| valueKind = VK_PRValue; |
| break; |
| } |
| |
| // Functions are l-values in C++. |
| if (getLangOpts().CPlusPlus) { |
| valueKind = VK_LValue; |
| break; |
| } |
| |
| // C99 DR 316 says that, if a function type comes from a |
| // function definition (without a prototype), that type is only |
| // used for checking compatibility. Therefore, when referencing |
| // the function, we pretend that we don't have the full function |
| // type. |
| if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty)) |
| type = Context.getFunctionNoProtoType(fty->getReturnType(), |
| fty->getExtInfo()); |
| |
| // Functions are r-values in C. |
| valueKind = VK_PRValue; |
| break; |
| } |
| |
| case Decl::CXXDeductionGuide: |
| llvm_unreachable("building reference to deduction guide"); |
| |
| case Decl::MSProperty: |
| case Decl::MSGuid: |
| case Decl::TemplateParamObject: |
| // FIXME: Should MSGuidDecl and template parameter objects be subject to |
| // capture in OpenMP, or duplicated between host and device? |
| valueKind = VK_LValue; |
| break; |
| |
| case Decl::CXXMethod: |
| // If we're referring to a method with an __unknown_anytype |
| // result type, make the entire expression __unknown_anytype. |
| // This should only be possible with a type written directly. |
| if (const FunctionProtoType *proto = |
| dyn_cast<FunctionProtoType>(VD->getType())) |
| if (proto->getReturnType() == Context.UnknownAnyTy) { |
| type = Context.UnknownAnyTy; |
| valueKind = VK_PRValue; |
| break; |
| } |
| |
| // C++ methods are l-values if static, r-values if non-static. |
| if (cast<CXXMethodDecl>(VD)->isStatic()) { |
| valueKind = VK_LValue; |
| break; |
| } |
| LLVM_FALLTHROUGH; |
| |
| case Decl::CXXConversion: |
| case Decl::CXXDestructor: |
| case Decl::CXXConstructor: |
| valueKind = VK_PRValue; |
| break; |
| } |
| |
| return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD, |
| /*FIXME: TemplateKWLoc*/ SourceLocation(), |
| TemplateArgs); |
| } |
| |
| static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, |
| SmallString<32> &Target) { |
| Target.resize(CharByteWidth * (Source.size() + 1)); |
| char *ResultPtr = &Target[0]; |
| const llvm::UTF8 *ErrorPtr; |
| bool success = |
| llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); |
| (void)success; |
| assert(success); |
| Target.resize(ResultPtr - &Target[0]); |
| } |
| |
| ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc, |
| PredefinedExpr::IdentKind IK) { |
| // Pick the current block, lambda, captured statement or function. |
| Decl *currentDecl = nullptr; |
| if (const BlockScopeInfo *BSI = getCurBlock()) |
| currentDecl = BSI->TheDecl; |
| else if (const LambdaScopeInfo *LSI = getCurLambda()) |
| currentDecl = LSI->CallOperator; |
| else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion()) |
| currentDecl = CSI->TheCapturedDecl; |
| else |
| currentDecl = getCurFunctionOrMethodDecl(); |
| |
| if (!currentDecl) { |
| Diag(Loc, diag::ext_predef_outside_function); |
| currentDecl = Context.getTranslationUnitDecl(); |
| } |
| |
| QualType ResTy; |
| StringLiteral *SL = nullptr; |
| if (cast<DeclContext>(currentDecl)->isDependentContext()) |
| ResTy = Context.DependentTy; |
| else { |
| // Pre-defined identifiers are of type char[x], where x is the length of |
| // the string. |
| auto Str = PredefinedExpr::ComputeName(IK, currentDecl); |
| unsigned Length = Str.length(); |
| |
| llvm::APInt LengthI(32, Length + 1); |
| if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) { |
| ResTy = |
| Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst()); |
| SmallString<32> RawChars; |
| ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(), |
| Str, RawChars); |
| ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr, |
| ArrayType::Normal, |
| /*IndexTypeQuals*/ 0); |
| SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide, |
| /*Pascal*/ false, ResTy, Loc); |
| } else { |
| ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst()); |
| ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr, |
| ArrayType::Normal, |
| /*IndexTypeQuals*/ 0); |
| SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii, |
| /*Pascal*/ false, ResTy, Loc); |
| } |
| } |
| |
| return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL); |
| } |
| |
| ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc, |
| SourceLocation LParen, |
| SourceLocation RParen, |
| TypeSourceInfo *TSI) { |
| return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI); |
| } |
| |
| ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc, |
| SourceLocation LParen, |
| SourceLocation RParen, |
| ParsedType ParsedTy) { |
| TypeSourceInfo *TSI = nullptr; |
| QualType Ty = GetTypeFromParser(ParsedTy, &TSI); |
| |
| if (Ty.isNull()) |
| return ExprError(); |
| if (!TSI) |
| TSI = Context.getTrivialTypeSourceInfo(Ty, LParen); |
| |
| return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI); |
| } |
| |
| ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) { |
| PredefinedExpr::IdentKind IK; |
| |
| switch (Kind) { |
| default: llvm_unreachable("Unknown simple primary expr!"); |
| case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2] |
| case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break; |
| case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS] |
| case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS] |
| case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS] |
| case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS] |
| case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break; |
| } |
| |
| return BuildPredefinedExpr(Loc, IK); |
| } |
| |
| ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) { |
| SmallString<16> CharBuffer; |
| bool Invalid = false; |
| StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid); |
| if (Invalid) |
| return ExprError(); |
| |
| CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(), |
| PP, Tok.getKind()); |
| if (Literal.hadError()) |
| return ExprError(); |
| |
| QualType Ty; |
| if (Literal.isWide()) |
| Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++. |
| else if (Literal.isUTF8() && getLangOpts().Char8) |
| Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists. |
| else if (Literal.isUTF16()) |
| Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11. |
| else if (Literal.isUTF32()) |
| Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11. |
| else if (!getLangOpts().CPlusPlus || Literal.isMultiChar()) |
| Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++. |
| else |
| Ty = Context.CharTy; // 'x' -> char in C++ |
| |
| CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii; |
| if (Literal.isWide()) |
| Kind = CharacterLiteral::Wide; |
| else if (Literal.isUTF16()) |
| Kind = CharacterLiteral::UTF16; |
| else if (Literal.isUTF32()) |
| Kind = CharacterLiteral::UTF32; |
| else if (Literal.isUTF8()) |
| Kind = CharacterLiteral::UTF8; |
| |
| Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty, |
| Tok.getLocation()); |
| |
| if (Literal.getUDSuffix().empty()) |
| return Lit; |
| |
| // We're building a user-defined literal. |
| IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); |
| SourceLocation UDSuffixLoc = |
| getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset()); |
| |
| // Make sure we're allowed user-defined literals here. |
| if (!UDLScope) |
| return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl)); |
| |
| // C++11 [lex.ext]p6: The literal L is treated as a call of the form |
| // operator "" X (ch) |
| return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc, |
| Lit, Tok.getLocation()); |
| } |
| |
| ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) { |
| unsigned IntSize = Context.getTargetInfo().getIntWidth(); |
| return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val), |
| Context.IntTy, Loc); |
| } |
| |
| static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal, |
| QualType Ty, SourceLocation Loc) { |
| const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty); |
| |
| using llvm::APFloat; |
| APFloat Val(Format); |
| |
| APFloat::opStatus result = Literal.GetFloatValue(Val); |
| |
| // Overflow is always an error, but underflow is only an error if |
| // we underflowed to zero (APFloat reports denormals as underflow). |
| if ((result & APFloat::opOverflow) || |
| ((result & APFloat::opUnderflow) && Val.isZero())) { |
| unsigned diagnostic; |
| SmallString<20> buffer; |
| if (result & APFloat::opOverflow) { |
| diagnostic = diag::warn_float_overflow; |
| APFloat::getLargest(Format).toString(buffer); |
| } else { |
| diagnostic = diag::warn_float_underflow; |
| APFloat::getSmallest(Format).toString(buffer); |
| } |
| |
| S.Diag(Loc, diagnostic) |
| << Ty |
| << StringRef(buffer.data(), buffer.size()); |
| } |
| |
| bool isExact = (result == APFloat::opOK); |
| return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc); |
| } |
| |
| bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) { |
| assert(E && "Invalid expression"); |
| |
| if (E->isValueDependent()) |
| return false; |
| |
| QualType QT = E->getType(); |
| if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) { |
| Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT; |
| return true; |
| } |
| |
| llvm::APSInt ValueAPS; |
| ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS); |
| |
| if (R.isInvalid()) |
| return true; |
| |
| bool ValueIsPositive = ValueAPS.isStrictlyPositive(); |
| if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) { |
| Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value) |
| << toString(ValueAPS, 10) << ValueIsPositive; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) { |
| // Fast path for a single digit (which is quite common). A single digit |
| // cannot have a trigraph, escaped newline, radix prefix, or suffix. |
| if (Tok.getLength() == 1) { |
| const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok); |
| return ActOnIntegerConstant(Tok.getLocation(), Val-'0'); |
| } |
| |
| SmallString<128> SpellingBuffer; |
| // NumericLiteralParser wants to overread by one character. Add padding to |
| // the buffer in case the token is copied to the buffer. If getSpelling() |
| // returns a StringRef to the memory buffer, it should have a null char at |
| // the EOF, so it is also safe. |
| SpellingBuffer.resize(Tok.getLength() + 1); |
| |
| // Get the spelling of the token, which eliminates trigraphs, etc. |
| bool Invalid = false; |
| StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid); |
| if (Invalid) |
| return ExprError(); |
| |
| NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), |
| PP.getSourceManager(), PP.getLangOpts(), |
| PP.getTargetInfo(), PP.getDiagnostics()); |
| if (Literal.hadError) |
| return ExprError(); |
| |
| if (Literal.hasUDSuffix()) { |
| // We're building a user-defined literal. |
| IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); |
| SourceLocation UDSuffixLoc = |
| getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset()); |
| |
| // Make sure we're allowed user-defined literals here. |
| if (!UDLScope) |
| return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl)); |
| |
| QualType CookedTy; |
| if (Literal.isFloatingLiteral()) { |
| // C++11 [lex.ext]p4: If S contains a literal operator with parameter type |
| // long double, the literal is treated as a call of the form |
| // operator "" X (f L) |
| CookedTy = Context.LongDoubleTy; |
| } else { |
| // C++11 [lex.ext]p3: If S contains a literal operator with parameter type |
| // unsigned long long, the literal is treated as a call of the form |
| // operator "" X (n ULL) |
| CookedTy = Context.UnsignedLongLongTy; |
| } |
| |
| DeclarationName OpName = |
| Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); |
| DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); |
| OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); |
| |
| SourceLocation TokLoc = Tok.getLocation(); |
| |
| // Perform literal operator lookup to determine if we're building a raw |
| // literal or a cooked one. |
| LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName); |
| switch (LookupLiteralOperator(UDLScope, R, CookedTy, |
| /*AllowRaw*/ true, /*AllowTemplate*/ true, |
| /*AllowStringTemplatePack*/ false, |
| /*DiagnoseMissing*/ !Literal.isImaginary)) { |
| case LOLR_ErrorNoDiagnostic: |
| // Lookup failure for imaginary constants isn't fatal, there's still the |
| // GNU extension producing _Complex types. |
| break; |
| case LOLR_Error: |
| return ExprError(); |
| case LOLR_Cooked: { |
| Expr *Lit; |
| if (Literal.isFloatingLiteral()) { |
| Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation()); |
| } else { |
| llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0); |
| if (Literal.GetIntegerValue(ResultVal)) |
| Diag(Tok.getLocation(), diag::err_integer_literal_too_large) |
| << /* Unsigned */ 1; |
| Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy, |
| Tok.getLocation()); |
| } |
| return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc); |
| } |
| |
| case LOLR_Raw: { |
| // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the |
| // literal is treated as a call of the form |
| // operator "" X ("n") |
| unsigned Length = Literal.getUDSuffixOffset(); |
| QualType StrTy = Context.getConstantArrayType( |
| Context.adjustStringLiteralBaseType(Context.CharTy.withConst()), |
| llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0); |
| Expr *Lit = StringLiteral::Create( |
| Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii, |
| /*Pascal*/false, StrTy, &TokLoc, 1); |
| return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc); |
| } |
| |
| case LOLR_Template: { |
| // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator |
| // template), L is treated as a call fo the form |
| // operator "" X <'c1', 'c2', ... 'ck'>() |
| // where n is the source character sequence c1 c2 ... ck. |
| TemplateArgumentListInfo ExplicitArgs; |
| unsigned CharBits = Context.getIntWidth(Context.CharTy); |
| bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType(); |
| llvm::APSInt Value(CharBits, CharIsUnsigned); |
| for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) { |
| Value = TokSpelling[I]; |
| TemplateArgument Arg(Context, Value, Context.CharTy); |
| TemplateArgumentLocInfo ArgInfo; |
| ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); |
| } |
| return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc, |
| &ExplicitArgs); |
| } |
| case LOLR_StringTemplatePack: |
| llvm_unreachable("unexpected literal operator lookup result"); |
| } |
| } |
| |
| Expr *Res; |
| |
| if (Literal.isFixedPointLiteral()) { |
| QualType Ty; |
| |
| if (Literal.isAccum) { |
| if (Literal.isHalf) { |
| Ty = Context.ShortAccumTy; |
| } else if (Literal.isLong) { |
| Ty = Context.LongAccumTy; |
| } else { |
| Ty = Context.AccumTy; |
| } |
| } else if (Literal.isFract) { |
| if (Literal.isHalf) { |
| Ty = Context.ShortFractTy; |
| } else if (Literal.isLong) { |
| Ty = Context.LongFractTy; |
| } else { |
| Ty = Context.FractTy; |
| } |
| } |
| |
| if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty); |
| |
| bool isSigned = !Literal.isUnsigned; |
| unsigned scale = Context.getFixedPointScale(Ty); |
| unsigned bit_width = Context.getTypeInfo(Ty).Width; |
| |
| llvm::APInt Val(bit_width, 0, isSigned); |
| bool Overflowed = Literal.GetFixedPointValue(Val, scale); |
| bool ValIsZero = Val.isZero() && !Overflowed; |
| |
| auto MaxVal = Context.getFixedPointMax(Ty).getValue(); |
| if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero) |
| // Clause 6.4.4 - The value of a constant shall be in the range of |
| // representable values for its type, with exception for constants of a |
| // fract type with a value of exactly 1; such a constant shall denote |
| // the maximal value for the type. |
| --Val; |
| else if (Val.ugt(MaxVal) || Overflowed) |
| Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point); |
| |
| Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty, |
| Tok.getLocation(), scale); |
| } else if (Literal.isFloatingLiteral()) { |
| QualType Ty; |
| if (Literal.isHalf){ |
| if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts())) |
| Ty = Context.HalfTy; |
| else { |
| Diag(Tok.getLocation(), diag::err_half_const_requires_fp16); |
| return ExprError(); |
| } |
| } else if (Literal.isFloat) |
| Ty = Context.FloatTy; |
| else if (Literal.isLong) |
| Ty = Context.LongDoubleTy; |
| else if (Literal.isFloat16) |
| Ty = Context.Float16Ty; |
| else if (Literal.isFloat128) |
| Ty = Context.Float128Ty; |
| else |
| Ty = Context.DoubleTy; |
| |
| Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation()); |
| |
| if (Ty == Context.DoubleTy) { |
| if (getLangOpts().SinglePrecisionConstants) { |
| if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) { |
| Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get(); |
| } |
| } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption( |
| "cl_khr_fp64", getLangOpts())) { |
| // Impose single-precision float type when cl_khr_fp64 is not enabled. |
| Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64) |
| << (getLangOpts().getOpenCLCompatibleVersion() >= 300); |
| Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get(); |
| } |
| } |
| } else if (!Literal.isIntegerLiteral()) { |
| return ExprError(); |
| } else { |
| QualType Ty; |
| |
| // 'long long' is a C99 or C++11 feature. |
| if (!getLangOpts().C99 && Literal.isLongLong) { |
| if (getLangOpts().CPlusPlus) |
| Diag(Tok.getLocation(), |
| getLangOpts().CPlusPlus11 ? |
| diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong); |
| else |
| Diag(Tok.getLocation(), diag::ext_c99_longlong); |
| } |
| |
| // 'z/uz' literals are a C++2b feature. |
| if (Literal.isSizeT) |
| Diag(Tok.getLocation(), getLangOpts().CPlusPlus |
| ? getLangOpts().CPlusPlus2b |
| ? diag::warn_cxx20_compat_size_t_suffix |
| : diag::ext_cxx2b_size_t_suffix |
| : diag::err_cxx2b_size_t_suffix); |
| |
| // Get the value in the widest-possible width. |
| unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth(); |
| llvm::APInt ResultVal(MaxWidth, 0); |
| |
| if (Literal.GetIntegerValue(ResultVal)) { |
| // If this value didn't fit into uintmax_t, error and force to ull. |
| Diag(Tok.getLocation(), diag::err_integer_literal_too_large) |
| << /* Unsigned */ 1; |
| Ty = Context.UnsignedLongLongTy; |
| assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() && |
| "long long is not intmax_t?"); |
| } else { |
| // If this value fits into a ULL, try to figure out what else it fits into |
| // according to the rules of C99 6.4.4.1p5. |
| |
| // Octal, Hexadecimal, and integers with a U suffix are allowed to |
| // be an unsigned int. |
| bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; |
| |
| // Check from smallest to largest, picking the smallest type we can. |
| unsigned Width = 0; |
| |
| // Microsoft specific integer suffixes are explicitly sized. |
| if (Literal.MicrosoftInteger) { |
| if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) { |
| Width = 8; |
| Ty = Context.CharTy; |
| } else { |
| Width = Literal.MicrosoftInteger; |
| Ty = Context.getIntTypeForBitwidth(Width, |
| /*Signed=*/!Literal.isUnsigned); |
| } |
| } |
| |
| // Check C++2b size_t literals. |
| if (Literal.isSizeT) { |
| assert(!Literal.MicrosoftInteger && |
| "size_t literals can't be Microsoft literals"); |
| unsigned SizeTSize = Context.getTargetInfo().getTypeWidth( |
| Context.getTargetInfo().getSizeType()); |
| |
| // Does it fit in size_t? |
| if (ResultVal.isIntN(SizeTSize)) { |
| // Does it fit in ssize_t? |
| if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0) |
| Ty = Context.getSignedSizeType(); |
| else if (AllowUnsigned) |
| Ty = Context.getSizeType(); |
| Width = SizeTSize; |
| } |
| } |
| |
| if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong && |
| !Literal.isSizeT) { |
| // Are int/unsigned possibilities? |
| unsigned IntSize = Context.getTargetInfo().getIntWidth(); |
| |
| // Does it fit in a unsigned int? |
| if (ResultVal.isIntN(IntSize)) { |
| // Does it fit in a signed int? |
| if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) |
| Ty = Context.IntTy; |
| else if (AllowUnsigned) |
| Ty = Context.UnsignedIntTy; |
| Width = IntSize; |
| } |
| } |
| |
| // Are long/unsigned long possibilities? |
| if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) { |
| unsigned LongSize = Context.getTargetInfo().getLongWidth(); |
| |
| // Does it fit in a unsigned long? |
| if (ResultVal.isIntN(LongSize)) { |
| // Does it fit in a signed long? |
| if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) |
| Ty = Context.LongTy; |
| else if (AllowUnsigned) |
| Ty = Context.UnsignedLongTy; |
| // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2 |
| // is compatible. |
| else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) { |
| const unsigned LongLongSize = |
| Context.getTargetInfo().getLongLongWidth(); |
| Diag(Tok.getLocation(), |
| getLangOpts().CPlusPlus |
| ? Literal.isLong |
| ? diag::warn_old_implicitly_unsigned_long_cxx |
| : /*C++98 UB*/ diag:: |
| ext_old_implicitly_unsigned_long_cxx |
| : diag::warn_old_implicitly_unsigned_long) |
| << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0 |
| : /*will be ill-formed*/ 1); |
| Ty = Context.UnsignedLongTy; |
| } |
| Width = LongSize; |
| } |
| } |
| |
| // Check long long if needed. |
| if (Ty.isNull() && !Literal.isSizeT) { |
| unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth(); |
| |
| // Does it fit in a unsigned long long? |
| if (ResultVal.isIntN(LongLongSize)) { |
| // Does it fit in a signed long long? |
| // To be compatible with MSVC, hex integer literals ending with the |
| // LL or i64 suffix are always signed in Microsoft mode. |
| if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 || |
| (getLangOpts().MSVCCompat && Literal.isLongLong))) |
| Ty = Context.LongLongTy; |
| else if (AllowUnsigned) |
| Ty = Context.UnsignedLongLongTy; |
| Width = LongLongSize; |
| } |
| } |
| |
| // If we still couldn't decide a type, we either have 'size_t' literal |
| // that is out of range, or a decimal literal that does not fit in a |
| // signed long long and has no U suffix. |
| if (Ty.isNull()) { |
| if (Literal.isSizeT) |
| Diag(Tok.getLocation(), diag::err_size_t_literal_too_large) |
| << Literal.isUnsigned; |
| else |
| Diag(Tok.getLocation(), |
| diag::ext_integer_literal_too_large_for_signed); |
| Ty = Context.UnsignedLongLongTy; |
| Width = Context.getTargetInfo().getLongLongWidth(); |
| } |
| |
| if (ResultVal.getBitWidth() != Width) |
| ResultVal = ResultVal.trunc(Width); |
| } |
| Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation()); |
| } |
| |
| // If this is an imaginary literal, create the ImaginaryLiteral wrapper. |
| if (Literal.isImaginary) { |
| Res = new (Context) ImaginaryLiteral(Res, |
| Context.getComplexType(Res->getType())); |
| |
| Diag(Tok.getLocation(), diag::ext_imaginary_constant); |
| } |
| return Res; |
| } |
| |
| ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) { |
| assert(E && "ActOnParenExpr() missing expr"); |
| QualType ExprTy = E->getType(); |
| if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() && |
| !E->isLValue() && ExprTy->hasFloatingRepresentation()) |
| return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E); |
| return new (Context) ParenExpr(L, R, E); |
| } |
| |
| static bool CheckVecStepTraitOperandType(Sema &S, QualType T, |
| SourceLocation Loc, |
| SourceRange ArgRange) { |
| // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in |
| // scalar or vector data type argument..." |
| // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic |
| // type (C99 6.2.5p18) or void. |
| if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) { |
| S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type) |
| << T << ArgRange; |
| return true; |
| } |
| |
| assert((T->isVoidType() || !T->isIncompleteType()) && |
| "Scalar types should always be complete"); |
| return false; |
| } |
| |
| static bool CheckExtensionTraitOperandType(Sema &S, QualType T, |
| SourceLocation Loc, |
| SourceRange ArgRange, |
| UnaryExprOrTypeTrait TraitKind) { |
| // Invalid types must be hard errors for SFINAE in C++. |
| if (S.LangOpts.CPlusPlus) |
| return true; |
| |
| // C99 6.5.3.4p1: |
| if (T->isFunctionType() && |
| (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf || |
| TraitKind == UETT_PreferredAlignOf)) { |
| // sizeof(function)/alignof(function) is allowed as an extension. |
| S.Diag(Loc, diag::ext_sizeof_alignof_function_type) |
| << getTraitSpelling(TraitKind) << ArgRange; |
| return false; |
| } |
| |
| // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where |
| // this is an error (OpenCL v1.1 s6.3.k) |
| if (T->isVoidType()) { |
| unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type |
| : diag::ext_sizeof_alignof_void_type; |
| S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T, |
| SourceLocation Loc, |
| SourceRange ArgRange, |
| UnaryExprOrTypeTrait TraitKind) { |
| // Reject sizeof(interface) and sizeof(interface<proto>) if the |
| // runtime doesn't allow it. |
| if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) { |
| S.Diag(Loc, diag::err_sizeof_nonfragile_interface) |
| << T << (TraitKind == UETT_SizeOf) |
| << ArgRange; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Check whether E is a pointer from a decayed array type (the decayed |
| /// pointer type is equal to T) and emit a warning if it is. |
| static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T, |
| Expr *E) { |
| // Don't warn if the operation changed the type. |
| if (T != E->getType()) |
| return; |
| |
| // Now look for array decays. |
| ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E); |
| if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay) |
| return; |
| |
| S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange() |
| << ICE->getType() |
| << ICE->getSubExpr()->getType(); |
| } |
| |
| /// Check the constraints on expression operands to unary type expression |
| /// and type traits. |
| /// |
| /// Completes any types necessary and validates the constraints on the operand |
| /// expression. The logic mostly mirrors the type-based overload, but may modify |
| /// the expression as it completes the type for that expression through template |
| /// instantiation, etc. |
| bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E, |
| UnaryExprOrTypeTrait ExprKind) { |
| QualType ExprTy = E->getType(); |
| assert(!ExprTy->isReferenceType()); |
| |
| bool IsUnevaluatedOperand = |
| (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf || |
| ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep); |
| if (IsUnevaluatedOperand) { |
| ExprResult Result = CheckUnevaluatedOperand(E); |
| if (Result.isInvalid()) |
| return true; |
| E = Result.get(); |
| } |
| |
| // The operand for sizeof and alignof is in an unevaluated expression context, |
| // so side effects could result in unintended consequences. |
| // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes |
| // used to build SFINAE gadgets. |
| // FIXME: Should we consider instantiation-dependent operands to 'alignof'? |
| if (IsUnevaluatedOperand && !inTemplateInstantiation() && |
| !E->isInstantiationDependent() && |
| E->HasSideEffects(Context, false)) |
| Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context); |
| |
| if (ExprKind == UETT_VecStep) |
| return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(), |
| E->getSourceRange()); |
| |
| // Explicitly list some types as extensions. |
| if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(), |
| E->getSourceRange(), ExprKind)) |
| return false; |
| |
| // 'alignof' applied to an expression only requires the base element type of |
| // the expression to be complete. 'sizeof' requires the expression's type to |
| // be complete (and will attempt to complete it if it's an array of unknown |
| // bound). |
| if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { |
| if (RequireCompleteSizedType( |
| E->getExprLoc(), Context.getBaseElementType(E->getType()), |
| diag::err_sizeof_alignof_incomplete_or_sizeless_type, |
| getTraitSpelling(ExprKind), E->getSourceRange())) |
| return true; |
| } else { |
| if (RequireCompleteSizedExprType( |
| E, diag::err_sizeof_alignof_incomplete_or_sizeless_type, |
| getTraitSpelling(ExprKind), E->getSourceRange())) |
| return true; |
| } |
| |
| // Completing the expression's type may have changed it. |
| ExprTy = E->getType(); |
| assert(!ExprTy->isReferenceType()); |
| |
| if (ExprTy->isFunctionType()) { |
| Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type) |
| << getTraitSpelling(ExprKind) << E->getSourceRange(); |
| return true; |
| } |
| |
| if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(), |
| E->getSourceRange(), ExprKind)) |
| return true; |
| |
| if (ExprKind == UETT_SizeOf) { |
| if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) { |
| if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) { |
| QualType OType = PVD->getOriginalType(); |
| QualType Type = PVD->getType(); |
| if (Type->isPointerType() && OType->isArrayType()) { |
| Diag(E->getExprLoc(), diag::warn_sizeof_array_param) |
| << Type << OType; |
| Diag(PVD->getLocation(), diag::note_declared_at); |
| } |
| } |
| } |
| |
| // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array |
| // decays into a pointer and returns an unintended result. This is most |
| // likely a typo for "sizeof(array) op x". |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) { |
| warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(), |
| BO->getLHS()); |
| warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(), |
| BO->getRHS()); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Check the constraints on operands to unary expression and type |
| /// traits. |
| /// |
| /// This will complete any types necessary, and validate the various constraints |
| /// on those operands. |
| /// |
| /// The UsualUnaryConversions() function is *not* called by this routine. |
| /// C99 6.3.2.1p[2-4] all state: |
| /// Except when it is the operand of the sizeof operator ... |
| /// |
| /// C++ [expr.sizeof]p4 |
| /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer |
| /// standard conversions are not applied to the operand of sizeof. |
| /// |
| /// This policy is followed for all of the unary trait expressions. |
| bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType, |
| SourceLocation OpLoc, |
| SourceRange ExprRange, |
| UnaryExprOrTypeTrait ExprKind) { |
| if (ExprType->isDependentType()) |
| return false; |
| |
| // C++ [expr.sizeof]p2: |
| // When applied to a reference or a reference type, the result |
| // is the size of the referenced type. |
| // C++11 [expr.alignof]p3: |
| // When alignof is applied to a reference type, the result |
| // shall be the alignment of the referenced type. |
| if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>()) |
| ExprType = Ref->getPointeeType(); |
| |
| // C11 6.5.3.4/3, C++11 [expr.alignof]p3: |
| // When alignof or _Alignof is applied to an array type, the result |
| // is the alignment of the element type. |
| if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf || |
| ExprKind == UETT_OpenMPRequiredSimdAlign) |
| ExprType = Context.getBaseElementType(ExprType); |
| |
| if (ExprKind == UETT_VecStep) |
| return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange); |
| |
| // Explicitly list some types as extensions. |
| if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange, |
| ExprKind)) |
| return false; |
| |
| if (RequireCompleteSizedType( |
| OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type, |
| getTraitSpelling(ExprKind), ExprRange)) |
| return true; |
| |
| if (ExprType->isFunctionType()) { |
| Diag(OpLoc, diag::err_sizeof_alignof_function_type) |
| << getTraitSpelling(ExprKind) << ExprRange; |
| return true; |
| } |
| |
| if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange, |
| ExprKind)) |
| return true; |
| |
| return false; |
| } |
| |
| static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) { |
| // Cannot know anything else if the expression is dependent. |
| if (E->isTypeDependent()) |
| return false; |
| |
| if (E->getObjectKind() == OK_BitField) { |
| S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) |
| << 1 << E->getSourceRange(); |
| return true; |
| } |
| |
| ValueDecl *D = nullptr; |
| Expr *Inner = E->IgnoreParens(); |
| if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) { |
| D = DRE->getDecl(); |
| } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) { |
| D = ME->getMemberDecl(); |
| } |
| |
| // If it's a field, require the containing struct to have a |
| // complete definition so that we can compute the layout. |
| // |
| // This can happen in C++11 onwards, either by naming the member |
| // in a way that is not transformed into a member access expression |
| // (in an unevaluated operand, for instance), or by naming the member |
| // in a trailing-return-type. |
| // |
| // For the record, since __alignof__ on expressions is a GCC |
| // extension, GCC seems to permit this but always gives the |
| // nonsensical answer 0. |
| // |
| // We don't really need the layout here --- we could instead just |
| // directly check for all the appropriate alignment-lowing |
| // attributes --- but that would require duplicating a lot of |
| // logic that just isn't worth duplicating for such a marginal |
| // use-case. |
| if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) { |
| // Fast path this check, since we at least know the record has a |
| // definition if we can find a member of it. |
| if (!FD->getParent()->isCompleteDefinition()) { |
| S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type) |
| << E->getSourceRange(); |
| return true; |
| } |
| |
| // Otherwise, if it's a field, and the field doesn't have |
| // reference type, then it must have a complete type (or be a |
| // flexible array member, which we explicitly want to |
| // white-list anyway), which makes the following checks trivial. |
| if (!FD->getType()->isReferenceType()) |
| return false; |
| } |
| |
| return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind); |
| } |
| |
| bool Sema::CheckVecStepExpr(Expr *E) { |
| E = E->IgnoreParens(); |
| |
| // Cannot know anything else if the expression is dependent. |
| if (E->isTypeDependent()) |
| return false; |
| |
| return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep); |
| } |
| |
| static void captureVariablyModifiedType(ASTContext &Context, QualType T, |
| CapturingScopeInfo *CSI) { |
| assert(T->isVariablyModifiedType()); |
| assert(CSI != nullptr); |
| |
| // We're going to walk down into the type and look for VLA expressions. |
| do { |
| const Type *Ty = T.getTypePtr(); |
| switch (Ty->getTypeClass()) { |
| #define TYPE(Class, Base) |
| #define ABSTRACT_TYPE(Class, Base) |
| #define NON_CANONICAL_TYPE(Class, Base) |
| #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
| #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) |
| #include "clang/AST/TypeNodes.inc" |
| T = QualType(); |
| break; |
| // These types are never variably-modified. |
| case Type::Builtin: |
| case Type::Complex: |
| case Type::Vector: |
| case Type::ExtVector: |
| case Type::ConstantMatrix: |
| case Type::Record: |
| case Type::Enum: |
| case Type::Elaborated: |
| case Type::TemplateSpecialization: |
| case Type::ObjCObject: |
| case Type::ObjCInterface: |
| case Type::ObjCObjectPointer: |
| case Type::ObjCTypeParam: |
| case Type::Pipe: |
| case Type::ExtInt: |
| llvm_unreachable("type class is never variably-modified!"); |
| case Type::Adjusted: |
| T = cast<AdjustedType>(Ty)->getOriginalType(); |
| break; |
| case Type::Decayed: |
| T = cast<DecayedType>(Ty)->getPointeeType(); |
| break; |
| case Type::Pointer: |
| T = cast<PointerType>(Ty)->getPointeeType(); |
| break; |
| case Type::BlockPointer: |
| T = cast<BlockPointerType>(Ty)->getPointeeType(); |
| break; |
| case Type::LValueReference: |
| case Type::RValueReference: |
| T = cast<ReferenceType>(Ty)->getPointeeType(); |
| break; |
| case Type::MemberPointer: |
| T = cast<MemberPointerType>(Ty)->getPointeeType(); |
| break; |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| // Losing element qualification here is fine. |
| T = cast<ArrayType>(Ty)->getElementType(); |
| break; |
| case Type::VariableArray: { |
| // Losing element qualification here is fine. |
| const VariableArrayType *VAT = cast<VariableArrayType>(Ty); |
| |
| // Unknown size indication requires no size computation. |
| // Otherwise, evaluate and record it. |
| auto Size = VAT->getSizeExpr(); |
| if (Size && !CSI->isVLATypeCaptured(VAT) && |
| (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI))) |
| CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType()); |
| |
| T = VAT->getElementType(); |
| break; |
| } |
| case Type::FunctionProto: |
| case Type::FunctionNoProto: |
| T = cast<FunctionType>(Ty)->getReturnType(); |
| break; |
| case Type::Paren: |
| case Type::TypeOf: |
| case Type::UnaryTransform: |
| case Type::Attributed: |
| case Type::SubstTemplateTypeParm: |
| case Type::MacroQualified: |
| // Keep walking after single level desugaring. |
| T = T.getSingleStepDesugaredType(Context); |
| break; |
| case Type::Typedef: |
| T = cast<TypedefType>(Ty)->desugar(); |
| break; |
| case Type::Decltype: |
| T = cast<DecltypeType>(Ty)->desugar(); |
| break; |
| case Type::Auto: |
| case Type::DeducedTemplateSpecialization: |
| T = cast<DeducedType>(Ty)->getDeducedType(); |
| break; |
| case Type::TypeOfExpr: |
| T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType(); |
| break; |
| case Type::Atomic: |
| T = cast<AtomicType>(Ty)->getValueType(); |
| break; |
| } |
| } while (!T.isNull() && T->isVariablyModifiedType()); |
| } |
| |
| /// Build a sizeof or alignof expression given a type operand. |
| ExprResult |
| Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo, |
| SourceLocation OpLoc, |
| UnaryExprOrTypeTrait ExprKind, |
| SourceRange R) { |
| if (!TInfo) |
| return ExprError(); |
| |
| QualType T = TInfo->getType(); |
| |
| if (!T->isDependentType() && |
| CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind)) |
| return ExprError(); |
| |
| if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) { |
| if (auto *TT = T->getAs<TypedefType>()) { |
| for (auto I = FunctionScopes.rbegin(), |
| E = std::prev(FunctionScopes.rend()); |
| I != E; ++I) { |
| auto *CSI = dyn_cast<CapturingScopeInfo>(*I); |
| if (CSI == nullptr) |
| break; |
| DeclContext *DC = nullptr; |
| if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI)) |
| DC = LSI->CallOperator; |
| else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) |
| DC = CRSI->TheCapturedDecl; |
| else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI)) |
| DC = BSI->TheDecl; |
| if (DC) { |
| if (DC->containsDecl(TT->getDecl())) |
| break; |
| captureVariablyModifiedType(Context, T, CSI); |
| } |
| } |
| } |
| } |
| |
| // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. |
| return new (Context) UnaryExprOrTypeTraitExpr( |
| ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd()); |
| } |
| |
| /// Build a sizeof or alignof expression given an expression |
| /// operand. |
| ExprResult |
| Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc, |
| UnaryExprOrTypeTrait ExprKind) { |
| ExprResult PE = CheckPlaceholderExpr(E); |
| if (PE.isInvalid()) |
| return ExprError(); |
| |
| E = PE.get(); |
| |
| // Verify that the operand is valid. |
| bool isInvalid = false; |
| if (E->isTypeDependent()) { |
| // Delay type-checking for type-dependent expressions. |
| } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { |
| isInvalid = CheckAlignOfExpr(*this, E, ExprKind); |
| } else if (ExprKind == UETT_VecStep) { |
| isInvalid = CheckVecStepExpr(E); |
| } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) { |
| Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr); |
| isInvalid = true; |
| } else if (E->refersToBitField()) { // C99 6.5.3.4p1. |
| Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0; |
| isInvalid = true; |
| } else { |
| isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf); |
| } |
| |
| if (isInvalid) |
| return ExprError(); |
| |
| if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) { |
| PE = TransformToPotentiallyEvaluated(E); |
| if (PE.isInvalid()) return ExprError(); |
| E = PE.get(); |
| } |
| |
| // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. |
| return new (Context) UnaryExprOrTypeTraitExpr( |
| ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd()); |
| } |
| |
| /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c |
| /// expr and the same for @c alignof and @c __alignof |
| /// Note that the ArgRange is invalid if isType is false. |
| ExprResult |
| Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc, |
| UnaryExprOrTypeTrait ExprKind, bool IsType, |
| void *TyOrEx, SourceRange ArgRange) { |
| // If error parsing type, ignore. |
| if (!TyOrEx) return ExprError(); |
| |
| if (IsType) { |
| TypeSourceInfo *TInfo; |
| (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo); |
| return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange); |
| } |
| |
| Expr *ArgEx = (Expr *)TyOrEx; |
| ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind); |
| return Result; |
| } |
| |
| static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc, |
| bool IsReal) { |
| if (V.get()->isTypeDependent()) |
| return S.Context.DependentTy; |
| |
| // _Real and _Imag are only l-values for normal l-values. |
| if (V.get()->getObjectKind() != OK_Ordinary) { |
| V = S.DefaultLvalueConversion(V.get()); |
| if (V.isInvalid()) |
| return QualType(); |
| } |
| |
| // These operators return the element type of a complex type. |
| if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>()) |
| return CT->getElementType(); |
| |
| // Otherwise they pass through real integer and floating point types here. |
| if (V.get()->getType()->isArithmeticType()) |
| return V.get()->getType(); |
| |
| // Test for placeholders. |
| ExprResult PR = S.CheckPlaceholderExpr(V.get()); |
| if (PR.isInvalid()) return QualType(); |
| if (PR.get() != V.get()) { |
| V = PR; |
| return CheckRealImagOperand(S, V, Loc, IsReal); |
| } |
| |
| // Reject anything else. |
| S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType() |
| << (IsReal ? "__real" : "__imag"); |
| return QualType(); |
| } |
| |
| |
| |
| ExprResult |
| Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, |
| tok::TokenKind Kind, Expr *Input) { |
| UnaryOperatorKind Opc; |
| switch (Kind) { |
| default: llvm_unreachable("Unknown unary op!"); |
| case tok::plusplus: Opc = UO_PostInc; break; |
| case tok::minusminus: Opc = UO_PostDec; break; |
| } |
| |
| // Since this might is a postfix expression, get rid of ParenListExprs. |
| ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input); |
| if (Result.isInvalid()) return ExprError(); |
| Input = Result.get(); |
| |
| return BuildUnaryOp(S, OpLoc, Opc, Input); |
| } |
| |
| /// Diagnose if arithmetic on the given ObjC pointer is illegal. |
| /// |
| /// \return true on error |
| static bool checkArithmeticOnObjCPointer(Sema &S, |
| SourceLocation opLoc, |
| Expr *op) { |
| assert(op->getType()->isObjCObjectPointerType()); |
| if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() && |
| !S.LangOpts.ObjCSubscriptingLegacyRuntime) |
| return false; |
| |
| S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface) |
| << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType() |
| << op->getSourceRange(); |
| return true; |
| } |
| |
| static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) { |
| auto *BaseNoParens = Base->IgnoreParens(); |
| if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens)) |
| return MSProp->getPropertyDecl()->getType()->isArrayType(); |
| return isa<MSPropertySubscriptExpr>(BaseNoParens); |
| } |
| |
| ExprResult |
| Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc, |
| Expr *idx, SourceLocation rbLoc) { |
| if (base && !base->getType().isNull() && |
| base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection)) |
| return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(), |
| SourceLocation(), /*Length*/ nullptr, |
| /*Stride=*/nullptr, rbLoc); |
| |
| // Since this might be a postfix expression, get rid of ParenListExprs. |
| if (isa<ParenListExpr>(base)) { |
| ExprResult result = MaybeConvertParenListExprToParenExpr(S, base); |
| if (result.isInvalid()) return ExprError(); |
| base = result.get(); |
| } |
| |
| // Check if base and idx form a MatrixSubscriptExpr. |
| // |
| // Helper to check for comma expressions, which are not allowed as indices for |
| // matrix subscript expressions. |
| auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) { |
| if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) { |
