blob: cf62b0e5d7e893cf5124f3755db46f1b5db8a009 [file] [log] [blame]
//===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file InstrRefBasedImpl.cpp
///
/// This is a separate implementation of LiveDebugValues, see
/// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
///
/// This pass propagates variable locations between basic blocks, resolving
/// control flow conflicts between them. The problem is SSA construction, where
/// each debug instruction assigns the *value* that a variable has, and every
/// instruction where the variable is in scope uses that variable. The resulting
/// map of instruction-to-value is then translated into a register (or spill)
/// location for each variable over each instruction.
///
/// The primary difference from normal SSA construction is that we cannot
/// _create_ PHI values that contain variable values. CodeGen has already
/// completed, and we can't alter it just to make debug-info complete. Thus:
/// we can identify function positions where we would like a PHI value for a
/// variable, but must search the MachineFunction to see whether such a PHI is
/// available. If no such PHI exists, the variable location must be dropped.
///
/// To achieve this, we perform two kinds of analysis. First, we identify
/// every value defined by every instruction (ignoring those that only move
/// another value), then re-compute an SSA-form representation of the
/// MachineFunction, using value propagation to eliminate any un-necessary
/// PHI values. This gives us a map of every value computed in the function,
/// and its location within the register file / stack.
///
/// Secondly, for each variable we perform the same analysis, where each debug
/// instruction is considered a def, and every instruction where the variable
/// is in lexical scope as a use. Value propagation is used again to eliminate
/// any un-necessary PHIs. This gives us a map of each variable to the value
/// it should have in a block.
///
/// Once both are complete, we have two maps for each block:
/// * Variables to the values they should have,
/// * Values to the register / spill slot they are located in.
/// After which we can marry-up variable values with a location, and emit
/// DBG_VALUE instructions specifying those locations. Variable locations may
/// be dropped in this process due to the desired variable value not being
/// resident in any machine location, or because there is no PHI value in any
/// location that accurately represents the desired value. The building of
/// location lists for each block is left to DbgEntityHistoryCalculator.
///
/// This pass is kept efficient because the size of the first SSA problem
/// is proportional to the working-set size of the function, which the compiler
/// tries to keep small. (It's also proportional to the number of blocks).
/// Additionally, we repeatedly perform the second SSA problem analysis with
/// only the variables and blocks in a single lexical scope, exploiting their
/// locality.
///
/// ### Terminology
///
/// A machine location is a register or spill slot, a value is something that's
/// defined by an instruction or PHI node, while a variable value is the value
/// assigned to a variable. A variable location is a machine location, that must
/// contain the appropriate variable value. A value that is a PHI node is
/// occasionally called an mphi.
///
/// The first SSA problem is the "machine value location" problem,
/// because we're determining which machine locations contain which values.
/// The "locations" are constant: what's unknown is what value they contain.
///
/// The second SSA problem (the one for variables) is the "variable value
/// problem", because it's determining what values a variable has, rather than
/// what location those values are placed in.
///
/// TODO:
/// Overlapping fragments
/// Entry values
/// Add back DEBUG statements for debugging this
/// Collect statistics
///
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TypeSize.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <limits.h>
#include <limits>
#include <queue>
#include <tuple>
#include <utility>
#include <vector>
#include "InstrRefBasedImpl.h"
#include "LiveDebugValues.h"
using namespace llvm;
using namespace LiveDebugValues;
// SSAUpdaterImple sets DEBUG_TYPE, change it.
#undef DEBUG_TYPE
#define DEBUG_TYPE "livedebugvalues"
// Act more like the VarLoc implementation, by propagating some locations too
// far and ignoring some transfers.
static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
cl::desc("Act like old LiveDebugValues did"),
cl::init(false));
/// Tracker for converting machine value locations and variable values into
/// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
/// specifying block live-in locations and transfers within blocks.
///
/// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
/// and must be initialized with the set of variable values that are live-in to
/// the block. The caller then repeatedly calls process(). TransferTracker picks
/// out variable locations for the live-in variable values (if there _is_ a
/// location) and creates the corresponding DBG_VALUEs. Then, as the block is
/// stepped through, transfers of values between machine locations are
/// identified and if profitable, a DBG_VALUE created.
///
/// This is where debug use-before-defs would be resolved: a variable with an
/// unavailable value could materialize in the middle of a block, when the
/// value becomes available. Or, we could detect clobbers and re-specify the
/// variable in a backup location. (XXX these are unimplemented).
class TransferTracker {
public:
const TargetInstrInfo *TII;
const TargetLowering *TLI;
/// This machine location tracker is assumed to always contain the up-to-date
/// value mapping for all machine locations. TransferTracker only reads
/// information from it. (XXX make it const?)
MLocTracker *MTracker;
MachineFunction &MF;
bool ShouldEmitDebugEntryValues;
/// Record of all changes in variable locations at a block position. Awkwardly
/// we allow inserting either before or after the point: MBB != nullptr
/// indicates it's before, otherwise after.
struct Transfer {
MachineBasicBlock::instr_iterator Pos; /// Position to insert DBG_VALUes
MachineBasicBlock *MBB; /// non-null if we should insert after.
SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
};
struct LocAndProperties {
LocIdx Loc;
DbgValueProperties Properties;
};
/// Collection of transfers (DBG_VALUEs) to be inserted.
SmallVector<Transfer, 32> Transfers;
/// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
/// between TransferTrackers view of variable locations and MLocTrackers. For
/// example, MLocTracker observes all clobbers, but TransferTracker lazily
/// does not.
SmallVector<ValueIDNum, 32> VarLocs;
/// Map from LocIdxes to which DebugVariables are based that location.
/// Mantained while stepping through the block. Not accurate if
/// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
DenseMap<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
/// Map from DebugVariable to it's current location and qualifying meta
/// information. To be used in conjunction with ActiveMLocs to construct
/// enough information for the DBG_VALUEs for a particular LocIdx.
DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
/// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
SmallVector<MachineInstr *, 4> PendingDbgValues;
/// Record of a use-before-def: created when a value that's live-in to the
/// current block isn't available in any machine location, but it will be
/// defined in this block.
struct UseBeforeDef {
/// Value of this variable, def'd in block.
ValueIDNum ID;
/// Identity of this variable.
DebugVariable Var;
/// Additional variable properties.
DbgValueProperties Properties;
};
/// Map from instruction index (within the block) to the set of UseBeforeDefs
/// that become defined at that instruction.
DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
/// The set of variables that are in UseBeforeDefs and can become a location
/// once the relevant value is defined. An element being erased from this
/// collection prevents the use-before-def materializing.
DenseSet<DebugVariable> UseBeforeDefVariables;
const TargetRegisterInfo &TRI;
const BitVector &CalleeSavedRegs;
TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
MachineFunction &MF, const TargetRegisterInfo &TRI,
const BitVector &CalleeSavedRegs, const TargetPassConfig &TPC)
: TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
CalleeSavedRegs(CalleeSavedRegs) {
TLI = MF.getSubtarget().getTargetLowering();
auto &TM = TPC.getTM<TargetMachine>();
ShouldEmitDebugEntryValues = TM.Options.ShouldEmitDebugEntryValues();
}
/// Load object with live-in variable values. \p mlocs contains the live-in
/// values in each machine location, while \p vlocs the live-in variable
/// values. This method picks variable locations for the live-in variables,
/// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
/// object fields to track variable locations as we step through the block.
/// FIXME: could just examine mloctracker instead of passing in \p mlocs?
void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
unsigned NumLocs) {
ActiveMLocs.clear();
ActiveVLocs.clear();
VarLocs.clear();
VarLocs.reserve(NumLocs);
UseBeforeDefs.clear();
UseBeforeDefVariables.clear();
auto isCalleeSaved = [&](LocIdx L) {
unsigned Reg = MTracker->LocIdxToLocID[L];
if (Reg >= MTracker->NumRegs)
return false;
for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
if (CalleeSavedRegs.test(*RAI))
return true;
return false;
};
// Map of the preferred location for each value.
std::map<ValueIDNum, LocIdx> ValueToLoc;
ActiveMLocs.reserve(VLocs.size());
ActiveVLocs.reserve(VLocs.size());
// Produce a map of value numbers to the current machine locs they live
// in. When emulating VarLocBasedImpl, there should only be one
// location; when not, we get to pick.
for (auto Location : MTracker->locations()) {
LocIdx Idx = Location.Idx;
ValueIDNum &VNum = MLocs[Idx.asU64()];
VarLocs.push_back(VNum);
auto it = ValueToLoc.find(VNum);
// In order of preference, pick:
// * Callee saved registers,
// * Other registers,
// * Spill slots.
if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
(!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
// Insert, or overwrite if insertion failed.
auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
if (!PrefLocRes.second)
PrefLocRes.first->second = Idx;
}
}
// Now map variables to their picked LocIdxes.
for (auto Var : VLocs) {
if (Var.second.Kind == DbgValue::Const) {
PendingDbgValues.push_back(
emitMOLoc(*Var.second.MO, Var.first, Var.second.Properties));
continue;
}
// If the value has no location, we can't make a variable location.
const ValueIDNum &Num = Var.second.ID;
auto ValuesPreferredLoc = ValueToLoc.find(Num);
if (ValuesPreferredLoc == ValueToLoc.end()) {
// If it's a def that occurs in this block, register it as a
// use-before-def to be resolved as we step through the block.
if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
addUseBeforeDef(Var.first, Var.second.Properties, Num);
else
recoverAsEntryValue(Var.first, Var.second.Properties, Num);
continue;
}
LocIdx M = ValuesPreferredLoc->second;
auto NewValue = LocAndProperties{M, Var.second.Properties};
auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
if (!Result.second)
Result.first->second = NewValue;
ActiveMLocs[M].insert(Var.first);
PendingDbgValues.push_back(
MTracker->emitLoc(M, Var.first, Var.second.Properties));
}
flushDbgValues(MBB.begin(), &MBB);
}
/// Record that \p Var has value \p ID, a value that becomes available
/// later in the function.
void addUseBeforeDef(const DebugVariable &Var,
const DbgValueProperties &Properties, ValueIDNum ID) {
UseBeforeDef UBD = {ID, Var, Properties};
UseBeforeDefs[ID.getInst()].push_back(UBD);
UseBeforeDefVariables.insert(Var);
}
/// After the instruction at index \p Inst and position \p pos has been
/// processed, check whether it defines a variable value in a use-before-def.
/// If so, and the variable value hasn't changed since the start of the
/// block, create a DBG_VALUE.
void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
auto MIt = UseBeforeDefs.find(Inst);
if (MIt == UseBeforeDefs.end())
return;
for (auto &Use : MIt->second) {
LocIdx L = Use.ID.getLoc();
// If something goes very wrong, we might end up labelling a COPY
// instruction or similar with an instruction number, where it doesn't
// actually define a new value, instead it moves a value. In case this
// happens, discard.
if (MTracker->readMLoc(L) != Use.ID)
continue;
// If a different debug instruction defined the variable value / location
// since the start of the block, don't materialize this use-before-def.
if (!UseBeforeDefVariables.count(Use.Var))
continue;
PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
}
flushDbgValues(pos, nullptr);
}
/// Helper to move created DBG_VALUEs into Transfers collection.
void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
if (PendingDbgValues.size() == 0)
return;
// Pick out the instruction start position.
MachineBasicBlock::instr_iterator BundleStart;
if (MBB && Pos == MBB->begin())
BundleStart = MBB->instr_begin();
else
BundleStart = getBundleStart(Pos->getIterator());
Transfers.push_back({BundleStart, MBB, PendingDbgValues});
PendingDbgValues.clear();
}
bool isEntryValueVariable(const DebugVariable &Var,
const DIExpression *Expr) const {
if (!Var.getVariable()->isParameter())
return false;
if (Var.getInlinedAt())
return false;
if (Expr->getNumElements() > 0)
return false;
return true;
}
bool isEntryValueValue(const ValueIDNum &Val) const {
// Must be in entry block (block number zero), and be a PHI / live-in value.
if (Val.getBlock() || !Val.isPHI())
return false;
// Entry values must enter in a register.
if (MTracker->isSpill(Val.getLoc()))
return false;
Register SP = TLI->getStackPointerRegisterToSaveRestore();
Register FP = TRI.getFrameRegister(MF);
Register Reg = MTracker->LocIdxToLocID[Val.getLoc()];
return Reg != SP && Reg != FP;
}
bool recoverAsEntryValue(const DebugVariable &Var, DbgValueProperties &Prop,
const ValueIDNum &Num) {
// Is this variable location a candidate to be an entry value. First,
// should we be trying this at all?
if (!ShouldEmitDebugEntryValues)
return false;
// Is the variable appropriate for entry values (i.e., is a parameter).
if (!isEntryValueVariable(Var, Prop.DIExpr))
return false;
// Is the value assigned to this variable still the entry value?
if (!isEntryValueValue(Num))
return false;
// Emit a variable location using an entry value expression.
DIExpression *NewExpr =
DIExpression::prepend(Prop.DIExpr, DIExpression::EntryValue);
Register Reg = MTracker->LocIdxToLocID[Num.getLoc()];
MachineOperand MO = MachineOperand::CreateReg(Reg, false);
PendingDbgValues.push_back(emitMOLoc(MO, Var, {NewExpr, Prop.Indirect}));
return true;
}
/// Change a variable value after encountering a DBG_VALUE inside a block.
void redefVar(const MachineInstr &MI) {
DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
MI.getDebugLoc()->getInlinedAt());
DbgValueProperties Properties(MI);
const MachineOperand &MO = MI.getOperand(0);
// Ignore non-register locations, we don't transfer those.
if (!MO.isReg() || MO.getReg() == 0) {
auto It = ActiveVLocs.find(Var);
if (It != ActiveVLocs.end()) {
ActiveMLocs[It->second.Loc].erase(Var);
ActiveVLocs.erase(It);
}
// Any use-before-defs no longer apply.
UseBeforeDefVariables.erase(Var);
return;
}
Register Reg = MO.getReg();
LocIdx NewLoc = MTracker->getRegMLoc(Reg);
redefVar(MI, Properties, NewLoc);
}
/// Handle a change in variable location within a block. Terminate the
/// variables current location, and record the value it now refers to, so
/// that we can detect location transfers later on.
void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
Optional<LocIdx> OptNewLoc) {
DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
MI.getDebugLoc()->getInlinedAt());
// Any use-before-defs no longer apply.
