|  | //===---------- llvm/unittest/Support/Casting.cpp - Casting tests ---------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "gtest/gtest.h" | 
|  | #include <cstdlib> | 
|  |  | 
|  | namespace llvm { | 
|  | // Used to test illegal cast. If a cast doesn't match any of the "real" ones, | 
|  | // it will match this one. | 
|  | struct IllegalCast; | 
|  | template <typename T> IllegalCast *cast(...) { return nullptr; } | 
|  |  | 
|  | // set up two example classes | 
|  | // with conversion facility | 
|  | // | 
|  | struct bar { | 
|  | bar() {} | 
|  | struct foo *baz(); | 
|  | struct foo *caz(); | 
|  | struct foo *daz(); | 
|  | struct foo *naz(); | 
|  |  | 
|  | private: | 
|  | bar(const bar &); | 
|  | }; | 
|  | struct foo { | 
|  | foo(const bar &) {} | 
|  | void ext() const; | 
|  | }; | 
|  |  | 
|  | struct base { | 
|  | virtual ~base() {} | 
|  | }; | 
|  |  | 
|  | struct derived : public base { | 
|  | static bool classof(const base *B) { return true; } | 
|  | }; | 
|  |  | 
|  | template <> struct isa_impl<foo, bar> { | 
|  | static inline bool doit(const bar &Val) { | 
|  | dbgs() << "Classof: " << &Val << "\n"; | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Note for the future - please don't do this. isa_impl is an internal template | 
|  | // for the implementation of `isa` and should not be exposed this way. | 
|  | // Completely unrelated types *should* result in compiler errors if you try to | 
|  | // cast between them. | 
|  | template <typename T> struct isa_impl<foo, T> { | 
|  | static inline bool doit(const T &Val) { return false; } | 
|  | }; | 
|  |  | 
|  | foo *bar::baz() { return cast<foo>(this); } | 
|  |  | 
|  | foo *bar::caz() { return cast_or_null<foo>(this); } | 
|  |  | 
|  | foo *bar::daz() { return dyn_cast<foo>(this); } | 
|  |  | 
|  | foo *bar::naz() { return dyn_cast_or_null<foo>(this); } | 
|  |  | 
|  | bar *fub(); | 
|  |  | 
|  | template <> struct simplify_type<foo> { | 
|  | typedef int SimpleType; | 
|  | static SimpleType getSimplifiedValue(foo &Val) { return 0; } | 
|  | }; | 
|  |  | 
|  | struct T1 {}; | 
|  |  | 
|  | struct T2 { | 
|  | T2(const T1 &x) {} | 
|  | static bool classof(const T1 *x) { return true; } | 
|  | }; | 
|  |  | 
|  | template <> struct CastInfo<T2, T1> : public OptionalValueCast<T2, T1> {}; | 
|  |  | 
|  | struct T3 { | 
|  | T3(const T1 *x) : hasValue(x != nullptr) {} | 
|  |  | 
|  | static bool classof(const T1 *x) { return true; } | 
|  | bool hasValue = false; | 
|  | }; | 
|  |  | 
|  | // T3 is convertible from a pointer to T1. | 
|  | template <> struct CastInfo<T3, T1 *> : public ValueFromPointerCast<T3, T1> {}; | 
|  |  | 
|  | struct T4 { | 
|  | T4() : hasValue(false) {} | 
|  | T4(const T3 &x) : hasValue(true) {} | 
|  |  | 
|  | static bool classof(const T3 *x) { return true; } | 
|  | bool hasValue = false; | 
|  | }; | 
|  |  | 
|  | template <> struct ValueIsPresent<T3> { | 
|  | using UnwrappedType = T3; | 
|  | static inline bool isPresent(const T3 &t) { return t.hasValue; } | 
|  | static inline const T3 &unwrapValue(const T3 &t) { return t; } | 
