| //===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the actions class which performs semantic analysis and |
| // builds an AST out of a parse stream. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "UsedDeclVisitor.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTDiagnostic.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclFriend.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/PrettyDeclStackTrace.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/Basic/DarwinSDKInfo.h" |
| #include "clang/Basic/DiagnosticOptions.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/Stack.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/HeaderSearch.h" |
| #include "clang/Lex/HeaderSearchOptions.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Sema/CXXFieldCollector.h" |
| #include "clang/Sema/DelayedDiagnostic.h" |
| #include "clang/Sema/ExternalSemaSource.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/MultiplexExternalSemaSource.h" |
| #include "clang/Sema/ObjCMethodList.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/SemaConsumer.h" |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/TemplateDeduction.h" |
| #include "clang/Sema/TemplateInstCallback.h" |
| #include "clang/Sema/TypoCorrection.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/Support/TimeProfiler.h" |
| |
| using namespace clang; |
| using namespace sema; |
| |
| SourceLocation Sema::getLocForEndOfToken(SourceLocation Loc, unsigned Offset) { |
| return Lexer::getLocForEndOfToken(Loc, Offset, SourceMgr, LangOpts); |
| } |
| |
| ModuleLoader &Sema::getModuleLoader() const { return PP.getModuleLoader(); } |
| |
| DarwinSDKInfo * |
| Sema::getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc, |
| StringRef Platform) { |
| if (CachedDarwinSDKInfo) |
| return CachedDarwinSDKInfo->get(); |
| auto SDKInfo = parseDarwinSDKInfo( |
| PP.getFileManager().getVirtualFileSystem(), |
| PP.getHeaderSearchInfo().getHeaderSearchOpts().Sysroot); |
| if (SDKInfo && *SDKInfo) { |
| CachedDarwinSDKInfo = std::make_unique<DarwinSDKInfo>(std::move(**SDKInfo)); |
| return CachedDarwinSDKInfo->get(); |
| } |
| if (!SDKInfo) |
| llvm::consumeError(SDKInfo.takeError()); |
| Diag(Loc, diag::warn_missing_sdksettings_for_availability_checking) |
| << Platform; |
| CachedDarwinSDKInfo = std::unique_ptr<DarwinSDKInfo>(); |
| return nullptr; |
| } |
| |
| IdentifierInfo * |
| Sema::InventAbbreviatedTemplateParameterTypeName(IdentifierInfo *ParamName, |
| unsigned int Index) { |
| std::string InventedName; |
| llvm::raw_string_ostream OS(InventedName); |
| |
| if (!ParamName) |
| OS << "auto:" << Index + 1; |
| else |
| OS << ParamName->getName() << ":auto"; |
| |
| OS.flush(); |
| return &Context.Idents.get(OS.str()); |
| } |
| |
| PrintingPolicy Sema::getPrintingPolicy(const ASTContext &Context, |
| const Preprocessor &PP) { |
| PrintingPolicy Policy = Context.getPrintingPolicy(); |
| // In diagnostics, we print _Bool as bool if the latter is defined as the |
| // former. |
| Policy.Bool = Context.getLangOpts().Bool; |
| if (!Policy.Bool) { |
| if (const MacroInfo *BoolMacro = PP.getMacroInfo(Context.getBoolName())) { |
| Policy.Bool = BoolMacro->isObjectLike() && |
| BoolMacro->getNumTokens() == 1 && |
| BoolMacro->getReplacementToken(0).is(tok::kw__Bool); |
| } |
| } |
| |
| return Policy; |
| } |
| |
| void Sema::ActOnTranslationUnitScope(Scope *S) { |
| TUScope = S; |
| PushDeclContext(S, Context.getTranslationUnitDecl()); |
| } |
| |
| namespace clang { |
| namespace sema { |
| |
| class SemaPPCallbacks : public PPCallbacks { |
| Sema *S = nullptr; |
| llvm::SmallVector<SourceLocation, 8> IncludeStack; |
| |
| public: |
| void set(Sema &S) { this->S = &S; } |
| |
| void reset() { S = nullptr; } |
| |
| virtual void FileChanged(SourceLocation Loc, FileChangeReason Reason, |
| SrcMgr::CharacteristicKind FileType, |
| FileID PrevFID) override { |
| if (!S) |
| return; |
| switch (Reason) { |
| case EnterFile: { |
| SourceManager &SM = S->getSourceManager(); |
| SourceLocation IncludeLoc = SM.getIncludeLoc(SM.getFileID(Loc)); |
| if (IncludeLoc.isValid()) { |
| if (llvm::timeTraceProfilerEnabled()) { |
| const FileEntry *FE = SM.getFileEntryForID(SM.getFileID(Loc)); |
| llvm::timeTraceProfilerBegin( |
| "Source", FE != nullptr ? FE->getName() : StringRef("<unknown>")); |
| } |
| |
| IncludeStack.push_back(IncludeLoc); |
| S->DiagnoseNonDefaultPragmaAlignPack( |
| Sema::PragmaAlignPackDiagnoseKind::NonDefaultStateAtInclude, |
| IncludeLoc); |
| } |
| break; |
| } |
| case ExitFile: |
| if (!IncludeStack.empty()) { |
| if (llvm::timeTraceProfilerEnabled()) |
| llvm::timeTraceProfilerEnd(); |
| |
| S->DiagnoseNonDefaultPragmaAlignPack( |
| Sema::PragmaAlignPackDiagnoseKind::ChangedStateAtExit, |
| IncludeStack.pop_back_val()); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| }; |
| |
| } // end namespace sema |
| } // end namespace clang |
| |
| const unsigned Sema::MaxAlignmentExponent; |
| const uint64_t Sema::MaximumAlignment; |
| |
| Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer, |
| TranslationUnitKind TUKind, CodeCompleteConsumer *CodeCompleter) |
| : ExternalSource(nullptr), isMultiplexExternalSource(false), |
| CurFPFeatures(pp.getLangOpts()), LangOpts(pp.getLangOpts()), PP(pp), |
| Context(ctxt), Consumer(consumer), Diags(PP.getDiagnostics()), |
| SourceMgr(PP.getSourceManager()), CollectStats(false), |
| CodeCompleter(CodeCompleter), CurContext(nullptr), |
| OriginalLexicalContext(nullptr), MSStructPragmaOn(false), |
| MSPointerToMemberRepresentationMethod( |
| LangOpts.getMSPointerToMemberRepresentationMethod()), |
| VtorDispStack(LangOpts.getVtorDispMode()), |
| AlignPackStack(AlignPackInfo(getLangOpts().XLPragmaPack)), |
| DataSegStack(nullptr), BSSSegStack(nullptr), ConstSegStack(nullptr), |
| CodeSegStack(nullptr), FpPragmaStack(FPOptionsOverride()), |
| CurInitSeg(nullptr), VisContext(nullptr), |
| PragmaAttributeCurrentTargetDecl(nullptr), |
| IsBuildingRecoveryCallExpr(false), Cleanup{}, LateTemplateParser(nullptr), |
| LateTemplateParserCleanup(nullptr), OpaqueParser(nullptr), IdResolver(pp), |
| StdExperimentalNamespaceCache(nullptr), StdInitializerList(nullptr), |
| StdCoroutineTraitsCache(nullptr), CXXTypeInfoDecl(nullptr), |
| MSVCGuidDecl(nullptr), NSNumberDecl(nullptr), NSValueDecl(nullptr), |
| NSStringDecl(nullptr), StringWithUTF8StringMethod(nullptr), |
| ValueWithBytesObjCTypeMethod(nullptr), NSArrayDecl(nullptr), |
| ArrayWithObjectsMethod(nullptr), NSDictionaryDecl(nullptr), |
| DictionaryWithObjectsMethod(nullptr), GlobalNewDeleteDeclared(false), |
| TUKind(TUKind), NumSFINAEErrors(0), |
| FullyCheckedComparisonCategories( |
| static_cast<unsigned>(ComparisonCategoryType::Last) + 1), |
| SatisfactionCache(Context), AccessCheckingSFINAE(false), |
| InNonInstantiationSFINAEContext(false), NonInstantiationEntries(0), |
| ArgumentPackSubstitutionIndex(-1), CurrentInstantiationScope(nullptr), |
| DisableTypoCorrection(false), TyposCorrected(0), AnalysisWarnings(*this), |
| ThreadSafetyDeclCache(nullptr), VarDataSharingAttributesStack(nullptr), |
| CurScope(nullptr), Ident_super(nullptr), Ident___float128(nullptr) { |
| assert(pp.TUKind == TUKind); |
| TUScope = nullptr; |
| isConstantEvaluatedOverride = false; |
| |
| LoadedExternalKnownNamespaces = false; |
| for (unsigned I = 0; I != NSAPI::NumNSNumberLiteralMethods; ++I) |
| NSNumberLiteralMethods[I] = nullptr; |
| |
| if (getLangOpts().ObjC) |
| NSAPIObj.reset(new NSAPI(Context)); |
| |
| if (getLangOpts().CPlusPlus) |
| FieldCollector.reset(new CXXFieldCollector()); |
| |
| // Tell diagnostics how to render things from the AST library. |
| Diags.SetArgToStringFn(&FormatASTNodeDiagnosticArgument, &Context); |
| |
| ExprEvalContexts.emplace_back( |
| ExpressionEvaluationContext::PotentiallyEvaluated, 0, CleanupInfo{}, |
| nullptr, ExpressionEvaluationContextRecord::EK_Other); |
| |
| // Initialization of data sharing attributes stack for OpenMP |
| InitDataSharingAttributesStack(); |
| |
| std::unique_ptr<sema::SemaPPCallbacks> Callbacks = |
| std::make_unique<sema::SemaPPCallbacks>(); |
| SemaPPCallbackHandler = Callbacks.get(); |
| PP.addPPCallbacks(std::move(Callbacks)); |
| SemaPPCallbackHandler->set(*this); |
| } |
| |
| // Anchor Sema's type info to this TU. |
| void Sema::anchor() {} |
| |
| void Sema::addImplicitTypedef(StringRef Name, QualType T) { |
| DeclarationName DN = &Context.Idents.get(Name); |
| if (IdResolver.begin(DN) == IdResolver.end()) |
| PushOnScopeChains(Context.buildImplicitTypedef(T, Name), TUScope); |
| } |
| |
| void Sema::Initialize() { |
| if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer)) |
| SC->InitializeSema(*this); |
| |
| // Tell the external Sema source about this Sema object. |
| if (ExternalSemaSource *ExternalSema |
| = dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource())) |
| ExternalSema->InitializeSema(*this); |
| |
| // This needs to happen after ExternalSemaSource::InitializeSema(this) or we |
| // will not be able to merge any duplicate __va_list_tag decls correctly. |
| VAListTagName = PP.getIdentifierInfo("__va_list_tag"); |
| |
| if (!TUScope) |
| return; |
| |
| // Initialize predefined 128-bit integer types, if needed. |
| if (Context.getTargetInfo().hasInt128Type() || |
| (Context.getAuxTargetInfo() && |
| Context.getAuxTargetInfo()->hasInt128Type())) { |
| // If either of the 128-bit integer types are unavailable to name lookup, |
| // define them now. |
| DeclarationName Int128 = &Context.Idents.get("__int128_t"); |
| if (IdResolver.begin(Int128) == IdResolver.end()) |
| PushOnScopeChains(Context.getInt128Decl(), TUScope); |
| |
| DeclarationName UInt128 = &Context.Idents.get("__uint128_t"); |
| if (IdResolver.begin(UInt128) == IdResolver.end()) |
| PushOnScopeChains(Context.getUInt128Decl(), TUScope); |
| } |
| |
| |
| // Initialize predefined Objective-C types: |
| if (getLangOpts().ObjC) { |
| // If 'SEL' does not yet refer to any declarations, make it refer to the |
| // predefined 'SEL'. |
| DeclarationName SEL = &Context.Idents.get("SEL"); |
| if (IdResolver.begin(SEL) == IdResolver.end()) |
| PushOnScopeChains(Context.getObjCSelDecl(), TUScope); |
| |
| // If 'id' does not yet refer to any declarations, make it refer to the |
| // predefined 'id'. |
| DeclarationName Id = &Context.Idents.get("id"); |
| if (IdResolver.begin(Id) == IdResolver.end()) |
| PushOnScopeChains(Context.getObjCIdDecl(), TUScope); |
| |
| // Create the built-in typedef for 'Class'. |
| DeclarationName Class = &Context.Idents.get("Class"); |
| if (IdResolver.begin(Class) == IdResolver.end()) |
| PushOnScopeChains(Context.getObjCClassDecl(), TUScope); |
| |
| // Create the built-in forward declaratino for 'Protocol'. |
| DeclarationName Protocol = &Context.Idents.get("Protocol"); |
| if (IdResolver.begin(Protocol) == IdResolver.end()) |
| PushOnScopeChains(Context.getObjCProtocolDecl(), TUScope); |
| } |
| |
| // Create the internal type for the *StringMakeConstantString builtins. |
| DeclarationName ConstantString = &Context.Idents.get("__NSConstantString"); |
| if (IdResolver.begin(ConstantString) == IdResolver.end()) |
| PushOnScopeChains(Context.getCFConstantStringDecl(), TUScope); |
| |
| // Initialize Microsoft "predefined C++ types". |
| if (getLangOpts().MSVCCompat) { |
| if (getLangOpts().CPlusPlus && |
| IdResolver.begin(&Context.Idents.get("type_info")) == IdResolver.end()) |
| PushOnScopeChains(Context.buildImplicitRecord("type_info", TTK_Class), |
| TUScope); |
| |
| addImplicitTypedef("size_t", Context.getSizeType()); |
| } |
| |
| // Initialize predefined OpenCL types and supported extensions and (optional) |
| // core features. |
| if (getLangOpts().OpenCL) { |
| getOpenCLOptions().addSupport( |
| Context.getTargetInfo().getSupportedOpenCLOpts(), getLangOpts()); |
| addImplicitTypedef("sampler_t", Context.OCLSamplerTy); |
| addImplicitTypedef("event_t", Context.OCLEventTy); |
| if (getLangOpts().getOpenCLCompatibleVersion() >= 200) { |
| addImplicitTypedef("clk_event_t", Context.OCLClkEventTy); |
| addImplicitTypedef("queue_t", Context.OCLQueueTy); |
| if (getLangOpts().OpenCLPipes) |
| addImplicitTypedef("reserve_id_t", Context.OCLReserveIDTy); |
| addImplicitTypedef("atomic_int", Context.getAtomicType(Context.IntTy)); |
