blob: d6e659e17069ca14aeba43fdd4c957d379c90095 [file] [log] [blame]
//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for Objective C declarations.
//
//===----------------------------------------------------------------------===//
#include "TypeLocBuilder.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
using namespace clang;
/// Check whether the given method, which must be in the 'init'
/// family, is a valid member of that family.
///
/// \param receiverTypeIfCall - if null, check this as if declaring it;
/// if non-null, check this as if making a call to it with the given
/// receiver type
///
/// \return true to indicate that there was an error and appropriate
/// actions were taken
bool Sema::checkInitMethod(ObjCMethodDecl *method,
QualType receiverTypeIfCall) {
if (method->isInvalidDecl()) return true;
// This castAs is safe: methods that don't return an object
// pointer won't be inferred as inits and will reject an explicit
// objc_method_family(init).
// We ignore protocols here. Should we? What about Class?
const ObjCObjectType *result =
method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
if (result->isObjCId()) {
return false;
} else if (result->isObjCClass()) {
// fall through: always an error
} else {
ObjCInterfaceDecl *resultClass = result->getInterface();
assert(resultClass && "unexpected object type!");
// It's okay for the result type to still be a forward declaration
// if we're checking an interface declaration.
if (!resultClass->hasDefinition()) {
if (receiverTypeIfCall.isNull() &&
!isa<ObjCImplementationDecl>(method->getDeclContext()))
return false;
// Otherwise, we try to compare class types.
} else {
// If this method was declared in a protocol, we can't check
// anything unless we have a receiver type that's an interface.
const ObjCInterfaceDecl *receiverClass = nullptr;
if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
if (receiverTypeIfCall.isNull())
return false;
receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
->getInterfaceDecl();
// This can be null for calls to e.g. id<Foo>.
if (!receiverClass) return false;
} else {
receiverClass = method->getClassInterface();
assert(receiverClass && "method not associated with a class!");
}
// If either class is a subclass of the other, it's fine.
if (receiverClass->isSuperClassOf(resultClass) ||
resultClass->isSuperClassOf(receiverClass))
return false;
}
}
SourceLocation loc = method->getLocation();
// If we're in a system header, and this is not a call, just make
// the method unusable.
if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
return true;
}
// Otherwise, it's an error.
Diag(loc, diag::err_arc_init_method_unrelated_result_type);
method->setInvalidDecl();
return true;
}
/// Issue a warning if the parameter of the overridden method is non-escaping
/// but the parameter of the overriding method is not.
static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
Sema &S) {
if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
return false;
}
return true;
}
/// Produce additional diagnostics if a category conforms to a protocol that
/// defines a method taking a non-escaping parameter.
static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
const ObjCCategoryDecl *CD,
const ObjCProtocolDecl *PD, Sema &S) {
if (!diagnoseNoescape(NewD, OldD, S))
S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
<< CD->IsClassExtension() << PD
<< cast<ObjCMethodDecl>(NewD->getDeclContext());
}
void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
const ObjCMethodDecl *Overridden) {
if (Overridden->hasRelatedResultType() &&
!NewMethod->hasRelatedResultType()) {
// This can only happen when the method follows a naming convention that
// implies a related result type, and the original (overridden) method has
// a suitable return type, but the new (overriding) method does not have
// a suitable return type.
QualType ResultType = NewMethod->getReturnType();
SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
// Figure out which class this method is part of, if any.
ObjCInterfaceDecl *CurrentClass
= dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
if (!CurrentClass) {
DeclContext *DC = NewMethod->getDeclContext();
if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
CurrentClass = Cat->getClassInterface();
else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
CurrentClass = Impl->getClassInterface();
else if (ObjCCategoryImplDecl *CatImpl
= dyn_cast<ObjCCategoryImplDecl>(DC))
CurrentClass = CatImpl->getClassInterface();
}
if (CurrentClass) {
Diag(NewMethod->getLocation(),
diag::warn_related_result_type_compatibility_class)
<< Context.getObjCInterfaceType(CurrentClass)
<< ResultType
<< ResultTypeRange;
} else {
Diag(NewMethod->getLocation(),
diag::warn_related_result_type_compatibility_protocol)
<< ResultType
<< ResultTypeRange;
}
if (ObjCMethodFamily Family = Overridden->getMethodFamily())
Diag(Overridden->getLocation(),
diag::note_related_result_type_family)
<< /*overridden method*/ 0
<< Family;
else
Diag(Overridden->getLocation(),
diag::note_related_result_type_overridden);
}
if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
Overridden->hasAttr<NSReturnsRetainedAttr>())) {
Diag(NewMethod->getLocation(),
getLangOpts().ObjCAutoRefCount
? diag::err_nsreturns_retained_attribute_mismatch
: diag::warn_nsreturns_retained_attribute_mismatch)
<< 1;
Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
}
if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
Diag(NewMethod->getLocation(),
getLangOpts().ObjCAutoRefCount
? diag::err_nsreturns_retained_attribute_mismatch
: diag::warn_nsreturns_retained_attribute_mismatch)
<< 0;
Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
}
ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
oe = Overridden->param_end();
for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
ne = NewMethod->param_end();
ni != ne && oi != oe; ++ni, ++oi) {
const ParmVarDecl *oldDecl = (*oi);
ParmVarDecl *newDecl = (*ni);
if (newDecl->hasAttr<NSConsumedAttr>() !=
oldDecl->hasAttr<NSConsumedAttr>()) {
Diag(newDecl->getLocation(),
getLangOpts().ObjCAutoRefCount
? diag::err_nsconsumed_attribute_mismatch
: diag::warn_nsconsumed_attribute_mismatch);
Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
}
diagnoseNoescape(newDecl, oldDecl, *this);
}
}
/// Check a method declaration for compatibility with the Objective-C
/// ARC conventions.
bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
ObjCMethodFamily family = method->getMethodFamily();
switch (family) {
case OMF_None:
case OMF_finalize:
case OMF_retain:
case OMF_release:
case OMF_autorelease:
case OMF_retainCount:
case OMF_self:
case OMF_initialize:
case OMF_performSelector:
return false;
case OMF_dealloc:
if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
if (ResultTypeRange.isInvalid())
Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
<< method->getReturnType()
<< FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
else
Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
<< method->getReturnType()
<< FixItHint::CreateReplacement(ResultTypeRange, "void");
return true;
}
return false;
case OMF_init:
// If the method doesn't obey the init rules, don't bother annotating it.
if (checkInitMethod(method, QualType()))
return true;
method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
// Don't add a second copy of this attribute, but otherwise don't
// let it be suppressed.
if (method->hasAttr<NSReturnsRetainedAttr>())
return false;
break;
case OMF_alloc:
case OMF_copy:
case OMF_mutableCopy:
case OMF_new:
if (method->hasAttr<NSReturnsRetainedAttr>() ||
method->hasAttr<NSReturnsNotRetainedAttr>() ||
method->hasAttr<NSReturnsAutoreleasedAttr>())
return false;
break;
}
method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
return false;
}
static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
SourceLocation ImplLoc) {
if (!ND)
return;
bool IsCategory = false;
StringRef RealizedPlatform;
AvailabilityResult Availability = ND->getAvailability(
/*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
&RealizedPlatform);
if (Availability != AR_Deprecated) {
if (isa<ObjCMethodDecl>(ND)) {
if (Availability != AR_Unavailable)
return;
if (RealizedPlatform.empty())
RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
// Warn about implementing unavailable methods, unless the unavailable
// is for an app extension.
if (RealizedPlatform.endswith("_app_extension"))
return;
S.Diag(ImplLoc, diag::warn_unavailable_def);
S.Diag(ND->getLocation(), diag::note_method_declared_at)
<< ND->getDeclName();
return;
}
if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
if (!CD->getClassInterface()->isDeprecated())
return;
ND = CD->getClassInterface();
IsCategory = true;
} else
return;
}
S.Diag(ImplLoc, diag::warn_deprecated_def)
<< (isa<ObjCMethodDecl>(ND)
? /*Method*/ 0
: isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
: /*Class*/ 1);
if (isa<ObjCMethodDecl>(ND))
S.Diag(ND->getLocation(), diag::note_method_declared_at)
<< ND->getDeclName();
else
S.Diag(ND->getLocation(), diag::note_previous_decl)
<< (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
}
/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
/// pool.
void Sema::AddAnyMethodToGlobalPool(Decl *D) {
ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
// If we don't have a valid method decl, simply return.
if (!MDecl)
return;
if (MDecl->isInstanceMethod())
AddInstanceMethodToGlobalPool(MDecl, true);
else
AddFactoryMethodToGlobalPool(MDecl, true);
}
/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
/// has explicit ownership attribute; false otherwise.
static bool
HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
QualType T = Param->getType();
if (const PointerType *PT = T->getAs<PointerType>()) {
T = PT->getPointeeType();
} else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
T = RT->getPointeeType();
} else {
return true;
}
// If we have a lifetime qualifier, but it's local, we must have
// inferred it. So, it is implicit.
return !T.getLocalQualifiers().hasObjCLifetime();
}
/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
/// and user declared, in the method definition's AST.
void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
ImplicitlyRetainedSelfLocs.clear();
assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
// If we don't have a valid method decl, simply return.
if (!MDecl)
return;
QualType ResultType = MDecl->getReturnType();
if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
!MDecl->isInvalidDecl() &&
RequireCompleteType(MDecl->getLocation(), ResultType,
diag::err_func_def_incomplete_result))
MDecl->setInvalidDecl();
// Allow all of Sema to see that we are entering a method definition.
PushDeclContext(FnBodyScope, MDecl);
PushFunctionScope();
// Create Decl objects for each parameter, entrring them in the scope for
// binding to their use.
// Insert the invisible arguments, self and _cmd!
MDecl->createImplicitParams(Context, MDecl->getClassInterface());
PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
// The ObjC parser requires parameter names so there's no need to check.
