blob: 1bdeccc4cbf56673baa41ec01cef636ae617fd0f [file] [log] [blame]
//===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Declaration portions of the Parser interfaces.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/Parser.h"
#include "clang/Parse/RAIIObjectsForParser.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/PrettyDeclStackTrace.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/Attributes.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Parse/ParseDiagnostic.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/SemaDiagnostic.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// C99 6.7: Declarations.
//===----------------------------------------------------------------------===//
/// ParseTypeName
/// type-name: [C99 6.7.6]
/// specifier-qualifier-list abstract-declarator[opt]
///
/// Called type-id in C++.
TypeResult Parser::ParseTypeName(SourceRange *Range,
DeclaratorContext Context,
AccessSpecifier AS,
Decl **OwnedType,
ParsedAttributes *Attrs) {
DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
if (DSC == DeclSpecContext::DSC_normal)
DSC = DeclSpecContext::DSC_type_specifier;
// Parse the common declaration-specifiers piece.
DeclSpec DS(AttrFactory);
if (Attrs)
DS.addAttributes(*Attrs);
ParseSpecifierQualifierList(DS, AS, DSC);
if (OwnedType)
*OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
// Parse the abstract-declarator, if present.
Declarator DeclaratorInfo(DS, Context);
ParseDeclarator(DeclaratorInfo);
if (Range)
*Range = DeclaratorInfo.getSourceRange();
if (DeclaratorInfo.isInvalidType())
return true;
return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
}
/// Normalizes an attribute name by dropping prefixed and suffixed __.
static StringRef normalizeAttrName(StringRef Name) {
if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__"))
return Name.drop_front(2).drop_back(2);
return Name;
}
/// isAttributeLateParsed - Return true if the attribute has arguments that
/// require late parsing.
static bool isAttributeLateParsed(const IdentifierInfo &II) {
#define CLANG_ATTR_LATE_PARSED_LIST
return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
#include "clang/Parse/AttrParserStringSwitches.inc"
.Default(false);
#undef CLANG_ATTR_LATE_PARSED_LIST
}
/// Check if the a start and end source location expand to the same macro.
static bool FindLocsWithCommonFileID(Preprocessor &PP, SourceLocation StartLoc,
SourceLocation EndLoc) {
if (!StartLoc.isMacroID() || !EndLoc.isMacroID())
return false;
SourceManager &SM = PP.getSourceManager();
if (SM.getFileID(StartLoc) != SM.getFileID(EndLoc))
return false;
bool AttrStartIsInMacro =
Lexer::isAtStartOfMacroExpansion(StartLoc, SM, PP.getLangOpts());
bool AttrEndIsInMacro =
Lexer::isAtEndOfMacroExpansion(EndLoc, SM, PP.getLangOpts());
return AttrStartIsInMacro && AttrEndIsInMacro;
}
void Parser::ParseAttributes(unsigned WhichAttrKinds,
ParsedAttributesWithRange &Attrs,
SourceLocation *End,
LateParsedAttrList *LateAttrs) {
bool MoreToParse;
do {
// Assume there's nothing left to parse, but if any attributes are in fact
// parsed, loop to ensure all specified attribute combinations are parsed.
MoreToParse = false;
if (WhichAttrKinds & PAKM_CXX11)
MoreToParse |= MaybeParseCXX11Attributes(Attrs, End);
if (WhichAttrKinds & PAKM_GNU)
MoreToParse |= MaybeParseGNUAttributes(Attrs, End, LateAttrs);
if (WhichAttrKinds & PAKM_Declspec)
MoreToParse |= MaybeParseMicrosoftDeclSpecs(Attrs, End);
} while (MoreToParse);
}
/// ParseGNUAttributes - Parse a non-empty attributes list.
///
/// [GNU] attributes:
/// attribute
/// attributes attribute
///
/// [GNU] attribute:
/// '__attribute__' '(' '(' attribute-list ')' ')'
///
/// [GNU] attribute-list:
/// attrib
/// attribute_list ',' attrib
///
/// [GNU] attrib:
/// empty
/// attrib-name
/// attrib-name '(' identifier ')'
/// attrib-name '(' identifier ',' nonempty-expr-list ')'
/// attrib-name '(' argument-expression-list [C99 6.5.2] ')'
///
/// [GNU] attrib-name:
/// identifier
/// typespec
/// typequal
/// storageclass
///
/// Whether an attribute takes an 'identifier' is determined by the
/// attrib-name. GCC's behavior here is not worth imitating:
///
/// * In C mode, if the attribute argument list starts with an identifier
/// followed by a ',' or an ')', and the identifier doesn't resolve to
/// a type, it is parsed as an identifier. If the attribute actually
/// wanted an expression, it's out of luck (but it turns out that no
/// attributes work that way, because C constant expressions are very
/// limited).
/// * In C++ mode, if the attribute argument list starts with an identifier,
/// and the attribute *wants* an identifier, it is parsed as an identifier.
/// At block scope, any additional tokens between the identifier and the
/// ',' or ')' are ignored, otherwise they produce a parse error.
///
/// We follow the C++ model, but don't allow junk after the identifier.
void Parser::ParseGNUAttributes(ParsedAttributesWithRange &Attrs,
SourceLocation *EndLoc,
LateParsedAttrList *LateAttrs, Declarator *D) {
assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
SourceLocation StartLoc = Tok.getLocation(), Loc;
if (!EndLoc)
EndLoc = &Loc;
while (Tok.is(tok::kw___attribute)) {
SourceLocation AttrTokLoc = ConsumeToken();
unsigned OldNumAttrs = Attrs.size();
unsigned OldNumLateAttrs = LateAttrs ? LateAttrs->size() : 0;
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
"attribute")) {
SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
return;
}
if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
return;
}
// Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
do {
// Eat preceeding commas to allow __attribute__((,,,foo))
while (TryConsumeToken(tok::comma))
;
// Expect an identifier or declaration specifier (const, int, etc.)
if (Tok.isAnnotation())
break;
if (Tok.is(tok::code_completion)) {
cutOffParsing();
Actions.CodeCompleteAttribute(AttributeCommonInfo::Syntax::AS_GNU);
break;
}
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
if (!AttrName)
break;
SourceLocation AttrNameLoc = ConsumeToken();
if (Tok.isNot(tok::l_paren)) {
Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
ParsedAttr::AS_GNU);
continue;
}
// Handle "parameterized" attributes
if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
ParseGNUAttributeArgs(AttrName, AttrNameLoc, Attrs, EndLoc, nullptr,
SourceLocation(), ParsedAttr::AS_GNU, D);
continue;
}
// Handle attributes with arguments that require late parsing.
LateParsedAttribute *LA =
new LateParsedAttribute(this, *AttrName, AttrNameLoc);
LateAttrs->push_back(LA);
// Attributes in a class are parsed at the end of the class, along
// with other late-parsed declarations.
if (!ClassStack.empty() && !LateAttrs->parseSoon())
getCurrentClass().LateParsedDeclarations.push_back(LA);
// Be sure ConsumeAndStoreUntil doesn't see the start l_paren, since it
// recursively consumes balanced parens.
LA->Toks.push_back(Tok);
ConsumeParen();
// Consume everything up to and including the matching right parens.
ConsumeAndStoreUntil(tok::r_paren, LA->Toks, /*StopAtSemi=*/true);
Token Eof;
Eof.startToken();
Eof.setLocation(Tok.getLocation());
LA->Toks.push_back(Eof);
} while (Tok.is(tok::comma));
if (ExpectAndConsume(tok::r_paren))
SkipUntil(tok::r_paren, StopAtSemi);
SourceLocation Loc = Tok.getLocation();
if (ExpectAndConsume(tok::r_paren))
SkipUntil(tok::r_paren, StopAtSemi);
if (EndLoc)
*EndLoc = Loc;
// If this was declared in a macro, attach the macro IdentifierInfo to the
// parsed attribute.
auto &SM = PP.getSourceManager();
if (!SM.isWrittenInBuiltinFile(SM.getSpellingLoc(AttrTokLoc)) &&
FindLocsWithCommonFileID(PP, AttrTokLoc, Loc)) {
CharSourceRange ExpansionRange = SM.getExpansionRange(AttrTokLoc);
StringRef FoundName =
Lexer::getSourceText(ExpansionRange, SM, PP.getLangOpts());
IdentifierInfo *MacroII = PP.getIdentifierInfo(FoundName);
for (unsigned i = OldNumAttrs; i < Attrs.size(); ++i)
Attrs[i].setMacroIdentifier(MacroII, ExpansionRange.getBegin());
if (LateAttrs) {
for (unsigned i = OldNumLateAttrs; i < LateAttrs->size(); ++i)
(*LateAttrs)[i]->MacroII = MacroII;
}
}
}
Attrs.Range = SourceRange(StartLoc, *EndLoc);
}
/// Determine whether the given attribute has an identifier argument.
static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
#define CLANG_ATTR_IDENTIFIER_ARG_LIST
return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
#include "clang/Parse/AttrParserStringSwitches.inc"
.Default(false);
#undef CLANG_ATTR_IDENTIFIER_ARG_LIST
}
/// Determine whether the given attribute has a variadic identifier argument.
static bool attributeHasVariadicIdentifierArg(const IdentifierInfo &II) {
#define CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
#include "clang/Parse/AttrParserStringSwitches.inc"
.Default(false);
#undef CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
}
/// Determine whether the given attribute treats kw_this as an identifier.
static bool attributeTreatsKeywordThisAsIdentifier(const IdentifierInfo &II) {
#define CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
#include "clang/Parse/AttrParserStringSwitches.inc"
.Default(false);
#undef CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
}
/// Determine whether the given attribute parses a type argument.
static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
#define CLANG_ATTR_TYPE_ARG_LIST
return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
#include "clang/Parse/AttrParserStringSwitches.inc"
.Default(false);
#undef CLANG_ATTR_TYPE_ARG_LIST
}
/// Determine whether the given attribute requires parsing its arguments
/// in an unevaluated context or not.
static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
#define CLANG_ATTR_ARG_CONTEXT_LIST
return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
#include "clang/Parse/AttrParserStringSwitches.inc"
.Default(false);
#undef CLANG_ATTR_ARG_CONTEXT_LIST
}
IdentifierLoc *Parser::ParseIdentifierLoc() {
assert(Tok.is(tok::identifier) && "expected an identifier");
IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
Tok.getLocation(),
Tok.getIdentifierInfo());
ConsumeToken();
return IL;
}
void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
SourceLocation AttrNameLoc,
ParsedAttributes &Attrs,
SourceLocation *EndLoc,
IdentifierInfo *ScopeName,
SourceLocation ScopeLoc,
ParsedAttr::Syntax Syntax) {
BalancedDelimiterTracker Parens(*this, tok::l_paren);
Parens.consumeOpen();
TypeResult T;
if (Tok.isNot(tok::r_paren))
T = ParseTypeName();
if (Parens.consumeClose())
return;
if (T.isInvalid())
return;
if (T.isUsable())
Attrs.addNewTypeAttr(&AttrName,
SourceRange(AttrNameLoc, Parens.getCloseLocation()),
ScopeName, ScopeLoc, T.get(), Syntax);
else
Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
ScopeName, ScopeLoc, nullptr, 0, Syntax);
}
unsigned Parser::ParseAttributeArgsCommon(
IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
// Ignore the left paren location for now.