| addImplicitTypedef("atomic_uint", |
| Context.getAtomicType(Context.UnsignedIntTy)); |
| addImplicitTypedef("atomic_float", |
| Context.getAtomicType(Context.FloatTy)); |
| // OpenCLC v2.0, s6.13.11.6 requires that atomic_flag is implemented as |
| // 32-bit integer and OpenCLC v2.0, s6.1.1 int is always 32-bit wide. |
| addImplicitTypedef("atomic_flag", Context.getAtomicType(Context.IntTy)); |
| |
| |
| // OpenCL v2.0 s6.13.11.6: |
| // - The atomic_long and atomic_ulong types are supported if the |
| // cl_khr_int64_base_atomics and cl_khr_int64_extended_atomics |
| // extensions are supported. |
| // - The atomic_double type is only supported if double precision |
| // is supported and the cl_khr_int64_base_atomics and |
| // cl_khr_int64_extended_atomics extensions are supported. |
| // - If the device address space is 64-bits, the data types |
| // atomic_intptr_t, atomic_uintptr_t, atomic_size_t and |
| // atomic_ptrdiff_t are supported if the cl_khr_int64_base_atomics and |
| // cl_khr_int64_extended_atomics extensions are supported. |
| |
| auto AddPointerSizeDependentTypes = [&]() { |
| auto AtomicSizeT = Context.getAtomicType(Context.getSizeType()); |
| auto AtomicIntPtrT = Context.getAtomicType(Context.getIntPtrType()); |
| auto AtomicUIntPtrT = Context.getAtomicType(Context.getUIntPtrType()); |
| auto AtomicPtrDiffT = |
| Context.getAtomicType(Context.getPointerDiffType()); |
| addImplicitTypedef("atomic_size_t", AtomicSizeT); |
| addImplicitTypedef("atomic_intptr_t", AtomicIntPtrT); |
| addImplicitTypedef("atomic_uintptr_t", AtomicUIntPtrT); |
| addImplicitTypedef("atomic_ptrdiff_t", AtomicPtrDiffT); |
| }; |
| |
| if (Context.getTypeSize(Context.getSizeType()) == 32) { |
| AddPointerSizeDependentTypes(); |
| } |
| |
| if (getOpenCLOptions().isSupported("cl_khr_fp16", getLangOpts())) { |
| auto AtomicHalfT = Context.getAtomicType(Context.HalfTy); |
| addImplicitTypedef("atomic_half", AtomicHalfT); |
| } |
| |
| std::vector<QualType> Atomic64BitTypes; |
| if (getOpenCLOptions().isSupported("cl_khr_int64_base_atomics", |
| getLangOpts()) && |
| getOpenCLOptions().isSupported("cl_khr_int64_extended_atomics", |
| getLangOpts())) { |
| if (getOpenCLOptions().isSupported("cl_khr_fp64", getLangOpts())) { |
| auto AtomicDoubleT = Context.getAtomicType(Context.DoubleTy); |
| addImplicitTypedef("atomic_double", AtomicDoubleT); |
| Atomic64BitTypes.push_back(AtomicDoubleT); |
| } |
| auto AtomicLongT = Context.getAtomicType(Context.LongTy); |
| auto AtomicULongT = Context.getAtomicType(Context.UnsignedLongTy); |
| addImplicitTypedef("atomic_long", AtomicLongT); |
| addImplicitTypedef("atomic_ulong", AtomicULongT); |
| |
| |
| if (Context.getTypeSize(Context.getSizeType()) == 64) { |
| AddPointerSizeDependentTypes(); |
| } |
| } |
| } |
| |
| |
| #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
| if (getOpenCLOptions().isSupported(#Ext, getLangOpts())) { \ |
| addImplicitTypedef(#ExtType, Context.Id##Ty); \ |
| } |
| #include "clang/Basic/OpenCLExtensionTypes.def" |
| } |
| |
| if (Context.getTargetInfo().hasAArch64SVETypes()) { |
| #define SVE_TYPE(Name, Id, SingletonId) \ |
| addImplicitTypedef(Name, Context.SingletonId); |
| #include "clang/Basic/AArch64SVEACLETypes.def" |
| } |
| |
| if (Context.getTargetInfo().getTriple().isPPC64()) { |
| #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \ |
| addImplicitTypedef(#Name, Context.Id##Ty); |
| #include "clang/Basic/PPCTypes.def" |
| #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \ |
| addImplicitTypedef(#Name, Context.Id##Ty); |
| #include "clang/Basic/PPCTypes.def" |
| } |
| |
| if (Context.getTargetInfo().hasRISCVVTypes()) { |
| #define RVV_TYPE(Name, Id, SingletonId) \ |
| addImplicitTypedef(Name, Context.SingletonId); |
| #include "clang/Basic/RISCVVTypes.def" |
| } |
| |
| if (Context.getTargetInfo().hasBuiltinMSVaList()) { |
| DeclarationName MSVaList = &Context.Idents.get("__builtin_ms_va_list"); |
| if (IdResolver.begin(MSVaList) == IdResolver.end()) |
| PushOnScopeChains(Context.getBuiltinMSVaListDecl(), TUScope); |
| } |
| |
| DeclarationName BuiltinVaList = &Context.Idents.get("__builtin_va_list"); |
| if (IdResolver.begin(BuiltinVaList) == IdResolver.end()) |
| PushOnScopeChains(Context.getBuiltinVaListDecl(), TUScope); |
| } |
| |
| Sema::~Sema() { |
| assert(InstantiatingSpecializations.empty() && |
| "failed to clean up an InstantiatingTemplate?"); |
| |
| if (VisContext) FreeVisContext(); |
| |
| // Kill all the active scopes. |
| for (sema::FunctionScopeInfo *FSI : FunctionScopes) |
| delete FSI; |
| |
| // Tell the SemaConsumer to forget about us; we're going out of scope. |
| if (SemaConsumer *SC = dyn_cast<SemaConsumer>(&Consumer)) |
| SC->ForgetSema(); |
| |
| // Detach from the external Sema source. |
| if (ExternalSemaSource *ExternalSema |
| = dyn_cast_or_null<ExternalSemaSource>(Context.getExternalSource())) |
| ExternalSema->ForgetSema(); |
| |
| // If Sema's ExternalSource is the multiplexer - we own it. |
| if (isMultiplexExternalSource) |
| delete ExternalSource; |
| |
| // Delete cached satisfactions. |
| std::vector<ConstraintSatisfaction *> Satisfactions; |
| Satisfactions.reserve(Satisfactions.size()); |
| for (auto &Node : SatisfactionCache) |
| Satisfactions.push_back(&Node); |
| for (auto *Node : Satisfactions) |
| delete Node; |
| |
| threadSafety::threadSafetyCleanup(ThreadSafetyDeclCache); |
| |
| // Destroys data sharing attributes stack for OpenMP |
| DestroyDataSharingAttributesStack(); |
| |
| // Detach from the PP callback handler which outlives Sema since it's owned |
| // by the preprocessor. |
| SemaPPCallbackHandler->reset(); |
| } |
| |
| void Sema::warnStackExhausted(SourceLocation Loc) { |
| // Only warn about this once. |
| if (!WarnedStackExhausted) { |
| Diag(Loc, diag::warn_stack_exhausted); |
| WarnedStackExhausted = true; |
| } |
| } |
| |
| void Sema::runWithSufficientStackSpace(SourceLocation Loc, |
| llvm::function_ref<void()> Fn) { |
| clang::runWithSufficientStackSpace([&] { warnStackExhausted(Loc); }, Fn); |
| } |
| |
| /// makeUnavailableInSystemHeader - There is an error in the current |
| /// context. If we're still in a system header, and we can plausibly |
| /// make the relevant declaration unavailable instead of erroring, do |
| /// so and return true. |
| bool Sema::makeUnavailableInSystemHeader(SourceLocation loc, |
| UnavailableAttr::ImplicitReason reason) { |
| // If we're not in a function, it's an error. |
| FunctionDecl *fn = dyn_cast<FunctionDecl>(CurContext); |
| if (!fn) return false; |
| |
| // If we're in template instantiation, it's an error. |
| if (inTemplateInstantiation()) |
| return false; |
| |
| // If that function's not in a system header, it's an error. |
| if (!Context.getSourceManager().isInSystemHeader(loc)) |
| return false; |
| |
| // If the function is already unavailable, it's not an error. |
| if (fn->hasAttr<UnavailableAttr>()) return true; |
| |
| fn->addAttr(UnavailableAttr::CreateImplicit(Context, "", reason, loc)); |
| return true; |
| } |
| |
| ASTMutationListener *Sema::getASTMutationListener() const { |
| return getASTConsumer().GetASTMutationListener(); |
| } |
| |
| ///Registers an external source. If an external source already exists, |
| /// creates a multiplex external source and appends to it. |
| /// |
| ///\param[in] E - A non-null external sema source. |
| /// |
| void Sema::addExternalSource(ExternalSemaSource *E) { |
| assert(E && "Cannot use with NULL ptr"); |
| |
| if (!ExternalSource) { |
| ExternalSource = E; |
| return; |
| } |
| |
| if (isMultiplexExternalSource) |
| static_cast<MultiplexExternalSemaSource*>(ExternalSource)->addSource(*E); |
| else { |
| ExternalSource = new MultiplexExternalSemaSource(*ExternalSource, *E); |
| isMultiplexExternalSource = true; |
| } |
| } |
| |
| /// Print out statistics about the semantic analysis. |
| void Sema::PrintStats() const { |
| llvm::errs() << "\n*** Semantic Analysis Stats:\n"; |
| llvm::errs() << NumSFINAEErrors << " SFINAE diagnostics trapped.\n"; |
| |
| BumpAlloc.PrintStats(); |
| AnalysisWarnings.PrintStats(); |
| } |
| |
| void Sema::diagnoseNullableToNonnullConversion(QualType DstType, |
| QualType SrcType, |
| SourceLocation Loc) { |
| Optional<NullabilityKind> ExprNullability = SrcType->getNullability(Context); |
| if (!ExprNullability || (*ExprNullability != NullabilityKind::Nullable && |
| *ExprNullability != NullabilityKind::NullableResult)) |
| return; |
| |
| Optional<NullabilityKind> TypeNullability = DstType->getNullability(Context); |
| if (!TypeNullability || *TypeNullability != NullabilityKind::NonNull) |
| return; |
| |
| Diag(Loc, diag::warn_nullability_lost) << SrcType << DstType; |
| } |
| |
| void Sema::diagnoseZeroToNullptrConversion(CastKind Kind, const Expr* E) { |
| if (Diags.isIgnored(diag::warn_zero_as_null_pointer_constant, |
| E->getBeginLoc())) |
| return; |
| // nullptr only exists from C++11 on, so don't warn on its absence earlier. |
| if (!getLangOpts().CPlusPlus11) |
| return; |
| |
| if (Kind != CK_NullToPointer && Kind != CK_NullToMemberPointer) |
| return; |
| if (E->IgnoreParenImpCasts()->getType()->isNullPtrType()) |
| return; |
| |
| // Don't diagnose the conversion from a 0 literal to a null pointer argument |
| // in a synthesized call to operator<=>. |
| if (!CodeSynthesisContexts.empty() && |
| CodeSynthesisContexts.back().Kind == |
| CodeSynthesisContext::RewritingOperatorAsSpaceship) |
| return; |
| |
| // If it is a macro from system header, and if the macro name is not "NULL", |
| // do not warn. |
| SourceLocation MaybeMacroLoc = E->getBeginLoc(); |
| if (Diags.getSuppressSystemWarnings() && |
| SourceMgr.isInSystemMacro(MaybeMacroLoc) && |
| !findMacroSpelling(MaybeMacroLoc, "NULL")) |
| return; |
| |
| Diag(E->getBeginLoc(), diag::warn_zero_as_null_pointer_constant) |
| << FixItHint::CreateReplacement(E->getSourceRange(), "nullptr"); |
| } |
| |
| /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast. |
| /// If there is already an implicit cast, merge into the existing one. |
| /// The result is of the given category. |
| ExprResult Sema::ImpCastExprToType(Expr *E, QualType Ty, |
| CastKind Kind, ExprValueKind VK, |
| const CXXCastPath *BasePath, |
| CheckedConversionKind CCK) { |
| #ifndef NDEBUG |
| if (VK == VK_PRValue && !E->isPRValue()) { |
| switch (Kind) { |
| default: |
| llvm_unreachable( |
| ("can't implicitly cast glvalue to prvalue with this cast " |
| "kind: " + |
| std::string(CastExpr::getCastKindName(Kind))) |
| .c_str()); |
| case CK_Dependent: |
| case CK_LValueToRValue: |
| case CK_ArrayToPointerDecay: |
| case CK_FunctionToPointerDecay: |
| case CK_ToVoid: |
| case CK_NonAtomicToAtomic: |
| break; |
| } |
| } |
| assert((VK == VK_PRValue || Kind == CK_Dependent || !E->isPRValue()) && |
| "can't cast prvalue to glvalue"); |
| #endif |
| |
| diagnoseNullableToNonnullConversion(Ty, E->getType(), E->getBeginLoc()); |
| diagnoseZeroToNullptrConversion(Kind, E); |
| |
| QualType ExprTy = Context.getCanonicalType(E->getType()); |
| QualType TypeTy = Context.getCanonicalType(Ty); |
| |
| if (ExprTy == TypeTy) |
| return E; |
| |
| if (Kind == CK_ArrayToPointerDecay) { |
| // C++1z [conv.array]: The temporary materialization conversion is applied. |
| // We also use this to fuel C++ DR1213, which applies to C++11 onwards. |
| if (getLangOpts().CPlusPlus && E->isPRValue()) { |
| // The temporary is an lvalue in C++98 and an xvalue otherwise. |
| ExprResult Materialized = CreateMaterializeTemporaryExpr( |
| E->getType(), E, !getLangOpts().CPlusPlus11); |
| if (Materialized.isInvalid()) |
| return ExprError(); |
| E = Materialized.get(); |
| } |
| // C17 6.7.1p6 footnote 124: The implementation can treat any register |
| // declaration simply as an auto declaration. However, whether or not |
| // addressable storage is actually used, the address of any part of an |
| // object declared with storage-class specifier register cannot be |
| // computed, either explicitly(by use of the unary & operator as discussed |
| // in 6.5.3.2) or implicitly(by converting an array name to a pointer as |
| // discussed in 6.3.2.1).Thus, the only operator that can be applied to an |
| // array declared with storage-class specifier register is sizeof. |