|  | }; | 
|  |  | 
|  | template <> struct CastInfo<T4, T3> { | 
|  | using CastResultType = T4; | 
|  | static inline CastResultType doCast(const T3 &t) { return T4(t); } | 
|  | static inline CastResultType castFailed() { return CastResultType(); } | 
|  | static inline CastResultType doCastIfPossible(const T3 &f) { | 
|  | return doCast(f); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // namespace llvm | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | // Test the peculiar behavior of Use in simplify_type. | 
|  | static_assert(std::is_same_v<simplify_type<Use>::SimpleType, Value *>, | 
|  | "Use doesn't simplify correctly!"); | 
|  | static_assert(std::is_same_v<simplify_type<Use *>::SimpleType, Value *>, | 
|  | "Use doesn't simplify correctly!"); | 
|  |  | 
|  | // Test that a regular class behaves as expected. | 
|  | static_assert(std::is_same_v<simplify_type<foo>::SimpleType, int>, | 
|  | "Unexpected simplify_type result!"); | 
|  | static_assert(std::is_same_v<simplify_type<foo *>::SimpleType, foo *>, | 
|  | "Unexpected simplify_type result!"); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | const foo *null_foo = nullptr; | 
|  |  | 
|  | bar B; | 
|  | extern bar &B1; | 
|  | bar &B1 = B; | 
|  | extern const bar *B2; | 
|  | // test various configurations of const | 
|  | const bar &B3 = B1; | 
|  | const bar *const B4 = B2; | 
|  |  | 
|  | TEST(CastingTest, isa) { | 
|  | EXPECT_TRUE(isa<foo>(B1)); | 
|  | EXPECT_TRUE(isa<foo>(B2)); | 
|  | EXPECT_TRUE(isa<foo>(B3)); | 
|  | EXPECT_TRUE(isa<foo>(B4)); | 
|  | } | 
|  |  | 
|  | TEST(CastingTest, isa_and_nonnull) { | 
|  | EXPECT_TRUE(isa_and_nonnull<foo>(B2)); | 
|  | EXPECT_TRUE(isa_and_nonnull<foo>(B4)); | 
|  | EXPECT_FALSE(isa_and_nonnull<foo>(fub())); | 
|  | } | 
|  |  | 
|  | TEST(CastingTest, cast) { | 
|  | foo &F1 = cast<foo>(B1); | 
|  | EXPECT_NE(&F1, null_foo); | 
|  | const foo *F3 = cast<foo>(B2); | 
|  | EXPECT_NE(F3, null_foo); | 
|  | const foo *F4 = cast<foo>(B2); | 
|  | EXPECT_NE(F4, null_foo); | 
|  | const foo &F5 = cast<foo>(B3); | 
|  | EXPECT_NE(&F5, null_foo); | 
|  | const foo *F6 = cast<foo>(B4); | 
|  | EXPECT_NE(F6, null_foo); | 
|  | // Can't pass null pointer to cast<>. | 
|  | // foo *F7 = cast<foo>(fub()); | 
|  | // EXPECT_EQ(F7, null_foo); | 
|  | foo *F8 = B1.baz(); | 
|  | EXPECT_NE(F8, null_foo); | 
|  |  | 
|  | std::unique_ptr<const bar> BP(B2); | 
|  | auto FP = cast<foo>(std::move(BP)); | 
|  | static_assert(std::is_same_v<std::unique_ptr<const foo>, decltype(FP)>, | 
|  | "Incorrect deduced return type!"); | 
|  | EXPECT_NE(FP.get(), null_foo); | 
|  | FP.release(); | 
|  | } | 
|  |  | 
|  | TEST(CastingTest, cast_or_null) { | 
|  | const foo *F11 = cast_or_null<foo>(B2); | 
|  | EXPECT_NE(F11, null_foo); | 
|  | const foo *F12 = cast_or_null<foo>(B2); | 
|  | EXPECT_NE(F12, null_foo); | 
|  | const foo *F13 = cast_or_null<foo>(B4); | 
|  | EXPECT_NE(F13, null_foo); | 
|  | const foo *F14 = cast_or_null<foo>(fub()); // Shouldn't print. | 
|  | EXPECT_EQ(F14, null_foo); | 
|  | foo *F15 = B1.caz(); | 
|  | EXPECT_NE(F15, null_foo); | 
