| //===- AVR.cpp ------------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // AVR is a Harvard-architecture 8-bit microcontroller designed for small |
| // baremetal programs. All AVR-family processors have 32 8-bit registers. |
| // The tiniest AVR has 32 byte RAM and 1 KiB program memory, and the largest |
| // one supports up to 2^24 data address space and 2^22 code address space. |
| // |
| // Since it is a baremetal programming, there's usually no loader to load |
| // ELF files on AVRs. You are expected to link your program against address |
| // 0 and pull out a .text section from the result using objcopy, so that you |
| // can write the linked code to on-chip flush memory. You can do that with |
| // the following commands: |
| // |
| // ld.lld -Ttext=0 -o foo foo.o |
| // objcopy -O binary --only-section=.text foo output.bin |
| // |
| // Note that the current AVR support is very preliminary so you can't |
| // link any useful program yet, though. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InputFiles.h" |
| #include "Symbols.h" |
| #include "Target.h" |
| #include "lld/Common/ErrorHandler.h" |
| #include "llvm/Object/ELF.h" |
| #include "llvm/Support/Endian.h" |
| |
| using namespace llvm; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| using namespace llvm::ELF; |
| using namespace lld; |
| using namespace lld::elf; |
| |
| namespace { |
| class AVR final : public TargetInfo { |
| public: |
| uint32_t calcEFlags() const override; |
| RelExpr getRelExpr(RelType type, const Symbol &s, |
| const uint8_t *loc) const override; |
| void relocate(uint8_t *loc, const Relocation &rel, |
| uint64_t val) const override; |
| }; |
| } // namespace |
| |
| RelExpr AVR::getRelExpr(RelType type, const Symbol &s, |
| const uint8_t *loc) const { |
| switch (type) { |
| case R_AVR_6: |
| case R_AVR_6_ADIW: |
| case R_AVR_8: |
| case R_AVR_16: |
| case R_AVR_16_PM: |
| case R_AVR_32: |
| case R_AVR_LDI: |
| case R_AVR_LO8_LDI: |
| case R_AVR_LO8_LDI_NEG: |
| case R_AVR_HI8_LDI: |
| case R_AVR_HI8_LDI_NEG: |
| case R_AVR_HH8_LDI_NEG: |
| case R_AVR_HH8_LDI: |
| case R_AVR_MS8_LDI_NEG: |
| case R_AVR_MS8_LDI: |
| case R_AVR_LO8_LDI_PM: |
| case R_AVR_LO8_LDI_PM_NEG: |
| case R_AVR_HI8_LDI_PM: |
| case R_AVR_HI8_LDI_PM_NEG: |
| case R_AVR_HH8_LDI_PM: |
| case R_AVR_HH8_LDI_PM_NEG: |
| case R_AVR_PORT5: |
| case R_AVR_PORT6: |
| case R_AVR_CALL: |
| return R_ABS; |
| case R_AVR_7_PCREL: |
| case R_AVR_13_PCREL: |
| return R_PC; |
| default: |
| error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) + |
| ") against symbol " + toString(s)); |
| return R_NONE; |
| } |
| } |
| |
| static void writeLDI(uint8_t *loc, uint64_t val) { |
| write16le(loc, (read16le(loc) & 0xf0f0) | (val & 0xf0) << 4 | (val & 0x0f)); |
| } |
| |
| void AVR::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { |
| switch (rel.type) { |
| case R_AVR_8: |
| checkUInt(loc, val, 8, rel); |
| *loc = val; |
| break; |
| case R_AVR_16: |
| // Note: this relocation is often used between code and data space, which |
| // are 0x800000 apart in the output ELF file. The bitmask cuts off the high |
| // bit. |
| write16le(loc, val & 0xffff); |
| break; |
| case R_AVR_16_PM: |
| checkAlignment(loc, val, 2, rel); |
| checkUInt(loc, val >> 1, 16, rel); |
| write16le(loc, val >> 1); |
| break; |
| case R_AVR_32: |
| checkUInt(loc, val, 32, rel); |
| write32le(loc, val); |
| break; |
| |
| case R_AVR_LDI: |
| checkUInt(loc, val, 8, rel); |
| writeLDI(loc, val & 0xff); |
| break; |