| if (VK == VK_PRValue && !getLangOpts().CPlusPlus && !E->isPRValue()) { |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { |
| if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) { |
| if (VD->getStorageClass() == SC_Register) { |
| Diag(E->getExprLoc(), diag::err_typecheck_address_of) |
| << /*register variable*/ 3 << E->getSourceRange(); |
| return ExprError(); |
| } |
| } |
| } |
| } |
| } |
| |
| if (ImplicitCastExpr *ImpCast = dyn_cast<ImplicitCastExpr>(E)) { |
| if (ImpCast->getCastKind() == Kind && (!BasePath || BasePath->empty())) { |
| ImpCast->setType(Ty); |
| ImpCast->setValueKind(VK); |
| return E; |
| } |
| } |
| |
| return ImplicitCastExpr::Create(Context, Ty, Kind, E, BasePath, VK, |
| CurFPFeatureOverrides()); |
| } |
| |
| /// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding |
| /// to the conversion from scalar type ScalarTy to the Boolean type. |
| CastKind Sema::ScalarTypeToBooleanCastKind(QualType ScalarTy) { |
| switch (ScalarTy->getScalarTypeKind()) { |
| case Type::STK_Bool: return CK_NoOp; |
| case Type::STK_CPointer: return CK_PointerToBoolean; |
| case Type::STK_BlockPointer: return CK_PointerToBoolean; |
| case Type::STK_ObjCObjectPointer: return CK_PointerToBoolean; |
| case Type::STK_MemberPointer: return CK_MemberPointerToBoolean; |
| case Type::STK_Integral: return CK_IntegralToBoolean; |
| case Type::STK_Floating: return CK_FloatingToBoolean; |
| case Type::STK_IntegralComplex: return CK_IntegralComplexToBoolean; |
| case Type::STK_FloatingComplex: return CK_FloatingComplexToBoolean; |
| case Type::STK_FixedPoint: return CK_FixedPointToBoolean; |
| } |
| llvm_unreachable("unknown scalar type kind"); |
| } |
| |
| /// Used to prune the decls of Sema's UnusedFileScopedDecls vector. |
| static bool ShouldRemoveFromUnused(Sema *SemaRef, const DeclaratorDecl *D) { |
| if (D->getMostRecentDecl()->isUsed()) |
| return true; |
| |
| if (D->isExternallyVisible()) |
| return true; |
| |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| // If this is a function template and none of its specializations is used, |
| // we should warn. |
| if (FunctionTemplateDecl *Template = FD->getDescribedFunctionTemplate()) |
| for (const auto *Spec : Template->specializations()) |
| if (ShouldRemoveFromUnused(SemaRef, Spec)) |
| return true; |
| |
| // UnusedFileScopedDecls stores the first declaration. |
| // The declaration may have become definition so check again. |
| const FunctionDecl *DeclToCheck; |
| if (FD->hasBody(DeclToCheck)) |
| return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); |
| |
| // Later redecls may add new information resulting in not having to warn, |
| // so check again. |
| DeclToCheck = FD->getMostRecentDecl(); |
| if (DeclToCheck != FD) |
| return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); |
| } |
| |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| // If a variable usable in constant expressions is referenced, |
| // don't warn if it isn't used: if the value of a variable is required |
| // for the computation of a constant expression, it doesn't make sense to |
| // warn even if the variable isn't odr-used. (isReferenced doesn't |
| // precisely reflect that, but it's a decent approximation.) |
| if (VD->isReferenced() && |
| VD->mightBeUsableInConstantExpressions(SemaRef->Context)) |
| return true; |
| |
| if (VarTemplateDecl *Template = VD->getDescribedVarTemplate()) |
| // If this is a variable template and none of its specializations is used, |
| // we should warn. |
| for (const auto *Spec : Template->specializations()) |
| if (ShouldRemoveFromUnused(SemaRef, Spec)) |
| return true; |
| |
| // UnusedFileScopedDecls stores the first declaration. |
| // The declaration may have become definition so check again. |
| const VarDecl *DeclToCheck = VD->getDefinition(); |
| if (DeclToCheck) |
| return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); |
| |
| // Later redecls may add new information resulting in not having to warn, |
| // so check again. |
| DeclToCheck = VD->getMostRecentDecl(); |
| if (DeclToCheck != VD) |
| return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); |
| } |
| |
| return false; |
| } |
| |
| static bool isFunctionOrVarDeclExternC(NamedDecl *ND) { |
| if (auto *FD = dyn_cast<FunctionDecl>(ND)) |
| return FD->isExternC(); |
| return cast<VarDecl>(ND)->isExternC(); |
| } |
| |
| /// Determine whether ND is an external-linkage function or variable whose |
| /// type has no linkage. |
| bool Sema::isExternalWithNoLinkageType(ValueDecl *VD) { |
| // Note: it's not quite enough to check whether VD has UniqueExternalLinkage, |
| // because we also want to catch the case where its type has VisibleNoLinkage, |
| // which does not affect the linkage of VD. |
| return getLangOpts().CPlusPlus && VD->hasExternalFormalLinkage() && |
| !isExternalFormalLinkage(VD->getType()->getLinkage()) && |
| !isFunctionOrVarDeclExternC(VD); |
| } |
| |
| /// Obtains a sorted list of functions and variables that are undefined but |
| /// ODR-used. |
| void Sema::getUndefinedButUsed( |
| SmallVectorImpl<std::pair<NamedDecl *, SourceLocation> > &Undefined) { |
| for (const auto &UndefinedUse : UndefinedButUsed) { |
| NamedDecl *ND = UndefinedUse.first; |
| |
| // Ignore attributes that have become invalid. |
| if (ND->isInvalidDecl()) continue; |
| |
| // __attribute__((weakref)) is basically a definition. |
| if (ND->hasAttr<WeakRefAttr>()) continue; |
| |
| if (isa<CXXDeductionGuideDecl>(ND)) |
| continue; |
| |
| if (ND->hasAttr<DLLImportAttr>() || ND->hasAttr<DLLExportAttr>()) { |
| // An exported function will always be emitted when defined, so even if |
| // the function is inline, it doesn't have to be emitted in this TU. An |
| // imported function implies that it has been exported somewhere else. |
| continue; |
| } |
| |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) { |
| if (FD->isDefined()) |
| continue; |
| if (FD->isExternallyVisible() && |
| !isExternalWithNoLinkageType(FD) && |
| !FD->getMostRecentDecl()->isInlined() && |
| !FD->hasAttr<ExcludeFromExplicitInstantiationAttr>()) |
| continue; |
| if (FD->getBuiltinID()) |
| continue; |
| } else { |
| auto *VD = cast<VarDecl>(ND); |
| if (VD->hasDefinition() != VarDecl::DeclarationOnly) |
| continue; |
| if (VD->isExternallyVisible() && |
| !isExternalWithNoLinkageType(VD) && |
| !VD->getMostRecentDecl()->isInline() && |
| !VD->hasAttr<ExcludeFromExplicitInstantiationAttr>()) |
| continue; |
| |
| // Skip VarDecls that lack formal definitions but which we know are in |
| // fact defined somewhere. |
| if (VD->isKnownToBeDefined()) |
| continue; |
| } |
| |
| Undefined.push_back(std::make_pair(ND, UndefinedUse.second)); |
| } |
| } |
| |
| /// checkUndefinedButUsed - Check for undefined objects with internal linkage |
| /// or that are inline. |
| static void checkUndefinedButUsed(Sema &S) { |
| if (S.UndefinedButUsed.empty()) return; |
| |
| // Collect all the still-undefined entities with internal linkage. |
| SmallVector<std::pair<NamedDecl *, SourceLocation>, 16> Undefined; |
| S.getUndefinedButUsed(Undefined); |
| if (Undefined.empty()) return; |
| |
| for (auto Undef : Undefined) { |
| ValueDecl *VD = cast<ValueDecl>(Undef.first); |
| SourceLocation UseLoc = Undef.second; |
| |
| if (S.isExternalWithNoLinkageType(VD)) { |
| // C++ [basic.link]p8: |
| // A type without linkage shall not be used as the type of a variable |
| // or function with external linkage unless |
| // -- the entity has C language linkage |
| // -- the entity is not odr-used or is defined in the same TU |
| // |
| // As an extension, accept this in cases where the type is externally |
| // visible, since the function or variable actually can be defined in |
| // another translation unit in that case. |
| S.Diag(VD->getLocation(), isExternallyVisible(VD->getType()->getLinkage()) |
| ? diag::ext_undefined_internal_type |
| : diag::err_undefined_internal_type) |
| << isa<VarDecl>(VD) << VD; |
| } else if (!VD->isExternallyVisible()) { |
| // FIXME: We can promote this to an error. The function or variable can't |
| // be defined anywhere else, so the program must necessarily violate the |
| // one definition rule. |
| bool IsImplicitBase = false; |
| if (const auto *BaseD = dyn_cast<FunctionDecl>(VD)) { |
| auto *DVAttr = BaseD->getAttr<OMPDeclareVariantAttr>(); |
| if (DVAttr && !DVAttr->getTraitInfo().isExtensionActive( |
| llvm::omp::TraitProperty:: |
| implementation_extension_disable_implicit_base)) { |
| const auto *Func = cast<FunctionDecl>( |
| cast<DeclRefExpr>(DVAttr->getVariantFuncRef())->getDecl()); |
| IsImplicitBase = BaseD->isImplicit() && |
| Func->getIdentifier()->isMangledOpenMPVariantName(); |
| } |
| } |
| if (!S.getLangOpts().OpenMP || !IsImplicitBase) |
| S.Diag(VD->getLocation(), diag::warn_undefined_internal) |
| << isa<VarDecl>(VD) << VD; |
| } else if (auto *FD = dyn_cast<FunctionDecl>(VD)) { |
| (void)FD; |
| assert(FD->getMostRecentDecl()->isInlined() && |
| "used object requires definition but isn't inline or internal?"); |
| // FIXME: This is ill-formed; we should reject. |
| S.Diag(VD->getLocation(), diag::warn_undefined_inline) << VD; |
| } else { |
| assert(cast<VarDecl>(VD)->getMostRecentDecl()->isInline() && |
| "used var requires definition but isn't inline or internal?"); |
| S.Diag(VD->getLocation(), diag::err_undefined_inline_var) << VD; |
| } |
| if (UseLoc.isValid()) |
| S.Diag(UseLoc, diag::note_used_here); |
| } |
| |
| S.UndefinedButUsed.clear(); |
| } |
| |
| void Sema::LoadExternalWeakUndeclaredIdentifiers() { |
| if (!ExternalSource) |
| return; |
| |
| SmallVector<std::pair<IdentifierInfo *, WeakInfo>, 4> WeakIDs; |
| ExternalSource->ReadWeakUndeclaredIdentifiers(WeakIDs); |
| for (auto &WeakID : WeakIDs) |
| WeakUndeclaredIdentifiers.insert(WeakID); |
| } |
| |
| |
| typedef llvm::DenseMap<const CXXRecordDecl*, bool> RecordCompleteMap; |
| |
| /// Returns true, if all methods and nested classes of the given |
| /// CXXRecordDecl are defined in this translation unit. |
| /// |
| /// Should only be called from ActOnEndOfTranslationUnit so that all |
| /// definitions are actually read. |
| static bool MethodsAndNestedClassesComplete(const CXXRecordDecl *RD, |
| RecordCompleteMap &MNCComplete) { |
| RecordCompleteMap::iterator Cache = MNCComplete.find(RD); |
| if (Cache != MNCComplete.end()) |
| return Cache->second; |
| if (!RD->isCompleteDefinition()) |
| return false; |
| bool Complete = true; |
| for (DeclContext::decl_iterator I = RD->decls_begin(), |
| E = RD->decls_end(); |
| I != E && Complete; ++I) { |
| if (const CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(*I)) |
| Complete = M->isDefined() || M->isDefaulted() || |
| (M->isPure() && !isa<CXXDestructorDecl>(M)); |
| else if (const FunctionTemplateDecl *F = dyn_cast<FunctionTemplateDecl>(*I)) |
| // If the template function is marked as late template parsed at this |
| // point, it has not been instantiated and therefore we have not |
| // performed semantic analysis on it yet, so we cannot know if the type |
| // can be considered complete. |
| Complete = !F->getTemplatedDecl()->isLateTemplateParsed() && |
| F->getTemplatedDecl()->isDefined(); |
| else if (const CXXRecordDecl *R = dyn_cast<CXXRecordDecl>(*I)) { |
| if (R->isInjectedClassName()) |
| continue; |
| if (R->hasDefinition()) |
| Complete = MethodsAndNestedClassesComplete(R->getDefinition(), |
| MNCComplete); |
| else |
| Complete = false; |
| } |
| } |
| MNCComplete[RD] = Complete; |
| return Complete; |
| } |
| |
| /// Returns true, if the given CXXRecordDecl is fully defined in this |
| /// translation unit, i.e. all methods are defined or pure virtual and all |
| /// friends, friend functions and nested classes are fully defined in this |
| /// translation unit. |
| /// |
| /// Should only be called from ActOnEndOfTranslationUnit so that all |
| /// definitions are actually read. |
| static bool IsRecordFullyDefined(const CXXRecordDecl *RD, |
| RecordCompleteMap &RecordsComplete, |
| RecordCompleteMap &MNCComplete) { |
| RecordCompleteMap::iterator Cache = RecordsComplete.find(RD); |
| if (Cache != RecordsComplete.end()) |
| return Cache->second; |
| bool Complete = MethodsAndNestedClassesComplete(RD, MNCComplete); |