CheckParmsForFunctionDef(MDecl->parameters(),
/*CheckParameterNames=*/false);
// Introduce all of the other parameters into this scope.
for (auto *Param : MDecl->parameters()) {
if (!Param->isInvalidDecl() &&
getLangOpts().ObjCAutoRefCount &&
!HasExplicitOwnershipAttr(*this, Param))
Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
Param->getType();
if (Param->getIdentifier())
PushOnScopeChains(Param, FnBodyScope);
}
// In ARC, disallow definition of retain/release/autorelease/retainCount
if (getLangOpts().ObjCAutoRefCount) {
switch (MDecl->getMethodFamily()) {
case OMF_retain:
case OMF_retainCount:
case OMF_release:
case OMF_autorelease:
Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
<< 0 << MDecl->getSelector();
break;
case OMF_None:
case OMF_dealloc:
case OMF_finalize:
case OMF_alloc:
case OMF_init:
case OMF_mutableCopy:
case OMF_copy:
case OMF_new:
case OMF_self:
case OMF_initialize:
case OMF_performSelector:
break;
}
}
// Warn on deprecated methods under -Wdeprecated-implementations,
// and prepare for warning on missing super calls.
if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
ObjCMethodDecl *IMD =
IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
if (IMD) {
ObjCImplDecl *ImplDeclOfMethodDef =
dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
ObjCContainerDecl *ContDeclOfMethodDecl =
dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
ImplDeclOfMethodDecl = OID->getImplementation();
else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
if (CD->IsClassExtension()) {
if (ObjCInterfaceDecl *OID = CD->getClassInterface())
ImplDeclOfMethodDecl = OID->getImplementation();
} else
ImplDeclOfMethodDecl = CD->getImplementation();
}
// No need to issue deprecated warning if deprecated mehod in class/category
// is being implemented in its own implementation (no overriding is involved).
if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
}
if (MDecl->getMethodFamily() == OMF_init) {
if (MDecl->isDesignatedInitializerForTheInterface()) {
getCurFunction()->ObjCIsDesignatedInit = true;
getCurFunction()->ObjCWarnForNoDesignatedInitChain =
IC->getSuperClass() != nullptr;
} else if (IC->hasDesignatedInitializers()) {
getCurFunction()->ObjCIsSecondaryInit = true;
getCurFunction()->ObjCWarnForNoInitDelegation = true;
}
}
// If this is "dealloc" or "finalize", set some bit here.
// Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
// Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
// Only do this if the current class actually has a superclass.
if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
ObjCMethodFamily Family = MDecl->getMethodFamily();
if (Family == OMF_dealloc) {
if (!(getLangOpts().ObjCAutoRefCount ||
getLangOpts().getGC() == LangOptions::GCOnly))
getCurFunction()->ObjCShouldCallSuper = true;
} else if (Family == OMF_finalize) {
if (Context.getLangOpts().getGC() != LangOptions::NonGC)
getCurFunction()->ObjCShouldCallSuper = true;
} else {
const ObjCMethodDecl *SuperMethod =
SuperClass->lookupMethod(MDecl->getSelector(),
MDecl->isInstanceMethod());
getCurFunction()->ObjCShouldCallSuper =
(SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
}
}
}
}
namespace {
// Callback to only accept typo corrections that are Objective-C classes.
// If an ObjCInterfaceDecl* is given to the constructor, then the validation
// function will reject corrections to that class.
class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
public:
ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
: CurrentIDecl(IDecl) {}
bool ValidateCandidate(const TypoCorrection &candidate) override {
ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
return ID && !declaresSameEntity(ID, CurrentIDecl);
}
std::unique_ptr<CorrectionCandidateCallback> clone() override {
return std::make_unique<ObjCInterfaceValidatorCCC>(*this);
}
private:
ObjCInterfaceDecl *CurrentIDecl;
};
} // end anonymous namespace
static void diagnoseUseOfProtocols(Sema &TheSema,
ObjCContainerDecl *CD,
ObjCProtocolDecl *const *ProtoRefs,
unsigned NumProtoRefs,
const SourceLocation *ProtoLocs) {
assert(ProtoRefs);
// Diagnose availability in the context of the ObjC container.
Sema::ContextRAII SavedContext(TheSema, CD);
for (unsigned i = 0; i < NumProtoRefs; ++i) {
(void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
/*UnknownObjCClass=*/nullptr,
/*ObjCPropertyAccess=*/false,
/*AvoidPartialAvailabilityChecks=*/true);
}
}
void Sema::
ActOnSuperClassOfClassInterface(Scope *S,
SourceLocation AtInterfaceLoc,
ObjCInterfaceDecl *IDecl,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
IdentifierInfo *SuperName,
SourceLocation SuperLoc,
ArrayRef<ParsedType> SuperTypeArgs,
SourceRange SuperTypeArgsRange) {
// Check if a different kind of symbol declared in this scope.
NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
LookupOrdinaryName);
if (!PrevDecl) {
// Try to correct for a typo in the superclass name without correcting
// to the class we're defining.
ObjCInterfaceValidatorCCC CCC(IDecl);
if (TypoCorrection Corrected = CorrectTypo(
DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName,
TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
<< SuperName << ClassName);
PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
}
}
if (declaresSameEntity(PrevDecl, IDecl)) {
Diag(SuperLoc, diag::err_recursive_superclass)
<< SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
IDecl->setEndOfDefinitionLoc(ClassLoc);
} else {
ObjCInterfaceDecl *SuperClassDecl =
dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
QualType SuperClassType;
// Diagnose classes that inherit from deprecated classes.
if (SuperClassDecl) {
(void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
}
if (PrevDecl && !SuperClassDecl) {
// The previous declaration was not a class decl. Check if we have a
// typedef. If we do, get the underlying class type.
if (const TypedefNameDecl *TDecl =
dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
QualType T = TDecl->getUnderlyingType();
if (T->isObjCObjectType()) {
if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
SuperClassType = Context.getTypeDeclType(TDecl);
// This handles the following case:
// @interface NewI @end
// typedef NewI DeprI __attribute__((deprecated("blah")))
// @interface SI : DeprI /* warn here */ @end
(void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
}
}
}
// This handles the following case:
//
// typedef int SuperClass;
// @interface MyClass : SuperClass {} @end
//
if (!SuperClassDecl) {
Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
}
}
if (!isa_and_nonnull<TypedefNameDecl>(PrevDecl)) {
if (!SuperClassDecl)
Diag(SuperLoc, diag::err_undef_superclass)
<< SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
else if (RequireCompleteType(SuperLoc,
SuperClassType,
diag::err_forward_superclass,
SuperClassDecl->getDeclName(),
ClassName,
SourceRange(AtInterfaceLoc, ClassLoc))) {
SuperClassDecl = nullptr;
SuperClassType = QualType();
}
}
if (SuperClassType.isNull()) {
assert(!SuperClassDecl && "Failed to set SuperClassType?");
return;
}
// Handle type arguments on the superclass.
TypeSourceInfo *SuperClassTInfo = nullptr;
if (!SuperTypeArgs.empty()) {
TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
S,
SuperLoc,
CreateParsedType(SuperClassType,
nullptr),
SuperTypeArgsRange.getBegin(),
SuperTypeArgs,
SuperTypeArgsRange.getEnd(),
SourceLocation(),
{ },
{ },
SourceLocation());
if (!fullSuperClassType.isUsable())
return;
SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
&SuperClassTInfo);
}
if (!SuperClassTInfo) {
SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
SuperLoc);
}
IDecl->setSuperClass(SuperClassTInfo);
IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
}
}
DeclResult Sema::actOnObjCTypeParam(Scope *S,
ObjCTypeParamVariance variance,
SourceLocation varianceLoc,
unsigned index,
IdentifierInfo *paramName,
SourceLocation paramLoc,
SourceLocation colonLoc,
ParsedType parsedTypeBound) {
// If there was an explicitly-provided type bound, check it.
TypeSourceInfo *typeBoundInfo = nullptr;
if (parsedTypeBound) {
// The type bound can be any Objective-C pointer type.
QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
if (typeBound->isObjCObjectPointerType()) {
// okay
} else if (typeBound->isObjCObjectType()) {
// The user forgot the * on an Objective-C pointer type, e.g.,
// "T : NSView".
SourceLocation starLoc = getLocForEndOfToken(
typeBoundInfo->getTypeLoc().getEndLoc());
Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
diag::err_objc_type_param_bound_missing_pointer)
<< typeBound << paramName
<< FixItHint::CreateInsertion(starLoc, " *");
// Create a new type location builder so we can update the type
// location information we have.
TypeLocBuilder builder;
builder.pushFullCopy(typeBoundInfo->getTypeLoc());
// Create the Objective-C pointer type.
typeBound = Context.getObjCObjectPointerType(typeBound);
ObjCObjectPointerTypeLoc newT
= builder.push<ObjCObjectPointerTypeLoc>(typeBound);
newT.setStarLoc(starLoc);
// Form the new type source information.
typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
} else {
// Not a valid type bound.
Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
diag::err_objc_type_param_bound_nonobject)
<< typeBound << paramName;
// Forget the bound; we'll default to id later.
typeBoundInfo = nullptr;
}
// Type bounds cannot have qualifiers (even indirectly) or explicit
// nullability.
if (typeBoundInfo) {
QualType typeBound = typeBoundInfo->getType();
TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
if (qual || typeBound.hasQualifiers()) {
bool diagnosed = false;
SourceRange rangeToRemove;
if (qual) {
if (auto attr = qual.getAs<AttributedTypeLoc>()) {
rangeToRemove = attr.getLocalSourceRange();
if (attr.getTypePtr()->getImmediateNullability()) {
Diag(attr.getBeginLoc(),
diag::err_objc_type_param_bound_explicit_nullability)
<< paramName << typeBound
<< FixItHint::CreateRemoval(rangeToRemove);
diagnosed = true;
}
}
}
if (!diagnosed) {
Diag(qual ? qual.getBeginLoc()
: typeBoundInfo->getTypeLoc().getBeginLoc(),
diag::err_objc_type_param_bound_qualified)
<< paramName << typeBound
<< typeBound.getQualifiers().getAsString()
<< FixItHint::CreateRemoval(rangeToRemove);
}
// If the type bound has qualifiers other than CVR, we need to strip
// them or we'll probably assert later when trying to apply new
// qualifiers.