ConsumeParen();
bool ChangeKWThisToIdent = attributeTreatsKeywordThisAsIdentifier(*AttrName);
bool AttributeIsTypeArgAttr = attributeIsTypeArgAttr(*AttrName);
// Interpret "kw_this" as an identifier if the attributed requests it.
if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
Tok.setKind(tok::identifier);
ArgsVector ArgExprs;
if (Tok.is(tok::identifier)) {
// If this attribute wants an 'identifier' argument, make it so.
bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName) ||
attributeHasVariadicIdentifierArg(*AttrName);
ParsedAttr::Kind AttrKind =
ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax);
// If we don't know how to parse this attribute, but this is the only
// token in this argument, assume it's meant to be an identifier.
if (AttrKind == ParsedAttr::UnknownAttribute ||
AttrKind == ParsedAttr::IgnoredAttribute) {
const Token &Next = NextToken();
IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma);
}
if (IsIdentifierArg)
ArgExprs.push_back(ParseIdentifierLoc());
}
ParsedType TheParsedType;
if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
// Eat the comma.
if (!ArgExprs.empty())
ConsumeToken();
// Parse the non-empty comma-separated list of expressions.
do {
// Interpret "kw_this" as an identifier if the attributed requests it.
if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
Tok.setKind(tok::identifier);
ExprResult ArgExpr;
if (AttributeIsTypeArgAttr) {
TypeResult T = ParseTypeName();
if (T.isInvalid()) {
SkipUntil(tok::r_paren, StopAtSemi);
return 0;
}
if (T.isUsable())
TheParsedType = T.get();
break; // FIXME: Multiple type arguments are not implemented.
} else if (Tok.is(tok::identifier) &&
attributeHasVariadicIdentifierArg(*AttrName)) {
ArgExprs.push_back(ParseIdentifierLoc());
} else {
bool Uneval = attributeParsedArgsUnevaluated(*AttrName);
EnterExpressionEvaluationContext Unevaluated(
Actions,
Uneval ? Sema::ExpressionEvaluationContext::Unevaluated
: Sema::ExpressionEvaluationContext::ConstantEvaluated);
ExprResult ArgExpr(
Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
if (ArgExpr.isInvalid()) {
SkipUntil(tok::r_paren, StopAtSemi);
return 0;
}
ArgExprs.push_back(ArgExpr.get());
}
// Eat the comma, move to the next argument
} while (TryConsumeToken(tok::comma));
}
SourceLocation RParen = Tok.getLocation();
if (!ExpectAndConsume(tok::r_paren)) {
SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
if (AttributeIsTypeArgAttr && !TheParsedType.get().isNull()) {
Attrs.addNewTypeAttr(AttrName, SourceRange(AttrNameLoc, RParen),
ScopeName, ScopeLoc, TheParsedType, Syntax);
} else {
Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
ArgExprs.data(), ArgExprs.size(), Syntax);
}
}
if (EndLoc)
*EndLoc = RParen;
return static_cast<unsigned>(ArgExprs.size() + !TheParsedType.get().isNull());
}
/// Parse the arguments to a parameterized GNU attribute or
/// a C++11 attribute in "gnu" namespace.
void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName,
SourceLocation AttrNameLoc,
ParsedAttributes &Attrs,
SourceLocation *EndLoc,
IdentifierInfo *ScopeName,
SourceLocation ScopeLoc,
ParsedAttr::Syntax Syntax,
Declarator *D) {
assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
ParsedAttr::Kind AttrKind =
ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax);
if (AttrKind == ParsedAttr::AT_Availability) {
ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
ScopeLoc, Syntax);
return;
} else if (AttrKind == ParsedAttr::AT_ExternalSourceSymbol) {
ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
ScopeName, ScopeLoc, Syntax);
return;
} else if (AttrKind == ParsedAttr::AT_ObjCBridgeRelated) {
ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
ScopeName, ScopeLoc, Syntax);
return;
} else if (AttrKind == ParsedAttr::AT_SwiftNewType) {
ParseSwiftNewTypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
ScopeLoc, Syntax);
return;
} else if (AttrKind == ParsedAttr::AT_TypeTagForDatatype) {
ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
ScopeName, ScopeLoc, Syntax);
return;
} else if (attributeIsTypeArgAttr(*AttrName)) {
ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
ScopeLoc, Syntax);
return;
}
// These may refer to the function arguments, but need to be parsed early to
// participate in determining whether it's a redeclaration.
llvm::Optional<ParseScope> PrototypeScope;
if (normalizeAttrName(AttrName->getName()) == "enable_if" &&
D && D->isFunctionDeclarator()) {
DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
PrototypeScope.emplace(this, Scope::FunctionPrototypeScope |
Scope::FunctionDeclarationScope |
Scope::DeclScope);
for (unsigned i = 0; i != FTI.NumParams; ++i) {
ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
}
}
ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
ScopeLoc, Syntax);
}
unsigned Parser::ParseClangAttributeArgs(
IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
ParsedAttr::Kind AttrKind =
ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax);
switch (AttrKind) {
default:
return ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc,
ScopeName, ScopeLoc, Syntax);
case ParsedAttr::AT_ExternalSourceSymbol:
ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
ScopeName, ScopeLoc, Syntax);
break;
case ParsedAttr::AT_Availability:
ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
ScopeLoc, Syntax);
break;
case ParsedAttr::AT_ObjCBridgeRelated:
ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
ScopeName, ScopeLoc, Syntax);
break;
case ParsedAttr::AT_SwiftNewType:
ParseSwiftNewTypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
ScopeLoc, Syntax);
break;
case ParsedAttr::AT_TypeTagForDatatype:
ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
ScopeName, ScopeLoc, Syntax);
break;
}
return !Attrs.empty() ? Attrs.begin()->getNumArgs() : 0;
}
bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
SourceLocation AttrNameLoc,
ParsedAttributes &Attrs) {
// If the attribute isn't known, we will not attempt to parse any
// arguments.
if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName,
getTargetInfo(), getLangOpts())) {
// Eat the left paren, then skip to the ending right paren.
ConsumeParen();
SkipUntil(tok::r_paren);
return false;
}
SourceLocation OpenParenLoc = Tok.getLocation();
if (AttrName->getName() == "property") {
// The property declspec is more complex in that it can take one or two
// assignment expressions as a parameter, but the lhs of the assignment
// must be named get or put.
BalancedDelimiterTracker T(*this, tok::l_paren);
T.expectAndConsume(diag::err_expected_lparen_after,
AttrName->getNameStart(), tok::r_paren);
enum AccessorKind {
AK_Invalid = -1,
AK_Put = 0,
AK_Get = 1 // indices into AccessorNames
};
IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
bool HasInvalidAccessor = false;
// Parse the accessor specifications.
while (true) {
// Stop if this doesn't look like an accessor spec.
if (!Tok.is(tok::identifier)) {
// If the user wrote a completely empty list, use a special diagnostic.
if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
AccessorNames[AK_Put] == nullptr &&
AccessorNames[AK_Get] == nullptr) {
Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
break;
}
Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
break;
}
AccessorKind Kind;
SourceLocation KindLoc = Tok.getLocation();
StringRef KindStr = Tok.getIdentifierInfo()->getName();
if (KindStr == "get") {
Kind = AK_Get;
} else if (KindStr == "put") {
Kind = AK_Put;
// Recover from the common mistake of using 'set' instead of 'put'.
} else if (KindStr == "set") {
Diag(KindLoc, diag::err_ms_property_has_set_accessor)
<< FixItHint::CreateReplacement(KindLoc, "put");
Kind = AK_Put;
// Handle the mistake of forgetting the accessor kind by skipping
// this accessor.
} else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
ConsumeToken();
HasInvalidAccessor = true;
goto next_property_accessor;
// Otherwise, complain about the unknown accessor kind.
} else {
Diag(KindLoc, diag::err_ms_property_unknown_accessor);
HasInvalidAccessor = true;
Kind = AK_Invalid;
// Try to keep parsing unless it doesn't look like an accessor spec.
if (!NextToken().is(tok::equal))
break;
}
// Consume the identifier.
ConsumeToken();
// Consume the '='.
if (!TryConsumeToken(tok::equal)) {
Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
<< KindStr;
break;
}
// Expect the method name.
if (!Tok.is(tok::identifier)) {
Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
break;
}
if (Kind == AK_Invalid) {
// Just drop invalid accessors.
} else if (AccessorNames[Kind] != nullptr) {
// Complain about the repeated accessor, ignore it, and keep parsing.
Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
} else {
AccessorNames[Kind] = Tok.getIdentifierInfo();
}
ConsumeToken();
next_property_accessor:
// Keep processing accessors until we run out.
if (TryConsumeToken(tok::comma))
continue;
// If we run into the ')', stop without consuming it.
if (Tok.is(tok::r_paren))
break;
Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
break;
}
// Only add the property attribute if it was well-formed.
if (!HasInvalidAccessor)
Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
AccessorNames[AK_Get], AccessorNames[AK_Put],
ParsedAttr::AS_Declspec);
T.skipToEnd();
return !HasInvalidAccessor;
}
unsigned NumArgs =
ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
SourceLocation(), ParsedAttr::AS_Declspec);
// If this attribute's args were parsed, and it was expected to have
// arguments but none were provided, emit a diagnostic.
if (!Attrs.empty() && Attrs.begin()->getMaxArgs() && !NumArgs) {
Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
return false;
}
return true;
}
/// [MS] decl-specifier:
/// __declspec ( extended-decl-modifier-seq )
///
/// [MS] extended-decl-modifier-seq:
/// extended-decl-modifier[opt]
/// extended-decl-modifier extended-decl-modifier-seq
void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs,
SourceLocation *End) {
assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled");
assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
while (Tok.is(tok::kw___declspec)) {
ConsumeToken();
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
tok::r_paren))
return;
// An empty declspec is perfectly legal and should not warn. Additionally,
// you can specify multiple attributes per declspec.
while (Tok.isNot(tok::r_paren)) {
// Attribute not present.
if (TryConsumeToken(tok::comma))
continue;
if (Tok.is(tok::code_completion)) {
cutOffParsing();
Actions.CodeCompleteAttribute(AttributeCommonInfo::AS_Declspec);
return;
}
// We expect either a well-known identifier or a generic string. Anything
// else is a malformed declspec.
bool IsString = Tok.getKind() == tok::string_literal;
if (!IsString && Tok.getKind() != tok::identifier &&
Tok.getKind() != tok::kw_restrict) {
Diag(Tok, diag::err_ms_declspec_type);
T.skipToEnd();
return;
}
IdentifierInfo *AttrName;
SourceLocation AttrNameLoc;
if (IsString) {
SmallString<8> StrBuffer;
bool Invalid = false;
StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
if (Invalid) {
T.skipToEnd();
return;
}
AttrName = PP.getIdentifierInfo(Str);
AttrNameLoc = ConsumeStringToken();
} else {
AttrName = Tok.getIdentifierInfo();
AttrNameLoc = ConsumeToken();
}
bool AttrHandled = false;
// Parse attribute arguments.
if (Tok.is(tok::l_paren))
AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
else if (AttrName->getName() == "property")
// The property attribute must have an argument list.
Diag(Tok.getLocation(), diag::err_expected_lparen_after)
<< AttrName->getName();
if (!AttrHandled)
Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
ParsedAttr::AS_Declspec);
}
T.consumeClose();
if (End)
*End = T.getCloseLocation();
}
}
void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
// Treat these like attributes
while (true) {
switch (Tok.getKind()) {
case tok::kw___fastcall:
case tok::kw___stdcall:
case tok::kw___thiscall:
case tok::kw___regcall:
case tok::kw___cdecl:
case tok::kw___vectorcall:
case tok::kw___ptr64:
case tok::kw___w64:
case tok::kw___ptr32:
case tok::kw___sptr:
case tok::kw___uptr: {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
ParsedAttr::AS_Keyword);
break;
}
default:
return;
}
}
}
void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
SourceLocation StartLoc = Tok.getLocation();
SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
if (EndLoc.isValid()) {
SourceRange Range(StartLoc, EndLoc);
Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
}
}
SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
SourceLocation EndLoc;
while (true) {
switch (Tok.getKind()) {
case tok::kw_const:
case tok::kw_volatile:
case tok::kw___fastcall:
case tok::kw___stdcall:
case tok::kw___thiscall:
case tok::kw___cdecl:
case tok::kw___vectorcall:
case tok::kw___ptr32:
case tok::kw___ptr64:
case tok::kw___w64:
case tok::kw___unaligned:
case tok::kw___sptr:
case tok::kw___uptr:
EndLoc = ConsumeToken();
break;
default:
return EndLoc;
}
}
}
void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
// Treat these like attributes
while (Tok.is(tok::kw___pascal)) {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
ParsedAttr::AS_Keyword);
}
}
void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) {
// Treat these like attributes
while (Tok.is(tok::kw___kernel)) {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
ParsedAttr::AS_Keyword);
}
}
void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = Tok.getLocation();
Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
ParsedAttr::AS_Keyword);
}
void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) {
// Treat these like attributes, even though they're type specifiers.
while (true) {
switch (Tok.getKind()) {
case tok::kw__Nonnull:
case tok::kw__Nullable:
case tok::kw__Nullable_result:
case tok::kw__Null_unspecified: {
IdentifierInfo *AttrName = Tok.getIdentifierInfo();
SourceLocation AttrNameLoc = ConsumeToken();
if (!getLangOpts().ObjC)
Diag(AttrNameLoc, diag::ext_nullability)
<< AttrName;
attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
ParsedAttr::AS_Keyword);
break;
}
default:
return;
}
}
}
static bool VersionNumberSeparator(const char Separator) {
return (Separator == '.' || Separator == '_');
}
/// Parse a version number.
///
/// version:
/// simple-integer
/// simple-integer '.' simple-integer
/// simple-integer '_' simple-integer
/// simple-integer '.' simple-integer '.' simple-integer
/// simple-integer '_' simple-integer '_' simple-integer
VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
Range = SourceRange(Tok.getLocation(), Tok.getEndLoc());
if (!Tok.is(tok::numeric_constant)) {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren,
StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
return VersionTuple();
}
// Parse the major (and possibly minor and subminor) versions, which
// are stored in the numeric constant. We utilize a quirk of the
// lexer, which is that it handles something like 1.2.3 as a single
// numeric constant, rather than two separate tokens.
SmallString<512> Buffer;
Buffer.resize(Tok.getLength()+1);
const char *ThisTokBegin = &Buffer[0];
// Get the spelling of the token, which eliminates trigraphs, etc.
bool Invalid = false;
unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
if (Invalid)
return VersionTuple();
// Parse the major version.
unsigned AfterMajor = 0;
unsigned Major = 0;
while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
++AfterMajor;
}
if (AfterMajor == 0) {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren,
StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
return VersionTuple();
}
if (AfterMajor == ActualLength) {
ConsumeToken();
// We only had a single version component.
if (Major == 0) {
Diag(Tok, diag::err_zero_version);
return VersionTuple();
}
return VersionTuple(Major);
}
const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
if (!VersionNumberSeparator(AfterMajorSeparator)
|| (AfterMajor + 1 == ActualLength)) {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren,
StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
return VersionTuple();
}
// Parse the minor version.
unsigned AfterMinor = AfterMajor + 1;
unsigned Minor = 0;
while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
++AfterMinor;
}
if (AfterMinor == ActualLength) {
ConsumeToken();
// We had major.minor.
if (Major == 0 && Minor == 0) {
Diag(Tok, diag::err_zero_version);
return VersionTuple();
}
return VersionTuple(Major, Minor);
}
const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
// If what follows is not a '.' or '_', we have a problem.
if (!VersionNumberSeparator(AfterMinorSeparator)) {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren,
StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
return VersionTuple();
}
// Warn if separators, be it '.' or '_', do not match.
if (AfterMajorSeparator != AfterMinorSeparator)
Diag(Tok, diag::warn_expected_consistent_version_separator);
// Parse the subminor version.
unsigned AfterSubminor = AfterMinor + 1;
unsigned Subminor = 0;
while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
++AfterSubminor;
}
if (AfterSubminor != ActualLength) {
Diag(Tok, diag::err_expected_version);
SkipUntil(tok::comma, tok::r_paren,
StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
return VersionTuple();
}
ConsumeToken();
return VersionTuple(Major, Minor, Subminor);
}
/// Parse the contents of the "availability" attribute.
///
/// availability-attribute:
/// 'availability' '(' platform ',' opt-strict version-arg-list,
/// opt-replacement, opt-message')'
///
/// platform:
/// identifier
///
/// opt-strict:
/// 'strict' ','
///
/// version-arg-list:
/// version-arg
/// version-arg ',' version-arg-list
///
/// version-arg:
/// 'introduced' '=' version
/// 'deprecated' '=' version
/// 'obsoleted' = version
/// 'unavailable'
/// opt-replacement:
/// 'replacement' '=' <string>
/// opt-message:
/// 'message' '=' <string>
void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability,
SourceLocation AvailabilityLoc,
ParsedAttributes &attrs,
SourceLocation *endLoc,
IdentifierInfo *ScopeName,
SourceLocation ScopeLoc,
ParsedAttr::Syntax Syntax) {
enum { Introduced, Deprecated, Obsoleted, Unknown };
AvailabilityChange Changes[Unknown];
ExprResult MessageExpr, ReplacementExpr;
// Opening '('.
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.consumeOpen()) {
Diag(Tok, diag::err_expected) << tok::l_paren;
return;
}
// Parse the platform name.
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_availability_expected_platform);
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
IdentifierLoc *Platform = ParseIdentifierLoc();
if (const IdentifierInfo *const Ident = Platform->Ident) {
// Canonicalize platform name from "macosx" to "macos".
if (Ident->getName() == "macosx")
Platform->Ident = PP.getIdentifierInfo("macos");
// Canonicalize platform name from "macosx_app_extension" to
// "macos_app_extension".
else if (Ident->getName() == "macosx_app_extension")
Platform->Ident = PP.getIdentifierInfo("macos_app_extension");
else
Platform->Ident = PP.getIdentifierInfo(
AvailabilityAttr::canonicalizePlatformName(Ident->getName()));
}
// Parse the ',' following the platform name.
if (ExpectAndConsume(tok::comma)) {
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
// If we haven't grabbed the pointers for the identifiers
// "introduced", "deprecated", and "obsoleted", do so now.
if (!Ident_introduced) {
Ident_introduced = PP.getIdentifierInfo("introduced");
Ident_deprecated = PP.getIdentifierInfo("deprecated");
Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
Ident_unavailable = PP.getIdentifierInfo("unavailable");
Ident_message = PP.getIdentifierInfo("message");
Ident_strict = PP.getIdentifierInfo("strict");
Ident_replacement = PP.getIdentifierInfo("replacement");
}
// Parse the optional "strict", the optional "replacement" and the set of
// introductions/deprecations/removals.