| for (CXXRecordDecl::friend_iterator I = RD->friend_begin(), |
| E = RD->friend_end(); |
| I != E && Complete; ++I) { |
| // Check if friend classes and methods are complete. |
| if (TypeSourceInfo *TSI = (*I)->getFriendType()) { |
| // Friend classes are available as the TypeSourceInfo of the FriendDecl. |
| if (CXXRecordDecl *FriendD = TSI->getType()->getAsCXXRecordDecl()) |
| Complete = MethodsAndNestedClassesComplete(FriendD, MNCComplete); |
| else |
| Complete = false; |
| } else { |
| // Friend functions are available through the NamedDecl of FriendDecl. |
| if (const FunctionDecl *FD = |
| dyn_cast<FunctionDecl>((*I)->getFriendDecl())) |
| Complete = FD->isDefined(); |
| else |
| // This is a template friend, give up. |
| Complete = false; |
| } |
| } |
| RecordsComplete[RD] = Complete; |
| return Complete; |
| } |
| |
| void Sema::emitAndClearUnusedLocalTypedefWarnings() { |
| if (ExternalSource) |
| ExternalSource->ReadUnusedLocalTypedefNameCandidates( |
| UnusedLocalTypedefNameCandidates); |
| for (const TypedefNameDecl *TD : UnusedLocalTypedefNameCandidates) { |
| if (TD->isReferenced()) |
| continue; |
| Diag(TD->getLocation(), diag::warn_unused_local_typedef) |
| << isa<TypeAliasDecl>(TD) << TD->getDeclName(); |
| } |
| UnusedLocalTypedefNameCandidates.clear(); |
| } |
| |
| /// This is called before the very first declaration in the translation unit |
| /// is parsed. Note that the ASTContext may have already injected some |
| /// declarations. |
| void Sema::ActOnStartOfTranslationUnit() { |
| if (getLangOpts().ModulesTS && |
| (getLangOpts().getCompilingModule() == LangOptions::CMK_ModuleInterface || |
| getLangOpts().getCompilingModule() == LangOptions::CMK_None)) { |
| // We start in an implied global module fragment. |
| SourceLocation StartOfTU = |
| SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); |
| ActOnGlobalModuleFragmentDecl(StartOfTU); |
| ModuleScopes.back().ImplicitGlobalModuleFragment = true; |
| } |
| } |
| |
| void Sema::ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind) { |
| // No explicit actions are required at the end of the global module fragment. |
| if (Kind == TUFragmentKind::Global) |
| return; |
| |
| // Transfer late parsed template instantiations over to the pending template |
| // instantiation list. During normal compilation, the late template parser |
| // will be installed and instantiating these templates will succeed. |
| // |
| // If we are building a TU prefix for serialization, it is also safe to |
| // transfer these over, even though they are not parsed. The end of the TU |
| // should be outside of any eager template instantiation scope, so when this |
| // AST is deserialized, these templates will not be parsed until the end of |
| // the combined TU. |
| PendingInstantiations.insert(PendingInstantiations.end(), |
| LateParsedInstantiations.begin(), |
| LateParsedInstantiations.end()); |
| LateParsedInstantiations.clear(); |
| |
| // If DefinedUsedVTables ends up marking any virtual member functions it |
| // might lead to more pending template instantiations, which we then need |
| // to instantiate. |
| DefineUsedVTables(); |
| |
| // C++: Perform implicit template instantiations. |
| // |
| // FIXME: When we perform these implicit instantiations, we do not |
| // carefully keep track of the point of instantiation (C++ [temp.point]). |
| // This means that name lookup that occurs within the template |
| // instantiation will always happen at the end of the translation unit, |
| // so it will find some names that are not required to be found. This is |
| // valid, but we could do better by diagnosing if an instantiation uses a |
| // name that was not visible at its first point of instantiation. |
| if (ExternalSource) { |
| // Load pending instantiations from the external source. |
| SmallVector<PendingImplicitInstantiation, 4> Pending; |
| ExternalSource->ReadPendingInstantiations(Pending); |
| for (auto PII : Pending) |
| if (auto Func = dyn_cast<FunctionDecl>(PII.first)) |
| Func->setInstantiationIsPending(true); |
| PendingInstantiations.insert(PendingInstantiations.begin(), |
| Pending.begin(), Pending.end()); |
| } |
| |
| { |
| llvm::TimeTraceScope TimeScope("PerformPendingInstantiations"); |
| PerformPendingInstantiations(); |
| } |
| |
| emitDeferredDiags(); |
| |
| assert(LateParsedInstantiations.empty() && |
| "end of TU template instantiation should not create more " |
| "late-parsed templates"); |
| |
| // Report diagnostics for uncorrected delayed typos. Ideally all of them |
| // should have been corrected by that time, but it is very hard to cover all |
| // cases in practice. |
| for (const auto &Typo : DelayedTypos) { |
| // We pass an empty TypoCorrection to indicate no correction was performed. |
| Typo.second.DiagHandler(TypoCorrection()); |
| } |
| DelayedTypos.clear(); |
| } |
| |
| /// ActOnEndOfTranslationUnit - This is called at the very end of the |
| /// translation unit when EOF is reached and all but the top-level scope is |
| /// popped. |
| void Sema::ActOnEndOfTranslationUnit() { |
| assert(DelayedDiagnostics.getCurrentPool() == nullptr |
| && "reached end of translation unit with a pool attached?"); |
| |
| // If code completion is enabled, don't perform any end-of-translation-unit |
| // work. |
| if (PP.isCodeCompletionEnabled()) |
| return; |
| |
| // Complete translation units and modules define vtables and perform implicit |
| // instantiations. PCH files do not. |
| if (TUKind != TU_Prefix) { |
| DiagnoseUseOfUnimplementedSelectors(); |
| |
| ActOnEndOfTranslationUnitFragment( |
| !ModuleScopes.empty() && ModuleScopes.back().Module->Kind == |
| Module::PrivateModuleFragment |
| ? TUFragmentKind::Private |
| : TUFragmentKind::Normal); |
| |
| if (LateTemplateParserCleanup) |
| LateTemplateParserCleanup(OpaqueParser); |
| |
| CheckDelayedMemberExceptionSpecs(); |
| } else { |
| // If we are building a TU prefix for serialization, it is safe to transfer |
| // these over, even though they are not parsed. The end of the TU should be |
| // outside of any eager template instantiation scope, so when this AST is |
| // deserialized, these templates will not be parsed until the end of the |
| // combined TU. |
| PendingInstantiations.insert(PendingInstantiations.end(), |
| LateParsedInstantiations.begin(), |
| LateParsedInstantiations.end()); |
| LateParsedInstantiations.clear(); |
| |
| if (LangOpts.PCHInstantiateTemplates) { |
| llvm::TimeTraceScope TimeScope("PerformPendingInstantiations"); |
| PerformPendingInstantiations(); |
| } |
| } |
| |
| DiagnoseUnterminatedPragmaAlignPack(); |
| DiagnoseUnterminatedPragmaAttribute(); |
| |
| // All delayed member exception specs should be checked or we end up accepting |
| // incompatible declarations. |
| assert(DelayedOverridingExceptionSpecChecks.empty()); |
| assert(DelayedEquivalentExceptionSpecChecks.empty()); |
| |
| // All dllexport classes should have been processed already. |
| assert(DelayedDllExportClasses.empty()); |
| assert(DelayedDllExportMemberFunctions.empty()); |
| |
| // Remove file scoped decls that turned out to be used. |
| UnusedFileScopedDecls.erase( |
| std::remove_if(UnusedFileScopedDecls.begin(nullptr, true), |
| UnusedFileScopedDecls.end(), |
| [this](const DeclaratorDecl *DD) { |
| return ShouldRemoveFromUnused(this, DD); |
| }), |
| UnusedFileScopedDecls.end()); |
| |
| if (TUKind == TU_Prefix) { |
| // Translation unit prefixes don't need any of the checking below. |
| if (!PP.isIncrementalProcessingEnabled()) |
| TUScope = nullptr; |
| return; |
| } |
| |
| // Check for #pragma weak identifiers that were never declared |
| LoadExternalWeakUndeclaredIdentifiers(); |
| for (auto WeakID : WeakUndeclaredIdentifiers) { |
| if (WeakID.second.getUsed()) |
| continue; |
| |
| Decl *PrevDecl = LookupSingleName(TUScope, WeakID.first, SourceLocation(), |
| LookupOrdinaryName); |
| if (PrevDecl != nullptr && |
| !(isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) |
| Diag(WeakID.second.getLocation(), diag::warn_attribute_wrong_decl_type) |
| << "'weak'" << ExpectedVariableOrFunction; |
| else |
| Diag(WeakID.second.getLocation(), diag::warn_weak_identifier_undeclared) |
| << WeakID.first; |
| } |
| |
| if (LangOpts.CPlusPlus11 && |
| !Diags.isIgnored(diag::warn_delegating_ctor_cycle, SourceLocation())) |
| CheckDelegatingCtorCycles(); |
| |
| if (!Diags.hasErrorOccurred()) { |
| if (ExternalSource) |
| ExternalSource->ReadUndefinedButUsed(UndefinedButUsed); |
| checkUndefinedButUsed(*this); |
| } |
| |
| // A global-module-fragment is only permitted within a module unit. |
| bool DiagnosedMissingModuleDeclaration = false; |
| if (!ModuleScopes.empty() && |
| ModuleScopes.back().Module->Kind == Module::GlobalModuleFragment && |
| !ModuleScopes.back().ImplicitGlobalModuleFragment) { |
| Diag(ModuleScopes.back().BeginLoc, |
| diag::err_module_declaration_missing_after_global_module_introducer); |
| DiagnosedMissingModuleDeclaration = true; |
| } |
| |
| if (TUKind == TU_Module) { |
| // If we are building a module interface unit, we need to have seen the |
| // module declaration by now. |
| if (getLangOpts().getCompilingModule() == |
| LangOptions::CMK_ModuleInterface && |
| (ModuleScopes.empty() || |
| !ModuleScopes.back().Module->isModulePurview()) && |
| !DiagnosedMissingModuleDeclaration) { |
| // FIXME: Make a better guess as to where to put the module declaration. |
| Diag(getSourceManager().getLocForStartOfFile( |
| getSourceManager().getMainFileID()), |
| diag::err_module_declaration_missing); |
| } |
| |
| // If we are building a module, resolve all of the exported declarations |
| // now. |
| if (Module *CurrentModule = PP.getCurrentModule()) { |
| ModuleMap &ModMap = PP.getHeaderSearchInfo().getModuleMap(); |
| |
| SmallVector<Module *, 2> Stack; |
| Stack.push_back(CurrentModule); |
| while (!Stack.empty()) { |
| Module *Mod = Stack.pop_back_val(); |
| |
| // Resolve the exported declarations and conflicts. |
| // FIXME: Actually complain, once we figure out how to teach the |
| // diagnostic client to deal with complaints in the module map at this |
| // point. |
| ModMap.resolveExports(Mod, /*Complain=*/false); |
| ModMap.resolveUses(Mod, /*Complain=*/false); |
| ModMap.resolveConflicts(Mod, /*Complain=*/false); |
| |
| // Queue the submodules, so their exports will also be resolved. |
| Stack.append(Mod->submodule_begin(), Mod->submodule_end()); |
| } |
| } |
| |
| // Warnings emitted in ActOnEndOfTranslationUnit() should be emitted for |
| // modules when they are built, not every time they are used. |
| emitAndClearUnusedLocalTypedefWarnings(); |
| } |
| |
| // C99 6.9.2p2: |
| // A declaration of an identifier for an object that has file |
| // scope without an initializer, and without a storage-class |
| // specifier or with the storage-class specifier static, |
| // constitutes a tentative definition. If a translation unit |
| // contains one or more tentative definitions for an identifier, |
| // and the translation unit contains no external definition for |
| // that identifier, then the behavior is exactly as if the |
| // translation unit contains a file scope declaration of that |
| // identifier, with the composite type as of the end of the |
| // translation unit, with an initializer equal to 0. |
| llvm::SmallSet<VarDecl *, 32> Seen; |
| for (TentativeDefinitionsType::iterator |
| T = TentativeDefinitions.begin(ExternalSource), |
| TEnd = TentativeDefinitions.end(); |
| T != TEnd; ++T) { |
| VarDecl *VD = (*T)->getActingDefinition(); |
| |
| // If the tentative definition was completed, getActingDefinition() returns |
| // null. If we've already seen this variable before, insert()'s second |
| // return value is false. |
| if (!VD || VD->isInvalidDecl() || !Seen.insert(VD).second) |
| continue; |
| |
| if (const IncompleteArrayType *ArrayT |
| = Context.getAsIncompleteArrayType(VD->getType())) { |
| // Set the length of the array to 1 (C99 6.9.2p5). |
| Diag(VD->getLocation(), diag::warn_tentative_incomplete_array); |
| llvm::APInt One(Context.getTypeSize(Context.getSizeType()), true); |
| QualType T = Context.getConstantArrayType(ArrayT->getElementType(), One, |
| nullptr, ArrayType::Normal, 0); |
| VD->setType(T); |
