| #include <fcntl.h> |
| #include <inttypes.h> |
| #include <mach-o/compact_unwind_encoding.h> |
| #include <mach-o/loader.h> |
| #include <mach-o/nlist.h> |
| #include <mach/machine.h> |
| #include <stdbool.h> |
| #include <stdint.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <sys/errno.h> |
| #include <sys/mman.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| |
| #define EXTRACT_BITS(value, mask) \ |
| ((value >> __builtin_ctz(mask)) & (((1 << __builtin_popcount(mask))) - 1)) |
| |
| // A quick sketch of a program which can parse the compact unwind info |
| // used on Darwin systems for exception handling. The output of |
| // unwinddump will be more authoritative/reliable but this program |
| // can dump at least the UNWIND_X86_64_MODE_RBP_FRAME format entries |
| // correctly. |
| |
| struct symbol { |
| uint64_t file_address; |
| const char *name; |
| }; |
| |
| int symbol_compare(const void *a, const void *b) { |
| return (int)((struct symbol *)a)->file_address - |
| ((struct symbol *)b)->file_address; |
| } |
| |
| struct baton { |
| cpu_type_t cputype; |
| |
| uint8_t *mach_header_start; // pointer into this program's address space |
| uint8_t *compact_unwind_start; // pointer into this program's address space |
| |
| int addr_size; // 4 or 8 bytes, the size of addresses in this file |
| |
| uint64_t text_segment_vmaddr; // __TEXT segment vmaddr |
| uint64_t text_segment_file_offset; |
| |
| uint64_t text_section_vmaddr; // __TEXT,__text section vmaddr |
| uint64_t text_section_file_offset; |
| |
| uint64_t eh_section_file_address; // the file address of the __TEXT,__eh_frame |
| // section |
| |
| uint8_t |
| *lsda_array_start; // for the currently-being-processed first-level index |
| uint8_t |
| *lsda_array_end; // the lsda_array_start for the NEXT first-level index |
| |
| struct symbol *symbols; |
| int symbols_count; |
| |
| uint64_t *function_start_addresses; |
| int function_start_addresses_count; |
| |
| int current_index_table_number; |
| |
| struct unwind_info_section_header unwind_header; |
| struct unwind_info_section_header_index_entry first_level_index_entry; |
| struct unwind_info_compressed_second_level_page_header |
| compressed_second_level_page_header; |
| struct unwind_info_regular_second_level_page_header |
| regular_second_level_page_header; |
| }; |
| |
| uint64_t read_leb128(uint8_t **offset) { |
| uint64_t result = 0; |
| int shift = 0; |
| while (1) { |
| uint8_t byte = **offset; |
| *offset = *offset + 1; |
| result |= (byte & 0x7f) << shift; |
| if ((byte & 0x80) == 0) |
| break; |
| shift += 7; |
| } |
| |
| return result; |
| } |
| |
| // step through the load commands in a thin mach-o binary, |
| // find the cputype and the start of the __TEXT,__unwind_info |
| // section, return a pointer to that section or NULL if not found. |
| |
| static void scan_macho_load_commands(struct baton *baton) { |
| struct symtab_command symtab_cmd; |
| uint64_t linkedit_segment_vmaddr; |
| uint64_t linkedit_segment_file_offset; |
| |
| baton->compact_unwind_start = 0; |
| |
| uint32_t *magic = (uint32_t *)baton->mach_header_start; |
| |
| if (*magic != MH_MAGIC && *magic != MH_MAGIC_64) { |
| printf("Unexpected magic number 0x%x in header, exiting.", *magic); |
| exit(1); |
| } |
| |
| bool is_64bit = false; |
| if (*magic == MH_MAGIC_64) |
| is_64bit = true; |
| |
| uint8_t *offset = baton->mach_header_start; |
| |
| struct mach_header mh; |
| memcpy(&mh, offset, sizeof(struct mach_header)); |
| if (is_64bit) |
| offset += sizeof(struct mach_header_64); |
| else |
| offset += sizeof(struct mach_header); |
| |
| if (is_64bit) |
| baton->addr_size = 8; |
| else |
| baton->addr_size = 4; |
| |
| baton->cputype = mh.cputype; |
| |
| uint8_t *start_of_load_commands = offset; |
| |
| uint32_t cur_cmd = 0; |
| while (cur_cmd < mh.ncmds && |
| (offset - start_of_load_commands) < mh.sizeofcmds) { |
| struct load_command lc; |
| uint32_t *lc_cmd = (uint32_t *)offset; |
| uint32_t *lc_cmdsize = (uint32_t *)offset + 1; |
| uint8_t *start_of_this_load_cmd = offset; |
| |
| if (*lc_cmd == LC_SEGMENT || *lc_cmd == LC_SEGMENT_64) { |
| char segment_name[17]; |
| segment_name[0] = '\0'; |
| uint32_t nsects = 0; |
| uint64_t segment_offset = 0; |
| uint64_t segment_vmaddr = 0; |
| |
| if (*lc_cmd == LC_SEGMENT_64) { |
| struct segment_command_64 seg; |
| memcpy(&seg, offset, sizeof(struct segment_command_64)); |
| memcpy(&segment_name, &seg.segname, 16); |
| segment_name[16] = '\0'; |
| nsects = seg.nsects; |
| segment_offset = seg.fileoff; |
| segment_vmaddr = seg.vmaddr; |
| offset += sizeof(struct segment_command_64); |
| if ((seg.flags & SG_PROTECTED_VERSION_1) == SG_PROTECTED_VERSION_1) { |
| printf("Segment '%s' is encrypted.\n", segment_name); |
| } |
| } |
| |
| if (*lc_cmd == LC_SEGMENT) { |
| struct segment_command seg; |
| memcpy(&seg, offset, sizeof(struct segment_command)); |
| memcpy(&segment_name, &seg.segname, 16); |
| segment_name[16] = '\0'; |
| nsects = seg.nsects; |
| segment_offset = seg.fileoff; |
| segment_vmaddr = seg.vmaddr; |
| offset += sizeof(struct segment_command); |
| if ((seg.flags & SG_PROTECTED_VERSION_1) == SG_PROTECTED_VERSION_1) { |
| printf("Segment '%s' is encrypted.\n", segment_name); |
| } |
| } |
| |
| if (nsects != 0 && strcmp(segment_name, "__TEXT") == 0) { |
| baton->text_segment_vmaddr = segment_vmaddr; |
| baton->text_segment_file_offset = segment_offset; |
| |
| uint32_t current_sect = 0; |
| while (current_sect < nsects && |
| (offset - start_of_this_load_cmd) < *lc_cmdsize) { |
| char sect_name[17]; |
| memcpy(§_name, offset, 16); |
| sect_name[16] = '\0'; |
| if (strcmp(sect_name, "__unwind_info") == 0) { |
| if (is_64bit) { |
| struct section_64 sect; |
| memset(§, 0, sizeof(struct section_64)); |
| memcpy(§, offset, sizeof(struct section_64)); |
| baton->compact_unwind_start = |
| baton->mach_header_start + sect.offset; |
| } else { |
| struct section sect; |
| memset(§, 0, sizeof(struct section)); |
| memcpy(§, offset, sizeof(struct section)); |
