blob: 2ec6cbeabda2b3a6a15e3b57e6df01222ded3ffc [file] [log] [blame]
//===- IRSimilarityIdentifier.cpp - Find similarity in a module -----------===//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
// \file
// Implementation file for the IRSimilarityIdentifier for identifying
// similarities in IR including the IRInstructionMapper.
#include "llvm/Analysis/IRSimilarityIdentifier.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/User.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/SuffixTree.h"
using namespace llvm;
using namespace IRSimilarity;
DisableBranches("no-ir-sim-branch-matching", cl::init(false),
cl::desc("disable similarity matching, and outlining, "
"across branches for debugging purposes."));
IRInstructionData::IRInstructionData(Instruction &I, bool Legality,
IRInstructionDataList &IDList)
: Inst(&I), Legal(Legality), IDL(&IDList) {
void IRInstructionData::initializeInstruction() {
// We check for whether we have a comparison instruction. If it is, we
// find the "less than" version of the predicate for consistency for
// comparison instructions throught the program.
if (CmpInst *C = dyn_cast<CmpInst>(Inst)) {
CmpInst::Predicate Predicate = predicateForConsistency(C);
if (Predicate != C->getPredicate())
RevisedPredicate = Predicate;
// Here we collect the operands and their types for determining whether
// the structure of the operand use matches between two different candidates.
for (Use &OI : Inst->operands()) {
if (isa<CmpInst>(Inst) && RevisedPredicate.hasValue()) {
// If we have a CmpInst where the predicate is reversed, it means the
// operands must be reversed as well.
OperVals.insert(OperVals.begin(), OI.get());
IRInstructionData::IRInstructionData(IRInstructionDataList &IDList)
: Inst(nullptr), Legal(false), IDL(&IDList) {}
void IRInstructionData::setBranchSuccessors(
DenseMap<BasicBlock *, unsigned> &BasicBlockToInteger) {
assert(isa<BranchInst>(Inst) && "Instruction must be branch");
BranchInst *BI = cast<BranchInst>(Inst);
DenseMap<BasicBlock *, unsigned>::iterator BBNumIt;
BBNumIt = BasicBlockToInteger.find(BI->getParent());
assert(BBNumIt != BasicBlockToInteger.end() &&
"Could not find location for BasicBlock!");
int CurrentBlockNumber = static_cast<int>(BBNumIt->second);
for (BasicBlock *Successor : BI->successors()) {
BBNumIt = BasicBlockToInteger.find(Successor);
assert(BBNumIt != BasicBlockToInteger.end() &&
"Could not find number for BasicBlock!");
int OtherBlockNumber = static_cast<int>(BBNumIt->second);
int Relative = OtherBlockNumber - CurrentBlockNumber;
CmpInst::Predicate IRInstructionData::predicateForConsistency(CmpInst *CI) {
switch (CI->getPredicate()) {
case CmpInst::FCMP_OGT:
case CmpInst::FCMP_UGT:
case CmpInst::FCMP_OGE:
case CmpInst::FCMP_UGE:
case CmpInst::ICMP_SGT:
case CmpInst::ICMP_UGT:
case CmpInst::ICMP_SGE:
case CmpInst::ICMP_UGE:
return CI->getSwappedPredicate();
return CI->getPredicate();
CmpInst::Predicate IRInstructionData::getPredicate() const {
assert(isa<CmpInst>(Inst) &&
"Can only get a predicate from a compare instruction");
if (RevisedPredicate.hasValue())
return RevisedPredicate.getValue();
return cast<CmpInst>(Inst)->getPredicate();
static StringRef getCalledFunctionName(CallInst &CI) {
assert(CI.getCalledFunction() != nullptr && "Called Function is nullptr?");
return CI.getCalledFunction()->getName();
bool IRSimilarity::isClose(const IRInstructionData &A,
const IRInstructionData &B) {
if (!A.Legal || !B.Legal)
return false;
// Check if we are performing the same sort of operation on the same types
// but not on the same values.
if (!A.Inst->isSameOperationAs(B.Inst)) {
// If there is a predicate, this means that either there is a swapped
// predicate, or that the types are different, we want to make sure that
// the predicates are equivalent via swapping.
if (isa<CmpInst>(A.Inst) && isa<CmpInst>(B.Inst)) {
if (A.getPredicate() != B.getPredicate())
return false;
// If the predicates are the same via swap, make sure that the types are
// still the same.