| } else if (RequireCompleteType(VD->getLocation(), VD->getType(), |
| diag::err_tentative_def_incomplete_type)) |
| VD->setInvalidDecl(); |
| |
| // No initialization is performed for a tentative definition. |
| CheckCompleteVariableDeclaration(VD); |
| |
| // Notify the consumer that we've completed a tentative definition. |
| if (!VD->isInvalidDecl()) |
| Consumer.CompleteTentativeDefinition(VD); |
| } |
| |
| for (auto D : ExternalDeclarations) { |
| if (!D || D->isInvalidDecl() || D->getPreviousDecl() || !D->isUsed()) |
| continue; |
| |
| Consumer.CompleteExternalDeclaration(D); |
| } |
| |
| // If there were errors, disable 'unused' warnings since they will mostly be |
| // noise. Don't warn for a use from a module: either we should warn on all |
| // file-scope declarations in modules or not at all, but whether the |
| // declaration is used is immaterial. |
| if (!Diags.hasErrorOccurred() && TUKind != TU_Module) { |
| // Output warning for unused file scoped decls. |
| for (UnusedFileScopedDeclsType::iterator |
| I = UnusedFileScopedDecls.begin(ExternalSource), |
| E = UnusedFileScopedDecls.end(); I != E; ++I) { |
| if (ShouldRemoveFromUnused(this, *I)) |
| continue; |
| |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { |
| const FunctionDecl *DiagD; |
| if (!FD->hasBody(DiagD)) |
| DiagD = FD; |
| if (DiagD->isDeleted()) |
| continue; // Deleted functions are supposed to be unused. |
| if (DiagD->isReferenced()) { |
| if (isa<CXXMethodDecl>(DiagD)) |
| Diag(DiagD->getLocation(), diag::warn_unneeded_member_function) |
| << DiagD; |
| else { |
| if (FD->getStorageClass() == SC_Static && |
| !FD->isInlineSpecified() && |
| !SourceMgr.isInMainFile( |
| SourceMgr.getExpansionLoc(FD->getLocation()))) |
| Diag(DiagD->getLocation(), |
| diag::warn_unneeded_static_internal_decl) |
| << DiagD; |
| else |
| Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl) |
| << /*function*/ 0 << DiagD; |
| } |
| } else { |
| if (FD->getDescribedFunctionTemplate()) |
| Diag(DiagD->getLocation(), diag::warn_unused_template) |
| << /*function*/ 0 << DiagD; |
| else |
| Diag(DiagD->getLocation(), isa<CXXMethodDecl>(DiagD) |
| ? diag::warn_unused_member_function |
| : diag::warn_unused_function) |
| << DiagD; |
| } |
| } else { |
| const VarDecl *DiagD = cast<VarDecl>(*I)->getDefinition(); |
| if (!DiagD) |
| DiagD = cast<VarDecl>(*I); |
| if (DiagD->isReferenced()) { |
| Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl) |
| << /*variable*/ 1 << DiagD; |
| } else if (DiagD->getType().isConstQualified()) { |
| const SourceManager &SM = SourceMgr; |
| if (SM.getMainFileID() != SM.getFileID(DiagD->getLocation()) || |
| !PP.getLangOpts().IsHeaderFile) |
| Diag(DiagD->getLocation(), diag::warn_unused_const_variable) |
| << DiagD; |
| } else { |
| if (DiagD->getDescribedVarTemplate()) |
| Diag(DiagD->getLocation(), diag::warn_unused_template) |
| << /*variable*/ 1 << DiagD; |
| else |
| Diag(DiagD->getLocation(), diag::warn_unused_variable) << DiagD; |
| } |
| } |
| } |
| |
| emitAndClearUnusedLocalTypedefWarnings(); |
| } |
| |
| if (!Diags.isIgnored(diag::warn_unused_private_field, SourceLocation())) { |
| // FIXME: Load additional unused private field candidates from the external |
| // source. |
| RecordCompleteMap RecordsComplete; |
| RecordCompleteMap MNCComplete; |
| for (NamedDeclSetType::iterator I = UnusedPrivateFields.begin(), |
| E = UnusedPrivateFields.end(); I != E; ++I) { |
| const NamedDecl *D = *I; |
| const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext()); |
| if (RD && !RD->isUnion() && |
| IsRecordFullyDefined(RD, RecordsComplete, MNCComplete)) { |
| Diag(D->getLocation(), diag::warn_unused_private_field) |
| << D->getDeclName(); |
| } |
| } |
| } |
| |
| if (!Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) { |
| if (ExternalSource) |
| ExternalSource->ReadMismatchingDeleteExpressions(DeleteExprs); |
| for (const auto &DeletedFieldInfo : DeleteExprs) { |
| for (const auto &DeleteExprLoc : DeletedFieldInfo.second) { |
| AnalyzeDeleteExprMismatch(DeletedFieldInfo.first, DeleteExprLoc.first, |
| DeleteExprLoc.second); |
| } |
| } |
| } |
| |
| // Check we've noticed that we're no longer parsing the initializer for every |
| // variable. If we miss cases, then at best we have a performance issue and |
| // at worst a rejects-valid bug. |
| assert(ParsingInitForAutoVars.empty() && |
| "Didn't unmark var as having its initializer parsed"); |
| |
| if (!PP.isIncrementalProcessingEnabled()) |
| TUScope = nullptr; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Helper functions. |
| //===----------------------------------------------------------------------===// |
| |
| DeclContext *Sema::getFunctionLevelDeclContext() { |
| DeclContext *DC = CurContext; |
| |
| while (true) { |
| if (isa<BlockDecl>(DC) || isa<EnumDecl>(DC) || isa<CapturedDecl>(DC) || |
| isa<RequiresExprBodyDecl>(DC)) { |
| DC = DC->getParent(); |
| } else if (isa<CXXMethodDecl>(DC) && |
| cast<CXXMethodDecl>(DC)->getOverloadedOperator() == OO_Call && |
| cast<CXXRecordDecl>(DC->getParent())->isLambda()) { |
| DC = DC->getParent()->getParent(); |
| } |
| else break; |
| } |
| |
| return DC; |
| } |
| |
| /// getCurFunctionDecl - If inside of a function body, this returns a pointer |
| /// to the function decl for the function being parsed. If we're currently |
| /// in a 'block', this returns the containing context. |
| FunctionDecl *Sema::getCurFunctionDecl() { |
| DeclContext *DC = getFunctionLevelDeclContext(); |
| return dyn_cast<FunctionDecl>(DC); |
| } |
| |
| ObjCMethodDecl *Sema::getCurMethodDecl() { |
| DeclContext *DC = getFunctionLevelDeclContext(); |
| while (isa<RecordDecl>(DC)) |
| DC = DC->getParent(); |
| return dyn_cast<ObjCMethodDecl>(DC); |
| } |
| |
| NamedDecl *Sema::getCurFunctionOrMethodDecl() { |
| DeclContext *DC = getFunctionLevelDeclContext(); |
| if (isa<ObjCMethodDecl>(DC) || isa<FunctionDecl>(DC)) |
| return cast<NamedDecl>(DC); |
| return nullptr; |
| } |
| |
| LangAS Sema::getDefaultCXXMethodAddrSpace() const { |
| if (getLangOpts().OpenCL) |
| return getASTContext().getDefaultOpenCLPointeeAddrSpace(); |
| return LangAS::Default; |
| } |
| |
| void Sema::EmitCurrentDiagnostic(unsigned DiagID) { |
| // FIXME: It doesn't make sense to me that DiagID is an incoming argument here |
| // and yet we also use the current diag ID on the DiagnosticsEngine. This has |
| // been made more painfully obvious by the refactor that introduced this |
| // function, but it is possible that the incoming argument can be |
| // eliminated. If it truly cannot be (for example, there is some reentrancy |
| // issue I am not seeing yet), then there should at least be a clarifying |
| // comment somewhere. |
| if (Optional<TemplateDeductionInfo*> Info = isSFINAEContext()) { |
| switch (DiagnosticIDs::getDiagnosticSFINAEResponse( |
| Diags.getCurrentDiagID())) { |
| case DiagnosticIDs::SFINAE_Report: |
| // We'll report the diagnostic below. |
| break; |
| |
| case DiagnosticIDs::SFINAE_SubstitutionFailure: |
| // Count this failure so that we know that template argument deduction |
| // has failed. |
| ++NumSFINAEErrors; |
| |
| // Make a copy of this suppressed diagnostic and store it with the |
| // template-deduction information. |
| if (*Info && !(*Info)->hasSFINAEDiagnostic()) { |
| Diagnostic DiagInfo(&Diags); |
| (*Info)->addSFINAEDiagnostic(DiagInfo.getLocation(), |
| PartialDiagnostic(DiagInfo, Context.getDiagAllocator())); |
| } |
| |
| Diags.setLastDiagnosticIgnored(true); |
| Diags.Clear(); |
| return; |
| |
| case DiagnosticIDs::SFINAE_AccessControl: { |
| // Per C++ Core Issue 1170, access control is part of SFINAE. |
| // Additionally, the AccessCheckingSFINAE flag can be used to temporarily |
| // make access control a part of SFINAE for the purposes of checking |
| // type traits. |
| if (!AccessCheckingSFINAE && !getLangOpts().CPlusPlus11) |
| break; |
| |
| SourceLocation Loc = Diags.getCurrentDiagLoc(); |
| |
| // Suppress this diagnostic. |
| ++NumSFINAEErrors; |
| |
| // Make a copy of this suppressed diagnostic and store it with the |
| // template-deduction information. |
| if (*Info && !(*Info)->hasSFINAEDiagnostic()) { |
| Diagnostic DiagInfo(&Diags); |
| (*Info)->addSFINAEDiagnostic(DiagInfo.getLocation(), |
| PartialDiagnostic(DiagInfo, Context.getDiagAllocator())); |
| } |
| |
| Diags.setLastDiagnosticIgnored(true); |
| Diags.Clear(); |
| |
| // Now the diagnostic state is clear, produce a C++98 compatibility |
| // warning. |
| Diag(Loc, diag::warn_cxx98_compat_sfinae_access_control); |
| |
| // The last diagnostic which Sema produced was ignored. Suppress any |
| // notes attached to it. |
| Diags.setLastDiagnosticIgnored(true); |
| return; |
| } |
| |
| case DiagnosticIDs::SFINAE_Suppress: |
| // Make a copy of this suppressed diagnostic and store it with the |
| // template-deduction information; |
| if (*Info) { |
| Diagnostic DiagInfo(&Diags); |
| (*Info)->addSuppressedDiagnostic(DiagInfo.getLocation(), |
| PartialDiagnostic(DiagInfo, Context.getDiagAllocator())); |
| } |
| |
| // Suppress this diagnostic. |
| Diags.setLastDiagnosticIgnored(true); |
| Diags.Clear(); |
| return; |
| } |
| } |
| |
| // Copy the diagnostic printing policy over the ASTContext printing policy. |
| // TODO: Stop doing that. See: https://reviews.llvm.org/D45093#1090292 |
| Context.setPrintingPolicy(getPrintingPolicy()); |
| |
| // Emit the diagnostic. |
| if (!Diags.EmitCurrentDiagnostic()) |
| return; |
| |
| // If this is not a note, and we're in a template instantiation |
| // that is different from the last template instantiation where |
| // we emitted an error, print a template instantiation |
| // backtrace. |
| if (!DiagnosticIDs::isBuiltinNote(DiagID)) |
| PrintContextStack(); |
| } |
| |
| Sema::SemaDiagnosticBuilder |
| Sema::Diag(SourceLocation Loc, const PartialDiagnostic &PD, bool DeferHint) { |
| return Diag(Loc, PD.getDiagID(), DeferHint) << PD; |
| } |
| |
| bool Sema::hasUncompilableErrorOccurred() const { |
| if (getDiagnostics().hasUncompilableErrorOccurred()) |
| return true; |
| auto *FD = dyn_cast<FunctionDecl>(CurContext); |
| if (!FD) |
| return false; |
| auto Loc = DeviceDeferredDiags.find(FD); |
| if (Loc == DeviceDeferredDiags.end()) |
| return false; |
| for (auto PDAt : Loc->second) { |
| if (DiagnosticIDs::isDefaultMappingAsError(PDAt.second.getDiagID())) |
| return true; |
| } |
| return false; |
| } |
| |
| // Print notes showing how we can reach FD starting from an a priori |
| // known-callable function. |
| static void emitCallStackNotes(Sema &S, FunctionDecl *FD) { |
| auto FnIt = S.DeviceKnownEmittedFns.find(FD); |
| while (FnIt != S.DeviceKnownEmittedFns.end()) { |
| // Respect error limit. |
| if (S.Diags.hasFatalErrorOccurred()) |
| return; |
| DiagnosticBuilder Builder( |
| S.Diags.Report(FnIt->second.Loc, diag::note_called_by)); |
| Builder << FnIt->second.FD; |
| FnIt = S.DeviceKnownEmittedFns.find(FnIt->second.FD); |
| } |
| } |
| |
| namespace { |
| |
| /// Helper class that emits deferred diagnostic messages if an entity directly |
| /// or indirectly using the function that causes the deferred diagnostic |
| /// messages is known to be emitted. |
| /// |
| /// During parsing of AST, certain diagnostic messages are recorded as deferred |
| /// diagnostics since it is unknown whether the functions containing such |
| /// diagnostics will be emitted. A list of potentially emitted functions and |
| /// variables that may potentially trigger emission of functions are also |
| /// recorded. DeferredDiagnosticsEmitter recursively visits used functions |
| /// by each function to emit deferred diagnostics. |
| /// |
| /// During the visit, certain OpenMP directives or initializer of variables |
| /// with certain OpenMP attributes will cause subsequent visiting of any |
| /// functions enter a state which is called OpenMP device context in this |
| /// implementation. The state is exited when the directive or initializer is |
| /// exited. This state can change the emission states of subsequent uses |
| /// of functions. |
| /// |
| /// Conceptually the functions or variables to be visited form a use graph |
| /// where the parent node uses the child node. At any point of the visit, |
