blob: 1b30fee36c666567d384bd513bc0f88e782eb7e3 [file] [log] [blame]
//===- Set.cpp - MLIR PresburgerSet Class ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/PresburgerSet.h"
#include "mlir/Analysis/Presburger/Simplex.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
using namespace mlir;
PresburgerSet::PresburgerSet(const FlatAffineConstraints &fac)
: nDim(fac.getNumDimIds()), nSym(fac.getNumSymbolIds()) {
unionFACInPlace(fac);
}
unsigned PresburgerSet::getNumFACs() const {
return flatAffineConstraints.size();
}
unsigned PresburgerSet::getNumDims() const { return nDim; }
unsigned PresburgerSet::getNumSyms() const { return nSym; }
ArrayRef<FlatAffineConstraints>
PresburgerSet::getAllFlatAffineConstraints() const {
return flatAffineConstraints;
}
const FlatAffineConstraints &
PresburgerSet::getFlatAffineConstraints(unsigned index) const {
assert(index < flatAffineConstraints.size() && "index out of bounds!");
return flatAffineConstraints[index];
}
/// Assert that the FlatAffineConstraints and PresburgerSet live in
/// compatible spaces.
static void assertDimensionsCompatible(const FlatAffineConstraints &fac,
const PresburgerSet &set) {
assert(fac.getNumDimIds() == set.getNumDims() &&
"Number of dimensions of the FlatAffineConstraints and PresburgerSet"
"do not match!");
assert(fac.getNumSymbolIds() == set.getNumSyms() &&
"Number of symbols of the FlatAffineConstraints and PresburgerSet"
"do not match!");
}
/// Assert that the two PresburgerSets live in compatible spaces.
static void assertDimensionsCompatible(const PresburgerSet &setA,
const PresburgerSet &setB) {
assert(setA.getNumDims() == setB.getNumDims() &&
"Number of dimensions of the PresburgerSets do not match!");
assert(setA.getNumSyms() == setB.getNumSyms() &&
"Number of symbols of the PresburgerSets do not match!");
}
/// Mutate this set, turning it into the union of this set and the given
/// FlatAffineConstraints.
void PresburgerSet::unionFACInPlace(const FlatAffineConstraints &fac) {
assertDimensionsCompatible(fac, *this);
flatAffineConstraints.push_back(fac);
}
/// Mutate this set, turning it into the union of this set and the given set.
///
/// This is accomplished by simply adding all the FACs of the given set to this
/// set.
void PresburgerSet::unionSetInPlace(const PresburgerSet &set) {
assertDimensionsCompatible(set, *this);
for (const FlatAffineConstraints &fac : set.flatAffineConstraints)
unionFACInPlace(fac);
}
/// Return the union of this set and the given set.
PresburgerSet PresburgerSet::unionSet(const PresburgerSet &set) const {
assertDimensionsCompatible(set, *this);
PresburgerSet result = *this;
result.unionSetInPlace(set);
return result;
}
/// A point is contained in the union iff any of the parts contain the point.
bool PresburgerSet::containsPoint(ArrayRef<int64_t> point) const {
for (const FlatAffineConstraints &fac : flatAffineConstraints) {
if (fac.containsPoint(point))
return true;
}
return false;
}
PresburgerSet PresburgerSet::getUniverse(unsigned nDim, unsigned nSym) {
PresburgerSet result(nDim, nSym);
result.unionFACInPlace(FlatAffineConstraints::getUniverse(nDim, nSym));
return result;
}
PresburgerSet PresburgerSet::getEmptySet(unsigned nDim, unsigned nSym) {
return PresburgerSet(nDim, nSym);
}
// Return the intersection of this set with the given set.
//
// We directly compute (S_1 or S_2 ...) and (T_1 or T_2 ...)
// as (S_1 and T_1) or (S_1 and T_2) or ...
PresburgerSet PresburgerSet::intersect(const PresburgerSet &set) const {
assertDimensionsCompatible(set, *this);
PresburgerSet result(nDim, nSym);
for (const FlatAffineConstraints &csA : flatAffineConstraints) {
for (const FlatAffineConstraints &csB : set.flatAffineConstraints) {
FlatAffineConstraints intersection(csA);
intersection.append(csB);
if (!intersection.isEmpty())
result.unionFACInPlace(std::move(intersection));
}
}
return result;
}
/// Return `coeffs` with all the elements negated.
static SmallVector<int64_t, 8> getNegatedCoeffs(ArrayRef<int64_t> coeffs) {
SmallVector<int64_t, 8> negatedCoeffs;
negatedCoeffs.reserve(coeffs.size());
for (int64_t coeff : coeffs)
negatedCoeffs.emplace_back(-coeff);
return negatedCoeffs;
}
/// Return the complement of the given inequality.