auto ZippedTypes = zip(A.OperVals, B.OperVals);
return all_of(
ZippedTypes, [](std::tuple<llvm::Value *, llvm::Value *> R) {
return std::get<0>(R)->getType() == std::get<1>(R)->getType();
return false;
// Since any GEP Instruction operands after the first operand cannot be
// defined by a register, we must make sure that the operands after the first
// are the same in the two instructions
if (auto *GEP = dyn_cast<GetElementPtrInst>(A.Inst)) {
auto *OtherGEP = cast<GetElementPtrInst>(B.Inst);
// If the instructions do not have the same inbounds restrictions, we do
// not consider them the same.
if (GEP->isInBounds() != OtherGEP->isInBounds())
return false;
auto ZippedOperands = zip(GEP->indices(), OtherGEP->indices());
// We increment here since we do not care about the first instruction,
// we only care about the following operands since they must be the
// exact same to be considered similar.
return all_of(drop_begin(ZippedOperands),
[](std::tuple<llvm::Use &, llvm::Use &> R) {
return std::get<0>(R) == std::get<1>(R);
// If the instructions are functions, we make sure that the function name is
// the same. We already know that the types are since is isSameOperationAs is
// true.
if (isa<CallInst>(A.Inst) && isa<CallInst>(B.Inst)) {
CallInst *CIA = cast<CallInst>(A.Inst);
CallInst *CIB = cast<CallInst>(B.Inst);
if (getCalledFunctionName(*CIA).compare(getCalledFunctionName(*CIB)) != 0)
return false;
if (isa<BranchInst>(A.Inst) && isa<BranchInst>(B.Inst) &&
A.RelativeBlockLocations.size() != B.RelativeBlockLocations.size())
return false;
return true;
// TODO: This is the same as the MachineOutliner, and should be consolidated
// into the same interface.
void IRInstructionMapper::convertToUnsignedVec(
BasicBlock &BB, std::vector<IRInstructionData *> &InstrList,
std::vector<unsigned> &IntegerMapping) {
BasicBlock::iterator It = BB.begin();
std::vector<unsigned> IntegerMappingForBB;
std::vector<IRInstructionData *> InstrListForBB;
for (BasicBlock::iterator Et = BB.end(); It != Et; ++It) {
switch (InstClassifier.visit(*It)) {
case InstrType::Legal:
mapToLegalUnsigned(It, IntegerMappingForBB, InstrListForBB);
case InstrType::Illegal:
mapToIllegalUnsigned(It, IntegerMappingForBB, InstrListForBB);
case InstrType::Invisible:
AddedIllegalLastTime = false;
if (HaveLegalRange) {
if (AddedIllegalLastTime)
mapToIllegalUnsigned(It, IntegerMappingForBB, InstrListForBB, true);
for (IRInstructionData *ID : InstrListForBB)
llvm::append_range(InstrList, InstrListForBB);
llvm::append_range(IntegerMapping, IntegerMappingForBB);
// TODO: This is the same as the MachineOutliner, and should be consolidated
// into the same interface.
unsigned IRInstructionMapper::mapToLegalUnsigned(
BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB,
std::vector<IRInstructionData *> &InstrListForBB) {
// We added something legal, so we should unset the AddedLegalLastTime
// flag.
AddedIllegalLastTime = false;
// If we have at least two adjacent legal instructions (which may have
// invisible instructions in between), remember that.
if (CanCombineWithPrevInstr)
HaveLegalRange = true;
CanCombineWithPrevInstr = true;
// Get the integer for this instruction or give it the current
// LegalInstrNumber.
IRInstructionData *ID = allocateIRInstructionData(*It, true, *IDL);
if (isa<BranchInst>(*It))
// Add to the instruction list
bool WasInserted;
DenseMap<IRInstructionData *, unsigned, IRInstructionDataTraits>::iterator
std::tie(ResultIt, WasInserted) =
InstructionIntegerMap.insert(std::make_pair(ID, LegalInstrNumber));
unsigned INumber = ResultIt->second;
// There was an insertion.
if (WasInserted)
// Make sure we don't overflow or use any integers reserved by the DenseMap.
assert(LegalInstrNumber < IllegalInstrNumber &&
"Instruction mapping overflow!");
assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
"Tried to assign DenseMap tombstone or empty key to instruction.");
assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
"Tried to assign DenseMap tombstone or empty key to instruction.");
return INumber;
IRInstructionData *
IRInstructionMapper::allocateIRInstructionData(Instruction &I, bool Legality,
IRInstructionDataList &IDL) {
return new (InstDataAllocator->Allocate()) IRInstructionData(I, Legality, IDL);
IRInstructionData *
IRInstructionMapper::allocateIRInstructionData(IRInstructionDataList &IDL) {
return new (InstDataAllocator->Allocate()) IRInstructionData(IDL);
IRInstructionDataList *
IRInstructionMapper::allocateIRInstructionDataList() {
return new (IDLAllocator->Allocate()) IRInstructionDataList();
// TODO: This is the same as the MachineOutliner, and should be consolidated
// into the same interface.
unsigned IRInstructionMapper::mapToIllegalUnsigned(
BasicBlock::iterator &It, std::vector<unsigned> &IntegerMappingForBB,
std::vector<IRInstructionData *> &InstrListForBB, bool End) {
// Can't combine an illegal instruction. Set the flag.