| baton->compact_unwind_start = |
| baton->mach_header_start + sect.offset; |
| } |
| } |
| if (strcmp(sect_name, "__eh_frame") == 0) { |
| if (is_64bit) { |
| struct section_64 sect; |
| memset(§, 0, sizeof(struct section_64)); |
| memcpy(§, offset, sizeof(struct section_64)); |
| baton->eh_section_file_address = sect.addr; |
| } else { |
| struct section sect; |
| memset(§, 0, sizeof(struct section)); |
| memcpy(§, offset, sizeof(struct section)); |
| baton->eh_section_file_address = sect.addr; |
| } |
| } |
| if (strcmp(sect_name, "__text") == 0) { |
| if (is_64bit) { |
| struct section_64 sect; |
| memset(§, 0, sizeof(struct section_64)); |
| memcpy(§, offset, sizeof(struct section_64)); |
| baton->text_section_vmaddr = sect.addr; |
| baton->text_section_file_offset = sect.offset; |
| } else { |
| struct section sect; |
| memset(§, 0, sizeof(struct section)); |
| memcpy(§, offset, sizeof(struct section)); |
| baton->text_section_vmaddr = sect.addr; |
| } |
| } |
| if (is_64bit) { |
| offset += sizeof(struct section_64); |
| } else { |
| offset += sizeof(struct section); |
| } |
| } |
| } |
| |
| if (strcmp(segment_name, "__LINKEDIT") == 0) { |
| linkedit_segment_vmaddr = segment_vmaddr; |
| linkedit_segment_file_offset = segment_offset; |
| } |
| } |
| |
| if (*lc_cmd == LC_SYMTAB) { |
| memcpy(&symtab_cmd, offset, sizeof(struct symtab_command)); |
| } |
| |
| if (*lc_cmd == LC_DYSYMTAB) { |
| struct dysymtab_command dysymtab_cmd; |
| memcpy(&dysymtab_cmd, offset, sizeof(struct dysymtab_command)); |
| |
| int nlist_size = 12; |
| if (is_64bit) |
| nlist_size = 16; |
| |
| char *string_table = |
| (char *)(baton->mach_header_start + symtab_cmd.stroff); |
| uint8_t *local_syms = baton->mach_header_start + symtab_cmd.symoff + |
| (dysymtab_cmd.ilocalsym * nlist_size); |
| int local_syms_count = dysymtab_cmd.nlocalsym; |
| uint8_t *exported_syms = baton->mach_header_start + symtab_cmd.symoff + |
| (dysymtab_cmd.iextdefsym * nlist_size); |
| int exported_syms_count = dysymtab_cmd.nextdefsym; |
| |
| // We're only going to create records for a small number of these symbols |
| // but to |
| // simplify the memory management I'll allocate enough space to store all |
| // of them. |
| baton->symbols = (struct symbol *)malloc( |
| sizeof(struct symbol) * (local_syms_count + exported_syms_count)); |
| baton->symbols_count = 0; |
| |
| for (int i = 0; i < local_syms_count; i++) { |
| struct nlist_64 nlist; |
| memset(&nlist, 0, sizeof(struct nlist_64)); |
| if (is_64bit) { |
| memcpy(&nlist, local_syms + (i * nlist_size), |
| sizeof(struct nlist_64)); |
| } else { |
| struct nlist nlist_32; |
| memset(&nlist_32, 0, sizeof(struct nlist)); |
| memcpy(&nlist_32, local_syms + (i * nlist_size), |
| sizeof(struct nlist)); |
| nlist.n_un.n_strx = nlist_32.n_un.n_strx; |
| nlist.n_type = nlist_32.n_type; |
| nlist.n_sect = nlist_32.n_sect; |
| nlist.n_desc = nlist_32.n_desc; |
| nlist.n_value = nlist_32.n_value; |
| } |
| if ((nlist.n_type & N_STAB) == 0 && |
| ((nlist.n_type & N_EXT) == 1 || |
| ((nlist.n_type & N_TYPE) == N_TYPE && nlist.n_sect != NO_SECT)) && |
| nlist.n_value != 0 && nlist.n_value != baton->text_segment_vmaddr) { |
| baton->symbols[baton->symbols_count].file_address = nlist.n_value; |
| if (baton->cputype == CPU_TYPE_ARM) |
| baton->symbols[baton->symbols_count].file_address = |
| baton->symbols[baton->symbols_count].file_address & ~1; |
| baton->symbols[baton->symbols_count].name = |
| string_table + nlist.n_un.n_strx; |
| baton->symbols_count++; |
| } |
| } |
| |
| for (int i = 0; i < exported_syms_count; i++) { |
| struct nlist_64 nlist; |
| memset(&nlist, 0, sizeof(struct nlist_64)); |
| if (is_64bit) { |
| memcpy(&nlist, exported_syms + (i * nlist_size), |
| sizeof(struct nlist_64)); |
| } else { |
| struct nlist nlist_32; |
| memcpy(&nlist_32, exported_syms + (i * nlist_size), |
| sizeof(struct nlist)); |
| nlist.n_un.n_strx = nlist_32.n_un.n_strx; |
| nlist.n_type = nlist_32.n_type; |
| nlist.n_sect = nlist_32.n_sect; |
| nlist.n_desc = nlist_32.n_desc; |
| nlist.n_value = nlist_32.n_value; |
| } |
| if ((nlist.n_type & N_STAB) == 0 && |
| ((nlist.n_type & N_EXT) == 1 || |
| ((nlist.n_type & N_TYPE) == N_TYPE && nlist.n_sect != NO_SECT)) && |
| nlist.n_value != 0 && nlist.n_value != baton->text_segment_vmaddr) { |
| baton->symbols[baton->symbols_count].file_address = nlist.n_value; |
| if (baton->cputype == CPU_TYPE_ARM) |
| baton->symbols[baton->symbols_count].file_address = |
| baton->symbols[baton->symbols_count].file_address & ~1; |
| baton->symbols[baton->symbols_count].name = |
| string_table + nlist.n_un.n_strx; |
| baton->symbols_count++; |
| } |
| } |
| |
| qsort(baton->symbols, baton->symbols_count, sizeof(struct symbol), |
| symbol_compare); |
| } |
| |
| if (*lc_cmd == LC_FUNCTION_STARTS) { |
| struct linkedit_data_command function_starts_cmd; |
| memcpy(&function_starts_cmd, offset, |
| sizeof(struct linkedit_data_command)); |
| |
| uint8_t *funcstarts_offset = |
| baton->mach_header_start + function_starts_cmd.dataoff; |
| uint8_t *function_end = funcstarts_offset + function_starts_cmd.datasize; |
| int count = 0; |
| |
| while (funcstarts_offset < function_end) { |
| if (read_leb128(&funcstarts_offset) != 0) { |
| count++; |
| } |
| } |
| |
| baton->function_start_addresses = |
| (uint64_t *)malloc(sizeof(uint64_t) * count); |
| baton->function_start_addresses_count = count; |
| |
| funcstarts_offset = |
| baton->mach_header_start + function_starts_cmd.dataoff; |
| uint64_t current_pc = baton->text_segment_vmaddr; |
| int i = 0; |
| while (funcstarts_offset < function_end) { |
| uint64_t func_start = read_leb128(&funcstarts_offset); |
| if (func_start != 0) { |
| current_pc += func_start; |
| baton->function_start_addresses[i++] = current_pc; |
| } |
| } |
| } |
| |
| offset = start_of_this_load_cmd + *lc_cmdsize; |
| cur_cmd++; |
| } |
| |
| // Augment the symbol table with the function starts table -- adding symbol |
| // entries |
| // for functions that were stripped. |