| |
| case R_AVR_LO8_LDI_NEG: |
| writeLDI(loc, -val & 0xff); |
| break; |
| case R_AVR_LO8_LDI: |
| writeLDI(loc, val & 0xff); |
| break; |
| case R_AVR_HI8_LDI_NEG: |
| writeLDI(loc, (-val >> 8) & 0xff); |
| break; |
| case R_AVR_HI8_LDI: |
| writeLDI(loc, (val >> 8) & 0xff); |
| break; |
| case R_AVR_HH8_LDI_NEG: |
| writeLDI(loc, (-val >> 16) & 0xff); |
| break; |
| case R_AVR_HH8_LDI: |
| writeLDI(loc, (val >> 16) & 0xff); |
| break; |
| case R_AVR_MS8_LDI_NEG: |
| writeLDI(loc, (-val >> 24) & 0xff); |
| break; |
| case R_AVR_MS8_LDI: |
| writeLDI(loc, (val >> 24) & 0xff); |
| break; |
| |
| case R_AVR_LO8_LDI_PM: |
| checkAlignment(loc, val, 2, rel); |
| writeLDI(loc, (val >> 1) & 0xff); |
| break; |
| case R_AVR_HI8_LDI_PM: |
| checkAlignment(loc, val, 2, rel); |
| writeLDI(loc, (val >> 9) & 0xff); |
| break; |
| case R_AVR_HH8_LDI_PM: |
| checkAlignment(loc, val, 2, rel); |
| writeLDI(loc, (val >> 17) & 0xff); |
| break; |
| |
| case R_AVR_LO8_LDI_PM_NEG: |
| checkAlignment(loc, val, 2, rel); |
| writeLDI(loc, (-val >> 1) & 0xff); |
| break; |
| case R_AVR_HI8_LDI_PM_NEG: |
| checkAlignment(loc, val, 2, rel); |
| writeLDI(loc, (-val >> 9) & 0xff); |
| break; |
| case R_AVR_HH8_LDI_PM_NEG: |
| checkAlignment(loc, val, 2, rel); |
| writeLDI(loc, (-val >> 17) & 0xff); |
| break; |
| |
| case R_AVR_PORT5: |
| checkUInt(loc, val, 5, rel); |
| write16le(loc, (read16le(loc) & 0xff07) | (val << 3)); |
| break; |
| case R_AVR_PORT6: |
| checkUInt(loc, val, 6, rel); |
| write16le(loc, (read16le(loc) & 0xf9f0) | (val & 0x30) << 5 | (val & 0x0f)); |
| break; |
| |
| // Since every jump destination is word aligned we gain an extra bit |
| case R_AVR_7_PCREL: { |
| checkInt(loc, val, 7, rel); |
| checkAlignment(loc, val, 2, rel); |
| const uint16_t target = (val - 2) >> 1; |
| write16le(loc, (read16le(loc) & 0xfc07) | ((target & 0x7f) << 3)); |
| break; |
| } |
| case R_AVR_13_PCREL: { |
| checkAlignment(loc, val, 2, rel); |
| const uint16_t target = (val - 2) >> 1; |
| write16le(loc, (read16le(loc) & 0xf000) | (target & 0xfff)); |
| break; |
| } |
| |
| case R_AVR_6: |
| checkInt(loc, val, 6, rel); |
| write16le(loc, (read16le(loc) & 0xd3f8) | (val & 0x20) << 8 | |
| (val & 0x18) << 7 | (val & 0x07)); |
| break; |
| case R_AVR_6_ADIW: |
| checkInt(loc, val, 6, rel); |
| write16le(loc, (read16le(loc) & 0xff30) | (val & 0x30) << 2 | (val & 0x0F)); |
| break; |
| |
| case R_AVR_CALL: { |
| uint16_t hi = val >> 17; |
| uint16_t lo = val >> 1; |
| write16le(loc, read16le(loc) | ((hi >> 1) << 4) | (hi & 1)); |
| write16le(loc + 2, lo); |
| break; |
| } |
| default: |
| llvm_unreachable("unknown relocation"); |
| } |
| } |
| |
| TargetInfo *elf::getAVRTargetInfo() { |
| static AVR target; |
| return ⌖ |
| } |
| |
| static uint32_t getEFlags(InputFile *file) { |
| return cast<ObjFile<ELF32LE>>(file)->getObj().getHeader().e_flags; |
| } |
| |
| uint32_t AVR::calcEFlags() const { |
| assert(!objectFiles.empty()); |
| |
| uint32_t flags = getEFlags(objectFiles[0]); |
| bool hasLinkRelaxFlag = flags & EF_AVR_LINKRELAX_PREPARED; |
| |
| for (InputFile *f : makeArrayRef(objectFiles).slice(1)) { |
| uint32_t objFlags = getEFlags(f); |
| if ((objFlags & EF_AVR_ARCH_MASK) != (flags & EF_AVR_ARCH_MASK)) |
| error(toString(f) + |
| ": cannot link object files with incompatible target ISA"); |
| if (!(objFlags & EF_AVR_LINKRELAX_PREPARED)) |
| hasLinkRelaxFlag = false; |
| } |
| |
| if (!hasLinkRelaxFlag) |
| flags &= ~EF_AVR_LINKRELAX_PREPARED; |
| |
| return flags; |
| } |