blob: 5c21e19c4bd2070299e5ca64b96ba53b776d9698 [file] [log] [blame]
//===- MlirOptMain.cpp - MLIR Optimizer Driver ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is a utility that runs an optimization pass and prints the result back
// out. It is designed to support unit testing.
//
//===----------------------------------------------------------------------===//
#include "mlir/Support/MlirOptMain.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/Parser.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Support/ToolUtilities.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/SourceMgr.h"
using namespace mlir;
using namespace llvm;
using llvm::SMLoc;
/// Perform the actions on the input file indicated by the command line flags
/// within the specified context.
///
/// This typically parses the main source file, runs zero or more optimization
/// passes, then prints the output.
///
static LogicalResult performActions(raw_ostream &os, bool verifyDiagnostics,
bool verifyPasses, SourceMgr &sourceMgr,
MLIRContext *context,
const PassPipelineCLParser &passPipeline) {
OwningModuleRef module(parseSourceFile(sourceMgr, context));
if (!module)
return failure();
// Apply any pass manager command line options.
PassManager pm(context, verifyPasses);
applyPassManagerCLOptions(pm);
// Build the provided pipeline.
if (failed(passPipeline.addToPipeline(pm)))
return failure();
// Run the pipeline.
if (failed(pm.run(*module)))
return failure();
// Print the output.
module->print(os);
os << '\n';
return success();
}
/// Parses the memory buffer. If successfully, run a series of passes against
/// it and print the result.
static LogicalResult processBuffer(raw_ostream &os,
std::unique_ptr<MemoryBuffer> ownedBuffer,
bool verifyDiagnostics, bool verifyPasses,
bool allowUnregisteredDialects,
const PassPipelineCLParser &passPipeline) {
// Tell sourceMgr about this buffer, which is what the parser will pick up.
SourceMgr sourceMgr;
sourceMgr.AddNewSourceBuffer(std::move(ownedBuffer), SMLoc());
// Parse the input file.
MLIRContext context;
context.allowUnregisteredDialects(allowUnregisteredDialects);
context.printOpOnDiagnostic(!verifyDiagnostics);
// If we are in verify diagnostics mode then we have a lot of work to do,
// otherwise just perform the actions without worrying about it.
if (!verifyDiagnostics) {
SourceMgrDiagnosticHandler sourceMgrHandler(sourceMgr, &context);
return performActions(os, verifyDiagnostics, verifyPasses, sourceMgr,
&context, passPipeline);
}
SourceMgrDiagnosticVerifierHandler sourceMgrHandler(sourceMgr, &context);
// Do any processing requested by command line flags. We don't care whether
// these actions succeed or fail, we only care what diagnostics they produce
// and whether they match our expectations.
performActions(os, verifyDiagnostics, verifyPasses, sourceMgr, &context,
passPipeline);
// Verify the diagnostic handler to make sure that each of the diagnostics
// matched.
return sourceMgrHandler.verify();
}
LogicalResult mlir::MlirOptMain(raw_ostream &os,
std::unique_ptr<MemoryBuffer> buffer,
const PassPipelineCLParser &passPipeline,
bool splitInputFile, bool verifyDiagnostics,
bool verifyPasses,
bool allowUnregisteredDialects) {
// The split-input-file mode is a very specific mode that slices the file
// up into small pieces and checks each independently.
if (splitInputFile)
return splitAndProcessBuffer(
std::move(buffer),
[&](std::unique_ptr<MemoryBuffer> chunkBuffer, raw_ostream &os) {
return processBuffer(os, std::move(chunkBuffer), verifyDiagnostics,
verifyPasses, allowUnregisteredDialects,
passPipeline);
},
os);
return processBuffer(os, std::move(buffer), verifyDiagnostics, verifyPasses,
allowUnregisteredDialects, passPipeline);
}