CanCombineWithPrevInstr = false;
// Only add one illegal number per range of legal numbers.
if (AddedIllegalLastTime)
return IllegalInstrNumber;
IRInstructionData *ID = nullptr;
if (!End)
ID = allocateIRInstructionData(*It, false, *IDL);
ID = allocateIRInstructionData(*IDL);
// Remember that we added an illegal number last time.
AddedIllegalLastTime = true;
unsigned INumber = IllegalInstrNumber;
assert(LegalInstrNumber < IllegalInstrNumber &&
"Instruction mapping overflow!");
assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
"IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
"IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
return INumber;
IRSimilarityCandidate::IRSimilarityCandidate(unsigned StartIdx, unsigned Len,
IRInstructionData *FirstInstIt,
IRInstructionData *LastInstIt)
: StartIdx(StartIdx), Len(Len) {
assert(FirstInstIt != nullptr && "Instruction is nullptr!");
assert(LastInstIt != nullptr && "Instruction is nullptr!");
assert(StartIdx + Len > StartIdx &&
"Overflow for IRSimilarityCandidate range?");
assert(Len - 1 == static_cast<unsigned>(std::distance(
iterator(FirstInstIt), iterator(LastInstIt))) &&
"Length of the first and last IRInstructionData do not match the "
"given length");
// We iterate over the given instructions, and map each unique value
// to a unique number in the IRSimilarityCandidate ValueToNumber and
// NumberToValue maps. A constant get its own value globally, the individual
// uses of the constants are not considered to be unique.
// IR: Mapping Added:
// %add1 = add i32 %a, c1 %add1 -> 3, %a -> 1, c1 -> 2
// %add2 = add i32 %a, %1 %add2 -> 4
// %add3 = add i32 c2, c1 %add3 -> 6, c2 -> 5
// when replace with global values, starting from 1, would be
// 3 = add i32 1, 2
// 4 = add i32 1, 3
// 6 = add i32 5, 2
unsigned LocalValNumber = 1;
IRInstructionDataList::iterator ID = iterator(*FirstInstIt);
for (unsigned Loc = StartIdx; Loc < StartIdx + Len; Loc++, ID++) {
// Map the operand values to an unsigned integer if it does not already
// have an unsigned integer assigned to it.
for (Value *Arg : ID->OperVals)
if (ValueToNumber.find(Arg) == ValueToNumber.end()) {
ValueToNumber.try_emplace(Arg, LocalValNumber);
NumberToValue.try_emplace(LocalValNumber, Arg);
// Mapping the instructions to an unsigned integer if it is not already
// exist in the mapping.
if (ValueToNumber.find(ID->Inst) == ValueToNumber.end()) {
ValueToNumber.try_emplace(ID->Inst, LocalValNumber);
NumberToValue.try_emplace(LocalValNumber, ID->Inst);
// Setting the first and last instruction data pointers for the candidate. If
// we got through the entire for loop without hitting an assert, we know
// that both of these instructions are not nullptrs.
FirstInst = FirstInstIt;
LastInst = LastInstIt;
bool IRSimilarityCandidate::isSimilar(const IRSimilarityCandidate &A,
const IRSimilarityCandidate &B) {
if (A.getLength() != B.getLength())
return false;
auto InstrDataForBoth =
zip(make_range(A.begin(), A.end()), make_range(B.begin(), B.end()));
return all_of(InstrDataForBoth,
[](std::tuple<IRInstructionData &, IRInstructionData &> R) {
IRInstructionData &A = std::get<0>(R);
IRInstructionData &B = std::get<1>(R);
if (!A.Legal || !B.Legal)
return false;
return isClose(A, B);
/// Determine if one or more of the assigned global value numbers for the
/// operands in \p TargetValueNumbers is in the current mapping set for operand
/// numbers in \p SourceOperands. The set of possible corresponding global
/// value numbers are replaced with the most recent version of compatible
/// values.