| |
| int unnamed_functions_to_add = 0; |
| for (int i = 0; i < baton->function_start_addresses_count; i++) { |
| struct symbol search_key; |
| search_key.file_address = baton->function_start_addresses[i]; |
| if (baton->cputype == CPU_TYPE_ARM) |
| search_key.file_address = search_key.file_address & ~1; |
| struct symbol *sym = |
| bsearch(&search_key, baton->symbols, baton->symbols_count, |
| sizeof(struct symbol), symbol_compare); |
| if (sym == NULL) |
| unnamed_functions_to_add++; |
| } |
| |
| baton->symbols = (struct symbol *)realloc( |
| baton->symbols, sizeof(struct symbol) * |
| (baton->symbols_count + unnamed_functions_to_add)); |
| |
| int current_unnamed_symbol = 1; |
| int number_symbols_added = 0; |
| for (int i = 0; i < baton->function_start_addresses_count; i++) { |
| struct symbol search_key; |
| search_key.file_address = baton->function_start_addresses[i]; |
| if (baton->cputype == CPU_TYPE_ARM) |
| search_key.file_address = search_key.file_address & ~1; |
| struct symbol *sym = |
| bsearch(&search_key, baton->symbols, baton->symbols_count, |
| sizeof(struct symbol), symbol_compare); |
| if (sym == NULL) { |
| char *name; |
| asprintf(&name, "unnamed function #%d", current_unnamed_symbol++); |
| baton->symbols[baton->symbols_count + number_symbols_added].file_address = |
| baton->function_start_addresses[i]; |
| baton->symbols[baton->symbols_count + number_symbols_added].name = name; |
| number_symbols_added++; |
| } |
| } |
| baton->symbols_count += number_symbols_added; |
| qsort(baton->symbols, baton->symbols_count, sizeof(struct symbol), |
| symbol_compare); |
| |
| // printf ("function start addresses\n"); |
| // for (int i = 0; i < baton->function_start_addresses_count; i++) |
| // { |
| // printf ("0x%012llx\n", baton->function_start_addresses[i]); |
| // } |
| |
| // printf ("symbol table names & addresses\n"); |
| // for (int i = 0; i < baton->symbols_count; i++) |
| // { |
| // printf ("0x%012llx %s\n", baton->symbols[i].file_address, |
| // baton->symbols[i].name); |
| // } |
| } |
| |
| void print_encoding_x86_64(struct baton baton, uint8_t *function_start, |
| uint32_t encoding) { |
| int mode = encoding & UNWIND_X86_64_MODE_MASK; |
| switch (mode) { |
| case UNWIND_X86_64_MODE_RBP_FRAME: { |
| printf("frame func: CFA is rbp+%d ", 16); |
| printf(" rip=[CFA-8] rbp=[CFA-16]"); |
| uint32_t saved_registers_offset = |
| EXTRACT_BITS(encoding, UNWIND_X86_64_RBP_FRAME_OFFSET); |
| |
| uint32_t saved_registers_locations = |
| EXTRACT_BITS(encoding, UNWIND_X86_64_RBP_FRAME_REGISTERS); |
| |
| saved_registers_offset += 2; |
| |
| for (int i = 0; i < 5; i++) { |
| switch (saved_registers_locations & 0x7) { |
| case UNWIND_X86_64_REG_NONE: |
| break; |
| case UNWIND_X86_64_REG_RBX: |
| printf(" rbx=[CFA-%d]", saved_registers_offset * 8); |
| break; |
| case UNWIND_X86_64_REG_R12: |
| printf(" r12=[CFA-%d]", saved_registers_offset * 8); |
| break; |
| case UNWIND_X86_64_REG_R13: |
| printf(" r13=[CFA-%d]", saved_registers_offset * 8); |
| break; |
| case UNWIND_X86_64_REG_R14: |
| printf(" r14=[CFA-%d]", saved_registers_offset * 8); |
| break; |
| case UNWIND_X86_64_REG_R15: |
| printf(" r15=[CFA-%d]", saved_registers_offset * 8); |
| break; |
| } |
| saved_registers_offset--; |
| saved_registers_locations >>= 3; |
| } |
| } break; |
| |
| case UNWIND_X86_64_MODE_STACK_IND: |
| case UNWIND_X86_64_MODE_STACK_IMMD: { |
| uint32_t stack_size = |
| EXTRACT_BITS(encoding, UNWIND_X86_64_FRAMELESS_STACK_SIZE); |
| uint32_t register_count = |
| EXTRACT_BITS(encoding, UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT); |
| uint32_t permutation = |
| EXTRACT_BITS(encoding, UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION); |
| |
| if (mode == UNWIND_X86_64_MODE_STACK_IND && function_start) { |
| uint32_t stack_adjust = |
| EXTRACT_BITS(encoding, UNWIND_X86_64_FRAMELESS_STACK_ADJUST); |
| |
| // offset into the function instructions; 0 == beginning of first |
| // instruction |
| uint32_t offset_to_subl_insn = |
| EXTRACT_BITS(encoding, UNWIND_X86_64_FRAMELESS_STACK_SIZE); |
| |
| stack_size = *((uint32_t *)(function_start + offset_to_subl_insn)); |
| |
| stack_size += stack_adjust * 8; |
| |
| printf("large stack "); |
| } |
| |
| if (mode == UNWIND_X86_64_MODE_STACK_IND) { |
| printf("frameless function: stack size %d, register count %d ", |
| stack_size * 8, register_count); |
| } else { |
| printf("frameless function: stack size %d, register count %d ", |
| stack_size, register_count); |
| } |
| |
| if (register_count == 0) { |
| printf(" no registers saved"); |
| } else { |
| |
| // We need to include (up to) 6 registers in 10 bits. |
| // That would be 18 bits if we just used 3 bits per reg to indicate |
| // the order they're saved on the stack. |
| // |
| // This is done with Lehmer code permutation, e.g. see |
| // http://stackoverflow.com/questions/1506078/fast-permutation-number-permutation-mapping-algorithms |
| int permunreg[6]; |
| |
| // This decodes the variable-base number in the 10 bits |
| // and gives us the Lehmer code sequence which can then |
| // be decoded. |
| |
| switch (register_count) { |
| case 6: |
| permunreg[0] = permutation / 120; // 120 == 5! |
| permutation -= (permunreg[0] * 120); |
| permunreg[1] = permutation / 24; // 24 == 4! |
| permutation -= (permunreg[1] * 24); |
| permunreg[2] = permutation / 6; // 6 == 3! |
| permutation -= (permunreg[2] * 6); |
| permunreg[3] = permutation / 2; // 2 == 2! |
| permutation -= (permunreg[3] * 2); |
| permunreg[4] = permutation; // 1 == 1! |
| permunreg[5] = 0; |
| break; |
| case 5: |
| permunreg[0] = permutation / 120; |
| permutation -= (permunreg[0] * 120); |
| permunreg[1] = permutation / 24; |
| permutation -= (permunreg[1] * 24); |
| permunreg[2] = permutation / 6; |
| permutation -= (permunreg[2] * 6); |
| permunreg[3] = permutation / 2; |
| permutation -= (permunreg[3] * 2); |
| permunreg[4] = permutation; |
| break; |
| case 4: |
| permunreg[0] = permutation / 60; |