| Diag(E->getExprLoc(), diag::err_matrix_subscript_comma) |
| << SourceRange(base->getBeginLoc(), rbLoc); |
| return true; |
| } |
| return false; |
| }; |
| // The matrix subscript operator ([][])is considered a single operator. |
| // Separating the index expressions by parenthesis is not allowed. |
| if (base->getType()->isSpecificPlaceholderType( |
| BuiltinType::IncompleteMatrixIdx) && |
| !isa<MatrixSubscriptExpr>(base)) { |
| Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index) |
| << SourceRange(base->getBeginLoc(), rbLoc); |
| return ExprError(); |
| } |
| // If the base is a MatrixSubscriptExpr, try to create a new |
| // MatrixSubscriptExpr. |
| auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base); |
| if (matSubscriptE) { |
| if (CheckAndReportCommaError(idx)) |
| return ExprError(); |
| |
| assert(matSubscriptE->isIncomplete() && |
| "base has to be an incomplete matrix subscript"); |
| return CreateBuiltinMatrixSubscriptExpr( |
| matSubscriptE->getBase(), matSubscriptE->getRowIdx(), idx, rbLoc); |
| } |
| |
| // Handle any non-overload placeholder types in the base and index |
| // expressions. We can't handle overloads here because the other |
| // operand might be an overloadable type, in which case the overload |
| // resolution for the operator overload should get the first crack |
| // at the overload. |
| bool IsMSPropertySubscript = false; |
| if (base->getType()->isNonOverloadPlaceholderType()) { |
| IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base); |
| if (!IsMSPropertySubscript) { |
| ExprResult result = CheckPlaceholderExpr(base); |
| if (result.isInvalid()) |
| return ExprError(); |
| base = result.get(); |
| } |
| } |
| |
| // If the base is a matrix type, try to create a new MatrixSubscriptExpr. |
| if (base->getType()->isMatrixType()) { |
| if (CheckAndReportCommaError(idx)) |
| return ExprError(); |
| |
| return CreateBuiltinMatrixSubscriptExpr(base, idx, nullptr, rbLoc); |
| } |
| |
| // A comma-expression as the index is deprecated in C++2a onwards. |
| if (getLangOpts().CPlusPlus20 && |
| ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) || |
| (isa<CXXOperatorCallExpr>(idx) && |
| cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma))) { |
| Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript) |
| << SourceRange(base->getBeginLoc(), rbLoc); |
| } |
| |
| if (idx->getType()->isNonOverloadPlaceholderType()) { |
| ExprResult result = CheckPlaceholderExpr(idx); |
| if (result.isInvalid()) return ExprError(); |
| idx = result.get(); |
| } |
| |
| // Build an unanalyzed expression if either operand is type-dependent. |
| if (getLangOpts().CPlusPlus && |
| (base->isTypeDependent() || idx->isTypeDependent())) { |
| return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy, |
| VK_LValue, OK_Ordinary, rbLoc); |
| } |
| |
| // MSDN, property (C++) |
| // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx |
| // This attribute can also be used in the declaration of an empty array in a |
| // class or structure definition. For example: |
| // __declspec(property(get=GetX, put=PutX)) int x[]; |
| // The above statement indicates that x[] can be used with one or more array |
| // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), |
| // and p->x[a][b] = i will be turned into p->PutX(a, b, i); |
| if (IsMSPropertySubscript) { |
| // Build MS property subscript expression if base is MS property reference |
| // or MS property subscript. |
| return new (Context) MSPropertySubscriptExpr( |
| base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc); |
| } |
| |
| // Use C++ overloaded-operator rules if either operand has record |
| // type. The spec says to do this if either type is *overloadable*, |
| // but enum types can't declare subscript operators or conversion |
| // operators, so there's nothing interesting for overload resolution |
| // to do if there aren't any record types involved. |
| // |
| // ObjC pointers have their own subscripting logic that is not tied |
| // to overload resolution and so should not take this path. |
| if (getLangOpts().CPlusPlus && |
| (base->getType()->isRecordType() || |
| (!base->getType()->isObjCObjectPointerType() && |
| idx->getType()->isRecordType()))) { |
| return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx); |
| } |
| |
| ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc); |
| |
| if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get())) |
| CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get())); |
| |
| return Res; |
| } |
| |
| ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) { |
| InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty); |
| InitializationKind Kind = |
| InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation()); |
| InitializationSequence InitSeq(*this, Entity, Kind, E); |
| return InitSeq.Perform(*this, Entity, Kind, E); |
| } |
| |
| ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx, |
| Expr *ColumnIdx, |
| SourceLocation RBLoc) { |
| ExprResult BaseR = CheckPlaceholderExpr(Base); |
| if (BaseR.isInvalid()) |
| return BaseR; |
| Base = BaseR.get(); |
| |
| ExprResult RowR = CheckPlaceholderExpr(RowIdx); |
| if (RowR.isInvalid()) |
| return RowR; |
| RowIdx = RowR.get(); |
| |
| if (!ColumnIdx) |
| return new (Context) MatrixSubscriptExpr( |
| Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc); |
| |
| // Build an unanalyzed expression if any of the operands is type-dependent. |
| if (Base->isTypeDependent() || RowIdx->isTypeDependent() || |
| ColumnIdx->isTypeDependent()) |
| return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx, |
| Context.DependentTy, RBLoc); |
| |
| ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx); |
| if (ColumnR.isInvalid()) |
| return ColumnR; |
| ColumnIdx = ColumnR.get(); |
| |
| // Check that IndexExpr is an integer expression. If it is a constant |
| // expression, check that it is less than Dim (= the number of elements in the |
| // corresponding dimension). |
| auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim, |
| bool IsColumnIdx) -> Expr * { |
| if (!IndexExpr->getType()->isIntegerType() && |
| !IndexExpr->isTypeDependent()) { |
| Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer) |
| << IsColumnIdx; |
| return nullptr; |
| } |
| |
| if (Optional<llvm::APSInt> Idx = |
| IndexExpr->getIntegerConstantExpr(Context)) { |
| if ((*Idx < 0 || *Idx >= Dim)) { |
| Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range) |
| << IsColumnIdx << Dim; |
| return nullptr; |
| } |
| } |
| |
| ExprResult ConvExpr = |
| tryConvertExprToType(IndexExpr, Context.getSizeType()); |
| assert(!ConvExpr.isInvalid() && |
| "should be able to convert any integer type to size type"); |
| return ConvExpr.get(); |
| }; |
| |
| auto *MTy = Base->getType()->getAs<ConstantMatrixType>(); |
| RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false); |
| ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true); |
| if (!RowIdx || !ColumnIdx) |
| return ExprError(); |
| |
| return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx, |
| MTy->getElementType(), RBLoc); |
| } |
| |
| void Sema::CheckAddressOfNoDeref(const Expr *E) { |
| ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back(); |
| const Expr *StrippedExpr = E->IgnoreParenImpCasts(); |
| |
| // For expressions like `&(*s).b`, the base is recorded and what should be |
| // checked. |
| const MemberExpr *Member = nullptr; |
| while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow()) |
| StrippedExpr = Member->getBase()->IgnoreParenImpCasts(); |
| |
| LastRecord.PossibleDerefs.erase(StrippedExpr); |
| } |
| |
| void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) { |
| if (isUnevaluatedContext()) |
| return; |
| |
| QualType ResultTy = E->getType(); |
| ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back(); |
| |
| // Bail if the element is an array since it is not memory access. |
| if (isa<ArrayType>(ResultTy)) |
| return; |
| |
| if (ResultTy->hasAttr(attr::NoDeref)) { |
| LastRecord.PossibleDerefs.insert(E); |
| return; |
| } |
| |
| // Check if the base type is a pointer to a member access of a struct |
| // marked with noderef. |
| const Expr *Base = E->getBase(); |
| QualType BaseTy = Base->getType(); |
| if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy))) |
| // Not a pointer access |
| return; |
| |
| const MemberExpr *Member = nullptr; |
| while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) && |
| Member->isArrow()) |
| Base = Member->getBase(); |
| |
| if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) { |
| if (Ptr->getPointeeType()->hasAttr(attr::NoDeref)) |
| LastRecord.PossibleDerefs.insert(E); |
| } |
| } |
| |
| ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc, |
| Expr *LowerBound, |
| SourceLocation ColonLocFirst, |
| SourceLocation ColonLocSecond, |
| Expr *Length, Expr *Stride, |
| SourceLocation RBLoc) { |
| if (Base->getType()->isPlaceholderType() && |
| !Base->getType()->isSpecificPlaceholderType( |
| BuiltinType::OMPArraySection)) { |
| ExprResult Result = CheckPlaceholderExpr(Base); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Base = Result.get(); |
| } |
| if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) { |
| ExprResult Result = CheckPlaceholderExpr(LowerBound); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Result = DefaultLvalueConversion(Result.get()); |
| if (Result.isInvalid()) |
| return ExprError(); |
| LowerBound = Result.get(); |
| } |
| if (Length && Length->getType()->isNonOverloadPlaceholderType()) { |
| ExprResult Result = CheckPlaceholderExpr(Length); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Result = DefaultLvalueConversion(Result.get()); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Length = Result.get(); |
| } |
| if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) { |
| ExprResult Result = CheckPlaceholderExpr(Stride); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Result = DefaultLvalueConversion(Result.get()); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Stride = Result.get(); |
| } |
| |
| // Build an unanalyzed expression if either operand is type-dependent. |
| if (Base->isTypeDependent() || |
| (LowerBound && |
| (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) || |
| (Length && (Length->isTypeDependent() || Length->isValueDependent())) || |
| (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) { |
| return new (Context) OMPArraySectionExpr( |
| Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue, |
| OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc); |
| } |
| |
| // Perform default conversions. |
| QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base); |
| QualType ResultTy; |
| if (OriginalTy->isAnyPointerType()) { |
| ResultTy = OriginalTy->getPointeeType(); |
| } else if (OriginalTy->isArrayType()) { |
| ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType(); |
| } else { |
| return ExprError( |
| Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value) |
| << Base->getSourceRange()); |
| } |
| // C99 6.5.2.1p1 |
| if (LowerBound) { |
| auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(), |
| LowerBound); |
| if (Res.isInvalid()) |
| return ExprError(Diag(LowerBound->getExprLoc(), |
| diag::err_omp_typecheck_section_not_integer) |
| << 0 << LowerBound->getSourceRange()); |
| LowerBound = Res.get(); |
| |
| if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || |
| LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) |
| Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char) |
| << 0 << LowerBound->getSourceRange(); |
| } |
| if (Length) { |
| auto Res = |
| PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length); |
| if (Res.isInvalid()) |
| return ExprError(Diag(Length->getExprLoc(), |
| diag::err_omp_typecheck_section_not_integer) |
| << 1 << Length->getSourceRange()); |
| Length = Res.get(); |
| |
| if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || |
| Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) |
| Diag(Length->getExprLoc(), diag::warn_omp_section_is_char) |
| << 1 << Length->getSourceRange(); |
| } |
| if (Stride) { |
| ExprResult Res = |
| PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride); |
| if (Res.isInvalid()) |
| return ExprError(Diag(Stride->getExprLoc(), |
| diag::err_omp_typecheck_section_not_integer) |
| << 1 << Stride->getSourceRange()); |
| Stride = Res.get(); |
| |
| if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || |
| Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) |
| Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char) |
| << 1 << Stride->getSourceRange(); |
| } |
| |
| // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, |
| // C++ [expr.sub]p1: The type "T" shall be a completely-defined object |
| // type. Note that functions are not objects, and that (in C99 parlance) |
| // incomplete types are not object types. |
| if (ResultTy->isFunctionType()) { |
| Diag(Base->getExprLoc(), diag::err_omp_section_function_type) |
| << ResultTy << Base->getSourceRange(); |
| return ExprError(); |
| } |
| |
| if (RequireCompleteType(Base->getExprLoc(), ResultTy, |
| diag::err_omp_section_incomplete_type, Base)) |
| return ExprError(); |
| |
| if (LowerBound && !OriginalTy->isAnyPointerType()) { |
| Expr::EvalResult Result; |
| if (LowerBound->EvaluateAsInt(Result, Context)) { |
| // OpenMP 5.0, [2.1.5 Array Sections] |
| // The array section must be a subset of the original array. |
| llvm::APSInt LowerBoundValue = Result.Val.getInt(); |
| if (LowerBoundValue.isNegative()) { |
| Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array) |
| << LowerBound->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| } |
| |
| if (Length) { |
| Expr::EvalResult Result; |
| if (Length->EvaluateAsInt(Result, Context)) { |
| // OpenMP 5.0, [2.1.5 Array Sections] |
| // The length must evaluate to non-negative integers. |
| llvm::APSInt LengthValue = Result.Val.getInt(); |
| if (LengthValue.isNegative()) { |
| Diag(Length->getExprLoc(), diag::err_omp_section_length_negative) |
| << toString(LengthValue, /*Radix=*/10, /*Signed=*/true) |
| << Length->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| } else if (ColonLocFirst.isValid() && |
| (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() && |
| !OriginalTy->isVariableArrayType()))) { |
| // OpenMP 5.0, [2.1.5 Array Sections] |
| // When the size of the array dimension is not known, the length must be |
| // specified explicitly. |
| Diag(ColonLocFirst, diag::err_omp_section_length_undefined) |
| << (!OriginalTy.isNull() && OriginalTy->isArrayType()); |
| return ExprError(); |
| } |
| |
| if (Stride) { |
| Expr::EvalResult Result; |
| if (Stride->EvaluateAsInt(Result, Context)) { |
| // OpenMP 5.0, [2.1.5 Array Sections] |
| // The stride must evaluate to a positive integer. |
| llvm::APSInt StrideValue = Result.Val.getInt(); |
| if (!StrideValue.isStrictlyPositive()) { |
| Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive) |
| << toString(StrideValue, /*Radix=*/10, /*Signed=*/true) |
| << Stride->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| } |
| |
| if (!Base->getType()->isSpecificPlaceholderType( |
| BuiltinType::OMPArraySection)) { |
| ExprResult Result = DefaultFunctionArrayLvalueConversion(Base); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Base = Result.get(); |
| } |
| return new (Context) OMPArraySectionExpr( |
| Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue, |
| OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc); |
| } |
| |
| ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc, |
| SourceLocation RParenLoc, |
| ArrayRef<Expr *> Dims, |
| ArrayRef<SourceRange> Brackets) { |
| if (Base->getType()->isPlaceholderType()) { |
| ExprResult Result = CheckPlaceholderExpr(Base); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Result = DefaultLvalueConversion(Result.get()); |
| if (Result.isInvalid()) |
| return ExprError(); |
| Base = Result.get(); |
| } |
| QualType BaseTy = Base->getType(); |
| // Delay analysis of the types/expressions if instantiation/specialization is |
| // required. |
| if (!BaseTy->isPointerType() && Base->isTypeDependent()) |
| return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base, |
| LParenLoc, RParenLoc, Dims, Brackets); |
| if (!BaseTy->isPointerType() || |
| (!Base->isTypeDependent() && |
| BaseTy->getPointeeType()->isIncompleteType())) |
| return ExprError(Diag(Base->getExprLoc(), |
| diag::err_omp_non_pointer_type_array_shaping_base) |
| << Base->getSourceRange()); |
| |
| SmallVector<Expr *, 4> NewDims; |
| bool ErrorFound = false; |
| for (Expr *Dim : Dims) { |
| if (Dim->getType()->isPlaceholderType()) { |
| ExprResult Result = CheckPlaceholderExpr(Dim); |
| if (Result.isInvalid()) { |
| ErrorFound = true; |
| continue; |
| } |
| Result = DefaultLvalueConversion(Result.get()); |
| if (Result.isInvalid()) { |
| ErrorFound = true; |
| continue; |
| } |
| Dim = Result.get(); |
| } |
| if (!Dim->isTypeDependent()) { |
| ExprResult Result = |
| PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim); |
| if (Result.isInvalid()) { |
| ErrorFound = true; |
| Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer) |
| << Dim->getSourceRange(); |
| continue; |
| } |
| Dim = Result.get(); |
| Expr::EvalResult EvResult; |
| if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) { |
| // OpenMP 5.0, [2.1.4 Array Shaping] |
| // Each si is an integral type expression that must evaluate to a |
| // positive integer. |
| llvm::APSInt Value = EvResult.Val.getInt(); |
| if (!Value.isStrictlyPositive()) { |
| Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive) |
| << toString(Value, /*Radix=*/10, /*Signed=*/true) |
| << Dim->getSourceRange(); |
| ErrorFound = true; |
| continue; |
| } |
| } |
| } |
| NewDims.push_back(Dim); |
| } |
| if (ErrorFound) |
| return ExprError(); |
| return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base, |
| LParenLoc, RParenLoc, NewDims, Brackets); |
| } |
| |
| ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc, |
| SourceLocation LLoc, SourceLocation RLoc, |
| ArrayRef<OMPIteratorData> Data) { |
| SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID; |
| bool IsCorrect = true; |
| for (const OMPIteratorData &D : Data) { |
| TypeSourceInfo *TInfo = nullptr; |
| SourceLocation StartLoc; |
| QualType DeclTy; |
| if (!D.Type.getAsOpaquePtr()) { |
| // OpenMP 5.0, 2.1.6 Iterators |
| // In an iterator-specifier, if the iterator-type is not specified then |
| // the type of that iterator is of int type. |
| DeclTy = Context.IntTy; |
| StartLoc = D.DeclIdentLoc; |
| } else { |
| DeclTy = GetTypeFromParser(D.Type, &TInfo); |
| StartLoc = TInfo->getTypeLoc().getBeginLoc(); |
| } |
| |
| bool IsDeclTyDependent = DeclTy->isDependentType() || |
| DeclTy->containsUnexpandedParameterPack() || |
| DeclTy->isInstantiationDependentType(); |
| if (!IsDeclTyDependent) { |
| if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) { |
| // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++ |
| // The iterator-type must be an integral or pointer type. |
| Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer) |
| << DeclTy; |
| IsCorrect = false; |
| continue; |
| } |
| if (DeclTy.isConstant(Context)) { |
| // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++ |
| // The iterator-type must not be const qualified. |
| Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer) |
| << DeclTy; |
| IsCorrect = false; |
| continue; |
| } |
| } |
| |
| // Iterator declaration. |
| assert(D.DeclIdent && "Identifier expected."); |
| // Always try to create iterator declarator to avoid extra error messages |
| // about unknown declarations use. |
| auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc, |
| D.DeclIdent, DeclTy, TInfo, SC_None); |
| VD->setImplicit(); |
| if (S) { |
| // Check for conflicting previous declaration. |
| DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc); |
| LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
| ForVisibleRedeclaration); |
| Previous.suppressDiagnostics(); |
| LookupName(Previous, S); |
| |
| FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false, |
| /*AllowInlineNamespace=*/false); |
| if (!Previous.empty()) { |
| NamedDecl *Old = Previous.getRepresentativeDecl(); |
| Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName(); |
| Diag(Old->getLocation(), diag::note_previous_definition); |
| } else { |
| PushOnScopeChains(VD, S); |
| } |
| } else { |
| CurContext->addDecl(VD); |
| } |
| Expr *Begin = D.Range.Begin; |
| if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) { |
| ExprResult BeginRes = |
| PerformImplicitConversion(Begin, DeclTy, AA_Converting); |
| Begin = BeginRes.get(); |
| } |
| Expr *End = D.Range.End; |
| if (!IsDeclTyDependent && End && !End->isTypeDependent()) { |
| ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting); |
| End = EndRes.get(); |
| } |
| Expr *Step = D.Range.Step; |
| if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) { |
| if (!Step->getType()->isIntegralType(Context)) { |
| Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral) |
| << Step << Step->getSourceRange(); |
| IsCorrect = false; |
| continue; |
| } |
| Optional<llvm::APSInt> Result = Step->getIntegerConstantExpr(Context); |
| // OpenMP 5.0, 2.1.6 Iterators, Restrictions |
| // If the step expression of a range-specification equals zero, the |
| // behavior is unspecified. |
| if (Result && Result->isZero()) { |
| Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero) |
| << Step << Step->getSourceRange(); |
| IsCorrect = false; |
| continue; |
| } |
| } |
| if (!Begin || !End || !IsCorrect) { |
| IsCorrect = false; |
| continue; |
| } |
| OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back(); |
| IDElem.IteratorDecl = VD; |
| IDElem.AssignmentLoc = D.AssignLoc; |
| IDElem.Range.Begin = Begin; |
| IDElem.Range.End = End; |
| IDElem.Range.Step = Step; |
| IDElem.ColonLoc = D.ColonLoc; |
| IDElem.SecondColonLoc = D.SecColonLoc; |
| } |
| if (!IsCorrect) { |
| // Invalidate all created iterator declarations if error is found. |
| for (const OMPIteratorExpr::IteratorDefinition &D : ID) { |
| if (Decl *ID = D.IteratorDecl) |
| ID->setInvalidDecl(); |
| } |
| return ExprError(); |
| } |
| SmallVector<OMPIteratorHelperData, 4> Helpers; |
| if (!CurContext->isDependentContext()) { |
| // Build number of ityeration for each iteration range. |
| // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) : |
| // ((Begini-Stepi-1-Endi) / -Stepi); |
| for (OMPIteratorExpr::IteratorDefinition &D : ID) { |
| // (Endi - Begini) |
| ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End, |
| D.Range.Begin); |
| if(!Res.isUsable()) { |
| IsCorrect = false; |
| continue; |
| } |
| ExprResult St, St1; |
| if (D.Range.Step) { |
| St = D.Range.Step; |
| // (Endi - Begini) + Stepi |
| Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get()); |
| if (!Res.isUsable()) { |
| IsCorrect = false; |
| continue; |
| } |
| // (Endi - Begini) + Stepi - 1 |
| Res = |
| CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(), |
| ActOnIntegerConstant(D.AssignmentLoc, 1).get()); |
| if (!Res.isUsable()) { |
| IsCorrect = false; |
| continue; |
| } |
| // ((Endi - Begini) + Stepi - 1) / Stepi |
| Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get()); |
| if (!Res.isUsable()) { |
| IsCorrect = false; |
| continue; |
| } |
| St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step); |
| // (Begini - Endi) |
| ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, |
| D.Range.Begin, D.Range.End); |
| if (!Res1.isUsable()) { |
| IsCorrect = false; |
| continue; |
| } |
| // (Begini - Endi) - Stepi |
| Res1 = |
| CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get()); |
| if (!Res1.isUsable()) { |
| IsCorrect = false; |
| continue; |
| } |
| // (Begini - Endi) - Stepi - 1 |
| Res1 = |
| CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(), |
| ActOnIntegerConstant(D.AssignmentLoc, 1).get()); |
| if (!Res1.isUsable()) { |
| IsCorrect = false; |
| continue; |
| } |
| // ((Begini - Endi) - Stepi - 1) / (-Stepi) |
| Res1 = |
| CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get()); |
| if (!Res1.isUsable()) { |
| IsCorrect = false; |
| continue; |
| } |
| // Stepi > 0. |
| ExprResult CmpRes = |
| CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step, |
| ActOnIntegerConstant(D.AssignmentLoc, 0).get()); |
| if (!CmpRes.isUsable()) { |
| IsCorrect = false; |
| continue; |
| } |
| Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(), |
| Res.get(), Res1.get()); |
| if (!Res.isUsable()) { |
| IsCorrect = false; |
| continue; |
| } |
| } |
| Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false); |
| if (!Res.isUsable()) { |
| IsCorrect = false; |
| continue; |
| } |
| |
| // Build counter update. |
| // Build counter. |
| auto *CounterVD = |
| VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(), |
| D.IteratorDecl->getBeginLoc(), nullptr, |
| Res.get()->getType(), nullptr, SC_None); |
| CounterVD->setImplicit(); |
| ExprResult RefRes = |
| BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue, |
| D.IteratorDecl->getBeginLoc()); |
| // Build counter update. |
| // I = Begini + counter * Stepi; |
| ExprResult UpdateRes; |
| if (D.Range.Step) { |
| UpdateRes = CreateBuiltinBinOp( |
| D.AssignmentLoc, BO_Mul, |
| DefaultLvalueConversion(RefRes.get()).get(), St.get()); |
| } else { |
| UpdateRes = DefaultLvalueConversion(RefRes.get()); |
| } |
| if (!UpdateRes.isUsable()) { |
| IsCorrect = false; |
| continue; |
| } |
| UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin, |
| UpdateRes.get()); |
| if (!UpdateRes.isUsable()) { |
| IsCorrect = false; |
| continue; |
| } |
| ExprResult VDRes = |
| BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl), |
| cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue, |
| D.IteratorDecl->getBeginLoc()); |
| UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(), |
| UpdateRes.get()); |
| if (!UpdateRes.isUsable()) { |
| IsCorrect = false; |
| continue; |
| } |
| UpdateRes = |
| ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true); |
| if (!UpdateRes.isUsable()) { |
| IsCorrect = false; |
| continue; |
| } |
| ExprResult CounterUpdateRes = |
| CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get()); |
| if (!CounterUpdateRes.isUsable()) { |
| IsCorrect = false; |
| continue; |
| } |
| CounterUpdateRes = |
| ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true); |
| if (!CounterUpdateRes.isUsable()) { |
| IsCorrect = false; |
| continue; |
| } |
| OMPIteratorHelperData &HD = Helpers.emplace_back(); |
| HD.CounterVD = CounterVD; |
| HD.Upper = Res.get(); |
| HD.Update = UpdateRes.get(); |
| HD.CounterUpdate = CounterUpdateRes.get(); |
| } |
| } else { |
| Helpers.assign(ID.size(), {}); |
| } |
| if (!IsCorrect) { |
| // Invalidate all created iterator declarations if error is found. |
| for (const OMPIteratorExpr::IteratorDefinition &D : ID) { |
| if (Decl *ID = D.IteratorDecl) |
| ID->setInvalidDecl(); |
| } |
| return ExprError(); |
| } |
| return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc, |
| LLoc, RLoc, ID, Helpers); |
| } |
| |
| ExprResult |
| Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, |
| Expr *Idx, SourceLocation RLoc) { |
| Expr *LHSExp = Base; |
| Expr *RHSExp = Idx; |
| |
| ExprValueKind VK = VK_LValue; |
| ExprObjectKind OK = OK_Ordinary; |
| |
| // Per C++ core issue 1213, the result is an xvalue if either operand is |
| // a non-lvalue array, and an lvalue otherwise. |
| if (getLangOpts().CPlusPlus11) { |
| for (auto *Op : {LHSExp, RHSExp}) { |
| Op = Op->IgnoreImplicit(); |
| if (Op->getType()->isArrayType() && !Op->isLValue()) |
| VK = VK_XValue; |
| } |
| } |
| |
| // Perform default conversions. |
| if (!LHSExp->getType()->getAs<VectorType>()) { |
| ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp); |
| if (Result.isInvalid()) |
| return ExprError(); |
| LHSExp = Result.get(); |
| } |
| ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp); |
| if (Result.isInvalid()) |
| return ExprError(); |
| RHSExp = Result.get(); |
| |
| QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); |
| |
| // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent |
| // to the expression *((e1)+(e2)). This means the array "Base" may actually be |
| // in the subscript position. As a result, we need to derive the array base |
| // and index from the expression types. |
| Expr *BaseExpr, *IndexExpr; |
| QualType ResultType; |
| if (LHSTy->isDependentType() || RHSTy->isDependentType()) { |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| ResultType = Context.DependentTy; |
| } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) { |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| ResultType = PTy->getPointeeType(); |
| } else if (const ObjCObjectPointerType *PTy = |
| LHSTy->getAs<ObjCObjectPointerType>()) { |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| |
| // Use custom logic if this should be the pseudo-object subscript |
| // expression. |
| if (!LangOpts.isSubscriptPointerArithmetic()) |
| return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr, |
| nullptr); |
| |
| ResultType = PTy->getPointeeType(); |
| } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) { |
| // Handle the uncommon case of "123[Ptr]". |
| BaseExpr = RHSExp; |
| IndexExpr = LHSExp; |
| ResultType = PTy->getPointeeType(); |
| } else if (const ObjCObjectPointerType *PTy = |
| RHSTy->getAs<ObjCObjectPointerType>()) { |
| // Handle the uncommon case of "123[Ptr]". |
| BaseExpr = RHSExp; |
| IndexExpr = LHSExp; |
| ResultType = PTy->getPointeeType(); |
| if (!LangOpts.isSubscriptPointerArithmetic()) { |
| Diag(LLoc, diag::err_subscript_nonfragile_interface) |
| << ResultType << BaseExpr->getSourceRange(); |
| return ExprError(); |
| } |
| } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) { |
| BaseExpr = LHSExp; // vectors: V[123] |
| IndexExpr = RHSExp; |
| // We apply C++ DR1213 to vector subscripting too. |
| if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) { |
| ExprResult Materialized = TemporaryMaterializationConversion(LHSExp); |
| if (Materialized.isInvalid()) |
| return ExprError(); |
| LHSExp = Materialized.get(); |
| } |
| VK = LHSExp->getValueKind(); |
| if (VK != VK_PRValue) |
| OK = OK_VectorComponent; |
| |
| ResultType = VTy->getElementType(); |
| QualType BaseType = BaseExpr->getType(); |
| Qualifiers BaseQuals = BaseType.getQualifiers(); |
| Qualifiers MemberQuals = ResultType.getQualifiers(); |
| Qualifiers Combined = BaseQuals + MemberQuals; |
| if (Combined != MemberQuals) |
| ResultType = Context.getQualifiedType(ResultType, Combined); |
| } else if (LHSTy->isArrayType()) { |
| // If we see an array that wasn't promoted by |
| // DefaultFunctionArrayLvalueConversion, it must be an array that |
| // wasn't promoted because of the C90 rule that doesn't |
| // allow promoting non-lvalue arrays. Warn, then |
| // force the promotion here. |
| Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue) |
| << LHSExp->getSourceRange(); |
| LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy), |
| CK_ArrayToPointerDecay).get(); |
| LHSTy = LHSExp->getType(); |
| |
| BaseExpr = LHSExp; |
| IndexExpr = RHSExp; |
| ResultType = LHSTy->castAs<PointerType>()->getPointeeType(); |
| } else if (RHSTy->isArrayType()) { |
| // Same as previous, except for 123[f().a] case |
| Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue) |
| << RHSExp->getSourceRange(); |
| RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy), |
| CK_ArrayToPointerDecay).get(); |
| RHSTy = RHSExp->getType(); |
| |
| BaseExpr = RHSExp; |
| IndexExpr = LHSExp; |
| ResultType = RHSTy->castAs<PointerType>()->getPointeeType(); |
| } else { |
| return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value) |
| << LHSExp->getSourceRange() << RHSExp->getSourceRange()); |
| } |
| // C99 6.5.2.1p1 |
| if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent()) |
| return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer) |
| << IndexExpr->getSourceRange()); |
| |
| if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || |
| IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) |
| && !IndexExpr->isTypeDependent()) |
| Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange(); |
| |
| // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, |
| // C++ [expr.sub]p1: The type "T" shall be a completely-defined object |
| // type. Note that Functions are not objects, and that (in C99 parlance) |
| // incomplete types are not object types. |
| if (ResultType->isFunctionType()) { |
| Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type) |
| << ResultType << BaseExpr->getSourceRange(); |
| return ExprError(); |
| } |
| |
| if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) { |
| // GNU extension: subscripting on pointer to void |
| Diag(LLoc, diag::ext_gnu_subscript_void_type) |
| << BaseExpr->getSourceRange(); |
| |
| // C forbids expressions of unqualified void type from being l-values. |
| // See IsCForbiddenLValueType. |
| if (!ResultType.hasQualifiers()) |
| VK = VK_PRValue; |
| } else if (!ResultType->isDependentType() && |
| RequireCompleteSizedType( |
| LLoc, ResultType, |
| diag::err_subscript_incomplete_or_sizeless_type, BaseExpr)) |
| return ExprError(); |
| |
| assert(VK == VK_PRValue || LangOpts.CPlusPlus || |
| !ResultType.isCForbiddenLValueType()); |
| |
| if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() && |
| FunctionScopes.size() > 1) { |
| if (auto *TT = |
| LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) { |
| for (auto I = FunctionScopes.rbegin(), |
| E = std::prev(FunctionScopes.rend()); |
| I != E; ++I) { |
| auto *CSI = dyn_cast<CapturingScopeInfo>(*I); |
| if (CSI == nullptr) |
| break; |
| DeclContext *DC = nullptr; |
| if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI)) |
| DC = LSI->CallOperator; |
| else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) |
| DC = CRSI->TheCapturedDecl; |
| else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI)) |
| DC = BSI->TheDecl; |
| if (DC) { |
| if (DC->containsDecl(TT->getDecl())) |
| break; |
| captureVariablyModifiedType( |
| Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI); |
| } |
| } |
| } |
| } |
| |
| return new (Context) |
| ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc); |
| } |
| |
| bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, |
| ParmVarDecl *Param) { |
| if (Param->hasUnparsedDefaultArg()) { |
| // If we've already cleared out the location for the default argument, |
| // that means we're parsing it right now. |
| if (!UnparsedDefaultArgLocs.count(Param)) { |
| Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD; |
| Diag(CallLoc, diag::note_recursive_default_argument_used_here); |
| Param->setInvalidDecl(); |
| return true; |
| } |
| |
| Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later) |
| << FD << cast<CXXRecordDecl>(FD->getDeclContext()); |
| Diag(UnparsedDefaultArgLocs[Param], |
| diag::note_default_argument_declared_here); |
| return true; |
| } |
| |
| if (Param->hasUninstantiatedDefaultArg() && |
| InstantiateDefaultArgument(CallLoc, FD, Param)) |
| return true; |
| |
| assert(Param->hasInit() && "default argument but no initializer?"); |
| |
| // If the default expression creates temporaries, we need to |
| // push them to the current stack of expression temporaries so they'll |
| // be properly destroyed. |
| // FIXME: We should really be rebuilding the default argument with new |
| // bound temporaries; see the comment in PR5810. |
| // We don't need to do that with block decls, though, because |
| // blocks in default argument expression can never capture anything. |
| if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) { |
| // Set the "needs cleanups" bit regardless of whether there are |
| // any explicit objects. |
| Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects()); |
| |
| // Append all the objects to the cleanup list. Right now, this |
| // should always be a no-op, because blocks in default argument |
| // expressions should never be able to capture anything. |
| assert(!Init->getNumObjects() && |
| "default argument expression has capturing blocks?"); |
| } |
| |
| // We already type-checked the argument, so we know it works. |
| // Just mark all of the declarations in this potentially-evaluated expression |
| // as being "referenced". |
| EnterExpressionEvaluationContext EvalContext( |
| *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param); |
| MarkDeclarationsReferencedInExpr(Param->getDefaultArg(), |
| /*SkipLocalVariables=*/true); |
| return false; |
| } |
| |
| ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc, |
| FunctionDecl *FD, ParmVarDecl *Param) { |
| assert(Param->hasDefaultArg() && "can't build nonexistent default arg"); |
| if (CheckCXXDefaultArgExpr(CallLoc, FD, Param)) |
| return ExprError(); |
| return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext); |
| } |
| |
| Sema::VariadicCallType |
| Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto, |
| Expr *Fn) { |
| if (Proto && Proto->isVariadic()) { |
| if (isa_and_nonnull<CXXConstructorDecl>(FDecl)) |
| return VariadicConstructor; |
| else if (Fn && Fn->getType()->isBlockPointerType()) |
| return VariadicBlock; |
| else if (FDecl) { |
| if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl)) |
| if (Method->isInstance()) |
| return VariadicMethod; |
| } else if (Fn && Fn->getType() == Context.BoundMemberTy) |
| return VariadicMethod; |
| return VariadicFunction; |
| } |
| return VariadicDoesNotApply; |
| } |
| |
| namespace { |
| class FunctionCallCCC final : public FunctionCallFilterCCC { |
| public: |
| FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName, |
| unsigned NumArgs, MemberExpr *ME) |
| : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME), |
| FunctionName(FuncName) {} |
| |
| bool ValidateCandidate(const TypoCorrection &candidate) override { |
| if (!candidate.getCorrectionSpecifier() || |
| candidate.getCorrectionAsIdentifierInfo() != FunctionName) { |
| return false; |
| } |
| |
| return FunctionCallFilterCCC::ValidateCandidate(candidate); |
| } |
| |
| std::unique_ptr<CorrectionCandidateCallback> clone() override { |
| return std::make_unique<FunctionCallCCC>(*this); |
| } |
| |
| private: |
| const IdentifierInfo *const FunctionName; |
| }; |
| } |
| |
| static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn, |
| FunctionDecl *FDecl, |
| ArrayRef<Expr *> Args) { |
| MemberExpr *ME = dyn_cast<MemberExpr>(Fn); |
| DeclarationName FuncName = FDecl->getDeclName(); |
| SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc(); |
| |
| FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME); |
| if (TypoCorrection Corrected = S.CorrectTypo( |
| DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName, |
| S.getScopeForContext(S.CurContext), nullptr, CCC, |
| Sema::CTK_ErrorRecovery)) { |
| if (NamedDecl *ND = Corrected.getFoundDecl()) { |
| if (Corrected.isOverloaded()) { |
| OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal); |
| OverloadCandidateSet::iterator Best; |
| for (NamedDecl *CD : Corrected) { |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD)) |
| S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args, |
| OCS); |
| } |
| switch (OCS.BestViableFunction(S, NameLoc, Best)) { |
| case OR_Success: |
| ND = Best->FoundDecl; |
| Corrected.setCorrectionDecl(ND); |
| break; |
| default: |
| break; |
| } |
| } |
| ND = ND->getUnderlyingDecl(); |
| if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) |
| return Corrected; |
| } |
| } |
| return TypoCorrection(); |
| } |
| |
| /// ConvertArgumentsForCall - Converts the arguments specified in |
| /// Args/NumArgs to the parameter types of the function FDecl with |
| /// function prototype Proto. Call is the call expression itself, and |
| /// Fn is the function expression. For a C++ member function, this |
| /// routine does not attempt to convert the object argument. Returns |
| /// true if the call is ill-formed. |
| bool |
| Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, |
| FunctionDecl *FDecl, |
| const FunctionProtoType *Proto, |
| ArrayRef<Expr *> Args, |
| SourceLocation RParenLoc, |
| bool IsExecConfig) { |
| // Bail out early if calling a builtin with custom typechecking. |
| if (FDecl) |
| if (unsigned ID = FDecl->getBuiltinID()) |
| if (Context.BuiltinInfo.hasCustomTypechecking(ID)) |
| return false; |
| |
| // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by |
| // assignment, to the types of the corresponding parameter, ... |
| unsigned NumParams = Proto->getNumParams(); |
| bool Invalid = false; |
| unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams; |
| unsigned FnKind = Fn->getType()->isBlockPointerType() |
| ? 1 /* block */ |
| : (IsExecConfig ? 3 /* kernel function (exec config) */ |
| : 0 /* function */); |
| |
| // If too few arguments are available (and we don't have default |
| // arguments for the remaining parameters), don't make the call. |
| if (Args.size() < NumParams) { |
| if (Args.size() < MinArgs) { |
| TypoCorrection TC; |
| if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) { |
| unsigned diag_id = |
| MinArgs == NumParams && !Proto->isVariadic() |
| ? diag::err_typecheck_call_too_few_args_suggest |
| : diag::err_typecheck_call_too_few_args_at_least_suggest; |
| diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs |
| << static_cast<unsigned>(Args.size()) |
| << TC.getCorrectionRange()); |
| } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName()) |
| Diag(RParenLoc, |
| MinArgs == NumParams && !Proto->isVariadic() |
| ? diag::err_typecheck_call_too_few_args_one |
| : diag::err_typecheck_call_too_few_args_at_least_one) |
| << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange(); |
| else |
| Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic() |
| ? diag::err_typecheck_call_too_few_args |
| : diag::err_typecheck_call_too_few_args_at_least) |
| << FnKind << MinArgs << static_cast<unsigned>(Args.size()) |
| << Fn->getSourceRange(); |
| |
| // Emit the location of the prototype. |
| if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig) |
| Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; |
| |
| return true; |
| } |
| // We reserve space for the default arguments when we create |
| // the call expression, before calling ConvertArgumentsForCall. |
| assert((Call->getNumArgs() == NumParams) && |
| "We should have reserved space for the default arguments before!"); |
| } |
| |
| // If too many are passed and not variadic, error on the extras and drop |
| // them. |
| if (Args.size() > NumParams) { |
| if (!Proto->isVariadic()) { |
| TypoCorrection TC; |
| if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) { |
| unsigned diag_id = |
| MinArgs == NumParams && !Proto->isVariadic() |
| ? diag::err_typecheck_call_too_many_args_suggest |
| : diag::err_typecheck_call_too_many_args_at_most_suggest; |
| diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams |
| << static_cast<unsigned>(Args.size()) |
| << TC.getCorrectionRange()); |
| } else if (NumParams == 1 && FDecl && |
| FDecl->getParamDecl(0)->getDeclName()) |
| Diag(Args[NumParams]->getBeginLoc(), |
| MinArgs == NumParams |
| ? diag::err_typecheck_call_too_many_args_one |
| : diag::err_typecheck_call_too_many_args_at_most_one) |
| << FnKind << FDecl->getParamDecl(0) |
| << static_cast<unsigned>(Args.size()) << Fn->getSourceRange() |
| << SourceRange(Args[NumParams]->getBeginLoc(), |
| Args.back()->getEndLoc()); |
| else |
| Diag(Args[NumParams]->getBeginLoc(), |
| MinArgs == NumParams |
| ? diag::err_typecheck_call_too_many_args |
| : diag::err_typecheck_call_too_many_args_at_most) |
| << FnKind << NumParams << static_cast<unsigned>(Args.size()) |
| << Fn->getSourceRange() |
| << SourceRange(Args[NumParams]->getBeginLoc(), |
| Args.back()->getEndLoc()); |
| |
| // Emit the location of the prototype. |
| if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig) |
| Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; |
| |
| // This deletes the extra arguments. |
| Call->shrinkNumArgs(NumParams); |
| return true; |
| } |
| } |
| SmallVector<Expr *, 8> AllArgs; |
| VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn); |
| |
| Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args, |
| AllArgs, CallType); |
| if (Invalid) |
| return true; |
| unsigned TotalNumArgs = AllArgs.size(); |
| for (unsigned i = 0; i < TotalNumArgs; ++i) |
| Call->setArg(i, AllArgs[i]); |
| |
| Call->computeDependence(); |
| return false; |
| } |
| |
| bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl, |
| const FunctionProtoType *Proto, |
| unsigned FirstParam, ArrayRef<Expr *> Args, |
| SmallVectorImpl<Expr *> &AllArgs, |
| VariadicCallType CallType, bool AllowExplicit, |
| bool IsListInitialization) { |