| /// the tree nodes traversed from the tree root to the current node form a use |
| /// stack. The emission state of the current node depends on two factors: |
| /// 1. the emission state of the root node |
| /// 2. whether the current node is in OpenMP device context |
| /// If the function is decided to be emitted, its contained deferred diagnostics |
| /// are emitted, together with the information about the use stack. |
| /// |
| class DeferredDiagnosticsEmitter |
| : public UsedDeclVisitor<DeferredDiagnosticsEmitter> { |
| public: |
| typedef UsedDeclVisitor<DeferredDiagnosticsEmitter> Inherited; |
| |
| // Whether the function is already in the current use-path. |
| llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 4> InUsePath; |
| |
| // The current use-path. |
| llvm::SmallVector<CanonicalDeclPtr<FunctionDecl>, 4> UsePath; |
| |
| // Whether the visiting of the function has been done. Done[0] is for the |
| // case not in OpenMP device context. Done[1] is for the case in OpenMP |
| // device context. We need two sets because diagnostics emission may be |
| // different depending on whether it is in OpenMP device context. |
| llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 4> DoneMap[2]; |
| |
| // Emission state of the root node of the current use graph. |
| bool ShouldEmitRootNode; |
| |
| // Current OpenMP device context level. It is initialized to 0 and each |
| // entering of device context increases it by 1 and each exit decreases |
| // it by 1. Non-zero value indicates it is currently in device context. |
| unsigned InOMPDeviceContext; |
| |
| DeferredDiagnosticsEmitter(Sema &S) |
| : Inherited(S), ShouldEmitRootNode(false), InOMPDeviceContext(0) {} |
| |
| bool shouldVisitDiscardedStmt() const { return false; } |
| |
| void VisitOMPTargetDirective(OMPTargetDirective *Node) { |
| ++InOMPDeviceContext; |
| Inherited::VisitOMPTargetDirective(Node); |
| --InOMPDeviceContext; |
| } |
| |
| void visitUsedDecl(SourceLocation Loc, Decl *D) { |
| if (isa<VarDecl>(D)) |
| return; |
| if (auto *FD = dyn_cast<FunctionDecl>(D)) |
| checkFunc(Loc, FD); |
| else |
| Inherited::visitUsedDecl(Loc, D); |
| } |
| |
| void checkVar(VarDecl *VD) { |
| assert(VD->isFileVarDecl() && |
| "Should only check file-scope variables"); |
| if (auto *Init = VD->getInit()) { |
| auto DevTy = OMPDeclareTargetDeclAttr::getDeviceType(VD); |
| bool IsDev = DevTy && (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost || |
| *DevTy == OMPDeclareTargetDeclAttr::DT_Any); |
| if (IsDev) |
| ++InOMPDeviceContext; |
| this->Visit(Init); |
| if (IsDev) |
| --InOMPDeviceContext; |
| } |
| } |
| |
| void checkFunc(SourceLocation Loc, FunctionDecl *FD) { |
| auto &Done = DoneMap[InOMPDeviceContext > 0 ? 1 : 0]; |
| FunctionDecl *Caller = UsePath.empty() ? nullptr : UsePath.back(); |
| if ((!ShouldEmitRootNode && !S.getLangOpts().OpenMP && !Caller) || |
| S.shouldIgnoreInHostDeviceCheck(FD) || InUsePath.count(FD)) |
| return; |
| // Finalize analysis of OpenMP-specific constructs. |
| if (Caller && S.LangOpts.OpenMP && UsePath.size() == 1 && |
| (ShouldEmitRootNode || InOMPDeviceContext)) |
| S.finalizeOpenMPDelayedAnalysis(Caller, FD, Loc); |
| if (Caller) |
| S.DeviceKnownEmittedFns[FD] = {Caller, Loc}; |
| // Always emit deferred diagnostics for the direct users. This does not |
| // lead to explosion of diagnostics since each user is visited at most |
| // twice. |
| if (ShouldEmitRootNode || InOMPDeviceContext) |
| emitDeferredDiags(FD, Caller); |
| // Do not revisit a function if the function body has been completely |
| // visited before. |
| if (!Done.insert(FD).second) |
| return; |
| InUsePath.insert(FD); |
| UsePath.push_back(FD); |
| if (auto *S = FD->getBody()) { |
| this->Visit(S); |
| } |
| UsePath.pop_back(); |
| InUsePath.erase(FD); |
| } |
| |
| void checkRecordedDecl(Decl *D) { |
| if (auto *FD = dyn_cast<FunctionDecl>(D)) { |
| ShouldEmitRootNode = S.getEmissionStatus(FD, /*Final=*/true) == |
| Sema::FunctionEmissionStatus::Emitted; |
| checkFunc(SourceLocation(), FD); |
| } else |
| checkVar(cast<VarDecl>(D)); |
| } |
| |
| // Emit any deferred diagnostics for FD |
| void emitDeferredDiags(FunctionDecl *FD, bool ShowCallStack) { |
| auto It = S.DeviceDeferredDiags.find(FD); |
| if (It == S.DeviceDeferredDiags.end()) |
| return; |
| bool HasWarningOrError = false; |
| bool FirstDiag = true; |
| for (PartialDiagnosticAt &PDAt : It->second) { |
| // Respect error limit. |
| if (S.Diags.hasFatalErrorOccurred()) |
| return; |
| const SourceLocation &Loc = PDAt.first; |
| const PartialDiagnostic &PD = PDAt.second; |
| HasWarningOrError |= |
| S.getDiagnostics().getDiagnosticLevel(PD.getDiagID(), Loc) >= |
| DiagnosticsEngine::Warning; |
| { |
| DiagnosticBuilder Builder(S.Diags.Report(Loc, PD.getDiagID())); |
| PD.Emit(Builder); |
| } |
| // Emit the note on the first diagnostic in case too many diagnostics |
| // cause the note not emitted. |
| if (FirstDiag && HasWarningOrError && ShowCallStack) { |
| emitCallStackNotes(S, FD); |
| FirstDiag = false; |
| } |
| } |
| } |
| }; |
| } // namespace |
| |
| void Sema::emitDeferredDiags() { |
| if (ExternalSource) |
| ExternalSource->ReadDeclsToCheckForDeferredDiags( |
| DeclsToCheckForDeferredDiags); |
| |
| if ((DeviceDeferredDiags.empty() && !LangOpts.OpenMP) || |
| DeclsToCheckForDeferredDiags.empty()) |
| return; |
| |
| DeferredDiagnosticsEmitter DDE(*this); |
| for (auto D : DeclsToCheckForDeferredDiags) |
| DDE.checkRecordedDecl(D); |
| } |
| |
| // In CUDA, there are some constructs which may appear in semantically-valid |
| // code, but trigger errors if we ever generate code for the function in which |
| // they appear. Essentially every construct you're not allowed to use on the |
| // device falls into this category, because you are allowed to use these |
| // constructs in a __host__ __device__ function, but only if that function is |
| // never codegen'ed on the device. |
| // |
| // To handle semantic checking for these constructs, we keep track of the set of |
| // functions we know will be emitted, either because we could tell a priori that |
| // they would be emitted, or because they were transitively called by a |
| // known-emitted function. |
| // |
| // We also keep a partial call graph of which not-known-emitted functions call |
| // which other not-known-emitted functions. |
| // |
| // When we see something which is illegal if the current function is emitted |
| // (usually by way of CUDADiagIfDeviceCode, CUDADiagIfHostCode, or |
| // CheckCUDACall), we first check if the current function is known-emitted. If |
| // so, we immediately output the diagnostic. |
| // |
| // Otherwise, we "defer" the diagnostic. It sits in Sema::DeviceDeferredDiags |
| // until we discover that the function is known-emitted, at which point we take |
| // it out of this map and emit the diagnostic. |
| |
| Sema::SemaDiagnosticBuilder::SemaDiagnosticBuilder(Kind K, SourceLocation Loc, |
| unsigned DiagID, |
| FunctionDecl *Fn, Sema &S) |
| : S(S), Loc(Loc), DiagID(DiagID), Fn(Fn), |
| ShowCallStack(K == K_ImmediateWithCallStack || K == K_Deferred) { |
| switch (K) { |
| case K_Nop: |
| break; |
| case K_Immediate: |
| case K_ImmediateWithCallStack: |
| ImmediateDiag.emplace( |
| ImmediateDiagBuilder(S.Diags.Report(Loc, DiagID), S, DiagID)); |
| break; |
| case K_Deferred: |
| assert(Fn && "Must have a function to attach the deferred diag to."); |
| auto &Diags = S.DeviceDeferredDiags[Fn]; |
| PartialDiagId.emplace(Diags.size()); |
| Diags.emplace_back(Loc, S.PDiag(DiagID)); |
| break; |
| } |
| } |
| |
| Sema::SemaDiagnosticBuilder::SemaDiagnosticBuilder(SemaDiagnosticBuilder &&D) |
| : S(D.S), Loc(D.Loc), DiagID(D.DiagID), Fn(D.Fn), |
| ShowCallStack(D.ShowCallStack), ImmediateDiag(D.ImmediateDiag), |
| PartialDiagId(D.PartialDiagId) { |
| // Clean the previous diagnostics. |
| D.ShowCallStack = false; |
| D.ImmediateDiag.reset(); |
| D.PartialDiagId.reset(); |
| } |
| |
| Sema::SemaDiagnosticBuilder::~SemaDiagnosticBuilder() { |
| if (ImmediateDiag) { |
| // Emit our diagnostic and, if it was a warning or error, output a callstack |
| // if Fn isn't a priori known-emitted. |
| bool IsWarningOrError = S.getDiagnostics().getDiagnosticLevel( |
| DiagID, Loc) >= DiagnosticsEngine::Warning; |
| ImmediateDiag.reset(); // Emit the immediate diag. |
| if (IsWarningOrError && ShowCallStack) |
| emitCallStackNotes(S, Fn); |
| } else { |
| assert((!PartialDiagId || ShowCallStack) && |
| "Must always show call stack for deferred diags."); |
| } |
| } |
| |
| Sema::SemaDiagnosticBuilder |
| Sema::targetDiag(SourceLocation Loc, unsigned DiagID, FunctionDecl *FD) { |
| FD = FD ? FD : getCurFunctionDecl(); |
| if (LangOpts.OpenMP) |
| return LangOpts.OpenMPIsDevice ? diagIfOpenMPDeviceCode(Loc, DiagID, FD) |
| : diagIfOpenMPHostCode(Loc, DiagID, FD); |
| if (getLangOpts().CUDA) |
| return getLangOpts().CUDAIsDevice ? CUDADiagIfDeviceCode(Loc, DiagID) |
| : CUDADiagIfHostCode(Loc, DiagID); |
| |
| if (getLangOpts().SYCLIsDevice) |
| return SYCLDiagIfDeviceCode(Loc, DiagID); |
| |
| return SemaDiagnosticBuilder(SemaDiagnosticBuilder::K_Immediate, Loc, DiagID, |
| FD, *this); |
| } |
| |
| Sema::SemaDiagnosticBuilder Sema::Diag(SourceLocation Loc, unsigned DiagID, |
| bool DeferHint) { |
| bool IsError = Diags.getDiagnosticIDs()->isDefaultMappingAsError(DiagID); |
| bool ShouldDefer = getLangOpts().CUDA && LangOpts.GPUDeferDiag && |
| DiagnosticIDs::isDeferrable(DiagID) && |
| (DeferHint || DeferDiags || !IsError); |
| auto SetIsLastErrorImmediate = [&](bool Flag) { |
| if (IsError) |
| IsLastErrorImmediate = Flag; |
| }; |
| if (!ShouldDefer) { |
| SetIsLastErrorImmediate(true); |
| return SemaDiagnosticBuilder(SemaDiagnosticBuilder::K_Immediate, Loc, |
| DiagID, getCurFunctionDecl(), *this); |
| } |
| |
| SemaDiagnosticBuilder DB = getLangOpts().CUDAIsDevice |
| ? CUDADiagIfDeviceCode(Loc, DiagID) |
| : CUDADiagIfHostCode(Loc, DiagID); |
| SetIsLastErrorImmediate(DB.isImmediate()); |
| return DB; |
| } |
| |
| void Sema::checkTypeSupport(QualType Ty, SourceLocation Loc, ValueDecl *D) { |
| if (isUnevaluatedContext() || Ty.isNull()) |
| return; |
| |
| Decl *C = cast<Decl>(getCurLexicalContext()); |
| |
| // Memcpy operations for structs containing a member with unsupported type |
| // are ok, though. |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(C)) { |
| if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && |
| MD->isTrivial()) |
| return; |
| |
| if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(MD)) |
| if (Ctor->isCopyOrMoveConstructor() && Ctor->isTrivial()) |
| return; |
| } |
| |
| // Try to associate errors with the lexical context, if that is a function, or |
| // the value declaration otherwise. |
| FunctionDecl *FD = isa<FunctionDecl>(C) ? cast<FunctionDecl>(C) |
| : dyn_cast_or_null<FunctionDecl>(D); |
| |
| auto CheckDeviceType = [&](QualType Ty) { |
| if (Ty->isDependentType()) |
| return; |
| |
| if (Ty->isExtIntType()) { |
| if (!Context.getTargetInfo().hasExtIntType()) { |
| PartialDiagnostic PD = PDiag(diag::err_target_unsupported_type); |
| if (D) |
| PD << D; |
| else |
| PD << "expression"; |
| targetDiag(Loc, PD, FD) |
| << false /*show bit size*/ << 0 /*bitsize*/ << false /*return*/ |
| << Ty << Context.getTargetInfo().getTriple().str(); |
| } |
| return; |
| } |
| |
| // Check if we are dealing with two 'long double' but with different |
| // semantics. |
| bool LongDoubleMismatched = false; |
| if (Ty->isRealFloatingType() && Context.getTypeSize(Ty) == 128) { |
| const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(Ty); |
| if ((&Sem != &llvm::APFloat::PPCDoubleDouble() && |
| !Context.getTargetInfo().hasFloat128Type()) || |
| (&Sem == &llvm::APFloat::PPCDoubleDouble() && |
| !Context.getTargetInfo().hasIbm128Type())) |
| LongDoubleMismatched = true; |
| } |
| |
| if ((Ty->isFloat16Type() && !Context.getTargetInfo().hasFloat16Type()) || |
| (Ty->isFloat128Type() && !Context.getTargetInfo().hasFloat128Type()) || |
| (Ty->isIbm128Type() && !Context.getTargetInfo().hasIbm128Type()) || |
| (Ty->isIntegerType() && Context.getTypeSize(Ty) == 128 && |
| !Context.getTargetInfo().hasInt128Type()) || |
| LongDoubleMismatched) { |
| PartialDiagnostic PD = PDiag(diag::err_target_unsupported_type); |