| permutation -= (permunreg[0] * 60); |
| permunreg[1] = permutation / 12; |
| permutation -= (permunreg[1] * 12); |
| permunreg[2] = permutation / 3; |
| permutation -= (permunreg[2] * 3); |
| permunreg[3] = permutation; |
| break; |
| case 3: |
| permunreg[0] = permutation / 20; |
| permutation -= (permunreg[0] * 20); |
| permunreg[1] = permutation / 4; |
| permutation -= (permunreg[1] * 4); |
| permunreg[2] = permutation; |
| break; |
| case 2: |
| permunreg[0] = permutation / 5; |
| permutation -= (permunreg[0] * 5); |
| permunreg[1] = permutation; |
| break; |
| case 1: |
| permunreg[0] = permutation; |
| break; |
| } |
| |
| // Decode the Lehmer code for this permutation of |
| // the registers v. http://en.wikipedia.org/wiki/Lehmer_code |
| |
| int registers[6]; |
| bool used[7] = {false, false, false, false, false, false, false}; |
| for (int i = 0; i < register_count; i++) { |
| int renum = 0; |
| for (int j = 1; j < 7; j++) { |
| if (used[j] == false) { |
| if (renum == permunreg[i]) { |
| registers[i] = j; |
| used[j] = true; |
| break; |
| } |
| renum++; |
| } |
| } |
| } |
| |
| if (mode == UNWIND_X86_64_MODE_STACK_IND) { |
| printf(" CFA is rsp+%d ", stack_size); |
| } else { |
| printf(" CFA is rsp+%d ", stack_size * 8); |
| } |
| |
| uint32_t saved_registers_offset = 1; |
| printf(" rip=[CFA-%d]", saved_registers_offset * 8); |
| saved_registers_offset++; |
| |
| for (int i = (sizeof(registers) / sizeof(int)) - 1; i >= 0; i--) { |
| switch (registers[i]) { |
| case UNWIND_X86_64_REG_NONE: |
| break; |
| case UNWIND_X86_64_REG_RBX: |
| printf(" rbx=[CFA-%d]", saved_registers_offset * 8); |
| saved_registers_offset++; |
| break; |
| case UNWIND_X86_64_REG_R12: |
| printf(" r12=[CFA-%d]", saved_registers_offset * 8); |
| saved_registers_offset++; |
| break; |
| case UNWIND_X86_64_REG_R13: |
| printf(" r13=[CFA-%d]", saved_registers_offset * 8); |
| saved_registers_offset++; |
| break; |
| case UNWIND_X86_64_REG_R14: |
| printf(" r14=[CFA-%d]", saved_registers_offset * 8); |
| saved_registers_offset++; |
| break; |
| case UNWIND_X86_64_REG_R15: |
| printf(" r15=[CFA-%d]", saved_registers_offset * 8); |
| saved_registers_offset++; |
| break; |
| case UNWIND_X86_64_REG_RBP: |
| printf(" rbp=[CFA-%d]", saved_registers_offset * 8); |
| saved_registers_offset++; |
| break; |
| } |
| } |
| } |
| |
| } break; |
| |
| case UNWIND_X86_64_MODE_DWARF: { |
| uint32_t dwarf_offset = encoding & UNWIND_X86_DWARF_SECTION_OFFSET; |
| printf( |
| "DWARF unwind instructions: FDE at offset %d (file address 0x%" PRIx64 |
| ")", |
| dwarf_offset, dwarf_offset + baton.eh_section_file_address); |
| } break; |
| |
| case 0: { |
| printf(" no unwind information"); |
| } break; |
| } |
| } |
| |
| void print_encoding_i386(struct baton baton, uint8_t *function_start, |
| uint32_t encoding) { |
| int mode = encoding & UNWIND_X86_MODE_MASK; |
| switch (mode) { |
| case UNWIND_X86_MODE_EBP_FRAME: { |
| printf("frame func: CFA is ebp+%d ", 8); |
| printf(" eip=[CFA-4] ebp=[CFA-8]"); |
| uint32_t saved_registers_offset = |
| EXTRACT_BITS(encoding, UNWIND_X86_EBP_FRAME_OFFSET); |
| |
| uint32_t saved_registers_locations = |
| EXTRACT_BITS(encoding, UNWIND_X86_EBP_FRAME_REGISTERS); |
| |
| saved_registers_offset += 2; |
| |
| for (int i = 0; i < 5; i++) { |
| switch (saved_registers_locations & 0x7) { |
| case UNWIND_X86_REG_NONE: |
| break; |
| case UNWIND_X86_REG_EBX: |
| printf(" ebx=[CFA-%d]", saved_registers_offset * 4); |
| break; |
| case UNWIND_X86_REG_ECX: |
| printf(" ecx=[CFA-%d]", saved_registers_offset * 4); |
| break; |
| case UNWIND_X86_REG_EDX: |
| printf(" edx=[CFA-%d]", saved_registers_offset * 4); |
| break; |
| case UNWIND_X86_REG_EDI: |
| printf(" edi=[CFA-%d]", saved_registers_offset * 4); |
| break; |
| case UNWIND_X86_REG_ESI: |
| printf(" esi=[CFA-%d]", saved_registers_offset * 4); |
| break; |
| } |
| saved_registers_offset--; |
| saved_registers_locations >>= 3; |
| } |
| } break; |
| |
| case UNWIND_X86_MODE_STACK_IND: |
| case UNWIND_X86_MODE_STACK_IMMD: { |
| uint32_t stack_size = |
| EXTRACT_BITS(encoding, UNWIND_X86_FRAMELESS_STACK_SIZE); |
| uint32_t register_count = |
| EXTRACT_BITS(encoding, UNWIND_X86_FRAMELESS_STACK_REG_COUNT); |
| uint32_t permutation = |
| EXTRACT_BITS(encoding, UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION); |
| |
| if (mode == UNWIND_X86_MODE_STACK_IND && function_start) { |
| uint32_t stack_adjust = |
| EXTRACT_BITS(encoding, UNWIND_X86_FRAMELESS_STACK_ADJUST); |
| |
| // offset into the function instructions; 0 == beginning of first |
| // instruction |
| uint32_t offset_to_subl_insn = |
| EXTRACT_BITS(encoding, UNWIND_X86_FRAMELESS_STACK_SIZE); |
| |
| stack_size = *((uint32_t *)(function_start + offset_to_subl_insn)); |
| |
| stack_size += stack_adjust * 4; |
| |
| printf("large stack "); |
| } |
| |
| if (mode == UNWIND_X86_MODE_STACK_IND) { |
| printf("frameless function: stack size %d, register count %d ", |
| stack_size, register_count); |
| } else { |
| printf("frameless function: stack size %d, register count %d ", |
| stack_size * 4, register_count); |
| } |
| |
| if (register_count == 0) { |
| printf(" no registers saved"); |
| } else { |
| |
| // We need to include (up to) 6 registers in 10 bits. |
| // That would be 18 bits if we just used 3 bits per reg to indicate |
| // the order they're saved on the stack. |
| // |
| // This is done with Lehmer code permutation, e.g. see |
| // http://stackoverflow.com/questions/1506078/fast-permutation-number-permutation-mapping-algorithms |
| int permunreg[6]; |
| |
| // This decodes the variable-base number in the 10 bits |
| // and gives us the Lehmer code sequence which can then |
| // be decoded. |
| |
| switch (register_count) { |
| case 6: |
| permunreg[0] = permutation / 120; // 120 == 5! |
| permutation -= (permunreg[0] * 120); |
| permunreg[1] = permutation / 24; // 24 == 4! |
| permutation -= (permunreg[1] * 24); |
| permunreg[2] = permutation / 6; // 6 == 3! |
| permutation -= (permunreg[2] * 6); |