Qualifiers quals = typeBound.getQualifiers();
quals.removeCVRQualifiers();
if (!quals.empty()) {
typeBoundInfo =
Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
}
}
}
}
// If there was no explicit type bound (or we removed it due to an error),
// use 'id' instead.
if (!typeBoundInfo) {
colonLoc = SourceLocation();
typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
}
// Create the type parameter.
return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
index, paramLoc, paramName, colonLoc,
typeBoundInfo);
}
ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
SourceLocation lAngleLoc,
ArrayRef<Decl *> typeParamsIn,
SourceLocation rAngleLoc) {
// We know that the array only contains Objective-C type parameters.
ArrayRef<ObjCTypeParamDecl *>
typeParams(
reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
typeParamsIn.size());
// Diagnose redeclarations of type parameters.
// We do this now because Objective-C type parameters aren't pushed into
// scope until later (after the instance variable block), but we want the
// diagnostics to occur right after we parse the type parameter list.
llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
for (auto typeParam : typeParams) {
auto known = knownParams.find(typeParam->getIdentifier());
if (known != knownParams.end()) {
Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
<< typeParam->getIdentifier()
<< SourceRange(known->second->getLocation());
typeParam->setInvalidDecl();
} else {
knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
// Push the type parameter into scope.
PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
}
}
// Create the parameter list.
return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
}
void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
for (auto typeParam : *typeParamList) {
if (!typeParam->isInvalidDecl()) {
S->RemoveDecl(typeParam);
IdResolver.RemoveDecl(typeParam);
}
}
}
namespace {
/// The context in which an Objective-C type parameter list occurs, for use
/// in diagnostics.
enum class TypeParamListContext {
ForwardDeclaration,
Definition,
Category,
Extension
};
} // end anonymous namespace
/// Check consistency between two Objective-C type parameter lists, e.g.,
/// between a category/extension and an \@interface or between an \@class and an
/// \@interface.
static bool checkTypeParamListConsistency(Sema &S,
ObjCTypeParamList *prevTypeParams,
ObjCTypeParamList *newTypeParams,
TypeParamListContext newContext) {
// If the sizes don't match, complain about that.
if (prevTypeParams->size() != newTypeParams->size()) {
SourceLocation diagLoc;
if (newTypeParams->size() > prevTypeParams->size()) {
diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
} else {
diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
}
S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
<< static_cast<unsigned>(newContext)
<< (newTypeParams->size() > prevTypeParams->size())
<< prevTypeParams->size()
<< newTypeParams->size();
return true;
}
// Match up the type parameters.
for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
// Check for consistency of the variance.
if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
newContext != TypeParamListContext::Definition) {
// When the new type parameter is invariant and is not part
// of the definition, just propagate the variance.
newTypeParam->setVariance(prevTypeParam->getVariance());
} else if (prevTypeParam->getVariance()
== ObjCTypeParamVariance::Invariant &&
!(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
->getDefinition() == prevTypeParam->getDeclContext())) {
// When the old parameter is invariant and was not part of the
// definition, just ignore the difference because it doesn't
// matter.
} else {
{
// Diagnose the conflict and update the second declaration.
SourceLocation diagLoc = newTypeParam->getVarianceLoc();
if (diagLoc.isInvalid())
diagLoc = newTypeParam->getBeginLoc();
auto diag = S.Diag(diagLoc,
diag::err_objc_type_param_variance_conflict)
<< static_cast<unsigned>(newTypeParam->getVariance())
<< newTypeParam->getDeclName()
<< static_cast<unsigned>(prevTypeParam->getVariance())
<< prevTypeParam->getDeclName();
switch (prevTypeParam->getVariance()) {
case ObjCTypeParamVariance::Invariant:
diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
break;
case ObjCTypeParamVariance::Covariant:
case ObjCTypeParamVariance::Contravariant: {
StringRef newVarianceStr
= prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
? "__covariant"
: "__contravariant";
if (newTypeParam->getVariance()
== ObjCTypeParamVariance::Invariant) {
diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
(newVarianceStr + " ").str());
} else {
diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
newVarianceStr);
}
}
}
}
S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
<< prevTypeParam->getDeclName();
// Override the variance.
newTypeParam->setVariance(prevTypeParam->getVariance());
}
}
// If the bound types match, there's nothing to do.
if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
newTypeParam->getUnderlyingType()))
continue;
// If the new type parameter's bound was explicit, complain about it being
// different from the original.
if (newTypeParam->hasExplicitBound()) {
SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
->getTypeLoc().getSourceRange();
S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
<< newTypeParam->getUnderlyingType()
<< newTypeParam->getDeclName()
<< prevTypeParam->hasExplicitBound()
<< prevTypeParam->getUnderlyingType()
<< (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
<< prevTypeParam->getDeclName()
<< FixItHint::CreateReplacement(
newBoundRange,
prevTypeParam->getUnderlyingType().getAsString(
S.Context.getPrintingPolicy()));
S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
<< prevTypeParam->getDeclName();
// Override the new type parameter's bound type with the previous type,
// so that it's consistent.
S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
continue;
}
// The new type parameter got the implicit bound of 'id'. That's okay for
// categories and extensions (overwrite it later), but not for forward
// declarations and @interfaces, because those must be standalone.
if (newContext == TypeParamListContext::ForwardDeclaration ||
newContext == TypeParamListContext::Definition) {
// Diagnose this problem for forward declarations and definitions.
SourceLocation insertionLoc
= S.getLocForEndOfToken(newTypeParam->getLocation());
std::string newCode
= " : " + prevTypeParam->getUnderlyingType().getAsString(
S.Context.getPrintingPolicy());
S.Diag(newTypeParam->getLocation(),
diag::err_objc_type_param_bound_missing)
<< prevTypeParam->getUnderlyingType()
<< newTypeParam->getDeclName()
<< (newContext == TypeParamListContext::ForwardDeclaration)
<< FixItHint::CreateInsertion(insertionLoc, newCode);
S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
<< prevTypeParam->getDeclName();
}
// Update the new type parameter's bound to match the previous one.
S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
}
return false;
}
Decl *Sema::ActOnStartClassInterface(
Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
IdentifierInfo *SuperName, SourceLocation SuperLoc,
ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
Decl *const *ProtoRefs, unsigned NumProtoRefs,
const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
const ParsedAttributesView &AttrList) {
assert(ClassName && "Missing class identifier");
// Check for another declaration kind with the same name.
NamedDecl *PrevDecl =
LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
forRedeclarationInCurContext());
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
}
// Create a declaration to describe this @interface.
ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
// A previous decl with a different name is because of
// @compatibility_alias, for example:
// \code
// @class NewImage;
// @compatibility_alias OldImage NewImage;
// \endcode
// A lookup for 'OldImage' will return the 'NewImage' decl.
//
// In such a case use the real declaration name, instead of the alias one,
// otherwise we will break IdentifierResolver and redecls-chain invariants.
// FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
// has been aliased.
ClassName = PrevIDecl->getIdentifier();
}
// If there was a forward declaration with type parameters, check
// for consistency.
if (PrevIDecl) {
if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
if (typeParamList) {
// Both have type parameter lists; check for consistency.
if (checkTypeParamListConsistency(*this, prevTypeParamList,
typeParamList,
TypeParamListContext::Definition)) {
typeParamList = nullptr;
}
} else {
Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
<< ClassName;
Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
<< ClassName;
// Clone the type parameter list.
SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
for (auto typeParam : *prevTypeParamList) {
clonedTypeParams.push_back(
ObjCTypeParamDecl::Create(
Context,
CurContext,
typeParam->getVariance(),
SourceLocation(),
typeParam->getIndex(),
SourceLocation(),
typeParam->getIdentifier(),
SourceLocation(),
Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
}
typeParamList = ObjCTypeParamList::create(Context,
SourceLocation(),
clonedTypeParams,
SourceLocation());
}
}
}
ObjCInterfaceDecl *IDecl
= ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
typeParamList, PrevIDecl, ClassLoc);
if (PrevIDecl) {
// Class already seen. Was it a definition?
if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
<< PrevIDecl->getDeclName();
Diag(Def->getLocation(), diag::note_previous_definition);
IDecl->setInvalidDecl();
}
}
ProcessDeclAttributeList(TUScope, IDecl, AttrList);
AddPragmaAttributes(TUScope, IDecl);
// Merge attributes from previous declarations.
if (PrevIDecl)
mergeDeclAttributes(IDecl, PrevIDecl);
PushOnScopeChains(IDecl, TUScope);
// Start the definition of this class. If we're in a redefinition case, there
// may already be a definition, so we'll end up adding to it.
if (!IDecl->hasDefinition())
IDecl->startDefinition();
if (SuperName) {
// Diagnose availability in the context of the @interface.
ContextRAII SavedContext(*this, IDecl);
ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
ClassName, ClassLoc,
SuperName, SuperLoc, SuperTypeArgs,
SuperTypeArgsRange);
} else { // we have a root class.