UseBeforeDefVariables.erase(Var);
// Erase any previous location,
auto It = ActiveVLocs.find(Var);
if (It != ActiveVLocs.end())
ActiveMLocs[It->second.Loc].erase(Var);
// If there _is_ no new location, all we had to do was erase.
if (!OptNewLoc)
return;
LocIdx NewLoc = *OptNewLoc;
// Check whether our local copy of values-by-location in #VarLocs is out of
// date. Wipe old tracking data for the location if it's been clobbered in
// the meantime.
if (MTracker->readMLoc(NewLoc) != VarLocs[NewLoc.asU64()]) {
for (auto &P : ActiveMLocs[NewLoc]) {
ActiveVLocs.erase(P);
}
ActiveMLocs[NewLoc.asU64()].clear();
VarLocs[NewLoc.asU64()] = MTracker->readMLoc(NewLoc);
}
ActiveMLocs[NewLoc].insert(Var);
if (It == ActiveVLocs.end()) {
ActiveVLocs.insert(
std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
} else {
It->second.Loc = NewLoc;
It->second.Properties = Properties;
}
}
/// Account for a location \p mloc being clobbered. Examine the variable
/// locations that will be terminated: and try to recover them by using
/// another location. Optionally, given \p MakeUndef, emit a DBG_VALUE to
/// explicitly terminate a location if it can't be recovered.
void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos,
bool MakeUndef = true) {
auto ActiveMLocIt = ActiveMLocs.find(MLoc);
if (ActiveMLocIt == ActiveMLocs.end())
return;
// What was the old variable value?
ValueIDNum OldValue = VarLocs[MLoc.asU64()];
VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
// Examine the remaining variable locations: if we can find the same value
// again, we can recover the location.
Optional<LocIdx> NewLoc = None;
for (auto Loc : MTracker->locations())
if (Loc.Value == OldValue)
NewLoc = Loc.Idx;
// If there is no location, and we weren't asked to make the variable
// explicitly undef, then stop here.
if (!NewLoc && !MakeUndef) {
// Try and recover a few more locations with entry values.
for (auto &Var : ActiveMLocIt->second) {
auto &Prop = ActiveVLocs.find(Var)->second.Properties;
recoverAsEntryValue(Var, Prop, OldValue);
}
flushDbgValues(Pos, nullptr);
return;
}
// Examine all the variables based on this location.
DenseSet<DebugVariable> NewMLocs;
for (auto &Var : ActiveMLocIt->second) {
auto ActiveVLocIt = ActiveVLocs.find(Var);
// Re-state the variable location: if there's no replacement then NewLoc
// is None and a $noreg DBG_VALUE will be created. Otherwise, a DBG_VALUE
// identifying the alternative location will be emitted.
const DbgValueProperties &Properties = ActiveVLocIt->second.Properties;
PendingDbgValues.push_back(MTracker->emitLoc(NewLoc, Var, Properties));
// Update machine locations <=> variable locations maps. Defer updating
// ActiveMLocs to avoid invalidaing the ActiveMLocIt iterator.
if (!NewLoc) {
ActiveVLocs.erase(ActiveVLocIt);
} else {
ActiveVLocIt->second.Loc = *NewLoc;
NewMLocs.insert(Var);
}
}
// Commit any deferred ActiveMLoc changes.
if (!NewMLocs.empty())
for (auto &Var : NewMLocs)
ActiveMLocs[*NewLoc].insert(Var);
// We lazily track what locations have which values; if we've found a new
// location for the clobbered value, remember it.
if (NewLoc)
VarLocs[NewLoc->asU64()] = OldValue;
flushDbgValues(Pos, nullptr);
// Re-find ActiveMLocIt, iterator could have been invalidated.
ActiveMLocIt = ActiveMLocs.find(MLoc);
ActiveMLocIt->second.clear();
}
/// Transfer variables based on \p Src to be based on \p Dst. This handles
/// both register copies as well as spills and restores. Creates DBG_VALUEs
/// describing the movement.
void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
// Does Src still contain the value num we expect? If not, it's been
// clobbered in the meantime, and our variable locations are stale.
if (VarLocs[Src.asU64()] != MTracker->readMLoc(Src))
return;
// assert(ActiveMLocs[Dst].size() == 0);
//^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
// Move set of active variables from one location to another.
auto MovingVars = ActiveMLocs[Src];
ActiveMLocs[Dst] = MovingVars;
VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
// For each variable based on Src; create a location at Dst.
for (auto &Var : MovingVars) {
auto ActiveVLocIt = ActiveVLocs.find(Var);
assert(ActiveVLocIt != ActiveVLocs.end());
ActiveVLocIt->second.Loc = Dst;
MachineInstr *MI =
MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
PendingDbgValues.push_back(MI);
}
ActiveMLocs[Src].clear();
flushDbgValues(Pos, nullptr);
// XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
// about the old location.
if (EmulateOldLDV)
VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
}
MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
const DebugVariable &Var,
const DbgValueProperties &Properties) {
DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
Var.getVariable()->getScope(),
const_cast<DILocation *>(Var.getInlinedAt()));
auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
MIB.add(MO);
if (Properties.Indirect)
MIB.addImm(0);
else
MIB.addReg(0);
MIB.addMetadata(Var.getVariable());
MIB.addMetadata(Properties.DIExpr);
return MIB;
}
};
//===----------------------------------------------------------------------===//
// Implementation
//===----------------------------------------------------------------------===//
ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
ValueIDNum ValueIDNum::TombstoneValue = {UINT_MAX, UINT_MAX, UINT_MAX - 1};
#ifndef NDEBUG
void DbgValue::dump(const MLocTracker *MTrack) const {
if (Kind == Const) {
MO->dump();
} else if (Kind == NoVal) {
dbgs() << "NoVal(" << BlockNo << ")";
} else if (Kind == VPHI) {
dbgs() << "VPHI(" << BlockNo << "," << MTrack->IDAsString(ID) << ")";
} else {
assert(Kind == Def);
dbgs() << MTrack->IDAsString(ID);
}
if (Properties.Indirect)
dbgs() << " indir";
if (Properties.DIExpr)
dbgs() << " " << *Properties.DIExpr;
}
#endif
MLocTracker::MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
const TargetRegisterInfo &TRI,
const TargetLowering &TLI)
: MF(MF), TII(TII), TRI(TRI), TLI(TLI),
LocIdxToIDNum(ValueIDNum::EmptyValue), LocIdxToLocID(0) {
NumRegs = TRI.getNumRegs();
reset();
LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
// Always track SP. This avoids the implicit clobbering caused by regmasks
// from affectings its values. (LiveDebugValues disbelieves calls and
// regmasks that claim to clobber SP).
Register SP = TLI.getStackPointerRegisterToSaveRestore();
if (SP) {
unsigned ID = getLocID(SP);
(void)lookupOrTrackRegister(ID);
for (MCRegAliasIterator RAI(SP, &TRI, true); RAI.isValid(); ++RAI)
SPAliases.insert(*RAI);
}
// Build some common stack positions -- full registers being spilt to the
// stack.
StackSlotIdxes.insert({{8, 0}, 0});
StackSlotIdxes.insert({{16, 0}, 1});
StackSlotIdxes.insert({{32, 0}, 2});
StackSlotIdxes.insert({{64, 0}, 3});
StackSlotIdxes.insert({{128, 0}, 4});
StackSlotIdxes.insert({{256, 0}, 5});
StackSlotIdxes.insert({{512, 0}, 6});
// Traverse all the subregister idxes, and ensure there's an index for them.
// Duplicates are no problem: we're interested in their position in the
// stack slot, we don't want to type the slot.
for (unsigned int I = 1; I < TRI.getNumSubRegIndices(); ++I) {
unsigned Size = TRI.getSubRegIdxSize(I);
unsigned Offs = TRI.getSubRegIdxOffset(I);
unsigned Idx = StackSlotIdxes.size();
// Some subregs have -1, -2 and so forth fed into their fields, to mean
// special backend things. Ignore those.
if (Size > 60000 || Offs > 60000)
continue;
StackSlotIdxes.insert({{Size, Offs}, Idx});
}
for (auto &Idx : StackSlotIdxes)
StackIdxesToPos[Idx.second] = Idx.first;
NumSlotIdxes = StackSlotIdxes.size();
}
LocIdx MLocTracker::trackRegister(unsigned ID) {
assert(ID != 0);
LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
LocIdxToIDNum.grow(NewIdx);
LocIdxToLocID.grow(NewIdx);
// Default: it's an mphi.
ValueIDNum ValNum = {CurBB, 0, NewIdx};
// Was this reg ever touched by a regmask?
for (const auto &MaskPair : reverse(Masks)) {
if (MaskPair.first->clobbersPhysReg(ID)) {
// There was an earlier def we skipped.
ValNum = {CurBB, MaskPair.second, NewIdx};
break;
}
}
LocIdxToIDNum[NewIdx] = ValNum;
LocIdxToLocID[NewIdx] = ID;
return NewIdx;
}
void MLocTracker::writeRegMask(const MachineOperand *MO, unsigned CurBB,
unsigned InstID) {
// Def any register we track have that isn't preserved. The regmask
// terminates the liveness of a register, meaning its value can't be
// relied upon -- we represent this by giving it a new value.
for (auto Location : locations()) {
unsigned ID = LocIdxToLocID[Location.Idx];
// Don't clobber SP, even if the mask says it's clobbered.
if (ID < NumRegs && !SPAliases.count(ID) && MO->clobbersPhysReg(ID))
defReg(ID, CurBB, InstID);
}
Masks.push_back(std::make_pair(MO, InstID));
}
SpillLocationNo MLocTracker::getOrTrackSpillLoc(SpillLoc L) {
SpillLocationNo SpillID(SpillLocs.idFor(L));
if (SpillID.id() == 0) {
// Spill location is untracked: create record for this one, and all
// subregister slots too.
SpillID = SpillLocationNo(SpillLocs.insert(L));
for (unsigned StackIdx = 0; StackIdx < NumSlotIdxes; ++StackIdx) {
unsigned L = getSpillIDWithIdx(SpillID, StackIdx);
LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
LocIdxToIDNum.grow(Idx);
LocIdxToLocID.grow(Idx);
LocIDToLocIdx.push_back(Idx);
LocIdxToLocID[Idx] = L;
// Initialize to PHI value; corresponds to the location's live-in value
// during transfer function construction.
LocIdxToIDNum[Idx] = ValueIDNum(CurBB, 0, Idx);
}
}
return SpillID;
}
std::string MLocTracker::LocIdxToName(LocIdx Idx) const {
unsigned ID = LocIdxToLocID[Idx];
if (ID >= NumRegs) {
StackSlotPos Pos = locIDToSpillIdx(ID);
ID -= NumRegs;
unsigned Slot = ID / NumSlotIdxes;
return Twine("slot ")
.concat(Twine(Slot).concat(Twine(" sz ").concat(Twine(Pos.first)
.concat(Twine(" offs ").concat(Twine(Pos.second))))))
.str();
} else {
return TRI.getRegAsmName(ID).str();
}
}
std::string MLocTracker::IDAsString(const ValueIDNum &Num) const {
std::string DefName = LocIdxToName(Num.getLoc());
return Num.asString(DefName);
}
#ifndef NDEBUG
LLVM_DUMP_METHOD void MLocTracker::dump() {
for (auto Location : locations()) {
std::string MLocName = LocIdxToName(Location.Value.getLoc());
std::string DefName = Location.Value.asString(MLocName);
dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
}
}
LLVM_DUMP_METHOD void MLocTracker::dump_mloc_map() {
for (auto Location : locations()) {
std::string foo = LocIdxToName(Location.Idx);
dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
}
}
#endif
MachineInstrBuilder MLocTracker::emitLoc(Optional<LocIdx> MLoc,
const DebugVariable &Var,
const DbgValueProperties &Properties) {
DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
Var.getVariable()->getScope(),
const_cast<DILocation *>(Var.getInlinedAt()));
auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
const DIExpression *Expr = Properties.DIExpr;
if (!MLoc) {
// No location -> DBG_VALUE $noreg
MIB.addReg(0);
MIB.addReg(0);
} else if (LocIdxToLocID[*MLoc] >= NumRegs) {
unsigned LocID = LocIdxToLocID[*MLoc];
SpillLocationNo SpillID = locIDToSpill(LocID);
StackSlotPos StackIdx = locIDToSpillIdx(LocID);
unsigned short Offset = StackIdx.second;
// TODO: support variables that are located in spill slots, with non-zero
// offsets from the start of the spill slot. It would require some more
// complex DIExpression calculations. This doesn't seem to be produced by
// LLVM right now, so don't try and support it.
// Accept no-subregister slots and subregisters where the offset is zero.
// The consumer should already have type information to work out how large
// the variable is.
if (Offset == 0) {
const SpillLoc &Spill = SpillLocs[SpillID.id()];
Expr = TRI.prependOffsetExpression(Expr, DIExpression::ApplyOffset,
Spill.SpillOffset);
unsigned Base = Spill.SpillBase;
MIB.addReg(Base);
MIB.addImm(0);
// Being on the stack makes this location indirect; if it was _already_
// indirect though, we need to add extra indirection. See this test for
// a scenario where this happens:
// llvm/test/DebugInfo/X86/spill-nontrivial-param.ll
if (Properties.Indirect) {
std::vector<uint64_t> Elts = {dwarf::DW_OP_deref};
Expr = DIExpression::append(Expr, Elts);
}
} else {
// This is a stack location with a weird subregister offset: emit an undef
// DBG_VALUE instead.
MIB.addReg(0);
MIB.addReg(0);
}
} else {
// Non-empty, non-stack slot, must be a plain register.
unsigned LocID = LocIdxToLocID[*MLoc];
MIB.addReg(LocID);
if (Properties.Indirect)
MIB.addImm(0);
else
MIB.addReg(0);
}
MIB.addMetadata(Var.getVariable());
MIB.addMetadata(Expr);
return MIB;
}
/// Default construct and initialize the pass.
InstrRefBasedLDV::InstrRefBasedLDV() {}
bool InstrRefBasedLDV::isCalleeSaved(LocIdx L) const {
unsigned Reg = MTracker->LocIdxToLocID[L];
for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
if (CalleeSavedRegs.test(*RAI))
return true;
return false;
}
//===----------------------------------------------------------------------===//
// Debug Range Extension Implementation
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
// Something to restore in the future.
// void InstrRefBasedLDV::printVarLocInMBB(..)
#endif
SpillLocationNo
InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
assert(MI.hasOneMemOperand() &&
"Spill instruction does not have exactly one memory operand?");
auto MMOI = MI.memoperands_begin();
const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
assert(PVal->kind() == PseudoSourceValue::FixedStack &&
"Inconsistent memory operand in spill instruction");
int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
const MachineBasicBlock *MBB = MI.getParent();
Register Reg;
StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
return MTracker->getOrTrackSpillLoc({Reg, Offset});
}
Optional<LocIdx> InstrRefBasedLDV::findLocationForMemOperand(const MachineInstr &MI) {
SpillLocationNo SpillLoc = extractSpillBaseRegAndOffset(MI);
// Where in the stack slot is this value defined -- i.e., what size of value
// is this? An important question, because it could be loaded into a register
// from the stack at some point. Happily the memory operand will tell us
// the size written to the stack.
auto *MemOperand = *MI.memoperands_begin();
unsigned SizeInBits = MemOperand->getSizeInBits();
// Find that position in the stack indexes we're tracking.
auto IdxIt = MTracker->StackSlotIdxes.find({SizeInBits, 0});
if (IdxIt == MTracker->StackSlotIdxes.end())
// That index is not tracked. This is suprising, and unlikely to ever
// occur, but the safe action is to indicate the variable is optimised out.
return None;
unsigned SpillID = MTracker->getSpillIDWithIdx(SpillLoc, IdxIt->second);
return MTracker->getSpillMLoc(SpillID);
}
/// End all previous ranges related to @MI and start a new range from @MI
/// if it is a DBG_VALUE instr.
bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
if (!MI.isDebugValue())
return false;
const DILocalVariable *Var = MI.getDebugVariable();
const DIExpression *Expr = MI.getDebugExpression();
const DILocation *DebugLoc = MI.getDebugLoc();
const DILocation *InlinedAt = DebugLoc->getInlinedAt();
assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
"Expected inlined-at fields to agree");
DebugVariable V(Var, Expr, InlinedAt);
DbgValueProperties Properties(MI);
// If there are no instructions in this lexical scope, do no location tracking
// at all, this variable shouldn't get a legitimate location range.
auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
if (Scope == nullptr)
return true; // handled it; by doing nothing
// For now, ignore DBG_VALUE_LISTs when extending ranges. Allow it to
// contribute to locations in this block, but don't propagate further.