| permunreg[3] = permutation / 2; // 2 == 2! |
| permutation -= (permunreg[3] * 2); |
| permunreg[4] = permutation; // 1 == 1! |
| permunreg[5] = 0; |
| break; |
| case 5: |
| permunreg[0] = permutation / 120; |
| permutation -= (permunreg[0] * 120); |
| permunreg[1] = permutation / 24; |
| permutation -= (permunreg[1] * 24); |
| permunreg[2] = permutation / 6; |
| permutation -= (permunreg[2] * 6); |
| permunreg[3] = permutation / 2; |
| permutation -= (permunreg[3] * 2); |
| permunreg[4] = permutation; |
| break; |
| case 4: |
| permunreg[0] = permutation / 60; |
| permutation -= (permunreg[0] * 60); |
| permunreg[1] = permutation / 12; |
| permutation -= (permunreg[1] * 12); |
| permunreg[2] = permutation / 3; |
| permutation -= (permunreg[2] * 3); |
| permunreg[3] = permutation; |
| break; |
| case 3: |
| permunreg[0] = permutation / 20; |
| permutation -= (permunreg[0] * 20); |
| permunreg[1] = permutation / 4; |
| permutation -= (permunreg[1] * 4); |
| permunreg[2] = permutation; |
| break; |
| case 2: |
| permunreg[0] = permutation / 5; |
| permutation -= (permunreg[0] * 5); |
| permunreg[1] = permutation; |
| break; |
| case 1: |
| permunreg[0] = permutation; |
| break; |
| } |
| |
| // Decode the Lehmer code for this permutation of |
| // the registers v. http://en.wikipedia.org/wiki/Lehmer_code |
| |
| int registers[6]; |
| bool used[7] = {false, false, false, false, false, false, false}; |
| for (int i = 0; i < register_count; i++) { |
| int renum = 0; |
| for (int j = 1; j < 7; j++) { |
| if (used[j] == false) { |
| if (renum == permunreg[i]) { |
| registers[i] = j; |
| used[j] = true; |
| break; |
| } |
| renum++; |
| } |
| } |
| } |
| |
| if (mode == UNWIND_X86_MODE_STACK_IND) { |
| printf(" CFA is esp+%d ", stack_size); |
| } else { |
| printf(" CFA is esp+%d ", stack_size * 4); |
| } |
| |
| uint32_t saved_registers_offset = 1; |
| printf(" eip=[CFA-%d]", saved_registers_offset * 4); |
| saved_registers_offset++; |
| |
| for (int i = (sizeof(registers) / sizeof(int)) - 1; i >= 0; i--) { |
| switch (registers[i]) { |
| case UNWIND_X86_REG_NONE: |
| break; |
| case UNWIND_X86_REG_EBX: |
| printf(" ebx=[CFA-%d]", saved_registers_offset * 4); |
| saved_registers_offset++; |
| break; |
| case UNWIND_X86_REG_ECX: |
| printf(" ecx=[CFA-%d]", saved_registers_offset * 4); |
| saved_registers_offset++; |
| break; |
| case UNWIND_X86_REG_EDX: |
| printf(" edx=[CFA-%d]", saved_registers_offset * 4); |
| saved_registers_offset++; |
| break; |
| case UNWIND_X86_REG_EDI: |
| printf(" edi=[CFA-%d]", saved_registers_offset * 4); |
| saved_registers_offset++; |
| break; |
| case UNWIND_X86_REG_ESI: |
| printf(" esi=[CFA-%d]", saved_registers_offset * 4); |
| saved_registers_offset++; |
| break; |
| case UNWIND_X86_REG_EBP: |
| printf(" ebp=[CFA-%d]", saved_registers_offset * 4); |
| saved_registers_offset++; |
| break; |
| } |
| } |
| } |
| |
| } break; |
| |
| case UNWIND_X86_MODE_DWARF: { |
| uint32_t dwarf_offset = encoding & UNWIND_X86_DWARF_SECTION_OFFSET; |
| printf( |
| "DWARF unwind instructions: FDE at offset %d (file address 0x%" PRIx64 |
| ")", |
| dwarf_offset, dwarf_offset + baton.eh_section_file_address); |
| } break; |
| |
| case 0: { |
| printf(" no unwind information"); |
| } break; |
| } |
| } |
| |
| void print_encoding_arm64(struct baton baton, uint8_t *function_start, |
| uint32_t encoding) { |
| const int wordsize = 8; |
| int mode = encoding & UNWIND_ARM64_MODE_MASK; |
| switch (mode) { |
| case UNWIND_ARM64_MODE_FRAME: { |
| printf("frame func: CFA is fp+%d ", 16); |
| printf(" pc=[CFA-8] fp=[CFA-16]"); |
| int reg_pairs_saved_count = 1; |
| uint32_t saved_register_bits = encoding & 0xfff; |
| if (saved_register_bits & UNWIND_ARM64_FRAME_X19_X20_PAIR) { |
| int cfa_offset = reg_pairs_saved_count * -2 * wordsize; |
| cfa_offset -= wordsize; |
| printf(" x19=[CFA%d]", cfa_offset); |
| cfa_offset -= wordsize; |
| printf(" x20=[CFA%d]", cfa_offset); |
| reg_pairs_saved_count++; |
| } |
| if (saved_register_bits & UNWIND_ARM64_FRAME_X21_X22_PAIR) { |
| int cfa_offset = reg_pairs_saved_count * -2 * wordsize; |
| cfa_offset -= wordsize; |
| printf(" x21=[CFA%d]", cfa_offset); |
| cfa_offset -= wordsize; |
| printf(" x22=[CFA%d]", cfa_offset); |
| reg_pairs_saved_count++; |
| } |
| if (saved_register_bits & UNWIND_ARM64_FRAME_X23_X24_PAIR) { |
| int cfa_offset = reg_pairs_saved_count * -2 * wordsize; |
| cfa_offset -= wordsize; |
| printf(" x23=[CFA%d]", cfa_offset); |
| cfa_offset -= wordsize; |
| printf(" x24=[CFA%d]", cfa_offset); |
| reg_pairs_saved_count++; |
| } |
| if (saved_register_bits & UNWIND_ARM64_FRAME_X25_X26_PAIR) { |
| int cfa_offset = reg_pairs_saved_count * -2 * wordsize; |
| cfa_offset -= wordsize; |
| printf(" x25=[CFA%d]", cfa_offset); |
| cfa_offset -= wordsize; |
| printf(" x26=[CFA%d]", cfa_offset); |
| reg_pairs_saved_count++; |
| } |
| if (saved_register_bits & UNWIND_ARM64_FRAME_X27_X28_PAIR) { |
| int cfa_offset = reg_pairs_saved_count * -2 * wordsize; |
| cfa_offset -= wordsize; |
| printf(" x27=[CFA%d]", cfa_offset); |
| cfa_offset -= wordsize; |
| printf(" x28=[CFA%d]", cfa_offset); |
| reg_pairs_saved_count++; |
| } |
| if (saved_register_bits & UNWIND_ARM64_FRAME_D8_D9_PAIR) { |
| int cfa_offset = reg_pairs_saved_count * -2 * wordsize; |
| cfa_offset -= wordsize; |
| printf(" d8=[CFA%d]", cfa_offset); |
| cfa_offset -= wordsize; |
| printf(" d9=[CFA%d]", cfa_offset); |
| reg_pairs_saved_count++; |
| } |
| if (saved_register_bits & UNWIND_ARM64_FRAME_D10_D11_PAIR) { |
| int cfa_offset = reg_pairs_saved_count * -2 * wordsize; |
| cfa_offset -= wordsize; |
| printf(" d10=[CFA%d]", cfa_offset); |
| cfa_offset -= wordsize; |
| printf(" d11=[CFA%d]", cfa_offset); |
| reg_pairs_saved_count++; |
| } |
| if (saved_register_bits & UNWIND_ARM64_FRAME_D12_D13_PAIR) { |
| int cfa_offset = reg_pairs_saved_count * -2 * wordsize; |
| cfa_offset -= wordsize; |
| printf(" d12=[CFA%d]", cfa_offset); |
| cfa_offset -= wordsize; |
| printf(" d13=[CFA%d]", cfa_offset); |