IDecl->setEndOfDefinitionLoc(ClassLoc);
}
// Check then save referenced protocols.
if (NumProtoRefs) {
diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
NumProtoRefs, ProtoLocs);
IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
ProtoLocs, Context);
IDecl->setEndOfDefinitionLoc(EndProtoLoc);
}
CheckObjCDeclScope(IDecl);
return ActOnObjCContainerStartDefinition(IDecl);
}
/// ActOnTypedefedProtocols - this action finds protocol list as part of the
/// typedef'ed use for a qualified super class and adds them to the list
/// of the protocols.
void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
SmallVectorImpl<SourceLocation> &ProtocolLocs,
IdentifierInfo *SuperName,
SourceLocation SuperLoc) {
if (!SuperName)
return;
NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
LookupOrdinaryName);
if (!IDecl)
return;
if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
QualType T = TDecl->getUnderlyingType();
if (T->isObjCObjectType())
if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
// FIXME: Consider whether this should be an invalid loc since the loc
// is not actually pointing to a protocol name reference but to the
// typedef reference. Note that the base class name loc is also pointing
// at the typedef.
ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
}
}
}
/// ActOnCompatibilityAlias - this action is called after complete parsing of
/// a \@compatibility_alias declaration. It sets up the alias relationships.
Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
IdentifierInfo *AliasName,
SourceLocation AliasLocation,
IdentifierInfo *ClassName,
SourceLocation ClassLocation) {
// Look for previous declaration of alias name
NamedDecl *ADecl =
LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
forRedeclarationInCurContext());
if (ADecl) {
Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
Diag(ADecl->getLocation(), diag::note_previous_declaration);
return nullptr;
}
// Check for class declaration
NamedDecl *CDeclU =
LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
forRedeclarationInCurContext());
if (const TypedefNameDecl *TDecl =
dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
QualType T = TDecl->getUnderlyingType();
if (T->isObjCObjectType()) {
if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
ClassName = IDecl->getIdentifier();
CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
LookupOrdinaryName,
forRedeclarationInCurContext());
}
}
}
ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
if (!CDecl) {
Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
if (CDeclU)
Diag(CDeclU->getLocation(), diag::note_previous_declaration);
return nullptr;
}
// Everything checked out, instantiate a new alias declaration AST.
ObjCCompatibleAliasDecl *AliasDecl =
ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
if (!CheckObjCDeclScope(AliasDecl))
PushOnScopeChains(AliasDecl, TUScope);
return AliasDecl;
}
bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
IdentifierInfo *PName,
SourceLocation &Ploc, SourceLocation PrevLoc,
const ObjCList<ObjCProtocolDecl> &PList) {
bool res = false;
for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
E = PList.end(); I != E; ++I) {
if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
Ploc)) {
if (PDecl->getIdentifier() == PName) {
Diag(Ploc, diag::err_protocol_has_circular_dependency);
Diag(PrevLoc, diag::note_previous_definition);
res = true;
}
if (!PDecl->hasDefinition())
continue;
if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
PDecl->getLocation(), PDecl->getReferencedProtocols()))
res = true;
}
}
return res;
}
Decl *Sema::ActOnStartProtocolInterface(
SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
const ParsedAttributesView &AttrList) {
bool err = false;
// FIXME: Deal with AttrList.
assert(ProtocolName && "Missing protocol identifier");
ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
forRedeclarationInCurContext());
ObjCProtocolDecl *PDecl = nullptr;
if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
// If we already have a definition, complain.
Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
Diag(Def->getLocation(), diag::note_previous_definition);
// Create a new protocol that is completely distinct from previous
// declarations, and do not make this protocol available for name lookup.
// That way, we'll end up completely ignoring the duplicate.
// FIXME: Can we turn this into an error?
PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
ProtocolLoc, AtProtoInterfaceLoc,
/*PrevDecl=*/nullptr);
// If we are using modules, add the decl to the context in order to
// serialize something meaningful.
if (getLangOpts().Modules)
PushOnScopeChains(PDecl, TUScope);
PDecl->startDefinition();
} else {
if (PrevDecl) {
// Check for circular dependencies among protocol declarations. This can
// only happen if this protocol was forward-declared.
ObjCList<ObjCProtocolDecl> PList;
PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
err = CheckForwardProtocolDeclarationForCircularDependency(
ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
}
// Create the new declaration.
PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
ProtocolLoc, AtProtoInterfaceLoc,
/*PrevDecl=*/PrevDecl);
PushOnScopeChains(PDecl, TUScope);
PDecl->startDefinition();
}
ProcessDeclAttributeList(TUScope, PDecl, AttrList);
AddPragmaAttributes(TUScope, PDecl);
// Merge attributes from previous declarations.
if (PrevDecl)
mergeDeclAttributes(PDecl, PrevDecl);
if (!err && NumProtoRefs ) {
/// Check then save referenced protocols.
diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
NumProtoRefs, ProtoLocs);
PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
ProtoLocs, Context);
}
CheckObjCDeclScope(PDecl);
return ActOnObjCContainerStartDefinition(PDecl);
}
static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
ObjCProtocolDecl *&UndefinedProtocol) {
if (!PDecl->hasDefinition() ||
!PDecl->getDefinition()->isUnconditionallyVisible()) {
UndefinedProtocol = PDecl;
return true;
}
for (auto *PI : PDecl->protocols())
if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
UndefinedProtocol = PI;
return true;
}
return false;
}
/// FindProtocolDeclaration - This routine looks up protocols and
/// issues an error if they are not declared. It returns list of
/// protocol declarations in its 'Protocols' argument.
void
Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
ArrayRef<IdentifierLocPair> ProtocolId,
SmallVectorImpl<Decl *> &Protocols) {
for (const IdentifierLocPair &Pair : ProtocolId) {
ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
if (!PDecl) {
DeclFilterCCC<ObjCProtocolDecl> CCC{};
TypoCorrection Corrected = CorrectTypo(
DeclarationNameInfo(Pair.first, Pair.second), LookupObjCProtocolName,
TUScope, nullptr, CCC, CTK_ErrorRecovery);
if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
<< Pair.first);
}
if (!PDecl) {
Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
continue;
}
// If this is a forward protocol declaration, get its definition.
if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
PDecl = PDecl->getDefinition();
// For an objc container, delay protocol reference checking until after we
// can set the objc decl as the availability context, otherwise check now.
if (!ForObjCContainer) {
(void)DiagnoseUseOfDecl(PDecl, Pair.second);
}
// If this is a forward declaration and we are supposed to warn in this
// case, do it.
// FIXME: Recover nicely in the hidden case.
ObjCProtocolDecl *UndefinedProtocol;
if (WarnOnDeclarations &&
NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
<< UndefinedProtocol;
}
Protocols.push_back(PDecl);
}
}
namespace {
// Callback to only accept typo corrections that are either
// Objective-C protocols or valid Objective-C type arguments.
class ObjCTypeArgOrProtocolValidatorCCC final
: public CorrectionCandidateCallback {
ASTContext &Context;
Sema::LookupNameKind LookupKind;
public:
ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
Sema::LookupNameKind lookupKind)
: Context(context), LookupKind(lookupKind) { }
bool ValidateCandidate(const TypoCorrection &candidate) override {
// If we're allowed to find protocols and we have a protocol, accept it.
if (LookupKind != Sema::LookupOrdinaryName) {
if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
return true;
}
// If we're allowed to find type names and we have one, accept it.
if (LookupKind != Sema::LookupObjCProtocolName) {
// If we have a type declaration, we might accept this result.
if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
// If we found a tag declaration outside of C++, skip it. This
// can happy because we look for any name when there is no
// bias to protocol or type names.
if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
return false;
// Make sure the type is something we would accept as a type
// argument.
auto type = Context.getTypeDeclType(typeDecl);
if (type->isObjCObjectPointerType() ||
type->isBlockPointerType() ||
type->isDependentType() ||
type->isObjCObjectType())
return true;
return false;
}
// If we have an Objective-C class type, accept it; there will
// be another fix to add the '*'.
if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
return true;
return false;
}
return false;
}
std::unique_ptr<CorrectionCandidateCallback> clone() override {
return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this);
}
};
} // end anonymous namespace
void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
SourceLocation ProtocolLoc,
IdentifierInfo *TypeArgId,
SourceLocation TypeArgLoc,
bool SelectProtocolFirst) {
Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
<< SelectProtocolFirst << TypeArgId << ProtocolId
<< SourceRange(ProtocolLoc);
}
void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
Scope *S,
ParsedType baseType,
SourceLocation lAngleLoc,
ArrayRef<IdentifierInfo *> identifiers,
ArrayRef<SourceLocation> identifierLocs,
SourceLocation rAngleLoc,
SourceLocation &typeArgsLAngleLoc,
SmallVectorImpl<ParsedType> &typeArgs,
SourceLocation &typeArgsRAngleLoc,
SourceLocation &protocolLAngleLoc,
SmallVectorImpl<Decl *> &protocols,
SourceLocation &protocolRAngleLoc,
bool warnOnIncompleteProtocols) {
// Local function that updates the declaration specifiers with
// protocol information.
unsigned numProtocolsResolved = 0;
auto resolvedAsProtocols = [&] {
assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
// Determine whether the base type is a parameterized class, in
// which case we want to warn about typos such as
// "NSArray<NSObject>" (that should be NSArray<NSObject *>).
ObjCInterfaceDecl *baseClass = nullptr;
QualType base = GetTypeFromParser(baseType, nullptr);
bool allAreTypeNames = false;
SourceLocation firstClassNameLoc;
if (!base.isNull()) {
if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
baseClass = objcObjectType->getInterface();
if (baseClass) {
if (auto typeParams = baseClass->getTypeParamList()) {
if (typeParams->size() == numProtocolsResolved) {
// Note that we should be looking for type names, too.
allAreTypeNames = true;
}
}
}
}
}
for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
ObjCProtocolDecl *&proto
= reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
// For an objc container, delay protocol reference checking until after we
// can set the objc decl as the availability context, otherwise check now.
if (!warnOnIncompleteProtocols) {
(void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
}
// If this is a forward protocol declaration, get its definition.
if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
proto = proto->getDefinition();
// If this is a forward declaration and we are supposed to warn in this
// case, do it.