///
/// The complement of a_1 x_1 + ... + a_n x_ + c >= 0 is
/// a_1 x_1 + ... + a_n x_ + c < 0, i.e., -a_1 x_1 - ... - a_n x_ - c - 1 >= 0.
static SmallVector<int64_t, 8> getComplementIneq(ArrayRef<int64_t> ineq) {
SmallVector<int64_t, 8> coeffs;
coeffs.reserve(ineq.size());
for (int64_t coeff : ineq)
coeffs.emplace_back(-coeff);
--coeffs.back();
return coeffs;
}
/// Return the set difference b \ s and accumulate the result into `result`.
/// `simplex` must correspond to b.
///
/// In the following, V denotes union, ^ denotes intersection, \ denotes set
/// difference and ~ denotes complement.
/// Let b be the FlatAffineConstraints and s = (V_i s_i) be the set. We want
/// b \ (V_i s_i).
///
/// Let s_i = ^_j s_ij, where each s_ij is a single inequality. To compute
/// b \ s_i = b ^ ~s_i, we partition s_i based on the first violated inequality:
/// ~s_i = (~s_i1) V (s_i1 ^ ~s_i2) V (s_i1 ^ s_i2 ^ ~s_i3) V ...
/// And the required result is (b ^ ~s_i1) V (b ^ s_i1 ^ ~s_i2) V ...
/// We recurse by subtracting V_{j > i} S_j from each of these parts and
/// returning the union of the results. Each equality is handled as a
/// conjunction of two inequalities.
///
/// As a heuristic, we try adding all the constraints and check if simplex
/// says that the intersection is empty. Also, in the process we find out that
/// some constraints are redundant. These redundant constraints are ignored.
static void subtractRecursively(FlatAffineConstraints &b, Simplex &simplex,
const PresburgerSet &s, unsigned i,
PresburgerSet &result) {
if (i == s.getNumFACs()) {
result.unionFACInPlace(b);
return;
}
const FlatAffineConstraints &sI = s.getFlatAffineConstraints(i);
assert(sI.getNumLocalIds() == 0 &&
"Subtracting sets with divisions is not yet supported!");
unsigned initialSnapshot = simplex.getSnapshot();
unsigned offset = simplex.numConstraints();
simplex.intersectFlatAffineConstraints(sI);
if (simplex.isEmpty()) {
/// b ^ s_i is empty, so b \ s_i = b. We move directly to i + 1.
simplex.rollback(initialSnapshot);
subtractRecursively(b, simplex, s, i + 1, result);
return;
}
simplex.detectRedundant();
llvm::SmallBitVector isMarkedRedundant;
for (unsigned j = 0; j < 2 * sI.getNumEqualities() + sI.getNumInequalities();
j++)
isMarkedRedundant.push_back(simplex.isMarkedRedundant(offset + j));
simplex.rollback(initialSnapshot);
// Recurse with the part b ^ ~ineq. Note that b is modified throughout
// subtractRecursively. At the time this function is called, the current b is
// actually equal to b ^ s_i1 ^ s_i2 ^ ... ^ s_ij, and ineq is the next
// inequality, s_{i,j+1}. This function recurses into the next level i + 1
// with the part b ^ s_i1 ^ s_i2 ^ ... ^ s_ij ^ ~s_{i,j+1}.
auto recurseWithInequality = [&, i](ArrayRef<int64_t> ineq) {
size_t snapshot = simplex.getSnapshot();
b.addInequality(ineq);
simplex.addInequality(ineq);
subtractRecursively(b, simplex, s, i + 1, result);
b.removeInequality(b.getNumInequalities() - 1);
simplex.rollback(snapshot);
};
// For each inequality ineq, we first recurse with the part where ineq
// is not satisfied, and then add the ineq to b and simplex because
// ineq must be satisfied by all later parts.
auto processInequality = [&](ArrayRef<int64_t> ineq) {
recurseWithInequality(getComplementIneq(ineq));
b.addInequality(ineq);
simplex.addInequality(ineq);
};
// processInequality appends some additional constraints to b. We want to
// rollback b to its initial state before returning, which we will do by
// removing all constraints beyond the original number of inequalities
// and equalities, so we store these counts first.