|  |  | 
|  | std::unique_ptr<const bar> BP(fub()); | 
|  | auto FP = cast_or_null<foo>(std::move(BP)); | 
|  | EXPECT_EQ(FP.get(), null_foo); | 
|  | } | 
|  |  | 
|  | TEST(CastingTest, dyn_cast) { | 
|  | const foo *F1 = dyn_cast<foo>(B2); | 
|  | EXPECT_NE(F1, null_foo); | 
|  | const foo *F2 = dyn_cast<foo>(B2); | 
|  | EXPECT_NE(F2, null_foo); | 
|  | const foo *F3 = dyn_cast<foo>(B4); | 
|  | EXPECT_NE(F3, null_foo); | 
|  | // Can't pass null pointer to dyn_cast<>. | 
|  | // foo *F4 = dyn_cast<foo>(fub()); | 
|  | // EXPECT_EQ(F4, null_foo); | 
|  | foo *F5 = B1.daz(); | 
|  | EXPECT_NE(F5, null_foo); | 
|  | } | 
|  |  | 
|  | // All these tests forward to dyn_cast_if_present, so they also provde an | 
|  | // effective test for its use cases. | 
|  | TEST(CastingTest, dyn_cast_or_null) { | 
|  | const foo *F1 = dyn_cast_or_null<foo>(B2); | 
|  | EXPECT_NE(F1, null_foo); | 
|  | const foo *F2 = dyn_cast_or_null<foo>(B2); | 
|  | EXPECT_NE(F2, null_foo); | 
|  | const foo *F3 = dyn_cast_or_null<foo>(B4); | 
|  | EXPECT_NE(F3, null_foo); | 
|  | foo *F4 = dyn_cast_or_null<foo>(fub()); | 
|  | EXPECT_EQ(F4, null_foo); | 
|  | foo *F5 = B1.naz(); | 
|  | EXPECT_NE(F5, null_foo); | 
|  | // dyn_cast_if_present should have exactly the same behavior as | 
|  | // dyn_cast_or_null. | 
|  | const foo *F6 = dyn_cast_if_present<foo>(B2); | 
|  | EXPECT_EQ(F6, F2); | 
|  | } | 
|  |  | 
|  | TEST(CastingTest, dyn_cast_value_types) { | 
|  | T1 t1; | 
|  | std::optional<T2> t2 = dyn_cast<T2>(t1); | 
|  | EXPECT_TRUE(t2); | 
|  |  | 
|  | T2 *t2ptr = dyn_cast<T2>(&t1); | 
|  | EXPECT_TRUE(t2ptr != nullptr); | 
|  |  | 
|  | T3 t3 = dyn_cast<T3>(&t1); | 
|  | EXPECT_TRUE(t3.hasValue); | 
|  | } | 
|  |  | 
|  | TEST(CastingTest, dyn_cast_if_present) { | 
|  | std::optional<T1> empty{}; | 
|  | std::optional<T2> F1 = dyn_cast_if_present<T2>(empty); | 
|  | EXPECT_FALSE(F1.has_value()); | 
|  |  | 
|  | T1 t1; | 
|  | std::optional<T2> F2 = dyn_cast_if_present<T2>(t1); | 
|  | EXPECT_TRUE(F2.has_value()); | 
|  |  | 
|  | T1 *t1Null = nullptr; | 
|  |  | 
|  | // T3 should have hasValue == false because t1Null is nullptr. | 
|  | T3 t3 = dyn_cast_if_present<T3>(t1Null); | 
|  | EXPECT_FALSE(t3.hasValue); | 
|  |  | 
|  | // Now because of that, T4 should receive the castFailed implementation of its | 
|  | // FallibleCastTraits, which default-constructs a T4, which has no value. | 
|  | T4 t4 = dyn_cast_if_present<T4>(t3); | 
|  | EXPECT_FALSE(t4.hasValue); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<derived> newd() { return std::make_unique<derived>(); } | 
|  | std::unique_ptr<base> newb() { return std::make_unique<derived>(); } | 
|  |  | 
|  | TEST(CastingTest, unique_dyn_cast) { | 
|  | derived *OrigD = nullptr; | 
|  | auto D = std::make_unique<derived>(); | 
|  | OrigD = D.get(); | 
|  |  | 
|  | // Converting from D to itself is valid, it should return a new unique_ptr | 
|  | // and the old one should become nullptr. | 
|  | auto NewD = unique_dyn_cast<derived>(D); | 
|  | ASSERT_EQ(OrigD, NewD.get()); | 
|  | ASSERT_EQ(nullptr, D); | 
|  |  | 