// FIXME: Recover nicely in the hidden case.
ObjCProtocolDecl *forwardDecl = nullptr;
if (warnOnIncompleteProtocols &&
NestedProtocolHasNoDefinition(proto, forwardDecl)) {
Diag(identifierLocs[i], diag::warn_undef_protocolref)
<< proto->getDeclName();
Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
<< forwardDecl;
}
// If everything this far has been a type name (and we care
// about such things), check whether this name refers to a type
// as well.
if (allAreTypeNames) {
if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
LookupOrdinaryName)) {
if (isa<ObjCInterfaceDecl>(decl)) {
if (firstClassNameLoc.isInvalid())
firstClassNameLoc = identifierLocs[i];
} else if (!isa<TypeDecl>(decl)) {
// Not a type.
allAreTypeNames = false;
}
} else {
allAreTypeNames = false;
}
}
}
// All of the protocols listed also have type names, and at least
// one is an Objective-C class name. Check whether all of the
// protocol conformances are declared by the base class itself, in
// which case we warn.
if (allAreTypeNames && firstClassNameLoc.isValid()) {
llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
Context.CollectInheritedProtocols(baseClass, knownProtocols);
bool allProtocolsDeclared = true;
for (auto proto : protocols) {
if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
allProtocolsDeclared = false;
break;
}
}
if (allProtocolsDeclared) {
Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
<< baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
<< FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
" *");
}
}
protocolLAngleLoc = lAngleLoc;
protocolRAngleLoc = rAngleLoc;
assert(protocols.size() == identifierLocs.size());
};
// Attempt to resolve all of the identifiers as protocols.
for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
protocols.push_back(proto);
if (proto)
++numProtocolsResolved;
}
// If all of the names were protocols, these were protocol qualifiers.
if (numProtocolsResolved == identifiers.size())
return resolvedAsProtocols();
// Attempt to resolve all of the identifiers as type names or
// Objective-C class names. The latter is technically ill-formed,
// but is probably something like \c NSArray<NSView *> missing the
// \c*.
typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
SmallVector<TypeOrClassDecl, 4> typeDecls;
unsigned numTypeDeclsResolved = 0;
for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
LookupOrdinaryName);
if (!decl) {
typeDecls.push_back(TypeOrClassDecl());
continue;
}
if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
typeDecls.push_back(typeDecl);
++numTypeDeclsResolved;
continue;
}
if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
typeDecls.push_back(objcClass);
++numTypeDeclsResolved;
continue;
}
typeDecls.push_back(TypeOrClassDecl());
}
AttributeFactory attrFactory;
// Local function that forms a reference to the given type or
// Objective-C class declaration.
auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
-> TypeResult {
// Form declaration specifiers. They simply refer to the type.
DeclSpec DS(attrFactory);
const char* prevSpec; // unused
unsigned diagID; // unused
QualType type;
if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
type = Context.getTypeDeclType(actualTypeDecl);
else
type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
parsedType, Context.getPrintingPolicy());
// Use the identifier location for the type source range.
DS.SetRangeStart(loc);
DS.SetRangeEnd(loc);
// Form the declarator.
Declarator D(DS, DeclaratorContext::TypeName);
// If we have a typedef of an Objective-C class type that is missing a '*',
// add the '*'.
if (type->getAs<ObjCInterfaceType>()) {
SourceLocation starLoc = getLocForEndOfToken(loc);
D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc,
SourceLocation(),
SourceLocation(),
SourceLocation(),
SourceLocation(),
SourceLocation()),
starLoc);
// Diagnose the missing '*'.
Diag(loc, diag::err_objc_type_arg_missing_star)
<< type
<< FixItHint::CreateInsertion(starLoc, " *");
}
// Convert this to a type.
return ActOnTypeName(S, D);
};
// Local function that updates the declaration specifiers with
// type argument information.
auto resolvedAsTypeDecls = [&] {
// We did not resolve these as protocols.
protocols.clear();
assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
// Map type declarations to type arguments.
for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
// Map type reference to a type.
TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
if (!type.isUsable()) {
typeArgs.clear();
return;
}
typeArgs.push_back(type.get());
}
typeArgsLAngleLoc = lAngleLoc;
typeArgsRAngleLoc = rAngleLoc;
};
// If all of the identifiers can be resolved as type names or
// Objective-C class names, we have type arguments.
if (numTypeDeclsResolved == identifiers.size())
return resolvedAsTypeDecls();
// Error recovery: some names weren't found, or we have a mix of
// type and protocol names. Go resolve all of the unresolved names
// and complain if we can't find a consistent answer.
LookupNameKind lookupKind = LookupAnyName;
for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
// If we already have a protocol or type. Check whether it is the
// right thing.
if (protocols[i] || typeDecls[i]) {
// If we haven't figured out whether we want types or protocols
// yet, try to figure it out from this name.
if (lookupKind == LookupAnyName) {
// If this name refers to both a protocol and a type (e.g., \c
// NSObject), don't conclude anything yet.
if (protocols[i] && typeDecls[i])
continue;
// Otherwise, let this name decide whether we'll be correcting
// toward types or protocols.
lookupKind = protocols[i] ? LookupObjCProtocolName
: LookupOrdinaryName;
continue;
}
// If we want protocols and we have a protocol, there's nothing
// more to do.
if (lookupKind == LookupObjCProtocolName && protocols[i])
continue;
// If we want types and we have a type declaration, there's
// nothing more to do.
if (lookupKind == LookupOrdinaryName && typeDecls[i])
continue;
// We have a conflict: some names refer to protocols and others
// refer to types.
DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
identifiers[i], identifierLocs[i],
protocols[i] != nullptr);
protocols.clear();
typeArgs.clear();
return;
}
// Perform typo correction on the name.
ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
TypoCorrection corrected =
CorrectTypo(DeclarationNameInfo(identifiers[i], identifierLocs[i]),
lookupKind, S, nullptr, CCC, CTK_ErrorRecovery);
if (corrected) {
// Did we find a protocol?
if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
diagnoseTypo(corrected,
PDiag(diag::err_undeclared_protocol_suggest)
<< identifiers[i]);
lookupKind = LookupObjCProtocolName;
protocols[i] = proto;
++numProtocolsResolved;
continue;
}
// Did we find a type?
if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
diagnoseTypo(corrected,
PDiag(diag::err_unknown_typename_suggest)
<< identifiers[i]);
lookupKind = LookupOrdinaryName;
typeDecls[i] = typeDecl;
++numTypeDeclsResolved;
continue;
}
// Did we find an Objective-C class?
if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
diagnoseTypo(corrected,
PDiag(diag::err_unknown_type_or_class_name_suggest)
<< identifiers[i] << true);
lookupKind = LookupOrdinaryName;
typeDecls[i] = objcClass;
++numTypeDeclsResolved;
continue;
}
}
// We couldn't find anything.
Diag(identifierLocs[i],
(lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
: lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
: diag::err_unknown_typename))
<< identifiers[i];
protocols.clear();
typeArgs.clear();
return;
}
// If all of the names were (corrected to) protocols, these were
// protocol qualifiers.
if (numProtocolsResolved == identifiers.size())
return resolvedAsProtocols();
// Otherwise, all of the names were (corrected to) types.
assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
return resolvedAsTypeDecls();
}
/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
/// a class method in its extension.
///
void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
ObjCInterfaceDecl *ID) {
if (!ID)
return; // Possibly due to previous error
llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
for (auto *MD : ID->methods())
MethodMap[MD->getSelector()] = MD;
if (MethodMap.empty())
return;
for (const auto *Method : CAT->methods()) {
const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
if (PrevMethod &&
(PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
!MatchTwoMethodDeclarations(Method, PrevMethod)) {
Diag(Method->getLocation(), diag::err_duplicate_method_decl)
<< Method->getDeclName();
Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
}
}
}
/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
Sema::DeclGroupPtrTy
Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
ArrayRef<IdentifierLocPair> IdentList,
const ParsedAttributesView &attrList) {
SmallVector<Decl *, 8> DeclsInGroup;
for (const IdentifierLocPair &IdentPair : IdentList) {
IdentifierInfo *Ident = IdentPair.first;
ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
forRedeclarationInCurContext());
ObjCProtocolDecl *PDecl
= ObjCProtocolDecl::Create(Context, CurContext, Ident,
IdentPair.second, AtProtocolLoc,
PrevDecl);
PushOnScopeChains(PDecl, TUScope);
CheckObjCDeclScope(PDecl);
ProcessDeclAttributeList(TUScope, PDecl, attrList);
AddPragmaAttributes(TUScope, PDecl);
if (PrevDecl)
mergeDeclAttributes(PDecl, PrevDecl);
DeclsInGroup.push_back(PDecl);
}
return BuildDeclaratorGroup(DeclsInGroup);
}
Decl *Sema::ActOnStartCategoryInterface(
SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
Decl *const *ProtoRefs, unsigned NumProtoRefs,
const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
const ParsedAttributesView &AttrList) {
ObjCCategoryDecl *CDecl;
ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
/// Check that class of this category is already completely declared.
if (!IDecl
|| RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
diag::err_category_forward_interface,
CategoryName == nullptr)) {
// Create an invalid ObjCCategoryDecl to serve as context for
// the enclosing method declarations. We mark the decl invalid
// to make it clear that this isn't a valid AST.
CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
ClassLoc, CategoryLoc, CategoryName,
IDecl, typeParamList);
CDecl->setInvalidDecl();
CurContext->addDecl(CDecl);
if (!IDecl)
Diag(ClassLoc, diag::err_undef_interface) << ClassName;
return ActOnObjCContainerStartDefinition(CDecl);
}
if (!CategoryName && IDecl->getImplementation()) {
Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
Diag(IDecl->getImplementation()->getLocation(),
diag::note_implementation_declared);
}
if (CategoryName) {
/// Check for duplicate interface declaration for this category
if (ObjCCategoryDecl *Previous
= IDecl->FindCategoryDeclaration(CategoryName)) {
// Class extensions can be declared multiple times, categories cannot.