/// \param [in] SourceValueToNumberMapping - The mapping of a Value to global
/// value number for the source IRInstructionCandidate.
/// \param [in, out] CurrentSrcTgtNumberMapping - The current mapping of source
/// IRSimilarityCandidate global value numbers to a set of possible numbers in
/// the target.
/// \param [in] SourceOperands - The operands in the original
/// IRSimilarityCandidate in the current instruction.
/// \param [in] TargetValueNumbers - The global value numbers of the operands in
/// the corresponding Instruction in the other IRSimilarityCandidate.
/// \returns true if there exists a possible mapping between the source
/// Instruction operands and the target Instruction operands, and false if not.
static bool checkNumberingAndReplaceCommutative(
const DenseMap<Value *, unsigned> &SourceValueToNumberMapping,
DenseMap<unsigned, DenseSet<unsigned>> &CurrentSrcTgtNumberMapping,
ArrayRef<Value *> &SourceOperands,
DenseSet<unsigned> &TargetValueNumbers){
DenseMap<unsigned, DenseSet<unsigned>>::iterator ValueMappingIt;
unsigned ArgVal;
bool WasInserted;
// Iterate over the operands in the source IRSimilarityCandidate to determine
// whether there exists an operand in the other IRSimilarityCandidate that
// creates a valid mapping of Value to Value between the
// IRSimilarityCaniddates.
for (Value *V : SourceOperands) {
ArgVal = SourceValueToNumberMapping.find(V)->second;
std::tie(ValueMappingIt, WasInserted) = CurrentSrcTgtNumberMapping.insert(
std::make_pair(ArgVal, TargetValueNumbers));
// Instead of finding a current mapping, we inserted a set. This means a
// mapping did not exist for the source Instruction operand, it has no
// current constraints we need to check.
if (WasInserted)
// If a mapping already exists for the source operand to the values in the
// other IRSimilarityCandidate we need to iterate over the items in other
// IRSimilarityCandidate's Instruction to determine whether there is a valid
// mapping of Value to Value.
DenseSet<unsigned> NewSet;
for (unsigned &Curr : ValueMappingIt->second)
// If we can find the value in the mapping, we add it to the new set.
if (TargetValueNumbers.contains(Curr))
// If we could not find a Value, return 0.
if (NewSet.empty())
return false;
// Otherwise replace the old mapping with the newly constructed one.
if (NewSet.size() != ValueMappingIt->second.size())
// We have reached no conclusions about the mapping, and cannot remove
// any items from the other operands, so we move to check the next operand.
if (ValueMappingIt->second.size() != 1)
unsigned ValToRemove = *ValueMappingIt->second.begin();
// When there is only one item left in the mapping for and operand, remove
// the value from the other operands. If it results in there being no
// mapping, return false, it means the mapping is wrong
for (Value *InnerV : SourceOperands) {
if (V == InnerV)
unsigned InnerVal = SourceValueToNumberMapping.find(InnerV)->second;
ValueMappingIt = CurrentSrcTgtNumberMapping.find(InnerVal);
if (ValueMappingIt == CurrentSrcTgtNumberMapping.end())
if (ValueMappingIt->second.empty())
return false;
return true;
/// Determine if operand number \p TargetArgVal is in the current mapping set
/// for operand number \p SourceArgVal.
/// \param [in, out] CurrentSrcTgtNumberMapping current mapping of global
/// value numbers from source IRSimilarityCandidate to target
/// IRSimilarityCandidate.
/// \param [in] SourceArgVal The global value number for an operand in the
/// in the original candidate.
/// \param [in] TargetArgVal The global value number for the corresponding
/// operand in the other candidate.
/// \returns True if there exists a mapping and false if not.
bool checkNumberingAndReplace(
DenseMap<unsigned, DenseSet<unsigned>> &CurrentSrcTgtNumberMapping,
unsigned SourceArgVal, unsigned TargetArgVal) {
// We are given two unsigned integers representing the global values of
// the operands in different IRSimilarityCandidates and a current mapping
// between the two.
// Source Operand GVN: 1
// Target Operand GVN: 2
// CurrentMapping: {1: {1, 2}}
// Since we have mapping, and the target operand is contained in the set, we
// update it to:
// CurrentMapping: {1: {2}}
// and can return true. But, if the mapping was
// CurrentMapping: {1: {3}}
// we would return false.
bool WasInserted;
DenseMap<unsigned, DenseSet<unsigned>>::iterator Val;
std::tie(Val, WasInserted) = CurrentSrcTgtNumberMapping.insert(
std::make_pair(SourceArgVal, DenseSet<unsigned>({TargetArgVal})));
// If we created a new mapping, then we are done.
if (WasInserted)
return true;
// If there is more than one option in the mapping set, and the target value
// is included in the mapping set replace that set with one that only includes
// the target value, as it is the only valid mapping via the non commutative
// instruction.