// Interpret it like a DBG_VALUE $noreg.
if (MI.isDebugValueList()) {
if (VTracker)
VTracker->defVar(MI, Properties, None);
if (TTracker)
TTracker->redefVar(MI, Properties, None);
return true;
}
const MachineOperand &MO = MI.getOperand(0);
// MLocTracker needs to know that this register is read, even if it's only
// read by a debug inst.
if (MO.isReg() && MO.getReg() != 0)
(void)MTracker->readReg(MO.getReg());
// If we're preparing for the second analysis (variables), the machine value
// locations are already solved, and we report this DBG_VALUE and the value
// it refers to to VLocTracker.
if (VTracker) {
if (MO.isReg()) {
// Feed defVar the new variable location, or if this is a
// DBG_VALUE $noreg, feed defVar None.
if (MO.getReg())
VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
else
VTracker->defVar(MI, Properties, None);
} else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
MI.getOperand(0).isCImm()) {
VTracker->defVar(MI, MI.getOperand(0));
}
}
// If performing final tracking of transfers, report this variable definition
// to the TransferTracker too.
if (TTracker)
TTracker->redefVar(MI);
return true;
}
bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI,
ValueIDNum **MLiveOuts,
ValueIDNum **MLiveIns) {
if (!MI.isDebugRef())
return false;
// Only handle this instruction when we are building the variable value
// transfer function.
if (!VTracker)
return false;
unsigned InstNo = MI.getOperand(0).getImm();
unsigned OpNo = MI.getOperand(1).getImm();
const DILocalVariable *Var = MI.getDebugVariable();
const DIExpression *Expr = MI.getDebugExpression();
const DILocation *DebugLoc = MI.getDebugLoc();
const DILocation *InlinedAt = DebugLoc->getInlinedAt();
assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
"Expected inlined-at fields to agree");
DebugVariable V(Var, Expr, InlinedAt);
auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
if (Scope == nullptr)
return true; // Handled by doing nothing. This variable is never in scope.
const MachineFunction &MF = *MI.getParent()->getParent();
// Various optimizations may have happened to the value during codegen,
// recorded in the value substitution table. Apply any substitutions to
// the instruction / operand number in this DBG_INSTR_REF, and collect
// any subregister extractions performed during optimization.
// Create dummy substitution with Src set, for lookup.
auto SoughtSub =
MachineFunction::DebugSubstitution({InstNo, OpNo}, {0, 0}, 0);
SmallVector<unsigned, 4> SeenSubregs;
auto LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
while (LowerBoundIt != MF.DebugValueSubstitutions.end() &&
LowerBoundIt->Src == SoughtSub.Src) {
std::tie(InstNo, OpNo) = LowerBoundIt->Dest;
SoughtSub.Src = LowerBoundIt->Dest;
if (unsigned Subreg = LowerBoundIt->Subreg)
SeenSubregs.push_back(Subreg);
LowerBoundIt = llvm::lower_bound(MF.DebugValueSubstitutions, SoughtSub);
}
// Default machine value number is <None> -- if no instruction defines
// the corresponding value, it must have been optimized out.
Optional<ValueIDNum> NewID = None;
// Try to lookup the instruction number, and find the machine value number
// that it defines. It could be an instruction, or a PHI.
auto InstrIt = DebugInstrNumToInstr.find(InstNo);
auto PHIIt = std::lower_bound(DebugPHINumToValue.begin(),
DebugPHINumToValue.end(), InstNo);
if (InstrIt != DebugInstrNumToInstr.end()) {
const MachineInstr &TargetInstr = *InstrIt->second.first;
uint64_t BlockNo = TargetInstr.getParent()->getNumber();
// Pick out the designated operand. It might be a memory reference, if
// a register def was folded into a stack store.
if (OpNo == MachineFunction::DebugOperandMemNumber &&
TargetInstr.hasOneMemOperand()) {
Optional<LocIdx> L = findLocationForMemOperand(TargetInstr);
if (L)
NewID = ValueIDNum(BlockNo, InstrIt->second.second, *L);
} else if (OpNo != MachineFunction::DebugOperandMemNumber) {
assert(OpNo < TargetInstr.getNumOperands());
const MachineOperand &MO = TargetInstr.getOperand(OpNo);
// Today, this can only be a register.
assert(MO.isReg() && MO.isDef());
unsigned LocID = MTracker->getLocID(MO.getReg());
LocIdx L = MTracker->LocIDToLocIdx[LocID];
NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
}
// else: NewID is left as None.
} else if (PHIIt != DebugPHINumToValue.end() && PHIIt->InstrNum == InstNo) {
// It's actually a PHI value. Which value it is might not be obvious, use
// the resolver helper to find out.
NewID = resolveDbgPHIs(*MI.getParent()->getParent(), MLiveOuts, MLiveIns,
MI, InstNo);
}
// Apply any subregister extractions, in reverse. We might have seen code
// like this:
// CALL64 @foo, implicit-def $rax
// %0:gr64 = COPY $rax
// %1:gr32 = COPY %0.sub_32bit
// %2:gr16 = COPY %1.sub_16bit
// %3:gr8 = COPY %2.sub_8bit
// In which case each copy would have been recorded as a substitution with
// a subregister qualifier. Apply those qualifiers now.
if (NewID && !SeenSubregs.empty()) {
unsigned Offset = 0;
unsigned Size = 0;
// Look at each subregister that we passed through, and progressively
// narrow in, accumulating any offsets that occur. Substitutions should
// only ever be the same or narrower width than what they read from;
// iterate in reverse order so that we go from wide to small.
for (unsigned Subreg : reverse(SeenSubregs)) {
unsigned ThisSize = TRI->getSubRegIdxSize(Subreg);
unsigned ThisOffset = TRI->getSubRegIdxOffset(Subreg);
Offset += ThisOffset;
Size = (Size == 0) ? ThisSize : std::min(Size, ThisSize);
}
// If that worked, look for an appropriate subregister with the register
// where the define happens. Don't look at values that were defined during
// a stack write: we can't currently express register locations within
// spills.
LocIdx L = NewID->getLoc();
if (NewID && !MTracker->isSpill(L)) {
// Find the register class for the register where this def happened.
// FIXME: no index for this?
Register Reg = MTracker->LocIdxToLocID[L];
const TargetRegisterClass *TRC = nullptr;
for (auto *TRCI : TRI->regclasses())
if (TRCI->contains(Reg))
TRC = TRCI;
assert(TRC && "Couldn't find target register class?");
// If the register we have isn't the right size or in the right place,
// Try to find a subregister inside it.
unsigned MainRegSize = TRI->getRegSizeInBits(*TRC);
if (Size != MainRegSize || Offset) {
// Enumerate all subregisters, searching.
Register NewReg = 0;
for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
unsigned SubregSize = TRI->getSubRegIdxSize(Subreg);
unsigned SubregOffset = TRI->getSubRegIdxOffset(Subreg);
if (SubregSize == Size && SubregOffset == Offset) {
NewReg = *SRI;
break;
}
}
// If we didn't find anything: there's no way to express our value.
if (!NewReg) {
NewID = None;
} else {
// Re-state the value as being defined within the subregister
// that we found.
LocIdx NewLoc = MTracker->lookupOrTrackRegister(NewReg);
NewID = ValueIDNum(NewID->getBlock(), NewID->getInst(), NewLoc);
}
}
} else {
// If we can't handle subregisters, unset the new value.
NewID = None;
}
}
// We, we have a value number or None. Tell the variable value tracker about
// it. The rest of this LiveDebugValues implementation acts exactly the same
// for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
// aren't immediately available).
DbgValueProperties Properties(Expr, false);
VTracker->defVar(MI, Properties, NewID);
// If we're on the final pass through the function, decompose this INSTR_REF
// into a plain DBG_VALUE.
if (!TTracker)
return true;
// Pick a location for the machine value number, if such a location exists.
// (This information could be stored in TransferTracker to make it faster).
Optional<LocIdx> FoundLoc = None;
for (auto Location : MTracker->locations()) {
LocIdx CurL = Location.Idx;
ValueIDNum ID = MTracker->readMLoc(CurL);
if (NewID && ID == NewID) {
// If this is the first location with that value, pick it. Otherwise,
// consider whether it's a "longer term" location.
if (!FoundLoc) {
FoundLoc = CurL;
continue;
}
if (MTracker->isSpill(CurL))
FoundLoc = CurL; // Spills are a longer term location.
else if (!MTracker->isSpill(*FoundLoc) &&
!MTracker->isSpill(CurL) &&
!isCalleeSaved(*FoundLoc) &&
isCalleeSaved(CurL))
FoundLoc = CurL; // Callee saved regs are longer term than normal.
}
}
// Tell transfer tracker that the variable value has changed.
TTracker->redefVar(MI, Properties, FoundLoc);
// If there was a value with no location; but the value is defined in a
// later instruction in this block, this is a block-local use-before-def.
if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
NewID->getInst() > CurInst)
TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
// Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
// This DBG_VALUE is potentially a $noreg / undefined location, if
// FoundLoc is None.
// (XXX -- could morph the DBG_INSTR_REF in the future).
MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
TTracker->PendingDbgValues.push_back(DbgMI);
TTracker->flushDbgValues(MI.getIterator(), nullptr);
return true;
}
bool InstrRefBasedLDV::transferDebugPHI(MachineInstr &MI) {
if (!MI.isDebugPHI())
return false;
// Analyse these only when solving the machine value location problem.
if (VTracker || TTracker)
return true;
// First operand is the value location, either a stack slot or register.
// Second is the debug instruction number of the original PHI.
const MachineOperand &MO = MI.getOperand(0);
unsigned InstrNum = MI.getOperand(1).getImm();
if (MO.isReg()) {
// The value is whatever's currently in the register. Read and record it,
// to be analysed later.
Register Reg = MO.getReg();
ValueIDNum Num = MTracker->readReg(Reg);
auto PHIRec = DebugPHIRecord(
{InstrNum, MI.getParent(), Num, MTracker->lookupOrTrackRegister(Reg)});
DebugPHINumToValue.push_back(PHIRec);
// Ensure this register is tracked.
for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
MTracker->lookupOrTrackRegister(*RAI);
} else {
// The value is whatever's in this stack slot.
assert(MO.isFI());
unsigned FI = MO.getIndex();
// If the stack slot is dead, then this was optimized away.
// FIXME: stack slot colouring should account for slots that get merged.
if (MFI->isDeadObjectIndex(FI))
return true;
// Identify this spill slot, ensure it's tracked.
Register Base;
StackOffset Offs = TFI->getFrameIndexReference(*MI.getMF(), FI, Base);
SpillLoc SL = {Base, Offs};
SpillLocationNo SpillNo = MTracker->getOrTrackSpillLoc(SL);
// Problem: what value should we extract from the stack? LLVM does not
// record what size the last store to the slot was, and it would become
// sketchy after stack slot colouring anyway. Take a look at what values
// are stored on the stack, and pick the largest one that wasn't def'd
// by a spill (i.e., the value most likely to have been def'd in a register
// and then spilt.
std::array<unsigned, 4> CandidateSizes = {64, 32, 16, 8};
Optional<ValueIDNum> Result = None;
Optional<LocIdx> SpillLoc = None;
for (unsigned int I = 0; I < CandidateSizes.size(); ++I) {
unsigned SpillID = MTracker->getLocID(SpillNo, {CandidateSizes[I], 0});
SpillLoc = MTracker->getSpillMLoc(SpillID);
ValueIDNum Val = MTracker->readMLoc(*SpillLoc);
// If this value was defined in it's own position, then it was probably
// an aliasing index of a small value that was spilt.
if (Val.getLoc() != SpillLoc->asU64()) {
Result = Val;
break;
}
}
// If we didn't find anything, we're probably looking at a PHI, or a memory
// store folded into an instruction. FIXME: Take a guess that's it's 64
// bits. This isn't ideal, but tracking the size that the spill is
// "supposed" to be is more complex, and benefits a small number of
// locations.
if (!Result) {
unsigned SpillID = MTracker->getLocID(SpillNo, {64, 0});
SpillLoc = MTracker->getSpillMLoc(SpillID);
Result = MTracker->readMLoc(*SpillLoc);
}
// Record this DBG_PHI for later analysis.
auto DbgPHI = DebugPHIRecord({InstrNum, MI.getParent(), *Result, *SpillLoc});
DebugPHINumToValue.push_back(DbgPHI);
}
return true;
}
void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
// Meta Instructions do not affect the debug liveness of any register they
// define.
if (MI.isImplicitDef()) {
// Except when there's an implicit def, and the location it's defining has
// no value number. The whole point of an implicit def is to announce that
// the register is live, without be specific about it's value. So define
// a value if there isn't one already.
ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
// Has a legitimate value -> ignore the implicit def.
if (Num.getLoc() != 0)
return;
// Otherwise, def it here.
} else if (MI.isMetaInstruction())
return;
// We always ignore SP defines on call instructions, they don't actually
// change the value of the stack pointer... except for win32's _chkstk. This
// is rare: filter quickly for the common case (no stack adjustments, not a
// call, etc). If it is a call that modifies SP, recognise the SP register
// defs.
bool CallChangesSP = false;
if (AdjustsStackInCalls && MI.isCall() && MI.getOperand(0).isSymbol() &&
!strcmp(MI.getOperand(0).getSymbolName(), StackProbeSymbolName.data()))
CallChangesSP = true;
// Test whether we should ignore a def of this register due to it being part
// of the stack pointer.
auto IgnoreSPAlias = [this, &MI, CallChangesSP](Register R) -> bool {
if (CallChangesSP)
return false;
return MI.isCall() && MTracker->SPAliases.count(R);
};
// Find the regs killed by MI, and find regmasks of preserved regs.
// Max out the number of statically allocated elements in `DeadRegs`, as this
// prevents fallback to std::set::count() operations.