| unsigned NumParams = Proto->getNumParams(); |
| bool Invalid = false; |
| size_t ArgIx = 0; |
| // Continue to check argument types (even if we have too few/many args). |
| for (unsigned i = FirstParam; i < NumParams; i++) { |
| QualType ProtoArgType = Proto->getParamType(i); |
| |
| Expr *Arg; |
| ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr; |
| if (ArgIx < Args.size()) { |
| Arg = Args[ArgIx++]; |
| |
| if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType, |
| diag::err_call_incomplete_argument, Arg)) |
| return true; |
| |
| // Strip the unbridged-cast placeholder expression off, if applicable. |
| bool CFAudited = false; |
| if (Arg->getType() == Context.ARCUnbridgedCastTy && |
| FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() && |
| (!Param || !Param->hasAttr<CFConsumedAttr>())) |
| Arg = stripARCUnbridgedCast(Arg); |
| else if (getLangOpts().ObjCAutoRefCount && |
| FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() && |
| (!Param || !Param->hasAttr<CFConsumedAttr>())) |
| CFAudited = true; |
| |
| if (Proto->getExtParameterInfo(i).isNoEscape() && |
| ProtoArgType->isBlockPointerType()) |
| if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context))) |
| BE->getBlockDecl()->setDoesNotEscape(); |
| |
| InitializedEntity Entity = |
| Param ? InitializedEntity::InitializeParameter(Context, Param, |
| ProtoArgType) |
| : InitializedEntity::InitializeParameter( |
| Context, ProtoArgType, Proto->isParamConsumed(i)); |
| |
| // Remember that parameter belongs to a CF audited API. |
| if (CFAudited) |
| Entity.setParameterCFAudited(); |
| |
| ExprResult ArgE = PerformCopyInitialization( |
| Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit); |
| if (ArgE.isInvalid()) |
| return true; |
| |
| Arg = ArgE.getAs<Expr>(); |
| } else { |
| assert(Param && "can't use default arguments without a known callee"); |
| |
| ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param); |
| if (ArgExpr.isInvalid()) |
| return true; |
| |
| Arg = ArgExpr.getAs<Expr>(); |
| } |
| |
| // Check for array bounds violations for each argument to the call. This |
| // check only triggers warnings when the argument isn't a more complex Expr |
| // with its own checking, such as a BinaryOperator. |
| CheckArrayAccess(Arg); |
| |
| // Check for violations of C99 static array rules (C99 6.7.5.3p7). |
| CheckStaticArrayArgument(CallLoc, Param, Arg); |
| |
| AllArgs.push_back(Arg); |
| } |
| |
| // If this is a variadic call, handle args passed through "...". |
| if (CallType != VariadicDoesNotApply) { |
| // Assume that extern "C" functions with variadic arguments that |
| // return __unknown_anytype aren't *really* variadic. |
| if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl && |
| FDecl->isExternC()) { |
| for (Expr *A : Args.slice(ArgIx)) { |
| QualType paramType; // ignored |
| ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType); |
| Invalid |= arg.isInvalid(); |
| AllArgs.push_back(arg.get()); |
| } |
| |
| // Otherwise do argument promotion, (C99 6.5.2.2p7). |
| } else { |
| for (Expr *A : Args.slice(ArgIx)) { |
| ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl); |
| Invalid |= Arg.isInvalid(); |
| AllArgs.push_back(Arg.get()); |
| } |
| } |
| |
| // Check for array bounds violations. |
| for (Expr *A : Args.slice(ArgIx)) |
| CheckArrayAccess(A); |
| } |
| return Invalid; |
| } |
| |
| static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) { |
| TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc(); |
| if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>()) |
| TL = DTL.getOriginalLoc(); |
| if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>()) |
| S.Diag(PVD->getLocation(), diag::note_callee_static_array) |
| << ATL.getLocalSourceRange(); |
| } |
| |
| /// CheckStaticArrayArgument - If the given argument corresponds to a static |
| /// array parameter, check that it is non-null, and that if it is formed by |
| /// array-to-pointer decay, the underlying array is sufficiently large. |
| /// |
| /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the |
| /// array type derivation, then for each call to the function, the value of the |
| /// corresponding actual argument shall provide access to the first element of |
| /// an array with at least as many elements as specified by the size expression. |
| void |
| Sema::CheckStaticArrayArgument(SourceLocation CallLoc, |
| ParmVarDecl *Param, |
| const Expr *ArgExpr) { |
| // Static array parameters are not supported in C++. |
| if (!Param || getLangOpts().CPlusPlus) |
| return; |
| |
| QualType OrigTy = Param->getOriginalType(); |
| |
| const ArrayType *AT = Context.getAsArrayType(OrigTy); |
| if (!AT || AT->getSizeModifier() != ArrayType::Static) |
| return; |
| |
| if (ArgExpr->isNullPointerConstant(Context, |
| Expr::NPC_NeverValueDependent)) { |
| Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange(); |
| DiagnoseCalleeStaticArrayParam(*this, Param); |
| return; |
| } |
| |
| const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT); |
| if (!CAT) |
| return; |
| |
| const ConstantArrayType *ArgCAT = |
| Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType()); |
| if (!ArgCAT) |
| return; |
| |
| if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(), |
| ArgCAT->getElementType())) { |
| if (ArgCAT->getSize().ult(CAT->getSize())) { |
| Diag(CallLoc, diag::warn_static_array_too_small) |
| << ArgExpr->getSourceRange() |
| << (unsigned)ArgCAT->getSize().getZExtValue() |
| << (unsigned)CAT->getSize().getZExtValue() << 0; |
| DiagnoseCalleeStaticArrayParam(*this, Param); |
| } |
| return; |
| } |
| |
| Optional<CharUnits> ArgSize = |
| getASTContext().getTypeSizeInCharsIfKnown(ArgCAT); |
| Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT); |
| if (ArgSize && ParmSize && *ArgSize < *ParmSize) { |
| Diag(CallLoc, diag::warn_static_array_too_small) |
| << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity() |
| << (unsigned)ParmSize->getQuantity() << 1; |
| DiagnoseCalleeStaticArrayParam(*this, Param); |
| } |
| } |
| |
| /// Given a function expression of unknown-any type, try to rebuild it |
| /// to have a function type. |
| static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn); |
| |
| /// Is the given type a placeholder that we need to lower out |
| /// immediately during argument processing? |
| static bool isPlaceholderToRemoveAsArg(QualType type) { |
| // Placeholders are never sugared. |
| const BuiltinType *placeholder = dyn_cast<BuiltinType>(type); |
| if (!placeholder) return false; |
| |
| switch (placeholder->getKind()) { |
| // Ignore all the non-placeholder types. |
| #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/OpenCLImageTypes.def" |
| #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/OpenCLExtensionTypes.def" |
| // In practice we'll never use this, since all SVE types are sugared |
| // via TypedefTypes rather than exposed directly as BuiltinTypes. |
| #define SVE_TYPE(Name, Id, SingletonId) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/AArch64SVEACLETypes.def" |
| #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
| case BuiltinType::Id: |
| #include "clang/Basic/PPCTypes.def" |
| #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
| #include "clang/Basic/RISCVVTypes.def" |
| #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) |
| #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: |
| #include "clang/AST/BuiltinTypes.def" |
| return false; |
| |
| // We cannot lower out overload sets; they might validly be resolved |
| // by the call machinery. |
| case BuiltinType::Overload: |
| return false; |
| |
| // Unbridged casts in ARC can be handled in some call positions and |
| // should be left in place. |
| case BuiltinType::ARCUnbridgedCast: |
| return false; |
| |
| // Pseudo-objects should be converted as soon as possible. |
| case BuiltinType::PseudoObject: |
| return true; |
| |
| // The debugger mode could theoretically but currently does not try |
| // to resolve unknown-typed arguments based on known parameter types. |
| case BuiltinType::UnknownAny: |
| return true; |
| |
| // These are always invalid as call arguments and should be reported. |
| case BuiltinType::BoundMember: |
| case BuiltinType::BuiltinFn: |
| case BuiltinType::IncompleteMatrixIdx: |
| case BuiltinType::OMPArraySection: |
| case BuiltinType::OMPArrayShaping: |
| case BuiltinType::OMPIterator: |
| return true; |
| |
| } |
| llvm_unreachable("bad builtin type kind"); |
| } |
| |
| /// Check an argument list for placeholders that we won't try to |
| /// handle later. |
| static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) { |
| // Apply this processing to all the arguments at once instead of |
| // dying at the first failure. |
| bool hasInvalid = false; |
| for (size_t i = 0, e = args.size(); i != e; i++) { |
| if (isPlaceholderToRemoveAsArg(args[i]->getType())) { |
| ExprResult result = S.CheckPlaceholderExpr(args[i]); |
| if (result.isInvalid()) hasInvalid = true; |
| else args[i] = result.get(); |
| } |
| } |
| return hasInvalid; |
| } |
| |
| /// If a builtin function has a pointer argument with no explicit address |
| /// space, then it should be able to accept a pointer to any address |
| /// space as input. In order to do this, we need to replace the |
| /// standard builtin declaration with one that uses the same address space |
| /// as the call. |
| /// |
| /// \returns nullptr If this builtin is not a candidate for a rewrite i.e. |
| /// it does not contain any pointer arguments without |
| /// an address space qualifer. Otherwise the rewritten |
| /// FunctionDecl is returned. |
| /// TODO: Handle pointer return types. |
| static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context, |
| FunctionDecl *FDecl, |
| MultiExprArg ArgExprs) { |
| |
| QualType DeclType = FDecl->getType(); |
| const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType); |
| |
| if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT || |
| ArgExprs.size() < FT->getNumParams()) |
| return nullptr; |
| |
| bool NeedsNewDecl = false; |
| unsigned i = 0; |
| SmallVector<QualType, 8> OverloadParams; |
| |
| for (QualType ParamType : FT->param_types()) { |
| |
| // Convert array arguments to pointer to simplify type lookup. |
| ExprResult ArgRes = |
| Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]); |
| if (ArgRes.isInvalid()) |
| return nullptr; |
| Expr *Arg = ArgRes.get(); |
| QualType ArgType = Arg->getType(); |
| if (!ParamType->isPointerType() || |
| ParamType.hasAddressSpace() || |
| !ArgType->isPointerType() || |
| !ArgType->getPointeeType().hasAddressSpace()) { |
| OverloadParams.push_back(ParamType); |
| continue; |
| } |
| |
| QualType PointeeType = ParamType->getPointeeType(); |
| if (PointeeType.hasAddressSpace()) |
| continue; |
| |
| NeedsNewDecl = true; |
| LangAS AS = ArgType->getPointeeType().getAddressSpace(); |
| |
| PointeeType = Context.getAddrSpaceQualType(PointeeType, AS); |
| OverloadParams.push_back(Context.getPointerType(PointeeType)); |
| } |
| |
| if (!NeedsNewDecl) |
| return nullptr; |
| |
| FunctionProtoType::ExtProtoInfo EPI; |
| EPI.Variadic = FT->isVariadic(); |
| QualType OverloadTy = Context.getFunctionType(FT->getReturnType(), |
| OverloadParams, EPI); |
| DeclContext *Parent = FDecl->getParent(); |
| FunctionDecl *OverloadDecl = FunctionDecl::Create( |
| Context, Parent, FDecl->getLocation(), FDecl->getLocation(), |
| FDecl->getIdentifier(), OverloadTy, |
| /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(), |
| false, |
| /*hasPrototype=*/true); |
| SmallVector<ParmVarDecl*, 16> Params; |
| FT = cast<FunctionProtoType>(OverloadTy); |
| for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { |
| QualType ParamType = FT->getParamType(i); |
| ParmVarDecl *Parm = |
| ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(), |
| SourceLocation(), nullptr, ParamType, |
| /*TInfo=*/nullptr, SC_None, nullptr); |
| Parm->setScopeInfo(0, i); |
| Params.push_back(Parm); |
| } |
| OverloadDecl->setParams(Params); |
| Sema->mergeDeclAttributes(OverloadDecl, FDecl); |
| return OverloadDecl; |
| } |
| |
| static void checkDirectCallValidity(Sema &S, const Expr *Fn, |
| FunctionDecl *Callee, |
| MultiExprArg ArgExprs) { |
| // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and |
| // similar attributes) really don't like it when functions are called with an |
| // invalid number of args. |
| if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(), |
| /*PartialOverloading=*/false) && |
| !Callee->isVariadic()) |
| return; |
| if (Callee->getMinRequiredArguments() > ArgExprs.size()) |
| return; |
| |
| if (const EnableIfAttr *Attr = |
| S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) { |
| S.Diag(Fn->getBeginLoc(), |
| isa<CXXMethodDecl>(Callee) |
| ? diag::err_ovl_no_viable_member_function_in_call |
| : diag::err_ovl_no_viable_function_in_call) |
| << Callee << Callee->getSourceRange(); |
| S.Diag(Callee->getLocation(), |
| diag::note_ovl_candidate_disabled_by_function_cond_attr) |
| << Attr->getCond()->getSourceRange() << Attr->getMessage(); |
| return; |
| } |
| } |
| |
| static bool enclosingClassIsRelatedToClassInWhichMembersWereFound( |
| const UnresolvedMemberExpr *const UME, Sema &S) { |
| |
| const auto GetFunctionLevelDCIfCXXClass = |
| [](Sema &S) -> const CXXRecordDecl * { |
| const DeclContext *const DC = S.getFunctionLevelDeclContext(); |
| if (!DC || !DC->getParent()) |
| return nullptr; |
| |
| // If the call to some member function was made from within a member |
| // function body 'M' return return 'M's parent. |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(DC)) |
| return MD->getParent()->getCanonicalDecl(); |
| // else the call was made from within a default member initializer of a |
| // class, so return the class. |
| if (const auto *RD = dyn_cast<CXXRecordDecl>(DC)) |
| return RD->getCanonicalDecl(); |
| return nullptr; |
| }; |
| // If our DeclContext is neither a member function nor a class (in the |
| // case of a lambda in a default member initializer), we can't have an |
| // enclosing 'this'. |
| |
| const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S); |
| if (!CurParentClass) |
| return false; |
| |
| // The naming class for implicit member functions call is the class in which |
| // name lookup starts. |
| const CXXRecordDecl *const NamingClass = |
| UME->getNamingClass()->getCanonicalDecl(); |
| assert(NamingClass && "Must have naming class even for implicit access"); |
| |
| // If the unresolved member functions were found in a 'naming class' that is |
| // related (either the same or derived from) to the class that contains the |
| // member function that itself contained the implicit member access. |
| |
| return CurParentClass == NamingClass || |
| CurParentClass->isDerivedFrom(NamingClass); |
| } |
| |
| static void |
| tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs( |
| Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) { |
| |
| if (!UME) |
| return; |
| |
| LambdaScopeInfo *const CurLSI = S.getCurLambda(); |
| // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't |
| // already been captured, or if this is an implicit member function call (if |
| // it isn't, an attempt to capture 'this' should already have been made). |
| if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None || |
| !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured()) |
| return; |
| |
| // Check if the naming class in which the unresolved members were found is |
| // related (same as or is a base of) to the enclosing class. |
| |
| if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S)) |
| return; |
| |
| |
| DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent(); |
| // If the enclosing function is not dependent, then this lambda is |
| // capture ready, so if we can capture this, do so. |
| if (!EnclosingFunctionCtx->isDependentContext()) { |
| // If the current lambda and all enclosing lambdas can capture 'this' - |
| // then go ahead and capture 'this' (since our unresolved overload set |
| // contains at least one non-static member function). |
| if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false)) |
| S.CheckCXXThisCapture(CallLoc); |
| } else if (S.CurContext->isDependentContext()) { |
| // ... since this is an implicit member reference, that might potentially |
| // involve a 'this' capture, mark 'this' for potential capture in |
| // enclosing lambdas. |
| if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None) |
| CurLSI->addPotentialThisCapture(CallLoc); |
| } |
| } |
| |
| ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc, |
| MultiExprArg ArgExprs, SourceLocation RParenLoc, |
| Expr *ExecConfig) { |
| ExprResult Call = |
| BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig, |
| /*IsExecConfig=*/false, /*AllowRecovery=*/true); |
| if (Call.isInvalid()) |
| return Call; |
| |
| // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier |
| // language modes. |
| if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) { |
| if (ULE->hasExplicitTemplateArgs() && |
| ULE->decls_begin() == ULE->decls_end()) { |
| Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20 |
| ? diag::warn_cxx17_compat_adl_only_template_id |
| : diag::ext_adl_only_template_id) |
| << ULE->getName(); |
| } |
| } |
| |
| if (LangOpts.OpenMP) |
| Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc, |
| ExecConfig); |
| |
| return Call; |
| } |
| |
| /// BuildCallExpr - Handle a call to Fn with the specified array of arguments. |
| /// This provides the location of the left/right parens and a list of comma |
| /// locations. |
| ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc, |
| MultiExprArg ArgExprs, SourceLocation RParenLoc, |
| Expr *ExecConfig, bool IsExecConfig, |
| bool AllowRecovery) { |
| // Since this might be a postfix expression, get rid of ParenListExprs. |
| ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn); |
| if (Result.isInvalid()) return ExprError(); |
| Fn = Result.get(); |
| |
| if (checkArgsForPlaceholders(*this, ArgExprs)) |
| return ExprError(); |
| |
| if (getLangOpts().CPlusPlus) { |
| // If this is a pseudo-destructor expression, build the call immediately. |
| if (isa<CXXPseudoDestructorExpr>(Fn)) { |
| if (!ArgExprs.empty()) { |
| // Pseudo-destructor calls should not have any arguments. |
| Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args) |
| << FixItHint::CreateRemoval( |
| SourceRange(ArgExprs.front()->getBeginLoc(), |
| ArgExprs.back()->getEndLoc())); |
| } |
| |
| return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy, |
| VK_PRValue, RParenLoc, CurFPFeatureOverrides()); |
| } |
| if (Fn->getType() == Context.PseudoObjectTy) { |
| ExprResult result = CheckPlaceholderExpr(Fn); |
| if (result.isInvalid()) return ExprError(); |
| Fn = result.get(); |
| } |
| |
| // Determine whether this is a dependent call inside a C++ template, |
| // in which case we won't do any semantic analysis now. |
| if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) { |
| if (ExecConfig) { |
| return CUDAKernelCallExpr::Create(Context, Fn, |
| cast<CallExpr>(ExecConfig), ArgExprs, |
| Context.DependentTy, VK_PRValue, |
| RParenLoc, CurFPFeatureOverrides()); |
| } else { |
| |
| tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs( |
| *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()), |
| Fn->getBeginLoc()); |
| |
| return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy, |
| VK_PRValue, RParenLoc, CurFPFeatureOverrides()); |
| } |
| } |
| |
| // Determine whether this is a call to an object (C++ [over.call.object]). |
| if (Fn->getType()->isRecordType()) |
| return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs, |
| RParenLoc); |
| |
| if (Fn->getType() == Context.UnknownAnyTy) { |
| ExprResult result = rebuildUnknownAnyFunction(*this, Fn); |
| if (result.isInvalid()) return ExprError(); |
| Fn = result.get(); |
| } |
| |
| if (Fn->getType() == Context.BoundMemberTy) { |
| return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs, |
| RParenLoc, ExecConfig, IsExecConfig, |
| AllowRecovery); |
| } |
| } |
| |
| // Check for overloaded calls. This can happen even in C due to extensions. |
| if (Fn->getType() == Context.OverloadTy) { |
| OverloadExpr::FindResult find = OverloadExpr::find(Fn); |
| |
| // We aren't supposed to apply this logic if there's an '&' involved. |
| if (!find.HasFormOfMemberPointer) { |
| if (Expr::hasAnyTypeDependentArguments(ArgExprs)) |
| return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy, |
| VK_PRValue, RParenLoc, CurFPFeatureOverrides()); |
| OverloadExpr *ovl = find.Expression; |
| if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl)) |
| return BuildOverloadedCallExpr( |
| Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig, |
| /*AllowTypoCorrection=*/true, find.IsAddressOfOperand); |
| return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs, |
| RParenLoc, ExecConfig, IsExecConfig, |
| AllowRecovery); |
| } |
| } |
| |
| // If we're directly calling a function, get the appropriate declaration. |
| if (Fn->getType() == Context.UnknownAnyTy) { |
| ExprResult result = rebuildUnknownAnyFunction(*this, Fn); |
| if (result.isInvalid()) return ExprError(); |
| Fn = result.get(); |
| } |
| |
| Expr *NakedFn = Fn->IgnoreParens(); |
| |
| bool CallingNDeclIndirectly = false; |
| NamedDecl *NDecl = nullptr; |
| if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) { |
| if (UnOp->getOpcode() == UO_AddrOf) { |
| CallingNDeclIndirectly = true; |
| NakedFn = UnOp->getSubExpr()->IgnoreParens(); |
| } |
| } |
| |
| if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) { |
| NDecl = DRE->getDecl(); |
| |
| FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl); |
| if (FDecl && FDecl->getBuiltinID()) { |
| // Rewrite the function decl for this builtin by replacing parameters |
| // with no explicit address space with the address space of the arguments |
| // in ArgExprs. |
| if ((FDecl = |
| rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) { |
| NDecl = FDecl; |
| Fn = DeclRefExpr::Create( |
| Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false, |
| SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl, |
| nullptr, DRE->isNonOdrUse()); |
| } |
| } |
| } else if (isa<MemberExpr>(NakedFn)) |
| NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl(); |
| |
| if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) { |
| if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable( |
| FD, /*Complain=*/true, Fn->getBeginLoc())) |
| return ExprError(); |
| |
| checkDirectCallValidity(*this, Fn, FD, ArgExprs); |
| |
| // If this expression is a call to a builtin function in HIP device |
| // compilation, allow a pointer-type argument to default address space to be |
| // passed as a pointer-type parameter to a non-default address space. |
| // If Arg is declared in the default address space and Param is declared |
| // in a non-default address space, perform an implicit address space cast to |
| // the parameter type. |
| if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD && |
| FD->getBuiltinID()) { |
| for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) { |
| ParmVarDecl *Param = FD->getParamDecl(Idx); |
| if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() || |
| !ArgExprs[Idx]->getType()->isPointerType()) |
| continue; |
| |
| auto ParamAS = Param->getType()->getPointeeType().getAddressSpace(); |
| auto ArgTy = ArgExprs[Idx]->getType(); |
| auto ArgPtTy = ArgTy->getPointeeType(); |
| auto ArgAS = ArgPtTy.getAddressSpace(); |
| |
| // Add address space cast if target address spaces are different |
| bool NeedImplicitASC = |
| ParamAS != LangAS::Default && // Pointer params in generic AS don't need special handling. |
| ( ArgAS == LangAS::Default || // We do allow implicit conversion from generic AS |
| // or from specific AS which has target AS matching that of Param. |
| getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS)); |
| if (!NeedImplicitASC) |
| continue; |
| |
| // First, ensure that the Arg is an RValue. |
| if (ArgExprs[Idx]->isGLValue()) { |
| ArgExprs[Idx] = ImplicitCastExpr::Create( |
| Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx], |
| nullptr, VK_PRValue, FPOptionsOverride()); |
| } |
| |
| // Construct a new arg type with address space of Param |
| Qualifiers ArgPtQuals = ArgPtTy.getQualifiers(); |
| ArgPtQuals.setAddressSpace(ParamAS); |
| auto NewArgPtTy = |
| Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals); |
| auto NewArgTy = |
| Context.getQualifiedType(Context.getPointerType(NewArgPtTy), |
| ArgTy.getQualifiers()); |
| |
| // Finally perform an implicit address space cast |
| ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy, |
| CK_AddressSpaceConversion) |
| .get(); |
| } |
| } |
| } |
| |
| if (Context.isDependenceAllowed() && |
| (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) { |
| assert(!getLangOpts().CPlusPlus); |
| assert((Fn->containsErrors() || |
| llvm::any_of(ArgExprs, |
| [](clang::Expr *E) { return E->containsErrors(); })) && |
| "should only occur in error-recovery path."); |
| QualType ReturnType = |
| llvm::isa_and_nonnull<FunctionDecl>(NDecl) |
| ? cast<FunctionDecl>(NDecl)->getCallResultType() |
| : Context.DependentTy; |
| return CallExpr::Create(Context, Fn, ArgExprs, ReturnType, |
| Expr::getValueKindForType(ReturnType), RParenLoc, |
| CurFPFeatureOverrides()); |
| } |
| return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc, |
| ExecConfig, IsExecConfig); |
| } |
| |
| /// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id |
| // with the specified CallArgs |
| Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id, |
| MultiExprArg CallArgs) { |
| StringRef Name = Context.BuiltinInfo.getName(Id); |
| LookupResult R(*this, &Context.Idents.get(Name), Loc, |
| Sema::LookupOrdinaryName); |
| LookupName(R, TUScope, /*AllowBuiltinCreation=*/true); |
| |
| auto *BuiltInDecl = R.getAsSingle<FunctionDecl>(); |
| assert(BuiltInDecl && "failed to find builtin declaration"); |
| |
| ExprResult DeclRef = |
| BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc); |
| assert(DeclRef.isUsable() && "Builtin reference cannot fail"); |
| |
| ExprResult Call = |
| BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc); |
| |
| assert(!Call.isInvalid() && "Call to builtin cannot fail!"); |
| return Call.get(); |
| } |
| |
| /// Parse a __builtin_astype expression. |
| /// |
| /// __builtin_astype( value, dst type ) |
| /// |
| ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy, |
| SourceLocation BuiltinLoc, |
| SourceLocation RParenLoc) { |
| QualType DstTy = GetTypeFromParser(ParsedDestTy); |
| return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc); |
| } |
| |
| /// Create a new AsTypeExpr node (bitcast) from the arguments. |
| ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy, |
| SourceLocation BuiltinLoc, |
| SourceLocation RParenLoc) { |
| ExprValueKind VK = VK_PRValue; |
| ExprObjectKind OK = OK_Ordinary; |
| QualType SrcTy = E->getType(); |
| if (!SrcTy->isDependentType() && |
| Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy)) |
| return ExprError( |
| Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size) |
| << DestTy << SrcTy << E->getSourceRange()); |
| return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc); |
| } |
| |
| /// ActOnConvertVectorExpr - create a new convert-vector expression from the |
| /// provided arguments. |
| /// |
| /// __builtin_convertvector( value, dst type ) |
| /// |
| ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy, |
| SourceLocation BuiltinLoc, |
| SourceLocation RParenLoc) { |
| TypeSourceInfo *TInfo; |
| GetTypeFromParser(ParsedDestTy, &TInfo); |
| return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc); |
| } |
| |
| /// BuildResolvedCallExpr - Build a call to a resolved expression, |
| /// i.e. an expression not of \p OverloadTy. The expression should |
| /// unary-convert to an expression of function-pointer or |
| /// block-pointer type. |
| /// |
| /// \param NDecl the declaration being called, if available |
| ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, |
| SourceLocation LParenLoc, |
| ArrayRef<Expr *> Args, |
| SourceLocation RParenLoc, Expr *Config, |
| bool IsExecConfig, ADLCallKind UsesADL) { |
| FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl); |
| unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0); |
| |
| // Functions with 'interrupt' attribute cannot be called directly. |
| if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) { |
| Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called); |
| return ExprError(); |
| } |
| |
| // Interrupt handlers don't save off the VFP regs automatically on ARM, |
| // so there's some risk when calling out to non-interrupt handler functions |
| // that the callee might not preserve them. This is easy to diagnose here, |
| // but can be very challenging to debug. |
| // Likewise, X86 interrupt handlers may only call routines with attribute |
| // no_caller_saved_registers since there is no efficient way to |
| // save and restore the non-GPR state. |
| if (auto *Caller = getCurFunctionDecl()) { |
| if (Caller->hasAttr<ARMInterruptAttr>()) { |
| bool VFP = Context.getTargetInfo().hasFeature("vfp"); |
| if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) { |
| Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention); |
| if (FDecl) |
| Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; |
| } |
| } |
| if (Caller->hasAttr<AnyX86InterruptAttr>() && |
| ((!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()))) { |
| Diag(Fn->getExprLoc(), diag::warn_anyx86_interrupt_regsave); |
| if (FDecl) |
| Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl; |
| } |
| } |
| |
| // Promote the function operand. |
| // We special-case function promotion here because we only allow promoting |
| // builtin functions to function pointers in the callee of a call. |
| ExprResult Result; |
| QualType ResultTy; |
| if (BuiltinID && |
| Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) { |
| // Extract the return type from the (builtin) function pointer type. |
| // FIXME Several builtins still have setType in |
| // Sema::CheckBuiltinFunctionCall. One should review their definitions in |
| // Builtins.def to ensure they are correct before removing setType calls. |
| QualType FnPtrTy = Context.getPointerType(FDecl->getType()); |
| Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get(); |
| ResultTy = FDecl->getCallResultType(); |
| } else { |
| Result = CallExprUnaryConversions(Fn); |
| ResultTy = Context.BoolTy; |
| } |
| if (Result.isInvalid()) |
| return ExprError(); |
| Fn = Result.get(); |
| |
| // Check for a valid function type, but only if it is not a builtin which |
| // requires custom type checking. These will be handled by |
| // CheckBuiltinFunctionCall below just after creation of the call expression. |
| const FunctionType *FuncT = nullptr; |
| if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) { |
| retry: |
| if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) { |
| // C99 6.5.2.2p1 - "The expression that denotes the called function shall |
| // have type pointer to function". |
| FuncT = PT->getPointeeType()->getAs<FunctionType>(); |
| if (!FuncT) |
| return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) |
| << Fn->getType() << Fn->getSourceRange()); |
| } else if (const BlockPointerType *BPT = |
| Fn->getType()->getAs<BlockPointerType>()) { |
| FuncT = BPT->getPointeeType()->castAs<FunctionType>(); |
| } else { |
| // Handle calls to expressions of unknown-any type. |
| if (Fn->getType() == Context.UnknownAnyTy) { |
| ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn); |
| if (rewrite.isInvalid()) |
| return ExprError(); |
| Fn = rewrite.get(); |
| goto retry; |
| } |
| |
| return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) |
| << Fn->getType() << Fn->getSourceRange()); |
| } |
| } |
| |
| // Get the number of parameters in the function prototype, if any. |
| // We will allocate space for max(Args.size(), NumParams) arguments |
| // in the call expression. |
| const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT); |
| unsigned NumParams = Proto ? Proto->getNumParams() : 0; |
| |
| CallExpr *TheCall; |
| if (Config) { |
| assert(UsesADL == ADLCallKind::NotADL && |
| "CUDAKernelCallExpr should not use ADL"); |
| TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config), |
| Args, ResultTy, VK_PRValue, RParenLoc, |
| CurFPFeatureOverrides(), NumParams); |
| } else { |
| TheCall = |
| CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc, |
| CurFPFeatureOverrides(), NumParams, UsesADL); |
| } |
| |
| if (!Context.isDependenceAllowed()) { |
| // Forget about the nulled arguments since typo correction |
| // do not handle them well. |
| TheCall->shrinkNumArgs(Args.size()); |
| // C cannot always handle TypoExpr nodes in builtin calls and direct |
| // function calls as their argument checking don't necessarily handle |
| // dependent types properly, so make sure any TypoExprs have been |
| // dealt with. |
| ExprResult Result = CorrectDelayedTyposInExpr(TheCall); |
| if (!Result.isUsable()) return ExprError(); |
| CallExpr *TheOldCall = TheCall; |
| TheCall = dyn_cast<CallExpr>(Result.get()); |
| bool CorrectedTypos = TheCall != TheOldCall; |
| if (!TheCall) return Result; |
| Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()); |
| |
| // A new call expression node was created if some typos were corrected. |
| // However it may not have been constructed with enough storage. In this |
| // case, rebuild the node with enough storage. The waste of space is |
| // immaterial since this only happens when some typos were corrected. |
| if (CorrectedTypos && Args.size() < NumParams) { |
| if (Config) |
| TheCall = CUDAKernelCallExpr::Create( |
| Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue, |
| RParenLoc, CurFPFeatureOverrides(), NumParams); |
| else |
| TheCall = |
| CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc, |
| CurFPFeatureOverrides(), NumParams, UsesADL); |
| } |
| // We can now handle the nulled arguments for the default arguments. |
| TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams)); |
| } |
| |
| // Bail out early if calling a builtin with custom type checking. |
| if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) |
| return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall); |
| |
| if (getLangOpts().CUDA) { |
| if (Config) { |
| // CUDA: Kernel calls must be to global functions |
| if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>()) |
| return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function) |
| << FDecl << Fn->getSourceRange()); |
| |
| // CUDA: Kernel function must have 'void' return type |
| if (!FuncT->getReturnType()->isVoidType() && |
| !FuncT->getReturnType()->getAs<AutoType>() && |
| !FuncT->getReturnType()->isInstantiationDependentType()) |
| return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return) |
| << Fn->getType() << Fn->getSourceRange()); |
| } else { |
| // CUDA: Calls to global functions must be configured |
| if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>()) |
| return ExprError(Diag(LParenLoc, diag::err_global_call_not_config) |
| << FDecl << Fn->getSourceRange()); |
| } |
| } |
| |
| // Check for a valid return type |
| if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall, |
| FDecl)) |
| return ExprError(); |
| |
| // We know the result type of the call, set it. |
| TheCall->setType(FuncT->getCallResultType(Context)); |
| TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType())); |
| |
| if (Proto) { |
| if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc, |
| IsExecConfig)) |
| return ExprError(); |
| } else { |
| assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!"); |
| |
| if (FDecl) { |
| // Check if we have too few/too many template arguments, based |
| // on our knowledge of the function definition. |
| const FunctionDecl *Def = nullptr; |
| if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) { |
| Proto = Def->getType()->getAs<FunctionProtoType>(); |
| if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size())) |
| Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments) |
| << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange(); |
| } |
| |
| // If the function we're calling isn't a function prototype, but we have |
| // a function prototype from a prior declaratiom, use that prototype. |
| if (!FDecl->hasPrototype()) |
| Proto = FDecl->getType()->getAs<FunctionProtoType>(); |
| } |
| |
| // Promote the arguments (C99 6.5.2.2p6). |
| for (unsigned i = 0, e = Args.size(); i != e; i++) { |
| Expr *Arg = Args[i]; |
| |
| if (Proto && i < Proto->getNumParams()) { |
| InitializedEntity Entity = InitializedEntity::InitializeParameter( |
| Context, Proto->getParamType(i), Proto->isParamConsumed(i)); |
| ExprResult ArgE = |
| PerformCopyInitialization(Entity, SourceLocation(), Arg); |
| if (ArgE.isInvalid()) |
| return true; |
| |
| Arg = ArgE.getAs<Expr>(); |
| |
| } else { |
| ExprResult ArgE = DefaultArgumentPromotion(Arg); |
| |
| if (ArgE.isInvalid()) |
| return true; |
| |
| Arg = ArgE.getAs<Expr>(); |
| } |
| |
| if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(), |
| diag::err_call_incomplete_argument, Arg)) |
| return ExprError(); |
| |
| TheCall->setArg(i, Arg); |
| } |
| TheCall->computeDependence(); |
| } |
| |
| if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl)) |
| if (!Method->isStatic()) |
| return ExprError(Diag(LParenLoc, diag::err_member_call_without_object) |
| << Fn->getSourceRange()); |
| |
| // Check for sentinels |
| if (NDecl) |
| DiagnoseSentinelCalls(NDecl, LParenLoc, Args); |
| |
| // Warn for unions passing across security boundary (CMSE). |
| if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) { |
| for (unsigned i = 0, e = Args.size(); i != e; i++) { |
| if (const auto *RT = |
| dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) { |
| if (RT->getDecl()->isOrContainsUnion()) |
| Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union) |
| << 0 << i; |
| } |
| } |
| } |
| |
| // Do special checking on direct calls to functions. |
| if (FDecl) { |
| if (CheckFunctionCall(FDecl, TheCall, Proto)) |
| return ExprError(); |
| |
| checkFortifiedBuiltinMemoryFunction(FDecl, TheCall); |
| |
| if (BuiltinID) |
| return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall); |
| } else if (NDecl) { |
| if (CheckPointerCall(NDecl, TheCall, Proto)) |
| return ExprError(); |
| } else { |
| if (CheckOtherCall(TheCall, Proto)) |
| return ExprError(); |
| } |
| |
| return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl); |
| } |
| |
| ExprResult |
| Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty, |
| SourceLocation RParenLoc, Expr *InitExpr) { |
| assert(Ty && "ActOnCompoundLiteral(): missing type"); |
| assert(InitExpr && "ActOnCompoundLiteral(): missing expression"); |
| |
| TypeSourceInfo *TInfo; |
| QualType literalType = GetTypeFromParser(Ty, &TInfo); |
| if (!TInfo) |
| TInfo = Context.getTrivialTypeSourceInfo(literalType); |
| |
| return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr); |
| } |
| |
| ExprResult |
| Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo, |
| SourceLocation RParenLoc, Expr *LiteralExpr) { |
| QualType literalType = TInfo->getType(); |
| |
| if (literalType->isArrayType()) { |
| if (RequireCompleteSizedType( |
| LParenLoc, Context.getBaseElementType(literalType), |
| diag::err_array_incomplete_or_sizeless_type, |
| SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()))) |
| return ExprError(); |
| if (literalType->isVariableArrayType()) { |
| if (!tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc, |
| diag::err_variable_object_no_init)) { |
| return ExprError(); |
| } |
| } |
| } else if (!literalType->isDependentType() && |
| RequireCompleteType(LParenLoc, literalType, |
| diag::err_typecheck_decl_incomplete_type, |
| SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()))) |
| return ExprError(); |
| |
| InitializedEntity Entity |
| = InitializedEntity::InitializeCompoundLiteralInit(TInfo); |
| InitializationKind Kind |
| = InitializationKind::CreateCStyleCast(LParenLoc, |
| SourceRange(LParenLoc, RParenLoc), |
| /*InitList=*/true); |
| InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr); |
| ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr, |
| &literalType); |
| if (Result.isInvalid()) |
| return ExprError(); |
| LiteralExpr = Result.get(); |
| |
| bool isFileScope = !CurContext->isFunctionOrMethod(); |
| |
| // In C, compound literals are l-values for some reason. |
| // For GCC compatibility, in C++, file-scope array compound literals with |
| // constant initializers are also l-values, and compound literals are |
| // otherwise prvalues. |
| // |
| // (GCC also treats C++ list-initialized file-scope array prvalues with |
| // constant initializers as l-values, but that's non-conforming, so we don't |
| // follow it there.) |
| // |
| // FIXME: It would be better to handle the lvalue cases as materializing and |
| // lifetime-extending a temporary object, but our materialized temporaries |
| // representation only supports lifetime extension from a variable, not "out |
| // of thin air". |
| // FIXME: For C++, we might want to instead lifetime-extend only if a pointer |
| // is bound to the result of applying array-to-pointer decay to the compound |
| // literal. |
| // FIXME: GCC supports compound literals of reference type, which should |
| // obviously have a value kind derived from the kind of reference involved. |
| ExprValueKind VK = |
| (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType())) |
| ? VK_PRValue |
| : VK_LValue; |
| |
| if (isFileScope) |
| if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr)) |
| for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) { |
| Expr *Init = ILE->getInit(i); |
| ILE->setInit(i, ConstantExpr::Create(Context, Init)); |
| } |
| |
| auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType, |
| VK, LiteralExpr, isFileScope); |
| if (isFileScope) { |
| if (!LiteralExpr->isTypeDependent() && |
| !LiteralExpr->isValueDependent() && |
| !literalType->isDependentType()) // C99 6.5.2.5p3 |
| if (CheckForConstantInitializer(LiteralExpr, literalType)) |
| return ExprError(); |
| } else if (literalType.getAddressSpace() != LangAS::opencl_private && |
| literalType.getAddressSpace() != LangAS::Default) { |
| // Embedded-C extensions to C99 6.5.2.5: |
| // "If the compound literal occurs inside the body of a function, the |
| // type name shall not be qualified by an address-space qualifier." |
| Diag(LParenLoc, diag::err_compound_literal_with_address_space) |
| << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()); |
| return ExprError(); |
| } |
| |
| if (!isFileScope && !getLangOpts().CPlusPlus) { |
| // Compound literals that have automatic storage duration are destroyed at |
| // the end of the scope in C; in C++, they're just temporaries. |
| |
| // Emit diagnostics if it is or contains a C union type that is non-trivial |
| // to destruct. |
| if (E->getType().hasNonTrivialToPrimitiveDestructCUnion()) |
| checkNonTrivialCUnion(E->getType(), E->getExprLoc(), |
| NTCUC_CompoundLiteral, NTCUK_Destruct); |
| |
| // Diagnose jumps that enter or exit the lifetime of the compound literal. |
| if (literalType.isDestructedType()) { |
| Cleanup.setExprNeedsCleanups(true); |
| ExprCleanupObjects.push_back(E); |
| getCurFunction()->setHasBranchProtectedScope(); |
| } |
| } |
| |
| if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() || |
| E->getType().hasNonTrivialToPrimitiveCopyCUnion()) |
| checkNonTrivialCUnionInInitializer(E->getInitializer(), |
| E->getInitializer()->getExprLoc()); |
| |
| return MaybeBindToTemporary(E); |
| } |
| |
| ExprResult |
| Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, |
| SourceLocation RBraceLoc) { |
| // Only produce each kind of designated initialization diagnostic once. |
| SourceLocation FirstDesignator; |
| bool DiagnosedArrayDesignator = false; |
| bool DiagnosedNestedDesignator = false; |
| bool DiagnosedMixedDesignator = false; |
| |
| // Check that any designated initializers are syntactically valid in the |
| // current language mode. |
| for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) { |
| if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) { |
| if (FirstDesignator.isInvalid()) |
| FirstDesignator = DIE->getBeginLoc(); |
| |
| if (!getLangOpts().CPlusPlus) |
| break; |
| |
| if (!DiagnosedNestedDesignator && DIE->size() > 1) { |
| DiagnosedNestedDesignator = true; |
| Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested) |
| << DIE->getDesignatorsSourceRange(); |
| } |
| |
| for (auto &Desig : DIE->designators()) { |
| if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) { |