SourceLocation UnavailableLoc, StrictLoc;
do {
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_availability_expected_change);
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
IdentifierInfo *Keyword = Tok.getIdentifierInfo();
SourceLocation KeywordLoc = ConsumeToken();
if (Keyword == Ident_strict) {
if (StrictLoc.isValid()) {
Diag(KeywordLoc, diag::err_availability_redundant)
<< Keyword << SourceRange(StrictLoc);
}
StrictLoc = KeywordLoc;
continue;
}
if (Keyword == Ident_unavailable) {
if (UnavailableLoc.isValid()) {
Diag(KeywordLoc, diag::err_availability_redundant)
<< Keyword << SourceRange(UnavailableLoc);
}
UnavailableLoc = KeywordLoc;
continue;
}
if (Keyword == Ident_deprecated && Platform->Ident &&
Platform->Ident->isStr("swift")) {
// For swift, we deprecate for all versions.
if (Changes[Deprecated].KeywordLoc.isValid()) {
Diag(KeywordLoc, diag::err_availability_redundant)
<< Keyword
<< SourceRange(Changes[Deprecated].KeywordLoc);
}
Changes[Deprecated].KeywordLoc = KeywordLoc;
// Use a fake version here.
Changes[Deprecated].Version = VersionTuple(1);
continue;
}
if (Tok.isNot(tok::equal)) {
Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
ConsumeToken();
if (Keyword == Ident_message || Keyword == Ident_replacement) {
if (Tok.isNot(tok::string_literal)) {
Diag(Tok, diag::err_expected_string_literal)
<< /*Source='availability attribute'*/2;
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
if (Keyword == Ident_message)
MessageExpr = ParseStringLiteralExpression();
else
ReplacementExpr = ParseStringLiteralExpression();
// Also reject wide string literals.
if (StringLiteral *MessageStringLiteral =
cast_or_null<StringLiteral>(MessageExpr.get())) {
if (!MessageStringLiteral->isAscii()) {
Diag(MessageStringLiteral->getSourceRange().getBegin(),
diag::err_expected_string_literal)
<< /*Source='availability attribute'*/ 2;
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
}
if (Keyword == Ident_message)
break;
else
continue;
}
// Special handling of 'NA' only when applied to introduced or
// deprecated.
if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
Tok.is(tok::identifier)) {
IdentifierInfo *NA = Tok.getIdentifierInfo();
if (NA->getName() == "NA") {
ConsumeToken();
if (Keyword == Ident_introduced)
UnavailableLoc = KeywordLoc;
continue;
}
}
SourceRange VersionRange;
VersionTuple Version = ParseVersionTuple(VersionRange);
if (Version.empty()) {
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
unsigned Index;
if (Keyword == Ident_introduced)
Index = Introduced;
else if (Keyword == Ident_deprecated)
Index = Deprecated;
else if (Keyword == Ident_obsoleted)
Index = Obsoleted;
else
Index = Unknown;
if (Index < Unknown) {
if (!Changes[Index].KeywordLoc.isInvalid()) {
Diag(KeywordLoc, diag::err_availability_redundant)
<< Keyword
<< SourceRange(Changes[Index].KeywordLoc,
Changes[Index].VersionRange.getEnd());
}
Changes[Index].KeywordLoc = KeywordLoc;
Changes[Index].Version = Version;
Changes[Index].VersionRange = VersionRange;
} else {
Diag(KeywordLoc, diag::err_availability_unknown_change)
<< Keyword << VersionRange;
}
} while (TryConsumeToken(tok::comma));
// Closing ')'.
if (T.consumeClose())
return;
if (endLoc)
*endLoc = T.getCloseLocation();
// The 'unavailable' availability cannot be combined with any other
// availability changes. Make sure that hasn't happened.
if (UnavailableLoc.isValid()) {
bool Complained = false;
for (unsigned Index = Introduced; Index != Unknown; ++Index) {
if (Changes[Index].KeywordLoc.isValid()) {
if (!Complained) {
Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
<< SourceRange(Changes[Index].KeywordLoc,
Changes[Index].VersionRange.getEnd());
Complained = true;
}
// Clear out the availability.
Changes[Index] = AvailabilityChange();
}
}
}
// Record this attribute
attrs.addNew(&Availability,
SourceRange(AvailabilityLoc, T.getCloseLocation()),
ScopeName, ScopeLoc,
Platform,
Changes[Introduced],
Changes[Deprecated],
Changes[Obsoleted],
UnavailableLoc, MessageExpr.get(),
Syntax, StrictLoc, ReplacementExpr.get());
}
/// Parse the contents of the "external_source_symbol" attribute.
///
/// external-source-symbol-attribute:
/// 'external_source_symbol' '(' keyword-arg-list ')'
///
/// keyword-arg-list:
/// keyword-arg
/// keyword-arg ',' keyword-arg-list
///
/// keyword-arg:
/// 'language' '=' <string>
/// 'defined_in' '=' <string>
/// 'generated_declaration'
void Parser::ParseExternalSourceSymbolAttribute(
IdentifierInfo &ExternalSourceSymbol, SourceLocation Loc,
ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
// Opening '('.
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.expectAndConsume())
return;
// Initialize the pointers for the keyword identifiers when required.
if (!Ident_language) {
Ident_language = PP.getIdentifierInfo("language");
Ident_defined_in = PP.getIdentifierInfo("defined_in");
Ident_generated_declaration = PP.getIdentifierInfo("generated_declaration");
}
ExprResult Language;
bool HasLanguage = false;
ExprResult DefinedInExpr;
bool HasDefinedIn = false;
IdentifierLoc *GeneratedDeclaration = nullptr;
// Parse the language/defined_in/generated_declaration keywords
do {
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_external_source_symbol_expected_keyword);
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
SourceLocation KeywordLoc = Tok.getLocation();
IdentifierInfo *Keyword = Tok.getIdentifierInfo();
if (Keyword == Ident_generated_declaration) {
if (GeneratedDeclaration) {
Diag(Tok, diag::err_external_source_symbol_duplicate_clause) << Keyword;
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
GeneratedDeclaration = ParseIdentifierLoc();
continue;
}
if (Keyword != Ident_language && Keyword != Ident_defined_in) {
Diag(Tok, diag::err_external_source_symbol_expected_keyword);
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
ConsumeToken();
if (ExpectAndConsume(tok::equal, diag::err_expected_after,
Keyword->getName())) {
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
bool HadLanguage = HasLanguage, HadDefinedIn = HasDefinedIn;
if (Keyword == Ident_language)
HasLanguage = true;
else
HasDefinedIn = true;
if (Tok.isNot(tok::string_literal)) {
Diag(Tok, diag::err_expected_string_literal)
<< /*Source='external_source_symbol attribute'*/ 3
<< /*language | source container*/ (Keyword != Ident_language);
SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
continue;
}
if (Keyword == Ident_language) {
if (HadLanguage) {
Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
<< Keyword;
ParseStringLiteralExpression();
continue;
}
Language = ParseStringLiteralExpression();
} else {
assert(Keyword == Ident_defined_in && "Invalid clause keyword!");
if (HadDefinedIn) {
Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
<< Keyword;
ParseStringLiteralExpression();
continue;
}
DefinedInExpr = ParseStringLiteralExpression();
}
} while (TryConsumeToken(tok::comma));
// Closing ')'.
if (T.consumeClose())
return;
if (EndLoc)
*EndLoc = T.getCloseLocation();
ArgsUnion Args[] = {Language.get(), DefinedInExpr.get(),
GeneratedDeclaration};
Attrs.addNew(&ExternalSourceSymbol, SourceRange(Loc, T.getCloseLocation()),
ScopeName, ScopeLoc, Args, llvm::array_lengthof(Args), Syntax);
}
/// Parse the contents of the "objc_bridge_related" attribute.
/// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
/// related_class:
/// Identifier
///
/// opt-class_method:
/// Identifier: | <empty>
///
/// opt-instance_method:
/// Identifier | <empty>
///
void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated,
SourceLocation ObjCBridgeRelatedLoc,
ParsedAttributes &attrs,
SourceLocation *endLoc,
IdentifierInfo *ScopeName,
SourceLocation ScopeLoc,
ParsedAttr::Syntax Syntax) {
// Opening '('.
BalancedDelimiterTracker T(*this, tok::l_paren);
if (T.consumeOpen()) {
Diag(Tok, diag::err_expected) << tok::l_paren;
return;
}
// Parse the related class name.
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_objcbridge_related_expected_related_class);
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
IdentifierLoc *RelatedClass = ParseIdentifierLoc();
if (ExpectAndConsume(tok::comma)) {
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
// Parse class method name. It's non-optional in the sense that a trailing
// comma is required, but it can be the empty string, and then we record a
// nullptr.
IdentifierLoc *ClassMethod = nullptr;
if (Tok.is(tok::identifier)) {
ClassMethod = ParseIdentifierLoc();
if (!TryConsumeToken(tok::colon)) {
Diag(Tok, diag::err_objcbridge_related_selector_name);
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
}
if (!TryConsumeToken(tok::comma)) {
if (Tok.is(tok::colon))
Diag(Tok, diag::err_objcbridge_related_selector_name);
else
Diag(Tok, diag::err_expected) << tok::comma;
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
// Parse instance method name. Also non-optional but empty string is
// permitted.