SmallSet<uint32_t, 32> DeadRegs;
SmallVector<const uint32_t *, 4> RegMasks;
SmallVector<const MachineOperand *, 4> RegMaskPtrs;
for (const MachineOperand &MO : MI.operands()) {
// Determine whether the operand is a register def.
if (MO.isReg() && MO.isDef() && MO.getReg() &&
Register::isPhysicalRegister(MO.getReg()) &&
!IgnoreSPAlias(MO.getReg())) {
// Remove ranges of all aliased registers.
for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
// FIXME: Can we break out of this loop early if no insertion occurs?
DeadRegs.insert(*RAI);
} else if (MO.isRegMask()) {
RegMasks.push_back(MO.getRegMask());
RegMaskPtrs.push_back(&MO);
}
}
// Tell MLocTracker about all definitions, of regmasks and otherwise.
for (uint32_t DeadReg : DeadRegs)
MTracker->defReg(DeadReg, CurBB, CurInst);
for (auto *MO : RegMaskPtrs)
MTracker->writeRegMask(MO, CurBB, CurInst);
// If this instruction writes to a spill slot, def that slot.
if (hasFoldedStackStore(MI)) {
SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI);
for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I);
LocIdx L = MTracker->getSpillMLoc(SpillID);
MTracker->setMLoc(L, ValueIDNum(CurBB, CurInst, L));
}
}
if (!TTracker)
return;
// When committing variable values to locations: tell transfer tracker that
// we've clobbered things. It may be able to recover the variable from a
// different location.
// Inform TTracker about any direct clobbers.
for (uint32_t DeadReg : DeadRegs) {
LocIdx Loc = MTracker->lookupOrTrackRegister(DeadReg);
TTracker->clobberMloc(Loc, MI.getIterator(), false);
}
// Look for any clobbers performed by a register mask. Only test locations
// that are actually being tracked.
for (auto L : MTracker->locations()) {
// Stack locations can't be clobbered by regmasks.
if (MTracker->isSpill(L.Idx))
continue;
Register Reg = MTracker->LocIdxToLocID[L.Idx];
if (IgnoreSPAlias(Reg))
continue;
for (auto *MO : RegMaskPtrs)
if (MO->clobbersPhysReg(Reg))
TTracker->clobberMloc(L.Idx, MI.getIterator(), false);
}
// Tell TTracker about any folded stack store.
if (hasFoldedStackStore(MI)) {
SpillLocationNo SpillNo = extractSpillBaseRegAndOffset(MI);
for (unsigned int I = 0; I < MTracker->NumSlotIdxes; ++I) {
unsigned SpillID = MTracker->getSpillIDWithIdx(SpillNo, I);
LocIdx L = MTracker->getSpillMLoc(SpillID);
TTracker->clobberMloc(L, MI.getIterator(), true);
}
}
}
void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
// In all circumstances, re-def all aliases. It's definitely a new value now.
for (MCRegAliasIterator RAI(DstRegNum, TRI, true); RAI.isValid(); ++RAI)
MTracker->defReg(*RAI, CurBB, CurInst);
ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
MTracker->setReg(DstRegNum, SrcValue);
// Copy subregisters from one location to another.
for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
unsigned SrcSubReg = SRI.getSubReg();
unsigned SubRegIdx = SRI.getSubRegIndex();
unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
if (!DstSubReg)
continue;
// Do copy. There are two matching subregisters, the source value should
// have been def'd when the super-reg was, the latter might not be tracked
// yet.
// This will force SrcSubReg to be tracked, if it isn't yet. Will read
// mphi values if it wasn't tracked.
LocIdx SrcL = MTracker->lookupOrTrackRegister(SrcSubReg);
LocIdx DstL = MTracker->lookupOrTrackRegister(DstSubReg);
(void)SrcL;
(void)DstL;
ValueIDNum CpyValue = MTracker->readReg(SrcSubReg);
MTracker->setReg(DstSubReg, CpyValue);
}
}
bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
MachineFunction *MF) {
// TODO: Handle multiple stores folded into one.
if (!MI.hasOneMemOperand())
return false;
// Reject any memory operand that's aliased -- we can't guarantee its value.
auto MMOI = MI.memoperands_begin();
const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
if (PVal->isAliased(MFI))
return false;
if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
return false; // This is not a spill instruction, since no valid size was
// returned from either function.
return true;
}
bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
MachineFunction *MF, unsigned &Reg) {
if (!isSpillInstruction(MI, MF))
return false;
int FI;
Reg = TII->isStoreToStackSlotPostFE(MI, FI);
return Reg != 0;
}
Optional<SpillLocationNo>
InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
MachineFunction *MF, unsigned &Reg) {
if (!MI.hasOneMemOperand())
return None;
// FIXME: Handle folded restore instructions with more than one memory
// operand.
if (MI.getRestoreSize(TII)) {
Reg = MI.getOperand(0).getReg();
return extractSpillBaseRegAndOffset(MI);
}
return None;
}
bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
// XXX -- it's too difficult to implement VarLocBasedImpl's stack location
// limitations under the new model. Therefore, when comparing them, compare
// versions that don't attempt spills or restores at all.
if (EmulateOldLDV)
return false;
// Strictly limit ourselves to plain loads and stores, not all instructions
// that can access the stack.
int DummyFI = -1;
if (!TII->isStoreToStackSlotPostFE(MI, DummyFI) &&
!TII->isLoadFromStackSlotPostFE(MI, DummyFI))
return false;
MachineFunction *MF = MI.getMF();
unsigned Reg;
LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
// Strictly limit ourselves to plain loads and stores, not all instructions
// that can access the stack.
int FIDummy;
if (!TII->isStoreToStackSlotPostFE(MI, FIDummy) &&
!TII->isLoadFromStackSlotPostFE(MI, FIDummy))
return false;
// First, if there are any DBG_VALUEs pointing at a spill slot that is
// written to, terminate that variable location. The value in memory
// will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
if (isSpillInstruction(MI, MF)) {
SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI);
// Un-set this location and clobber, so that earlier locations don't
// continue past this store.
for (unsigned SlotIdx = 0; SlotIdx < MTracker->NumSlotIdxes; ++SlotIdx) {
unsigned SpillID = MTracker->getSpillIDWithIdx(Loc, SlotIdx);
Optional<LocIdx> MLoc = MTracker->getSpillMLoc(SpillID);
if (!MLoc)
continue;
// We need to over-write the stack slot with something (here, a def at
// this instruction) to ensure no values are preserved in this stack slot
// after the spill. It also prevents TTracker from trying to recover the
// location and re-installing it in the same place.
ValueIDNum Def(CurBB, CurInst, *MLoc);
MTracker->setMLoc(*MLoc, Def);
if (TTracker)
TTracker->clobberMloc(*MLoc, MI.getIterator());
}
}
// Try to recognise spill and restore instructions that may transfer a value.
if (isLocationSpill(MI, MF, Reg)) {
SpillLocationNo Loc = extractSpillBaseRegAndOffset(MI);
auto DoTransfer = [&](Register SrcReg, unsigned SpillID) {
auto ReadValue = MTracker->readReg(SrcReg);
LocIdx DstLoc = MTracker->getSpillMLoc(SpillID);
MTracker->setMLoc(DstLoc, ReadValue);
if (TTracker) {
LocIdx SrcLoc = MTracker->getRegMLoc(SrcReg);
TTracker->transferMlocs(SrcLoc, DstLoc, MI.getIterator());
}
};
// Then, transfer subreg bits.
for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
// Ensure this reg is tracked,
(void)MTracker->lookupOrTrackRegister(*SRI);
unsigned SubregIdx = TRI->getSubRegIndex(Reg, *SRI);
unsigned SpillID = MTracker->getLocID(Loc, SubregIdx);
DoTransfer(*SRI, SpillID);
}
// Directly lookup size of main source reg, and transfer.
unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
DoTransfer(Reg, SpillID);
} else {
Optional<SpillLocationNo> OptLoc = isRestoreInstruction(MI, MF, Reg);
if (!OptLoc)
return false;
SpillLocationNo Loc = *OptLoc;
// Assumption: we're reading from the base of the stack slot, not some
// offset into it. It seems very unlikely LLVM would ever generate
// restores where this wasn't true. This then becomes a question of what
// subregisters in the destination register line up with positions in the
// stack slot.
// Def all registers that alias the destination.
for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
MTracker->defReg(*RAI, CurBB, CurInst);
// Now find subregisters within the destination register, and load values
// from stack slot positions.
auto DoTransfer = [&](Register DestReg, unsigned SpillID) {
LocIdx SrcIdx = MTracker->getSpillMLoc(SpillID);
auto ReadValue = MTracker->readMLoc(SrcIdx);
MTracker->setReg(DestReg, ReadValue);
if (TTracker) {
LocIdx DstLoc = MTracker->getRegMLoc(DestReg);
TTracker->transferMlocs(SrcIdx, DstLoc, MI.getIterator());
}
};
for (MCSubRegIterator SRI(Reg, TRI, false); SRI.isValid(); ++SRI) {
unsigned Subreg = TRI->getSubRegIndex(Reg, *SRI);
unsigned SpillID = MTracker->getLocID(Loc, Subreg);
DoTransfer(*SRI, SpillID);
}
// Directly look up this registers slot idx by size, and transfer.
unsigned Size = TRI->getRegSizeInBits(Reg, *MRI);
unsigned SpillID = MTracker->getLocID(Loc, {Size, 0});
DoTransfer(Reg, SpillID);
}
return true;
}
bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
auto DestSrc = TII->isCopyInstr(MI);
if (!DestSrc)
return false;
const MachineOperand *DestRegOp = DestSrc->Destination;
const MachineOperand *SrcRegOp = DestSrc->Source;
auto isCalleeSavedReg = [&](unsigned Reg) {
for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
if (CalleeSavedRegs.test(*RAI))
return true;
return false;
};
Register SrcReg = SrcRegOp->getReg();
Register DestReg = DestRegOp->getReg();
// Ignore identity copies. Yep, these make it as far as LiveDebugValues.
if (SrcReg == DestReg)
return true;
// For emulating VarLocBasedImpl:
// We want to recognize instructions where destination register is callee
// saved register. If register that could be clobbered by the call is
// included, there would be a great chance that it is going to be clobbered
// soon. It is more likely that previous register, which is callee saved, is
// going to stay unclobbered longer, even if it is killed.
//
// For InstrRefBasedImpl, we can track multiple locations per value, so
// ignore this condition.
if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
return false;
// InstrRefBasedImpl only followed killing copies.
if (EmulateOldLDV && !SrcRegOp->isKill())
return false;
// Copy MTracker info, including subregs if available.
InstrRefBasedLDV::performCopy(SrcReg, DestReg);
// Only produce a transfer of DBG_VALUE within a block where old LDV
// would have. We might make use of the additional value tracking in some
// other way, later.
if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
MTracker->getRegMLoc(DestReg), MI.getIterator());
// VarLocBasedImpl would quit tracking the old location after copying.
if (EmulateOldLDV && SrcReg != DestReg)
MTracker->defReg(SrcReg, CurBB, CurInst);
// Finally, the copy might have clobbered variables based on the destination
// register. Tell TTracker about it, in case a backup location exists.
if (TTracker) {
for (MCRegAliasIterator RAI(DestReg, TRI, true); RAI.isValid(); ++RAI) {
LocIdx ClobberedLoc = MTracker->getRegMLoc(*RAI);
TTracker->clobberMloc(ClobberedLoc, MI.getIterator(), false);
}
}
return true;
}
/// Accumulate a mapping between each DILocalVariable fragment and other
/// fragments of that DILocalVariable which overlap. This reduces work during
/// the data-flow stage from "Find any overlapping fragments" to "Check if the
/// known-to-overlap fragments are present".
/// \param MI A previously unprocessed debug instruction to analyze for
/// fragment usage.
void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
assert(MI.isDebugValue() || MI.isDebugRef());
DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
MI.getDebugLoc()->getInlinedAt());
FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
// If this is the first sighting of this variable, then we are guaranteed
// there are currently no overlapping fragments either. Initialize the set
// of seen fragments, record no overlaps for the current one, and return.
auto SeenIt = SeenFragments.find(MIVar.getVariable());
if (SeenIt == SeenFragments.end()) {
SmallSet<FragmentInfo, 4> OneFragment;
OneFragment.insert(ThisFragment);
SeenFragments.insert({MIVar.getVariable(), OneFragment});
OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
return;
}
// If this particular Variable/Fragment pair already exists in the overlap
// map, it has already been accounted for.
auto IsInOLapMap =
OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
if (!IsInOLapMap.second)
return;
auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
auto &AllSeenFragments = SeenIt->second;
// Otherwise, examine all other seen fragments for this variable, with "this"
// fragment being a previously unseen fragment. Record any pair of
// overlapping fragments.
for (auto &ASeenFragment : AllSeenFragments) {
// Does this previously seen fragment overlap?
if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
// Yes: Mark the current fragment as being overlapped.
ThisFragmentsOverlaps.push_back(ASeenFragment);
// Mark the previously seen fragment as being overlapped by the current
// one.
auto ASeenFragmentsOverlaps =
OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
"Previously seen var fragment has no vector of overlaps");
ASeenFragmentsOverlaps->second.push_back(ThisFragment);
}
}
AllSeenFragments.insert(ThisFragment);
}
void InstrRefBasedLDV::process(MachineInstr &MI, ValueIDNum **MLiveOuts,
ValueIDNum **MLiveIns) {
// Try to interpret an MI as a debug or transfer instruction. Only if it's
// none of these should we interpret it's register defs as new value
// definitions.
if (transferDebugValue(MI))
return;
if (transferDebugInstrRef(MI, MLiveOuts, MLiveIns))
return;
if (transferDebugPHI(MI))
return;
if (transferRegisterCopy(MI))
return;
if (transferSpillOrRestoreInst(MI))
return;
transferRegisterDef(MI);
}
void InstrRefBasedLDV::produceMLocTransferFunction(
MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
unsigned MaxNumBlocks) {
// Because we try to optimize around register mask operands by ignoring regs
// that aren't currently tracked, we set up something ugly for later: RegMask
// operands that are seen earlier than the first use of a register, still need
// to clobber that register in the transfer function. But this information
// isn't actively recorded. Instead, we track each RegMask used in each block,
// and accumulated the clobbered but untracked registers in each block into
// the following bitvector. Later, if new values are tracked, we can add
// appropriate clobbers.
SmallVector<BitVector, 32> BlockMasks;
BlockMasks.resize(MaxNumBlocks);
// Reserve one bit per register for the masks described above.
unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
for (auto &BV : BlockMasks)
BV.resize(TRI->getNumRegs(), true);
// Step through all instructions and inhale the transfer function.
for (auto &MBB : MF) {
// Object fields that are read by trackers to know where we are in the
// function.
CurBB = MBB.getNumber();
CurInst = 1;
// Set all machine locations to a PHI value. For transfer function
// production only, this signifies the live-in value to the block.