| reg_pairs_saved_count++; |
| } |
| if (saved_register_bits & UNWIND_ARM64_FRAME_D14_D15_PAIR) { |
| int cfa_offset = reg_pairs_saved_count * -2 * wordsize; |
| cfa_offset -= wordsize; |
| printf(" d14=[CFA%d]", cfa_offset); |
| cfa_offset -= wordsize; |
| printf(" d15=[CFA%d]", cfa_offset); |
| reg_pairs_saved_count++; |
| } |
| |
| } break; |
| |
| case UNWIND_ARM64_MODE_FRAMELESS: { |
| uint32_t stack_size = encoding & UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK; |
| printf("frameless function: stack size %d ", stack_size * 16); |
| |
| } break; |
| |
| case UNWIND_ARM64_MODE_DWARF: { |
| uint32_t dwarf_offset = encoding & UNWIND_ARM64_DWARF_SECTION_OFFSET; |
| printf( |
| "DWARF unwind instructions: FDE at offset %d (file address 0x%" PRIx64 |
| ")", |
| dwarf_offset, dwarf_offset + baton.eh_section_file_address); |
| } break; |
| |
| case 0: { |
| printf(" no unwind information"); |
| } break; |
| } |
| } |
| |
| void print_encoding_armv7(struct baton baton, uint8_t *function_start, |
| uint32_t encoding) { |
| const int wordsize = 4; |
| int mode = encoding & UNWIND_ARM_MODE_MASK; |
| switch (mode) { |
| case UNWIND_ARM_MODE_FRAME_D: |
| case UNWIND_ARM_MODE_FRAME: { |
| int stack_adjust = |
| EXTRACT_BITS(encoding, UNWIND_ARM_FRAME_STACK_ADJUST_MASK) * wordsize; |
| |
| printf("frame func: CFA is fp+%d ", (2 * wordsize) + stack_adjust); |
| int cfa_offset = -stack_adjust; |
| |
| cfa_offset -= wordsize; |
| printf(" pc=[CFA%d]", cfa_offset); |
| cfa_offset -= wordsize; |
| printf(" fp=[CFA%d]", cfa_offset); |
| |
| uint32_t saved_register_bits = encoding & 0xff; |
| if (saved_register_bits & UNWIND_ARM_FRAME_FIRST_PUSH_R6) { |
| cfa_offset -= wordsize; |
| printf(" r6=[CFA%d]", cfa_offset); |
| } |
| if (saved_register_bits & UNWIND_ARM_FRAME_FIRST_PUSH_R5) { |
| cfa_offset -= wordsize; |
| printf(" r5=[CFA%d]", cfa_offset); |
| } |
| if (saved_register_bits & UNWIND_ARM_FRAME_FIRST_PUSH_R4) { |
| cfa_offset -= wordsize; |
| printf(" r4=[CFA%d]", cfa_offset); |
| } |
| if (saved_register_bits & UNWIND_ARM_FRAME_SECOND_PUSH_R12) { |
| cfa_offset -= wordsize; |
| printf(" r12=[CFA%d]", cfa_offset); |
| } |
| if (saved_register_bits & UNWIND_ARM_FRAME_SECOND_PUSH_R11) { |
| cfa_offset -= wordsize; |
| printf(" r11=[CFA%d]", cfa_offset); |
| } |
| if (saved_register_bits & UNWIND_ARM_FRAME_SECOND_PUSH_R10) { |
| cfa_offset -= wordsize; |
| printf(" r10=[CFA%d]", cfa_offset); |
| } |
| if (saved_register_bits & UNWIND_ARM_FRAME_SECOND_PUSH_R9) { |
| cfa_offset -= wordsize; |
| printf(" r9=[CFA%d]", cfa_offset); |
| } |
| if (saved_register_bits & UNWIND_ARM_FRAME_SECOND_PUSH_R8) { |
| cfa_offset -= wordsize; |
| printf(" r8=[CFA%d]", cfa_offset); |
| } |
| |
| if (mode == UNWIND_ARM_MODE_FRAME_D) { |
| uint32_t d_reg_bits = |
| EXTRACT_BITS(encoding, UNWIND_ARM_FRAME_D_REG_COUNT_MASK); |
| switch (d_reg_bits) { |
| case 0: |
| // vpush {d8} |
| cfa_offset -= 8; |
| printf(" d8=[CFA%d]", cfa_offset); |
| break; |
| case 1: |
| // vpush {d10} |
| // vpush {d8} |
| cfa_offset -= 8; |
| printf(" d10=[CFA%d]", cfa_offset); |
| cfa_offset -= 8; |
| printf(" d8=[CFA%d]", cfa_offset); |
| break; |
| case 2: |
| // vpush {d12} |
| // vpush {d10} |
| // vpush {d8} |
| cfa_offset -= 8; |
| printf(" d12=[CFA%d]", cfa_offset); |
| cfa_offset -= 8; |
| printf(" d10=[CFA%d]", cfa_offset); |
| cfa_offset -= 8; |
| printf(" d8=[CFA%d]", cfa_offset); |
| break; |
| case 3: |
| // vpush {d14} |
| // vpush {d12} |
| // vpush {d10} |
| // vpush {d8} |
| cfa_offset -= 8; |
| printf(" d14=[CFA%d]", cfa_offset); |
| cfa_offset -= 8; |
| printf(" d12=[CFA%d]", cfa_offset); |
| cfa_offset -= 8; |
| printf(" d10=[CFA%d]", cfa_offset); |
| cfa_offset -= 8; |
| printf(" d8=[CFA%d]", cfa_offset); |
| break; |
| case 4: |
| // vpush {d14} |
| // vpush {d12} |
| // sp = (sp - 24) & (-16); |
| // vst {d8, d9, d10} |
| printf(" d14, d12, d10, d9, d8"); |
| break; |
| case 5: |
| // vpush {d14} |
| // sp = (sp - 40) & (-16); |
| // vst {d8, d9, d10, d11} |
| // vst {d12} |
| printf(" d14, d11, d10, d9, d8, d12"); |
| break; |
| case 6: |
| // sp = (sp - 56) & (-16); |
| // vst {d8, d9, d10, d11} |
| // vst {d12, d13, d14} |
| printf(" d11, d10, d9, d8, d14, d13, d12"); |
| break; |
| case 7: |
| // sp = (sp - 64) & (-16); |
| // vst {d8, d9, d10, d11} |
| // vst {d12, d13, d14, d15} |
| printf(" d11, d10, d9, d8, d15, d14, d13, d12"); |
| break; |
| } |
| } |
| } break; |
| |
| case UNWIND_ARM_MODE_DWARF: { |
| uint32_t dwarf_offset = encoding & UNWIND_ARM_DWARF_SECTION_OFFSET; |
| printf( |
| "DWARF unwind instructions: FDE at offset %d (file address 0x%" PRIx64 |
| ")", |
| dwarf_offset, dwarf_offset + baton.eh_section_file_address); |
| } break; |
| |
| case 0: { |
| printf(" no unwind information"); |
| } break; |
| } |
| } |
| |
| void print_encoding(struct baton baton, uint8_t *function_start, |
| uint32_t encoding) { |
| |
| if (baton.cputype == CPU_TYPE_X86_64) { |
| print_encoding_x86_64(baton, function_start, encoding); |
| } else if (baton.cputype == CPU_TYPE_I386) { |
| print_encoding_i386(baton, function_start, encoding); |
| } else if (baton.cputype == CPU_TYPE_ARM64 || baton.cputype == CPU_TYPE_ARM64_32) { |
| print_encoding_arm64(baton, function_start, encoding); |
| } else if (baton.cputype == CPU_TYPE_ARM) { |
| print_encoding_armv7(baton, function_start, encoding); |
| } else { |
| printf(" -- unsupported encoding arch -- "); |
| } |
| } |
| |
| void print_function_encoding(struct baton baton, uint32_t idx, |
| uint32_t encoding, uint32_t entry_encoding_index, |
| uint32_t entry_func_offset) { |
| |
| char *entry_encoding_index_str = ""; |
| if (entry_encoding_index != (uint32_t)-1) { |
| asprintf(&entry_encoding_index_str, ", encoding #%d", entry_encoding_index); |
| } else { |
| asprintf(&entry_encoding_index_str, ""); |
| } |
| |
| uint64_t file_address = baton.first_level_index_entry.functionOffset + |
| entry_func_offset + baton.text_segment_vmaddr; |
| |
| if (baton.cputype == CPU_TYPE_ARM) |