IdentifierLoc *InstanceMethod = nullptr;
if (Tok.is(tok::identifier))
InstanceMethod = ParseIdentifierLoc();
else if (Tok.isNot(tok::r_paren)) {
Diag(Tok, diag::err_expected) << tok::r_paren;
SkipUntil(tok::r_paren, StopAtSemi);
return;
}
// Closing ')'.
if (T.consumeClose())
return;
if (endLoc)
*endLoc = T.getCloseLocation();
// Record this attribute
attrs.addNew(&ObjCBridgeRelated,
SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
ScopeName, ScopeLoc,
RelatedClass,
ClassMethod,
InstanceMethod,
Syntax);
}
void Parser::ParseSwiftNewTypeAttribute(
IdentifierInfo &AttrName, SourceLocation AttrNameLoc,
ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) {
BalancedDelimiterTracker T(*this, tok::l_paren);
// Opening '('
if (T.consumeOpen()) {
Diag(Tok, diag::err_expected) << tok::l_paren;
return;
}
if (Tok.is(tok::r_paren)) {
Diag(Tok.getLocation(), diag::err_argument_required_after_attribute);
T.consumeClose();
return;
}
if (Tok.isNot(tok::kw_struct) && Tok.isNot(tok::kw_enum)) {
Diag(Tok, diag::warn_attribute_type_not_supported)
<< &AttrName << Tok.getIdentifierInfo();
if (!isTokenSpecial())
ConsumeToken();
T.consumeClose();
return;
}
auto *SwiftType = IdentifierLoc::create(Actions.Context, Tok.getLocation(),
Tok.getIdentifierInfo());
ConsumeToken();
// Closing ')'
if (T.consumeClose())
return;
if (EndLoc)
*EndLoc = T.getCloseLocation();
ArgsUnion Args[] = {SwiftType};
Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, T.getCloseLocation()),
ScopeName, ScopeLoc, Args, llvm::array_lengthof(Args), Syntax);
}
void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName,
SourceLocation AttrNameLoc,
ParsedAttributes &Attrs,
SourceLocation *EndLoc,
IdentifierInfo *ScopeName,
SourceLocation ScopeLoc,
ParsedAttr::Syntax Syntax) {
assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected) << tok::identifier;
T.skipToEnd();
return;
}
IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
if (ExpectAndConsume(tok::comma)) {
T.skipToEnd();
return;
}
SourceRange MatchingCTypeRange;
TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
if (MatchingCType.isInvalid()) {
T.skipToEnd();
return;
}
bool LayoutCompatible = false;
bool MustBeNull = false;
while (TryConsumeToken(tok::comma)) {
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected) << tok::identifier;
T.skipToEnd();
return;
}
IdentifierInfo *Flag = Tok.getIdentifierInfo();
if (Flag->isStr("layout_compatible"))
LayoutCompatible = true;
else if (Flag->isStr("must_be_null"))
MustBeNull = true;
else {
Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
T.skipToEnd();
return;
}
ConsumeToken(); // consume flag
}
if (!T.consumeClose()) {
Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
ArgumentKind, MatchingCType.get(),
LayoutCompatible, MustBeNull, Syntax);
}
if (EndLoc)
*EndLoc = T.getCloseLocation();
}
/// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
/// of a C++11 attribute-specifier in a location where an attribute is not
/// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
/// situation.
///
/// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
/// this doesn't appear to actually be an attribute-specifier, and the caller
/// should try to parse it.
bool Parser::DiagnoseProhibitedCXX11Attribute() {
assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
case CAK_NotAttributeSpecifier:
// No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
return false;
case CAK_InvalidAttributeSpecifier:
Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
return false;
case CAK_AttributeSpecifier:
// Parse and discard the attributes.
SourceLocation BeginLoc = ConsumeBracket();
ConsumeBracket();
SkipUntil(tok::r_square);
assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
SourceLocation EndLoc = ConsumeBracket();
Diag(BeginLoc, diag::err_attributes_not_allowed)
<< SourceRange(BeginLoc, EndLoc);
return true;
}
llvm_unreachable("All cases handled above.");
}
/// We have found the opening square brackets of a C++11
/// attribute-specifier in a location where an attribute is not permitted, but
/// we know where the attributes ought to be written. Parse them anyway, and
/// provide a fixit moving them to the right place.
void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs,
SourceLocation CorrectLocation) {
assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
Tok.is(tok::kw_alignas));
// Consume the attributes.
SourceLocation Loc = Tok.getLocation();
ParseCXX11Attributes(Attrs);
CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
// FIXME: use err_attributes_misplaced
Diag(Loc, diag::err_attributes_not_allowed)
<< FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
<< FixItHint::CreateRemoval(AttrRange);
}
void Parser::DiagnoseProhibitedAttributes(
const SourceRange &Range, const SourceLocation CorrectLocation) {
if (CorrectLocation.isValid()) {
CharSourceRange AttrRange(Range, true);
Diag(CorrectLocation, diag::err_attributes_misplaced)
<< FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
<< FixItHint::CreateRemoval(AttrRange);
} else
Diag(Range.getBegin(), diag::err_attributes_not_allowed) << Range;
}
void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &Attrs,
unsigned DiagID, bool DiagnoseEmptyAttrs) {
if (DiagnoseEmptyAttrs && Attrs.empty() && Attrs.Range.isValid()) {
// An attribute list has been parsed, but it was empty.
// This is the case for [[]].
const auto &LangOpts = getLangOpts();
auto &SM = PP.getSourceManager();
Token FirstLSquare;
Lexer::getRawToken(Attrs.Range.getBegin(), FirstLSquare, SM, LangOpts);
if (FirstLSquare.is(tok::l_square)) {
llvm::Optional<Token> SecondLSquare =
Lexer::findNextToken(FirstLSquare.getLocation(), SM, LangOpts);
if (SecondLSquare && SecondLSquare->is(tok::l_square)) {
// The attribute range starts with [[, but is empty. So this must
// be [[]], which we are supposed to diagnose because
// DiagnoseEmptyAttrs is true.
Diag(Attrs.Range.getBegin(), DiagID) << Attrs.Range;
return;
}
}
}
for (const ParsedAttr &AL : Attrs) {
if (!AL.isCXX11Attribute() && !AL.isC2xAttribute())
continue;
if (AL.getKind() == ParsedAttr::UnknownAttribute)
Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
<< AL << AL.getRange();
else {
Diag(AL.getLoc(), DiagID) << AL;
AL.setInvalid();
}
}
}
void Parser::DiagnoseCXX11AttributeExtension(ParsedAttributesWithRange &Attrs) {
for (const ParsedAttr &PA : Attrs) {
if (PA.isCXX11Attribute() || PA.isC2xAttribute())
Diag(PA.getLoc(), diag::ext_cxx11_attr_placement) << PA << PA.getRange();
}
}
// Usually, `__attribute__((attrib)) class Foo {} var` means that attribute
// applies to var, not the type Foo.
// As an exception to the rule, __declspec(align(...)) before the
// class-key affects the type instead of the variable.
// Also, Microsoft-style [attributes] seem to affect the type instead of the
// variable.
// This function moves attributes that should apply to the type off DS to Attrs.
void Parser::stripTypeAttributesOffDeclSpec(ParsedAttributesWithRange &Attrs,
DeclSpec &DS,
Sema::TagUseKind TUK) {
if (TUK == Sema::TUK_Reference)
return;
llvm::SmallVector<ParsedAttr *, 1> ToBeMoved;
for (ParsedAttr &AL : DS.getAttributes()) {
if ((AL.getKind() == ParsedAttr::AT_Aligned &&
AL.isDeclspecAttribute()) ||
AL.isMicrosoftAttribute())
ToBeMoved.push_back(&AL);
}
for (ParsedAttr *AL : ToBeMoved) {
DS.getAttributes().remove(AL);
Attrs.addAtEnd(AL);
}
}
/// ParseDeclaration - Parse a full 'declaration', which consists of
/// declaration-specifiers, some number of declarators, and a semicolon.
/// 'Context' should be a DeclaratorContext value. This returns the
/// location of the semicolon in DeclEnd.
///
/// declaration: [C99 6.7]
/// block-declaration ->
/// simple-declaration
/// others [FIXME]
/// [C++] template-declaration
/// [C++] namespace-definition
/// [C++] using-directive
/// [C++] using-declaration
/// [C++11/C11] static_assert-declaration
/// others... [FIXME]
///
Parser::DeclGroupPtrTy
Parser::ParseDeclaration(DeclaratorContext Context, SourceLocation &DeclEnd,
ParsedAttributesWithRange &attrs,
SourceLocation *DeclSpecStart) {
ParenBraceBracketBalancer BalancerRAIIObj(*this);
// Must temporarily exit the objective-c container scope for
// parsing c none objective-c decls.
ObjCDeclContextSwitch ObjCDC(*this);
Decl *SingleDecl = nullptr;
switch (Tok.getKind()) {
case tok::kw_template:
case tok::kw_export:
ProhibitAttributes(attrs);
SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd, attrs);
break;
case tok::kw_inline:
// Could be the start of an inline namespace. Allowed as an ext in C++03.
if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
ProhibitAttributes(attrs);
SourceLocation InlineLoc = ConsumeToken();
return ParseNamespace(Context, DeclEnd, InlineLoc);
}
return ParseSimpleDeclaration(Context, DeclEnd, attrs, true, nullptr,
DeclSpecStart);
case tok::kw_namespace:
ProhibitAttributes(attrs);
return ParseNamespace(Context, DeclEnd);
case tok::kw_using:
return ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
DeclEnd, attrs);
case tok::kw_static_assert:
case tok::kw__Static_assert:
ProhibitAttributes(attrs);
SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
break;
default:
return ParseSimpleDeclaration(Context, DeclEnd, attrs, true, nullptr,
DeclSpecStart);
}
// This routine returns a DeclGroup, if the thing we parsed only contains a
// single decl, convert it now.
return Actions.ConvertDeclToDeclGroup(SingleDecl);
}
/// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
/// declaration-specifiers init-declarator-list[opt] ';'
/// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
/// init-declarator-list ';'
///[C90/C++]init-declarator-list ';' [TODO]
/// [OMP] threadprivate-directive
/// [OMP] allocate-directive [TODO]
///
/// for-range-declaration: [C++11 6.5p1: stmt.ranged]
/// attribute-specifier-seq[opt] type-specifier-seq declarator
///
/// If RequireSemi is false, this does not check for a ';' at the end of the
/// declaration. If it is true, it checks for and eats it.
///
/// If FRI is non-null, we might be parsing a for-range-declaration instead
/// of a simple-declaration. If we find that we are, we also parse the
/// for-range-initializer, and place it here.
///
/// DeclSpecStart is used when decl-specifiers are parsed before parsing
/// the Declaration. The SourceLocation for this Decl is set to
/// DeclSpecStart if DeclSpecStart is non-null.
Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(
DeclaratorContext Context, SourceLocation &DeclEnd,
ParsedAttributesWithRange &Attrs, bool RequireSemi, ForRangeInit *FRI,
SourceLocation *DeclSpecStart) {
// Parse the common declaration-specifiers piece.