MTracker->reset();
MTracker->setMPhis(CurBB);
// Step through each instruction in this block.
for (auto &MI : MBB) {
process(MI);
// Also accumulate fragment map.
if (MI.isDebugValue() || MI.isDebugRef())
accumulateFragmentMap(MI);
// Create a map from the instruction number (if present) to the
// MachineInstr and its position.
if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
auto InstrAndPos = std::make_pair(&MI, CurInst);
auto InsertResult =
DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
// There should never be duplicate instruction numbers.
assert(InsertResult.second);
(void)InsertResult;
}
++CurInst;
}
// Produce the transfer function, a map of machine location to new value. If
// any machine location has the live-in phi value from the start of the
// block, it's live-through and doesn't need recording in the transfer
// function.
for (auto Location : MTracker->locations()) {
LocIdx Idx = Location.Idx;
ValueIDNum &P = Location.Value;
if (P.isPHI() && P.getLoc() == Idx.asU64())
continue;
// Insert-or-update.
auto &TransferMap = MLocTransfer[CurBB];
auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
if (!Result.second)
Result.first->second = P;
}
// Accumulate any bitmask operands into the clobberred reg mask for this
// block.
for (auto &P : MTracker->Masks) {
BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
}
}
// Compute a bitvector of all the registers that are tracked in this block.
BitVector UsedRegs(TRI->getNumRegs());
for (auto Location : MTracker->locations()) {
unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
// Ignore stack slots, and aliases of the stack pointer.
if (ID >= TRI->getNumRegs() || MTracker->SPAliases.count(ID))
continue;
UsedRegs.set(ID);
}
// Check that any regmask-clobber of a register that gets tracked, is not
// live-through in the transfer function. It needs to be clobbered at the
// very least.
for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
BitVector &BV = BlockMasks[I];
BV.flip();
BV &= UsedRegs;
// This produces all the bits that we clobber, but also use. Check that
// they're all clobbered or at least set in the designated transfer
// elem.
for (unsigned Bit : BV.set_bits()) {
unsigned ID = MTracker->getLocID(Bit);
LocIdx Idx = MTracker->LocIDToLocIdx[ID];
auto &TransferMap = MLocTransfer[I];
// Install a value representing the fact that this location is effectively
// written to in this block. As there's no reserved value, instead use
// a value number that is never generated. Pick the value number for the
// first instruction in the block, def'ing this location, which we know
// this block never used anyway.
ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
auto Result =
TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
if (!Result.second) {
ValueIDNum &ValueID = Result.first->second;
if (ValueID.getBlock() == I && ValueID.isPHI())
// It was left as live-through. Set it to clobbered.
ValueID = NotGeneratedNum;
}
}
}
}
bool InstrRefBasedLDV::mlocJoin(
MachineBasicBlock &MBB, SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
ValueIDNum **OutLocs, ValueIDNum *InLocs) {
LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
bool Changed = false;
// Handle value-propagation when control flow merges on entry to a block. For
// any location without a PHI already placed, the location has the same value
// as its predecessors. If a PHI is placed, test to see whether it's now a
// redundant PHI that we can eliminate.
SmallVector<const MachineBasicBlock *, 8> BlockOrders;
for (auto Pred : MBB.predecessors())
BlockOrders.push_back(Pred);
// Visit predecessors in RPOT order.
auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
};
llvm::sort(BlockOrders, Cmp);
// Skip entry block.
if (BlockOrders.size() == 0)
return false;
// Step through all machine locations, look at each predecessor and test
// whether we can eliminate redundant PHIs.
for (auto Location : MTracker->locations()) {
LocIdx Idx = Location.Idx;
// Pick out the first predecessors live-out value for this location. It's
// guaranteed to not be a backedge, as we order by RPO.
ValueIDNum FirstVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
// If we've already eliminated a PHI here, do no further checking, just
// propagate the first live-in value into this block.
if (InLocs[Idx.asU64()] != ValueIDNum(MBB.getNumber(), 0, Idx)) {
if (InLocs[Idx.asU64()] != FirstVal) {
InLocs[Idx.asU64()] = FirstVal;
Changed |= true;
}
continue;
}
// We're now examining a PHI to see whether it's un-necessary. Loop around
// the other live-in values and test whether they're all the same.
bool Disagree = false;
for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
const MachineBasicBlock *PredMBB = BlockOrders[I];
const ValueIDNum &PredLiveOut =
OutLocs[PredMBB->getNumber()][Idx.asU64()];
// Incoming values agree, continue trying to eliminate this PHI.
if (FirstVal == PredLiveOut)
continue;
// We can also accept a PHI value that feeds back into itself.
if (PredLiveOut == ValueIDNum(MBB.getNumber(), 0, Idx))
continue;
// Live-out of a predecessor disagrees with the first predecessor.
Disagree = true;
}
// No disagreement? No PHI. Otherwise, leave the PHI in live-ins.
if (!Disagree) {
InLocs[Idx.asU64()] = FirstVal;
Changed |= true;
}
}
// TODO: Reimplement NumInserted and NumRemoved.
return Changed;
}
void InstrRefBasedLDV::findStackIndexInterference(
SmallVectorImpl<unsigned> &Slots) {
// We could spend a bit of time finding the exact, minimal, set of stack
// indexes that interfere with each other, much like reg units. Or, we can
// rely on the fact that:
// * The smallest / lowest index will interfere with everything at zero
// offset, which will be the largest set of registers,
// * Most indexes with non-zero offset will end up being interference units
// anyway.
// So just pick those out and return them.
// We can rely on a single-byte stack index existing already, because we
// initialize them in MLocTracker.
auto It = MTracker->StackSlotIdxes.find({8, 0});
assert(It != MTracker->StackSlotIdxes.end());
Slots.push_back(It->second);
// Find anything that has a non-zero offset and add that too.
for (auto &Pair : MTracker->StackSlotIdxes) {
// Is offset zero? If so, ignore.
if (!Pair.first.second)
continue;
Slots.push_back(Pair.second);
}
}
void InstrRefBasedLDV::placeMLocPHIs(
MachineFunction &MF, SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
ValueIDNum **MInLocs, SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
SmallVector<unsigned, 4> StackUnits;
findStackIndexInterference(StackUnits);
// To avoid repeatedly running the PHI placement algorithm, leverage the
// fact that a def of register MUST also def its register units. Find the
// units for registers, place PHIs for them, and then replicate them for
// aliasing registers. Some inputs that are never def'd (DBG_PHIs of
// arguments) don't lead to register units being tracked, just place PHIs for
// those registers directly. Stack slots have their own form of "unit",
// store them to one side.
SmallSet<Register, 32> RegUnitsToPHIUp;
SmallSet<LocIdx, 32> NormalLocsToPHI;
SmallSet<SpillLocationNo, 32> StackSlots;
for (auto Location : MTracker->locations()) {
LocIdx L = Location.Idx;
if (MTracker->isSpill(L)) {
StackSlots.insert(MTracker->locIDToSpill(MTracker->LocIdxToLocID[L]));
continue;
}
Register R = MTracker->LocIdxToLocID[L];
SmallSet<Register, 8> FoundRegUnits;
bool AnyIllegal = false;
for (MCRegUnitIterator RUI(R.asMCReg(), TRI); RUI.isValid(); ++RUI) {
for (MCRegUnitRootIterator URoot(*RUI, TRI); URoot.isValid(); ++URoot){
if (!MTracker->isRegisterTracked(*URoot)) {
// Not all roots were loaded into the tracking map: this register
// isn't actually def'd anywhere, we only read from it. Generate PHIs
// for this reg, but don't iterate units.
AnyIllegal = true;
} else {
FoundRegUnits.insert(*URoot);
}
}
}
if (AnyIllegal) {
NormalLocsToPHI.insert(L);
continue;
}
RegUnitsToPHIUp.insert(FoundRegUnits.begin(), FoundRegUnits.end());
}
// Lambda to fetch PHIs for a given location, and write into the PHIBlocks
// collection.
SmallVector<MachineBasicBlock *, 32> PHIBlocks;
auto CollectPHIsForLoc = [&](LocIdx L) {
// Collect the set of defs.
SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
MachineBasicBlock *MBB = OrderToBB[I];
const auto &TransferFunc = MLocTransfer[MBB->getNumber()];
if (TransferFunc.find(L) != TransferFunc.end())
DefBlocks.insert(MBB);
}
// The entry block defs the location too: it's the live-in / argument value.
// Only insert if there are other defs though; everything is trivially live
// through otherwise.
if (!DefBlocks.empty())
DefBlocks.insert(&*MF.begin());
// Ask the SSA construction algorithm where we should put PHIs. Clear
// anything that might have been hanging around from earlier.
PHIBlocks.clear();
BlockPHIPlacement(AllBlocks, DefBlocks, PHIBlocks);
};
auto InstallPHIsAtLoc = [&PHIBlocks, &MInLocs](LocIdx L) {
for (const MachineBasicBlock *MBB : PHIBlocks)
MInLocs[MBB->getNumber()][L.asU64()] = ValueIDNum(MBB->getNumber(), 0, L);
};
// For locations with no reg units, just place PHIs.
for (LocIdx L : NormalLocsToPHI) {
CollectPHIsForLoc(L);
// Install those PHI values into the live-in value array.
InstallPHIsAtLoc(L);
}
// For stack slots, calculate PHIs for the equivalent of the units, then
// install for each index.
for (SpillLocationNo Slot : StackSlots) {
for (unsigned Idx : StackUnits) {
unsigned SpillID = MTracker->getSpillIDWithIdx(Slot, Idx);
LocIdx L = MTracker->getSpillMLoc(SpillID);
CollectPHIsForLoc(L);
InstallPHIsAtLoc(L);
// Find anything that aliases this stack index, install PHIs for it too.
unsigned Size, Offset;
std::tie(Size, Offset) = MTracker->StackIdxesToPos[Idx];
for (auto &Pair : MTracker->StackSlotIdxes) {
unsigned ThisSize, ThisOffset;
std::tie(ThisSize, ThisOffset) = Pair.first;
if (ThisSize + ThisOffset <= Offset || Size + Offset <= ThisOffset)
continue;
unsigned ThisID = MTracker->getSpillIDWithIdx(Slot, Pair.second);
LocIdx ThisL = MTracker->getSpillMLoc(ThisID);
InstallPHIsAtLoc(ThisL);
}
}
}
// For reg units, place PHIs, and then place them for any aliasing registers.
for (Register R : RegUnitsToPHIUp) {
LocIdx L = MTracker->lookupOrTrackRegister(R);
CollectPHIsForLoc(L);
// Install those PHI values into the live-in value array.
InstallPHIsAtLoc(L);
// Now find aliases and install PHIs for those.
for (MCRegAliasIterator RAI(R, TRI, true); RAI.isValid(); ++RAI) {
// Super-registers that are "above" the largest register read/written by
// the function will alias, but will not be tracked.
if (!MTracker->isRegisterTracked(*RAI))
continue;
LocIdx AliasLoc = MTracker->lookupOrTrackRegister(*RAI);
InstallPHIsAtLoc(AliasLoc);
}
}
}
void InstrRefBasedLDV::buildMLocValueMap(
MachineFunction &MF, ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
std::priority_queue<unsigned int, std::vector<unsigned int>,
std::greater<unsigned int>>
Worklist, Pending;
// We track what is on the current and pending worklist to avoid inserting
// the same thing twice. We could avoid this with a custom priority queue,
// but this is probably not worth it.
SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
// Initialize worklist with every block to be visited. Also produce list of
// all blocks.
SmallPtrSet<MachineBasicBlock *, 32> AllBlocks;
for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
Worklist.push(I);
OnWorklist.insert(OrderToBB[I]);
AllBlocks.insert(OrderToBB[I]);
}
// Initialize entry block to PHIs. These represent arguments.
for (auto Location : MTracker->locations())
MInLocs[0][Location.Idx.asU64()] = ValueIDNum(0, 0, Location.Idx);
MTracker->reset();
// Start by placing PHIs, using the usual SSA constructor algorithm. Consider
// any machine-location that isn't live-through a block to be def'd in that
// block.
placeMLocPHIs(MF, AllBlocks, MInLocs, MLocTransfer);
// Propagate values to eliminate redundant PHIs. At the same time, this
// produces the table of Block x Location => Value for the entry to each
// block.
// The kind of PHIs we can eliminate are, for example, where one path in a
// conditional spills and restores a register, and the register still has
// the same value once control flow joins, unbeknowns to the PHI placement
// code. Propagating values allows us to identify such un-necessary PHIs and
// remove them.
SmallPtrSet<const MachineBasicBlock *, 16> Visited;
while (!Worklist.empty() || !Pending.empty()) {
// Vector for storing the evaluated block transfer function.
SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
while (!Worklist.empty()) {
MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
CurBB = MBB->getNumber();
Worklist.pop();
// Join the values in all predecessor blocks.
bool InLocsChanged;
InLocsChanged = mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
InLocsChanged |= Visited.insert(MBB).second;
// Don't examine transfer function if we've visited this loc at least
// once, and inlocs haven't changed.
if (!InLocsChanged)
continue;
// Load the current set of live-ins into MLocTracker.
MTracker->loadFromArray(MInLocs[CurBB], CurBB);
// Each element of the transfer function can be a new def, or a read of
// a live-in value. Evaluate each element, and store to "ToRemap".
ToRemap.clear();
for (auto &P : MLocTransfer[CurBB]) {
if (P.second.getBlock() == CurBB && P.second.isPHI()) {
// This is a movement of whatever was live in. Read it.
ValueIDNum NewID = MTracker->readMLoc(P.second.getLoc());
ToRemap.push_back(std::make_pair(P.first, NewID));
} else {
// It's a def. Just set it.
assert(P.second.getBlock() == CurBB);
ToRemap.push_back(std::make_pair(P.first, P.second));
}
}
// Commit the transfer function changes into mloc tracker, which
// transforms the contents of the MLocTracker into the live-outs.
for (auto &P : ToRemap)
MTracker->setMLoc(P.first, P.second);
// Now copy out-locs from mloc tracker into out-loc vector, checking
// whether changes have occurred. These changes can have come from both
// the transfer function, and mlocJoin.
bool OLChanged = false;
for (auto Location : MTracker->locations()) {
OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
}
MTracker->reset();
// No need to examine successors again if out-locs didn't change.
if (!OLChanged)
continue;
// All successors should be visited: put any back-edges on the pending
// list for the next pass-through, and any other successors to be
// visited this pass, if they're not going to be already.
for (auto s : MBB->successors()) {
// Does branching to this successor represent a back-edge?
if (BBToOrder[s] > BBToOrder[MBB]) {
// No: visit it during this dataflow iteration.
if (OnWorklist.insert(s).second)
Worklist.push(BBToOrder[s]);
} else {
// Yes: visit it on the next iteration.
if (OnPending.insert(s).second)
Pending.push(BBToOrder[s]);
}
}
}
Worklist.swap(Pending);
std::swap(OnPending, OnWorklist);
OnPending.clear();
// At this point, pending must be empty, since it was just the empty
// worklist
assert(Pending.empty() && "Pending should be empty");
}
// Once all the live-ins don't change on mlocJoin(), we've eliminated all
// redundant PHIs.