Diag(CategoryLoc, diag::warn_dup_category_def)
<< ClassName << CategoryName;
Diag(Previous->getLocation(), diag::note_previous_definition);
}
}
// If we have a type parameter list, check it.
if (typeParamList) {
if (auto prevTypeParamList = IDecl->getTypeParamList()) {
if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
CategoryName
? TypeParamListContext::Category
: TypeParamListContext::Extension))
typeParamList = nullptr;
} else {
Diag(typeParamList->getLAngleLoc(),
diag::err_objc_parameterized_category_nonclass)
<< (CategoryName != nullptr)
<< ClassName
<< typeParamList->getSourceRange();
typeParamList = nullptr;
}
}
CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
ClassLoc, CategoryLoc, CategoryName, IDecl,
typeParamList);
// FIXME: PushOnScopeChains?
CurContext->addDecl(CDecl);
// Process the attributes before looking at protocols to ensure that the
// availability attribute is attached to the category to provide availability
// checking for protocol uses.
ProcessDeclAttributeList(TUScope, CDecl, AttrList);
AddPragmaAttributes(TUScope, CDecl);
if (NumProtoRefs) {
diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
NumProtoRefs, ProtoLocs);
CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
ProtoLocs, Context);
// Protocols in the class extension belong to the class.
if (CDecl->IsClassExtension())
IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
NumProtoRefs, Context);
}
CheckObjCDeclScope(CDecl);
return ActOnObjCContainerStartDefinition(CDecl);
}
/// ActOnStartCategoryImplementation - Perform semantic checks on the
/// category implementation declaration and build an ObjCCategoryImplDecl
/// object.
Decl *Sema::ActOnStartCategoryImplementation(
SourceLocation AtCatImplLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *CatName, SourceLocation CatLoc,
const ParsedAttributesView &Attrs) {
ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
ObjCCategoryDecl *CatIDecl = nullptr;
if (IDecl && IDecl->hasDefinition()) {
CatIDecl = IDecl->FindCategoryDeclaration(CatName);
if (!CatIDecl) {
// Category @implementation with no corresponding @interface.
// Create and install one.
CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
ClassLoc, CatLoc,
CatName, IDecl,
/*typeParamList=*/nullptr);
CatIDecl->setImplicit();
}
}
ObjCCategoryImplDecl *CDecl =
ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
ClassLoc, AtCatImplLoc, CatLoc);
/// Check that class of this category is already completely declared.
if (!IDecl) {
Diag(ClassLoc, diag::err_undef_interface) << ClassName;
CDecl->setInvalidDecl();
} else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
diag::err_undef_interface)) {
CDecl->setInvalidDecl();
}
ProcessDeclAttributeList(TUScope, CDecl, Attrs);
AddPragmaAttributes(TUScope, CDecl);
// FIXME: PushOnScopeChains?
CurContext->addDecl(CDecl);
// If the interface has the objc_runtime_visible attribute, we
// cannot implement a category for it.
if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
Diag(ClassLoc, diag::err_objc_runtime_visible_category)
<< IDecl->getDeclName();
}
/// Check that CatName, category name, is not used in another implementation.
if (CatIDecl) {
if (CatIDecl->getImplementation()) {
Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
<< CatName;
Diag(CatIDecl->getImplementation()->getLocation(),
diag::note_previous_definition);
CDecl->setInvalidDecl();
} else {
CatIDecl->setImplementation(CDecl);
// Warn on implementating category of deprecated class under
// -Wdeprecated-implementations flag.
DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
CDecl->getLocation());
}
}
CheckObjCDeclScope(CDecl);
return ActOnObjCContainerStartDefinition(CDecl);
}
Decl *Sema::ActOnStartClassImplementation(
SourceLocation AtClassImplLoc,
IdentifierInfo *ClassName, SourceLocation ClassLoc,
IdentifierInfo *SuperClassname,
SourceLocation SuperClassLoc,
const ParsedAttributesView &Attrs) {
ObjCInterfaceDecl *IDecl = nullptr;
// Check for another declaration kind with the same name.
NamedDecl *PrevDecl
= LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
forRedeclarationInCurContext());
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
} else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
// FIXME: This will produce an error if the definition of the interface has
// been imported from a module but is not visible.
RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
diag::warn_undef_interface);
} else {
// We did not find anything with the name ClassName; try to correct for
// typos in the class name.
ObjCInterfaceValidatorCCC CCC{};
TypoCorrection Corrected =
CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc),
LookupOrdinaryName, TUScope, nullptr, CCC, CTK_NonError);
if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
// Suggest the (potentially) correct interface name. Don't provide a
// code-modification hint or use the typo name for recovery, because
// this is just a warning. The program may actually be correct.
diagnoseTypo(Corrected,
PDiag(diag::warn_undef_interface_suggest) << ClassName,
/*ErrorRecovery*/false);
} else {
Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
}
}
// Check that super class name is valid class name
ObjCInterfaceDecl *SDecl = nullptr;
if (SuperClassname) {
// Check if a different kind of symbol declared in this scope.
PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
LookupOrdinaryName);
if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
Diag(SuperClassLoc, diag::err_redefinition_different_kind)
<< SuperClassname;
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
} else {
SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
if (SDecl && !SDecl->hasDefinition())
SDecl = nullptr;
if (!SDecl)
Diag(SuperClassLoc, diag::err_undef_superclass)
<< SuperClassname << ClassName;
else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
// This implementation and its interface do not have the same
// super class.
Diag(SuperClassLoc, diag::err_conflicting_super_class)
<< SDecl->getDeclName();
Diag(SDecl->getLocation(), diag::note_previous_definition);
}
}
}
if (!IDecl) {
// Legacy case of @implementation with no corresponding @interface.
// Build, chain & install the interface decl into the identifier.
// FIXME: Do we support attributes on the @implementation? If so we should
// copy them over.
IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
ClassName, /*typeParamList=*/nullptr,
/*PrevDecl=*/nullptr, ClassLoc,
true);
AddPragmaAttributes(TUScope, IDecl);
IDecl->startDefinition();
if (SDecl) {
IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
Context.getObjCInterfaceType(SDecl),
SuperClassLoc));
IDecl->setEndOfDefinitionLoc(SuperClassLoc);
} else {
IDecl->setEndOfDefinitionLoc(ClassLoc);
}
PushOnScopeChains(IDecl, TUScope);
} else {
// Mark the interface as being completed, even if it was just as
// @class ....;
// declaration; the user cannot reopen it.
if (!IDecl->hasDefinition())
IDecl->startDefinition();
}
ObjCImplementationDecl* IMPDecl =
ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
ClassLoc, AtClassImplLoc, SuperClassLoc);
ProcessDeclAttributeList(TUScope, IMPDecl, Attrs);
AddPragmaAttributes(TUScope, IMPDecl);
if (CheckObjCDeclScope(IMPDecl))
return ActOnObjCContainerStartDefinition(IMPDecl);
// Check that there is no duplicate implementation of this class.
if (IDecl->getImplementation()) {
// FIXME: Don't leak everything!
Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
Diag(IDecl->getImplementation()->getLocation(),
diag::note_previous_definition);
IMPDecl->setInvalidDecl();
} else { // add it to the list.
IDecl->setImplementation(IMPDecl);
PushOnScopeChains(IMPDecl, TUScope);
// Warn on implementating deprecated class under
// -Wdeprecated-implementations flag.
DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
}
// If the superclass has the objc_runtime_visible attribute, we
// cannot implement a subclass of it.
if (IDecl->getSuperClass() &&
IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
<< IDecl->getDeclName()
<< IDecl->getSuperClass()->getDeclName();
}
return ActOnObjCContainerStartDefinition(IMPDecl);
}
Sema::DeclGroupPtrTy
Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
SmallVector<Decl *, 64> DeclsInGroup;
DeclsInGroup.reserve(Decls.size() + 1);
for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
Decl *Dcl = Decls[i];
if (!Dcl)
continue;
if (Dcl->getDeclContext()->isFileContext())
Dcl->setTopLevelDeclInObjCContainer();
DeclsInGroup.push_back(Dcl);
}
DeclsInGroup.push_back(ObjCImpDecl);
return BuildDeclaratorGroup(DeclsInGroup);
}
void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
ObjCIvarDecl **ivars, unsigned numIvars,
SourceLocation RBrace) {
assert(ImpDecl && "missing implementation decl");
ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
if (!IDecl)
return;
/// Check case of non-existing \@interface decl.
/// (legacy objective-c \@implementation decl without an \@interface decl).
/// Add implementations's ivar to the synthesize class's ivar list.
if (IDecl->isImplicitInterfaceDecl()) {
IDecl->setEndOfDefinitionLoc(RBrace);
// Add ivar's to class's DeclContext.
for (unsigned i = 0, e = numIvars; i != e; ++i) {
ivars[i]->setLexicalDeclContext(ImpDecl);
// In a 'fragile' runtime the ivar was added to the implicit
// ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is
// only in the ObjCImplementationDecl. In the non-fragile case the ivar
// therefore also needs to be propagated to the ObjCInterfaceDecl.
if (!LangOpts.ObjCRuntime.isFragile())
IDecl->makeDeclVisibleInContext(ivars[i]);
ImpDecl->addDecl(ivars[i]);
}
return;
}
// If implementation has empty ivar list, just return.
if (numIvars == 0)
return;
assert(ivars && "missing @implementation ivars");
if (LangOpts.ObjCRuntime.isNonFragile()) {
if (ImpDecl->getSuperClass())
Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
for (unsigned i = 0; i < numIvars; i++) {
ObjCIvarDecl* ImplIvar = ivars[i];
if (const ObjCIvarDecl *ClsIvar =
IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
Diag(ClsIvar->getLocation(), diag::note_previous_definition);
continue;
}
// Check class extensions (unnamed categories) for duplicate ivars.
for (const auto *CDecl : IDecl->visible_extensions()) {
if (const ObjCIvarDecl *ClsExtIvar =
CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
continue;
}
}
// Instance ivar to Implementation's DeclContext.