| DiagnosedArrayDesignator = true; |
| Diag(Desig.getBeginLoc(), diag::ext_designated_init_array) |
| << Desig.getSourceRange(); |
| } |
| } |
| |
| if (!DiagnosedMixedDesignator && |
| !isa<DesignatedInitExpr>(InitArgList[0])) { |
| DiagnosedMixedDesignator = true; |
| Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed) |
| << DIE->getSourceRange(); |
| Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed) |
| << InitArgList[0]->getSourceRange(); |
| } |
| } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator && |
| isa<DesignatedInitExpr>(InitArgList[0])) { |
| DiagnosedMixedDesignator = true; |
| auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]); |
| Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed) |
| << DIE->getSourceRange(); |
| Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed) |
| << InitArgList[I]->getSourceRange(); |
| } |
| } |
| |
| if (FirstDesignator.isValid()) { |
| // Only diagnose designated initiaization as a C++20 extension if we didn't |
| // already diagnose use of (non-C++20) C99 designator syntax. |
| if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator && |
| !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) { |
| Diag(FirstDesignator, getLangOpts().CPlusPlus20 |
| ? diag::warn_cxx17_compat_designated_init |
| : diag::ext_cxx_designated_init); |
| } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) { |
| Diag(FirstDesignator, diag::ext_designated_init); |
| } |
| } |
| |
| return BuildInitList(LBraceLoc, InitArgList, RBraceLoc); |
| } |
| |
| ExprResult |
| Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList, |
| SourceLocation RBraceLoc) { |
| // Semantic analysis for initializers is done by ActOnDeclarator() and |
| // CheckInitializer() - it requires knowledge of the object being initialized. |
| |
| // Immediately handle non-overload placeholders. Overloads can be |
| // resolved contextually, but everything else here can't. |
| for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) { |
| if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) { |
| ExprResult result = CheckPlaceholderExpr(InitArgList[I]); |
| |
| // Ignore failures; dropping the entire initializer list because |
| // of one failure would be terrible for indexing/etc. |
| if (result.isInvalid()) continue; |
| |
| InitArgList[I] = result.get(); |
| } |
| } |
| |
| InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList, |
| RBraceLoc); |
| E->setType(Context.VoidTy); // FIXME: just a place holder for now. |
| return E; |
| } |
| |
| /// Do an explicit extend of the given block pointer if we're in ARC. |
| void Sema::maybeExtendBlockObject(ExprResult &E) { |
| assert(E.get()->getType()->isBlockPointerType()); |
| assert(E.get()->isPRValue()); |
| |
| // Only do this in an r-value context. |
| if (!getLangOpts().ObjCAutoRefCount) return; |
| |
| E = ImplicitCastExpr::Create( |
| Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(), |
| /*base path*/ nullptr, VK_PRValue, FPOptionsOverride()); |
| Cleanup.setExprNeedsCleanups(true); |
| } |
| |
| /// Prepare a conversion of the given expression to an ObjC object |
| /// pointer type. |
| CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) { |
| QualType type = E.get()->getType(); |
| if (type->isObjCObjectPointerType()) { |
| return CK_BitCast; |
| } else if (type->isBlockPointerType()) { |
| maybeExtendBlockObject(E); |
| return CK_BlockPointerToObjCPointerCast; |
| } else { |
| assert(type->isPointerType()); |
| return CK_CPointerToObjCPointerCast; |
| } |
| } |
| |
| /// Prepares for a scalar cast, performing all the necessary stages |
| /// except the final cast and returning the kind required. |
| CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) { |
| // Both Src and Dest are scalar types, i.e. arithmetic or pointer. |
| // Also, callers should have filtered out the invalid cases with |
| // pointers. Everything else should be possible. |
| |
| QualType SrcTy = Src.get()->getType(); |
| if (Context.hasSameUnqualifiedType(SrcTy, DestTy)) |
| return CK_NoOp; |
| |
| switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) { |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| |
| case Type::STK_CPointer: |
| case Type::STK_BlockPointer: |
| case Type::STK_ObjCObjectPointer: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_CPointer: { |
| LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace(); |
| LangAS DestAS = DestTy->getPointeeType().getAddressSpace(); |
| if (SrcAS != DestAS) |
| return CK_AddressSpaceConversion; |
| if (Context.hasCvrSimilarType(SrcTy, DestTy)) |
| return CK_NoOp; |
| return CK_BitCast; |
| } |
| case Type::STK_BlockPointer: |
| return (SrcKind == Type::STK_BlockPointer |
| ? CK_BitCast : CK_AnyPointerToBlockPointerCast); |
| case Type::STK_ObjCObjectPointer: |
| if (SrcKind == Type::STK_ObjCObjectPointer) |
| return CK_BitCast; |
| if (SrcKind == Type::STK_CPointer) |
| return CK_CPointerToObjCPointerCast; |
| maybeExtendBlockObject(Src); |
| return CK_BlockPointerToObjCPointerCast; |
| case Type::STK_Bool: |
| return CK_PointerToBoolean; |
| case Type::STK_Integral: |
| return CK_PointerToIntegral; |
| case Type::STK_Floating: |
| case Type::STK_FloatingComplex: |
| case Type::STK_IntegralComplex: |
| case Type::STK_MemberPointer: |
| case Type::STK_FixedPoint: |
| llvm_unreachable("illegal cast from pointer"); |
| } |
| llvm_unreachable("Should have returned before this"); |
| |
| case Type::STK_FixedPoint: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_FixedPoint: |
| return CK_FixedPointCast; |
| case Type::STK_Bool: |
| return CK_FixedPointToBoolean; |
| case Type::STK_Integral: |
| return CK_FixedPointToIntegral; |
| case Type::STK_Floating: |
| return CK_FixedPointToFloating; |
| case Type::STK_IntegralComplex: |
| case Type::STK_FloatingComplex: |
| Diag(Src.get()->getExprLoc(), |
| diag::err_unimplemented_conversion_with_fixed_point_type) |
| << DestTy; |
| return CK_IntegralCast; |
| case Type::STK_CPointer: |
| case Type::STK_ObjCObjectPointer: |
| case Type::STK_BlockPointer: |
| case Type::STK_MemberPointer: |
| llvm_unreachable("illegal cast to pointer type"); |
| } |
| llvm_unreachable("Should have returned before this"); |
| |
| case Type::STK_Bool: // casting from bool is like casting from an integer |
| case Type::STK_Integral: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_CPointer: |
| case Type::STK_ObjCObjectPointer: |
| case Type::STK_BlockPointer: |
| if (Src.get()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull)) |
| return CK_NullToPointer; |
| return CK_IntegralToPointer; |
| case Type::STK_Bool: |
| return CK_IntegralToBoolean; |
| case Type::STK_Integral: |
| return CK_IntegralCast; |
| case Type::STK_Floating: |
| return CK_IntegralToFloating; |
| case Type::STK_IntegralComplex: |
| Src = ImpCastExprToType(Src.get(), |
| DestTy->castAs<ComplexType>()->getElementType(), |
| CK_IntegralCast); |
| return CK_IntegralRealToComplex; |
| case Type::STK_FloatingComplex: |
| Src = ImpCastExprToType(Src.get(), |
| DestTy->castAs<ComplexType>()->getElementType(), |
| CK_IntegralToFloating); |
| return CK_FloatingRealToComplex; |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| case Type::STK_FixedPoint: |
| return CK_IntegralToFixedPoint; |
| } |
| llvm_unreachable("Should have returned before this"); |
| |
| case Type::STK_Floating: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_Floating: |
| return CK_FloatingCast; |
| case Type::STK_Bool: |
| return CK_FloatingToBoolean; |
| case Type::STK_Integral: |
| return CK_FloatingToIntegral; |
| case Type::STK_FloatingComplex: |
| Src = ImpCastExprToType(Src.get(), |
| DestTy->castAs<ComplexType>()->getElementType(), |
| CK_FloatingCast); |
| return CK_FloatingRealToComplex; |
| case Type::STK_IntegralComplex: |
| Src = ImpCastExprToType(Src.get(), |
| DestTy->castAs<ComplexType>()->getElementType(), |
| CK_FloatingToIntegral); |
| return CK_IntegralRealToComplex; |
| case Type::STK_CPointer: |
| case Type::STK_ObjCObjectPointer: |
| case Type::STK_BlockPointer: |
| llvm_unreachable("valid float->pointer cast?"); |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| case Type::STK_FixedPoint: |
| return CK_FloatingToFixedPoint; |
| } |
| llvm_unreachable("Should have returned before this"); |
| |
| case Type::STK_FloatingComplex: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_FloatingComplex: |
| return CK_FloatingComplexCast; |
| case Type::STK_IntegralComplex: |
| return CK_FloatingComplexToIntegralComplex; |
| case Type::STK_Floating: { |
| QualType ET = SrcTy->castAs<ComplexType>()->getElementType(); |
| if (Context.hasSameType(ET, DestTy)) |
| return CK_FloatingComplexToReal; |
| Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal); |
| return CK_FloatingCast; |
| } |
| case Type::STK_Bool: |
| return CK_FloatingComplexToBoolean; |
| case Type::STK_Integral: |
| Src = ImpCastExprToType(Src.get(), |
| SrcTy->castAs<ComplexType>()->getElementType(), |
| CK_FloatingComplexToReal); |
| return CK_FloatingToIntegral; |
| case Type::STK_CPointer: |
| case Type::STK_ObjCObjectPointer: |
| case Type::STK_BlockPointer: |
| llvm_unreachable("valid complex float->pointer cast?"); |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| case Type::STK_FixedPoint: |
| Diag(Src.get()->getExprLoc(), |
| diag::err_unimplemented_conversion_with_fixed_point_type) |
| << SrcTy; |
| return CK_IntegralCast; |
| } |
| llvm_unreachable("Should have returned before this"); |
| |
| case Type::STK_IntegralComplex: |
| switch (DestTy->getScalarTypeKind()) { |
| case Type::STK_FloatingComplex: |
| return CK_IntegralComplexToFloatingComplex; |
| case Type::STK_IntegralComplex: |
| return CK_IntegralComplexCast; |
| case Type::STK_Integral: { |
| QualType ET = SrcTy->castAs<ComplexType>()->getElementType(); |
| if (Context.hasSameType(ET, DestTy)) |
| return CK_IntegralComplexToReal; |
| Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal); |
| return CK_IntegralCast; |
| } |
| case Type::STK_Bool: |
| return CK_IntegralComplexToBoolean; |
| case Type::STK_Floating: |
| Src = ImpCastExprToType(Src.get(), |
| SrcTy->castAs<ComplexType>()->getElementType(), |
| CK_IntegralComplexToReal); |
| return CK_IntegralToFloating; |
| case Type::STK_CPointer: |
| case Type::STK_ObjCObjectPointer: |
| case Type::STK_BlockPointer: |
| llvm_unreachable("valid complex int->pointer cast?"); |
| case Type::STK_MemberPointer: |
| llvm_unreachable("member pointer type in C"); |
| case Type::STK_FixedPoint: |
| Diag(Src.get()->getExprLoc(), |
| diag::err_unimplemented_conversion_with_fixed_point_type) |
| << SrcTy; |
| return CK_IntegralCast; |
| } |
| llvm_unreachable("Should have returned before this"); |
| } |
| |
| llvm_unreachable("Unhandled scalar cast"); |
| } |
| |
| static bool breakDownVectorType(QualType type, uint64_t &len, |
| QualType &eltType) { |
| // Vectors are simple. |
| if (const VectorType *vecType = type->getAs<VectorType>()) { |
| len = vecType->getNumElements(); |
| eltType = vecType->getElementType(); |
| assert(eltType->isScalarType()); |
| return true; |
| } |
| |
| // We allow lax conversion to and from non-vector types, but only if |
| // they're real types (i.e. non-complex, non-pointer scalar types). |
| if (!type->isRealType()) return false; |
| |
| len = 1; |
| eltType = type; |
| return true; |
| } |
| |
| /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the |
| /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST) |
| /// allowed? |
| /// |
| /// This will also return false if the two given types do not make sense from |
| /// the perspective of SVE bitcasts. |
| bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) { |
| assert(srcTy->isVectorType() || destTy->isVectorType()); |
| |
| auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) { |
| if (!FirstType->isSizelessBuiltinType()) |
| return false; |
| |
| const auto *VecTy = SecondType->getAs<VectorType>(); |
| return VecTy && |
| VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector; |
| }; |
| |
| return ValidScalableConversion(srcTy, destTy) || |
| ValidScalableConversion(destTy, srcTy); |
| } |
| |
| /// Are the two types matrix types and do they have the same dimensions i.e. |
| /// do they have the same number of rows and the same number of columns? |
| bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) { |
| if (!destTy->isMatrixType() || !srcTy->isMatrixType()) |
| return false; |
| |
| const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>(); |
| const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>(); |
| |
| return matSrcType->getNumRows() == matDestType->getNumRows() && |
| matSrcType->getNumColumns() == matDestType->getNumColumns(); |
| } |
| |
| bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) { |
| assert(DestTy->isVectorType() || SrcTy->isVectorType()); |
| |
| uint64_t SrcLen, DestLen; |
| QualType SrcEltTy, DestEltTy; |
| if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy)) |
| return false; |
| if (!breakDownVectorType(DestTy, DestLen, DestEltTy)) |
| return false; |
| |
| // ASTContext::getTypeSize will return the size rounded up to a |
| // power of 2, so instead of using that, we need to use the raw |
| // element size multiplied by the element count. |
| uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy); |
| uint64_t DestEltSize = Context.getTypeSize(DestEltTy); |
| |
| return (SrcLen * SrcEltSize == DestLen * DestEltSize); |
| } |
| |
| /// Are the two types lax-compatible vector types? That is, given |
| /// that one of them is a vector, do they have equal storage sizes, |
| /// where the storage size is the number of elements times the element |
| /// size? |
| /// |
| /// This will also return false if either of the types is neither a |
| /// vector nor a real type. |
| bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) { |
| assert(destTy->isVectorType() || srcTy->isVectorType()); |
| |
| // Disallow lax conversions between scalars and ExtVectors (these |
| // conversions are allowed for other vector types because common headers |
| // depend on them). Most scalar OP ExtVector cases are handled by the |
| // splat path anyway, which does what we want (convert, not bitcast). |
| // What this rules out for ExtVectors is crazy things like char4*float. |
| if (srcTy->isScalarType() && destTy->isExtVectorType()) return false; |
| if (destTy->isScalarType() && srcTy->isExtVectorType()) return false; |
| |
| return areVectorTypesSameSize(srcTy, destTy); |
| } |
| |
| /// Is this a legal conversion between two types, one of which is |
| /// known to be a vector type? |
| bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) { |
| assert(destTy->isVectorType() || srcTy->isVectorType()); |
| |
| switch (Context.getLangOpts().getLaxVectorConversions()) { |
| case LangOptions::LaxVectorConversionKind::None: |
| return false; |
| |
| case LangOptions::LaxVectorConversionKind::Integer: |
| if (!srcTy->isIntegralOrEnumerationType()) { |
| auto *Vec = srcTy->getAs<VectorType>(); |
| if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType()) |
| return false; |
| } |
| if (!destTy->isIntegralOrEnumerationType()) { |
| auto *Vec = destTy->getAs<VectorType>(); |
| if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType()) |
| return false; |
| } |
| // OK, integer (vector) -> integer (vector) bitcast. |
| break; |
| |
| case LangOptions::LaxVectorConversionKind::All: |
| break; |
| } |
| |
| return areLaxCompatibleVectorTypes(srcTy, destTy); |
| } |
| |
| bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy, |
| CastKind &Kind) { |
| if (SrcTy->isMatrixType() && DestTy->isMatrixType()) { |
| if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) { |
| return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes) |
| << DestTy << SrcTy << R; |
| } |
| } else if (SrcTy->isMatrixType()) { |
| return Diag(R.getBegin(), |
| diag::err_invalid_conversion_between_matrix_and_type) |
| << SrcTy << DestTy << R; |
| } else if (DestTy->isMatrixType()) { |
| return Diag(R.getBegin(), |
| diag::err_invalid_conversion_between_matrix_and_type) |
| << DestTy << SrcTy << R; |
| } |
| |
| Kind = CK_MatrixCast; |
| return false; |
| } |
| |
| bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty, |
| CastKind &Kind) { |
| assert(VectorTy->isVectorType() && "Not a vector type!"); |
| |
| if (Ty->isVectorType() || Ty->isIntegralType(Context)) { |
| if (!areLaxCompatibleVectorTypes(Ty, VectorTy)) |
| return Diag(R.getBegin(), |
| Ty->isVectorType() ? |
| diag::err_invalid_conversion_between_vectors : |
| diag::err_invalid_conversion_between_vector_and_integer) |
| << VectorTy << Ty << R; |
| } else |
| return Diag(R.getBegin(), |
| diag::err_invalid_conversion_between_vector_and_scalar) |
| << VectorTy << Ty << R; |
| |
| Kind = CK_BitCast; |
| return false; |
| } |
| |
| ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) { |
| QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType(); |
| |
| if (DestElemTy == SplattedExpr->getType()) |
| return SplattedExpr; |
| |
| assert(DestElemTy->isFloatingType() || |
| DestElemTy->isIntegralOrEnumerationType()); |
| |
| CastKind CK; |
| if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) { |
| // OpenCL requires that we convert `true` boolean expressions to -1, but |
| // only when splatting vectors. |
| if (DestElemTy->isFloatingType()) { |
| // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast |
| // in two steps: boolean to signed integral, then to floating. |
| ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy, |
| CK_BooleanToSignedIntegral); |
| SplattedExpr = CastExprRes.get(); |
| CK = CK_IntegralToFloating; |
| } else { |
| CK = CK_BooleanToSignedIntegral; |
| } |
| } else { |
| ExprResult CastExprRes = SplattedExpr; |
| CK = PrepareScalarCast(CastExprRes, DestElemTy); |
| if (CastExprRes.isInvalid()) |
| return ExprError(); |
| SplattedExpr = CastExprRes.get(); |
| } |
| return ImpCastExprToType(SplattedExpr, DestElemTy, CK); |
| } |
| |
| ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy, |
| Expr *CastExpr, CastKind &Kind) { |
| assert(DestTy->isExtVectorType() && "Not an extended vector type!"); |
| |
| QualType SrcTy = CastExpr->getType(); |
| |
| // If SrcTy is a VectorType, the total size must match to explicitly cast to |
| // an ExtVectorType. |
| // In OpenCL, casts between vectors of different types are not allowed. |
| // (See OpenCL 6.2). |
| if (SrcTy->isVectorType()) { |
| if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) || |
| (getLangOpts().OpenCL && |
| !Context.hasSameUnqualifiedType(DestTy, SrcTy))) { |
| Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors) |
| << DestTy << SrcTy << R; |
| return ExprError(); |
| } |
| Kind = CK_BitCast; |
| return CastExpr; |
| } |
| |
| // All non-pointer scalars can be cast to ExtVector type. The appropriate |
| // conversion will take place first from scalar to elt type, and then |
| // splat from elt type to vector. |
| if (SrcTy->isPointerType()) |
| return Diag(R.getBegin(), |
| diag::err_invalid_conversion_between_vector_and_scalar) |
| << DestTy << SrcTy << R; |
| |
| Kind = CK_VectorSplat; |
| return prepareVectorSplat(DestTy, CastExpr); |
| } |
| |
| ExprResult |
| Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc, |
| Declarator &D, ParsedType &Ty, |
| SourceLocation RParenLoc, Expr *CastExpr) { |
| assert(!D.isInvalidType() && (CastExpr != nullptr) && |
| "ActOnCastExpr(): missing type or expr"); |
| |
| TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType()); |
| if (D.isInvalidType()) |
| return ExprError(); |
| |
| if (getLangOpts().CPlusPlus) { |
| // Check that there are no default arguments (C++ only). |
| CheckExtraCXXDefaultArguments(D); |
| } else { |
| // Make sure any TypoExprs have been dealt with. |
| ExprResult Res = CorrectDelayedTyposInExpr(CastExpr); |
| if (!Res.isUsable()) |
| return ExprError(); |
| CastExpr = Res.get(); |
| } |
| |
| checkUnusedDeclAttributes(D); |
| |
| QualType castType = castTInfo->getType(); |
| Ty = CreateParsedType(castType, castTInfo); |
| |
| bool isVectorLiteral = false; |
| |
| // Check for an altivec or OpenCL literal, |
| // i.e. all the elements are integer constants. |
| ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr); |
| ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr); |
| if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL) |
| && castType->isVectorType() && (PE || PLE)) { |
| if (PLE && PLE->getNumExprs() == 0) { |
| Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer); |
| return ExprError(); |
| } |
| if (PE || PLE->getNumExprs() == 1) { |
| Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0)); |
| if (!E->isTypeDependent() && !E->getType()->isVectorType()) |
| isVectorLiteral = true; |
| } |
| else |
| isVectorLiteral = true; |
| } |
| |
| // If this is a vector initializer, '(' type ')' '(' init, ..., init ')' |
| // then handle it as such. |
| if (isVectorLiteral) |
| return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo); |
| |
| // If the Expr being casted is a ParenListExpr, handle it specially. |
| // This is not an AltiVec-style cast, so turn the ParenListExpr into a |
| // sequence of BinOp comma operators. |
| if (isa<ParenListExpr>(CastExpr)) { |
| ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr); |
| if (Result.isInvalid()) return ExprError(); |
| CastExpr = Result.get(); |
| } |
| |
| if (getLangOpts().CPlusPlus && !castType->isVoidType() && |
| !getSourceManager().isInSystemMacro(LParenLoc)) |
| Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange(); |
| |
| CheckTollFreeBridgeCast(castType, CastExpr); |
| |
| CheckObjCBridgeRelatedCast(castType, CastExpr); |
| |
| DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr); |
| |
| return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr); |
| } |
| |
| ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc, |
| SourceLocation RParenLoc, Expr *E, |
| TypeSourceInfo *TInfo) { |
| assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) && |
| "Expected paren or paren list expression"); |
| |
| Expr **exprs; |
| unsigned numExprs; |
| Expr *subExpr; |
| SourceLocation LiteralLParenLoc, LiteralRParenLoc; |
| if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) { |
| LiteralLParenLoc = PE->getLParenLoc(); |
| LiteralRParenLoc = PE->getRParenLoc(); |
| exprs = PE->getExprs(); |
| numExprs = PE->getNumExprs(); |
| } else { // isa<ParenExpr> by assertion at function entrance |
| LiteralLParenLoc = cast<ParenExpr>(E)->getLParen(); |
| LiteralRParenLoc = cast<ParenExpr>(E)->getRParen(); |
| subExpr = cast<ParenExpr>(E)->getSubExpr(); |
| exprs = &subExpr; |
| numExprs = 1; |
| } |
| |
| QualType Ty = TInfo->getType(); |
| assert(Ty->isVectorType() && "Expected vector type"); |
| |
| SmallVector<Expr *, 8> initExprs; |
| const VectorType *VTy = Ty->castAs<VectorType>(); |
| unsigned numElems = VTy->getNumElements(); |
| |
| // '(...)' form of vector initialization in AltiVec: the number of |
| // initializers must be one or must match the size of the vector. |
| // If a single value is specified in the initializer then it will be |
| // replicated to all the components of the vector |
| if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty, |
| VTy->getElementType())) |
| return ExprError(); |
| if (ShouldSplatAltivecScalarInCast(VTy)) { |
| // The number of initializers must be one or must match the size of the |
| // vector. If a single value is specified in the initializer then it will |
| // be replicated to all the components of the vector |
| if (numExprs == 1) { |
| QualType ElemTy = VTy->getElementType(); |
| ExprResult Literal = DefaultLvalueConversion(exprs[0]); |
| if (Literal.isInvalid()) |
| return ExprError(); |
| Literal = ImpCastExprToType(Literal.get(), ElemTy, |
| PrepareScalarCast(Literal, ElemTy)); |
| return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get()); |
| } |
| else if (numExprs < numElems) { |
| Diag(E->getExprLoc(), |
| diag::err_incorrect_number_of_vector_initializers); |
| return ExprError(); |
| } |
| else |
| initExprs.append(exprs, exprs + numExprs); |
| } |
| else { |
| // For OpenCL, when the number of initializers is a single value, |
| // it will be replicated to all components of the vector. |
| if (getLangOpts().OpenCL && |
| VTy->getVectorKind() == VectorType::GenericVector && |
| numExprs == 1) { |
| QualType ElemTy = VTy->getElementType(); |
| ExprResult Literal = DefaultLvalueConversion(exprs[0]); |
| if (Literal.isInvalid()) |
| return ExprError(); |
| Literal = ImpCastExprToType(Literal.get(), ElemTy, |
| PrepareScalarCast(Literal, ElemTy)); |
| return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get()); |
| } |
| |
| initExprs.append(exprs, exprs + numExprs); |
| } |
| // FIXME: This means that pretty-printing the final AST will produce curly |
| // braces instead of the original commas. |
| InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc, |
| initExprs, LiteralRParenLoc); |
| initE->setType(Ty); |
| return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE); |
| } |
| |
| /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn |
| /// the ParenListExpr into a sequence of comma binary operators. |
| ExprResult |
| Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) { |
| ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr); |
| if (!E) |
| return OrigExpr; |
| |
| ExprResult Result(E->getExpr(0)); |
| |
| for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i) |
| Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(), |
| E->getExpr(i)); |
| |
| if (Result.isInvalid()) return ExprError(); |
| |
| return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get()); |
| } |
| |
| ExprResult Sema::ActOnParenListExpr(SourceLocation L, |
| SourceLocation R, |
| MultiExprArg Val) { |
| return ParenListExpr::Create(Context, L, Val, R); |
| } |
| |
| /// Emit a specialized diagnostic when one expression is a null pointer |
| /// constant and the other is not a pointer. Returns true if a diagnostic is |
| /// emitted. |
| bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr, |
| SourceLocation QuestionLoc) { |
| Expr *NullExpr = LHSExpr; |
| Expr *NonPointerExpr = RHSExpr; |
| Expr::NullPointerConstantKind NullKind = |
| NullExpr->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNotNull); |
| |
| if (NullKind == Expr::NPCK_NotNull) { |
| NullExpr = RHSExpr; |
| NonPointerExpr = LHSExpr; |
| NullKind = |
| NullExpr->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNotNull); |
| } |
| |
| if (NullKind == Expr::NPCK_NotNull) |
| return false; |
| |
| if (NullKind == Expr::NPCK_ZeroExpression) |
| return false; |
| |
| if (NullKind == Expr::NPCK_ZeroLiteral) { |
| // In this case, check to make sure that we got here from a "NULL" |
| // string in the source code. |
| NullExpr = NullExpr->IgnoreParenImpCasts(); |
| SourceLocation loc = NullExpr->getExprLoc(); |
| if (!findMacroSpelling(loc, "NULL")) |
| return false; |
| } |
| |
| int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr); |
| Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null) |
| << NonPointerExpr->getType() << DiagType |
| << NonPointerExpr->getSourceRange(); |
| return true; |
| } |
| |
| /// Return false if the condition expression is valid, true otherwise. |
| static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) { |
| QualType CondTy = Cond->getType(); |
| |
| // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type. |
| if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) { |
| S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat) |
| << CondTy << Cond->getSourceRange(); |
| return true; |
| } |
| |
| // C99 6.5.15p2 |
| if (CondTy->isScalarType()) return false; |
| |
| S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar) |
| << CondTy << Cond->getSourceRange(); |
| return true; |
| } |
| |
| /// Handle when one or both operands are void type. |
| static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS, |
| ExprResult &RHS) { |
| Expr *LHSExpr = LHS.get(); |
| Expr *RHSExpr = RHS.get(); |
| |
| if (!LHSExpr->getType()->isVoidType()) |
| S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void) |
| << RHSExpr->getSourceRange(); |
| if (!RHSExpr->getType()->isVoidType()) |
| S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void) |
| << LHSExpr->getSourceRange(); |
| LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid); |
| RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid); |
| return S.Context.VoidTy; |
| } |
| |
| /// Return false if the NullExpr can be promoted to PointerTy, |
| /// true otherwise. |
| static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr, |
| QualType PointerTy) { |
| if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) || |
| !NullExpr.get()->isNullPointerConstant(S.Context, |
| Expr::NPC_ValueDependentIsNull)) |
| return true; |
| |
| NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer); |
| return false; |
| } |
| |
| /// Checks compatibility between two pointers and return the resulting |
| /// type. |
| static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, |
| SourceLocation Loc) { |
| QualType LHSTy = LHS.get()->getType(); |
| QualType RHSTy = RHS.get()->getType(); |
| |
| if (S.Context.hasSameType(LHSTy, RHSTy)) { |
| // Two identical pointers types are always compatible. |
| return LHSTy; |
| } |
| |
| QualType lhptee, rhptee; |
| |
| // Get the pointee types. |
| bool IsBlockPointer = false; |
| if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) { |
| lhptee = LHSBTy->getPointeeType(); |
| rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType(); |
| IsBlockPointer = true; |
| } else { |
| lhptee = LHSTy->castAs<PointerType>()->getPointeeType(); |
| rhptee = RHSTy->castAs<PointerType>()->getPointeeType(); |
| } |
| |
| // C99 6.5.15p6: If both operands are pointers to compatible types or to |
| // differently qualified versions of compatible types, the result type is |
| // a pointer to an appropriately qualified version of the composite |
| // type. |
| |
| // Only CVR-qualifiers exist in the standard, and the differently-qualified |
| // clause doesn't make sense for our extensions. E.g. address space 2 should |
| // be incompatible with address space 3: they may live on different devices or |
| // anything. |
| Qualifiers lhQual = lhptee.getQualifiers(); |
| Qualifiers rhQual = rhptee.getQualifiers(); |
| |
| LangAS ResultAddrSpace = LangAS::Default; |
| LangAS LAddrSpace = lhQual.getAddressSpace(); |
| LangAS RAddrSpace = rhQual.getAddressSpace(); |
| |
| // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address |
| // spaces is disallowed. |
| if (lhQual.isAddressSpaceSupersetOf(rhQual)) |
| ResultAddrSpace = LAddrSpace; |
| else if (rhQual.isAddressSpaceSupersetOf(lhQual)) |
| ResultAddrSpace = RAddrSpace; |
| else { |
| S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) |
| << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers(); |
| auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast; |
| lhQual.removeCVRQualifiers(); |
| rhQual.removeCVRQualifiers(); |
| |
| // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers |
| // (C99 6.7.3) for address spaces. We assume that the check should behave in |
| // the same manner as it's defined for CVR qualifiers, so for OpenCL two |
| // qual types are compatible iff |
| // * corresponded types are compatible |
| // * CVR qualifiers are equal |
| // * address spaces are equal |
| // Thus for conditional operator we merge CVR and address space unqualified |
| // pointees and if there is a composite type we return a pointer to it with |
| // merged qualifiers. |
| LHSCastKind = |
| LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion; |
| RHSCastKind = |
| RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion; |
| lhQual.removeAddressSpace(); |
| rhQual.removeAddressSpace(); |
| |
| lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual); |
| rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual); |
| |
| QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee); |
| |
| if (CompositeTy.isNull()) { |
| // In this situation, we assume void* type. No especially good |
| // reason, but this is what gcc does, and we do have to pick |
| // to get a consistent AST. |
| QualType incompatTy; |
| incompatTy = S.Context.getPointerType( |
| S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace)); |
| LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind); |
| RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind); |
| |
| // FIXME: For OpenCL the warning emission and cast to void* leaves a room |
| // for casts between types with incompatible address space qualifiers. |
| // For the following code the compiler produces casts between global and |
| // local address spaces of the corresponded innermost pointees: |
| // local int *global *a; |
| // global int *global *b; |
| // a = (0 ? a : b); // see C99 6.5.16.1.p1. |
| S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers) |
| << LHSTy << RHSTy << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| |
| return incompatTy; |
| } |
| |
| // The pointer types are compatible. |
| // In case of OpenCL ResultTy should have the address space qualifier |
| // which is a superset of address spaces of both the 2nd and the 3rd |
| // operands of the conditional operator. |
| QualType ResultTy = [&, ResultAddrSpace]() { |
| if (S.getLangOpts().OpenCL) { |
| Qualifiers CompositeQuals = CompositeTy.getQualifiers(); |
| CompositeQuals.setAddressSpace(ResultAddrSpace); |
| return S.Context |
| .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals) |
| .withCVRQualifiers(MergedCVRQual); |
| } |
| return CompositeTy.withCVRQualifiers(MergedCVRQual); |
| }(); |
| if (IsBlockPointer) |
| ResultTy = S.Context.getBlockPointerType(ResultTy); |
| else |
| ResultTy = S.Context.getPointerType(ResultTy); |
| |
| LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind); |
| RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind); |
| return ResultTy; |
| } |
| |
| /// Return the resulting type when the operands are both block pointers. |
| static QualType checkConditionalBlockPointerCompatibility(Sema &S, |
| ExprResult &LHS, |
| ExprResult &RHS, |
| SourceLocation Loc) { |
| QualType LHSTy = LHS.get()->getType(); |
| QualType RHSTy = RHS.get()->getType(); |
| |
| if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) { |
| if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) { |
| QualType destType = S.Context.getPointerType(S.Context.VoidTy); |
| LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast); |
| RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast); |
| return destType; |
| } |
| S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands) |
| << LHSTy << RHSTy << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // We have 2 block pointer types. |
| return checkConditionalPointerCompatibility(S, LHS, RHS, Loc); |
| } |
| |
| /// Return the resulting type when the operands are both pointers. |
| static QualType |
| checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, |
| SourceLocation Loc) { |
| // get the pointer types |
| QualType LHSTy = LHS.get()->getType(); |
| QualType RHSTy = RHS.get()->getType(); |
| |
| // get the "pointed to" types |
| QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType(); |
| QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType(); |
| |
| // ignore qualifiers on void (C99 6.5.15p3, clause 6) |
| if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) { |
| // Figure out necessary qualifiers (C99 6.5.15p6) |
| QualType destPointee |
| = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers()); |
| QualType destType = S.Context.getPointerType(destPointee); |
| // Add qualifiers if necessary. |
| LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp); |
| // Promote to void*. |
| RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast); |
| return destType; |
| } |
| if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) { |
| QualType destPointee |
| = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers()); |
| QualType destType = S.Context.getPointerType(destPointee); |
| // Add qualifiers if necessary. |
| RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp); |
| // Promote to void*. |
| LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast); |
| return destType; |
| } |
| |
| return checkConditionalPointerCompatibility(S, LHS, RHS, Loc); |
| } |
| |
| /// Return false if the first expression is not an integer and the second |
| /// expression is not a pointer, true otherwise. |
| static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int, |
| Expr* PointerExpr, SourceLocation Loc, |
| bool IsIntFirstExpr) { |
| if (!PointerExpr->getType()->isPointerType() || |
| !Int.get()->getType()->isIntegerType()) |
| return false; |
| |
| Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr; |
| Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get(); |
| |
| S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch) |
| << Expr1->getType() << Expr2->getType() |
| << Expr1->getSourceRange() << Expr2->getSourceRange(); |
| Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(), |
| CK_IntegralToPointer); |
| return true; |
| } |
| |
| /// Simple conversion between integer and floating point types. |
| /// |
| /// Used when handling the OpenCL conditional operator where the |
| /// condition is a vector while the other operands are scalar. |
| /// |
| /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar |
| /// types are either integer or floating type. Between the two |
| /// operands, the type with the higher rank is defined as the "result |
| /// type". The other operand needs to be promoted to the same type. No |
| /// other type promotion is allowed. We cannot use |
| /// UsualArithmeticConversions() for this purpose, since it always |
| /// promotes promotable types. |
| static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, |
| SourceLocation QuestionLoc) { |
| LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| |
| // For conversion purposes, we ignore any qualifiers. |
| // For example, "const float" and "float" are equivalent. |
| QualType LHSType = |
| S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType(); |
| QualType RHSType = |
| S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType(); |
| |
| if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) { |
| S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float) |
| << LHSType << LHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) { |
| S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float) |
| << RHSType << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // If both types are identical, no conversion is needed. |
| if (LHSType == RHSType) |
| return LHSType; |
| |
| // Now handle "real" floating types (i.e. float, double, long double). |
| if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) |
| return handleFloatConversion(S, LHS, RHS, LHSType, RHSType, |
| /*IsCompAssign = */ false); |
| |
| // Finally, we have two differing integer types. |
| return handleIntegerConversion<doIntegralCast, doIntegralCast> |
| (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false); |
| } |
| |
| /// Convert scalar operands to a vector that matches the |
| /// condition in length. |
| /// |
| /// Used when handling the OpenCL conditional operator where the |
| /// condition is a vector while the other operands are scalar. |
| /// |
| /// We first compute the "result type" for the scalar operands |
| /// according to OpenCL v1.1 s6.3.i. Both operands are then converted |
| /// into a vector of that type where the length matches the condition |
| /// vector type. s6.11.6 requires that the element types of the result |
| /// and the condition must have the same number of bits. |
| static QualType |
| OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS, |
| QualType CondTy, SourceLocation QuestionLoc) { |
| QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc); |
| if (ResTy.isNull()) return QualType(); |
| |
| const VectorType *CV = CondTy->getAs<VectorType>(); |
| assert(CV); |
| |
| // Determine the vector result type |
| unsigned NumElements = CV->getNumElements(); |
| QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements); |
| |
| // Ensure that all types have the same number of bits |
| if (S.Context.getTypeSize(CV->getElementType()) |
| != S.Context.getTypeSize(ResTy)) { |
| // Since VectorTy is created internally, it does not pretty print |
| // with an OpenCL name. Instead, we just print a description. |
| std::string EleTyName = ResTy.getUnqualifiedType().getAsString(); |
| SmallString<64> Str; |
| llvm::raw_svector_ostream OS(Str); |
| OS << "(vector of " << NumElements << " '" << EleTyName << "' values)"; |
| S.Diag(QuestionLoc, diag::err_conditional_vector_element_size) |
| << CondTy << OS.str(); |
| return QualType(); |
| } |
| |
| // Convert operands to the vector result type |
| LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat); |
| RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat); |
| |
| return VectorTy; |
| } |
| |
| /// Return false if this is a valid OpenCL condition vector |
| static bool checkOpenCLConditionVector(Sema &S, Expr *Cond, |
| SourceLocation QuestionLoc) { |
| // OpenCL v1.1 s6.11.6 says the elements of the vector must be of |
| // integral type. |
| const VectorType *CondTy = Cond->getType()->getAs<VectorType>(); |
| assert(CondTy); |
| QualType EleTy = CondTy->getElementType(); |
| if (EleTy->isIntegerType()) return false; |
| |
| S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat) |
| << Cond->getType() << Cond->getSourceRange(); |
| return true; |
| } |
| |
| /// Return false if the vector condition type and the vector |
| /// result type are compatible. |
| /// |
| /// OpenCL v1.1 s6.11.6 requires that both vector types have the same |
| /// number of elements, and their element types have the same number |
| /// of bits. |
| static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy, |
| SourceLocation QuestionLoc) { |
| const VectorType *CV = CondTy->getAs<VectorType>(); |
| const VectorType *RV = VecResTy->getAs<VectorType>(); |
| assert(CV && RV); |
| |
| if (CV->getNumElements() != RV->getNumElements()) { |
| S.Diag(QuestionLoc, diag::err_conditional_vector_size) |
| << CondTy << VecResTy; |
| return true; |
| } |
| |
| QualType CVE = CV->getElementType(); |
| QualType RVE = RV->getElementType(); |
| |
| if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) { |
| S.Diag(QuestionLoc, diag::err_conditional_vector_element_size) |
| << CondTy << VecResTy; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Return the resulting type for the conditional operator in |
| /// OpenCL (aka "ternary selection operator", OpenCL v1.1 |
| /// s6.3.i) when the condition is a vector type. |
| static QualType |
| OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond, |
| ExprResult &LHS, ExprResult &RHS, |
| SourceLocation QuestionLoc) { |
| Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get()); |
| if (Cond.isInvalid()) |
| return QualType(); |
| QualType CondTy = Cond.get()->getType(); |
| |
| if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc)) |
| return QualType(); |
| |
| // If either operand is a vector then find the vector type of the |
| // result as specified in OpenCL v1.1 s6.3.i. |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) { |
| QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc, |
| /*isCompAssign*/false, |
| /*AllowBothBool*/true, |
| /*AllowBoolConversions*/false); |
| if (VecResTy.isNull()) return QualType(); |
| // The result type must match the condition type as specified in |
| // OpenCL v1.1 s6.11.6. |
| if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc)) |
| return QualType(); |
| return VecResTy; |
| } |
| |
| // Both operands are scalar. |
| return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc); |
| } |
| |
| /// Return true if the Expr is block type |
| static bool checkBlockType(Sema &S, const Expr *E) { |
| if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { |
| QualType Ty = CE->getCallee()->getType(); |
| if (Ty->isBlockPointerType()) { |
| S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension. |
| /// In that case, LHS = cond. |
| /// C99 6.5.15 |
| QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, |
| ExprResult &RHS, ExprValueKind &VK, |
| ExprObjectKind &OK, |
| SourceLocation QuestionLoc) { |
| |
| ExprResult LHSResult = CheckPlaceholderExpr(LHS.get()); |
| if (!LHSResult.isUsable()) return QualType(); |
| LHS = LHSResult; |
| |
| ExprResult RHSResult = CheckPlaceholderExpr(RHS.get()); |
| if (!RHSResult.isUsable()) return QualType(); |
| RHS = RHSResult; |
| |
| // C++ is sufficiently different to merit its own checker. |
| if (getLangOpts().CPlusPlus) |
| return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc); |