| file_address = file_address & ~1; |
| |
| printf( |
| " func [%d] offset %d (file addr 0x%" PRIx64 ")%s, encoding is 0x%x", |
| idx, entry_func_offset, file_address, entry_encoding_index_str, encoding); |
| |
| struct symbol *symbol = NULL; |
| for (int i = 0; i < baton.symbols_count; i++) { |
| if (i == baton.symbols_count - 1 && |
| baton.symbols[i].file_address <= file_address) { |
| symbol = &(baton.symbols[i]); |
| break; |
| } else { |
| if (baton.symbols[i].file_address <= file_address && |
| baton.symbols[i + 1].file_address > file_address) { |
| symbol = &(baton.symbols[i]); |
| break; |
| } |
| } |
| } |
| |
| printf("\n "); |
| if (symbol) { |
| int offset = file_address - symbol->file_address; |
| |
| // FIXME this is a poor heuristic - if we're greater than 16 bytes past the |
| // start of the function, this is the unwind info for a stripped function. |
| // In reality the compact unwind entry may not line up exactly with the |
| // function bounds. |
| if (offset >= 0) { |
| printf("name: %s", symbol->name); |
| if (offset > 0) { |
| printf(" + %d", offset); |
| } |
| } |
| printf("\n "); |
| } |
| |
| print_encoding(baton, baton.mach_header_start + |
| baton.first_level_index_entry.functionOffset + |
| baton.text_section_file_offset + entry_func_offset, |
| encoding); |
| |
| bool has_lsda = encoding & UNWIND_HAS_LSDA; |
| |
| if (has_lsda) { |
| uint32_t func_offset = |
| entry_func_offset + baton.first_level_index_entry.functionOffset; |
| |
| int lsda_entry_number = -1; |
| |
| uint32_t low = 0; |
| uint32_t high = (baton.lsda_array_end - baton.lsda_array_start) / |
| sizeof(struct unwind_info_section_header_lsda_index_entry); |
| |
| while (low < high) { |
| uint32_t mid = (low + high) / 2; |
| |
| uint8_t *mid_lsda_entry_addr = |
| (baton.lsda_array_start + |
| (mid * sizeof(struct unwind_info_section_header_lsda_index_entry))); |
| struct unwind_info_section_header_lsda_index_entry mid_lsda_entry; |
| memcpy(&mid_lsda_entry, mid_lsda_entry_addr, |
| sizeof(struct unwind_info_section_header_lsda_index_entry)); |
| if (mid_lsda_entry.functionOffset == func_offset) { |
| lsda_entry_number = |
| (mid_lsda_entry_addr - baton.lsda_array_start) / |
| sizeof(struct unwind_info_section_header_lsda_index_entry); |
| break; |
| } else if (mid_lsda_entry.functionOffset < func_offset) { |
| low = mid + 1; |
| } else { |
| high = mid; |
| } |
| } |
| |
| if (lsda_entry_number != -1) { |
| printf(", LSDA entry #%d", lsda_entry_number); |
| } else { |
| printf(", LSDA entry not found"); |
| } |
| } |
| |
| uint32_t pers_idx = EXTRACT_BITS(encoding, UNWIND_PERSONALITY_MASK); |
| if (pers_idx != 0) { |
| pers_idx--; // Change 1-based to 0-based index |
| printf(", personality entry #%d", pers_idx); |
| } |
| |
| printf("\n"); |
| } |
| |
| void print_second_level_index_regular(struct baton baton) { |
| uint8_t *page_entries = |
| baton.compact_unwind_start + |
| baton.first_level_index_entry.secondLevelPagesSectionOffset + |
| baton.regular_second_level_page_header.entryPageOffset; |
| uint32_t entries_count = baton.regular_second_level_page_header.entryCount; |
| |
| uint8_t *offset = page_entries; |
| |
| uint32_t idx = 0; |
| while (idx < entries_count) { |
| uint32_t func_offset = *((uint32_t *)(offset)); |
| uint32_t encoding = *((uint32_t *)(offset + 4)); |
| |
| // UNWIND_SECOND_LEVEL_REGULAR entries have a funcOffset which includes the |
| // functionOffset from the containing index table already. |
| // UNWIND_SECOND_LEVEL_COMPRESSED |
| // entries only have the offset from the containing index table |
| // functionOffset. |
| // So strip off the containing index table functionOffset value here so they |
| // can |
| // be treated the same at the lower layers. |
| |
| print_function_encoding(baton, idx, encoding, (uint32_t)-1, |
| func_offset - |
| baton.first_level_index_entry.functionOffset); |
| idx++; |
| offset += 8; |
| } |
| } |
| |
| void print_second_level_index_compressed(struct baton baton) { |
| uint8_t *this_index = |
| baton.compact_unwind_start + |
| baton.first_level_index_entry.secondLevelPagesSectionOffset; |
| uint8_t *start_of_entries = |
| this_index + baton.compressed_second_level_page_header.entryPageOffset; |
| uint8_t *offset = start_of_entries; |
| for (uint16_t idx = 0; |
| idx < baton.compressed_second_level_page_header.entryCount; idx++) { |
| uint32_t entry = *((uint32_t *)offset); |
| offset += 4; |
| uint32_t encoding; |
| |
| uint32_t entry_encoding_index = |
| UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(entry); |
| uint32_t entry_func_offset = |
| UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(entry); |
| |
| if (entry_encoding_index < baton.unwind_header.commonEncodingsArrayCount) { |
| // encoding is in common table in section header |
| encoding = |
| *((uint32_t *)(baton.compact_unwind_start + |
| baton.unwind_header.commonEncodingsArraySectionOffset + |
| (entry_encoding_index * sizeof(uint32_t)))); |
| } else { |
| // encoding is in page specific table |
| uint32_t page_encoding_index = |
| entry_encoding_index - baton.unwind_header.commonEncodingsArrayCount; |
| encoding = *((uint32_t *)(this_index + |
| baton.compressed_second_level_page_header |
| .encodingsPageOffset + |
| (page_encoding_index * sizeof(uint32_t)))); |
| } |
| |
| print_function_encoding(baton, idx, encoding, entry_encoding_index, |
| entry_func_offset); |
| } |
| } |
| |
| void print_second_level_index(struct baton baton) { |
| uint8_t *index_start = |
| baton.compact_unwind_start + |
| baton.first_level_index_entry.secondLevelPagesSectionOffset; |
| |
| if ((*(uint32_t *)index_start) == UNWIND_SECOND_LEVEL_REGULAR) { |
| struct unwind_info_regular_second_level_page_header header; |
| memcpy(&header, index_start, |
| sizeof(struct unwind_info_regular_second_level_page_header)); |
| printf( |
| " UNWIND_SECOND_LEVEL_REGULAR #%d entryPageOffset %d, entryCount %d\n", |
| baton.current_index_table_number, header.entryPageOffset, |
| header.entryCount); |