ParsingDeclSpec DS(*this);
DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
// If we had a free-standing type definition with a missing semicolon, we
// may get this far before the problem becomes obvious.
if (DS.hasTagDefinition() &&
DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
return nullptr;
// C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
// declaration-specifiers init-declarator-list[opt] ';'
if (Tok.is(tok::semi)) {
ProhibitAttributes(Attrs);
DeclEnd = Tok.getLocation();
if (RequireSemi) ConsumeToken();
RecordDecl *AnonRecord = nullptr;
Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
DS, AnonRecord);
DS.complete(TheDecl);
if (AnonRecord) {
Decl* decls[] = {AnonRecord, TheDecl};
return Actions.BuildDeclaratorGroup(decls);
}
return Actions.ConvertDeclToDeclGroup(TheDecl);
}
if (DeclSpecStart)
DS.SetRangeStart(*DeclSpecStart);
DS.takeAttributesFrom(Attrs);
return ParseDeclGroup(DS, Context, &DeclEnd, FRI);
}
/// Returns true if this might be the start of a declarator, or a common typo
/// for a declarator.
bool Parser::MightBeDeclarator(DeclaratorContext Context) {
switch (Tok.getKind()) {
case tok::annot_cxxscope:
case tok::annot_template_id:
case tok::caret:
case tok::code_completion:
case tok::coloncolon:
case tok::ellipsis:
case tok::kw___attribute:
case tok::kw_operator:
case tok::l_paren:
case tok::star:
return true;
case tok::amp:
case tok::ampamp:
return getLangOpts().CPlusPlus;
case tok::l_square: // Might be an attribute on an unnamed bit-field.
return Context == DeclaratorContext::Member && getLangOpts().CPlusPlus11 &&
NextToken().is(tok::l_square);
case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
return Context == DeclaratorContext::Member || getLangOpts().CPlusPlus;
case tok::identifier:
switch (NextToken().getKind()) {
case tok::code_completion:
case tok::coloncolon:
case tok::comma:
case tok::equal:
case tok::equalequal: // Might be a typo for '='.
case tok::kw_alignas:
case tok::kw_asm:
case tok::kw___attribute:
case tok::l_brace:
case tok::l_paren:
case tok::l_square:
case tok::less:
case tok::r_brace:
case tok::r_paren:
case tok::r_square:
case tok::semi:
return true;
case tok::colon:
// At namespace scope, 'identifier:' is probably a typo for 'identifier::'
// and in block scope it's probably a label. Inside a class definition,
// this is a bit-field.
return Context == DeclaratorContext::Member ||
(getLangOpts().CPlusPlus && Context == DeclaratorContext::File);
case tok::identifier: // Possible virt-specifier.
return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
default:
return false;
}
default:
return false;
}
}
/// Skip until we reach something which seems like a sensible place to pick
/// up parsing after a malformed declaration. This will sometimes stop sooner
/// than SkipUntil(tok::r_brace) would, but will never stop later.
void Parser::SkipMalformedDecl() {
while (true) {
switch (Tok.getKind()) {
case tok::l_brace:
// Skip until matching }, then stop. We've probably skipped over
// a malformed class or function definition or similar.
ConsumeBrace();
SkipUntil(tok::r_brace);
if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) {
// This declaration isn't over yet. Keep skipping.
continue;
}
TryConsumeToken(tok::semi);
return;
case tok::l_square:
ConsumeBracket();
SkipUntil(tok::r_square);
continue;
case tok::l_paren:
ConsumeParen();
SkipUntil(tok::r_paren);
continue;
case tok::r_brace:
return;
case tok::semi:
ConsumeToken();
return;
case tok::kw_inline:
// 'inline namespace' at the start of a line is almost certainly
// a good place to pick back up parsing, except in an Objective-C
// @interface context.
if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
(!ParsingInObjCContainer || CurParsedObjCImpl))
return;
break;
case tok::kw_namespace:
// 'namespace' at the start of a line is almost certainly a good
// place to pick back up parsing, except in an Objective-C
// @interface context.
if (Tok.isAtStartOfLine() &&
(!ParsingInObjCContainer || CurParsedObjCImpl))
return;
break;
case tok::at:
// @end is very much like } in Objective-C contexts.
if (NextToken().isObjCAtKeyword(tok::objc_end) &&
ParsingInObjCContainer)
return;
break;
case tok::minus:
case tok::plus:
// - and + probably start new method declarations in Objective-C contexts.
if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
return;
break;
case tok::eof:
case tok::annot_module_begin:
case tok::annot_module_end:
case tok::annot_module_include:
return;
default:
break;
}
ConsumeAnyToken();
}
}
/// ParseDeclGroup - Having concluded that this is either a function
/// definition or a group of object declarations, actually parse the
/// result.
Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
DeclaratorContext Context,
SourceLocation *DeclEnd,
ForRangeInit *FRI) {
// Parse the first declarator.
ParsingDeclarator D(*this, DS, Context);
ParseDeclarator(D);
// Bail out if the first declarator didn't seem well-formed.
if (!D.hasName() && !D.mayOmitIdentifier()) {
SkipMalformedDecl();
return nullptr;
}
if (Tok.is(tok::kw_requires))
ParseTrailingRequiresClause(D);
// Save late-parsed attributes for now; they need to be parsed in the
// appropriate function scope after the function Decl has been constructed.
// These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
LateParsedAttrList LateParsedAttrs(true);
if (D.isFunctionDeclarator()) {
MaybeParseGNUAttributes(D, &LateParsedAttrs);
// The _Noreturn keyword can't appear here, unlike the GNU noreturn
// attribute. If we find the keyword here, tell the user to put it
// at the start instead.
if (Tok.is(tok::kw__Noreturn)) {
SourceLocation Loc = ConsumeToken();
const char *PrevSpec;
unsigned DiagID;
// We can offer a fixit if it's valid to mark this function as _Noreturn
// and we don't have any other declarators in this declaration.
bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
MaybeParseGNUAttributes(D, &LateParsedAttrs);
Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try);
Diag(Loc, diag::err_c11_noreturn_misplaced)
<< (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
<< (Fixit ? FixItHint::CreateInsertion(D.getBeginLoc(), "_Noreturn ")
: FixItHint());
}
}
// Check to see if we have a function *definition* which must have a body.
if (D.isFunctionDeclarator()) {
if (Tok.is(tok::equal) && NextToken().is(tok::code_completion)) {
cutOffParsing();
Actions.CodeCompleteAfterFunctionEquals(D);
return nullptr;
}
// We're at the point where the parsing of function declarator is finished.
//
// A common error is that users accidently add a virtual specifier
// (e.g. override) in an out-line method definition.
// We attempt to recover by stripping all these specifiers coming after
// the declarator.
while (auto Specifier = isCXX11VirtSpecifier()) {
Diag(Tok, diag::err_virt_specifier_outside_class)
<< VirtSpecifiers::getSpecifierName(Specifier)
<< FixItHint::CreateRemoval(Tok.getLocation());
ConsumeToken();
}
// Look at the next token to make sure that this isn't a function
// declaration. We have to check this because __attribute__ might be the
// start of a function definition in GCC-extended K&R C.
if (!isDeclarationAfterDeclarator()) {
// Function definitions are only allowed at file scope and in C++ classes.
// The C++ inline method definition case is handled elsewhere, so we only
// need to handle the file scope definition case.
if (Context == DeclaratorContext::File) {
if (isStartOfFunctionDefinition(D)) {
if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
Diag(Tok, diag::err_function_declared_typedef);
// Recover by treating the 'typedef' as spurious.
DS.ClearStorageClassSpecs();
}
Decl *TheDecl = ParseFunctionDefinition(D, ParsedTemplateInfo(),
&LateParsedAttrs);
return Actions.ConvertDeclToDeclGroup(TheDecl);
}
if (isDeclarationSpecifier()) {
// If there is an invalid declaration specifier right after the
// function prototype, then we must be in a missing semicolon case
// where this isn't actually a body. Just fall through into the code
// that handles it as a prototype, and let the top-level code handle
// the erroneous declspec where it would otherwise expect a comma or
// semicolon.
} else {
Diag(Tok, diag::err_expected_fn_body);
SkipUntil(tok::semi);
return nullptr;
}
} else {
if (Tok.is(tok::l_brace)) {
Diag(Tok, diag::err_function_definition_not_allowed);
SkipMalformedDecl();
return nullptr;
}
}
}
}
if (ParseAsmAttributesAfterDeclarator(D))
return nullptr;
// C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
// must parse and analyze the for-range-initializer before the declaration is
// analyzed.
//
// Handle the Objective-C for-in loop variable similarly, although we
// don't need to parse the container in advance.
if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
bool IsForRangeLoop = false;
if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
IsForRangeLoop = true;
if (getLangOpts().OpenMP)
Actions.startOpenMPCXXRangeFor();
if (Tok.is(tok::l_brace))
FRI->RangeExpr = ParseBraceInitializer();
else
FRI->RangeExpr = ParseExpression();
}
Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
if (IsForRangeLoop) {
Actions.ActOnCXXForRangeDecl(ThisDecl);
} else {
// Obj-C for loop
if (auto *VD = dyn_cast_or_null<VarDecl>(ThisDecl))
VD->setObjCForDecl(true);
}
Actions.FinalizeDeclaration(ThisDecl);
D.complete(ThisDecl);
return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
}
SmallVector<Decl *, 8> DeclsInGroup;
Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
D, ParsedTemplateInfo(), FRI);
if (LateParsedAttrs.size() > 0)
ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
D.complete(FirstDecl);
if (FirstDecl)
DeclsInGroup.push_back(FirstDecl);
bool ExpectSemi = Context != DeclaratorContext::ForInit;
// If we don't have a comma, it is either the end of the list (a ';') or an
// error, bail out.
SourceLocation CommaLoc;
while (TryConsumeToken(tok::comma, CommaLoc)) {
if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
// This comma was followed by a line-break and something which can't be
// the start of a declarator. The comma was probably a typo for a
// semicolon.
Diag(CommaLoc, diag::err_expected_semi_declaration)
<< FixItHint::CreateReplacement(CommaLoc, ";");
ExpectSemi = false;
break;
}
// Parse the next declarator.
D.clear();
D.setCommaLoc(CommaLoc);
// Accept attributes in an init-declarator. In the first declarator in a
// declaration, these would be part of the declspec. In subsequent
// declarators, they become part of the declarator itself, so that they
// don't apply to declarators after *this* one. Examples:
// short __attribute__((common)) var; -> declspec
// short var __attribute__((common)); -> declarator
// short x, __attribute__((common)) var; -> declarator
MaybeParseGNUAttributes(D);
// MSVC parses but ignores qualifiers after the comma as an extension.
if (getLangOpts().MicrosoftExt)
DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
ParseDeclarator(D);
if (!D.isInvalidType()) {
// C++2a [dcl.decl]p1
// init-declarator:
// declarator initializer[opt]
// declarator requires-clause
if (Tok.is(tok::kw_requires))
ParseTrailingRequiresClause(D);
Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
D.complete(ThisDecl);
if (ThisDecl)
DeclsInGroup.push_back(ThisDecl);
}
}
if (DeclEnd)
*DeclEnd = Tok.getLocation();
if (ExpectSemi && ExpectAndConsumeSemi(
Context == DeclaratorContext::File
? diag::err_invalid_token_after_toplevel_declarator
: diag::err_expected_semi_declaration)) {
// Okay, there was no semicolon and one was expected. If we see a
// declaration specifier, just assume it was missing and continue parsing.