| if (D) |
| PD << D; |
| else |
| PD << "expression"; |
| |
| if (targetDiag(Loc, PD, FD) |
| << true /*show bit size*/ |
| << static_cast<unsigned>(Context.getTypeSize(Ty)) << Ty |
| << false /*return*/ << Context.getTargetInfo().getTriple().str()) { |
| if (D) |
| D->setInvalidDecl(); |
| } |
| if (D) |
| targetDiag(D->getLocation(), diag::note_defined_here, FD) << D; |
| } |
| }; |
| |
| auto CheckType = [&](QualType Ty, bool IsRetTy = false) { |
| if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) |
| CheckDeviceType(Ty); |
| |
| QualType UnqualTy = Ty.getCanonicalType().getUnqualifiedType(); |
| const TargetInfo &TI = Context.getTargetInfo(); |
| if (!TI.hasLongDoubleType() && UnqualTy == Context.LongDoubleTy) { |
| PartialDiagnostic PD = PDiag(diag::err_target_unsupported_type); |
| if (D) |
| PD << D; |
| else |
| PD << "expression"; |
| |
| if (Diag(Loc, PD, FD) |
| << false /*show bit size*/ << 0 << Ty << false /*return*/ |
| << Context.getTargetInfo().getTriple().str()) { |
| if (D) |
| D->setInvalidDecl(); |
| } |
| if (D) |
| targetDiag(D->getLocation(), diag::note_defined_here, FD) << D; |
| } |
| |
| bool IsDouble = UnqualTy == Context.DoubleTy; |
| bool IsFloat = UnqualTy == Context.FloatTy; |
| if (IsRetTy && !TI.hasFPReturn() && (IsDouble || IsFloat)) { |
| PartialDiagnostic PD = PDiag(diag::err_target_unsupported_type); |
| if (D) |
| PD << D; |
| else |
| PD << "expression"; |
| |
| if (Diag(Loc, PD, FD) |
| << false /*show bit size*/ << 0 << Ty << true /*return*/ |
| << Context.getTargetInfo().getTriple().str()) { |
| if (D) |
| D->setInvalidDecl(); |
| } |
| if (D) |
| targetDiag(D->getLocation(), diag::note_defined_here, FD) << D; |
| } |
| }; |
| |
| CheckType(Ty); |
| if (const auto *FPTy = dyn_cast<FunctionProtoType>(Ty)) { |
| for (const auto &ParamTy : FPTy->param_types()) |
| CheckType(ParamTy); |
| CheckType(FPTy->getReturnType(), /*IsRetTy=*/true); |
| } |
| if (const auto *FNPTy = dyn_cast<FunctionNoProtoType>(Ty)) |
| CheckType(FNPTy->getReturnType(), /*IsRetTy=*/true); |
| } |
| |
| /// Looks through the macro-expansion chain for the given |
| /// location, looking for a macro expansion with the given name. |
| /// If one is found, returns true and sets the location to that |
| /// expansion loc. |
| bool Sema::findMacroSpelling(SourceLocation &locref, StringRef name) { |
| SourceLocation loc = locref; |
| if (!loc.isMacroID()) return false; |
| |
| // There's no good way right now to look at the intermediate |
| // expansions, so just jump to the expansion location. |
| loc = getSourceManager().getExpansionLoc(loc); |
| |
| // If that's written with the name, stop here. |
| SmallString<16> buffer; |
| if (getPreprocessor().getSpelling(loc, buffer) == name) { |
| locref = loc; |
| return true; |
| } |
| return false; |
| } |
| |
| /// Determines the active Scope associated with the given declaration |
| /// context. |
| /// |
| /// This routine maps a declaration context to the active Scope object that |
| /// represents that declaration context in the parser. It is typically used |
| /// from "scope-less" code (e.g., template instantiation, lazy creation of |
| /// declarations) that injects a name for name-lookup purposes and, therefore, |
| /// must update the Scope. |
| /// |
| /// \returns The scope corresponding to the given declaraion context, or NULL |
| /// if no such scope is open. |
| Scope *Sema::getScopeForContext(DeclContext *Ctx) { |
| |
| if (!Ctx) |
| return nullptr; |
| |
| Ctx = Ctx->getPrimaryContext(); |
| for (Scope *S = getCurScope(); S; S = S->getParent()) { |
| // Ignore scopes that cannot have declarations. This is important for |
| // out-of-line definitions of static class members. |
| if (S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) |
| if (DeclContext *Entity = S->getEntity()) |
| if (Ctx == Entity->getPrimaryContext()) |
| return S; |
| } |
| |
| return nullptr; |
| } |
| |
| /// Enter a new function scope |
| void Sema::PushFunctionScope() { |
| if (FunctionScopes.empty() && CachedFunctionScope) { |
| // Use CachedFunctionScope to avoid allocating memory when possible. |
| CachedFunctionScope->Clear(); |
| FunctionScopes.push_back(CachedFunctionScope.release()); |
| } else { |
| FunctionScopes.push_back(new FunctionScopeInfo(getDiagnostics())); |
| } |
| if (LangOpts.OpenMP) |
| pushOpenMPFunctionRegion(); |
| } |
| |
| void Sema::PushBlockScope(Scope *BlockScope, BlockDecl *Block) { |
| FunctionScopes.push_back(new BlockScopeInfo(getDiagnostics(), |
| BlockScope, Block)); |
| } |
| |
| LambdaScopeInfo *Sema::PushLambdaScope() { |
| LambdaScopeInfo *const LSI = new LambdaScopeInfo(getDiagnostics()); |
| FunctionScopes.push_back(LSI); |
| return LSI; |
| } |
| |
| void Sema::RecordParsingTemplateParameterDepth(unsigned Depth) { |
| if (LambdaScopeInfo *const LSI = getCurLambda()) { |
| LSI->AutoTemplateParameterDepth = Depth; |
| return; |
| } |
| llvm_unreachable( |
| "Remove assertion if intentionally called in a non-lambda context."); |
| } |
| |
| // Check that the type of the VarDecl has an accessible copy constructor and |
| // resolve its destructor's exception specification. |
| // This also performs initialization of block variables when they are moved |
| // to the heap. It uses the same rules as applicable for implicit moves |
| // according to the C++ standard in effect ([class.copy.elision]p3). |
| static void checkEscapingByref(VarDecl *VD, Sema &S) { |
| QualType T = VD->getType(); |
| EnterExpressionEvaluationContext scope( |
| S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); |
| SourceLocation Loc = VD->getLocation(); |
| Expr *VarRef = |
| new (S.Context) DeclRefExpr(S.Context, VD, false, T, VK_LValue, Loc); |
| ExprResult Result; |
| auto IE = InitializedEntity::InitializeBlock(Loc, T); |
| if (S.getLangOpts().CPlusPlus2b) { |
| auto *E = ImplicitCastExpr::Create(S.Context, T, CK_NoOp, VarRef, nullptr, |
| VK_XValue, FPOptionsOverride()); |
| Result = S.PerformCopyInitialization(IE, SourceLocation(), E); |
| } else { |
| Result = S.PerformMoveOrCopyInitialization( |
| IE, Sema::NamedReturnInfo{VD, Sema::NamedReturnInfo::MoveEligible}, |
| VarRef); |
| } |
| |
| if (!Result.isInvalid()) { |
| Result = S.MaybeCreateExprWithCleanups(Result); |
| Expr *Init = Result.getAs<Expr>(); |
| S.Context.setBlockVarCopyInit(VD, Init, S.canThrow(Init)); |
| } |
| |
| // The destructor's exception specification is needed when IRGen generates |
| // block copy/destroy functions. Resolve it here. |
| if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
| if (CXXDestructorDecl *DD = RD->getDestructor()) { |
| auto *FPT = DD->getType()->getAs<FunctionProtoType>(); |
| S.ResolveExceptionSpec(Loc, FPT); |
| } |
| } |
| |
| static void markEscapingByrefs(const FunctionScopeInfo &FSI, Sema &S) { |
| // Set the EscapingByref flag of __block variables captured by |
| // escaping blocks. |
| for (const BlockDecl *BD : FSI.Blocks) { |
| for (const BlockDecl::Capture &BC : BD->captures()) { |
| VarDecl *VD = BC.getVariable(); |
| if (VD->hasAttr<BlocksAttr>()) { |
| // Nothing to do if this is a __block variable captured by a |
| // non-escaping block. |
| if (BD->doesNotEscape()) |
| continue; |
| VD->setEscapingByref(); |
| } |
| // Check whether the captured variable is or contains an object of |
| // non-trivial C union type. |
| QualType CapType = BC.getVariable()->getType(); |
| if (CapType.hasNonTrivialToPrimitiveDestructCUnion() || |
| CapType.hasNonTrivialToPrimitiveCopyCUnion()) |
| S.checkNonTrivialCUnion(BC.getVariable()->getType(), |
| BD->getCaretLocation(), |
| Sema::NTCUC_BlockCapture, |
| Sema::NTCUK_Destruct|Sema::NTCUK_Copy); |
| } |
| } |
| |
| for (VarDecl *VD : FSI.ByrefBlockVars) { |
| // __block variables might require us to capture a copy-initializer. |
| if (!VD->isEscapingByref()) |
| continue; |
| // It's currently invalid to ever have a __block variable with an |
| // array type; should we diagnose that here? |
| // Regardless, we don't want to ignore array nesting when |
| // constructing this copy. |
| if (VD->getType()->isStructureOrClassType()) |
| checkEscapingByref(VD, S); |
| } |
| } |
| |
| /// Pop a function (or block or lambda or captured region) scope from the stack. |
| /// |
| /// \param WP The warning policy to use for CFG-based warnings, or null if such |
| /// warnings should not be produced. |
| /// \param D The declaration corresponding to this function scope, if producing |
| /// CFG-based warnings. |
| /// \param BlockType The type of the block expression, if D is a BlockDecl. |
| Sema::PoppedFunctionScopePtr |
| Sema::PopFunctionScopeInfo(const AnalysisBasedWarnings::Policy *WP, |
| const Decl *D, QualType BlockType) { |
| assert(!FunctionScopes.empty() && "mismatched push/pop!"); |
| |
| markEscapingByrefs(*FunctionScopes.back(), *this); |
| |
| PoppedFunctionScopePtr Scope(FunctionScopes.pop_back_val(), |
| PoppedFunctionScopeDeleter(this)); |
| |
| if (LangOpts.OpenMP) |
| popOpenMPFunctionRegion(Scope.get()); |
| |
| // Issue any analysis-based warnings. |
| if (WP && D) |
| AnalysisWarnings.IssueWarnings(*WP, Scope.get(), D, BlockType); |
| else |
| for (const auto &PUD : Scope->PossiblyUnreachableDiags) |
| Diag(PUD.Loc, PUD.PD); |
| |
| return Scope; |
| } |
| |
| void Sema::PoppedFunctionScopeDeleter:: |
| operator()(sema::FunctionScopeInfo *Scope) const { |
| // Stash the function scope for later reuse if it's for a normal function. |
| if (Scope->isPlainFunction() && !Self->CachedFunctionScope) |
| Self->CachedFunctionScope.reset(Scope); |
| else |
| delete Scope; |
| } |
| |
| void Sema::PushCompoundScope(bool IsStmtExpr) { |
| getCurFunction()->CompoundScopes.push_back(CompoundScopeInfo(IsStmtExpr)); |
| } |
| |
| void Sema::PopCompoundScope() { |
| FunctionScopeInfo *CurFunction = getCurFunction(); |
| assert(!CurFunction->CompoundScopes.empty() && "mismatched push/pop"); |
| |
| CurFunction->CompoundScopes.pop_back(); |
| } |
| |
| /// Determine whether any errors occurred within this function/method/ |
| /// block. |
| bool Sema::hasAnyUnrecoverableErrorsInThisFunction() const { |
| return getCurFunction()->hasUnrecoverableErrorOccurred(); |
| } |
| |
| void Sema::setFunctionHasBranchIntoScope() { |
| if (!FunctionScopes.empty()) |
| FunctionScopes.back()->setHasBranchIntoScope(); |
| } |
| |
| void Sema::setFunctionHasBranchProtectedScope() { |
| if (!FunctionScopes.empty()) |
| FunctionScopes.back()->setHasBranchProtectedScope(); |
| } |
| |
| void Sema::setFunctionHasIndirectGoto() { |
| if (!FunctionScopes.empty()) |
| FunctionScopes.back()->setHasIndirectGoto(); |
| } |
| |
| void Sema::setFunctionHasMustTail() { |
| if (!FunctionScopes.empty()) |
| FunctionScopes.back()->setHasMustTail(); |
| } |
| |
| BlockScopeInfo *Sema::getCurBlock() { |
| if (FunctionScopes.empty()) |
| return nullptr; |
| |
| auto CurBSI = dyn_cast<BlockScopeInfo>(FunctionScopes.back()); |
| if (CurBSI && CurBSI->TheDecl && |
| !CurBSI->TheDecl->Encloses(CurContext)) { |
| // We have switched contexts due to template instantiation. |
| assert(!CodeSynthesisContexts.empty()); |
| return nullptr; |
| } |
| |
| return CurBSI; |
| } |
| |
| FunctionScopeInfo *Sema::getEnclosingFunction() const { |
| if (FunctionScopes.empty()) |
| return nullptr; |
| |
| for (int e = FunctionScopes.size() - 1; e >= 0; --e) { |
| if (isa<sema::BlockScopeInfo>(FunctionScopes[e])) |
| continue; |
| return FunctionScopes[e]; |
| } |
| return nullptr; |
| } |
| |
| LambdaScopeInfo *Sema::getEnclosingLambda() const { |
| for (auto *Scope : llvm::reverse(FunctionScopes)) { |
| if (auto *LSI = dyn_cast<sema::LambdaScopeInfo>(Scope)) { |
| if (LSI->Lambda && !LSI->Lambda->Encloses(CurContext)) { |
| // We have switched contexts due to template instantiation. |
| // FIXME: We should swap out the FunctionScopes during code synthesis |
| // so that we don't need to check for this. |
| assert(!CodeSynthesisContexts.empty()); |
| return nullptr; |
| } |
| return LSI; |
| } |
| } |
| return nullptr; |
| } |
| |
| LambdaScopeInfo *Sema::getCurLambda(bool IgnoreNonLambdaCapturingScope) { |
| if (FunctionScopes.empty()) |
| return nullptr; |
| |
| auto I = FunctionScopes.rbegin(); |
| if (IgnoreNonLambdaCapturingScope) { |