}
// Boilerplate for feeding MachineBasicBlocks into IDF calculator. Provide
// template specialisations for graph traits and a successor enumerator.
namespace llvm {
template <> struct GraphTraits<MachineBasicBlock> {
using NodeRef = MachineBasicBlock *;
using ChildIteratorType = MachineBasicBlock::succ_iterator;
static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
};
template <> struct GraphTraits<const MachineBasicBlock> {
using NodeRef = const MachineBasicBlock *;
using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
};
using MachineDomTreeBase = DomTreeBase<MachineBasicBlock>::NodeType;
using MachineDomTreeChildGetter =
typename IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false>;
namespace IDFCalculatorDetail {
template <>
typename MachineDomTreeChildGetter::ChildrenTy
MachineDomTreeChildGetter::get(const NodeRef &N) {
return {N->succ_begin(), N->succ_end()};
}
} // namespace IDFCalculatorDetail
} // namespace llvm
void InstrRefBasedLDV::BlockPHIPlacement(
const SmallPtrSetImpl<MachineBasicBlock *> &AllBlocks,
const SmallPtrSetImpl<MachineBasicBlock *> &DefBlocks,
SmallVectorImpl<MachineBasicBlock *> &PHIBlocks) {
// Apply IDF calculator to the designated set of location defs, storing
// required PHIs into PHIBlocks. Uses the dominator tree stored in the
// InstrRefBasedLDV object.
IDFCalculatorDetail::ChildrenGetterTy<MachineDomTreeBase, false> foo;
IDFCalculatorBase<MachineDomTreeBase, false> IDF(DomTree->getBase(), foo);
IDF.setLiveInBlocks(AllBlocks);
IDF.setDefiningBlocks(DefBlocks);
IDF.calculate(PHIBlocks);
}
Optional<ValueIDNum> InstrRefBasedLDV::pickVPHILoc(
const MachineBasicBlock &MBB, const DebugVariable &Var,
const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
const SmallVectorImpl<const MachineBasicBlock *> &BlockOrders) {
// Collect a set of locations from predecessor where its live-out value can
// be found.
SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
SmallVector<const DbgValueProperties *, 4> Properties;
unsigned NumLocs = MTracker->getNumLocs();
// No predecessors means no PHIs.
if (BlockOrders.empty())
return None;
for (auto p : BlockOrders) {
unsigned ThisBBNum = p->getNumber();
auto OutValIt = LiveOuts.find(p);
if (OutValIt == LiveOuts.end())
// If we have a predecessor not in scope, we'll never find a PHI position.
return None;
const DbgValue &OutVal = *OutValIt->second;
if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
// Consts and no-values cannot have locations we can join on.
return None;
Properties.push_back(&OutVal.Properties);
// Create new empty vector of locations.
Locs.resize(Locs.size() + 1);
// If the live-in value is a def, find the locations where that value is
// present. Do the same for VPHIs where we know the VPHI value.
if (OutVal.Kind == DbgValue::Def ||
(OutVal.Kind == DbgValue::VPHI && OutVal.BlockNo != MBB.getNumber() &&
OutVal.ID != ValueIDNum::EmptyValue)) {
ValueIDNum ValToLookFor = OutVal.ID;
// Search the live-outs of the predecessor for the specified value.
for (unsigned int I = 0; I < NumLocs; ++I) {
if (MOutLocs[ThisBBNum][I] == ValToLookFor)
Locs.back().push_back(LocIdx(I));
}
} else {
assert(OutVal.Kind == DbgValue::VPHI);
// For VPHIs where we don't know the location, we definitely can't find
// a join loc.
if (OutVal.BlockNo != MBB.getNumber())
return None;
// Otherwise: this is a VPHI on a backedge feeding back into itself, i.e.
// a value that's live-through the whole loop. (It has to be a backedge,
// because a block can't dominate itself). We can accept as a PHI location
// any location where the other predecessors agree, _and_ the machine
// locations feed back into themselves. Therefore, add all self-looping
// machine-value PHI locations.
for (unsigned int I = 0; I < NumLocs; ++I) {
ValueIDNum MPHI(MBB.getNumber(), 0, LocIdx(I));
if (MOutLocs[ThisBBNum][I] == MPHI)
Locs.back().push_back(LocIdx(I));
}
}
}
// We should have found locations for all predecessors, or returned.
assert(Locs.size() == BlockOrders.size());
// Check that all properties are the same. We can't pick a location if they're
// not.
const DbgValueProperties *Properties0 = Properties[0];
for (auto *Prop : Properties)
if (*Prop != *Properties0)
return None;
// Starting with the first set of locations, take the intersection with
// subsequent sets.
SmallVector<LocIdx, 4> CandidateLocs = Locs[0];
for (unsigned int I = 1; I < Locs.size(); ++I) {
auto &LocVec = Locs[I];
SmallVector<LocIdx, 4> NewCandidates;
std::set_intersection(CandidateLocs.begin(), CandidateLocs.end(),
LocVec.begin(), LocVec.end(), std::inserter(NewCandidates, NewCandidates.begin()));
CandidateLocs = NewCandidates;
}
if (CandidateLocs.empty())
return None;
// We now have a set of LocIdxes that contain the right output value in
// each of the predecessors. Pick the lowest; if there's a register loc,
// that'll be it.
LocIdx L = *CandidateLocs.begin();
// Return a PHI-value-number for the found location.
ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
return PHIVal;
}
bool InstrRefBasedLDV::vlocJoin(
MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs,
SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
DbgValue &LiveIn) {
LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
bool Changed = false;
// Order predecessors by RPOT order, for exploring them in that order.
SmallVector<MachineBasicBlock *, 8> BlockOrders(MBB.predecessors());
auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
return BBToOrder[A] < BBToOrder[B];
};
llvm::sort(BlockOrders, Cmp);
unsigned CurBlockRPONum = BBToOrder[&MBB];
// Collect all the incoming DbgValues for this variable, from predecessor
// live-out values.
SmallVector<InValueT, 8> Values;
bool Bail = false;
int BackEdgesStart = 0;
for (auto p : BlockOrders) {
// If the predecessor isn't in scope / to be explored, we'll never be
// able to join any locations.
if (!BlocksToExplore.contains(p)) {
Bail = true;
break;
}
// All Live-outs will have been initialized.
DbgValue &OutLoc = *VLOCOutLocs.find(p)->second;
// Keep track of where back-edges begin in the Values vector. Relies on
// BlockOrders being sorted by RPO.
unsigned ThisBBRPONum = BBToOrder[p];
if (ThisBBRPONum < CurBlockRPONum)
++BackEdgesStart;
Values.push_back(std::make_pair(p, &OutLoc));
}
// If there were no values, or one of the predecessors couldn't have a
// value, then give up immediately. It's not safe to produce a live-in
// value. Leave as whatever it was before.
if (Bail || Values.size() == 0)
return false;
// All (non-entry) blocks have at least one non-backedge predecessor.
// Pick the variable value from the first of these, to compare against
// all others.
const DbgValue &FirstVal = *Values[0].second;
// If the old live-in value is not a PHI then either a) no PHI is needed
// here, or b) we eliminated the PHI that was here. If so, we can just
// propagate in the first parent's incoming value.
if (LiveIn.Kind != DbgValue::VPHI || LiveIn.BlockNo != MBB.getNumber()) {
Changed = LiveIn != FirstVal;
if (Changed)
LiveIn = FirstVal;
return Changed;
}
// Scan for variable values that can never be resolved: if they have
// different DIExpressions, different indirectness, or are mixed constants /
// non-constants.
for (auto &V : Values) {
if (V.second->Properties != FirstVal.Properties)
return false;
if (V.second->Kind == DbgValue::NoVal)
return false;
if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
return false;
}
// Try to eliminate this PHI. Do the incoming values all agree?
bool Disagree = false;
for (auto &V : Values) {
if (*V.second == FirstVal)
continue; // No disagreement.
// Eliminate if a backedge feeds a VPHI back into itself.
if (V.second->Kind == DbgValue::VPHI &&
V.second->BlockNo == MBB.getNumber() &&
// Is this a backedge?
std::distance(Values.begin(), &V) >= BackEdgesStart)
continue;
Disagree = true;
}
// No disagreement -> live-through value.
if (!Disagree) {
Changed = LiveIn != FirstVal;
if (Changed)
LiveIn = FirstVal;
return Changed;
} else {
// Otherwise use a VPHI.
DbgValue VPHI(MBB.getNumber(), FirstVal.Properties, DbgValue::VPHI);
Changed = LiveIn != VPHI;
if (Changed)
LiveIn = VPHI;
return Changed;
}
}
void InstrRefBasedLDV::buildVLocValueMap(const DILocation *DILoc,
const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
SmallVectorImpl<VLocTracker> &AllTheVLocs) {
// This method is much like buildMLocValueMap: but focuses on a single
// LexicalScope at a time. Pick out a set of blocks and variables that are
// to have their value assignments solved, then run our dataflow algorithm
// until a fixedpoint is reached.
std::priority_queue<unsigned int, std::vector<unsigned int>,
std::greater<unsigned int>>
Worklist, Pending;
SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
// The set of blocks we'll be examining.
SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
// The order in which to examine them (RPO).
SmallVector<MachineBasicBlock *, 8> BlockOrders;
// RPO ordering function.
auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
return BBToOrder[A] < BBToOrder[B];
};
LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
// A separate container to distinguish "blocks we're exploring" versus
// "blocks that are potentially in scope. See comment at start of vlocJoin.
SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
// VarLoc LiveDebugValues tracks variable locations that are defined in
// blocks not in scope. This is something we could legitimately ignore, but
// lets allow it for now for the sake of coverage.
BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
// We also need to propagate variable values through any artificial blocks
// that immediately follow blocks in scope.
DenseSet<const MachineBasicBlock *> ToAdd;
// Helper lambda: For a given block in scope, perform a depth first search
// of all the artificial successors, adding them to the ToAdd collection.
auto AccumulateArtificialBlocks =
[this, &ToAdd, &BlocksToExplore,
&InScopeBlocks](const MachineBasicBlock *MBB) {
// Depth-first-search state: each node is a block and which successor
// we're currently exploring.
SmallVector<std::pair<const MachineBasicBlock *,
MachineBasicBlock::const_succ_iterator>,
8>
DFS;
// Find any artificial successors not already tracked.
for (auto *succ : MBB->successors()) {
if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
continue;
if (!ArtificialBlocks.count(succ))
continue;
ToAdd.insert(succ);
DFS.push_back(std::make_pair(succ, succ->succ_begin()));
}
// Search all those blocks, depth first.
while (!DFS.empty()) {
const MachineBasicBlock *CurBB = DFS.back().first;
MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
// Walk back if we've explored this blocks successors to the end.
if (CurSucc == CurBB->succ_end()) {
DFS.pop_back();
continue;
}
// If the current successor is artificial and unexplored, descend into
// it.
if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
ToAdd.insert(*CurSucc);
DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
continue;
}
++CurSucc;
}
};
// Search in-scope blocks and those containing a DBG_VALUE from this scope
// for artificial successors.
for (auto *MBB : BlocksToExplore)
AccumulateArtificialBlocks(MBB);
for (auto *MBB : InScopeBlocks)
AccumulateArtificialBlocks(MBB);
BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
// Single block scope: not interesting! No propagation at all. Note that
// this could probably go above ArtificialBlocks without damage, but
// that then produces output differences from original-live-debug-values,
// which propagates from a single block into many artificial ones.
if (BlocksToExplore.size() == 1)
return;
// Convert a const set to a non-const set. LexicalScopes
// getMachineBasicBlocks returns const MBB pointers, IDF wants mutable ones.
// (Neither of them mutate anything).
SmallPtrSet<MachineBasicBlock *, 8> MutBlocksToExplore;
for (const auto *MBB : BlocksToExplore)
MutBlocksToExplore.insert(const_cast<MachineBasicBlock *>(MBB));
// Picks out relevants blocks RPO order and sort them.
for (auto *MBB : BlocksToExplore)
BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
llvm::sort(BlockOrders, Cmp);
unsigned NumBlocks = BlockOrders.size();
// Allocate some vectors for storing the live ins and live outs. Large.
SmallVector<DbgValue, 32> LiveIns, LiveOuts;
LiveIns.reserve(NumBlocks);
LiveOuts.reserve(NumBlocks);
// Initialize all values to start as NoVals. This signifies "it's live
// through, but we don't know what it is".
DbgValueProperties EmptyProperties(EmptyExpr, false);
for (unsigned int I = 0; I < NumBlocks; ++I) {
DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
LiveIns.push_back(EmptyDbgValue);
LiveOuts.push_back(EmptyDbgValue);
}
// Produce by-MBB indexes of live-in/live-outs, to ease lookup within
// vlocJoin.
LiveIdxT LiveOutIdx, LiveInIdx;
LiveOutIdx.reserve(NumBlocks);
LiveInIdx.reserve(NumBlocks);
for (unsigned I = 0; I < NumBlocks; ++I) {
LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
LiveInIdx[BlockOrders[I]] = &LiveIns[I];
}
// Loop over each variable and place PHIs for it, then propagate values
// between blocks. This keeps the locality of working on one lexical scope at
// at time, but avoids re-processing variable values because some other
// variable has been assigned.
for (auto &Var : VarsWeCareAbout) {
// Re-initialize live-ins and live-outs, to clear the remains of previous
// variables live-ins / live-outs.
for (unsigned int I = 0; I < NumBlocks; ++I) {
DbgValue EmptyDbgValue(I, EmptyProperties, DbgValue::NoVal);
LiveIns[I] = EmptyDbgValue;
LiveOuts[I] = EmptyDbgValue;
}
// Place PHIs for variable values, using the LLVM IDF calculator.
// Collect the set of blocks where variables are def'd.
SmallPtrSet<MachineBasicBlock *, 32> DefBlocks;
for (const MachineBasicBlock *ExpMBB : BlocksToExplore) {
auto &TransferFunc = AllTheVLocs[ExpMBB->getNumber()].Vars;
if (TransferFunc.find(Var) != TransferFunc.end())
DefBlocks.insert(const_cast<MachineBasicBlock *>(ExpMBB));
}
SmallVector<MachineBasicBlock *, 32> PHIBlocks;
// Request the set of PHIs we should insert for this variable.
BlockPHIPlacement(MutBlocksToExplore, DefBlocks, PHIBlocks);
// Insert PHIs into the per-block live-in tables for this variable.
for (MachineBasicBlock *PHIMBB : PHIBlocks) {
unsigned BlockNo = PHIMBB->getNumber();
DbgValue *LiveIn = LiveInIdx[PHIMBB];
*LiveIn = DbgValue(BlockNo, EmptyProperties, DbgValue::VPHI);
}
for (auto *MBB : BlockOrders) {
Worklist.push(BBToOrder[MBB]);
OnWorklist.insert(MBB);
}
// Iterate over all the blocks we selected, propagating the variables value.