// Otherwise things are very confused and we skip to recover.
if (!isDeclarationSpecifier()) {
SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
TryConsumeToken(tok::semi);
}
}
return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
}
/// Parse an optional simple-asm-expr and attributes, and attach them to a
/// declarator. Returns true on an error.
bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
// If a simple-asm-expr is present, parse it.
if (Tok.is(tok::kw_asm)) {
SourceLocation Loc;
ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
if (AsmLabel.isInvalid()) {
SkipUntil(tok::semi, StopBeforeMatch);
return true;
}
D.setAsmLabel(AsmLabel.get());
D.SetRangeEnd(Loc);
}
MaybeParseGNUAttributes(D);
return false;
}
/// Parse 'declaration' after parsing 'declaration-specifiers
/// declarator'. This method parses the remainder of the declaration
/// (including any attributes or initializer, among other things) and
/// finalizes the declaration.
///
/// init-declarator: [C99 6.7]
/// declarator
/// declarator '=' initializer
/// [GNU] declarator simple-asm-expr[opt] attributes[opt]
/// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer
/// [C++] declarator initializer[opt]
///
/// [C++] initializer:
/// [C++] '=' initializer-clause
/// [C++] '(' expression-list ')'
/// [C++0x] '=' 'default' [TODO]
/// [C++0x] '=' 'delete'
/// [C++0x] braced-init-list
///
/// According to the standard grammar, =default and =delete are function
/// definitions, but that definitely doesn't fit with the parser here.
///
Decl *Parser::ParseDeclarationAfterDeclarator(
Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
if (ParseAsmAttributesAfterDeclarator(D))
return nullptr;
return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
}
Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
// RAII type used to track whether we're inside an initializer.
struct InitializerScopeRAII {
Parser &P;
Declarator &D;
Decl *ThisDecl;
InitializerScopeRAII(Parser &P, Declarator &D, Decl *ThisDecl)
: P(P), D(D), ThisDecl(ThisDecl) {
if (ThisDecl && P.getLangOpts().CPlusPlus) {
Scope *S = nullptr;
if (D.getCXXScopeSpec().isSet()) {
P.EnterScope(0);
S = P.getCurScope();
}
P.Actions.ActOnCXXEnterDeclInitializer(S, ThisDecl);
}
}
~InitializerScopeRAII() { pop(); }
void pop() {
if (ThisDecl && P.getLangOpts().CPlusPlus) {
Scope *S = nullptr;
if (D.getCXXScopeSpec().isSet())
S = P.getCurScope();
P.Actions.ActOnCXXExitDeclInitializer(S, ThisDecl);
if (S)
P.ExitScope();
}
ThisDecl = nullptr;
}
};
enum class InitKind { Uninitialized, Equal, CXXDirect, CXXBraced };
InitKind TheInitKind;
// If a '==' or '+=' is found, suggest a fixit to '='.
if (isTokenEqualOrEqualTypo())
TheInitKind = InitKind::Equal;
else if (Tok.is(tok::l_paren))
TheInitKind = InitKind::CXXDirect;
else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
(!CurParsedObjCImpl || !D.isFunctionDeclarator()))
TheInitKind = InitKind::CXXBraced;
else
TheInitKind = InitKind::Uninitialized;
if (TheInitKind != InitKind::Uninitialized)
D.setHasInitializer();
// Inform Sema that we just parsed this declarator.
Decl *ThisDecl = nullptr;
Decl *OuterDecl = nullptr;
switch (TemplateInfo.Kind) {
case ParsedTemplateInfo::NonTemplate:
ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
break;
case ParsedTemplateInfo::Template:
case ParsedTemplateInfo::ExplicitSpecialization: {
ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
*TemplateInfo.TemplateParams,
D);
if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl)) {
// Re-direct this decl to refer to the templated decl so that we can
// initialize it.
ThisDecl = VT->getTemplatedDecl();
OuterDecl = VT;
}
break;
}
case ParsedTemplateInfo::ExplicitInstantiation: {
if (Tok.is(tok::semi)) {
DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
if (ThisRes.isInvalid()) {
SkipUntil(tok::semi, StopBeforeMatch);
return nullptr;
}
ThisDecl = ThisRes.get();
} else {
// FIXME: This check should be for a variable template instantiation only.
// Check that this is a valid instantiation
if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
// If the declarator-id is not a template-id, issue a diagnostic and
// recover by ignoring the 'template' keyword.
Diag(Tok, diag::err_template_defn_explicit_instantiation)
<< 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
} else {
SourceLocation LAngleLoc =
PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
Diag(D.getIdentifierLoc(),
diag::err_explicit_instantiation_with_definition)
<< SourceRange(TemplateInfo.TemplateLoc)
<< FixItHint::CreateInsertion(LAngleLoc, "<>");
// Recover as if it were an explicit specialization.
TemplateParameterLists FakedParamLists;
FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, None,
LAngleLoc, nullptr));
ThisDecl =
Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
}
}
break;
}
}
switch (TheInitKind) {
// Parse declarator '=' initializer.
case InitKind::Equal: {
SourceLocation EqualLoc = ConsumeToken();
if (Tok.is(tok::kw_delete)) {
if (D.isFunctionDeclarator())
Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
<< 1 /* delete */;
else
Diag(ConsumeToken(), diag::err_deleted_non_function);
} else if (Tok.is(tok::kw_default)) {
if (D.isFunctionDeclarator())
Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
<< 0 /* default */;
else
Diag(ConsumeToken(), diag::err_default_special_members)
<< getLangOpts().CPlusPlus20;
} else {
InitializerScopeRAII InitScope(*this, D, ThisDecl);
if (Tok.is(tok::code_completion)) {
cutOffParsing();
Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
Actions.FinalizeDeclaration(ThisDecl);
return nullptr;
}
PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl);
ExprResult Init = ParseInitializer();
// If this is the only decl in (possibly) range based for statement,
// our best guess is that the user meant ':' instead of '='.
if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
<< FixItHint::CreateReplacement(EqualLoc, ":");
// We are trying to stop parser from looking for ';' in this for
// statement, therefore preventing spurious errors to be issued.
FRI->ColonLoc = EqualLoc;
Init = ExprError();
FRI->RangeExpr = Init;
}
InitScope.pop();
if (Init.isInvalid()) {
SmallVector<tok::TokenKind, 2> StopTokens;
StopTokens.push_back(tok::comma);
if (D.getContext() == DeclaratorContext::ForInit ||
D.getContext() == DeclaratorContext::SelectionInit)
StopTokens.push_back(tok::r_paren);
SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
Actions.ActOnInitializerError(ThisDecl);
} else
Actions.AddInitializerToDecl(ThisDecl, Init.get(),
/*DirectInit=*/false);
}
break;
}
case InitKind::CXXDirect: {
// Parse C++ direct initializer: '(' expression-list ')'
BalancedDelimiterTracker T(*this, tok::l_paren);
T.consumeOpen();
ExprVector Exprs;
CommaLocsTy CommaLocs;
InitializerScopeRAII InitScope(*this, D, ThisDecl);
auto ThisVarDecl = dyn_cast_or_null<VarDecl>(ThisDecl);
auto RunSignatureHelp = [&]() {
QualType PreferredType = Actions.ProduceConstructorSignatureHelp(
getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(),
ThisDecl->getLocation(), Exprs, T.getOpenLocation());
CalledSignatureHelp = true;
return PreferredType;
};
auto SetPreferredType = [&] {
PreferredType.enterFunctionArgument(Tok.getLocation(), RunSignatureHelp);
};
llvm::function_ref<void()> ExpressionStarts;
if (ThisVarDecl) {
// ParseExpressionList can sometimes succeed even when ThisDecl is not
// VarDecl. This is an error and it is reported in a call to
// Actions.ActOnInitializerError(). However, we call
// ProduceConstructorSignatureHelp only on VarDecls.
ExpressionStarts = SetPreferredType;
}
if (ParseExpressionList(Exprs, CommaLocs, ExpressionStarts)) {
if (ThisVarDecl && PP.isCodeCompletionReached() && !CalledSignatureHelp) {
Actions.ProduceConstructorSignatureHelp(
getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(),
ThisDecl->getLocation(), Exprs, T.getOpenLocation());
CalledSignatureHelp = true;
}
Actions.ActOnInitializerError(ThisDecl);
SkipUntil(tok::r_paren, StopAtSemi);
} else {
// Match the ')'.
T.consumeClose();
assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
"Unexpected number of commas!");
InitScope.pop();
ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
T.getCloseLocation(),
Exprs);
Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
/*DirectInit=*/true);
}
break;
}
case InitKind::CXXBraced: {
// Parse C++0x braced-init-list.
Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
InitializerScopeRAII InitScope(*this, D, ThisDecl);
PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl);
ExprResult Init(ParseBraceInitializer());
InitScope.pop();
if (Init.isInvalid()) {
Actions.ActOnInitializerError(ThisDecl);
} else
Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/true);
break;
}
case InitKind::Uninitialized: {
Actions.ActOnUninitializedDecl(ThisDecl);
break;
}
}
Actions.FinalizeDeclaration(ThisDecl);
return OuterDecl ? OuterDecl : ThisDecl;
}
/// ParseSpecifierQualifierList
/// specifier-qualifier-list:
/// type-specifier specifier-qualifier-list[opt]
/// type-qualifier specifier-qualifier-list[opt]
/// [GNU] attributes specifier-qualifier-list[opt]
///
void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS,
DeclSpecContext DSC) {
/// specifier-qualifier-list is a subset of declaration-specifiers. Just
/// parse declaration-specifiers and complain about extra stuff.
/// TODO: diagnose attribute-specifiers and alignment-specifiers.
ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC);
// Validate declspec for type-name.
unsigned Specs = DS.getParsedSpecifiers();
if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
Diag(Tok, diag::err_expected_type);
DS.SetTypeSpecError();
} else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) {
Diag(Tok, diag::err_typename_requires_specqual);
if (!DS.hasTypeSpecifier())
DS.SetTypeSpecError();
}
// Issue diagnostic and remove storage class if present.
if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
if (DS.getStorageClassSpecLoc().isValid())
Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
else
Diag(DS.getThreadStorageClassSpecLoc(),
diag::err_typename_invalid_storageclass);
DS.ClearStorageClassSpecs();
}
// Issue diagnostic and remove function specifier if present.
if (Specs & DeclSpec::PQ_FunctionSpecifier) {
if (DS.isInlineSpecified())
Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
if (DS.isVirtualSpecified())
Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
if (DS.hasExplicitSpecifier())
Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
DS.ClearFunctionSpecs();
}
// Issue diagnostic and remove constexpr specifier if present.
if (DS.hasConstexprSpecifier() && DSC != DeclSpecContext::DSC_condition) {
Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr)
<< static_cast<int>(DS.getConstexprSpecifier());
DS.ClearConstexprSpec();
}
}
/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
/// specified token is valid after the identifier in a declarator which
/// immediately follows the declspec. For example, these things are valid:
///
/// int x [ 4]; // direct-declarator
/// int x ( int y); // direct-declarator
/// int(int x ) // direct-declarator
/// int x ; // simple-declaration
/// int x = 17; // init-declarator-list
/// int x , y; // init-declarator-list
/// int x __asm__ ("foo"); // init-declarator-list
/// int x : 4; // struct-declarator
/// int x { 5}; // C++'0x unified initializers
///
/// This is not, because 'x' does not immediately follow the declspec (though
/// ')' happens to be valid anyway).
/// int (x)
///
static bool isValidAfterIdentifierInDeclarator(const Token &T) {
return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi,
tok::comma, tok::equal, tok::kw_asm, tok::l_brace,
tok::colon);
}
/// ParseImplicitInt - This method is called when we have an non-typename
/// identifier in a declspec (which normally terminates the decl spec) when
/// the declspec has no type specifier. In this case, the declspec is either
/// malformed or is "implicit int" (in K&R and C89).
///
/// This method handles diagnosing this prettily and returns false if the
/// declspec is done being processed. If it recovers and thinks there may be
/// other pieces of declspec after it, it returns true.
///
bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
const ParsedTemplateInfo &TemplateInfo,
AccessSpecifier AS, DeclSpecContext DSC,
ParsedAttributesWithRange &Attrs) {
assert(Tok.is(tok::identifier) && "should have identifier");
SourceLocation Loc = Tok.getLocation();
// If we see an identifier that is not a type name, we normally would
// parse it as the identifier being declared. However, when a typename
// is typo'd or the definition is not included, this will incorrectly
// parse the typename as the identifier name and fall over misparsing
// later parts of the diagnostic.
//
// As such, we try to do some look-ahead in cases where this would
// otherwise be an "implicit-int" case to see if this is invalid. For
// example: "static foo_t x = 4;" In this case, if we parsed foo_t as
// an identifier with implicit int, we'd get a parse error because the
// next token is obviously invalid for a type. Parse these as a case
// with an invalid type specifier.
assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
// Since we know that this either implicit int (which is rare) or an
// error, do lookahead to try to do better recovery. This never applies
// within a type specifier. Outside of C++, we allow this even if the
// language doesn't "officially" support implicit int -- we support
// implicit int as an extension in C99 and C11.
if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus &&
isValidAfterIdentifierInDeclarator(NextToken())) {
// If this token is valid for implicit int, e.g. "static x = 4", then
// we just avoid eating the identifier, so it will be parsed as the
// identifier in the declarator.
return false;
}
// Early exit as Sema has a dedicated missing_actual_pipe_type diagnostic
// for incomplete declarations such as `pipe p`.
if (getLangOpts().OpenCLCPlusPlus && DS.isTypeSpecPipe())
return false;
if (getLangOpts().CPlusPlus &&
DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
// Don't require a type specifier if we have the 'auto' storage class
// specifier in C++98 -- we'll promote it to a type specifier.
if (SS)
AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
return false;
}
if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) &&
getLangOpts().MSVCCompat) {
// Lookup of an unqualified type name has failed in MSVC compatibility mode.
// Give Sema a chance to recover if we are in a template with dependent base
// classes.
if (ParsedType T = Actions.ActOnMSVCUnknownTypeName(
*Tok.getIdentifierInfo(), Tok.getLocation(),
DSC == DeclSpecContext::DSC_template_type_arg)) {
const char *PrevSpec;
unsigned DiagID;
DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
Actions.getASTContext().getPrintingPolicy());
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
return false;
}
}
// Otherwise, if we don't consume this token, we are going to emit an
// error anyway. Try to recover from various common problems. Check
// to see if this was a reference to a tag name without a tag specified.
// This is a common problem in C (saying 'foo' instead of 'struct foo').
//
// C++ doesn't need this, and isTagName doesn't take SS.
if (SS == nullptr) {
const char *TagName = nullptr, *FixitTagName = nullptr;
tok::TokenKind TagKind = tok::unknown;
switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
default: break;
case DeclSpec::TST_enum:
TagName="enum" ; FixitTagName = "enum " ; TagKind=tok::kw_enum ;break;
case DeclSpec::TST_union:
TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
case DeclSpec::TST_struct:
TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
case DeclSpec::TST_interface:
TagName="__interface"; FixitTagName = "__interface ";
TagKind=tok::kw___interface;break;
case DeclSpec::TST_class:
TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
}
if (TagName) {
IdentifierInfo *TokenName = Tok.getIdentifierInfo();
LookupResult R(Actions, TokenName, SourceLocation(),
Sema::LookupOrdinaryName);
Diag(Loc, diag::err_use_of_tag_name_without_tag)
<< TokenName << TagName << getLangOpts().CPlusPlus
<< FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
if (Actions.LookupParsedName(R, getCurScope(), SS)) {
for (LookupResult::iterator I = R.begin(), IEnd = R.end();
I != IEnd; ++I)
Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
<< TokenName << TagName;
}
// Parse this as a tag as if the missing tag were present.
if (TagKind == tok::kw_enum)
ParseEnumSpecifier(Loc, DS, TemplateInfo, AS,
DeclSpecContext::DSC_normal);
else
ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
/*EnteringContext*/ false,
DeclSpecContext::DSC_normal, Attrs);
return true;
}
}
// Determine whether this identifier could plausibly be the name of something
// being declared (with a missing type).
if (!isTypeSpecifier(DSC) && (!SS || DSC == DeclSpecContext::DSC_top_level ||
DSC == DeclSpecContext::DSC_class)) {
// Look ahead to the next token to try to figure out what this declaration
// was supposed to be.
switch (NextToken().getKind()) {
case tok::l_paren: {
// static x(4); // 'x' is not a type
// x(int n); // 'x' is not a type
// x (*p)[]; // 'x' is a type
//
// Since we're in an error case, we can afford to perform a tentative
// parse to determine which case we're in.
TentativeParsingAction PA(*this);
ConsumeToken();
TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
PA.Revert();
if (TPR != TPResult::False) {
// The identifier is followed by a parenthesized declarator.
// It's supposed to be a type.
break;
}
// If we're in a context where we could be declaring a constructor,
// check whether this is a constructor declaration with a bogus name.
if (DSC == DeclSpecContext::DSC_class ||
(DSC == DeclSpecContext::DSC_top_level && SS)) {
IdentifierInfo *II = Tok.getIdentifierInfo();
if (Actions.isCurrentClassNameTypo(II, SS)) {
Diag(Loc, diag::err_constructor_bad_name)
<< Tok.getIdentifierInfo() << II
<< FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
Tok.setIdentifierInfo(II);
}
}
// Fall through.
LLVM_FALLTHROUGH;
}
case tok::comma:
case tok::equal:
case tok::kw_asm:
case tok::l_brace:
case tok::l_square:
case tok::semi:
// This looks like a variable or function declaration. The type is
// probably missing. We're done parsing decl-specifiers.
// But only if we are not in a function prototype scope.
if (getCurScope()->isFunctionPrototypeScope())
break;
if (SS)
AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
return false;
default:
// This is probably supposed to be a type. This includes cases like:
// int f(itn);
// struct S { unsigned : 4; };
break;
}
}
// This is almost certainly an invalid type name. Let Sema emit a diagnostic
// and attempt to recover.
ParsedType T;
IdentifierInfo *II = Tok.getIdentifierInfo();
bool IsTemplateName = getLangOpts().CPlusPlus && NextToken().is(tok::less);
Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
IsTemplateName);
if (T) {
// The action has suggested that the type T could be used. Set that as
// the type in the declaration specifiers, consume the would-be type
// name token, and we're done.
const char *PrevSpec;
unsigned DiagID;
DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
Actions.getASTContext().getPrintingPolicy());
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
// There may be other declaration specifiers after this.
return true;
} else if (II != Tok.getIdentifierInfo()) {
// If no type was suggested, the correction is to a keyword
Tok.setKind(II->getTokenID());
// There may be other declaration specifiers after this.
return true;
}
// Otherwise, the action had no suggestion for us. Mark this as an error.
DS.SetTypeSpecError();
DS.SetRangeEnd(Tok.getLocation());
ConsumeToken();
// Eat any following template arguments.
if (IsTemplateName) {
SourceLocation LAngle, RAngle;
TemplateArgList Args;
ParseTemplateIdAfterTemplateName(true, LAngle, Args, RAngle);
}
// TODO: Could inject an invalid typedef decl in an enclosing scope to
// avoid rippling error messages on subsequent uses of the same type,
// could be useful if #include was forgotten.
return true;
}
/// Determine the declaration specifier context from the declarator
/// context.
///
/// \param Context the declarator context, which is one of the
/// DeclaratorContext enumerator values.
Parser::DeclSpecContext
Parser::getDeclSpecContextFromDeclaratorContext(DeclaratorContext Context) {
if (Context == DeclaratorContext::Member)
return DeclSpecContext::DSC_class;
if (Context == DeclaratorContext::File)
return DeclSpecContext::DSC_top_level;
if (Context == DeclaratorContext::TemplateParam)
return