| |
| VK = VK_PRValue; |
| OK = OK_Ordinary; |
| |
| if (Context.isDependenceAllowed() && |
| (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() || |
| RHS.get()->isTypeDependent())) { |
| assert(!getLangOpts().CPlusPlus); |
| assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() || |
| RHS.get()->containsErrors()) && |
| "should only occur in error-recovery path."); |
| return Context.DependentTy; |
| } |
| |
| // The OpenCL operator with a vector condition is sufficiently |
| // different to merit its own checker. |
| if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) || |
| Cond.get()->getType()->isExtVectorType()) |
| return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc); |
| |
| // First, check the condition. |
| Cond = UsualUnaryConversions(Cond.get()); |
| if (Cond.isInvalid()) |
| return QualType(); |
| if (checkCondition(*this, Cond.get(), QuestionLoc)) |
| return QualType(); |
| |
| // Now check the two expressions. |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) |
| return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false, |
| /*AllowBothBool*/true, |
| /*AllowBoolConversions*/false); |
| |
| QualType ResTy = |
| UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| |
| QualType LHSTy = LHS.get()->getType(); |
| QualType RHSTy = RHS.get()->getType(); |
| |
| // Diagnose attempts to convert between __ibm128, __float128 and long double |
| // where such conversions currently can't be handled. |
| if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) { |
| Diag(QuestionLoc, |
| diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary |
| // selection operator (?:). |
| if (getLangOpts().OpenCL && |
| ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) { |
| return QualType(); |
| } |
| |
| // If both operands have arithmetic type, do the usual arithmetic conversions |
| // to find a common type: C99 6.5.15p3,5. |
| if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) { |
| // Disallow invalid arithmetic conversions, such as those between ExtInts of |
| // different sizes, or between ExtInts and other types. |
| if (ResTy.isNull() && (LHSTy->isExtIntType() || RHSTy->isExtIntType())) { |
| Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) |
| << LHSTy << RHSTy << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); |
| RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); |
| |
| return ResTy; |
| } |
| |
| // And if they're both bfloat (which isn't arithmetic), that's fine too. |
| if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) { |
| return LHSTy; |
| } |
| |
| // If both operands are the same structure or union type, the result is that |
| // type. |
| if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3 |
| if (const RecordType *RHSRT = RHSTy->getAs<RecordType>()) |
| if (LHSRT->getDecl() == RHSRT->getDecl()) |
| // "If both the operands have structure or union type, the result has |
| // that type." This implies that CV qualifiers are dropped. |
| return LHSTy.getUnqualifiedType(); |
| // FIXME: Type of conditional expression must be complete in C mode. |
| } |
| |
| // C99 6.5.15p5: "If both operands have void type, the result has void type." |
| // The following || allows only one side to be void (a GCC-ism). |
| if (LHSTy->isVoidType() || RHSTy->isVoidType()) { |
| return checkConditionalVoidType(*this, LHS, RHS); |
| } |
| |
| // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has |
| // the type of the other operand." |
| if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy; |
| if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy; |
| |
| // All objective-c pointer type analysis is done here. |
| QualType compositeType = FindCompositeObjCPointerType(LHS, RHS, |
| QuestionLoc); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| if (!compositeType.isNull()) |
| return compositeType; |
| |
| |
| // Handle block pointer types. |
| if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) |
| return checkConditionalBlockPointerCompatibility(*this, LHS, RHS, |
| QuestionLoc); |
| |
| // Check constraints for C object pointers types (C99 6.5.15p3,6). |
| if (LHSTy->isPointerType() && RHSTy->isPointerType()) |
| return checkConditionalObjectPointersCompatibility(*this, LHS, RHS, |
| QuestionLoc); |
| |
| // GCC compatibility: soften pointer/integer mismatch. Note that |
| // null pointers have been filtered out by this point. |
| if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc, |
| /*IsIntFirstExpr=*/true)) |
| return RHSTy; |
| if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc, |
| /*IsIntFirstExpr=*/false)) |
| return LHSTy; |
| |
| // Allow ?: operations in which both operands have the same |
| // built-in sizeless type. |
| if (LHSTy->isSizelessBuiltinType() && Context.hasSameType(LHSTy, RHSTy)) |
| return LHSTy; |
| |
| // Emit a better diagnostic if one of the expressions is a null pointer |
| // constant and the other is not a pointer type. In this case, the user most |
| // likely forgot to take the address of the other expression. |
| if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) |
| return QualType(); |
| |
| // Otherwise, the operands are not compatible. |
| Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) |
| << LHSTy << RHSTy << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| /// FindCompositeObjCPointerType - Helper method to find composite type of |
| /// two objective-c pointer types of the two input expressions. |
| QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation QuestionLoc) { |
| QualType LHSTy = LHS.get()->getType(); |
| QualType RHSTy = RHS.get()->getType(); |
| |
| // Handle things like Class and struct objc_class*. Here we case the result |
| // to the pseudo-builtin, because that will be implicitly cast back to the |
| // redefinition type if an attempt is made to access its fields. |
| if (LHSTy->isObjCClassType() && |
| (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) { |
| RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast); |
| return LHSTy; |
| } |
| if (RHSTy->isObjCClassType() && |
| (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) { |
| LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast); |
| return RHSTy; |
| } |
| // And the same for struct objc_object* / id |
| if (LHSTy->isObjCIdType() && |
| (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) { |
| RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast); |
| return LHSTy; |
| } |
| if (RHSTy->isObjCIdType() && |
| (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) { |
| LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast); |
| return RHSTy; |
| } |
| // And the same for struct objc_selector* / SEL |
| if (Context.isObjCSelType(LHSTy) && |
| (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) { |
| RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast); |
| return LHSTy; |
| } |
| if (Context.isObjCSelType(RHSTy) && |
| (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) { |
| LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast); |
| return RHSTy; |
| } |
| // Check constraints for Objective-C object pointers types. |
| if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) { |
| |
| if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) { |
| // Two identical object pointer types are always compatible. |
| return LHSTy; |
| } |
| const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>(); |
| const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>(); |
| QualType compositeType = LHSTy; |
| |
| // If both operands are interfaces and either operand can be |
| // assigned to the other, use that type as the composite |
| // type. This allows |
| // xxx ? (A*) a : (B*) b |
| // where B is a subclass of A. |
| // |
| // Additionally, as for assignment, if either type is 'id' |
| // allow silent coercion. Finally, if the types are |
| // incompatible then make sure to use 'id' as the composite |
| // type so the result is acceptable for sending messages to. |
| |
| // FIXME: Consider unifying with 'areComparableObjCPointerTypes'. |
| // It could return the composite type. |
| if (!(compositeType = |
| Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) { |
| // Nothing more to do. |
| } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) { |
| compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy; |
| } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) { |
| compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy; |
| } else if ((LHSOPT->isObjCQualifiedIdType() || |
| RHSOPT->isObjCQualifiedIdType()) && |
| Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, |
| true)) { |
| // Need to handle "id<xx>" explicitly. |
| // GCC allows qualified id and any Objective-C type to devolve to |
| // id. Currently localizing to here until clear this should be |
| // part of ObjCQualifiedIdTypesAreCompatible. |
| compositeType = Context.getObjCIdType(); |
| } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) { |
| compositeType = Context.getObjCIdType(); |
| } else { |
| Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands) |
| << LHSTy << RHSTy |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| QualType incompatTy = Context.getObjCIdType(); |
| LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast); |
| RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast); |
| return incompatTy; |
| } |
| // The object pointer types are compatible. |
| LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast); |
| RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast); |
| return compositeType; |
| } |
| // Check Objective-C object pointer types and 'void *' |
| if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) { |
| if (getLangOpts().ObjCAutoRefCount) { |
| // ARC forbids the implicit conversion of object pointers to 'void *', |
| // so these types are not compatible. |
| Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| LHS = RHS = true; |
| return QualType(); |
| } |
| QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType(); |
| QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType(); |
| QualType destPointee |
| = Context.getQualifiedType(lhptee, rhptee.getQualifiers()); |
| QualType destType = Context.getPointerType(destPointee); |
| // Add qualifiers if necessary. |
| LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp); |
| // Promote to void*. |
| RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast); |
| return destType; |
| } |
| if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) { |
| if (getLangOpts().ObjCAutoRefCount) { |
| // ARC forbids the implicit conversion of object pointers to 'void *', |
| // so these types are not compatible. |
| Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| LHS = RHS = true; |
| return QualType(); |
| } |
| QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType(); |
| QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType(); |
| QualType destPointee |
| = Context.getQualifiedType(rhptee, lhptee.getQualifiers()); |
| QualType destType = Context.getPointerType(destPointee); |
| // Add qualifiers if necessary. |
| RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp); |
| // Promote to void*. |
| LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast); |
| return destType; |
| } |
| return QualType(); |
| } |
| |
| /// SuggestParentheses - Emit a note with a fixit hint that wraps |
| /// ParenRange in parentheses. |
| static void SuggestParentheses(Sema &Self, SourceLocation Loc, |
| const PartialDiagnostic &Note, |
| SourceRange ParenRange) { |
| SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd()); |
| if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() && |
| EndLoc.isValid()) { |
| Self.Diag(Loc, Note) |
| << FixItHint::CreateInsertion(ParenRange.getBegin(), "(") |
| << FixItHint::CreateInsertion(EndLoc, ")"); |
| } else { |
| // We can't display the parentheses, so just show the bare note. |
| Self.Diag(Loc, Note) << ParenRange; |
| } |
| } |
| |
| static bool IsArithmeticOp(BinaryOperatorKind Opc) { |
| return BinaryOperator::isAdditiveOp(Opc) || |
| BinaryOperator::isMultiplicativeOp(Opc) || |
| BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or; |
| // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and |
| // not any of the logical operators. Bitwise-xor is commonly used as a |
| // logical-xor because there is no logical-xor operator. The logical |
| // operators, including uses of xor, have a high false positive rate for |
| // precedence warnings. |
| } |
| |
| /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary |
| /// expression, either using a built-in or overloaded operator, |
| /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side |
| /// expression. |
| static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode, |
| Expr **RHSExprs) { |
| // Don't strip parenthesis: we should not warn if E is in parenthesis. |
| E = E->IgnoreImpCasts(); |
| E = E->IgnoreConversionOperatorSingleStep(); |
| E = E->IgnoreImpCasts(); |
| if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) { |
| E = MTE->getSubExpr(); |
| E = E->IgnoreImpCasts(); |
| } |
| |
| // Built-in binary operator. |
| if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) { |
| if (IsArithmeticOp(OP->getOpcode())) { |
| *Opcode = OP->getOpcode(); |
| *RHSExprs = OP->getRHS(); |
| return true; |
| } |
| } |
| |
| // Overloaded operator. |
| if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) { |
| if (Call->getNumArgs() != 2) |
| return false; |
| |
| // Make sure this is really a binary operator that is safe to pass into |
| // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op. |
| OverloadedOperatorKind OO = Call->getOperator(); |
| if (OO < OO_Plus || OO > OO_Arrow || |
| OO == OO_PlusPlus || OO == OO_MinusMinus) |
| return false; |
| |
| BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO); |
| if (IsArithmeticOp(OpKind)) { |
| *Opcode = OpKind; |
| *RHSExprs = Call->getArg(1); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type |
| /// or is a logical expression such as (x==y) which has int type, but is |
| /// commonly interpreted as boolean. |
| static bool ExprLooksBoolean(Expr *E) { |
| E = E->IgnoreParenImpCasts(); |
| |
| if (E->getType()->isBooleanType()) |
| return true; |
| if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) |
| return OP->isComparisonOp() || OP->isLogicalOp(); |
| if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E)) |
| return OP->getOpcode() == UO_LNot; |
| if (E->getType()->isPointerType()) |
| return true; |
| // FIXME: What about overloaded operator calls returning "unspecified boolean |
| // type"s (commonly pointer-to-members)? |
| |
| return false; |
| } |
| |
| /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator |
| /// and binary operator are mixed in a way that suggests the programmer assumed |
| /// the conditional operator has higher precedence, for example: |
| /// "int x = a + someBinaryCondition ? 1 : 2". |
| static void DiagnoseConditionalPrecedence(Sema &Self, |
| SourceLocation OpLoc, |
| Expr *Condition, |
| Expr *LHSExpr, |
| Expr *RHSExpr) { |
| BinaryOperatorKind CondOpcode; |
| Expr *CondRHS; |
| |
| if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS)) |
| return; |
| if (!ExprLooksBoolean(CondRHS)) |
| return; |
| |
| // The condition is an arithmetic binary expression, with a right- |
| // hand side that looks boolean, so warn. |
| |
| unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode) |
| ? diag::warn_precedence_bitwise_conditional |
| : diag::warn_precedence_conditional; |
| |
| Self.Diag(OpLoc, DiagID) |
| << Condition->getSourceRange() |
| << BinaryOperator::getOpcodeStr(CondOpcode); |
| |
| SuggestParentheses( |
| Self, OpLoc, |
| Self.PDiag(diag::note_precedence_silence) |
| << BinaryOperator::getOpcodeStr(CondOpcode), |
| SourceRange(Condition->getBeginLoc(), Condition->getEndLoc())); |
| |
| SuggestParentheses(Self, OpLoc, |
| Self.PDiag(diag::note_precedence_conditional_first), |
| SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc())); |
| } |
| |
| /// Compute the nullability of a conditional expression. |
| static QualType computeConditionalNullability(QualType ResTy, bool IsBin, |
| QualType LHSTy, QualType RHSTy, |
| ASTContext &Ctx) { |
| if (!ResTy->isAnyPointerType()) |
| return ResTy; |
| |
| auto GetNullability = [&Ctx](QualType Ty) { |
| Optional<NullabilityKind> Kind = Ty->getNullability(Ctx); |
| if (Kind) { |
| // For our purposes, treat _Nullable_result as _Nullable. |
| if (*Kind == NullabilityKind::NullableResult) |
| return NullabilityKind::Nullable; |
| return *Kind; |
| } |
| return NullabilityKind::Unspecified; |
| }; |
| |
| auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy); |
| NullabilityKind MergedKind; |
| |
| // Compute nullability of a binary conditional expression. |
| if (IsBin) { |
| if (LHSKind == NullabilityKind::NonNull) |
| MergedKind = NullabilityKind::NonNull; |
| else |
| MergedKind = RHSKind; |
| // Compute nullability of a normal conditional expression. |
| } else { |
| if (LHSKind == NullabilityKind::Nullable || |
| RHSKind == NullabilityKind::Nullable) |
| MergedKind = NullabilityKind::Nullable; |
| else if (LHSKind == NullabilityKind::NonNull) |
| MergedKind = RHSKind; |
| else if (RHSKind == NullabilityKind::NonNull) |
| MergedKind = LHSKind; |
| else |
| MergedKind = NullabilityKind::Unspecified; |
| } |
| |
| // Return if ResTy already has the correct nullability. |
| if (GetNullability(ResTy) == MergedKind) |
| return ResTy; |
| |
| // Strip all nullability from ResTy. |
| while (ResTy->getNullability(Ctx)) |
| ResTy = ResTy.getSingleStepDesugaredType(Ctx); |
| |
| // Create a new AttributedType with the new nullability kind. |
| auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind); |
| return Ctx.getAttributedType(NewAttr, ResTy, ResTy); |
| } |
| |
| /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null |
| /// in the case of a the GNU conditional expr extension. |
| ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc, |
| SourceLocation ColonLoc, |
| Expr *CondExpr, Expr *LHSExpr, |
| Expr *RHSExpr) { |
| if (!Context.isDependenceAllowed()) { |
| // C cannot handle TypoExpr nodes in the condition because it |
| // doesn't handle dependent types properly, so make sure any TypoExprs have |
| // been dealt with before checking the operands. |
| ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr); |
| ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr); |
| ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr); |
| |
| if (!CondResult.isUsable()) |
| return ExprError(); |
| |
| if (LHSExpr) { |
| if (!LHSResult.isUsable()) |
| return ExprError(); |
| } |
| |
| if (!RHSResult.isUsable()) |
| return ExprError(); |
| |
| CondExpr = CondResult.get(); |
| LHSExpr = LHSResult.get(); |
| RHSExpr = RHSResult.get(); |
| } |
| |
| // If this is the gnu "x ?: y" extension, analyze the types as though the LHS |
| // was the condition. |
| OpaqueValueExpr *opaqueValue = nullptr; |
| Expr *commonExpr = nullptr; |
| if (!LHSExpr) { |
| commonExpr = CondExpr; |
| // Lower out placeholder types first. This is important so that we don't |
| // try to capture a placeholder. This happens in few cases in C++; such |
| // as Objective-C++'s dictionary subscripting syntax. |
| if (commonExpr->hasPlaceholderType()) { |
| ExprResult result = CheckPlaceholderExpr(commonExpr); |
| if (!result.isUsable()) return ExprError(); |
| commonExpr = result.get(); |
| } |
| // We usually want to apply unary conversions *before* saving, except |
| // in the special case of a C++ l-value conditional. |
| if (!(getLangOpts().CPlusPlus |
| && !commonExpr->isTypeDependent() |
| && commonExpr->getValueKind() == RHSExpr->getValueKind() |
| && commonExpr->isGLValue() |
| && commonExpr->isOrdinaryOrBitFieldObject() |
| && RHSExpr->isOrdinaryOrBitFieldObject() |
| && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) { |
| ExprResult commonRes = UsualUnaryConversions(commonExpr); |
| if (commonRes.isInvalid()) |
| return ExprError(); |
| commonExpr = commonRes.get(); |
| } |
| |
| // If the common expression is a class or array prvalue, materialize it |
| // so that we can safely refer to it multiple times. |
| if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() || |
| commonExpr->getType()->isArrayType())) { |
| ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr); |
| if (MatExpr.isInvalid()) |
| return ExprError(); |
| commonExpr = MatExpr.get(); |
| } |
| |
| opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(), |
| commonExpr->getType(), |
| commonExpr->getValueKind(), |
| commonExpr->getObjectKind(), |
| commonExpr); |
| LHSExpr = CondExpr = opaqueValue; |
| } |
| |
| QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType(); |
| ExprValueKind VK = VK_PRValue; |
| ExprObjectKind OK = OK_Ordinary; |
| ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr; |
| QualType result = CheckConditionalOperands(Cond, LHS, RHS, |
| VK, OK, QuestionLoc); |
| if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() || |
| RHS.isInvalid()) |
| return ExprError(); |
| |
| DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(), |
| RHS.get()); |
| |
| CheckBoolLikeConversion(Cond.get(), QuestionLoc); |
| |
| result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy, |
| Context); |
| |
| if (!commonExpr) |
| return new (Context) |
| ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc, |
| RHS.get(), result, VK, OK); |
| |
| return new (Context) BinaryConditionalOperator( |
| commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc, |
| ColonLoc, result, VK, OK); |
| } |
| |
| // Check if we have a conversion between incompatible cmse function pointer |
| // types, that is, a conversion between a function pointer with the |
| // cmse_nonsecure_call attribute and one without. |
| static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType, |
| QualType ToType) { |
| if (const auto *ToFn = |
| dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) { |
| if (const auto *FromFn = |
| dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) { |
| FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); |
| FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); |
| |
| return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall(); |
| } |
| } |
| return false; |
| } |
| |
| // checkPointerTypesForAssignment - This is a very tricky routine (despite |
| // being closely modeled after the C99 spec:-). The odd characteristic of this |
| // routine is it effectively iqnores the qualifiers on the top level pointee. |
| // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3]. |
| // FIXME: add a couple examples in this comment. |
| static Sema::AssignConvertType |
| checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) { |
| assert(LHSType.isCanonical() && "LHS not canonicalized!"); |
| assert(RHSType.isCanonical() && "RHS not canonicalized!"); |
| |
| // get the "pointed to" type (ignoring qualifiers at the top level) |
| const Type *lhptee, *rhptee; |
| Qualifiers lhq, rhq; |
| std::tie(lhptee, lhq) = |
| cast<PointerType>(LHSType)->getPointeeType().split().asPair(); |
| std::tie(rhptee, rhq) = |
| cast<PointerType>(RHSType)->getPointeeType().split().asPair(); |
| |
| Sema::AssignConvertType ConvTy = Sema::Compatible; |
| |
| // C99 6.5.16.1p1: This following citation is common to constraints |
| // 3 & 4 (below). ...and the type *pointed to* by the left has all the |
| // qualifiers of the type *pointed to* by the right; |
| |
| // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay. |
| if (lhq.getObjCLifetime() != rhq.getObjCLifetime() && |
| lhq.compatiblyIncludesObjCLifetime(rhq)) { |
| // Ignore lifetime for further calculation. |
| lhq.removeObjCLifetime(); |
| rhq.removeObjCLifetime(); |
| } |
| |
| if (!lhq.compatiblyIncludes(rhq)) { |
| // Treat address-space mismatches as fatal. |
| if (!lhq.isAddressSpaceSupersetOf(rhq)) |
| return Sema::IncompatiblePointerDiscardsQualifiers; |
| |
| // It's okay to add or remove GC or lifetime qualifiers when converting to |
| // and from void*. |
| else if (lhq.withoutObjCGCAttr().withoutObjCLifetime() |
| .compatiblyIncludes( |
| rhq.withoutObjCGCAttr().withoutObjCLifetime()) |
| && (lhptee->isVoidType() || rhptee->isVoidType())) |
| ; // keep old |
| |
| // Treat lifetime mismatches as fatal. |
| else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) |
| ConvTy = Sema::IncompatiblePointerDiscardsQualifiers; |
| |
| // For GCC/MS compatibility, other qualifier mismatches are treated |
| // as still compatible in C. |
| else ConvTy = Sema::CompatiblePointerDiscardsQualifiers; |
| } |
| |
| // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or |
| // incomplete type and the other is a pointer to a qualified or unqualified |
| // version of void... |
| if (lhptee->isVoidType()) { |
| if (rhptee->isIncompleteOrObjectType()) |
| return ConvTy; |
| |
| // As an extension, we allow cast to/from void* to function pointer. |
| assert(rhptee->isFunctionType()); |
| return Sema::FunctionVoidPointer; |
| } |
| |
| if (rhptee->isVoidType()) { |
| if (lhptee->isIncompleteOrObjectType()) |
| return ConvTy; |
| |
| // As an extension, we allow cast to/from void* to function pointer. |
| assert(lhptee->isFunctionType()); |
| return Sema::FunctionVoidPointer; |
| } |
| |
| // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or |
| // unqualified versions of compatible types, ... |
| QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0); |
| if (!S.Context.typesAreCompatible(ltrans, rtrans)) { |
| // Check if the pointee types are compatible ignoring the sign. |
| // We explicitly check for char so that we catch "char" vs |
| // "unsigned char" on systems where "char" is unsigned. |
| if (lhptee->isCharType()) |
| ltrans = S.Context.UnsignedCharTy; |
| else if (lhptee->hasSignedIntegerRepresentation()) |
| ltrans = S.Context.getCorrespondingUnsignedType(ltrans); |
| |
| if (rhptee->isCharType()) |
| rtrans = S.Context.UnsignedCharTy; |
| else if (rhptee->hasSignedIntegerRepresentation()) |
| rtrans = S.Context.getCorrespondingUnsignedType(rtrans); |
| |
| if (ltrans == rtrans) { |
| // Types are compatible ignoring the sign. Qualifier incompatibility |
| // takes priority over sign incompatibility because the sign |
| // warning can be disabled. |
| if (ConvTy != Sema::Compatible) |
| return ConvTy; |
| |
| return Sema::IncompatiblePointerSign; |
| } |
| |
| // If we are a multi-level pointer, it's possible that our issue is simply |
| // one of qualification - e.g. char ** -> const char ** is not allowed. If |
| // the eventual target type is the same and the pointers have the same |
| // level of indirection, this must be the issue. |
| if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) { |
| do { |
| std::tie(lhptee, lhq) = |
| cast<PointerType>(lhptee)->getPointeeType().split().asPair(); |
| std::tie(rhptee, rhq) = |
| cast<PointerType>(rhptee)->getPointeeType().split().asPair(); |
| |
| // Inconsistent address spaces at this point is invalid, even if the |
| // address spaces would be compatible. |
| // FIXME: This doesn't catch address space mismatches for pointers of |
| // different nesting levels, like: |
| // __local int *** a; |
| // int ** b = a; |
| // It's not clear how to actually determine when such pointers are |
| // invalidly incompatible. |
| if (lhq.getAddressSpace() != rhq.getAddressSpace()) |
| return Sema::IncompatibleNestedPointerAddressSpaceMismatch; |
| |
| } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)); |
| |
| if (lhptee == rhptee) |
| return Sema::IncompatibleNestedPointerQualifiers; |
| } |
| |
| // General pointer incompatibility takes priority over qualifiers. |
| if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType()) |
| return Sema::IncompatibleFunctionPointer; |
| return Sema::IncompatiblePointer; |
| } |
| if (!S.getLangOpts().CPlusPlus && |
| S.IsFunctionConversion(ltrans, rtrans, ltrans)) |
| return Sema::IncompatibleFunctionPointer; |
| if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans)) |
| return Sema::IncompatibleFunctionPointer; |
| return ConvTy; |
| } |
| |
| /// checkBlockPointerTypesForAssignment - This routine determines whether two |
| /// block pointer types are compatible or whether a block and normal pointer |
| /// are compatible. It is more restrict than comparing two function pointer |
| // types. |
| static Sema::AssignConvertType |
| checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType, |
| QualType RHSType) { |
| assert(LHSType.isCanonical() && "LHS not canonicalized!"); |
| assert(RHSType.isCanonical() && "RHS not canonicalized!"); |
| |
| QualType lhptee, rhptee; |
| |
| // get the "pointed to" type (ignoring qualifiers at the top level) |
| lhptee = cast<BlockPointerType>(LHSType)->getPointeeType(); |
| rhptee = cast<BlockPointerType>(RHSType)->getPointeeType(); |
| |
| // In C++, the types have to match exactly. |
| if (S.getLangOpts().CPlusPlus) |
| return Sema::IncompatibleBlockPointer; |
| |
| Sema::AssignConvertType ConvTy = Sema::Compatible; |
| |
| // For blocks we enforce that qualifiers are identical. |
| Qualifiers LQuals = lhptee.getLocalQualifiers(); |
| Qualifiers RQuals = rhptee.getLocalQualifiers(); |
| if (S.getLangOpts().OpenCL) { |
| LQuals.removeAddressSpace(); |
| RQuals.removeAddressSpace(); |
| } |
| if (LQuals != RQuals) |
| ConvTy = Sema::CompatiblePointerDiscardsQualifiers; |
| |
| // FIXME: OpenCL doesn't define the exact compile time semantics for a block |
| // assignment. |
| // The current behavior is similar to C++ lambdas. A block might be |
| // assigned to a variable iff its return type and parameters are compatible |
| // (C99 6.2.7) with the corresponding return type and parameters of the LHS of |
| // an assignment. Presumably it should behave in way that a function pointer |
| // assignment does in C, so for each parameter and return type: |
| // * CVR and address space of LHS should be a superset of CVR and address |
| // space of RHS. |
| // * unqualified types should be compatible. |
| if (S.getLangOpts().OpenCL) { |
| if (!S.Context.typesAreBlockPointerCompatible( |
| S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals), |
| S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals))) |
| return Sema::IncompatibleBlockPointer; |
| } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType)) |
| return Sema::IncompatibleBlockPointer; |
| |
| return ConvTy; |
| } |
| |
| /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types |
| /// for assignment compatibility. |
| static Sema::AssignConvertType |
| checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType, |
| QualType RHSType) { |
| assert(LHSType.isCanonical() && "LHS was not canonicalized!"); |
| assert(RHSType.isCanonical() && "RHS was not canonicalized!"); |
| |
| if (LHSType->isObjCBuiltinType()) { |
| // Class is not compatible with ObjC object pointers. |
| if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() && |
| !RHSType->isObjCQualifiedClassType()) |
| return Sema::IncompatiblePointer; |
| return Sema::Compatible; |
| } |
| if (RHSType->isObjCBuiltinType()) { |
| if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() && |
| !LHSType->isObjCQualifiedClassType()) |
| return Sema::IncompatiblePointer; |
| return Sema::Compatible; |
| } |
| QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType(); |
| QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType(); |
| |
| if (!lhptee.isAtLeastAsQualifiedAs(rhptee) && |
| // make an exception for id<P> |
| !LHSType->isObjCQualifiedIdType()) |
| return Sema::CompatiblePointerDiscardsQualifiers; |
| |
| if (S.Context.typesAreCompatible(LHSType, RHSType)) |
| return Sema::Compatible; |
| if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType()) |
| return Sema::IncompatibleObjCQualifiedId; |
| return Sema::IncompatiblePointer; |
| } |
| |
| Sema::AssignConvertType |
| Sema::CheckAssignmentConstraints(SourceLocation Loc, |
| QualType LHSType, QualType RHSType) { |
| // Fake up an opaque expression. We don't actually care about what |
| // cast operations are required, so if CheckAssignmentConstraints |
| // adds casts to this they'll be wasted, but fortunately that doesn't |
| // usually happen on valid code. |
| OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue); |
| ExprResult RHSPtr = &RHSExpr; |
| CastKind K; |
| |
| return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false); |
| } |
| |
| /// This helper function returns true if QT is a vector type that has element |
| /// type ElementType. |
| static bool isVector(QualType QT, QualType ElementType) { |
| if (const VectorType *VT = QT->getAs<VectorType>()) |
| return VT->getElementType().getCanonicalType() == ElementType; |
| return false; |
| } |
| |
| /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently |
| /// has code to accommodate several GCC extensions when type checking |
| /// pointers. Here are some objectionable examples that GCC considers warnings: |
| /// |
| /// int a, *pint; |
| /// short *pshort; |
| /// struct foo *pfoo; |
| /// |
| /// pint = pshort; // warning: assignment from incompatible pointer type |
| /// a = pint; // warning: assignment makes integer from pointer without a cast |
| /// pint = a; // warning: assignment makes pointer from integer without a cast |
| /// pint = pfoo; // warning: assignment from incompatible pointer type |
| /// |
| /// As a result, the code for dealing with pointers is more complex than the |
| /// C99 spec dictates. |
| /// |
| /// Sets 'Kind' for any result kind except Incompatible. |
| Sema::AssignConvertType |
| Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS, |
| CastKind &Kind, bool ConvertRHS) { |
| QualType RHSType = RHS.get()->getType(); |
| QualType OrigLHSType = LHSType; |
| |
| // Get canonical types. We're not formatting these types, just comparing |
| // them. |
| LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType(); |
| RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType(); |
| |
| // Common case: no conversion required. |
| if (LHSType == RHSType) { |
| Kind = CK_NoOp; |
| return Compatible; |
| } |
| |
| // If we have an atomic type, try a non-atomic assignment, then just add an |
| // atomic qualification step. |
| if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) { |
| Sema::AssignConvertType result = |
| CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind); |
| if (result != Compatible) |
| return result; |
| if (Kind != CK_NoOp && ConvertRHS) |
| RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind); |
| Kind = CK_NonAtomicToAtomic; |
| return Compatible; |
| } |
| |
| // If the left-hand side is a reference type, then we are in a |
| // (rare!) case where we've allowed the use of references in C, |
| // e.g., as a parameter type in a built-in function. In this case, |
| // just make sure that the type referenced is compatible with the |
| // right-hand side type. The caller is responsible for adjusting |
| // LHSType so that the resulting expression does not have reference |
| // type. |
| if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) { |
| if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) { |
| Kind = CK_LValueBitCast; |
| return Compatible; |
| } |
| return Incompatible; |
| } |
| |
| // Allow scalar to ExtVector assignments, and assignments of an ExtVector type |
| // to the same ExtVector type. |
| if (LHSType->isExtVectorType()) { |
| if (RHSType->isExtVectorType()) |
| return Incompatible; |
| if (RHSType->isArithmeticType()) { |
| // CK_VectorSplat does T -> vector T, so first cast to the element type. |
| if (ConvertRHS) |
| RHS = prepareVectorSplat(LHSType, RHS.get()); |
| Kind = CK_VectorSplat; |
| return Compatible; |
| } |
| } |
| |
| // Conversions to or from vector type. |
| if (LHSType->isVectorType() || RHSType->isVectorType()) { |
| if (LHSType->isVectorType() && RHSType->isVectorType()) { |
| // Allow assignments of an AltiVec vector type to an equivalent GCC |
| // vector type and vice versa |
| if (Context.areCompatibleVectorTypes(LHSType, RHSType)) { |
| Kind = CK_BitCast; |
| return Compatible; |
| } |
| |
| // If we are allowing lax vector conversions, and LHS and RHS are both |
| // vectors, the total size only needs to be the same. This is a bitcast; |
| // no bits are changed but the result type is different. |
| if (isLaxVectorConversion(RHSType, LHSType)) { |
| Kind = CK_BitCast; |
| return IncompatibleVectors; |
| } |
| } |
| |
| // When the RHS comes from another lax conversion (e.g. binops between |
| // scalars and vectors) the result is canonicalized as a vector. When the |
| // LHS is also a vector, the lax is allowed by the condition above. Handle |
| // the case where LHS is a scalar. |
| if (LHSType->isScalarType()) { |
| const VectorType *VecType = RHSType->getAs<VectorType>(); |
| if (VecType && VecType->getNumElements() == 1 && |
| isLaxVectorConversion(RHSType, LHSType)) { |
| ExprResult *VecExpr = &RHS; |
| *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast); |
| Kind = CK_BitCast; |
| return Compatible; |
| } |
| } |
| |
| // Allow assignments between fixed-length and sizeless SVE vectors. |
| if ((LHSType->isSizelessBuiltinType() && RHSType->isVectorType()) || |
| (LHSType->isVectorType() && RHSType->isSizelessBuiltinType())) |
| if (Context.areCompatibleSveTypes(LHSType, RHSType) || |
| Context.areLaxCompatibleSveTypes(LHSType, RHSType)) { |
| Kind = CK_BitCast; |
| return Compatible; |
| } |
| |
| return Incompatible; |
| } |
| |
| // Diagnose attempts to convert between __ibm128, __float128 and long double |
| // where such conversions currently can't be handled. |
| if (unsupportedTypeConversion(*this, LHSType, RHSType)) |
| return Incompatible; |
| |
| // Disallow assigning a _Complex to a real type in C++ mode since it simply |
| // discards the imaginary part. |
| if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() && |
| !LHSType->getAs<ComplexType>()) |
| return Incompatible; |
| |
| // Arithmetic conversions. |
| if (LHSType->isArithmeticType() && RHSType->isArithmeticType() && |
| !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) { |
| if (ConvertRHS) |
| Kind = PrepareScalarCast(RHS, LHSType); |
| return Compatible; |
| } |
| |
| // Conversions to normal pointers. |
| if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) { |
| // U* -> T* |
| if (isa<PointerType>(RHSType)) { |
| LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace(); |
| LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace(); |
| if (AddrSpaceL != AddrSpaceR) |
| Kind = CK_AddressSpaceConversion; |
| else if (Context.hasCvrSimilarType(RHSType, LHSType)) |
| Kind = CK_NoOp; |
| else |
| Kind = CK_BitCast; |
| return checkPointerTypesForAssignment(*this, LHSType, RHSType); |
| } |
| |
| // int -> T* |
| if (RHSType->isIntegerType()) { |
| Kind = CK_IntegralToPointer; // FIXME: null? |
| return IntToPointer; |
| } |
| |
| // C pointers are not compatible with ObjC object pointers, |
| // with two exceptions: |
| if (isa<ObjCObjectPointerType>(RHSType)) { |
| // - conversions to void* |
| if (LHSPointer->getPointeeType()->isVoidType()) { |
| Kind = CK_BitCast; |
| return Compatible; |
| } |
| |
| // - conversions from 'Class' to the redefinition type |
| if (RHSType->isObjCClassType() && |
| Context.hasSameType(LHSType, |
| Context.getObjCClassRedefinitionType())) { |
| Kind = CK_BitCast; |
| return Compatible; |
| } |
| |
| Kind = CK_BitCast; |
| return IncompatiblePointer; |
| } |
| |
| // U^ -> void* |
| if (RHSType->getAs<BlockPointerType>()) { |
| if (LHSPointer->getPointeeType()->isVoidType()) { |
| LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace(); |
| LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>() |
| ->getPointeeType() |
| .getAddressSpace(); |
| Kind = |
| AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; |
| return Compatible; |
| } |
| } |
| |
| return Incompatible; |
| } |
| |
| // Conversions to block pointers. |
| if (isa<BlockPointerType>(LHSType)) { |
| // U^ -> T^ |
| if (RHSType->isBlockPointerType()) { |
| LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>() |
| ->getPointeeType() |
| .getAddressSpace(); |
| LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>() |
| ->getPointeeType() |
| .getAddressSpace(); |
| Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; |
| return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType); |
| } |
| |
| // int or null -> T^ |
| if (RHSType->isIntegerType()) { |
| Kind = CK_IntegralToPointer; // FIXME: null |
| return IntToBlockPointer; |
| } |
| |
| // id -> T^ |
| if (getLangOpts().ObjC && RHSType->isObjCIdType()) { |
| Kind = CK_AnyPointerToBlockPointerCast; |
| return Compatible; |
| } |
| |
| // void* -> T^ |
| if (const PointerType *RHSPT = RHSType->getAs<PointerType>()) |
| if (RHSPT->getPointeeType()->isVoidType()) { |
| Kind = CK_AnyPointerToBlockPointerCast; |
| return Compatible; |
| } |
| |
| return Incompatible; |
| } |
| |
| // Conversions to Objective-C pointers. |
| if (isa<ObjCObjectPointerType>(LHSType)) { |
| // A* -> B* |
| if (RHSType->isObjCObjectPointerType()) { |
| Kind = CK_BitCast; |
| Sema::AssignConvertType result = |
| checkObjCPointerTypesForAssignment(*this, LHSType, RHSType); |
| if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && |
| result == Compatible && |
| !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType)) |
| result = IncompatibleObjCWeakRef; |
| return result; |
| } |
| |
| // int or null -> A* |
| if (RHSType->isIntegerType()) { |
| Kind = CK_IntegralToPointer; // FIXME: null |
| return IntToPointer; |
| } |
| |
| // In general, C pointers are not compatible with ObjC object pointers, |
| // with two exceptions: |
| if (isa<PointerType>(RHSType)) { |
| Kind = CK_CPointerToObjCPointerCast; |
| |
| // - conversions from 'void*' |
| if (RHSType->isVoidPointerType()) { |
| return Compatible; |
| } |
| |
| // - conversions to 'Class' from its redefinition type |
| if (LHSType->isObjCClassType() && |
| Context.hasSameType(RHSType, |
| Context.getObjCClassRedefinitionType())) { |
| return Compatible; |
| } |
| |
| return IncompatiblePointer; |
| } |
| |
| // Only under strict condition T^ is compatible with an Objective-C pointer. |
| if (RHSType->isBlockPointerType() && |
| LHSType->isBlockCompatibleObjCPointerType(Context)) { |
| if (ConvertRHS) |
| maybeExtendBlockObject(RHS); |
| Kind = CK_BlockPointerToObjCPointerCast; |
| return Compatible; |
| } |
| |
| return Incompatible; |
| } |
| |
| // Conversions from pointers that are not covered by the above. |
| if (isa<PointerType>(RHSType)) { |
| // T* -> _Bool |
| if (LHSType == Context.BoolTy) { |
| Kind = CK_PointerToBoolean; |
| return Compatible; |
| } |
| |
| // T* -> int |
| if (LHSType->isIntegerType()) { |
| Kind = CK_PointerToIntegral; |
| return PointerToInt; |
| } |
| |
| return Incompatible; |
| } |
| |
| // Conversions from Objective-C pointers that are not covered by the above. |
| if (isa<ObjCObjectPointerType>(RHSType)) { |
| // T* -> _Bool |
| if (LHSType == Context.BoolTy) { |
| Kind = CK_PointerToBoolean; |
| return Compatible; |
| } |
| |
| // T* -> int |
| if (LHSType->isIntegerType()) { |
| Kind = CK_PointerToIntegral; |
| return PointerToInt; |
| } |
| |
| return Incompatible; |
| } |
| |
| // struct A -> struct B |
| if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) { |
| if (Context.typesAreCompatible(LHSType, RHSType)) { |
| Kind = CK_NoOp; |
| return Compatible; |
| } |
| } |
| |
| if (LHSType->isSamplerT() && RHSType->isIntegerType()) { |
| Kind = CK_IntToOCLSampler; |
| return Compatible; |
| } |
| |
| return Incompatible; |
| } |
| |
| /// Constructs a transparent union from an expression that is |
| /// used to initialize the transparent union. |
| static void ConstructTransparentUnion(Sema &S, ASTContext &C, |
| ExprResult &EResult, QualType UnionType, |
| FieldDecl *Field) { |
| // Build an initializer list that designates the appropriate member |
| // of the transparent union. |
| Expr *E = EResult.get(); |
| InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(), |
| E, SourceLocation()); |
| Initializer->setType(UnionType); |
| Initializer->setInitializedFieldInUnion(Field); |
| |
| // Build a compound literal constructing a value of the transparent |
| // union type from this initializer list. |
| TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType); |
| EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType, |
| VK_PRValue, Initializer, false); |
| } |
| |
| Sema::AssignConvertType |
| Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType, |
| ExprResult &RHS) { |
| QualType RHSType = RHS.get()->getType(); |
| |
| // If the ArgType is a Union type, we want to handle a potential |
| // transparent_union GCC extension. |
| const RecordType *UT = ArgType->getAsUnionType(); |