// This loop does two things:
// * Eliminates un-necessary VPHIs in vlocJoin,
// * Evaluates the blocks transfer function (i.e. variable assignments) and
// stores the result to the blocks live-outs.
// Always evaluate the transfer function on the first iteration, and when
// the live-ins change thereafter.
bool FirstTrip = true;
while (!Worklist.empty() || !Pending.empty()) {
while (!Worklist.empty()) {
auto *MBB = OrderToBB[Worklist.top()];
CurBB = MBB->getNumber();
Worklist.pop();
auto LiveInsIt = LiveInIdx.find(MBB);
assert(LiveInsIt != LiveInIdx.end());
DbgValue *LiveIn = LiveInsIt->second;
// Join values from predecessors. Updates LiveInIdx, and writes output
// into JoinedInLocs.
bool InLocsChanged =
vlocJoin(*MBB, LiveOutIdx, BlocksToExplore, *LiveIn);
SmallVector<const MachineBasicBlock *, 8> Preds;
for (const auto *Pred : MBB->predecessors())
Preds.push_back(Pred);
// If this block's live-in value is a VPHI, try to pick a machine-value
// for it. This makes the machine-value available and propagated
// through all blocks by the time value propagation finishes. We can't
// do this any earlier as it needs to read the block live-outs.
if (LiveIn->Kind == DbgValue::VPHI && LiveIn->BlockNo == (int)CurBB) {
// There's a small possibility that on a preceeding path, a VPHI is
// eliminated and transitions from VPHI-with-location to
// live-through-value. As a result, the selected location of any VPHI
// might change, so we need to re-compute it on each iteration.
Optional<ValueIDNum> ValueNum =
pickVPHILoc(*MBB, Var, LiveOutIdx, MOutLocs, Preds);
if (ValueNum) {
InLocsChanged |= LiveIn->ID != *ValueNum;
LiveIn->ID = *ValueNum;
}
}
if (!InLocsChanged && !FirstTrip)
continue;
DbgValue *LiveOut = LiveOutIdx[MBB];
bool OLChanged = false;
// Do transfer function.
auto &VTracker = AllTheVLocs[MBB->getNumber()];
auto TransferIt = VTracker.Vars.find(Var);
if (TransferIt != VTracker.Vars.end()) {
// Erase on empty transfer (DBG_VALUE $noreg).
if (TransferIt->second.Kind == DbgValue::Undef) {
DbgValue NewVal(MBB->getNumber(), EmptyProperties, DbgValue::NoVal);
if (*LiveOut != NewVal) {
*LiveOut = NewVal;
OLChanged = true;
}
} else {
// Insert new variable value; or overwrite.
if (*LiveOut != TransferIt->second) {
*LiveOut = TransferIt->second;
OLChanged = true;
}
}
} else {
// Just copy live-ins to live-outs, for anything not transferred.
if (*LiveOut != *LiveIn) {
*LiveOut = *LiveIn;
OLChanged = true;
}
}
// If no live-out value changed, there's no need to explore further.
if (!OLChanged)
continue;
// We should visit all successors. Ensure we'll visit any non-backedge
// successors during this dataflow iteration; book backedge successors
// to be visited next time around.
for (auto s : MBB->successors()) {
// Ignore out of scope / not-to-be-explored successors.
if (LiveInIdx.find(s) == LiveInIdx.end())
continue;
if (BBToOrder[s] > BBToOrder[MBB]) {
if (OnWorklist.insert(s).second)
Worklist.push(BBToOrder[s]);
} else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
Pending.push(BBToOrder[s]);
}
}
}
Worklist.swap(Pending);
std::swap(OnWorklist, OnPending);
OnPending.clear();
assert(Pending.empty());
FirstTrip = false;
}
// Save live-ins to output vector. Ignore any that are still marked as being
// VPHIs with no location -- those are variables that we know the value of,
// but are not actually available in the register file.
for (auto *MBB : BlockOrders) {
DbgValue *BlockLiveIn = LiveInIdx[MBB];
if (BlockLiveIn->Kind == DbgValue::NoVal)
continue;
if (BlockLiveIn->Kind == DbgValue::VPHI &&
BlockLiveIn->ID == ValueIDNum::EmptyValue)
continue;
if (BlockLiveIn->Kind == DbgValue::VPHI)
BlockLiveIn->Kind = DbgValue::Def;
assert(BlockLiveIn->Properties.DIExpr->getFragmentInfo() ==
Var.getFragment() && "Fragment info missing during value prop");
Output[MBB->getNumber()].push_back(std::make_pair(Var, *BlockLiveIn));
}
} // Per-variable loop.
BlockOrders.clear();
BlocksToExplore.clear();
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void InstrRefBasedLDV::dump_mloc_transfer(
const MLocTransferMap &mloc_transfer) const {
for (auto &P : mloc_transfer) {
std::string foo = MTracker->LocIdxToName(P.first);
std::string bar = MTracker->IDAsString(P.second);
dbgs() << "Loc " << foo << " --> " << bar << "\n";
}
}
#endif
void InstrRefBasedLDV::emitLocations(
MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MOutLocs,
ValueIDNum **MInLocs, DenseMap<DebugVariable, unsigned> &AllVarsNumbering,
const TargetPassConfig &TPC) {
TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs, TPC);
unsigned NumLocs = MTracker->getNumLocs();
// For each block, load in the machine value locations and variable value
// live-ins, then step through each instruction in the block. New DBG_VALUEs
// to be inserted will be created along the way.
for (MachineBasicBlock &MBB : MF) {
unsigned bbnum = MBB.getNumber();
MTracker->reset();
MTracker->loadFromArray(MInLocs[bbnum], bbnum);
TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
NumLocs);
CurBB = bbnum;
CurInst = 1;
for (auto &MI : MBB) {
process(MI, MOutLocs, MInLocs);
TTracker->checkInstForNewValues(CurInst, MI.getIterator());
++CurInst;
}
}
// We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
// in DWARF in different orders. Use the order that they appear when walking
// through each block / each instruction, stored in AllVarsNumbering.
auto OrderDbgValues = [&](const MachineInstr *A,
const MachineInstr *B) -> bool {
DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
A->getDebugLoc()->getInlinedAt());
DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
B->getDebugLoc()->getInlinedAt());
return AllVarsNumbering.find(VarA)->second <
AllVarsNumbering.find(VarB)->second;
};
// Go through all the transfers recorded in the TransferTracker -- this is
// both the live-ins to a block, and any movements of values that happen
// in the middle.
for (auto &P : TTracker->Transfers) {
// Sort them according to appearance order.
llvm::sort(P.Insts, OrderDbgValues);
// Insert either before or after the designated point...
if (P.MBB) {
MachineBasicBlock &MBB = *P.MBB;
for (auto *MI : P.Insts) {
MBB.insert(P.Pos, MI);
}
} else {
// Terminators, like tail calls, can clobber things. Don't try and place
// transfers after them.
if (P.Pos->isTerminator())
continue;
MachineBasicBlock &MBB = *P.Pos->getParent();
for (auto *MI : P.Insts) {
MBB.insertAfterBundle(P.Pos, MI);
}
}
}
}
void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
// Build some useful data structures.
LLVMContext &Context = MF.getFunction().getContext();
EmptyExpr = DIExpression::get(Context, {});
auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
if (const DebugLoc &DL = MI.getDebugLoc())
return DL.getLine() != 0;
return false;
};
// Collect a set of all the artificial blocks.
for (auto &MBB : MF)
if (none_of(MBB.instrs(), hasNonArtificialLocation))
ArtificialBlocks.insert(&MBB);
// Compute mappings of block <=> RPO order.
ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
unsigned int RPONumber = 0;
for (MachineBasicBlock *MBB : RPOT) {
OrderToBB[RPONumber] = MBB;
BBToOrder[MBB] = RPONumber;
BBNumToRPO[MBB->getNumber()] = RPONumber;
++RPONumber;
}
// Order value substitutions by their "source" operand pair, for quick lookup.
llvm::sort(MF.DebugValueSubstitutions);
#ifdef EXPENSIVE_CHECKS
// As an expensive check, test whether there are any duplicate substitution
// sources in the collection.
if (MF.DebugValueSubstitutions.size() > 2) {
for (auto It = MF.DebugValueSubstitutions.begin();
It != std::prev(MF.DebugValueSubstitutions.end()); ++It) {
assert(It->Src != std::next(It)->Src && "Duplicate variable location "
"substitution seen");
}
}
#endif
}
/// Calculate the liveness information for the given machine function and
/// extend ranges across basic blocks.
bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
MachineDominatorTree *DomTree,
TargetPassConfig *TPC,
unsigned InputBBLimit,
unsigned InputDbgValLimit) {
// No subprogram means this function contains no debuginfo.
if (!MF.getFunction().getSubprogram())
return false;
LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
this->TPC = TPC;
this->DomTree = DomTree;
TRI = MF.getSubtarget().getRegisterInfo();
MRI = &MF.getRegInfo();
TII = MF.getSubtarget().getInstrInfo();
TFI = MF.getSubtarget().getFrameLowering();
TFI->getCalleeSaves(MF, CalleeSavedRegs);
MFI = &MF.getFrameInfo();
LS.initialize(MF);
const auto &STI = MF.getSubtarget();
AdjustsStackInCalls = MFI->adjustsStack() &&
STI.getFrameLowering()->stackProbeFunctionModifiesSP();
if (AdjustsStackInCalls)
StackProbeSymbolName = STI.getTargetLowering()->getStackProbeSymbolName(MF);
MTracker =
new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
VTracker = nullptr;
TTracker = nullptr;
SmallVector<MLocTransferMap, 32> MLocTransfer;
SmallVector<VLocTracker, 8> vlocs;
LiveInsT SavedLiveIns;
int MaxNumBlocks = -1;
for (auto &MBB : MF)
MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
assert(MaxNumBlocks >= 0);
++MaxNumBlocks;
MLocTransfer.resize(MaxNumBlocks);
vlocs.resize(MaxNumBlocks, VLocTracker(OverlapFragments, EmptyExpr));
SavedLiveIns.resize(MaxNumBlocks);
initialSetup(MF);
produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
// Allocate and initialize two array-of-arrays for the live-in and live-out
// machine values. The outer dimension is the block number; while the inner
// dimension is a LocIdx from MLocTracker.
ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
unsigned NumLocs = MTracker->getNumLocs();
for (int i = 0; i < MaxNumBlocks; ++i) {
// These all auto-initialize to ValueIDNum::EmptyValue
MOutLocs[i] = new ValueIDNum[NumLocs];
MInLocs[i] = new ValueIDNum[NumLocs];
}
// Solve the machine value dataflow problem using the MLocTransfer function,
// storing the computed live-ins / live-outs into the array-of-arrays. We use
// both live-ins and live-outs for decision making in the variable value
// dataflow problem.
buildMLocValueMap(MF, MInLocs, MOutLocs, MLocTransfer);
// Patch up debug phi numbers, turning unknown block-live-in values into
// either live-through machine values, or PHIs.
for (auto &DBG_PHI : DebugPHINumToValue) {
// Identify unresolved block-live-ins.
ValueIDNum &Num = DBG_PHI.ValueRead;
if (!Num.isPHI())
continue;
unsigned BlockNo = Num.getBlock();
LocIdx LocNo = Num.getLoc();
Num = MInLocs[BlockNo][LocNo.asU64()];
}
// Later, we'll be looking up ranges of instruction numbers.
llvm::sort(DebugPHINumToValue);
// Walk back through each block / instruction, collecting DBG_VALUE
// instructions and recording what machine value their operands refer to.
for (auto &OrderPair : OrderToBB) {
MachineBasicBlock &MBB = *OrderPair.second;
CurBB = MBB.getNumber();
VTracker = &vlocs[CurBB];
VTracker->MBB = &MBB;
MTracker->loadFromArray(MInLocs[CurBB], CurBB);
CurInst = 1;
for (auto &MI : MBB) {
process(MI, MOutLocs, MInLocs);
++CurInst;
}
MTracker->reset();
}
// Number all variables in the order that they appear, to be used as a stable
// insertion order later.
DenseMap<DebugVariable, unsigned> AllVarsNumbering;
// Map from one LexicalScope to all the variables in that scope.
DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
// Map from One lexical scope to all blocks in that scope.
DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
ScopeToBlocks;
// Store a DILocation that describes a scope.
DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
// To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
// the order is unimportant, it just has to be stable.
unsigned VarAssignCount = 0;
for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
auto *MBB = OrderToBB[I];
auto *VTracker = &vlocs[MBB->getNumber()];
// Collect each variable with a DBG_VALUE in this block.
for (auto &idx : VTracker->Vars) {
const auto &Var = idx.first;
const DILocation *ScopeLoc = VTracker->Scopes[Var];
assert(ScopeLoc != nullptr);
auto *Scope = LS.findLexicalScope(ScopeLoc);
// No insts in scope -> shouldn't have been recorded.
assert(Scope != nullptr);
AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
ScopeToVars[Scope].insert(Var);
ScopeToBlocks[Scope].insert(VTracker->MBB);
ScopeToDILocation[Scope] = ScopeLoc;
++VarAssignCount;
}
}
bool Changed = false;
// If we have an extremely large number of variable assignments and blocks,
// bail out at this point. We've burnt some time doing analysis already,
// however we should cut our losses.
if ((unsigned)MaxNumBlocks > InputBBLimit &&
VarAssignCount > InputDbgValLimit) {
LLVM_DEBUG(dbgs() << "Disabling InstrRefBasedLDV: " << MF.getName()
<< " has " << MaxNumBlocks << " basic blocks and "
<< VarAssignCount
<< " variable assignments, exceeding limits.\n");
} else {
// Compute the extended ranges, iterating over scopes. There might be
// something to be said for ordering them by size/locality, but that's for
// the future. For each scope, solve the variable value problem, producing
// a map of variables to values in SavedLiveIns.
for (auto &P : ScopeToVars) {
buildVLocValueMap(ScopeToDILocation[P.first], P.second,
ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
vlocs);
}
// Using the computed value locations and variable values for each block,
// create the DBG_VALUE instructions representing the extended variable
// locations.
emitLocations(MF, SavedLiveIns, MOutLocs, MInLocs, AllVarsNumbering, *TPC);
// Did we actually make any changes? If we created any DBG_VALUEs, then yes.