ImplIvar->setLexicalDeclContext(ImpDecl);
IDecl->makeDeclVisibleInContext(ImplIvar);
ImpDecl->addDecl(ImplIvar);
}
return;
}
// Check interface's Ivar list against those in the implementation.
// names and types must match.
//
unsigned j = 0;
ObjCInterfaceDecl::ivar_iterator
IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
for (; numIvars > 0 && IVI != IVE; ++IVI) {
ObjCIvarDecl* ImplIvar = ivars[j++];
ObjCIvarDecl* ClsIvar = *IVI;
assert (ImplIvar && "missing implementation ivar");
assert (ClsIvar && "missing class ivar");
// First, make sure the types match.
if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
<< ImplIvar->getIdentifier()
<< ImplIvar->getType() << ClsIvar->getType();
Diag(ClsIvar->getLocation(), diag::note_previous_definition);
} else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
ImplIvar->getBitWidthValue(Context) !=
ClsIvar->getBitWidthValue(Context)) {
Diag(ImplIvar->getBitWidth()->getBeginLoc(),
diag::err_conflicting_ivar_bitwidth)
<< ImplIvar->getIdentifier();
Diag(ClsIvar->getBitWidth()->getBeginLoc(),
diag::note_previous_definition);
}
// Make sure the names are identical.
if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
<< ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
Diag(ClsIvar->getLocation(), diag::note_previous_definition);
}
--numIvars;
}
if (numIvars > 0)
Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
else if (IVI != IVE)
Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
}
static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
ObjCMethodDecl *method,
bool &IncompleteImpl,
unsigned DiagID,
NamedDecl *NeededFor = nullptr) {
// No point warning no definition of method which is 'unavailable'.
if (method->getAvailability() == AR_Unavailable)
return;
// FIXME: For now ignore 'IncompleteImpl'.
// Previously we grouped all unimplemented methods under a single
// warning, but some users strongly voiced that they would prefer
// separate warnings. We will give that approach a try, as that
// matches what we do with protocols.
{
const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
B << method;
if (NeededFor)
B << NeededFor;
}
// Issue a note to the original declaration.
SourceLocation MethodLoc = method->getBeginLoc();
if (MethodLoc.isValid())
S.Diag(MethodLoc, diag::note_method_declared_at) << method;
}
/// Determines if type B can be substituted for type A. Returns true if we can
/// guarantee that anything that the user will do to an object of type A can
/// also be done to an object of type B. This is trivially true if the two
/// types are the same, or if B is a subclass of A. It becomes more complex
/// in cases where protocols are involved.
///
/// Object types in Objective-C describe the minimum requirements for an
/// object, rather than providing a complete description of a type. For
/// example, if A is a subclass of B, then B* may refer to an instance of A.
/// The principle of substitutability means that we may use an instance of A
/// anywhere that we may use an instance of B - it will implement all of the
/// ivars of B and all of the methods of B.
///
/// This substitutability is important when type checking methods, because
/// the implementation may have stricter type definitions than the interface.
/// The interface specifies minimum requirements, but the implementation may
/// have more accurate ones. For example, a method may privately accept
/// instances of B, but only publish that it accepts instances of A. Any
/// object passed to it will be type checked against B, and so will implicitly
/// by a valid A*. Similarly, a method may return a subclass of the class that
/// it is declared as returning.
///
/// This is most important when considering subclassing. A method in a
/// subclass must accept any object as an argument that its superclass's
/// implementation accepts. It may, however, accept a more general type
/// without breaking substitutability (i.e. you can still use the subclass
/// anywhere that you can use the superclass, but not vice versa). The
/// converse requirement applies to return types: the return type for a
/// subclass method must be a valid object of the kind that the superclass
/// advertises, but it may be specified more accurately. This avoids the need
/// for explicit down-casting by callers.
///
/// Note: This is a stricter requirement than for assignment.
static bool isObjCTypeSubstitutable(ASTContext &Context,
const ObjCObjectPointerType *A,
const ObjCObjectPointerType *B,
bool rejectId) {
// Reject a protocol-unqualified id.
if (rejectId && B->isObjCIdType()) return false;
// If B is a qualified id, then A must also be a qualified id and it must
// implement all of the protocols in B. It may not be a qualified class.
// For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
// stricter definition so it is not substitutable for id<A>.
if (B->isObjCQualifiedIdType()) {
return A->isObjCQualifiedIdType() &&
Context.ObjCQualifiedIdTypesAreCompatible(A, B, false);
}
/*
// id is a special type that bypasses type checking completely. We want a
// warning when it is used in one place but not another.
if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
// If B is a qualified id, then A must also be a qualified id (which it isn't
// if we've got this far)
if (B->isObjCQualifiedIdType()) return false;
*/
// Now we know that A and B are (potentially-qualified) class types. The
// normal rules for assignment apply.
return Context.canAssignObjCInterfaces(A, B);
}
static SourceRange getTypeRange(TypeSourceInfo *TSI) {
return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
}
/// Determine whether two set of Objective-C declaration qualifiers conflict.
static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
Decl::ObjCDeclQualifier y) {
return (x & ~Decl::OBJC_TQ_CSNullability) !=
(y & ~Decl::OBJC_TQ_CSNullability);
}
static bool CheckMethodOverrideReturn(Sema &S,
ObjCMethodDecl *MethodImpl,
ObjCMethodDecl *MethodDecl,
bool IsProtocolMethodDecl,
bool IsOverridingMode,
bool Warn) {
if (IsProtocolMethodDecl &&
objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
MethodImpl->getObjCDeclQualifier())) {
if (Warn) {
S.Diag(MethodImpl->getLocation(),
(IsOverridingMode
? diag::warn_conflicting_overriding_ret_type_modifiers
: diag::warn_conflicting_ret_type_modifiers))
<< MethodImpl->getDeclName()
<< MethodImpl->getReturnTypeSourceRange();
S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
<< MethodDecl->getReturnTypeSourceRange();
}
else
return false;
}
if (Warn && IsOverridingMode &&
!isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
!S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
MethodDecl->getReturnType(),
false)) {
auto nullabilityMethodImpl =
*MethodImpl->getReturnType()->getNullability(S.Context);
auto nullabilityMethodDecl =
*MethodDecl->getReturnType()->getNullability(S.Context);
S.Diag(MethodImpl->getLocation(),
diag::warn_conflicting_nullability_attr_overriding_ret_types)
<< DiagNullabilityKind(
nullabilityMethodImpl,
((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
!= 0))
<< DiagNullabilityKind(
nullabilityMethodDecl,
((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
!= 0));
S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
}
if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
MethodDecl->getReturnType()))
return true;
if (!Warn)
return false;
unsigned DiagID =
IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
: diag::warn_conflicting_ret_types;
// Mismatches between ObjC pointers go into a different warning
// category, and sometimes they're even completely explicitly allowed.
if (const ObjCObjectPointerType *ImplPtrTy =
MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
if (const ObjCObjectPointerType *IfacePtrTy =
MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
// Allow non-matching return types as long as they don't violate
// the principle of substitutability. Specifically, we permit
// return types that are subclasses of the declared return type,
// or that are more-qualified versions of the declared type.
if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
return false;
DiagID =
IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
: diag::warn_non_covariant_ret_types;
}
}
S.Diag(MethodImpl->getLocation(), DiagID)
<< MethodImpl->getDeclName() << MethodDecl->getReturnType()
<< MethodImpl->getReturnType()
<< MethodImpl->getReturnTypeSourceRange();
S.Diag(MethodDecl->getLocation(), IsOverridingMode
? diag::note_previous_declaration
: diag::note_previous_definition)
<< MethodDecl->getReturnTypeSourceRange();
return false;
}
static bool CheckMethodOverrideParam(Sema &S,
ObjCMethodDecl *MethodImpl,
ObjCMethodDecl *MethodDecl,
ParmVarDecl *ImplVar,
ParmVarDecl *IfaceVar,
bool IsProtocolMethodDecl,
bool IsOverridingMode,
bool Warn) {
if (IsProtocolMethodDecl &&
objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
IfaceVar->getObjCDeclQualifier())) {
if (Warn) {
if (IsOverridingMode)
S.Diag(ImplVar->getLocation(),
diag::warn_conflicting_overriding_param_modifiers)
<< getTypeRange(ImplVar->getTypeSourceInfo())
<< MethodImpl->getDeclName();
else S.Diag(ImplVar->getLocation(),
diag::warn_conflicting_param_modifiers)
<< getTypeRange(ImplVar->getTypeSourceInfo())
<< MethodImpl->getDeclName();
S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
<< getTypeRange(IfaceVar->getTypeSourceInfo());
}
else
return false;
}
QualType ImplTy = ImplVar->getType();
QualType IfaceTy = IfaceVar->getType();
if (Warn && IsOverridingMode &&
!isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
!S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
S.Diag(ImplVar->getLocation(),
diag::warn_conflicting_nullability_attr_overriding_param_types)
<< DiagNullabilityKind(
*ImplTy->getNullability(S.Context),
((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
!= 0))
<< DiagNullabilityKind(
*IfaceTy->getNullability(S.Context),
((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
!= 0));
S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
}
if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
return true;
if (!Warn)
return false;
unsigned DiagID =
IsOverridingMode ? diag::warn_conflicting_overriding_param_types
: diag::warn_conflicting_param_types;
// Mismatches between ObjC pointers go into a different warning
// category, and sometimes they're even completely explicitly allowed..