| if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) |
| return Incompatible; |
| |
| // The field to initialize within the transparent union. |
| RecordDecl *UD = UT->getDecl(); |
| FieldDecl *InitField = nullptr; |
| // It's compatible if the expression matches any of the fields. |
| for (auto *it : UD->fields()) { |
| if (it->getType()->isPointerType()) { |
| // If the transparent union contains a pointer type, we allow: |
| // 1) void pointer |
| // 2) null pointer constant |
| if (RHSType->isPointerType()) |
| if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) { |
| RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast); |
| InitField = it; |
| break; |
| } |
| |
| if (RHS.get()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull)) { |
| RHS = ImpCastExprToType(RHS.get(), it->getType(), |
| CK_NullToPointer); |
| InitField = it; |
| break; |
| } |
| } |
| |
| CastKind Kind; |
| if (CheckAssignmentConstraints(it->getType(), RHS, Kind) |
| == Compatible) { |
| RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind); |
| InitField = it; |
| break; |
| } |
| } |
| |
| if (!InitField) |
| return Incompatible; |
| |
| ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField); |
| return Compatible; |
| } |
| |
| Sema::AssignConvertType |
| Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS, |
| bool Diagnose, |
| bool DiagnoseCFAudited, |
| bool ConvertRHS) { |
| // We need to be able to tell the caller whether we diagnosed a problem, if |
| // they ask us to issue diagnostics. |
| assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed"); |
| |
| // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly, |
| // we can't avoid *all* modifications at the moment, so we need some somewhere |
| // to put the updated value. |
| ExprResult LocalRHS = CallerRHS; |
| ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS; |
| |
| if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) { |
| if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) { |
| if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) && |
| !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { |
| Diag(RHS.get()->getExprLoc(), |
| diag::warn_noderef_to_dereferenceable_pointer) |
| << RHS.get()->getSourceRange(); |
| } |
| } |
| } |
| |
| if (getLangOpts().CPlusPlus) { |
| if (!LHSType->isRecordType() && !LHSType->isAtomicType()) { |
| // C++ 5.17p3: If the left operand is not of class type, the |
| // expression is implicitly converted (C++ 4) to the |
| // cv-unqualified type of the left operand. |
| QualType RHSType = RHS.get()->getType(); |
| if (Diagnose) { |
| RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), |
| AA_Assigning); |
| } else { |
| ImplicitConversionSequence ICS = |
| TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), |
| /*SuppressUserConversions=*/false, |
| AllowedExplicit::None, |
| /*InOverloadResolution=*/false, |
| /*CStyle=*/false, |
| /*AllowObjCWritebackConversion=*/false); |
| if (ICS.isFailure()) |
| return Incompatible; |
| RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(), |
| ICS, AA_Assigning); |
| } |
| if (RHS.isInvalid()) |
| return Incompatible; |
| Sema::AssignConvertType result = Compatible; |
| if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && |
| !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType)) |
| result = IncompatibleObjCWeakRef; |
| return result; |
| } |
| |
| // FIXME: Currently, we fall through and treat C++ classes like C |
| // structures. |
| // FIXME: We also fall through for atomics; not sure what should |
| // happen there, though. |
| } else if (RHS.get()->getType() == Context.OverloadTy) { |
| // As a set of extensions to C, we support overloading on functions. These |
| // functions need to be resolved here. |
| DeclAccessPair DAP; |
| if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction( |
| RHS.get(), LHSType, /*Complain=*/false, DAP)) |
| RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD); |
| else |
| return Incompatible; |
| } |
| |
| // C99 6.5.16.1p1: the left operand is a pointer and the right is |
| // a null pointer constant. |
| if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() || |
| LHSType->isBlockPointerType()) && |
| RHS.get()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull)) { |
| if (Diagnose || ConvertRHS) { |
| CastKind Kind; |
| CXXCastPath Path; |
| CheckPointerConversion(RHS.get(), LHSType, Kind, Path, |
| /*IgnoreBaseAccess=*/false, Diagnose); |
| if (ConvertRHS) |
| RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path); |
| } |
| return Compatible; |
| } |
| |
| // OpenCL queue_t type assignment. |
| if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant( |
| Context, Expr::NPC_ValueDependentIsNull)) { |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); |
| return Compatible; |
| } |
| |
| // This check seems unnatural, however it is necessary to ensure the proper |
| // conversion of functions/arrays. If the conversion were done for all |
| // DeclExpr's (created by ActOnIdExpression), it would mess up the unary |
| // expressions that suppress this implicit conversion (&, sizeof). |
| // |
| // Suppress this for references: C++ 8.5.3p5. |
| if (!LHSType->isReferenceType()) { |
| // FIXME: We potentially allocate here even if ConvertRHS is false. |
| RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose); |
| if (RHS.isInvalid()) |
| return Incompatible; |
| } |
| CastKind Kind; |
| Sema::AssignConvertType result = |
| CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS); |
| |
| // C99 6.5.16.1p2: The value of the right operand is converted to the |
| // type of the assignment expression. |
| // CheckAssignmentConstraints allows the left-hand side to be a reference, |
| // so that we can use references in built-in functions even in C. |
| // The getNonReferenceType() call makes sure that the resulting expression |
| // does not have reference type. |
| if (result != Incompatible && RHS.get()->getType() != LHSType) { |
| QualType Ty = LHSType.getNonLValueExprType(Context); |
| Expr *E = RHS.get(); |
| |
| // Check for various Objective-C errors. If we are not reporting |
| // diagnostics and just checking for errors, e.g., during overload |
| // resolution, return Incompatible to indicate the failure. |
| if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && |
| CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion, |
| Diagnose, DiagnoseCFAudited) != ACR_okay) { |
| if (!Diagnose) |
| return Incompatible; |
| } |
| if (getLangOpts().ObjC && |
| (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType, |
| E->getType(), E, Diagnose) || |
| CheckConversionToObjCLiteral(LHSType, E, Diagnose))) { |
| if (!Diagnose) |
| return Incompatible; |
| // Replace the expression with a corrected version and continue so we |
| // can find further errors. |
| RHS = E; |
| return Compatible; |
| } |
| |
| if (ConvertRHS) |
| RHS = ImpCastExprToType(E, Ty, Kind); |
| } |
| |
| return result; |
| } |
| |
| namespace { |
| /// The original operand to an operator, prior to the application of the usual |
| /// arithmetic conversions and converting the arguments of a builtin operator |
| /// candidate. |
| struct OriginalOperand { |
| explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) { |
| if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op)) |
| Op = MTE->getSubExpr(); |
| if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op)) |
| Op = BTE->getSubExpr(); |
| if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) { |
| Orig = ICE->getSubExprAsWritten(); |
| Conversion = ICE->getConversionFunction(); |
| } |
| } |
| |
| QualType getType() const { return Orig->getType(); } |
| |
| Expr *Orig; |
| NamedDecl *Conversion; |
| }; |
| } |
| |
| QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS, |
| ExprResult &RHS) { |
| OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get()); |
| |
| Diag(Loc, diag::err_typecheck_invalid_operands) |
| << OrigLHS.getType() << OrigRHS.getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| |
| // If a user-defined conversion was applied to either of the operands prior |
| // to applying the built-in operator rules, tell the user about it. |
| if (OrigLHS.Conversion) { |
| Diag(OrigLHS.Conversion->getLocation(), |
| diag::note_typecheck_invalid_operands_converted) |
| << 0 << LHS.get()->getType(); |
| } |
| if (OrigRHS.Conversion) { |
| Diag(OrigRHS.Conversion->getLocation(), |
| diag::note_typecheck_invalid_operands_converted) |
| << 1 << RHS.get()->getType(); |
| } |
| |
| return QualType(); |
| } |
| |
| // Diagnose cases where a scalar was implicitly converted to a vector and |
| // diagnose the underlying types. Otherwise, diagnose the error |
| // as invalid vector logical operands for non-C++ cases. |
| QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS, |
| ExprResult &RHS) { |
| QualType LHSType = LHS.get()->IgnoreImpCasts()->getType(); |
| QualType RHSType = RHS.get()->IgnoreImpCasts()->getType(); |
| |
| bool LHSNatVec = LHSType->isVectorType(); |
| bool RHSNatVec = RHSType->isVectorType(); |
| |
| if (!(LHSNatVec && RHSNatVec)) { |
| Expr *Vector = LHSNatVec ? LHS.get() : RHS.get(); |
| Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get(); |
| Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict) |
| << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType() |
| << Vector->getSourceRange(); |
| return QualType(); |
| } |
| |
| Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict) |
| << 1 << LHSType << RHSType << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| |
| return QualType(); |
| } |
| |
| /// Try to convert a value of non-vector type to a vector type by converting |
| /// the type to the element type of the vector and then performing a splat. |
| /// If the language is OpenCL, we only use conversions that promote scalar |
| /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except |
| /// for float->int. |
| /// |
| /// OpenCL V2.0 6.2.6.p2: |
| /// An error shall occur if any scalar operand type has greater rank |
| /// than the type of the vector element. |
| /// |
| /// \param scalar - if non-null, actually perform the conversions |
| /// \return true if the operation fails (but without diagnosing the failure) |
| static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar, |
| QualType scalarTy, |
| QualType vectorEltTy, |
| QualType vectorTy, |
| unsigned &DiagID) { |
| // The conversion to apply to the scalar before splatting it, |
| // if necessary. |
| CastKind scalarCast = CK_NoOp; |
| |
| if (vectorEltTy->isIntegralType(S.Context)) { |
| if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() || |
| (scalarTy->isIntegerType() && |
| S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) { |
| DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type; |
| return true; |
| } |
| if (!scalarTy->isIntegralType(S.Context)) |
| return true; |
| scalarCast = CK_IntegralCast; |
| } else if (vectorEltTy->isRealFloatingType()) { |
| if (scalarTy->isRealFloatingType()) { |
| if (S.getLangOpts().OpenCL && |
| S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) { |
| DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type; |
| return true; |
| } |
| scalarCast = CK_FloatingCast; |
| } |
| else if (scalarTy->isIntegralType(S.Context)) |
| scalarCast = CK_IntegralToFloating; |
| else |
| return true; |
| } else { |
| return true; |
| } |
| |
| // Adjust scalar if desired. |
| if (scalar) { |
| if (scalarCast != CK_NoOp) |
| *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast); |
| *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat); |
| } |
| return false; |
| } |
| |
| /// Convert vector E to a vector with the same number of elements but different |
| /// element type. |
| static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) { |
| const auto *VecTy = E->getType()->getAs<VectorType>(); |
| assert(VecTy && "Expression E must be a vector"); |
| QualType NewVecTy = S.Context.getVectorType(ElementType, |
| VecTy->getNumElements(), |
| VecTy->getVectorKind()); |
| |
| // Look through the implicit cast. Return the subexpression if its type is |
| // NewVecTy. |
| if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) |
| if (ICE->getSubExpr()->getType() == NewVecTy) |
| return ICE->getSubExpr(); |
| |
| auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast; |
| return S.ImpCastExprToType(E, NewVecTy, Cast); |
| } |
| |
| /// Test if a (constant) integer Int can be casted to another integer type |
| /// IntTy without losing precision. |
| static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int, |
| QualType OtherIntTy) { |
| QualType IntTy = Int->get()->getType().getUnqualifiedType(); |
| |
| // Reject cases where the value of the Int is unknown as that would |
| // possibly cause truncation, but accept cases where the scalar can be |
| // demoted without loss of precision. |
| Expr::EvalResult EVResult; |
| bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context); |
| int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy); |
| bool IntSigned = IntTy->hasSignedIntegerRepresentation(); |
| bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation(); |
| |
| if (CstInt) { |
| // If the scalar is constant and is of a higher order and has more active |
| // bits that the vector element type, reject it. |
| llvm::APSInt Result = EVResult.Val.getInt(); |
| unsigned NumBits = IntSigned |
| ? (Result.isNegative() ? Result.getMinSignedBits() |
| : Result.getActiveBits()) |
| : Result.getActiveBits(); |
| if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits) |
| return true; |
| |
| // If the signedness of the scalar type and the vector element type |
| // differs and the number of bits is greater than that of the vector |
| // element reject it. |
| return (IntSigned != OtherIntSigned && |
| NumBits > S.Context.getIntWidth(OtherIntTy)); |
| } |
| |
| // Reject cases where the value of the scalar is not constant and it's |
| // order is greater than that of the vector element type. |
| return (Order < 0); |
| } |
| |
| /// Test if a (constant) integer Int can be casted to floating point type |
| /// FloatTy without losing precision. |
| static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int, |
| QualType FloatTy) { |
| QualType IntTy = Int->get()->getType().getUnqualifiedType(); |
| |
| // Determine if the integer constant can be expressed as a floating point |
| // number of the appropriate type. |
| Expr::EvalResult EVResult; |
| bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context); |
| |
| uint64_t Bits = 0; |
| if (CstInt) { |
| // Reject constants that would be truncated if they were converted to |
| // the floating point type. Test by simple to/from conversion. |
| // FIXME: Ideally the conversion to an APFloat and from an APFloat |
| // could be avoided if there was a convertFromAPInt method |
| // which could signal back if implicit truncation occurred. |
| llvm::APSInt Result = EVResult.Val.getInt(); |
| llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy)); |
| Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(), |
| llvm::APFloat::rmTowardZero); |
| llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy), |
| !IntTy->hasSignedIntegerRepresentation()); |
| bool Ignored = false; |
| Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven, |
| &Ignored); |
| if (Result != ConvertBack) |
| return true; |
| } else { |
| // Reject types that cannot be fully encoded into the mantissa of |
| // the float. |
| Bits = S.Context.getTypeSize(IntTy); |
| unsigned FloatPrec = llvm::APFloat::semanticsPrecision( |
| S.Context.getFloatTypeSemantics(FloatTy)); |
| if (Bits > FloatPrec) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Attempt to convert and splat Scalar into a vector whose types matches |
| /// Vector following GCC conversion rules. The rule is that implicit |
| /// conversion can occur when Scalar can be casted to match Vector's element |
| /// type without causing truncation of Scalar. |
| static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar, |
| ExprResult *Vector) { |
| QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType(); |
| QualType VectorTy = Vector->get()->getType().getUnqualifiedType(); |
| const VectorType *VT = VectorTy->getAs<VectorType>(); |
| |
| assert(!isa<ExtVectorType>(VT) && |
| "ExtVectorTypes should not be handled here!"); |
| |
| QualType VectorEltTy = VT->getElementType(); |
| |
| // Reject cases where the vector element type or the scalar element type are |
| // not integral or floating point types. |
| if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType()) |
| return true; |
| |
| // The conversion to apply to the scalar before splatting it, |
| // if necessary. |
| CastKind ScalarCast = CK_NoOp; |
| |
| // Accept cases where the vector elements are integers and the scalar is |
| // an integer. |
| // FIXME: Notionally if the scalar was a floating point value with a precise |
| // integral representation, we could cast it to an appropriate integer |
| // type and then perform the rest of the checks here. GCC will perform |
| // this conversion in some cases as determined by the input language. |
| // We should accept it on a language independent basis. |
| if (VectorEltTy->isIntegralType(S.Context) && |
| ScalarTy->isIntegralType(S.Context) && |
| S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) { |
| |
| if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy)) |
| return true; |
| |
| ScalarCast = CK_IntegralCast; |
| } else if (VectorEltTy->isIntegralType(S.Context) && |
| ScalarTy->isRealFloatingType()) { |
| if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy)) |
| ScalarCast = CK_FloatingToIntegral; |
| else |
| return true; |
| } else if (VectorEltTy->isRealFloatingType()) { |
| if (ScalarTy->isRealFloatingType()) { |
| |
| // Reject cases where the scalar type is not a constant and has a higher |
| // Order than the vector element type. |
| llvm::APFloat Result(0.0); |
| |
| // Determine whether this is a constant scalar. In the event that the |
| // value is dependent (and thus cannot be evaluated by the constant |
| // evaluator), skip the evaluation. This will then diagnose once the |
| // expression is instantiated. |
| bool CstScalar = Scalar->get()->isValueDependent() || |
| Scalar->get()->EvaluateAsFloat(Result, S.Context); |
| int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy); |
| if (!CstScalar && Order < 0) |
| return true; |
| |
| // If the scalar cannot be safely casted to the vector element type, |
| // reject it. |
| if (CstScalar) { |
| bool Truncated = false; |
| Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy), |
| llvm::APFloat::rmNearestTiesToEven, &Truncated); |
| if (Truncated) |
| return true; |
| } |
| |
| ScalarCast = CK_FloatingCast; |
| } else if (ScalarTy->isIntegralType(S.Context)) { |
| if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy)) |
| return true; |
| |
| ScalarCast = CK_IntegralToFloating; |
| } else |
| return true; |
| } else if (ScalarTy->isEnumeralType()) |
| return true; |
| |
| // Adjust scalar if desired. |
| if (Scalar) { |
| if (ScalarCast != CK_NoOp) |
| *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast); |
| *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat); |
| } |
| return false; |
| } |
| |
| QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, bool IsCompAssign, |
| bool AllowBothBool, |
| bool AllowBoolConversions) { |
| if (!IsCompAssign) { |
| LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| } |
| RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| |
| // For conversion purposes, we ignore any qualifiers. |
| // For example, "const float" and "float" are equivalent. |
| QualType LHSType = LHS.get()->getType().getUnqualifiedType(); |
| QualType RHSType = RHS.get()->getType().getUnqualifiedType(); |
| |
| const VectorType *LHSVecType = LHSType->getAs<VectorType>(); |
| const VectorType *RHSVecType = RHSType->getAs<VectorType>(); |
| assert(LHSVecType || RHSVecType); |
| |
| if ((LHSVecType && LHSVecType->getElementType()->isBFloat16Type()) || |
| (RHSVecType && RHSVecType->getElementType()->isBFloat16Type())) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| // AltiVec-style "vector bool op vector bool" combinations are allowed |
| // for some operators but not others. |
| if (!AllowBothBool && |
| LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool && |
| RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| // If the vector types are identical, return. |
| if (Context.hasSameType(LHSType, RHSType)) |
| return LHSType; |
| |
| // If we have compatible AltiVec and GCC vector types, use the AltiVec type. |
| if (LHSVecType && RHSVecType && |
| Context.areCompatibleVectorTypes(LHSType, RHSType)) { |
| if (isa<ExtVectorType>(LHSVecType)) { |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); |
| return LHSType; |
| } |
| |
| if (!IsCompAssign) |
| LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); |
| return RHSType; |
| } |
| |
| // AllowBoolConversions says that bool and non-bool AltiVec vectors |
| // can be mixed, with the result being the non-bool type. The non-bool |
| // operand must have integer element type. |
| if (AllowBoolConversions && LHSVecType && RHSVecType && |
| LHSVecType->getNumElements() == RHSVecType->getNumElements() && |
| (Context.getTypeSize(LHSVecType->getElementType()) == |
| Context.getTypeSize(RHSVecType->getElementType()))) { |
| if (LHSVecType->getVectorKind() == VectorType::AltiVecVector && |
| LHSVecType->getElementType()->isIntegerType() && |
| RHSVecType->getVectorKind() == VectorType::AltiVecBool) { |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); |
| return LHSType; |
| } |
| if (!IsCompAssign && |
| LHSVecType->getVectorKind() == VectorType::AltiVecBool && |
| RHSVecType->getVectorKind() == VectorType::AltiVecVector && |
| RHSVecType->getElementType()->isIntegerType()) { |
| LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); |
| return RHSType; |
| } |
| } |
| |
| // Expressions containing fixed-length and sizeless SVE vectors are invalid |
| // since the ambiguity can affect the ABI. |
| auto IsSveConversion = [](QualType FirstType, QualType SecondType) { |
| const VectorType *VecType = SecondType->getAs<VectorType>(); |
| return FirstType->isSizelessBuiltinType() && VecType && |
| (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector || |
| VecType->getVectorKind() == |
| VectorType::SveFixedLengthPredicateVector); |
| }; |
| |
| if (IsSveConversion(LHSType, RHSType) || IsSveConversion(RHSType, LHSType)) { |
| Diag(Loc, diag::err_typecheck_sve_ambiguous) << LHSType << RHSType; |
| return QualType(); |
| } |
| |
| // Expressions containing GNU and SVE (fixed or sizeless) vectors are invalid |
| // since the ambiguity can affect the ABI. |
| auto IsSveGnuConversion = [](QualType FirstType, QualType SecondType) { |
| const VectorType *FirstVecType = FirstType->getAs<VectorType>(); |
| const VectorType *SecondVecType = SecondType->getAs<VectorType>(); |
| |
| if (FirstVecType && SecondVecType) |
| return FirstVecType->getVectorKind() == VectorType::GenericVector && |
| (SecondVecType->getVectorKind() == |
| VectorType::SveFixedLengthDataVector || |
| SecondVecType->getVectorKind() == |
| VectorType::SveFixedLengthPredicateVector); |
| |
| return FirstType->isSizelessBuiltinType() && SecondVecType && |
| SecondVecType->getVectorKind() == VectorType::GenericVector; |
| }; |
| |
| if (IsSveGnuConversion(LHSType, RHSType) || |
| IsSveGnuConversion(RHSType, LHSType)) { |
| Diag(Loc, diag::err_typecheck_sve_gnu_ambiguous) << LHSType << RHSType; |
| return QualType(); |
| } |
| |
| // If there's a vector type and a scalar, try to convert the scalar to |
| // the vector element type and splat. |
| unsigned DiagID = diag::err_typecheck_vector_not_convertable; |
| if (!RHSVecType) { |
| if (isa<ExtVectorType>(LHSVecType)) { |
| if (!tryVectorConvertAndSplat(*this, &RHS, RHSType, |
| LHSVecType->getElementType(), LHSType, |
| DiagID)) |
| return LHSType; |
| } else { |
| if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS)) |
| return LHSType; |
| } |
| } |
| if (!LHSVecType) { |
| if (isa<ExtVectorType>(RHSVecType)) { |
| if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS), |
| LHSType, RHSVecType->getElementType(), |
| RHSType, DiagID)) |
| return RHSType; |
| } else { |
| if (LHS.get()->isLValue() || |
| !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS)) |
| return RHSType; |
| } |
| } |
| |
| // FIXME: The code below also handles conversion between vectors and |
| // non-scalars, we should break this down into fine grained specific checks |
| // and emit proper diagnostics. |
| QualType VecType = LHSVecType ? LHSType : RHSType; |
| const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType; |
| QualType OtherType = LHSVecType ? RHSType : LHSType; |
| ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS; |
| if (isLaxVectorConversion(OtherType, VecType)) { |
| // If we're allowing lax vector conversions, only the total (data) size |
| // needs to be the same. For non compound assignment, if one of the types is |
| // scalar, the result is always the vector type. |
| if (!IsCompAssign) { |
| *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast); |
| return VecType; |
| // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding |
| // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs' |
| // type. Note that this is already done by non-compound assignments in |
| // CheckAssignmentConstraints. If it's a scalar type, only bitcast for |
| // <1 x T> -> T. The result is also a vector type. |
| } else if (OtherType->isExtVectorType() || OtherType->isVectorType() || |
| (OtherType->isScalarType() && VT->getNumElements() == 1)) { |
| ExprResult *RHSExpr = &RHS; |
| *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast); |
| return VecType; |
| } |
| } |
| |
| // Okay, the expression is invalid. |
| |
| // If there's a non-vector, non-real operand, diagnose that. |
| if ((!RHSVecType && !RHSType->isRealType()) || |
| (!LHSVecType && !LHSType->isRealType())) { |
| Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar) |
| << LHSType << RHSType |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // OpenCL V1.1 6.2.6.p1: |
| // If the operands are of more than one vector type, then an error shall |
| // occur. Implicit conversions between vector types are not permitted, per |
| // section 6.2.1. |
| if (getLangOpts().OpenCL && |
| RHSVecType && isa<ExtVectorType>(RHSVecType) && |
| LHSVecType && isa<ExtVectorType>(LHSVecType)) { |
| Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType |
| << RHSType; |
| return QualType(); |
| } |
| |
| |
| // If there is a vector type that is not a ExtVector and a scalar, we reach |
| // this point if scalar could not be converted to the vector's element type |
| // without truncation. |
| if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) || |
| (LHSVecType && !isa<ExtVectorType>(LHSVecType))) { |
| QualType Scalar = LHSVecType ? RHSType : LHSType; |
| QualType Vector = LHSVecType ? LHSType : RHSType; |
| unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0; |
| Diag(Loc, |
| diag::err_typecheck_vector_not_convertable_implict_truncation) |
| << ScalarOrVector << Scalar << Vector; |
| |
| return QualType(); |
| } |
| |
| // Otherwise, use the generic diagnostic. |
| Diag(Loc, DiagID) |
| << LHSType << RHSType |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| // checkArithmeticNull - Detect when a NULL constant is used improperly in an |
| // expression. These are mainly cases where the null pointer is used as an |
| // integer instead of a pointer. |
| static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, bool IsCompare) { |
| // The canonical way to check for a GNU null is with isNullPointerConstant, |
| // but we use a bit of a hack here for speed; this is a relatively |
| // hot path, and isNullPointerConstant is slow. |
| bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts()); |
| bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts()); |
| |
| QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType(); |
| |
| // Avoid analyzing cases where the result will either be invalid (and |
| // diagnosed as such) or entirely valid and not something to warn about. |
| if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() || |
| NonNullType->isMemberPointerType() || NonNullType->isFunctionType()) |
| return; |
| |
| // Comparison operations would not make sense with a null pointer no matter |
| // what the other expression is. |
| if (!IsCompare) { |
| S.Diag(Loc, diag::warn_null_in_arithmetic_operation) |
| << (LHSNull ? LHS.get()->getSourceRange() : SourceRange()) |
| << (RHSNull ? RHS.get()->getSourceRange() : SourceRange()); |
| return; |
| } |
| |
| // The rest of the operations only make sense with a null pointer |
| // if the other expression is a pointer. |
| if (LHSNull == RHSNull || NonNullType->isAnyPointerType() || |
| NonNullType->canDecayToPointerType()) |
| return; |
| |
| S.Diag(Loc, diag::warn_null_in_comparison_operation) |
| << LHSNull /* LHS is NULL */ << NonNullType |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| } |
| |
| static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS, |
| SourceLocation Loc) { |
| const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS); |
| const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS); |
| if (!LUE || !RUE) |
| return; |
| if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() || |
| RUE->getKind() != UETT_SizeOf) |
| return; |
| |
| const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens(); |
| QualType LHSTy = LHSArg->getType(); |
| QualType RHSTy; |
| |
| if (RUE->isArgumentType()) |
| RHSTy = RUE->getArgumentType().getNonReferenceType(); |
| else |
| RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType(); |
| |
| if (LHSTy->isPointerType() && !RHSTy->isPointerType()) { |
| if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy)) |
| return; |
| |
| S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange(); |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) { |
| if (const ValueDecl *LHSArgDecl = DRE->getDecl()) |
| S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here) |
| << LHSArgDecl; |
| } |
| } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) { |
| QualType ArrayElemTy = ArrayTy->getElementType(); |
| if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) || |
| ArrayElemTy->isDependentType() || RHSTy->isDependentType() || |
| RHSTy->isReferenceType() || ArrayElemTy->isCharType() || |
| S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy)) |
| return; |
| S.Diag(Loc, diag::warn_division_sizeof_array) |
| << LHSArg->getSourceRange() << ArrayElemTy << RHSTy; |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) { |
| if (const ValueDecl *LHSArgDecl = DRE->getDecl()) |
| S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here) |
| << LHSArgDecl; |
| } |
| |
| S.Diag(Loc, diag::note_precedence_silence) << RHS; |
| } |
| } |
| |
| static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS, |
| ExprResult &RHS, |
| SourceLocation Loc, bool IsDiv) { |
| // Check for division/remainder by zero. |
| Expr::EvalResult RHSValue; |
| if (!RHS.get()->isValueDependent() && |
| RHS.get()->EvaluateAsInt(RHSValue, S.Context) && |
| RHSValue.Val.getInt() == 0) |
| S.DiagRuntimeBehavior(Loc, RHS.get(), |
| S.PDiag(diag::warn_remainder_division_by_zero) |
| << IsDiv << RHS.get()->getSourceRange()); |
| } |
| |
| QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| bool IsCompAssign, bool IsDiv) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); |
| |
| QualType LHSTy = LHS.get()->getType(); |
| QualType RHSTy = RHS.get()->getType(); |
| if (LHSTy->isVectorType() || RHSTy->isVectorType()) |
| return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, |
| /*AllowBothBool*/getLangOpts().AltiVec, |
| /*AllowBoolConversions*/false); |
| if (!IsDiv && |
| (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType())) |
| return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign); |
| // For division, only matrix-by-scalar is supported. Other combinations with |
| // matrix types are invalid. |
| if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType()) |
| return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign); |
| |
| QualType compType = UsualArithmeticConversions( |
| LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| |
| |
| if (compType.isNull() || !compType->isArithmeticType()) |
| return InvalidOperands(Loc, LHS, RHS); |
| if (IsDiv) { |
| DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv); |
| DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc); |
| } |
| return compType; |
| } |
| |
| QualType Sema::CheckRemainderOperands( |
| ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); |
| |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) { |
| if (LHS.get()->getType()->hasIntegerRepresentation() && |
| RHS.get()->getType()->hasIntegerRepresentation()) |
| return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, |
| /*AllowBothBool*/getLangOpts().AltiVec, |
| /*AllowBoolConversions*/false); |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| QualType compType = UsualArithmeticConversions( |
| LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| |
| if (compType.isNull() || !compType->isIntegerType()) |
| return InvalidOperands(Loc, LHS, RHS); |
| DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */); |
| return compType; |
| } |
| |
| /// Diagnose invalid arithmetic on two void pointers. |
| static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| S.Diag(Loc, S.getLangOpts().CPlusPlus |
| ? diag::err_typecheck_pointer_arith_void_type |
| : diag::ext_gnu_void_ptr) |
| << 1 /* two pointers */ << LHSExpr->getSourceRange() |
| << RHSExpr->getSourceRange(); |
| } |
| |
| /// Diagnose invalid arithmetic on a void pointer. |
| static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc, |
| Expr *Pointer) { |
| S.Diag(Loc, S.getLangOpts().CPlusPlus |
| ? diag::err_typecheck_pointer_arith_void_type |
| : diag::ext_gnu_void_ptr) |
| << 0 /* one pointer */ << Pointer->getSourceRange(); |
| } |
| |
| /// Diagnose invalid arithmetic on a null pointer. |
| /// |
| /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n' |
| /// idiom, which we recognize as a GNU extension. |
| /// |
| static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc, |
| Expr *Pointer, bool IsGNUIdiom) { |
| if (IsGNUIdiom) |
| S.Diag(Loc, diag::warn_gnu_null_ptr_arith) |
| << Pointer->getSourceRange(); |
| else |
| S.Diag(Loc, diag::warn_pointer_arith_null_ptr) |
| << S.getLangOpts().CPlusPlus << Pointer->getSourceRange(); |
| } |
| |
| /// Diagnose invalid subraction on a null pointer. |
| /// |
| static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc, |
| Expr *Pointer, bool BothNull) { |
| // Null - null is valid in C++ [expr.add]p7 |
| if (BothNull && S.getLangOpts().CPlusPlus) |
| return; |
| |
| // Is this s a macro from a system header? |
| if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc)) |
| return; |
| |
| S.Diag(Loc, diag::warn_pointer_sub_null_ptr) |
| << S.getLangOpts().CPlusPlus << Pointer->getSourceRange(); |
| } |
| |
| /// Diagnose invalid arithmetic on two function pointers. |
| static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc, |
| Expr *LHS, Expr *RHS) { |
| assert(LHS->getType()->isAnyPointerType()); |
| assert(RHS->getType()->isAnyPointerType()); |
| S.Diag(Loc, S.getLangOpts().CPlusPlus |
| ? diag::err_typecheck_pointer_arith_function_type |
| : diag::ext_gnu_ptr_func_arith) |
| << 1 /* two pointers */ << LHS->getType()->getPointeeType() |
| // We only show the second type if it differs from the first. |
| << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(), |
| RHS->getType()) |
| << RHS->getType()->getPointeeType() |
| << LHS->getSourceRange() << RHS->getSourceRange(); |
| } |
| |
| /// Diagnose invalid arithmetic on a function pointer. |
| static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc, |
| Expr *Pointer) { |
| assert(Pointer->getType()->isAnyPointerType()); |
| S.Diag(Loc, S.getLangOpts().CPlusPlus |
| ? diag::err_typecheck_pointer_arith_function_type |
| : diag::ext_gnu_ptr_func_arith) |
| << 0 /* one pointer */ << Pointer->getType()->getPointeeType() |
| << 0 /* one pointer, so only one type */ |
| << Pointer->getSourceRange(); |
| } |
| |
| /// Emit error if Operand is incomplete pointer type |
| /// |
| /// \returns True if pointer has incomplete type |
| static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc, |
| Expr *Operand) { |
| QualType ResType = Operand->getType(); |
| if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>()) |
| ResType = ResAtomicType->getValueType(); |
| |
| assert(ResType->isAnyPointerType() && !ResType->isDependentType()); |
| QualType PointeeTy = ResType->getPointeeType(); |
| return S.RequireCompleteSizedType( |
| Loc, PointeeTy, |
| diag::err_typecheck_arithmetic_incomplete_or_sizeless_type, |
| Operand->getSourceRange()); |
| } |
| |
| /// Check the validity of an arithmetic pointer operand. |
| /// |
| /// If the operand has pointer type, this code will check for pointer types |
| /// which are invalid in arithmetic operations. These will be diagnosed |
| /// appropriately, including whether or not the use is supported as an |
| /// extension. |
| /// |
| /// \returns True when the operand is valid to use (even if as an extension). |
| static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc, |
| Expr *Operand) { |
| QualType ResType = Operand->getType(); |
| if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>()) |
| ResType = ResAtomicType->getValueType(); |
| |
| if (!ResType->isAnyPointerType()) return true; |
| |
| QualType PointeeTy = ResType->getPointeeType(); |
| if (PointeeTy->isVoidType()) { |
| diagnoseArithmeticOnVoidPointer(S, Loc, Operand); |
| return !S.getLangOpts().CPlusPlus; |
| } |
| if (PointeeTy->isFunctionType()) { |
| diagnoseArithmeticOnFunctionPointer(S, Loc, Operand); |
| return !S.getLangOpts().CPlusPlus; |
| } |
| |
| if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false; |
| |
| return true; |
| } |
| |
| /// Check the validity of a binary arithmetic operation w.r.t. pointer |
| /// operands. |
| /// |
| /// This routine will diagnose any invalid arithmetic on pointer operands much |
| /// like \see checkArithmeticOpPointerOperand. However, it has special logic |
| /// for emitting a single diagnostic even for operations where both LHS and RHS |
| /// are (potentially problematic) pointers. |
| /// |
| /// \returns True when the operand is valid to use (even if as an extension). |
| static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| bool isLHSPointer = LHSExpr->getType()->isAnyPointerType(); |
| bool isRHSPointer = RHSExpr->getType()->isAnyPointerType(); |
| if (!isLHSPointer && !isRHSPointer) return true; |
| |
| QualType LHSPointeeTy, RHSPointeeTy; |
| if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType(); |
| if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType(); |
| |
| // if both are pointers check if operation is valid wrt address spaces |
| if (isLHSPointer && isRHSPointer) { |
| if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) { |
| S.Diag(Loc, |
| diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) |
| << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/ |
| << LHSExpr->getSourceRange() << RHSExpr->getSourceRange(); |
| return false; |
| } |
| } |
| |
| // Check for arithmetic on pointers to incomplete types. |
| bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType(); |
| bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType(); |
| if (isLHSVoidPtr || isRHSVoidPtr) { |
| if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr); |
| else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr); |
| else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr); |
| |
| return !S.getLangOpts().CPlusPlus; |
| } |
| |
| bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType(); |
| bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType(); |
| if (isLHSFuncPtr || isRHSFuncPtr) { |
| if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr); |
| else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, |
| RHSExpr); |
| else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr); |
| |
| return !S.getLangOpts().CPlusPlus; |
| } |
| |
| if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr)) |
| return false; |
| if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr)) |
| return false; |
| |
| return true; |
| } |
| |
| /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string |
| /// literal. |
| static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts()); |
| Expr* IndexExpr = RHSExpr; |
| if (!StrExpr) { |
| StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts()); |
| IndexExpr = LHSExpr; |
| } |
| |
| bool IsStringPlusInt = StrExpr && |
| IndexExpr->getType()->isIntegralOrUnscopedEnumerationType(); |
| if (!IsStringPlusInt || IndexExpr->isValueDependent()) |
| return; |
| |
| SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); |
| Self.Diag(OpLoc, diag::warn_string_plus_int) |
| << DiagRange << IndexExpr->IgnoreImpCasts()->getType(); |
| |
| // Only print a fixit for "str" + int, not for int + "str". |
| if (IndexExpr == RHSExpr) { |
| SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc()); |
| Self.Diag(OpLoc, diag::note_string_plus_scalar_silence) |
| << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&") |
| << FixItHint::CreateReplacement(SourceRange(OpLoc), "[") |
| << FixItHint::CreateInsertion(EndLoc, "]"); |
| } else |
| Self.Diag(OpLoc, diag::note_string_plus_scalar_silence); |
| } |
| |
| /// Emit a warning when adding a char literal to a string. |
| static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| const Expr *StringRefExpr = LHSExpr; |
| const CharacterLiteral *CharExpr = |
| dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts()); |
| |
| if (!CharExpr) { |
| CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts()); |
| StringRefExpr = RHSExpr; |
| } |
| |
| if (!CharExpr || !StringRefExpr) |
| return; |
| |
| const QualType StringType = StringRefExpr->getType(); |
| |
| // Return if not a PointerType. |
| if (!StringType->isAnyPointerType()) |
| return; |
| |
| // Return if not a CharacterType. |
| if (!StringType->getPointeeType()->isAnyCharacterType()) |
| return; |
| |
| ASTContext &Ctx = Self.getASTContext(); |
| SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc()); |
| |
| const QualType CharType = CharExpr->getType(); |
| if (!CharType->isAnyCharacterType() && |
| CharType->isIntegerType() && |
| llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) { |
| Self.Diag(OpLoc, diag::warn_string_plus_char) |
| << DiagRange << Ctx.CharTy; |
| } else { |
| Self.Diag(OpLoc, diag::warn_string_plus_char) |
| << DiagRange << CharExpr->getType(); |
| } |
| |
| // Only print a fixit for str + char, not for char + str. |
| if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) { |
| SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc()); |
| Self.Diag(OpLoc, diag::note_string_plus_scalar_silence) |
| << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&") |
| << FixItHint::CreateReplacement(SourceRange(OpLoc), "[") |
| << FixItHint::CreateInsertion(EndLoc, "]"); |
| } else { |
| Self.Diag(OpLoc, diag::note_string_plus_scalar_silence); |
| } |
| } |
| |
| /// Emit error when two pointers are incompatible. |
| static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc, |
| Expr *LHSExpr, Expr *RHSExpr) { |
| assert(LHSExpr->getType()->isAnyPointerType()); |
| assert(RHSExpr->getType()->isAnyPointerType()); |
| S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible) |
| << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange() |
| << RHSExpr->getSourceRange(); |
| } |
| |
| // C99 6.5.6 |
| QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, BinaryOperatorKind Opc, |
| QualType* CompLHSTy) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); |
| |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) { |
| QualType compType = CheckVectorOperands( |
| LHS, RHS, Loc, CompLHSTy, |
| /*AllowBothBool*/getLangOpts().AltiVec, |
| /*AllowBoolConversions*/getLangOpts().ZVector); |
| if (CompLHSTy) *CompLHSTy = compType; |
| return compType; |
| } |
| |
| if (LHS.get()->getType()->isConstantMatrixType() || |
| RHS.get()->getType()->isConstantMatrixType()) { |
| QualType compType = |
| CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy); |
| if (CompLHSTy) |
| *CompLHSTy = compType; |
| return compType; |
| } |
| |
| QualType compType = UsualArithmeticConversions( |
| LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| |
| // Diagnose "string literal" '+' int and string '+' "char literal". |