|  | // Converting from D to B is valid, B should have a value and D should be | 
|  | // nullptr. | 
|  | auto B = unique_dyn_cast<base>(NewD); | 
|  | ASSERT_EQ(OrigD, B.get()); | 
|  | ASSERT_EQ(nullptr, NewD); | 
|  |  | 
|  | // Converting from B to itself is valid, it should return a new unique_ptr | 
|  | // and the old one should become nullptr. | 
|  | auto NewB = unique_dyn_cast<base>(B); | 
|  | ASSERT_EQ(OrigD, NewB.get()); | 
|  | ASSERT_EQ(nullptr, B); | 
|  |  | 
|  | // Converting from B to D is valid, D should have a value and B should be | 
|  | // nullptr; | 
|  | D = unique_dyn_cast<derived>(NewB); | 
|  | ASSERT_EQ(OrigD, D.get()); | 
|  | ASSERT_EQ(nullptr, NewB); | 
|  |  | 
|  | // This is a very contrived test, casting between completely unrelated types | 
|  | // should generally fail to compile. See the classof shenanigans we have in | 
|  | // the definition of `foo` above. | 
|  | auto F = unique_dyn_cast<foo>(D); | 
|  | ASSERT_EQ(nullptr, F); | 
|  | ASSERT_EQ(OrigD, D.get()); | 
|  |  | 
|  | // All of the above should also hold for temporaries. | 
|  | auto D2 = unique_dyn_cast<derived>(newd()); | 
|  | EXPECT_NE(nullptr, D2); | 
|  |  | 
|  | auto B2 = unique_dyn_cast<derived>(newb()); | 
|  | EXPECT_NE(nullptr, B2); | 
|  |  | 
|  | auto B3 = unique_dyn_cast<base>(newb()); | 
|  | EXPECT_NE(nullptr, B3); | 
|  |  | 
|  | // This is a very contrived test, casting between completely unrelated types | 
|  | // should generally fail to compile. See the classof shenanigans we have in | 
|  | // the definition of `foo` above. | 
|  | auto F2 = unique_dyn_cast<foo>(newb()); | 
|  | EXPECT_EQ(nullptr, F2); | 
|  | } | 
|  |  | 
|  | // These lines are errors... | 
|  | // foo *F20 = cast<foo>(B2);  // Yields const foo* | 
|  | // foo &F21 = cast<foo>(B3);  // Yields const foo& | 
|  | // foo *F22 = cast<foo>(B4);  // Yields const foo* | 
|  | // foo &F23 = cast_or_null<foo>(B1); | 
|  | // const foo &F24 = cast_or_null<foo>(B3); | 
|  |  | 
|  | const bar *B2 = &B; | 
|  | } // anonymous namespace | 
|  |  | 
|  | bar *llvm::fub() { return nullptr; } | 
|  |  | 
|  | namespace { | 
|  | namespace inferred_upcasting { | 
|  | // This test case verifies correct behavior of inferred upcasts when the | 
|  | // types are statically known to be OK to upcast. This is the case when, | 
|  | // for example, Derived inherits from Base, and we do `isa<Base>(Derived)`. | 
|  |  | 
|  | // Note: This test will actually fail to compile without inferred | 
|  | // upcasting. | 
|  |  | 
|  | class Base { | 
|  | public: | 
|  | // No classof. We are testing that the upcast is inferred. | 
|  | Base() {} | 
|  | }; | 
|  |  | 
|  | class Derived : public Base { | 
|  | public: | 
|  | Derived() {} | 
|  | }; | 
|  |  | 
|  | // Even with no explicit classof() in Base, we should still be able to cast | 
|  | // Derived to its base class. | 
|  | TEST(CastingTest, UpcastIsInferred) { | 
|  | Derived D; | 
|  | EXPECT_TRUE(isa<Base>(D)); | 
|  | Base *BP = dyn_cast<Base>(&D); | 
|  | EXPECT_NE(BP, nullptr); | 
|  | } | 
|  |  | 