if (const ObjCObjectPointerType *ImplPtrTy =
ImplTy->getAs<ObjCObjectPointerType>()) {
if (const ObjCObjectPointerType *IfacePtrTy =
IfaceTy->getAs<ObjCObjectPointerType>()) {
// Allow non-matching argument types as long as they don't
// violate the principle of substitutability. Specifically, the
// implementation must accept any objects that the superclass
// accepts, however it may also accept others.
if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
return false;
DiagID =
IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
: diag::warn_non_contravariant_param_types;
}
}
S.Diag(ImplVar->getLocation(), DiagID)
<< getTypeRange(ImplVar->getTypeSourceInfo())
<< MethodImpl->getDeclName() << IfaceTy << ImplTy;
S.Diag(IfaceVar->getLocation(),
(IsOverridingMode ? diag::note_previous_declaration
: diag::note_previous_definition))
<< getTypeRange(IfaceVar->getTypeSourceInfo());
return false;
}
/// In ARC, check whether the conventional meanings of the two methods
/// match. If they don't, it's a hard error.
static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
ObjCMethodDecl *decl) {
ObjCMethodFamily implFamily = impl->getMethodFamily();
ObjCMethodFamily declFamily = decl->getMethodFamily();
if (implFamily == declFamily) return false;
// Since conventions are sorted by selector, the only possibility is
// that the types differ enough to cause one selector or the other
// to fall out of the family.
assert(implFamily == OMF_None || declFamily == OMF_None);
// No further diagnostics required on invalid declarations.
if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
const ObjCMethodDecl *unmatched = impl;
ObjCMethodFamily family = declFamily;
unsigned errorID = diag::err_arc_lost_method_convention;
unsigned noteID = diag::note_arc_lost_method_convention;
if (declFamily == OMF_None) {
unmatched = decl;
family = implFamily;
errorID = diag::err_arc_gained_method_convention;
noteID = diag::note_arc_gained_method_convention;
}
// Indexes into a %select clause in the diagnostic.
enum FamilySelector {
F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
};
FamilySelector familySelector = FamilySelector();
switch (family) {
case OMF_None: llvm_unreachable("logic error, no method convention");
case OMF_retain:
case OMF_release:
case OMF_autorelease:
case OMF_dealloc:
case OMF_finalize:
case OMF_retainCount:
case OMF_self:
case OMF_initialize:
case OMF_performSelector:
// Mismatches for these methods don't change ownership
// conventions, so we don't care.
return false;
case OMF_init: familySelector = F_init; break;
case OMF_alloc: familySelector = F_alloc; break;
case OMF_copy: familySelector = F_copy; break;
case OMF_mutableCopy: familySelector = F_mutableCopy; break;
case OMF_new: familySelector = F_new; break;
}
enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
ReasonSelector reasonSelector;
// The only reason these methods don't fall within their families is
// due to unusual result types.
if (unmatched->getReturnType()->isObjCObjectPointerType()) {
reasonSelector = R_UnrelatedReturn;
} else {
reasonSelector = R_NonObjectReturn;
}
S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
return true;
}
void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
ObjCMethodDecl *MethodDecl,
bool IsProtocolMethodDecl) {
if (getLangOpts().ObjCAutoRefCount &&
checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
return;
CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
IsProtocolMethodDecl, false,
true);
for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
EF = MethodDecl->param_end();
IM != EM && IF != EF; ++IM, ++IF) {
CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
IsProtocolMethodDecl, false, true);
}
if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
Diag(ImpMethodDecl->getLocation(),
diag::warn_conflicting_variadic);
Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
}
}
void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
ObjCMethodDecl *Overridden,
bool IsProtocolMethodDecl) {
CheckMethodOverrideReturn(*this, Method, Overridden,
IsProtocolMethodDecl, true,
true);
for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
IF = Overridden->param_begin(), EM = Method->param_end(),
EF = Overridden->param_end();
IM != EM && IF != EF; ++IM, ++IF) {
CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
IsProtocolMethodDecl, true, true);
}
if (Method->isVariadic() != Overridden->isVariadic()) {
Diag(Method->getLocation(),
diag::warn_conflicting_overriding_variadic);
Diag(Overridden->getLocation(), diag::note_previous_declaration);
}
}
/// WarnExactTypedMethods - This routine issues a warning if method
/// implementation declaration matches exactly that of its declaration.
void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
ObjCMethodDecl *MethodDecl,
bool IsProtocolMethodDecl) {
// don't issue warning when protocol method is optional because primary
// class is not required to implement it and it is safe for protocol
// to implement it.
if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
return;
// don't issue warning when primary class's method is
// deprecated/unavailable.
if (MethodDecl->hasAttr<UnavailableAttr>() ||
MethodDecl->hasAttr<DeprecatedAttr>())
return;
bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
IsProtocolMethodDecl, false, false);
if (match)
for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
EF = MethodDecl->param_end();
IM != EM && IF != EF; ++IM, ++IF) {
match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
*IM, *IF,
IsProtocolMethodDecl, false, false);
if (!match)
break;
}
if (match)
match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
if (match)
match = !(MethodDecl->isClassMethod() &&
MethodDecl->getSelector() == GetNullarySelector("load", Context));
if (match) {
Diag(ImpMethodDecl->getLocation(),
diag::warn_category_method_impl_match);
Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
<< MethodDecl->getDeclName();
}
}
/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
/// improve the efficiency of selector lookups and type checking by associating
/// with each protocol / interface / category the flattened instance tables. If
/// we used an immutable set to keep the table then it wouldn't add significant
/// memory cost and it would be handy for lookups.
typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
ProtocolNameSet &PNS) {
if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
PNS.insert(PDecl->getIdentifier());
for (const auto *PI : PDecl->protocols())
findProtocolsWithExplicitImpls(PI, PNS);
}
/// Recursively populates a set with all conformed protocols in a class
/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
/// attribute.
static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
ProtocolNameSet &PNS) {
if (!Super)
return;
for (const auto *I : Super->all_referenced_protocols())
findProtocolsWithExplicitImpls(I, PNS);
findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
}
/// CheckProtocolMethodDefs - This routine checks unimplemented methods
/// Declared in protocol, and those referenced by it.
static void CheckProtocolMethodDefs(Sema &S,
SourceLocation ImpLoc,
ObjCProtocolDecl *PDecl,
bool& IncompleteImpl,
const Sema::SelectorSet &InsMap,
const Sema::SelectorSet &ClsMap,
ObjCContainerDecl *CDecl,
LazyProtocolNameSet &ProtocolsExplictImpl) {
ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
: dyn_cast<ObjCInterfaceDecl>(CDecl);
assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
ObjCInterfaceDecl *Super = IDecl->getSuperClass();
ObjCInterfaceDecl *NSIDecl = nullptr;
// If this protocol is marked 'objc_protocol_requires_explicit_implementation'
// then we should check if any class in the super class hierarchy also
// conforms to this protocol, either directly or via protocol inheritance.
// If so, we can skip checking this protocol completely because we
// know that a parent class already satisfies this protocol.
//
// Note: we could generalize this logic for all protocols, and merely
// add the limit on looking at the super class chain for just
// specially marked protocols. This may be a good optimization. This
// change is restricted to 'objc_protocol_requires_explicit_implementation'
// protocols for now for controlled evaluation.
if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
if (!ProtocolsExplictImpl) {
ProtocolsExplictImpl.reset(new ProtocolNameSet);
findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
}
if (ProtocolsExplictImpl->contains(PDecl->getIdentifier()))
return;
// If no super class conforms to the protocol, we should not search
// for methods in the super class to implicitly satisfy the protocol.
Super = nullptr;
}
if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
// check to see if class implements forwardInvocation method and objects
// of this class are derived from 'NSProxy' so that to forward requests
// from one object to another.
// Under such conditions, which means that every method possible is
// implemented in the class, we should not issue "Method definition not
// found" warnings.
// FIXME: Use a general GetUnarySelector method for this.
IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
Selector fISelector = S.Context.Selectors.getSelector(1, &II);
if (InsMap.count(fISelector))
// Is IDecl derived from 'NSProxy'? If so, no instance methods
// need be implemented in the implementation.
NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
}
// If this is a forward protocol declaration, get its definition.
if (!PDecl->isThisDeclarationADefinition() &&
PDecl->getDefinition())
PDecl = PDecl->getDefinition();
// If a method lookup fails locally we still need to look and see if
// the method was implemented by a base class or an inherited
// protocol. This lookup is slow, but occurs rarely in correct code
// and otherwise would terminate in a warning.
// check unimplemented instance methods.
if (!NSIDecl)
for (auto *method : PDecl->instance_methods()) {
if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
!method->isPropertyAccessor() &&
!InsMap.count(method->getSelector()) &&
(!Super || !Super->lookupMethod(method->getSelector(),
true /* instance */,
false /* shallowCategory */,
true /* followsSuper */,
nullptr /* category */))) {
// If a method is not implemented in the category implementation but
// has been declared in its primary class, superclass,
// or in one of their protocols, no need to issue the warning.
// This is because method will be implemented in the primary class
// or one of its super class implementation.
// Ugly, but necessary. Method declared in protocol might have
// have been synthesized due to a property declared in the class which
// uses the protocol.
if (ObjCMethodDecl *MethodInClass =
IDecl->lookupMethod(method->getSelector(),
true /* instance */,
true /* shallowCategoryLookup */,
false /* followSuper */))
if (C || MethodInClass->isPropertyAccessor())
continue;
unsigned DIAG = diag::warn_unimplemented_protocol_method;
if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
PDecl);
}
}
}
// check unimplemented class methods
for (auto *method : PDecl->class_methods()) {
if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
!ClsMap.count(method->getSelector()) &&
(!Super || !Super->lookupMethod(