| if (Opc == BO_Add) { |
| diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get()); |
| diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get()); |
| } |
| |
| // handle the common case first (both operands are arithmetic). |
| if (!compType.isNull() && compType->isArithmeticType()) { |
| if (CompLHSTy) *CompLHSTy = compType; |
| return compType; |
| } |
| |
| // Type-checking. Ultimately the pointer's going to be in PExp; |
| // note that we bias towards the LHS being the pointer. |
| Expr *PExp = LHS.get(), *IExp = RHS.get(); |
| |
| bool isObjCPointer; |
| if (PExp->getType()->isPointerType()) { |
| isObjCPointer = false; |
| } else if (PExp->getType()->isObjCObjectPointerType()) { |
| isObjCPointer = true; |
| } else { |
| std::swap(PExp, IExp); |
| if (PExp->getType()->isPointerType()) { |
| isObjCPointer = false; |
| } else if (PExp->getType()->isObjCObjectPointerType()) { |
| isObjCPointer = true; |
| } else { |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| } |
| assert(PExp->getType()->isAnyPointerType()); |
| |
| if (!IExp->getType()->isIntegerType()) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| // Adding to a null pointer results in undefined behavior. |
| if (PExp->IgnoreParenCasts()->isNullPointerConstant( |
| Context, Expr::NPC_ValueDependentIsNotNull)) { |
| // In C++ adding zero to a null pointer is defined. |
| Expr::EvalResult KnownVal; |
| if (!getLangOpts().CPlusPlus || |
| (!IExp->isValueDependent() && |
| (!IExp->EvaluateAsInt(KnownVal, Context) || |
| KnownVal.Val.getInt() != 0))) { |
| // Check the conditions to see if this is the 'p = nullptr + n' idiom. |
| bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension( |
| Context, BO_Add, PExp, IExp); |
| diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom); |
| } |
| } |
| |
| if (!checkArithmeticOpPointerOperand(*this, Loc, PExp)) |
| return QualType(); |
| |
| if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp)) |
| return QualType(); |
| |
| // Check array bounds for pointer arithemtic |
| CheckArrayAccess(PExp, IExp); |
| |
| if (CompLHSTy) { |
| QualType LHSTy = Context.isPromotableBitField(LHS.get()); |
| if (LHSTy.isNull()) { |
| LHSTy = LHS.get()->getType(); |
| if (LHSTy->isPromotableIntegerType()) |
| LHSTy = Context.getPromotedIntegerType(LHSTy); |
| } |
| *CompLHSTy = LHSTy; |
| } |
| |
| return PExp->getType(); |
| } |
| |
| // C99 6.5.6 |
| QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| QualType* CompLHSTy) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); |
| |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) { |
| QualType compType = CheckVectorOperands( |
| LHS, RHS, Loc, CompLHSTy, |
| /*AllowBothBool*/getLangOpts().AltiVec, |
| /*AllowBoolConversions*/getLangOpts().ZVector); |
| if (CompLHSTy) *CompLHSTy = compType; |
| return compType; |
| } |
| |
| if (LHS.get()->getType()->isConstantMatrixType() || |
| RHS.get()->getType()->isConstantMatrixType()) { |
| QualType compType = |
| CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy); |
| if (CompLHSTy) |
| *CompLHSTy = compType; |
| return compType; |
| } |
| |
| QualType compType = UsualArithmeticConversions( |
| LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| |
| // Enforce type constraints: C99 6.5.6p3. |
| |
| // Handle the common case first (both operands are arithmetic). |
| if (!compType.isNull() && compType->isArithmeticType()) { |
| if (CompLHSTy) *CompLHSTy = compType; |
| return compType; |
| } |
| |
| // Either ptr - int or ptr - ptr. |
| if (LHS.get()->getType()->isAnyPointerType()) { |
| QualType lpointee = LHS.get()->getType()->getPointeeType(); |
| |
| // Diagnose bad cases where we step over interface counts. |
| if (LHS.get()->getType()->isObjCObjectPointerType() && |
| checkArithmeticOnObjCPointer(*this, Loc, LHS.get())) |
| return QualType(); |
| |
| // The result type of a pointer-int computation is the pointer type. |
| if (RHS.get()->getType()->isIntegerType()) { |
| // Subtracting from a null pointer should produce a warning. |
| // The last argument to the diagnose call says this doesn't match the |
| // GNU int-to-pointer idiom. |
| if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNotNull)) { |
| // In C++ adding zero to a null pointer is defined. |
| Expr::EvalResult KnownVal; |
| if (!getLangOpts().CPlusPlus || |
| (!RHS.get()->isValueDependent() && |
| (!RHS.get()->EvaluateAsInt(KnownVal, Context) || |
| KnownVal.Val.getInt() != 0))) { |
| diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false); |
| } |
| } |
| |
| if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get())) |
| return QualType(); |
| |
| // Check array bounds for pointer arithemtic |
| CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr, |
| /*AllowOnePastEnd*/true, /*IndexNegated*/true); |
| |
| if (CompLHSTy) *CompLHSTy = LHS.get()->getType(); |
| return LHS.get()->getType(); |
| } |
| |
| // Handle pointer-pointer subtractions. |
| if (const PointerType *RHSPTy |
| = RHS.get()->getType()->getAs<PointerType>()) { |
| QualType rpointee = RHSPTy->getPointeeType(); |
| |
| if (getLangOpts().CPlusPlus) { |
| // Pointee types must be the same: C++ [expr.add] |
| if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) { |
| diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get()); |
| } |
| } else { |
| // Pointee types must be compatible C99 6.5.6p3 |
| if (!Context.typesAreCompatible( |
| Context.getCanonicalType(lpointee).getUnqualifiedType(), |
| Context.getCanonicalType(rpointee).getUnqualifiedType())) { |
| diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get()); |
| return QualType(); |
| } |
| } |
| |
| if (!checkArithmeticBinOpPointerOperands(*this, Loc, |
| LHS.get(), RHS.get())) |
| return QualType(); |
| |
| bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant( |
| Context, Expr::NPC_ValueDependentIsNotNull); |
| bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant( |
| Context, Expr::NPC_ValueDependentIsNotNull); |
| |
| // Subtracting nullptr or from nullptr is suspect |
| if (LHSIsNullPtr) |
| diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr); |
| if (RHSIsNullPtr) |
| diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr); |
| |
| // The pointee type may have zero size. As an extension, a structure or |
| // union may have zero size or an array may have zero length. In this |
| // case subtraction does not make sense. |
| if (!rpointee->isVoidType() && !rpointee->isFunctionType()) { |
| CharUnits ElementSize = Context.getTypeSizeInChars(rpointee); |
| if (ElementSize.isZero()) { |
| Diag(Loc,diag::warn_sub_ptr_zero_size_types) |
| << rpointee.getUnqualifiedType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| } |
| } |
| |
| if (CompLHSTy) *CompLHSTy = LHS.get()->getType(); |
| return Context.getPointerDiffType(); |
| } |
| } |
| |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| static bool isScopedEnumerationType(QualType T) { |
| if (const EnumType *ET = T->getAs<EnumType>()) |
| return ET->getDecl()->isScoped(); |
| return false; |
| } |
| |
| static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, BinaryOperatorKind Opc, |
| QualType LHSType) { |
| // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined), |
| // so skip remaining warnings as we don't want to modify values within Sema. |
| if (S.getLangOpts().OpenCL) |
| return; |
| |
| // Check right/shifter operand |
| Expr::EvalResult RHSResult; |
| if (RHS.get()->isValueDependent() || |
| !RHS.get()->EvaluateAsInt(RHSResult, S.Context)) |
| return; |
| llvm::APSInt Right = RHSResult.Val.getInt(); |
| |
| if (Right.isNegative()) { |
| S.DiagRuntimeBehavior(Loc, RHS.get(), |
| S.PDiag(diag::warn_shift_negative) |
| << RHS.get()->getSourceRange()); |
| return; |
| } |
| |
| QualType LHSExprType = LHS.get()->getType(); |
| uint64_t LeftSize = S.Context.getTypeSize(LHSExprType); |
| if (LHSExprType->isExtIntType()) |
| LeftSize = S.Context.getIntWidth(LHSExprType); |
| else if (LHSExprType->isFixedPointType()) { |
| auto FXSema = S.Context.getFixedPointSemantics(LHSExprType); |
| LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding(); |
| } |
| llvm::APInt LeftBits(Right.getBitWidth(), LeftSize); |
| if (Right.uge(LeftBits)) { |
| S.DiagRuntimeBehavior(Loc, RHS.get(), |
| S.PDiag(diag::warn_shift_gt_typewidth) |
| << RHS.get()->getSourceRange()); |
| return; |
| } |
| |
| // FIXME: We probably need to handle fixed point types specially here. |
| if (Opc != BO_Shl || LHSExprType->isFixedPointType()) |
| return; |
| |
| // When left shifting an ICE which is signed, we can check for overflow which |
| // according to C++ standards prior to C++2a has undefined behavior |
| // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one |
| // more than the maximum value representable in the result type, so never |
| // warn for those. (FIXME: Unsigned left-shift overflow in a constant |
| // expression is still probably a bug.) |
| Expr::EvalResult LHSResult; |
| if (LHS.get()->isValueDependent() || |
| LHSType->hasUnsignedIntegerRepresentation() || |
| !LHS.get()->EvaluateAsInt(LHSResult, S.Context)) |
| return; |
| llvm::APSInt Left = LHSResult.Val.getInt(); |
| |
| // If LHS does not have a signed type and non-negative value |
| // then, the behavior is undefined before C++2a. Warn about it. |
| if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined() && |
| !S.getLangOpts().CPlusPlus20) { |
| S.DiagRuntimeBehavior(Loc, LHS.get(), |
| S.PDiag(diag::warn_shift_lhs_negative) |
| << LHS.get()->getSourceRange()); |
| return; |
| } |
| |
| llvm::APInt ResultBits = |
| static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits(); |
| if (LeftBits.uge(ResultBits)) |
| return; |
| llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue()); |
| Result = Result.shl(Right); |
| |
| // Print the bit representation of the signed integer as an unsigned |
| // hexadecimal number. |
| SmallString<40> HexResult; |
| Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true); |
| |
| // If we are only missing a sign bit, this is less likely to result in actual |
| // bugs -- if the result is cast back to an unsigned type, it will have the |
| // expected value. Thus we place this behind a different warning that can be |
| // turned off separately if needed. |
| if (LeftBits == ResultBits - 1) { |
| S.Diag(Loc, diag::warn_shift_result_sets_sign_bit) |
| << HexResult << LHSType |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return; |
| } |
| |
| S.Diag(Loc, diag::warn_shift_result_gt_typewidth) |
| << HexResult.str() << Result.getMinSignedBits() << LHSType |
| << Left.getBitWidth() << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| } |
| |
| /// Return the resulting type when a vector is shifted |
| /// by a scalar or vector shift amount. |
| static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, bool IsCompAssign) { |
| // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector. |
| if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) && |
| !LHS.get()->getType()->isVectorType()) { |
| S.Diag(Loc, diag::err_shift_rhs_only_vector) |
| << RHS.get()->getType() << LHS.get()->getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| if (!IsCompAssign) { |
| LHS = S.UsualUnaryConversions(LHS.get()); |
| if (LHS.isInvalid()) return QualType(); |
| } |
| |
| RHS = S.UsualUnaryConversions(RHS.get()); |
| if (RHS.isInvalid()) return QualType(); |
| |
| QualType LHSType = LHS.get()->getType(); |
| // Note that LHS might be a scalar because the routine calls not only in |
| // OpenCL case. |
| const VectorType *LHSVecTy = LHSType->getAs<VectorType>(); |
| QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType; |
| |
| // Note that RHS might not be a vector. |
| QualType RHSType = RHS.get()->getType(); |
| const VectorType *RHSVecTy = RHSType->getAs<VectorType>(); |
| QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType; |
| |
| // The operands need to be integers. |
| if (!LHSEleType->isIntegerType()) { |
| S.Diag(Loc, diag::err_typecheck_expect_int) |
| << LHS.get()->getType() << LHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| if (!RHSEleType->isIntegerType()) { |
| S.Diag(Loc, diag::err_typecheck_expect_int) |
| << RHS.get()->getType() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| |
| if (!LHSVecTy) { |
| assert(RHSVecTy); |
| if (IsCompAssign) |
| return RHSType; |
| if (LHSEleType != RHSEleType) { |
| LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast); |
| LHSEleType = RHSEleType; |
| } |
| QualType VecTy = |
| S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements()); |
| LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat); |
| LHSType = VecTy; |
| } else if (RHSVecTy) { |
| // OpenCL v1.1 s6.3.j says that for vector types, the operators |
| // are applied component-wise. So if RHS is a vector, then ensure |
| // that the number of elements is the same as LHS... |
| if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) { |
| S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal) |
| << LHS.get()->getType() << RHS.get()->getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| return QualType(); |
| } |
| if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) { |
| const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>(); |
| const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>(); |
| if (LHSBT != RHSBT && |
| S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) { |
| S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal) |
| << LHS.get()->getType() << RHS.get()->getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| } |
| } |
| } else { |
| // ...else expand RHS to match the number of elements in LHS. |
| QualType VecTy = |
| S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements()); |
| RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat); |
| } |
| |
| return LHSType; |
| } |
| |
| // C99 6.5.7 |
| QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, BinaryOperatorKind Opc, |
| bool IsCompAssign) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); |
| |
| // Vector shifts promote their scalar inputs to vector type. |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) { |
| if (LangOpts.ZVector) { |
| // The shift operators for the z vector extensions work basically |
| // like general shifts, except that neither the LHS nor the RHS is |
| // allowed to be a "vector bool". |
| if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>()) |
| if (LHSVecType->getVectorKind() == VectorType::AltiVecBool) |
| return InvalidOperands(Loc, LHS, RHS); |
| if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>()) |
| if (RHSVecType->getVectorKind() == VectorType::AltiVecBool) |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign); |
| } |
| |
| // Shifts don't perform usual arithmetic conversions, they just do integer |
| // promotions on each operand. C99 6.5.7p3 |
| |
| // For the LHS, do usual unary conversions, but then reset them away |
| // if this is a compound assignment. |
| ExprResult OldLHS = LHS; |
| LHS = UsualUnaryConversions(LHS.get()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| QualType LHSType = LHS.get()->getType(); |
| if (IsCompAssign) LHS = OldLHS; |
| |
| // The RHS is simpler. |
| RHS = UsualUnaryConversions(RHS.get()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| QualType RHSType = RHS.get()->getType(); |
| |
| // C99 6.5.7p2: Each of the operands shall have integer type. |
| // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point. |
| if ((!LHSType->isFixedPointOrIntegerType() && |
| !LHSType->hasIntegerRepresentation()) || |
| !RHSType->hasIntegerRepresentation()) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| // C++0x: Don't allow scoped enums. FIXME: Use something better than |
| // hasIntegerRepresentation() above instead of this. |
| if (isScopedEnumerationType(LHSType) || |
| isScopedEnumerationType(RHSType)) { |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType); |
| |
| // "The type of the result is that of the promoted left operand." |
| return LHSType; |
| } |
| |
| /// Diagnose bad pointer comparisons. |
| static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc, |
| ExprResult &LHS, ExprResult &RHS, |
| bool IsError) { |
| S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers |
| : diag::ext_typecheck_comparison_of_distinct_pointers) |
| << LHS.get()->getType() << RHS.get()->getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| } |
| |
| /// Returns false if the pointers are converted to a composite type, |
| /// true otherwise. |
| static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc, |
| ExprResult &LHS, ExprResult &RHS) { |
| // C++ [expr.rel]p2: |
| // [...] Pointer conversions (4.10) and qualification |
| // conversions (4.4) are performed on pointer operands (or on |
| // a pointer operand and a null pointer constant) to bring |
| // them to their composite pointer type. [...] |
| // |
| // C++ [expr.eq]p1 uses the same notion for (in)equality |
| // comparisons of pointers. |
| |
| QualType LHSType = LHS.get()->getType(); |
| QualType RHSType = RHS.get()->getType(); |
| assert(LHSType->isPointerType() || RHSType->isPointerType() || |
| LHSType->isMemberPointerType() || RHSType->isMemberPointerType()); |
| |
| QualType T = S.FindCompositePointerType(Loc, LHS, RHS); |
| if (T.isNull()) { |
| if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) && |
| (RHSType->isAnyPointerType() || RHSType->isMemberPointerType())) |
| diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true); |
| else |
| S.InvalidOperands(Loc, LHS, RHS); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc, |
| ExprResult &LHS, |
| ExprResult &RHS, |
| bool IsError) { |
| S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void |
| : diag::ext_typecheck_comparison_of_fptr_to_void) |
| << LHS.get()->getType() << RHS.get()->getType() |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| } |
| |
| static bool isObjCObjectLiteral(ExprResult &E) { |
| switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) { |
| case Stmt::ObjCArrayLiteralClass: |
| case Stmt::ObjCDictionaryLiteralClass: |
| case Stmt::ObjCStringLiteralClass: |
| case Stmt::ObjCBoxedExprClass: |
| return true; |
| default: |
| // Note that ObjCBoolLiteral is NOT an object literal! |
| return false; |
| } |
| } |
| |
| static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) { |
| const ObjCObjectPointerType *Type = |
| LHS->getType()->getAs<ObjCObjectPointerType>(); |
| |
| // If this is not actually an Objective-C object, bail out. |
| if (!Type) |
| return false; |
| |
| // Get the LHS object's interface type. |
| QualType InterfaceType = Type->getPointeeType(); |
| |
| // If the RHS isn't an Objective-C object, bail out. |
| if (!RHS->getType()->isObjCObjectPointerType()) |
| return false; |
| |
| // Try to find the -isEqual: method. |
| Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector(); |
| ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel, |
| InterfaceType, |
| /*IsInstance=*/true); |
| if (!Method) { |
| if (Type->isObjCIdType()) { |
| // For 'id', just check the global pool. |
| Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(), |
| /*receiverId=*/true); |
| } else { |
| // Check protocols. |
| Method = S.LookupMethodInQualifiedType(IsEqualSel, Type, |
| /*IsInstance=*/true); |
| } |
| } |
| |
| if (!Method) |
| return false; |
| |
| QualType T = Method->parameters()[0]->getType(); |
| if (!T->isObjCObjectPointerType()) |
| return false; |
| |
| QualType R = Method->getReturnType(); |
| if (!R->isScalarType()) |
| return false; |
| |
| return true; |
| } |
| |
| Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) { |
| FromE = FromE->IgnoreParenImpCasts(); |
| switch (FromE->getStmtClass()) { |
| default: |
| break; |
| case Stmt::ObjCStringLiteralClass: |
| // "string literal" |
| return LK_String; |
| case Stmt::ObjCArrayLiteralClass: |
| // "array literal" |
| return LK_Array; |
| case Stmt::ObjCDictionaryLiteralClass: |
| // "dictionary literal" |
| return LK_Dictionary; |
| case Stmt::BlockExprClass: |
| return LK_Block; |
| case Stmt::ObjCBoxedExprClass: { |
| Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens(); |
| switch (Inner->getStmtClass()) { |
| case Stmt::IntegerLiteralClass: |
| case Stmt::FloatingLiteralClass: |
| case Stmt::CharacterLiteralClass: |
| case Stmt::ObjCBoolLiteralExprClass: |
| case Stmt::CXXBoolLiteralExprClass: |
| // "numeric literal" |
| return LK_Numeric; |
| case Stmt::ImplicitCastExprClass: { |
| CastKind CK = cast<CastExpr>(Inner)->getCastKind(); |
| // Boolean literals can be represented by implicit casts. |
| if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast) |
| return LK_Numeric; |
| break; |
| } |
| default: |
| break; |
| } |
| return LK_Boxed; |
| } |
| } |
| return LK_None; |
| } |
| |
| static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc, |
| ExprResult &LHS, ExprResult &RHS, |
| BinaryOperator::Opcode Opc){ |
| Expr *Literal; |
| Expr *Other; |
| if (isObjCObjectLiteral(LHS)) { |
| Literal = LHS.get(); |
| Other = RHS.get(); |
| } else { |
| Literal = RHS.get(); |
| Other = LHS.get(); |
| } |
| |
| // Don't warn on comparisons against nil. |
| Other = Other->IgnoreParenCasts(); |
| if (Other->isNullPointerConstant(S.getASTContext(), |
| Expr::NPC_ValueDependentIsNotNull)) |
| return; |
| |
| // This should be kept in sync with warn_objc_literal_comparison. |
| // LK_String should always be after the other literals, since it has its own |
| // warning flag. |
| Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal); |
| assert(LiteralKind != Sema::LK_Block); |
| if (LiteralKind == Sema::LK_None) { |
| llvm_unreachable("Unknown Objective-C object literal kind"); |
| } |
| |
| if (LiteralKind == Sema::LK_String) |
| S.Diag(Loc, diag::warn_objc_string_literal_comparison) |
| << Literal->getSourceRange(); |
| else |
| S.Diag(Loc, diag::warn_objc_literal_comparison) |
| << LiteralKind << Literal->getSourceRange(); |
| |
| if (BinaryOperator::isEqualityOp(Opc) && |
| hasIsEqualMethod(S, LHS.get(), RHS.get())) { |
| SourceLocation Start = LHS.get()->getBeginLoc(); |
| SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc()); |
| CharSourceRange OpRange = |
| CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc)); |
| |
| S.Diag(Loc, diag::note_objc_literal_comparison_isequal) |
| << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![") |
| << FixItHint::CreateReplacement(OpRange, " isEqual:") |
| << FixItHint::CreateInsertion(End, "]"); |
| } |
| } |
| |
| /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended. |
| static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, SourceLocation Loc, |
| BinaryOperatorKind Opc) { |
| // Check that left hand side is !something. |
| UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts()); |
| if (!UO || UO->getOpcode() != UO_LNot) return; |
| |
| // Only check if the right hand side is non-bool arithmetic type. |
| if (RHS.get()->isKnownToHaveBooleanValue()) return; |
| |
| // Make sure that the something in !something is not bool. |
| Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts(); |
| if (SubExpr->isKnownToHaveBooleanValue()) return; |
| |
| // Emit warning. |
| bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor; |
| S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check) |
| << Loc << IsBitwiseOp; |
| |
| // First note suggest !(x < y) |
| SourceLocation FirstOpen = SubExpr->getBeginLoc(); |
| SourceLocation FirstClose = RHS.get()->getEndLoc(); |
| FirstClose = S.getLocForEndOfToken(FirstClose); |
| if (FirstClose.isInvalid()) |
| FirstOpen = SourceLocation(); |
| S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix) |
| << IsBitwiseOp |
| << FixItHint::CreateInsertion(FirstOpen, "(") |
| << FixItHint::CreateInsertion(FirstClose, ")"); |
| |
| // Second note suggests (!x) < y |
| SourceLocation SecondOpen = LHS.get()->getBeginLoc(); |
| SourceLocation SecondClose = LHS.get()->getEndLoc(); |
| SecondClose = S.getLocForEndOfToken(SecondClose); |
| if (SecondClose.isInvalid()) |
| SecondOpen = SourceLocation(); |
| S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens) |
| << FixItHint::CreateInsertion(SecondOpen, "(") |
| << FixItHint::CreateInsertion(SecondClose, ")"); |
| } |
| |
| // Returns true if E refers to a non-weak array. |
| static bool checkForArray(const Expr *E) { |
| const ValueDecl *D = nullptr; |
| if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) { |
| D = DR->getDecl(); |
| } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) { |
| if (Mem->isImplicitAccess()) |
| D = Mem->getMemberDecl(); |
| } |
| if (!D) |
| return false; |
| return D->getType()->isArrayType() && !D->isWeak(); |
| } |
| |
| /// Diagnose some forms of syntactically-obvious tautological comparison. |
| static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc, |
| Expr *LHS, Expr *RHS, |
| BinaryOperatorKind Opc) { |
| Expr *LHSStripped = LHS->IgnoreParenImpCasts(); |
| Expr *RHSStripped = RHS->IgnoreParenImpCasts(); |
| |
| QualType LHSType = LHS->getType(); |
| QualType RHSType = RHS->getType(); |
| if (LHSType->hasFloatingRepresentation() || |
| (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) || |
| S.inTemplateInstantiation()) |
| return; |
| |
| // Comparisons between two array types are ill-formed for operator<=>, so |
| // we shouldn't emit any additional warnings about it. |
| if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType()) |
| return; |
| |
| // For non-floating point types, check for self-comparisons of the form |
| // x == x, x != x, x < x, etc. These always evaluate to a constant, and |
| // often indicate logic errors in the program. |
| // |
| // NOTE: Don't warn about comparison expressions resulting from macro |
| // expansion. Also don't warn about comparisons which are only self |
| // comparisons within a template instantiation. The warnings should catch |
| // obvious cases in the definition of the template anyways. The idea is to |
| // warn when the typed comparison operator will always evaluate to the same |
| // result. |
| |
| // Used for indexing into %select in warn_comparison_always |
| enum { |
| AlwaysConstant, |
| AlwaysTrue, |
| AlwaysFalse, |
| AlwaysEqual, // std::strong_ordering::equal from operator<=> |
| }; |
| |
| // C++2a [depr.array.comp]: |
| // Equality and relational comparisons ([expr.eq], [expr.rel]) between two |
| // operands of array type are deprecated. |
| if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() && |
| RHSStripped->getType()->isArrayType()) { |
| S.Diag(Loc, diag::warn_depr_array_comparison) |
| << LHS->getSourceRange() << RHS->getSourceRange() |
| << LHSStripped->getType() << RHSStripped->getType(); |
| // Carry on to produce the tautological comparison warning, if this |
| // expression is potentially-evaluated, we can resolve the array to a |
| // non-weak declaration, and so on. |
| } |
| |
| if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) { |
| if (Expr::isSameComparisonOperand(LHS, RHS)) { |
| unsigned Result; |
| switch (Opc) { |
| case BO_EQ: |
| case BO_LE: |
| case BO_GE: |
| Result = AlwaysTrue; |
| break; |
| case BO_NE: |
| case BO_LT: |
| case BO_GT: |
| Result = AlwaysFalse; |
| break; |
| case BO_Cmp: |
| Result = AlwaysEqual; |
| break; |
| default: |
| Result = AlwaysConstant; |
| break; |
| } |
| S.DiagRuntimeBehavior(Loc, nullptr, |
| S.PDiag(diag::warn_comparison_always) |
| << 0 /*self-comparison*/ |
| << Result); |
| } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) { |
| // What is it always going to evaluate to? |
| unsigned Result; |
| switch (Opc) { |
| case BO_EQ: // e.g. array1 == array2 |
| Result = AlwaysFalse; |
| break; |
| case BO_NE: // e.g. array1 != array2 |
| Result = AlwaysTrue; |
| break; |
| default: // e.g. array1 <= array2 |
| // The best we can say is 'a constant' |
| Result = AlwaysConstant; |
| break; |
| } |
| S.DiagRuntimeBehavior(Loc, nullptr, |
| S.PDiag(diag::warn_comparison_always) |
| << 1 /*array comparison*/ |
| << Result); |
| } |
| } |
| |
| if (isa<CastExpr>(LHSStripped)) |
| LHSStripped = LHSStripped->IgnoreParenCasts(); |
| if (isa<CastExpr>(RHSStripped)) |
| RHSStripped = RHSStripped->IgnoreParenCasts(); |
| |
| // Warn about comparisons against a string constant (unless the other |
| // operand is null); the user probably wants string comparison function. |
| Expr *LiteralString = nullptr; |
| Expr *LiteralStringStripped = nullptr; |
| if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) && |
| !RHSStripped->isNullPointerConstant(S.Context, |
| Expr::NPC_ValueDependentIsNull)) { |
| LiteralString = LHS; |
| LiteralStringStripped = LHSStripped; |
| } else if ((isa<StringLiteral>(RHSStripped) || |
| isa<ObjCEncodeExpr>(RHSStripped)) && |
| !LHSStripped->isNullPointerConstant(S.Context, |
| Expr::NPC_ValueDependentIsNull)) { |
| LiteralString = RHS; |
| LiteralStringStripped = RHSStripped; |
| } |
| |
| if (LiteralString) { |
| S.DiagRuntimeBehavior(Loc, nullptr, |
| S.PDiag(diag::warn_stringcompare) |
| << isa<ObjCEncodeExpr>(LiteralStringStripped) |
| << LiteralString->getSourceRange()); |
| } |
| } |
| |
| static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) { |
| switch (CK) { |
| default: { |
| #ifndef NDEBUG |
| llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK) |
| << "\n"; |
| #endif |
| llvm_unreachable("unhandled cast kind"); |
| } |
| case CK_UserDefinedConversion: |
| return ICK_Identity; |
| case CK_LValueToRValue: |
| return ICK_Lvalue_To_Rvalue; |
| case CK_ArrayToPointerDecay: |
| return ICK_Array_To_Pointer; |
| case CK_FunctionToPointerDecay: |
| return ICK_Function_To_Pointer; |
| case CK_IntegralCast: |
| return ICK_Integral_Conversion; |
| case CK_FloatingCast: |
| return ICK_Floating_Conversion; |
| case CK_IntegralToFloating: |
| case CK_FloatingToIntegral: |
| return ICK_Floating_Integral; |
| case CK_IntegralComplexCast: |
| case CK_FloatingComplexCast: |
| case CK_FloatingComplexToIntegralComplex: |
| case CK_IntegralComplexToFloatingComplex: |
| return ICK_Complex_Conversion; |
| case CK_FloatingComplexToReal: |
| case CK_FloatingRealToComplex: |
| case CK_IntegralComplexToReal: |
| case CK_IntegralRealToComplex: |
| return ICK_Complex_Real; |
| } |
| } |
| |
| static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E, |
| QualType FromType, |
| SourceLocation Loc) { |
| // Check for a narrowing implicit conversion. |
| StandardConversionSequence SCS; |
| SCS.setAsIdentityConversion(); |
| SCS.setToType(0, FromType); |
| SCS.setToType(1, ToType); |
| if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E)) |
| SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind()); |
| |
| APValue PreNarrowingValue; |
| QualType PreNarrowingType; |
| switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue, |
| PreNarrowingType, |
| /*IgnoreFloatToIntegralConversion*/ true)) { |
| case NK_Dependent_Narrowing: |
| // Implicit conversion to a narrower type, but the expression is |
| // value-dependent so we can't tell whether it's actually narrowing. |
| case NK_Not_Narrowing: |
| return false; |
| |
| case NK_Constant_Narrowing: |
| // Implicit conversion to a narrower type, and the value is not a constant |
| // expression. |
| S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing) |
| << /*Constant*/ 1 |
| << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType; |
| return true; |
| |
| case NK_Variable_Narrowing: |
| // Implicit conversion to a narrower type, and the value is not a constant |
| // expression. |
| case NK_Type_Narrowing: |
| S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing) |
| << /*Constant*/ 0 << FromType << ToType; |
| // TODO: It's not a constant expression, but what if the user intended it |
| // to be? Can we produce notes to help them figure out why it isn't? |
| return true; |
| } |
| llvm_unreachable("unhandled case in switch"); |
| } |
| |
| static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S, |
| ExprResult &LHS, |
| ExprResult &RHS, |
| SourceLocation Loc) { |
| QualType LHSType = LHS.get()->getType(); |
| QualType RHSType = RHS.get()->getType(); |
| // Dig out the original argument type and expression before implicit casts |
| // were applied. These are the types/expressions we need to check the |
| // [expr.spaceship] requirements against. |
| ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts(); |
| ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts(); |
| QualType LHSStrippedType = LHSStripped.get()->getType(); |
| QualType RHSStrippedType = RHSStripped.get()->getType(); |
| |
| // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the |
| // other is not, the program is ill-formed. |
| if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) { |
| S.InvalidOperands(Loc, LHSStripped, RHSStripped); |
| return QualType(); |
| } |
| |
| // FIXME: Consider combining this with checkEnumArithmeticConversions. |
| int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() + |
| RHSStrippedType->isEnumeralType(); |
| if (NumEnumArgs == 1) { |
| bool LHSIsEnum = LHSStrippedType->isEnumeralType(); |
| QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType; |
| if (OtherTy->hasFloatingRepresentation()) { |
| S.InvalidOperands(Loc, LHSStripped, RHSStripped); |
| return QualType(); |
| } |
| } |
| if (NumEnumArgs == 2) { |
| // C++2a [expr.spaceship]p5: If both operands have the same enumeration |
| // type E, the operator yields the result of converting the operands |
| // to the underlying type of E and applying <=> to the converted operands. |
| if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) { |
| S.InvalidOperands(Loc, LHS, RHS); |
| return QualType(); |
| } |
| QualType IntType = |
| LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType(); |
| assert(IntType->isArithmeticType()); |
| |
| // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we |
| // promote the boolean type, and all other promotable integer types, to |
| // avoid this. |
| if (IntType->isPromotableIntegerType()) |
| IntType = S.Context.getPromotedIntegerType(IntType); |
| |
| LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast); |
| RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast); |
| LHSType = RHSType = IntType; |
| } |
| |
| // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the |
| // usual arithmetic conversions are applied to the operands. |
| QualType Type = |
| S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| if (Type.isNull()) |
| return S.InvalidOperands(Loc, LHS, RHS); |
| |
| Optional<ComparisonCategoryType> CCT = |
| getComparisonCategoryForBuiltinCmp(Type); |
| if (!CCT) |
| return S.InvalidOperands(Loc, LHS, RHS); |
| |
| bool HasNarrowing = checkThreeWayNarrowingConversion( |
| S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc()); |
| HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType, |
| RHS.get()->getBeginLoc()); |
| if (HasNarrowing) |
| return QualType(); |
| |
| assert(!Type.isNull() && "composite type for <=> has not been set"); |
| |
| return S.CheckComparisonCategoryType( |
| *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression); |
| } |
| |
| static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS, |
| ExprResult &RHS, |
| SourceLocation Loc, |
| BinaryOperatorKind Opc) { |
| if (Opc == BO_Cmp) |
| return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc); |
| |
| // C99 6.5.8p3 / C99 6.5.9p4 |
| QualType Type = |
| S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison); |
| if (LHS.isInvalid() || RHS.isInvalid()) |
| return QualType(); |
| if (Type.isNull()) |
| return S.InvalidOperands(Loc, LHS, RHS); |
| assert(Type->isArithmeticType() || Type->isEnumeralType()); |
| |
| if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc)) |
| return S.InvalidOperands(Loc, LHS, RHS); |
| |
| // Check for comparisons of floating point operands using != and ==. |
| if (Type->hasFloatingRepresentation() && BinaryOperator::isEqualityOp(Opc)) |
| S.CheckFloatComparison(Loc, LHS.get(), RHS.get()); |
| |
| // The result of comparisons is 'bool' in C++, 'int' in C. |
| return S.Context.getLogicalOperationType(); |
| } |
| |
| void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) { |
| if (!NullE.get()->getType()->isAnyPointerType()) |
| return; |
| int NullValue = PP.isMacroDefined("NULL") ? 0 : 1; |
| if (!E.get()->getType()->isAnyPointerType() && |
| E.get()->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNotNull) == |
| Expr::NPCK_ZeroExpression) { |
| if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) { |
| if (CL->getValue() == 0) |
| Diag(E.get()->getExprLoc(), diag::warn_pointer_compare) |
| << NullValue |
| << FixItHint::CreateReplacement(E.get()->getExprLoc(), |
| NullValue ? "NULL" : "(void *)0"); |
| } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) { |
| TypeSourceInfo *TI = CE->getTypeInfoAsWritten(); |
| QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType(); |
| if (T == Context.CharTy) |
| Diag(E.get()->getExprLoc(), diag::warn_pointer_compare) |
| << NullValue |
| << FixItHint::CreateReplacement(E.get()->getExprLoc(), |
| NullValue ? "NULL" : "(void *)0"); |
| } |
| } |
| } |
| |
| // C99 6.5.8, C++ [expr.rel] |
| QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| BinaryOperatorKind Opc) { |
| bool IsRelational = BinaryOperator::isRelationalOp(Opc); |
| bool IsThreeWay = Opc == BO_Cmp; |
| bool IsOrdered = IsRelational || IsThreeWay; |
| auto IsAnyPointerType = [](ExprResult E) { |
| QualType Ty = E.get()->getType(); |
| return Ty->isPointerType() || Ty->isMemberPointerType(); |
| }; |
| |
| // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer |
| // type, array-to-pointer, ..., conversions are performed on both operands to |
| // bring them to their composite type. |
| // Otherwise, all comparisons expect an rvalue, so convert to rvalue before |
| // any type-related checks. |
| if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) { |
| LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| } else { |
| LHS = DefaultLvalueConversion(LHS.get()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| RHS = DefaultLvalueConversion(RHS.get()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| } |
| |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true); |
| if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) { |
| CheckPtrComparisonWithNullChar(LHS, RHS); |
| CheckPtrComparisonWithNullChar(RHS, LHS); |
| } |
| |
| // Handle vector comparisons separately. |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) |
| return CheckVectorCompareOperands(LHS, RHS, Loc, Opc); |
| |
| diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc); |
| diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc); |
| |
| QualType LHSType = LHS.get()->getType(); |
| QualType RHSType = RHS.get()->getType(); |
| if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) && |
| (RHSType->isArithmeticType() || RHSType->isEnumeralType())) |
| return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc); |
| |
| const Expr::NullPointerConstantKind LHSNullKind = |
| LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); |
| const Expr::NullPointerConstantKind RHSNullKind = |
| RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull); |
| bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull; |
| bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull; |
| |
| auto computeResultTy = [&]() { |
| if (Opc != BO_Cmp) |
| return Context.getLogicalOperationType(); |
| assert(getLangOpts().CPlusPlus); |
| assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType())); |
| |
| QualType CompositeTy = LHS.get()->getType(); |
| assert(!CompositeTy->isReferenceType()); |
| |
| Optional<ComparisonCategoryType> CCT = |
| getComparisonCategoryForBuiltinCmp(CompositeTy); |
| if (!CCT) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) { |
| // P0946R0: Comparisons between a null pointer constant and an object |
| // pointer result in std::strong_equality, which is ill-formed under |
| // P1959R0. |
| Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero) |
| << (LHSIsNull ? LHS.get()->getSourceRange() |
| : RHS.get()->getSourceRange()); |
| return QualType(); |
| } |
| |
| return CheckComparisonCategoryType( |
| *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression); |
| }; |
| |
| if (!IsOrdered && LHSIsNull != RHSIsNull) { |
| bool IsEquality = Opc == BO_EQ; |
| if (RHSIsNull) |
| DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality, |
| RHS.get()->getSourceRange()); |
| else |
| DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality, |
| LHS.get()->getSourceRange()); |
| } |
| |
| if (IsOrdered && LHSType->isFunctionPointerType() && |
| RHSType->isFunctionPointerType()) { |
| // Valid unless a relational comparison of function pointers |
| bool IsError = Opc == BO_Cmp; |
| auto DiagID = |
| IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers |
| : getLangOpts().CPlusPlus |
| ? diag::warn_typecheck_ordered_comparison_of_function_pointers |
| : diag::ext_typecheck_ordered_comparison_of_function_pointers; |
| Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| if (IsError) |
| return QualType(); |
| } |
| |
| if ((LHSType->isIntegerType() && !LHSIsNull) || |
| (RHSType->isIntegerType() && !RHSIsNull)) { |
| // Skip normal pointer conversion checks in this case; we have better |
| // diagnostics for this below. |
| } else if (getLangOpts().CPlusPlus) { |
| // Equality comparison of a function pointer to a void pointer is invalid, |
| // but we allow it as an extension. |
| // FIXME: If we really want to allow this, should it be part of composite |
| // pointer type computation so it works in conditionals too? |
| if (!IsOrdered && |
| ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) || |
| (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) { |
| // This is a gcc extension compatibility comparison. |
| // In a SFINAE context, we treat this as a hard error to maintain |
| // conformance with the C++ standard. |
| diagnoseFunctionPointerToVoidComparison( |
| *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext()); |
| |
| if (isSFINAEContext()) |
| return QualType(); |
| |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); |
| return computeResultTy(); |
| } |
| |
| // C++ [expr.eq]p2: |
| // If at least one operand is a pointer [...] bring them to their |
| // composite pointer type. |
| // C++ [expr.spaceship]p6 |
| // If at least one of the operands is of pointer type, [...] bring them |
| // to their composite pointer type. |
| // C++ [expr.rel]p2: |
| // If both operands are pointers, [...] bring them to their composite |
| // pointer type. |
| // For <=>, the only valid non-pointer types are arrays and functions, and |
| // we already decayed those, so this is really the same as the relational |
| // comparison rule. |
| if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >= |
| (IsOrdered ? 2 : 1) && |
| (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() || |
| RHSType->isObjCObjectPointerType()))) { |
| if (convertPointersToCompositeType(*this, Loc, LHS, RHS)) |
| return QualType(); |
| return computeResultTy(); |
| } |
| } else if (LHSType->isPointerType() && |
| RHSType->isPointerType()) { // C99 6.5.8p2 |
| // All of the following pointer-related warnings are GCC extensions, except |
| // when handling null pointer constants. |
| QualType LCanPointeeTy = |
| LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType(); |
| QualType RCanPointeeTy = |
| RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType(); |
| |
| // C99 6.5.9p2 and C99 6.5.8p2 |
| if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(), |
| RCanPointeeTy.getUnqualifiedType())) { |
| if (IsRelational) { |
| // Pointers both need to point to complete or incomplete types |
| if ((LCanPointeeTy->isIncompleteType() != |
| RCanPointeeTy->isIncompleteType()) && |
| !getLangOpts().C11) { |
| Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers) |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange() |
| << LHSType << RHSType << LCanPointeeTy->isIncompleteType() |
| << RCanPointeeTy->isIncompleteType(); |
| } |
| } |
| } else if (!IsRelational && |
| (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) { |
| // Valid unless comparison between non-null pointer and function pointer |
| if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType()) |
| && !LHSIsNull && !RHSIsNull) |
| diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS, |
| /*isError*/false); |
| } else { |
| // Invalid |
| diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false); |
| } |
| if (LCanPointeeTy != RCanPointeeTy) { |
| // Treat NULL constant as a special case in OpenCL. |
| if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) { |
| if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) { |
| Diag(Loc, |
| diag::err_typecheck_op_on_nonoverlapping_address_space_pointers) |