| baton.regular_second_level_page_header = header; |
| print_second_level_index_regular(baton); |
| } |
| |
| if ((*(uint32_t *)index_start) == UNWIND_SECOND_LEVEL_COMPRESSED) { |
| struct unwind_info_compressed_second_level_page_header header; |
| memcpy(&header, index_start, |
| sizeof(struct unwind_info_compressed_second_level_page_header)); |
| printf(" UNWIND_SECOND_LEVEL_COMPRESSED #%d entryPageOffset %d, " |
| "entryCount %d, encodingsPageOffset %d, encodingsCount %d\n", |
| baton.current_index_table_number, header.entryPageOffset, |
| header.entryCount, header.encodingsPageOffset, |
| header.encodingsCount); |
| baton.compressed_second_level_page_header = header; |
| print_second_level_index_compressed(baton); |
| } |
| } |
| |
| void print_index_sections(struct baton baton) { |
| uint8_t *index_section_offset = |
| baton.compact_unwind_start + baton.unwind_header.indexSectionOffset; |
| uint32_t index_count = baton.unwind_header.indexCount; |
| |
| uint32_t cur_idx = 0; |
| |
| uint8_t *offset = index_section_offset; |
| while (cur_idx < index_count) { |
| baton.current_index_table_number = cur_idx; |
| struct unwind_info_section_header_index_entry index_entry; |
| memcpy(&index_entry, offset, |
| sizeof(struct unwind_info_section_header_index_entry)); |
| printf("index section #%d: functionOffset %d, " |
| "secondLevelPagesSectionOffset %d, lsdaIndexArraySectionOffset %d\n", |
| cur_idx, index_entry.functionOffset, |
| index_entry.secondLevelPagesSectionOffset, |
| index_entry.lsdaIndexArraySectionOffset); |
| |
| // secondLevelPagesSectionOffset == 0 means this is a sentinel entry |
| if (index_entry.secondLevelPagesSectionOffset != 0) { |
| struct unwind_info_section_header_index_entry next_index_entry; |
| memcpy(&next_index_entry, |
| offset + sizeof(struct unwind_info_section_header_index_entry), |
| sizeof(struct unwind_info_section_header_index_entry)); |
| |
| baton.lsda_array_start = |
| baton.compact_unwind_start + index_entry.lsdaIndexArraySectionOffset; |
| baton.lsda_array_end = baton.compact_unwind_start + |
| next_index_entry.lsdaIndexArraySectionOffset; |
| |
| uint8_t *lsda_entry_offset = baton.lsda_array_start; |
| uint32_t lsda_count = 0; |
| while (lsda_entry_offset < baton.lsda_array_end) { |
| struct unwind_info_section_header_lsda_index_entry lsda_entry; |
| memcpy(&lsda_entry, lsda_entry_offset, |
| sizeof(struct unwind_info_section_header_lsda_index_entry)); |
| uint64_t function_file_address = |
| baton.first_level_index_entry.functionOffset + |
| lsda_entry.functionOffset + baton.text_segment_vmaddr; |
| uint64_t lsda_file_address = |
| lsda_entry.lsdaOffset + baton.text_segment_vmaddr; |
| printf(" LSDA [%d] functionOffset %d (%d) (file address 0x%" PRIx64 |
| "), lsdaOffset %d (file address 0x%" PRIx64 ")\n", |
| lsda_count, lsda_entry.functionOffset, |
| lsda_entry.functionOffset - index_entry.functionOffset, |
| function_file_address, lsda_entry.lsdaOffset, lsda_file_address); |
| lsda_count++; |
| lsda_entry_offset += |
| sizeof(struct unwind_info_section_header_lsda_index_entry); |
| } |
| |
| printf("\n"); |
| |
| baton.first_level_index_entry = index_entry; |
| print_second_level_index(baton); |
| } |
| |
| printf("\n"); |
| |
| cur_idx++; |
| offset += sizeof(struct unwind_info_section_header_index_entry); |
| } |
| } |
| |
| int main(int argc, char **argv) { |
| struct stat st; |
| char *file = argv[0]; |
| if (argc > 1) |
| file = argv[1]; |
| int fd = open(file, O_RDONLY); |
| if (fd == -1) { |
| printf("Failed to open '%s'\n", file); |
| exit(1); |
| } |
| fstat(fd, &st); |
| uint8_t *file_mem = |
| (uint8_t *)mmap(0, st.st_size, PROT_READ, MAP_PRIVATE | MAP_FILE, fd, 0); |
| if (file_mem == MAP_FAILED) { |
| printf("Failed to mmap() '%s'\n", file); |
| } |
| |
| FILE *f = fopen("a.out", "r"); |
| |
| struct baton baton; |
| baton.mach_header_start = file_mem; |
| baton.symbols = NULL; |
| baton.symbols_count = 0; |
| baton.function_start_addresses = NULL; |
| baton.function_start_addresses_count = 0; |
| |
| scan_macho_load_commands(&baton); |
| |
| if (baton.compact_unwind_start == NULL) { |
| printf("could not find __TEXT,__unwind_info section\n"); |
| exit(1); |
| } |
| |
| struct unwind_info_section_header header; |
| memcpy(&header, baton.compact_unwind_start, |
| sizeof(struct unwind_info_section_header)); |
| printf("Header:\n"); |
| printf(" version %u\n", header.version); |
| printf(" commonEncodingsArraySectionOffset is %d\n", |
| header.commonEncodingsArraySectionOffset); |
| printf(" commonEncodingsArrayCount is %d\n", |
| header.commonEncodingsArrayCount); |
| printf(" personalityArraySectionOffset is %d\n", |
| header.personalityArraySectionOffset); |
| printf(" personalityArrayCount is %d\n", header.personalityArrayCount); |
| printf(" indexSectionOffset is %d\n", header.indexSectionOffset); |
| printf(" indexCount is %d\n", header.indexCount); |
| |
| uint8_t *common_encodings = |
| baton.compact_unwind_start + header.commonEncodingsArraySectionOffset; |
| uint32_t encoding_idx = 0; |
| while (encoding_idx < header.commonEncodingsArrayCount) { |
| uint32_t encoding = *((uint32_t *)common_encodings); |
| printf(" Common Encoding [%d]: 0x%x ", encoding_idx, encoding); |
| print_encoding(baton, NULL, encoding); |
| printf("\n"); |
| common_encodings += sizeof(uint32_t); |
| encoding_idx++; |
| } |
| |
| uint8_t *pers_arr = |
| baton.compact_unwind_start + header.personalityArraySectionOffset; |
| uint32_t pers_idx = 0; |
| while (pers_idx < header.personalityArrayCount) { |
| int32_t pers_delta = *((int32_t *)(baton.compact_unwind_start + |
| header.personalityArraySectionOffset + |
| (pers_idx * sizeof(uint32_t)))); |
| printf(" Personality [%d]: personality function ptr @ offset %d (file " |
| "address 0x%" PRIx64 ")\n", |
| pers_idx, pers_delta, baton.text_segment_vmaddr + pers_delta); |
| pers_idx++; |
| pers_arr += sizeof(uint32_t); |
| } |
| |
| printf("\n"); |
| |
| baton.unwind_header = header; |
| |
| print_index_sections(baton); |
| |
| return 0; |
| } |