|  | // This test verifies that the inferred upcast takes precedence over an | 
|  | // explicitly written one. This is important because it verifies that the | 
|  | // dynamic check gets optimized away. | 
|  | class UseInferredUpcast { | 
|  | public: | 
|  | int Dummy; | 
|  | static bool classof(const UseInferredUpcast *) { return false; } | 
|  | }; | 
|  |  | 
|  | TEST(CastingTest, InferredUpcastTakesPrecedence) { | 
|  | UseInferredUpcast UIU; | 
|  | // Since the explicit classof() returns false, this will fail if the | 
|  | // explicit one is used. | 
|  | EXPECT_TRUE(isa<UseInferredUpcast>(&UIU)); | 
|  | } | 
|  |  | 
|  | } // end namespace inferred_upcasting | 
|  | } // end anonymous namespace | 
|  |  | 
|  | namespace { | 
|  | namespace pointer_wrappers { | 
|  |  | 
|  | struct Base { | 
|  | bool IsDerived; | 
|  | Base(bool IsDerived = false) : IsDerived(IsDerived) {} | 
|  | }; | 
|  |  | 
|  | struct Derived : Base { | 
|  | Derived() : Base(true) {} | 
|  | static bool classof(const Base *B) { return B->IsDerived; } | 
|  | }; | 
|  |  | 
|  | class PTy { | 
|  | Base *B; | 
|  |  | 
|  | public: | 
|  | PTy(Base *B) : B(B) {} | 
|  | explicit operator bool() const { return get(); } | 
|  | Base *get() const { return B; } | 
|  | }; | 
|  |  | 
|  | } // end namespace pointer_wrappers | 
|  | } // end namespace | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | template <> struct ValueIsPresent<pointer_wrappers::PTy> { | 
|  | using UnwrappedType = pointer_wrappers::PTy; | 
|  | static inline bool isPresent(const pointer_wrappers::PTy &P) { | 
|  | return P.get() != nullptr; | 
|  | } | 
|  | static UnwrappedType &unwrapValue(pointer_wrappers::PTy &P) { return P; } | 
|  | }; | 
|  |  | 
|  | template <> struct ValueIsPresent<const pointer_wrappers::PTy> { | 
|  | using UnwrappedType = pointer_wrappers::PTy; | 
|  | static inline bool isPresent(const pointer_wrappers::PTy &P) { | 
|  | return P.get() != nullptr; | 
|  | } | 
|  |  | 
|  | static UnwrappedType &unwrapValue(const pointer_wrappers::PTy &P) { | 
|  | return const_cast<UnwrappedType &>(P); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <> struct simplify_type<pointer_wrappers::PTy> { | 
|  | typedef pointer_wrappers::Base *SimpleType; | 
|  | static SimpleType getSimplifiedValue(pointer_wrappers::PTy &P) { | 
|  | return P.get(); | 
|  | } | 
|  | }; | 
|  | template <> struct simplify_type<const pointer_wrappers::PTy> { | 
|  | typedef pointer_wrappers::Base *SimpleType; | 
|  | static SimpleType getSimplifiedValue(const pointer_wrappers::PTy &P) { | 
|  | return P.get(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | namespace { | 
|  | namespace pointer_wrappers { | 
|  |  | 
|  | // Some objects. | 
|  | pointer_wrappers::Base B; | 
|  | pointer_wrappers::Derived D; | 
|  |  | 
|  | // Mutable "smart" pointers. | 
|  | pointer_wrappers::PTy MN(nullptr); | 
|  | pointer_wrappers::PTy MB(&B); | 
|  | pointer_wrappers::PTy MD(&D); | 
|  |  | 
|  | // Const "smart" pointers. | 
|  | const pointer_wrappers::PTy CN(nullptr); | 
|  | const pointer_wrappers::PTy CB(&B); | 
|  | const pointer_wrappers::PTy CD(&D); | 