unsigned originalNumIneqs = b.getNumInequalities();
unsigned originalNumEqs = b.getNumEqualities();
for (unsigned j = 0, e = sI.getNumInequalities(); j < e; j++) {
if (isMarkedRedundant[j])
continue;
processInequality(sI.getInequality(j));
}
offset = sI.getNumInequalities();
for (unsigned j = 0, e = sI.getNumEqualities(); j < e; ++j) {
const ArrayRef<int64_t> &coeffs = sI.getEquality(j);
// Same as the above loop for inequalities, done once each for the positive
// and negative inequalities that make up this equality.
if (!isMarkedRedundant[offset + 2 * j])
processInequality(coeffs);
if (!isMarkedRedundant[offset + 2 * j + 1])
processInequality(getNegatedCoeffs(coeffs));
}
// Rollback b and simplex to their initial states.
for (unsigned i = b.getNumInequalities(); i > originalNumIneqs; --i)
b.removeInequality(i - 1);
for (unsigned i = b.getNumEqualities(); i > originalNumEqs; --i)
b.removeEquality(i - 1);
simplex.rollback(initialSnapshot);
}
/// Return the set difference fac \ set.
///
/// The FAC here is modified in subtractRecursively, so it cannot be a const
/// reference even though it is restored to its original state before returning
/// from that function.
PresburgerSet PresburgerSet::getSetDifference(FlatAffineConstraints fac,
const PresburgerSet &set) {
assertDimensionsCompatible(fac, set);
assert(fac.getNumLocalIds() == 0 &&
"Subtracting sets with divisions is not yet supported!");
if (fac.isEmptyByGCDTest())
return PresburgerSet::getEmptySet(fac.getNumDimIds(),
fac.getNumSymbolIds());
PresburgerSet result(fac.getNumDimIds(), fac.getNumSymbolIds());
Simplex simplex(fac);
subtractRecursively(fac, simplex, set, 0, result);
return result;
}
/// Return the complement of this set.
PresburgerSet PresburgerSet::complement() const {
return getSetDifference(
FlatAffineConstraints::getUniverse(getNumDims(), getNumSyms()), *this);
}
/// Return the result of subtract the given set from this set, i.e.,
/// return `this \ set`.
PresburgerSet PresburgerSet::subtract(const PresburgerSet &set) const {
assertDimensionsCompatible(set, *this);
PresburgerSet result(nDim, nSym);
// We compute (V_i t_i) \ (V_i set_i) as V_i (t_i \ V_i set_i).
for (const FlatAffineConstraints &fac : flatAffineConstraints)
result.unionSetInPlace(getSetDifference(fac, set));
return result;
}
/// Two sets S and T are equal iff S contains T and T contains S.
/// By "S contains T", we mean that S is a superset of or equal to T.
///
/// S contains T iff T \ S is empty, since if T \ S contains a
/// point then this is a point that is contained in T but not S.
///
/// Therefore, S is equal to T iff S \ T and T \ S are both empty.
bool PresburgerSet::isEqual(const PresburgerSet &set) const {
assertDimensionsCompatible(set, *this);
return this->subtract(set).isIntegerEmpty() &&
set.subtract(*this).isIntegerEmpty();
}
/// Return true if all the sets in the union are known to be integer empty,
/// false otherwise.
bool PresburgerSet::isIntegerEmpty() const {
// The set is empty iff all of the disjuncts are empty.
for (const FlatAffineConstraints &fac : flatAffineConstraints) {
if (!fac.isIntegerEmpty())
return false;
}
return true;
}
bool PresburgerSet::findIntegerSample(SmallVectorImpl<int64_t> &sample) {
// A sample exists iff any of the disjuncts contains a sample.
for (const FlatAffineConstraints &fac : flatAffineConstraints) {
if (Optional<SmallVector<int64_t, 8>> opt = fac.findIntegerSample()) {
sample = std::move(*opt);
return true;
}
}
return false;
}
void PresburgerSet::print(raw_ostream &os) const {
os << getNumFACs() << " FlatAffineConstraints:\n";
for (const FlatAffineConstraints &fac : flatAffineConstraints) {
fac.print(os);
os << '\n';
}
}
void PresburgerSet::dump() const { print(llvm::errs()); }