Changed = TTracker->Transfers.size() != 0;
}
// Common clean-up of memory.
for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
delete[] MOutLocs[Idx];
delete[] MInLocs[Idx];
}
delete[] MOutLocs;
delete[] MInLocs;
delete MTracker;
delete TTracker;
MTracker = nullptr;
VTracker = nullptr;
TTracker = nullptr;
ArtificialBlocks.clear();
OrderToBB.clear();
BBToOrder.clear();
BBNumToRPO.clear();
DebugInstrNumToInstr.clear();
DebugPHINumToValue.clear();
OverlapFragments.clear();
SeenFragments.clear();
return Changed;
}
LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
return new InstrRefBasedLDV();
}
namespace {
class LDVSSABlock;
class LDVSSAUpdater;
// Pick a type to identify incoming block values as we construct SSA. We
// can't use anything more robust than an integer unfortunately, as SSAUpdater
// expects to zero-initialize the type.
typedef uint64_t BlockValueNum;
/// Represents an SSA PHI node for the SSA updater class. Contains the block
/// this PHI is in, the value number it would have, and the expected incoming
/// values from parent blocks.
class LDVSSAPhi {
public:
SmallVector<std::pair<LDVSSABlock *, BlockValueNum>, 4> IncomingValues;
LDVSSABlock *ParentBlock;
BlockValueNum PHIValNum;
LDVSSAPhi(BlockValueNum PHIValNum, LDVSSABlock *ParentBlock)
: ParentBlock(ParentBlock), PHIValNum(PHIValNum) {}
LDVSSABlock *getParent() { return ParentBlock; }
};
/// Thin wrapper around a block predecessor iterator. Only difference from a
/// normal block iterator is that it dereferences to an LDVSSABlock.
class LDVSSABlockIterator {
public:
MachineBasicBlock::pred_iterator PredIt;
LDVSSAUpdater &Updater;
LDVSSABlockIterator(MachineBasicBlock::pred_iterator PredIt,
LDVSSAUpdater &Updater)
: PredIt(PredIt), Updater(Updater) {}
bool operator!=(const LDVSSABlockIterator &OtherIt) const {
return OtherIt.PredIt != PredIt;
}
LDVSSABlockIterator &operator++() {
++PredIt;
return *this;
}
LDVSSABlock *operator*();
};
/// Thin wrapper around a block for SSA Updater interface. Necessary because
/// we need to track the PHI value(s) that we may have observed as necessary
/// in this block.
class LDVSSABlock {
public:
MachineBasicBlock &BB;
LDVSSAUpdater &Updater;
using PHIListT = SmallVector<LDVSSAPhi, 1>;
/// List of PHIs in this block. There should only ever be one.
PHIListT PHIList;
LDVSSABlock(MachineBasicBlock &BB, LDVSSAUpdater &Updater)
: BB(BB), Updater(Updater) {}
LDVSSABlockIterator succ_begin() {
return LDVSSABlockIterator(BB.succ_begin(), Updater);
}
LDVSSABlockIterator succ_end() {
return LDVSSABlockIterator(BB.succ_end(), Updater);
}
/// SSAUpdater has requested a PHI: create that within this block record.
LDVSSAPhi *newPHI(BlockValueNum Value) {
PHIList.emplace_back(Value, this);
return &PHIList.back();
}
/// SSAUpdater wishes to know what PHIs already exist in this block.
PHIListT &phis() { return PHIList; }
};
/// Utility class for the SSAUpdater interface: tracks blocks, PHIs and values
/// while SSAUpdater is exploring the CFG. It's passed as a handle / baton to
// SSAUpdaterTraits<LDVSSAUpdater>.
class LDVSSAUpdater {
public:
/// Map of value numbers to PHI records.
DenseMap<BlockValueNum, LDVSSAPhi *> PHIs;
/// Map of which blocks generate Undef values -- blocks that are not
/// dominated by any Def.
DenseMap<MachineBasicBlock *, BlockValueNum> UndefMap;
/// Map of machine blocks to our own records of them.
DenseMap<MachineBasicBlock *, LDVSSABlock *> BlockMap;
/// Machine location where any PHI must occur.
LocIdx Loc;
/// Table of live-in machine value numbers for blocks / locations.
ValueIDNum **MLiveIns;
LDVSSAUpdater(LocIdx L, ValueIDNum **MLiveIns) : Loc(L), MLiveIns(MLiveIns) {}
void reset() {
for (auto &Block : BlockMap)
delete Block.second;
PHIs.clear();
UndefMap.clear();
BlockMap.clear();
}
~LDVSSAUpdater() { reset(); }
/// For a given MBB, create a wrapper block for it. Stores it in the
/// LDVSSAUpdater block map.
LDVSSABlock *getSSALDVBlock(MachineBasicBlock *BB) {
auto it = BlockMap.find(BB);
if (it == BlockMap.end()) {
BlockMap[BB] = new LDVSSABlock(*BB, *this);
it = BlockMap.find(BB);
}
return it->second;
}
/// Find the live-in value number for the given block. Looks up the value at
/// the PHI location on entry.
BlockValueNum getValue(LDVSSABlock *LDVBB) {
return MLiveIns[LDVBB->BB.getNumber()][Loc.asU64()].asU64();
}
};
LDVSSABlock *LDVSSABlockIterator::operator*() {
return Updater.getSSALDVBlock(*PredIt);
}
#ifndef NDEBUG
raw_ostream &operator<<(raw_ostream &out, const LDVSSAPhi &PHI) {
out << "SSALDVPHI " << PHI.PHIValNum;
return out;
}
#endif
} // namespace
namespace llvm {
/// Template specialization to give SSAUpdater access to CFG and value
/// information. SSAUpdater calls methods in these traits, passing in the
/// LDVSSAUpdater object, to learn about blocks and the values they define.
/// It also provides methods to create PHI nodes and track them.
template <> class SSAUpdaterTraits<LDVSSAUpdater> {
public:
using BlkT = LDVSSABlock;
using ValT = BlockValueNum;
using PhiT = LDVSSAPhi;
using BlkSucc_iterator = LDVSSABlockIterator;
// Methods to access block successors -- dereferencing to our wrapper class.
static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return BB->succ_begin(); }
static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return BB->succ_end(); }
/// Iterator for PHI operands.
class PHI_iterator {
private:
LDVSSAPhi *PHI;
unsigned Idx;
public:
explicit PHI_iterator(LDVSSAPhi *P) // begin iterator
: PHI(P), Idx(0) {}
PHI_iterator(LDVSSAPhi *P, bool) // end iterator
: PHI(P), Idx(PHI->IncomingValues.size()) {}
PHI_iterator &operator++() {
Idx++;
return *this;
}
bool operator==(const PHI_iterator &X) const { return Idx == X.Idx; }
bool operator!=(const PHI_iterator &X) const { return !operator==(X); }
BlockValueNum getIncomingValue() { return PHI->IncomingValues[Idx].second; }
LDVSSABlock *getIncomingBlock() { return PHI->IncomingValues[Idx].first; }
};
static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
static inline PHI_iterator PHI_end(PhiT *PHI) {
return PHI_iterator(PHI, true);
}
/// FindPredecessorBlocks - Put the predecessors of BB into the Preds
/// vector.
static void FindPredecessorBlocks(LDVSSABlock *BB,
SmallVectorImpl<LDVSSABlock *> *Preds) {
for (MachineBasicBlock *Pred : BB->BB.predecessors())
Preds->push_back(BB->Updater.getSSALDVBlock(Pred));
}
/// GetUndefVal - Normally creates an IMPLICIT_DEF instruction with a new
/// register. For LiveDebugValues, represents a block identified as not having
/// any DBG_PHI predecessors.
static BlockValueNum GetUndefVal(LDVSSABlock *BB, LDVSSAUpdater *Updater) {
// Create a value number for this block -- it needs to be unique and in the
// "undef" collection, so that we know it's not real. Use a number
// representing a PHI into this block.
BlockValueNum Num = ValueIDNum(BB->BB.getNumber(), 0, Updater->Loc).asU64();
Updater->UndefMap[&BB->BB] = Num;
return Num;
}
/// CreateEmptyPHI - Create a (representation of a) PHI in the given block.
/// SSAUpdater will populate it with information about incoming values. The
/// value number of this PHI is whatever the machine value number problem
/// solution determined it to be. This includes non-phi values if SSAUpdater
/// tries to create a PHI where the incoming values are identical.
static BlockValueNum CreateEmptyPHI(LDVSSABlock *BB, unsigned NumPreds,
LDVSSAUpdater *Updater) {
BlockValueNum PHIValNum = Updater->getValue(BB);
LDVSSAPhi *PHI = BB->newPHI(PHIValNum);
Updater->PHIs[PHIValNum] = PHI;
return PHIValNum;
}
/// AddPHIOperand - Add the specified value as an operand of the PHI for
/// the specified predecessor block.
static void AddPHIOperand(LDVSSAPhi *PHI, BlockValueNum Val, LDVSSABlock *Pred) {
PHI->IncomingValues.push_back(std::make_pair(Pred, Val));
}
/// ValueIsPHI - Check if the instruction that defines the specified value
/// is a PHI instruction.
static LDVSSAPhi *ValueIsPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
auto PHIIt = Updater->PHIs.find(Val);
if (PHIIt == Updater->PHIs.end())
return nullptr;
return PHIIt->second;
}
/// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
/// operands, i.e., it was just added.
static LDVSSAPhi *ValueIsNewPHI(BlockValueNum Val, LDVSSAUpdater *Updater) {
LDVSSAPhi *PHI = ValueIsPHI(Val, Updater);
if (PHI && PHI->IncomingValues.size() == 0)
return PHI;
return nullptr;
}
/// GetPHIValue - For the specified PHI instruction, return the value
/// that it defines.
static BlockValueNum GetPHIValue(LDVSSAPhi *PHI) { return PHI->PHIValNum; }
};
} // end namespace llvm
Optional<ValueIDNum> InstrRefBasedLDV::resolveDbgPHIs(MachineFunction &MF,
ValueIDNum **MLiveOuts,
ValueIDNum **MLiveIns,
MachineInstr &Here,
uint64_t InstrNum) {
// Pick out records of DBG_PHI instructions that have been observed. If there
// are none, then we cannot compute a value number.
auto RangePair = std::equal_range(DebugPHINumToValue.begin(),
DebugPHINumToValue.end(), InstrNum);
auto LowerIt = RangePair.first;
auto UpperIt = RangePair.second;
// No DBG_PHI means there can be no location.
if (LowerIt == UpperIt)
return None;
// If there's only one DBG_PHI, then that is our value number.
if (std::distance(LowerIt, UpperIt) == 1)
return LowerIt->ValueRead;
auto DBGPHIRange = make_range(LowerIt, UpperIt);
// Pick out the location (physreg, slot) where any PHIs must occur. It's
// technically possible for us to merge values in different registers in each
// block, but highly unlikely that LLVM will generate such code after register
// allocation.
LocIdx Loc = LowerIt->ReadLoc;
// We have several DBG_PHIs, and a use position (the Here inst). All each
// DBG_PHI does is identify a value at a program position. We can treat each
// DBG_PHI like it's a Def of a value, and the use position is a Use of a
// value, just like SSA. We use the bulk-standard LLVM SSA updater class to
// determine which Def is used at the Use, and any PHIs that happen along
// the way.
// Adapted LLVM SSA Updater:
LDVSSAUpdater Updater(Loc, MLiveIns);
// Map of which Def or PHI is the current value in each block.
DenseMap<LDVSSABlock *, BlockValueNum> AvailableValues;
// Set of PHIs that we have created along the way.
SmallVector<LDVSSAPhi *, 8> CreatedPHIs;
// Each existing DBG_PHI is a Def'd value under this model. Record these Defs
// for the SSAUpdater.
for (const auto &DBG_PHI : DBGPHIRange) {
LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
const ValueIDNum &Num = DBG_PHI.ValueRead;
AvailableValues.insert(std::make_pair(Block, Num.asU64()));
}
LDVSSABlock *HereBlock = Updater.getSSALDVBlock(Here.getParent());
const auto &AvailIt = AvailableValues.find(HereBlock);
if (AvailIt != AvailableValues.end()) {
// Actually, we already know what the value is -- the Use is in the same
// block as the Def.
return ValueIDNum::fromU64(AvailIt->second);
}
// Otherwise, we must use the SSA Updater. It will identify the value number
// that we are to use, and the PHIs that must happen along the way.
SSAUpdaterImpl<LDVSSAUpdater> Impl(&Updater, &AvailableValues, &CreatedPHIs);
BlockValueNum ResultInt = Impl.GetValue(Updater.getSSALDVBlock(Here.getParent()));
ValueIDNum Result = ValueIDNum::fromU64(ResultInt);
// We have the number for a PHI, or possibly live-through value, to be used
// at this Use. There are a number of things we have to check about it though:
// * Does any PHI use an 'Undef' (like an IMPLICIT_DEF) value? If so, this
// Use was not completely dominated by DBG_PHIs and we should abort.
// * Are the Defs or PHIs clobbered in a block? SSAUpdater isn't aware that
// we've left SSA form. Validate that the inputs to each PHI are the
// expected values.
// * Is a PHI we've created actually a merging of values, or are all the
// predecessor values the same, leading to a non-PHI machine value number?
// (SSAUpdater doesn't know that either). Remap validated PHIs into the
// the ValidatedValues collection below to sort this out.
DenseMap<LDVSSABlock *, ValueIDNum> ValidatedValues;
// Define all the input DBG_PHI values in ValidatedValues.
for (const auto &DBG_PHI : DBGPHIRange) {
LDVSSABlock *Block = Updater.getSSALDVBlock(DBG_PHI.MBB);
const ValueIDNum &Num = DBG_PHI.ValueRead;
ValidatedValues.insert(std::make_pair(Block, Num));
}
// Sort PHIs to validate into RPO-order.
SmallVector<LDVSSAPhi *, 8> SortedPHIs;
for (auto &PHI : CreatedPHIs)
SortedPHIs.push_back(PHI);
std::sort(
SortedPHIs.begin(), SortedPHIs.end(), [&](LDVSSAPhi *A, LDVSSAPhi *B) {
return BBToOrder[&A->getParent()->BB] < BBToOrder[&B->getParent()->BB];
});
for (auto &PHI : SortedPHIs) {
ValueIDNum ThisBlockValueNum =
MLiveIns[PHI->ParentBlock->BB.getNumber()][Loc.asU64()];
// Are all these things actually defined?
for (auto &PHIIt : PHI->IncomingValues) {
// Any undef input means DBG_PHIs didn't dominate the use point.
if (Updater.UndefMap.find(&PHIIt.first->BB) != Updater.UndefMap.end())
return None;
ValueIDNum ValueToCheck;
ValueIDNum *BlockLiveOuts = MLiveOuts[PHIIt.first->BB.getNumber()];
auto VVal = ValidatedValues.find(PHIIt.first);
if (VVal == ValidatedValues.end()) {
// We cross a loop, and this is a backedge. LLVMs tail duplication
// happens so late that DBG_PHI instructions should not be able to
// migrate into loops -- meaning we can only be live-through this
// loop.
ValueToCheck = ThisBlockValueNum;
} else {
// Does the block have as a live-out, in the location we're examining,
// the value that we expect? If not, it's been moved or clobbered.
ValueToCheck = VVal->second;
}
if (BlockLiveOuts[Loc.asU64()] != ValueToCheck)
return None;
}
// Record this value as validated.
ValidatedValues.insert({PHI->ParentBlock, ThisBlockValueNum});
}
// All the PHIs are valid: we can return what the SSAUpdater said our value
// number was.
return Result;
}