|  |  | 
|  | TEST(CastingTest, smart_isa) { | 
|  | EXPECT_TRUE(!isa<pointer_wrappers::Derived>(MB)); | 
|  | EXPECT_TRUE(!isa<pointer_wrappers::Derived>(CB)); | 
|  | EXPECT_TRUE(isa<pointer_wrappers::Derived>(MD)); | 
|  | EXPECT_TRUE(isa<pointer_wrappers::Derived>(CD)); | 
|  | } | 
|  |  | 
|  | TEST(CastingTest, smart_cast) { | 
|  | EXPECT_EQ(cast<pointer_wrappers::Derived>(MD), &D); | 
|  | EXPECT_EQ(cast<pointer_wrappers::Derived>(CD), &D); | 
|  | } | 
|  |  | 
|  | TEST(CastingTest, smart_cast_or_null) { | 
|  | EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(MN), nullptr); | 
|  | EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(CN), nullptr); | 
|  | EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(MD), &D); | 
|  | EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(CD), &D); | 
|  | } | 
|  |  | 
|  | TEST(CastingTest, smart_dyn_cast) { | 
|  | EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(MB), nullptr); | 
|  | EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(CB), nullptr); | 
|  | EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(MD), &D); | 
|  | EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(CD), &D); | 
|  | } | 
|  |  | 
|  | TEST(CastingTest, smart_dyn_cast_or_null) { | 
|  | EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(MN), nullptr); | 
|  | EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(CN), nullptr); | 
|  | EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(MB), nullptr); | 
|  | EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(CB), nullptr); | 
|  | EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(MD), &D); | 
|  | EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(CD), &D); | 
|  | } | 
|  |  | 
|  | } // end namespace pointer_wrappers | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | namespace assertion_checks { | 
|  | struct Base { | 
|  | virtual ~Base() {} | 
|  | }; | 
|  |  | 
|  | struct Derived : public Base { | 
|  | static bool classof(const Base *B) { return false; } | 
|  | }; | 
|  |  | 
|  | TEST(CastingTest, assertion_check_const_ref) { | 
|  | const Base B; | 
|  | EXPECT_DEATH((void)cast<Derived>(B), "argument of incompatible type") | 
|  | << "Invalid cast of const ref did not cause an abort()"; | 
|  | } | 
|  |  | 
|  | TEST(CastingTest, assertion_check_ref) { | 
|  | Base B; | 
|  | EXPECT_DEATH((void)cast<Derived>(B), "argument of incompatible type") | 
|  | << "Invalid cast of const ref did not cause an abort()"; | 
|  | } | 
|  |  | 
|  | TEST(CastingTest, assertion_check_ptr) { | 
|  | Base B; | 
|  | EXPECT_DEATH((void)cast<Derived>(&B), "argument of incompatible type") | 
|  | << "Invalid cast of const ref did not cause an abort()"; | 
|  | } | 
|  |  | 
|  | TEST(CastingTest, assertion_check_unique_ptr) { | 
|  | auto B = std::make_unique<Base>(); | 
|  | EXPECT_DEATH((void)cast<Derived>(std::move(B)), | 
|  | "argument of incompatible type") | 
|  | << "Invalid cast of const ref did not cause an abort()"; | 
|  | } | 
|  |  | 
|  | } // end namespace assertion_checks | 
|  | #endif | 
|  | } // end namespace |