| auto E = FunctionScopes.rend(); |
| while (I != E && isa<CapturingScopeInfo>(*I) && !isa<LambdaScopeInfo>(*I)) |
| ++I; |
| if (I == E) |
| return nullptr; |
| } |
| auto *CurLSI = dyn_cast<LambdaScopeInfo>(*I); |
| if (CurLSI && CurLSI->Lambda && |
| !CurLSI->Lambda->Encloses(CurContext)) { |
| // We have switched contexts due to template instantiation. |
| assert(!CodeSynthesisContexts.empty()); |
| return nullptr; |
| } |
| |
| return CurLSI; |
| } |
| |
| // We have a generic lambda if we parsed auto parameters, or we have |
| // an associated template parameter list. |
| LambdaScopeInfo *Sema::getCurGenericLambda() { |
| if (LambdaScopeInfo *LSI = getCurLambda()) { |
| return (LSI->TemplateParams.size() || |
| LSI->GLTemplateParameterList) ? LSI : nullptr; |
| } |
| return nullptr; |
| } |
| |
| |
| void Sema::ActOnComment(SourceRange Comment) { |
| if (!LangOpts.RetainCommentsFromSystemHeaders && |
| SourceMgr.isInSystemHeader(Comment.getBegin())) |
| return; |
| RawComment RC(SourceMgr, Comment, LangOpts.CommentOpts, false); |
| if (RC.isAlmostTrailingComment()) { |
| SourceRange MagicMarkerRange(Comment.getBegin(), |
| Comment.getBegin().getLocWithOffset(3)); |
| StringRef MagicMarkerText; |
| switch (RC.getKind()) { |
| case RawComment::RCK_OrdinaryBCPL: |
| MagicMarkerText = "///<"; |
| break; |
| case RawComment::RCK_OrdinaryC: |
| MagicMarkerText = "/**<"; |
| break; |
| default: |
| llvm_unreachable("if this is an almost Doxygen comment, " |
| "it should be ordinary"); |
| } |
| Diag(Comment.getBegin(), diag::warn_not_a_doxygen_trailing_member_comment) << |
| FixItHint::CreateReplacement(MagicMarkerRange, MagicMarkerText); |
| } |
| Context.addComment(RC); |
| } |
| |
| // Pin this vtable to this file. |
| ExternalSemaSource::~ExternalSemaSource() {} |
| char ExternalSemaSource::ID; |
| |
| void ExternalSemaSource::ReadMethodPool(Selector Sel) { } |
| void ExternalSemaSource::updateOutOfDateSelector(Selector Sel) { } |
| |
| void ExternalSemaSource::ReadKnownNamespaces( |
| SmallVectorImpl<NamespaceDecl *> &Namespaces) { |
| } |
| |
| void ExternalSemaSource::ReadUndefinedButUsed( |
| llvm::MapVector<NamedDecl *, SourceLocation> &Undefined) {} |
| |
| void ExternalSemaSource::ReadMismatchingDeleteExpressions(llvm::MapVector< |
| FieldDecl *, llvm::SmallVector<std::pair<SourceLocation, bool>, 4>> &) {} |
| |
| /// Figure out if an expression could be turned into a call. |
| /// |
| /// Use this when trying to recover from an error where the programmer may have |
| /// written just the name of a function instead of actually calling it. |
| /// |
| /// \param E - The expression to examine. |
| /// \param ZeroArgCallReturnTy - If the expression can be turned into a call |
| /// with no arguments, this parameter is set to the type returned by such a |
| /// call; otherwise, it is set to an empty QualType. |
| /// \param OverloadSet - If the expression is an overloaded function |
| /// name, this parameter is populated with the decls of the various overloads. |
| bool Sema::tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy, |
| UnresolvedSetImpl &OverloadSet) { |
| ZeroArgCallReturnTy = QualType(); |
| OverloadSet.clear(); |
| |
| const OverloadExpr *Overloads = nullptr; |
| bool IsMemExpr = false; |
| if (E.getType() == Context.OverloadTy) { |
| OverloadExpr::FindResult FR = OverloadExpr::find(const_cast<Expr*>(&E)); |
| |
| // Ignore overloads that are pointer-to-member constants. |
| if (FR.HasFormOfMemberPointer) |
| return false; |
| |
| Overloads = FR.Expression; |
| } else if (E.getType() == Context.BoundMemberTy) { |
| Overloads = dyn_cast<UnresolvedMemberExpr>(E.IgnoreParens()); |
| IsMemExpr = true; |
| } |
| |
| bool Ambiguous = false; |
| bool IsMV = false; |
| |
| if (Overloads) { |
| for (OverloadExpr::decls_iterator it = Overloads->decls_begin(), |
| DeclsEnd = Overloads->decls_end(); it != DeclsEnd; ++it) { |
| OverloadSet.addDecl(*it); |
| |
| // Check whether the function is a non-template, non-member which takes no |
| // arguments. |
| if (IsMemExpr) |
| continue; |
| if (const FunctionDecl *OverloadDecl |
| = dyn_cast<FunctionDecl>((*it)->getUnderlyingDecl())) { |
| if (OverloadDecl->getMinRequiredArguments() == 0) { |
| if (!ZeroArgCallReturnTy.isNull() && !Ambiguous && |
| (!IsMV || !(OverloadDecl->isCPUDispatchMultiVersion() || |
| OverloadDecl->isCPUSpecificMultiVersion()))) { |
| ZeroArgCallReturnTy = QualType(); |
| Ambiguous = true; |
| } else { |
| ZeroArgCallReturnTy = OverloadDecl->getReturnType(); |
| IsMV = OverloadDecl->isCPUDispatchMultiVersion() || |
| OverloadDecl->isCPUSpecificMultiVersion(); |
| } |
| } |
| } |
| } |
| |
| // If it's not a member, use better machinery to try to resolve the call |
| if (!IsMemExpr) |
| return !ZeroArgCallReturnTy.isNull(); |
| } |
| |
| // Attempt to call the member with no arguments - this will correctly handle |
| // member templates with defaults/deduction of template arguments, overloads |
| // with default arguments, etc. |
| if (IsMemExpr && !E.isTypeDependent()) { |
| Sema::TentativeAnalysisScope Trap(*this); |
| ExprResult R = BuildCallToMemberFunction(nullptr, &E, SourceLocation(), |
| None, SourceLocation()); |
| if (R.isUsable()) { |
| ZeroArgCallReturnTy = R.get()->getType(); |
| return true; |
| } |
| return false; |
| } |
| |
| if (const DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E.IgnoreParens())) { |
| if (const FunctionDecl *Fun = dyn_cast<FunctionDecl>(DeclRef->getDecl())) { |
| if (Fun->getMinRequiredArguments() == 0) |
| ZeroArgCallReturnTy = Fun->getReturnType(); |
| return true; |
| } |
| } |
| |
| // We don't have an expression that's convenient to get a FunctionDecl from, |
| // but we can at least check if the type is "function of 0 arguments". |
| QualType ExprTy = E.getType(); |
| const FunctionType *FunTy = nullptr; |
| QualType PointeeTy = ExprTy->getPointeeType(); |
| if (!PointeeTy.isNull()) |
| FunTy = PointeeTy->getAs<FunctionType>(); |
| if (!FunTy) |
| FunTy = ExprTy->getAs<FunctionType>(); |
| |
| if (const FunctionProtoType *FPT = |
| dyn_cast_or_null<FunctionProtoType>(FunTy)) { |
| if (FPT->getNumParams() == 0) |
| ZeroArgCallReturnTy = FunTy->getReturnType(); |
| return true; |
| } |
| return false; |
| } |
| |
| /// Give notes for a set of overloads. |
| /// |
| /// A companion to tryExprAsCall. In cases when the name that the programmer |
| /// wrote was an overloaded function, we may be able to make some guesses about |
| /// plausible overloads based on their return types; such guesses can be handed |
| /// off to this method to be emitted as notes. |
| /// |
| /// \param Overloads - The overloads to note. |
| /// \param FinalNoteLoc - If we've suppressed printing some overloads due to |
| /// -fshow-overloads=best, this is the location to attach to the note about too |
| /// many candidates. Typically this will be the location of the original |
| /// ill-formed expression. |
| static void noteOverloads(Sema &S, const UnresolvedSetImpl &Overloads, |
| const SourceLocation FinalNoteLoc) { |
| unsigned ShownOverloads = 0; |
| unsigned SuppressedOverloads = 0; |
| for (UnresolvedSetImpl::iterator It = Overloads.begin(), |
| DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) { |
| if (ShownOverloads >= S.Diags.getNumOverloadCandidatesToShow()) { |
| ++SuppressedOverloads; |
| continue; |
| } |
| |
| NamedDecl *Fn = (*It)->getUnderlyingDecl(); |
| // Don't print overloads for non-default multiversioned functions. |
| if (const auto *FD = Fn->getAsFunction()) { |
| if (FD->isMultiVersion() && FD->hasAttr<TargetAttr>() && |
| !FD->getAttr<TargetAttr>()->isDefaultVersion()) |
| continue; |
| } |
| S.Diag(Fn->getLocation(), diag::note_possible_target_of_call); |
| ++ShownOverloads; |
| } |
| |
| S.Diags.overloadCandidatesShown(ShownOverloads); |
| |
| if (SuppressedOverloads) |
| S.Diag(FinalNoteLoc, diag::note_ovl_too_many_candidates) |
| << SuppressedOverloads; |
| } |
| |
| static void notePlausibleOverloads(Sema &S, SourceLocation Loc, |
| const UnresolvedSetImpl &Overloads, |
| bool (*IsPlausibleResult)(QualType)) { |
| if (!IsPlausibleResult) |
| return noteOverloads(S, Overloads, Loc); |
| |
| UnresolvedSet<2> PlausibleOverloads; |
| for (OverloadExpr::decls_iterator It = Overloads.begin(), |
| DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) { |
| const FunctionDecl *OverloadDecl = cast<FunctionDecl>(*It); |
| QualType OverloadResultTy = OverloadDecl->getReturnType(); |
| if (IsPlausibleResult(OverloadResultTy)) |
| PlausibleOverloads.addDecl(It.getDecl()); |
| } |
| noteOverloads(S, PlausibleOverloads, Loc); |
| } |
| |
| /// Determine whether the given expression can be called by just |
| /// putting parentheses after it. Notably, expressions with unary |
| /// operators can't be because the unary operator will start parsing |
| /// outside the call. |
| static bool IsCallableWithAppend(Expr *E) { |
| E = E->IgnoreImplicit(); |
| return (!isa<CStyleCastExpr>(E) && |
| !isa<UnaryOperator>(E) && |
| !isa<BinaryOperator>(E) && |
| !isa<CXXOperatorCallExpr>(E)); |
| } |
| |
| static bool IsCPUDispatchCPUSpecificMultiVersion(const Expr *E) { |
| if (const auto *UO = dyn_cast<UnaryOperator>(E)) |
| E = UO->getSubExpr(); |
| |
| if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { |
| if (ULE->getNumDecls() == 0) |
| return false; |
| |
| const NamedDecl *ND = *ULE->decls_begin(); |
| if (const auto *FD = dyn_cast<FunctionDecl>(ND)) |
| return FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion(); |
| } |
| return false; |
| } |
| |
| bool Sema::tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD, |
| bool ForceComplain, |
| bool (*IsPlausibleResult)(QualType)) { |
| SourceLocation Loc = E.get()->getExprLoc(); |
| SourceRange Range = E.get()->getSourceRange(); |
| |
| QualType ZeroArgCallTy; |
| UnresolvedSet<4> Overloads; |
| if (tryExprAsCall(*E.get(), ZeroArgCallTy, Overloads) && |
| !ZeroArgCallTy.isNull() && |
| (!IsPlausibleResult || IsPlausibleResult(ZeroArgCallTy))) { |
| // At this point, we know E is potentially callable with 0 |
| // arguments and that it returns something of a reasonable type, |
| // so we can emit a fixit and carry on pretending that E was |
| // actually a CallExpr. |
| SourceLocation ParenInsertionLoc = getLocForEndOfToken(Range.getEnd()); |
| bool IsMV = IsCPUDispatchCPUSpecificMultiVersion(E.get()); |
| Diag(Loc, PD) << /*zero-arg*/ 1 << IsMV << Range |
| << (IsCallableWithAppend(E.get()) |
| ? FixItHint::CreateInsertion(ParenInsertionLoc, "()") |
| : FixItHint()); |
| if (!IsMV) |
| notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult); |
| |
| // FIXME: Try this before emitting the fixit, and suppress diagnostics |
| // while doing so. |
| E = BuildCallExpr(nullptr, E.get(), Range.getEnd(), None, |
| Range.getEnd().getLocWithOffset(1)); |
| return true; |
| } |
| |
| if (!ForceComplain) return false; |
| |
| bool IsMV = IsCPUDispatchCPUSpecificMultiVersion(E.get()); |
| Diag(Loc, PD) << /*not zero-arg*/ 0 << IsMV << Range; |
| if (!IsMV) |
| notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult); |
| E = ExprError(); |
| return true; |
| } |
| |
| IdentifierInfo *Sema::getSuperIdentifier() const { |
| if (!Ident_super) |
| Ident_super = &Context.Idents.get("super"); |
| return Ident_super; |
| } |
| |
| IdentifierInfo *Sema::getFloat128Identifier() const { |
| if (!Ident___float128) |
| Ident___float128 = &Context.Idents.get("__float128"); |
| return Ident___float128; |
| } |
| |
| void Sema::PushCapturedRegionScope(Scope *S, CapturedDecl *CD, RecordDecl *RD, |
| CapturedRegionKind K, |
| unsigned OpenMPCaptureLevel) { |
| auto *CSI = new CapturedRegionScopeInfo( |
| getDiagnostics(), S, CD, RD, CD->getContextParam(), K, |
| (getLangOpts().OpenMP && K == CR_OpenMP) ? getOpenMPNestingLevel() : 0, |
| OpenMPCaptureLevel); |
| CSI->ReturnType = Context.VoidTy; |
| FunctionScopes.push_back(CSI); |
| } |
| |
| CapturedRegionScopeInfo *Sema::getCurCapturedRegion() { |
| if (FunctionScopes.empty()) |
| return nullptr; |
| |
| return dyn_cast<CapturedRegionScopeInfo>(FunctionScopes.back()); |
| } |
| |
| const llvm::MapVector<FieldDecl *, Sema::DeleteLocs> & |
| Sema::getMismatchingDeleteExpressions() const { |
| return DeleteExprs; |
| } |