| << LHSType << RHSType << 0 /* comparison */ |
| << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| } |
| } |
| LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace(); |
| LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace(); |
| CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion |
| : CK_BitCast; |
| if (LHSIsNull && !RHSIsNull) |
| LHS = ImpCastExprToType(LHS.get(), RHSType, Kind); |
| else |
| RHS = ImpCastExprToType(RHS.get(), LHSType, Kind); |
| } |
| return computeResultTy(); |
| } |
| |
| if (getLangOpts().CPlusPlus) { |
| // C++ [expr.eq]p4: |
| // Two operands of type std::nullptr_t or one operand of type |
| // std::nullptr_t and the other a null pointer constant compare equal. |
| if (!IsOrdered && LHSIsNull && RHSIsNull) { |
| if (LHSType->isNullPtrType()) { |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); |
| return computeResultTy(); |
| } |
| if (RHSType->isNullPtrType()) { |
| LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); |
| return computeResultTy(); |
| } |
| } |
| |
| // Comparison of Objective-C pointers and block pointers against nullptr_t. |
| // These aren't covered by the composite pointer type rules. |
| if (!IsOrdered && RHSType->isNullPtrType() && |
| (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) { |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); |
| return computeResultTy(); |
| } |
| if (!IsOrdered && LHSType->isNullPtrType() && |
| (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) { |
| LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); |
| return computeResultTy(); |
| } |
| |
| if (IsRelational && |
| ((LHSType->isNullPtrType() && RHSType->isPointerType()) || |
| (RHSType->isNullPtrType() && LHSType->isPointerType()))) { |
| // HACK: Relational comparison of nullptr_t against a pointer type is |
| // invalid per DR583, but we allow it within std::less<> and friends, |
| // since otherwise common uses of it break. |
| // FIXME: Consider removing this hack once LWG fixes std::less<> and |
| // friends to have std::nullptr_t overload candidates. |
| DeclContext *DC = CurContext; |
| if (isa<FunctionDecl>(DC)) |
| DC = DC->getParent(); |
| if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { |
| if (CTSD->isInStdNamespace() && |
| llvm::StringSwitch<bool>(CTSD->getName()) |
| .Cases("less", "less_equal", "greater", "greater_equal", true) |
| .Default(false)) { |
| if (RHSType->isNullPtrType()) |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); |
| else |
| LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); |
| return computeResultTy(); |
| } |
| } |
| } |
| |
| // C++ [expr.eq]p2: |
| // If at least one operand is a pointer to member, [...] bring them to |
| // their composite pointer type. |
| if (!IsOrdered && |
| (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) { |
| if (convertPointersToCompositeType(*this, Loc, LHS, RHS)) |
| return QualType(); |
| else |
| return computeResultTy(); |
| } |
| } |
| |
| // Handle block pointer types. |
| if (!IsOrdered && LHSType->isBlockPointerType() && |
| RHSType->isBlockPointerType()) { |
| QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType(); |
| QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType(); |
| |
| if (!LHSIsNull && !RHSIsNull && |
| !Context.typesAreCompatible(lpointee, rpointee)) { |
| Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) |
| << LHSType << RHSType << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| } |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); |
| return computeResultTy(); |
| } |
| |
| // Allow block pointers to be compared with null pointer constants. |
| if (!IsOrdered |
| && ((LHSType->isBlockPointerType() && RHSType->isPointerType()) |
| || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) { |
| if (!LHSIsNull && !RHSIsNull) { |
| if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>() |
| ->getPointeeType()->isVoidType()) |
| || (LHSType->isPointerType() && LHSType->castAs<PointerType>() |
| ->getPointeeType()->isVoidType()))) |
| Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks) |
| << LHSType << RHSType << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| } |
| if (LHSIsNull && !RHSIsNull) |
| LHS = ImpCastExprToType(LHS.get(), RHSType, |
| RHSType->isPointerType() ? CK_BitCast |
| : CK_AnyPointerToBlockPointerCast); |
| else |
| RHS = ImpCastExprToType(RHS.get(), LHSType, |
| LHSType->isPointerType() ? CK_BitCast |
| : CK_AnyPointerToBlockPointerCast); |
| return computeResultTy(); |
| } |
| |
| if (LHSType->isObjCObjectPointerType() || |
| RHSType->isObjCObjectPointerType()) { |
| const PointerType *LPT = LHSType->getAs<PointerType>(); |
| const PointerType *RPT = RHSType->getAs<PointerType>(); |
| if (LPT || RPT) { |
| bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false; |
| bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false; |
| |
| if (!LPtrToVoid && !RPtrToVoid && |
| !Context.typesAreCompatible(LHSType, RHSType)) { |
| diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, |
| /*isError*/false); |
| } |
| // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than |
| // the RHS, but we have test coverage for this behavior. |
| // FIXME: Consider using convertPointersToCompositeType in C++. |
| if (LHSIsNull && !RHSIsNull) { |
| Expr *E = LHS.get(); |
| if (getLangOpts().ObjCAutoRefCount) |
| CheckObjCConversion(SourceRange(), RHSType, E, |
| CCK_ImplicitConversion); |
| LHS = ImpCastExprToType(E, RHSType, |
| RPT ? CK_BitCast :CK_CPointerToObjCPointerCast); |
| } |
| else { |
| Expr *E = RHS.get(); |
| if (getLangOpts().ObjCAutoRefCount) |
| CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion, |
| /*Diagnose=*/true, |
| /*DiagnoseCFAudited=*/false, Opc); |
| RHS = ImpCastExprToType(E, LHSType, |
| LPT ? CK_BitCast :CK_CPointerToObjCPointerCast); |
| } |
| return computeResultTy(); |
| } |
| if (LHSType->isObjCObjectPointerType() && |
| RHSType->isObjCObjectPointerType()) { |
| if (!Context.areComparableObjCPointerTypes(LHSType, RHSType)) |
| diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, |
| /*isError*/false); |
| if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS)) |
| diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc); |
| |
| if (LHSIsNull && !RHSIsNull) |
| LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast); |
| else |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast); |
| return computeResultTy(); |
| } |
| |
| if (!IsOrdered && LHSType->isBlockPointerType() && |
| RHSType->isBlockCompatibleObjCPointerType(Context)) { |
| LHS = ImpCastExprToType(LHS.get(), RHSType, |
| CK_BlockPointerToObjCPointerCast); |
| return computeResultTy(); |
| } else if (!IsOrdered && |
| LHSType->isBlockCompatibleObjCPointerType(Context) && |
| RHSType->isBlockPointerType()) { |
| RHS = ImpCastExprToType(RHS.get(), LHSType, |
| CK_BlockPointerToObjCPointerCast); |
| return computeResultTy(); |
| } |
| } |
| if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) || |
| (LHSType->isIntegerType() && RHSType->isAnyPointerType())) { |
| unsigned DiagID = 0; |
| bool isError = false; |
| if (LangOpts.DebuggerSupport) { |
| // Under a debugger, allow the comparison of pointers to integers, |
| // since users tend to want to compare addresses. |
| } else if ((LHSIsNull && LHSType->isIntegerType()) || |
| (RHSIsNull && RHSType->isIntegerType())) { |
| if (IsOrdered) { |
| isError = getLangOpts().CPlusPlus; |
| DiagID = |
| isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero |
| : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero; |
| } |
| } else if (getLangOpts().CPlusPlus) { |
| DiagID = diag::err_typecheck_comparison_of_pointer_integer; |
| isError = true; |
| } else if (IsOrdered) |
| DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer; |
| else |
| DiagID = diag::ext_typecheck_comparison_of_pointer_integer; |
| |
| if (DiagID) { |
| Diag(Loc, DiagID) |
| << LHSType << RHSType << LHS.get()->getSourceRange() |
| << RHS.get()->getSourceRange(); |
| if (isError) |
| return QualType(); |
| } |
| |
| if (LHSType->isIntegerType()) |
| LHS = ImpCastExprToType(LHS.get(), RHSType, |
| LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); |
| else |
| RHS = ImpCastExprToType(RHS.get(), LHSType, |
| RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer); |
| return computeResultTy(); |
| } |
| |
| // Handle block pointers. |
| if (!IsOrdered && RHSIsNull |
| && LHSType->isBlockPointerType() && RHSType->isIntegerType()) { |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); |
| return computeResultTy(); |
| } |
| if (!IsOrdered && LHSIsNull |
| && LHSType->isIntegerType() && RHSType->isBlockPointerType()) { |
| LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); |
| return computeResultTy(); |
| } |
| |
| if (getLangOpts().getOpenCLCompatibleVersion() >= 200) { |
| if (LHSType->isClkEventT() && RHSType->isClkEventT()) { |
| return computeResultTy(); |
| } |
| |
| if (LHSType->isQueueT() && RHSType->isQueueT()) { |
| return computeResultTy(); |
| } |
| |
| if (LHSIsNull && RHSType->isQueueT()) { |
| LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer); |
| return computeResultTy(); |
| } |
| |
| if (LHSType->isQueueT() && RHSIsNull) { |
| RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer); |
| return computeResultTy(); |
| } |
| } |
| |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| // Return a signed ext_vector_type that is of identical size and number of |
| // elements. For floating point vectors, return an integer type of identical |
| // size and number of elements. In the non ext_vector_type case, search from |
| // the largest type to the smallest type to avoid cases where long long == long, |
| // where long gets picked over long long. |
| QualType Sema::GetSignedVectorType(QualType V) { |
| const VectorType *VTy = V->castAs<VectorType>(); |
| unsigned TypeSize = Context.getTypeSize(VTy->getElementType()); |
| |
| if (isa<ExtVectorType>(VTy)) { |
| if (TypeSize == Context.getTypeSize(Context.CharTy)) |
| return Context.getExtVectorType(Context.CharTy, VTy->getNumElements()); |
| else if (TypeSize == Context.getTypeSize(Context.ShortTy)) |
| return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements()); |
| else if (TypeSize == Context.getTypeSize(Context.IntTy)) |
| return Context.getExtVectorType(Context.IntTy, VTy->getNumElements()); |
| else if (TypeSize == Context.getTypeSize(Context.LongTy)) |
| return Context.getExtVectorType(Context.LongTy, VTy->getNumElements()); |
| assert(TypeSize == Context.getTypeSize(Context.LongLongTy) && |
| "Unhandled vector element size in vector compare"); |
| return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements()); |
| } |
| |
| if (TypeSize == Context.getTypeSize(Context.LongLongTy)) |
| return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(), |
| VectorType::GenericVector); |
| else if (TypeSize == Context.getTypeSize(Context.LongTy)) |
| return Context.getVectorType(Context.LongTy, VTy->getNumElements(), |
| VectorType::GenericVector); |
| else if (TypeSize == Context.getTypeSize(Context.IntTy)) |
| return Context.getVectorType(Context.IntTy, VTy->getNumElements(), |
| VectorType::GenericVector); |
| else if (TypeSize == Context.getTypeSize(Context.ShortTy)) |
| return Context.getVectorType(Context.ShortTy, VTy->getNumElements(), |
| VectorType::GenericVector); |
| assert(TypeSize == Context.getTypeSize(Context.CharTy) && |
| "Unhandled vector element size in vector compare"); |
| return Context.getVectorType(Context.CharTy, VTy->getNumElements(), |
| VectorType::GenericVector); |
| } |
| |
| /// CheckVectorCompareOperands - vector comparisons are a clang extension that |
| /// operates on extended vector types. Instead of producing an IntTy result, |
| /// like a scalar comparison, a vector comparison produces a vector of integer |
| /// types. |
| QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| BinaryOperatorKind Opc) { |
| if (Opc == BO_Cmp) { |
| Diag(Loc, diag::err_three_way_vector_comparison); |
| return QualType(); |
| } |
| |
| // Check to make sure we're operating on vectors of the same type and width, |
| // Allowing one side to be a scalar of element type. |
| QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false, |
| /*AllowBothBool*/true, |
| /*AllowBoolConversions*/getLangOpts().ZVector); |
| if (vType.isNull()) |
| return vType; |
| |
| QualType LHSType = LHS.get()->getType(); |
| |
| // Determine the return type of a vector compare. By default clang will return |
| // a scalar for all vector compares except vector bool and vector pixel. |
| // With the gcc compiler we will always return a vector type and with the xl |
| // compiler we will always return a scalar type. This switch allows choosing |
| // which behavior is prefered. |
| if (getLangOpts().AltiVec) { |
| switch (getLangOpts().getAltivecSrcCompat()) { |
| case LangOptions::AltivecSrcCompatKind::Mixed: |
| // If AltiVec, the comparison results in a numeric type, i.e. |
| // bool for C++, int for C |
| if (vType->castAs<VectorType>()->getVectorKind() == |
| VectorType::AltiVecVector) |
| return Context.getLogicalOperationType(); |
| else |
| Diag(Loc, diag::warn_deprecated_altivec_src_compat); |
| break; |
| case LangOptions::AltivecSrcCompatKind::GCC: |
| // For GCC we always return the vector type. |
| break; |
| case LangOptions::AltivecSrcCompatKind::XL: |
| return Context.getLogicalOperationType(); |
| break; |
| } |
| } |
| |
| // For non-floating point types, check for self-comparisons of the form |
| // x == x, x != x, x < x, etc. These always evaluate to a constant, and |
| // often indicate logic errors in the program. |
| diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc); |
| |
| // Check for comparisons of floating point operands using != and ==. |
| if (BinaryOperator::isEqualityOp(Opc) && |
| LHSType->hasFloatingRepresentation()) { |
| assert(RHS.get()->getType()->hasFloatingRepresentation()); |
| CheckFloatComparison(Loc, LHS.get(), RHS.get()); |
| } |
| |
| // Return a signed type for the vector. |
| return GetSignedVectorType(vType); |
| } |
| |
| static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS, |
| const ExprResult &XorRHS, |
| const SourceLocation Loc) { |
| // Do not diagnose macros. |
| if (Loc.isMacroID()) |
| return; |
| |
| // Do not diagnose if both LHS and RHS are macros. |
| if (XorLHS.get()->getExprLoc().isMacroID() && |
| XorRHS.get()->getExprLoc().isMacroID()) |
| return; |
| |
| bool Negative = false; |
| bool ExplicitPlus = false; |
| const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get()); |
| const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get()); |
| |
| if (!LHSInt) |
| return; |
| if (!RHSInt) { |
| // Check negative literals. |
| if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) { |
| UnaryOperatorKind Opc = UO->getOpcode(); |
| if (Opc != UO_Minus && Opc != UO_Plus) |
| return; |
| RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr()); |
| if (!RHSInt) |
| return; |
| Negative = (Opc == UO_Minus); |
| ExplicitPlus = !Negative; |
| } else { |
| return; |
| } |
| } |
| |
| const llvm::APInt &LeftSideValue = LHSInt->getValue(); |
| llvm::APInt RightSideValue = RHSInt->getValue(); |
| if (LeftSideValue != 2 && LeftSideValue != 10) |
| return; |
| |
| if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth()) |
| return; |
| |
| CharSourceRange ExprRange = CharSourceRange::getCharRange( |
| LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation())); |
| llvm::StringRef ExprStr = |
| Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts()); |
| |
| CharSourceRange XorRange = |
| CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc)); |
| llvm::StringRef XorStr = |
| Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts()); |
| // Do not diagnose if xor keyword/macro is used. |
| if (XorStr == "xor") |
| return; |
| |
| std::string LHSStr = std::string(Lexer::getSourceText( |
| CharSourceRange::getTokenRange(LHSInt->getSourceRange()), |
| S.getSourceManager(), S.getLangOpts())); |
| std::string RHSStr = std::string(Lexer::getSourceText( |
| CharSourceRange::getTokenRange(RHSInt->getSourceRange()), |
| S.getSourceManager(), S.getLangOpts())); |
| |
| if (Negative) { |
| RightSideValue = -RightSideValue; |
| RHSStr = "-" + RHSStr; |
| } else if (ExplicitPlus) { |
| RHSStr = "+" + RHSStr; |
| } |
| |
| StringRef LHSStrRef = LHSStr; |
| StringRef RHSStrRef = RHSStr; |
| // Do not diagnose literals with digit separators, binary, hexadecimal, octal |
| // literals. |
| if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") || |
| RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") || |
| LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") || |
| RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") || |
| (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) || |
| (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) || |
| LHSStrRef.contains('\'') || RHSStrRef.contains('\'')) |
| return; |
| |
| bool SuggestXor = |
| S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor"); |
| const llvm::APInt XorValue = LeftSideValue ^ RightSideValue; |
| int64_t RightSideIntValue = RightSideValue.getSExtValue(); |
| if (LeftSideValue == 2 && RightSideIntValue >= 0) { |
| std::string SuggestedExpr = "1 << " + RHSStr; |
| bool Overflow = false; |
| llvm::APInt One = (LeftSideValue - 1); |
| llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow); |
| if (Overflow) { |
| if (RightSideIntValue < 64) |
| S.Diag(Loc, diag::warn_xor_used_as_pow_base) |
| << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr) |
| << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr); |
| else if (RightSideIntValue == 64) |
| S.Diag(Loc, diag::warn_xor_used_as_pow) |
| << ExprStr << toString(XorValue, 10, true); |
| else |
| return; |
| } else { |
| S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra) |
| << ExprStr << toString(XorValue, 10, true) << SuggestedExpr |
| << toString(PowValue, 10, true) |
| << FixItHint::CreateReplacement( |
| ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr); |
| } |
| |
| S.Diag(Loc, diag::note_xor_used_as_pow_silence) |
| << ("0x2 ^ " + RHSStr) << SuggestXor; |
| } else if (LeftSideValue == 10) { |
| std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue); |
| S.Diag(Loc, diag::warn_xor_used_as_pow_base) |
| << ExprStr << toString(XorValue, 10, true) << SuggestedValue |
| << FixItHint::CreateReplacement(ExprRange, SuggestedValue); |
| S.Diag(Loc, diag::note_xor_used_as_pow_silence) |
| << ("0xA ^ " + RHSStr) << SuggestXor; |
| } |
| } |
| |
| QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc) { |
| // Ensure that either both operands are of the same vector type, or |
| // one operand is of a vector type and the other is of its element type. |
| QualType vType = CheckVectorOperands(LHS, RHS, Loc, false, |
| /*AllowBothBool*/true, |
| /*AllowBoolConversions*/false); |
| if (vType.isNull()) |
| return InvalidOperands(Loc, LHS, RHS); |
| if (getLangOpts().OpenCL && |
| getLangOpts().getOpenCLCompatibleVersion() < 120 && |
| vType->hasFloatingRepresentation()) |
| return InvalidOperands(Loc, LHS, RHS); |
| // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the |
| // usage of the logical operators && and || with vectors in C. This |
| // check could be notionally dropped. |
| if (!getLangOpts().CPlusPlus && |
| !(isa<ExtVectorType>(vType->getAs<VectorType>()))) |
| return InvalidLogicalVectorOperands(Loc, LHS, RHS); |
| |
| return GetSignedVectorType(LHS.get()->getType()); |
| } |
| |
| QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| bool IsCompAssign) { |
| if (!IsCompAssign) { |
| LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| } |
| RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| |
| // For conversion purposes, we ignore any qualifiers. |
| // For example, "const float" and "float" are equivalent. |
| QualType LHSType = LHS.get()->getType().getUnqualifiedType(); |
| QualType RHSType = RHS.get()->getType().getUnqualifiedType(); |
| |
| const MatrixType *LHSMatType = LHSType->getAs<MatrixType>(); |
| const MatrixType *RHSMatType = RHSType->getAs<MatrixType>(); |
| assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix"); |
| |
| if (Context.hasSameType(LHSType, RHSType)) |
| return LHSType; |
| |
| // Type conversion may change LHS/RHS. Keep copies to the original results, in |
| // case we have to return InvalidOperands. |
| ExprResult OriginalLHS = LHS; |
| ExprResult OriginalRHS = RHS; |
| if (LHSMatType && !RHSMatType) { |
| RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType()); |
| if (!RHS.isInvalid()) |
| return LHSType; |
| |
| return InvalidOperands(Loc, OriginalLHS, OriginalRHS); |
| } |
| |
| if (!LHSMatType && RHSMatType) { |
| LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType()); |
| if (!LHS.isInvalid()) |
| return RHSType; |
| return InvalidOperands(Loc, OriginalLHS, OriginalRHS); |
| } |
| |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| bool IsCompAssign) { |
| if (!IsCompAssign) { |
| LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| } |
| RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| |
| auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>(); |
| auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>(); |
| assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix"); |
| |
| if (LHSMatType && RHSMatType) { |
| if (LHSMatType->getNumColumns() != RHSMatType->getNumRows()) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| if (!Context.hasSameType(LHSMatType->getElementType(), |
| RHSMatType->getElementType())) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| return Context.getConstantMatrixType(LHSMatType->getElementType(), |
| LHSMatType->getNumRows(), |
| RHSMatType->getNumColumns()); |
| } |
| return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign); |
| } |
| |
| inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| BinaryOperatorKind Opc) { |
| checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false); |
| |
| bool IsCompAssign = |
| Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign; |
| |
| if (LHS.get()->getType()->isVectorType() || |
| RHS.get()->getType()->isVectorType()) { |
| if (LHS.get()->getType()->hasIntegerRepresentation() && |
| RHS.get()->getType()->hasIntegerRepresentation()) |
| return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign, |
| /*AllowBothBool*/true, |
| /*AllowBoolConversions*/getLangOpts().ZVector); |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| if (Opc == BO_And) |
| diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc); |
| |
| if (LHS.get()->getType()->hasFloatingRepresentation() || |
| RHS.get()->getType()->hasFloatingRepresentation()) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| ExprResult LHSResult = LHS, RHSResult = RHS; |
| QualType compType = UsualArithmeticConversions( |
| LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp); |
| if (LHSResult.isInvalid() || RHSResult.isInvalid()) |
| return QualType(); |
| LHS = LHSResult.get(); |
| RHS = RHSResult.get(); |
| |
| if (Opc == BO_Xor) |
| diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc); |
| |
| if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType()) |
| return compType; |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| // C99 6.5.[13,14] |
| inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS, |
| SourceLocation Loc, |
| BinaryOperatorKind Opc) { |
| // Check vector operands differently. |
| if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType()) |
| return CheckVectorLogicalOperands(LHS, RHS, Loc); |
| |
| bool EnumConstantInBoolContext = false; |
| for (const ExprResult &HS : {LHS, RHS}) { |
| if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) { |
| const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl()); |
| if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1) |
| EnumConstantInBoolContext = true; |
| } |
| } |
| |
| if (EnumConstantInBoolContext) |
| Diag(Loc, diag::warn_enum_constant_in_bool_context); |
| |
| // Diagnose cases where the user write a logical and/or but probably meant a |
| // bitwise one. We do this when the LHS is a non-bool integer and the RHS |
| // is a constant. |
| if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() && |
| !LHS.get()->getType()->isBooleanType() && |
| RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() && |
| // Don't warn in macros or template instantiations. |
| !Loc.isMacroID() && !inTemplateInstantiation()) { |
| // If the RHS can be constant folded, and if it constant folds to something |
| // that isn't 0 or 1 (which indicate a potential logical operation that |
| // happened to fold to true/false) then warn. |
| // Parens on the RHS are ignored. |
| Expr::EvalResult EVResult; |
| if (RHS.get()->EvaluateAsInt(EVResult, Context)) { |
| llvm::APSInt Result = EVResult.Val.getInt(); |
| if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() && |
| !RHS.get()->getExprLoc().isMacroID()) || |
| (Result != 0 && Result != 1)) { |
| Diag(Loc, diag::warn_logical_instead_of_bitwise) |
| << RHS.get()->getSourceRange() |
| << (Opc == BO_LAnd ? "&&" : "||"); |
| // Suggest replacing the logical operator with the bitwise version |
| Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator) |
| << (Opc == BO_LAnd ? "&" : "|") |
| << FixItHint::CreateReplacement(SourceRange( |
| Loc, getLocForEndOfToken(Loc)), |
| Opc == BO_LAnd ? "&" : "|"); |
| if (Opc == BO_LAnd) |
| // Suggest replacing "Foo() && kNonZero" with "Foo()" |
| Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant) |
| << FixItHint::CreateRemoval( |
| SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()), |
| RHS.get()->getEndLoc())); |
| } |
| } |
| } |
| |
| if (!Context.getLangOpts().CPlusPlus) { |
| // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do |
| // not operate on the built-in scalar and vector float types. |
| if (Context.getLangOpts().OpenCL && |
| Context.getLangOpts().OpenCLVersion < 120) { |
| if (LHS.get()->getType()->isFloatingType() || |
| RHS.get()->getType()->isFloatingType()) |
| return InvalidOperands(Loc, LHS, RHS); |
| } |
| |
| LHS = UsualUnaryConversions(LHS.get()); |
| if (LHS.isInvalid()) |
| return QualType(); |
| |
| RHS = UsualUnaryConversions(RHS.get()); |
| if (RHS.isInvalid()) |
| return QualType(); |
| |
| if (!LHS.get()->getType()->isScalarType() || |
| !RHS.get()->getType()->isScalarType()) |
| return InvalidOperands(Loc, LHS, RHS); |
| |
| return Context.IntTy; |
| } |
| |
| // The following is safe because we only use this method for |
| // non-overloadable operands. |
| |
| // C++ [expr.log.and]p1 |
| // C++ [expr.log.or]p1 |
| // The operands are both contextually converted to type bool. |
| ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get()); |
| if (LHSRes.isInvalid()) |
| return InvalidOperands(Loc, LHS, RHS); |
| LHS = LHSRes; |
| |
| ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get()); |
| if (RHSRes.isInvalid()) |
| return InvalidOperands(Loc, LHS, RHS); |
| RHS = RHSRes; |
| |
| // C++ [expr.log.and]p2 |
| // C++ [expr.log.or]p2 |
| // The result is a bool. |
| return Context.BoolTy; |
| } |
| |
| static bool IsReadonlyMessage(Expr *E, Sema &S) { |
| const MemberExpr *ME = dyn_cast<MemberExpr>(E); |
| if (!ME) return false; |
| if (!isa<FieldDecl>(ME->getMemberDecl())) return false; |
| ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>( |
| ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts()); |
| if (!Base) return false; |
| return Base->getMethodDecl() != nullptr; |
| } |
| |
| /// Is the given expression (which must be 'const') a reference to a |
| /// variable which was originally non-const, but which has become |
| /// 'const' due to being captured within a block? |
| enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda }; |
| static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) { |
| assert(E->isLValue() && E->getType().isConstQualified()); |
| E = E->IgnoreParens(); |
| |
| // Must be a reference to a declaration from an enclosing scope. |
| DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); |
| if (!DRE) return NCCK_None; |
| if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None; |
| |
| // The declaration must be a variable which is not declared 'const'. |
| VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl()); |
| if (!var) return NCCK_None; |
| if (var->getType().isConstQualified()) return NCCK_None; |
| assert(var->hasLocalStorage() && "capture added 'const' to non-local?"); |
| |
| // Decide whether the first capture was for a block or a lambda. |
| DeclContext *DC = S.CurContext, *Prev = nullptr; |
| // Decide whether the first capture was for a block or a lambda. |
| while (DC) { |
| // For init-capture, it is possible that the variable belongs to the |
| // template pattern of the current context. |
| if (auto *FD = dyn_cast<FunctionDecl>(DC)) |
| if (var->isInitCapture() && |
| FD->getTemplateInstantiationPattern() == var->getDeclContext()) |
| break; |
| if (DC == var->getDeclContext()) |
| break; |
| Prev = DC; |
| DC = DC->getParent(); |
| } |
| // Unless we have an init-capture, we've gone one step too far. |
| if (!var->isInitCapture()) |
| DC = Prev; |
| return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda); |
| } |
| |
| static bool IsTypeModifiable(QualType Ty, bool IsDereference) { |
| Ty = Ty.getNonReferenceType(); |
| if (IsDereference && Ty->isPointerType()) |
| Ty = Ty->getPointeeType(); |
| return !Ty.isConstQualified(); |
| } |
| |
| // Update err_typecheck_assign_const and note_typecheck_assign_const |
| // when this enum is changed. |
| enum { |
| ConstFunction, |
| ConstVariable, |
| ConstMember, |
| ConstMethod, |
| NestedConstMember, |
| ConstUnknown, // Keep as last element |
| }; |
| |
| /// Emit the "read-only variable not assignable" error and print notes to give |
| /// more information about why the variable is not assignable, such as pointing |
| /// to the declaration of a const variable, showing that a method is const, or |
| /// that the function is returning a const reference. |
| static void DiagnoseConstAssignment(Sema &S, const Expr *E, |
| SourceLocation Loc) { |
| SourceRange ExprRange = E->getSourceRange(); |
| |
| // Only emit one error on the first const found. All other consts will emit |
| // a note to the error. |
| bool DiagnosticEmitted = false; |
| |
| // Track if the current expression is the result of a dereference, and if the |
| // next checked expression is the result of a dereference. |
| bool IsDereference = false; |
| bool NextIsDereference = false; |
| |
| // Loop to process MemberExpr chains. |
| while (true) { |
| IsDereference = NextIsDereference; |
| |
| E = E->IgnoreImplicit()->IgnoreParenImpCasts(); |
| if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { |
| NextIsDereference = ME->isArrow(); |
| const ValueDecl *VD = ME->getMemberDecl(); |
| if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) { |
| // Mutable fields can be modified even if the class is const. |
| if (Field->isMutable()) { |
| assert(DiagnosticEmitted && "Expected diagnostic not emitted."); |
| break; |
| } |
| |
| if (!IsTypeModifiable(Field->getType(), IsDereference)) { |
| if (!DiagnosticEmitted) { |
| S.Diag(Loc, diag::err_typecheck_assign_const) |
| << ExprRange << ConstMember << false /*static*/ << Field |
| << Field->getType(); |
| DiagnosticEmitted = true; |
| } |
| S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) |
| << ConstMember << false /*static*/ << Field << Field->getType() |
| << Field->getSourceRange(); |
| } |
| E = ME->getBase(); |
| continue; |
| } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) { |
| if (VDecl->getType().isConstQualified()) { |
| if (!DiagnosticEmitted) { |
| S.Diag(Loc, diag::err_typecheck_assign_const) |
| << ExprRange << ConstMember << true /*static*/ << VDecl |
| << VDecl->getType(); |
| DiagnosticEmitted = true; |
| } |
| S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) |
| << ConstMember << true /*static*/ << VDecl << VDecl->getType() |
| << VDecl->getSourceRange(); |
| } |
| // Static fields do not inherit constness from parents. |
| break; |
| } |
| break; // End MemberExpr |
| } else if (const ArraySubscriptExpr *ASE = |
| dyn_cast<ArraySubscriptExpr>(E)) { |
| E = ASE->getBase()->IgnoreParenImpCasts(); |
| continue; |
| } else if (const ExtVectorElementExpr *EVE = |
| dyn_cast<ExtVectorElementExpr>(E)) { |
| E = EVE->getBase()->IgnoreParenImpCasts(); |
| continue; |
| } |
| break; |
| } |
| |
| if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { |
| // Function calls |
| const FunctionDecl *FD = CE->getDirectCallee(); |
| if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) { |
| if (!DiagnosticEmitted) { |
| S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange |
| << ConstFunction << FD; |
| DiagnosticEmitted = true; |
| } |
| S.Diag(FD->getReturnTypeSourceRange().getBegin(), |
| diag::note_typecheck_assign_const) |
| << ConstFunction << FD << FD->getReturnType() |
| << FD->getReturnTypeSourceRange(); |
| } |
| } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { |
| // Point to variable declaration. |
| if (const ValueDecl *VD = DRE->getDecl()) { |
| if (!IsTypeModifiable(VD->getType(), IsDereference)) { |
| if (!DiagnosticEmitted) { |
| S.Diag(Loc, diag::err_typecheck_assign_const) |
| << ExprRange << ConstVariable << VD << VD->getType(); |
| DiagnosticEmitted = true; |
| } |
| S.Diag(VD->getLocation(), diag::note_typecheck_assign_const) |
| << ConstVariable << VD << VD->getType() << VD->getSourceRange(); |
| } |
| } |
| } else if (isa<CXXThisExpr>(E)) { |
| if (const DeclContext *DC = S.getFunctionLevelDeclContext()) { |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) { |
| if (MD->isConst()) { |
| if (!DiagnosticEmitted) { |
| S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange |
| << ConstMethod << MD; |
| DiagnosticEmitted = true; |
| } |
| S.Diag(MD->getLocation(), diag::note_typecheck_assign_const) |
| << ConstMethod << MD << MD->getSourceRange(); |
| } |
| } |
| } |
| } |
| |
| if (DiagnosticEmitted) |
| return; |
| |
| // Can't determine a more specific message, so display the generic error. |
| S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown; |
| } |
| |
| enum OriginalExprKind { |
| OEK_Variable, |
| OEK_Member, |
| OEK_LValue |
| }; |
| |
| static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD, |
| const RecordType *Ty, |
| SourceLocation Loc, SourceRange Range, |
| OriginalExprKind OEK, |
| bool &DiagnosticEmitted) { |
| std::vector<const RecordType *> RecordTypeList; |
| RecordTypeList.push_back(Ty); |
| unsigned NextToCheckIndex = 0; |
| // We walk the record hierarchy breadth-first to ensure that we print |
| // diagnostics in field nesting order. |
| while (RecordTypeList.size() > NextToCheckIndex) { |
| bool IsNested = NextToCheckIndex > 0; |
| for (const FieldDecl *Field : |
| RecordTypeList[NextToCheckIndex]->getDecl()->fields()) { |
| // First, check every field for constness. |
| QualType FieldTy = Field->getType(); |
| if (FieldTy.isConstQualified()) { |
| if (!DiagnosticEmitted) { |
| S.Diag(Loc, diag::err_typecheck_assign_const) |
| << Range << NestedConstMember << OEK << VD |
| << IsNested << Field; |
| DiagnosticEmitted = true; |
| } |
| S.Diag(Field->getLocation(), diag::note_typecheck_assign_const) |
| << NestedConstMember << IsNested << Field |
| << FieldTy << Field->getSourceRange(); |
| } |
| |
| // Then we append it to the list to check next in order. |
| FieldTy = FieldTy.getCanonicalType(); |
| if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) { |
| if (!llvm::is_contained(RecordTypeList, FieldRecTy)) |
| RecordTypeList.push_back(FieldRecTy); |
| } |
| } |
| ++NextToCheckIndex; |
| } |
| } |
| |
| /// Emit an error for the case where a record we are trying to assign to has a |
| /// const-qualified field somewhere in its hierarchy. |
| static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E, |
| SourceLocation Loc) { |
| QualType Ty = E->getType(); |
| assert(Ty->isRecordType() && "lvalue was not record?"); |
| SourceRange Range = E->getSourceRange(); |
| const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>(); |
| bool DiagEmitted = false; |
| |
| if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) |
| DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc, |
| Range, OEK_Member, DiagEmitted); |
| else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) |
| DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc, |
| Range, OEK_Variable, DiagEmitted); |
| else |
| DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc, |
| Range, OEK_LValue, DiagEmitted); |
| if (!DiagEmitted) |
| DiagnoseConstAssignment(S, E, Loc); |
| } |
| |
| /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not, |
| /// emit an error and return true. If so, return false. |
| static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) { |
| assert(!E->hasPlaceholderType(BuiltinType::PseudoObject)); |
| |
| S.CheckShadowingDeclModification(E, Loc); |
| |
| SourceLocation OrigLoc = Loc; |
| Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context, |
| &Loc); |
| if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S)) |
| IsLV = Expr::MLV_InvalidMessageExpression; |
| if (IsLV == Expr::MLV_Valid) |
| return false; |
| |
| unsigned DiagID = 0; |
| bool NeedType = false; |
| switch (IsLV) { // C99 6.5.16p2 |
| case Expr::MLV_ConstQualified: |
| // Use a specialized diagnostic when we're assigning to an object |
| // from an enclosing function or block. |
| if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) { |
| if (NCCK == NCCK_Block) |
| DiagID = diag::err_block_decl_ref_not_modifiable_lvalue; |
| else |
| DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue; |
| break; |
| } |
| |
| // In ARC, use some specialized diagnostics for occasions where we |
| // infer 'const'. These are always pseudo-strong variables. |
| if (S.getLangOpts().ObjCAutoRefCount) { |
| DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()); |
| if (declRef && isa<VarDecl>(declRef->getDecl())) { |
| VarDecl *var = cast<VarDecl>(declRef->getDecl()); |
| |
| // Use the normal diagnostic if it's pseudo-__strong but the |
| // user actually wrote 'const'. |
| if (var->isARCPseudoStrong() && |
| (!var->getTypeSourceInfo() || |
| !var->getTypeSourceInfo()->getType().isConstQualified())) { |
| // There are three pseudo-strong cases: |
| // - self |
| ObjCMethodDecl *method = S.getCurMethodDecl(); |
| if (method && var == method->getSelfDecl()) { |
| DiagID = method->isClassMethod() |
| ? diag::err_typecheck_arc_assign_self_class_method |
| : diag::err_typecheck_arc_assign_self; |
| |
| // - Objective-C externally_retained attribute. |
| } else if (var->hasAttr<ObjCExternallyRetainedAttr>() || |
| isa<ParmVarDecl>(var)) { |
| DiagID = diag::err_typecheck_arc_assign_externally_retained; |
| |
| // - fast enumeration variables |
| } else { |
| DiagID = diag::err_typecheck_arr_assign_enumeration; |
| } |
| |
| SourceRange Assign; |
| if (Loc != OrigLoc) |
| Assign = SourceRange(OrigLoc, OrigLoc); |
| S.Diag(Loc, DiagID) << E->getSourceRange() << Assign; |
| // We need to preserve the AST regardless, so migration tool |
| // can do its job. |
| return false; |
| } |
| } |
| } |
| |
| // If none of the special cases above are triggered, then this is a |
| // simple const assignment. |
| if (DiagID == 0) { |
| DiagnoseConstAssignment(S, E, Loc); |
| return true; |
| } |
| |
| break; |
| case Expr::MLV_ConstAddrSpace: |
| DiagnoseConstAssignment(S, E, Loc); |
| return true; |
| case Expr::MLV_ConstQualifiedField: |
| DiagnoseRecursiveConstFields(S, E, Loc); |
| return true; |
| case Expr::MLV_ArrayType: |
| case Expr::MLV_ArrayTemporary: |
| DiagID = diag::err_typecheck_array_not_modifiable_lvalue; |
| NeedType = true; |
| break; |
| case Expr::MLV_NotObjectType: |
| DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue; |
| NeedType = true; |
| break; |
| case Expr::MLV_LValueCast: |
| DiagID = diag::err_typecheck_lvalue_casts_not_supported; |
| break; |
| case Expr::MLV_Valid: |
| llvm_unreachable("did not take early return for MLV_Valid"); |
| case Expr::MLV_InvalidExpression: |
| case Expr::MLV_MemberFunction: |
| case Expr::MLV_ClassTemporary: |
| DiagID = diag::err_typecheck_expression_not_modifiable_lvalue; |
| break; |
| case Expr::MLV_IncompleteType: |
| case Expr::MLV_IncompleteVoidType: |
| return S.RequireCompleteType(Loc, E->getType(), |
| diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E); |
| case Expr::MLV_DuplicateVectorComponents: |
| DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue; |
| break; |
| case Expr::MLV_NoSetterProperty: |
| llvm_unreachable("readonly properties should be processed differently"); |
| case Expr::MLV_InvalidMessageExpression: |
| DiagID = diag::err_readonly_message_assignment; |
| break; |
| case Expr::MLV_SubObjCPropertySetting: |
| DiagID = diag::err_no_subobject_property_setting; |
| break; |
| } |
| |
| SourceRange Assign; |
| if (Loc != OrigLoc) |
| Assign = SourceRange(OrigLoc, OrigLoc); |
| if (NeedType) |
| S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign; |
| else |
| S.Diag(Loc, DiagID) << E->getSourceRange() << Assign; |
| return true; |
| } |
| |
| static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr, |
| SourceLocation Loc, |
| Sema &Sema) { |
| if (Sema.inTemplateInstantiation()) |
| return; |
| if (Sema.isUnevaluatedContext()) |
| return; |
| if (Loc.isInvalid() || Loc.isMacroID()) |
| return; |
| if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID()) |
| return; |
| |
| // C / C++ fields |
| MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr); |
| MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr); |
| if (ML && MR) { |
| if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))) |
| return; |
| const ValueDecl *LHSDecl = |
| cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl()); |
| const ValueDecl *RHSDecl = |
| cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl()); |
| if (LHSDecl != RHSDecl) |
| return; |
| if (LHSDecl->getType().isVolatileQualified()) |
| return; |
| if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>()) |
| if (RefTy->getPointeeType().isVolatileQualified()) |
| return; |
| |
| Sema.Diag(Loc, diag::warn_identity_field_assign) << 0; |
| } |
| |
| // Objective-C instance variables |
| ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr); |
| ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr); |
| if (OL && OR && OL->getDecl() == OR->getDecl()) { |
| DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts()); |
| DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts()); |
| if (RL && RR && RL->getDecl() == RR->getDecl()) |
| Sema.Diag(Loc, diag::warn_identity_field_assign) << 1; |
| } |
| } |
| |
| // C99 6.5.16.1 |
| QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS, |
| SourceLocation Loc, |
| QualType CompoundType) { |
| assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject)); |
| |
| // Verify that LHS is a modifiable lvalue, and emit error if not. |
| if (CheckForModifiableLvalue(LHSExpr, Loc, *this)) |
| return QualType(); |
| |
| QualType LHSType = LHSExpr->getType(); |
| QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() : |
| CompoundType; |
| // OpenCL v1.2 s6.1.1.1 p2: |
| // The half data type can only be used to declare a pointer to a buffer that |
| // contains half values |
| if (getLangOpts().OpenCL && |
| !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) && |
| LHSType->isHalfType()) { |
| Diag(Loc, diag::err_opencl_half_load_store) << 1 |
| << LHSType.getUnqualifiedType(); |
| return QualType(); |
| } |
| |
| AssignConvertType ConvTy; |
| if (CompoundType.isNull()) { |
| Expr *RHSCheck = RHS.get(); |
| |
| CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this); |
| |
| QualType LHSTy(LHSType); |
| ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); |
| if (RHS.isInvalid()) |
| return QualType(); |
| // Special case of NSObject attributes on c-style pointer types. |
| if (ConvTy == IncompatiblePointer && |
| ((Context.isObjCNSObjectType(LHSType) && |
| RHSType->isObjCObjectPointerType()) || |
| (Context.isObjCNSObjectType(RHSType) && |
| LHSType->isObjCObjectPointerType()))) |
| ConvTy = Compatible; |
| |
| if (ConvTy == Compatible && |
| LHSType->isObjCObjectType()) |
| Diag(Loc, diag::err_objc_object_assignment) |
| << LHSType; |
| |
| // If the RHS is a unary plus or minus, check to see if they = and + are |
| // right next to each other. If so, the user may have typo'd "x =+ 4" |
| // instead of "x += 4". |
| if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck)) |
| RHSCheck = ICE->getSubExpr(); |
| if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) { |
| if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) && |
| Loc.i
|