DenseSet<unsigned> &TargetSet = Val->second;
if (TargetSet.size() > 1 && TargetSet.contains(TargetArgVal)) {
return true;
// Return true if we can find the value in the set.
return TargetSet.contains(TargetArgVal);
bool IRSimilarityCandidate::compareNonCommutativeOperandMapping(
OperandMapping A, OperandMapping B) {
// Iterators to keep track of where we are in the operands for each
// Instruction.
ArrayRef<Value *>::iterator VItA = A.OperVals.begin();
ArrayRef<Value *>::iterator VItB = B.OperVals.begin();
unsigned OperandLength = A.OperVals.size();
// For each operand, get the value numbering and ensure it is consistent.
for (unsigned Idx = 0; Idx < OperandLength; Idx++, VItA++, VItB++) {
unsigned OperValA = A.IRSC.ValueToNumber.find(*VItA)->second;
unsigned OperValB = B.IRSC.ValueToNumber.find(*VItB)->second;
// Attempt to add a set with only the target value. If there is no mapping
// we can create it here.
// For an instruction like a subtraction:
// IRSimilarityCandidateA: IRSimilarityCandidateB:
// %resultA = sub %a, %b %resultB = sub %d, %e
// We map %a -> %d and %b -> %e.
// And check to see whether their mapping is consistent in
// checkNumberingAndReplace.
if (!checkNumberingAndReplace(A.ValueNumberMapping, OperValA, OperValB))
return false;
if (!checkNumberingAndReplace(B.ValueNumberMapping, OperValB, OperValA))
return false;
return true;
bool IRSimilarityCandidate::compareCommutativeOperandMapping(
OperandMapping A, OperandMapping B) {
DenseSet<unsigned> ValueNumbersA;
DenseSet<unsigned> ValueNumbersB;
ArrayRef<Value *>::iterator VItA = A.OperVals.begin();
ArrayRef<Value *>::iterator VItB = B.OperVals.begin();
unsigned OperandLength = A.OperVals.size();
// Find the value number sets for the operands.
for (unsigned Idx = 0; Idx < OperandLength;
Idx++, VItA++, VItB++) {
// Iterate over the operands in the first IRSimilarityCandidate and make sure
// there exists a possible mapping with the operands in the second
// IRSimilarityCandidate.
if (!checkNumberingAndReplaceCommutative(A.IRSC.ValueToNumber,
A.ValueNumberMapping, A.OperVals,
return false;
// Iterate over the operands in the second IRSimilarityCandidate and make sure
// there exists a possible mapping with the operands in the first
// IRSimilarityCandidate.
if (!checkNumberingAndReplaceCommutative(B.IRSC.ValueToNumber,
B.ValueNumberMapping, B.OperVals,
return false;
return true;
bool IRSimilarityCandidate::checkRelativeLocations(RelativeLocMapping A,
RelativeLocMapping B) {
// Get the basic blocks the label refers to.
BasicBlock *ABB = static_cast<BasicBlock *>(A.OperVal);
BasicBlock *BBB = static_cast<BasicBlock *>(B.OperVal);
// Get the basic blocks contained in each region.
DenseSet<BasicBlock *> BasicBlockA;
DenseSet<BasicBlock *> BasicBlockB;
// Determine if the block is contained in the region.
bool AContained = BasicBlockA.contains(ABB);
bool BContained = BasicBlockB.contains(BBB);
// Both blocks need to be contained in the region, or both need to be outside
// the reigon.
if (AContained != BContained)
return false;
// If both are contained, then we need to make sure that the relative
// distance to the target blocks are the same.
if (AContained)
return A.RelativeLocation == B.RelativeLocation;
return true;
bool IRSimilarityCandidate::compareStructure(const IRSimilarityCandidate &A,
const IRSimilarityCandidate &B) {
DenseMap<unsigned, DenseSet<unsigned>> MappingA;
DenseMap<unsigned, DenseSet<unsigned>> MappingB;
return IRSimilarityCandidate::compareStructure(A, B, MappingA, MappingB);
typedef detail::zippy<detail::zip_shortest, SmallVector<int, 4> &,
SmallVector<int, 4> &, ArrayRef<Value *> &,
ArrayRef<Value *> &>
bool IRSimilarityCandidate::compareStructure(
const IRSimilarityCandidate &A, const IRSimilarityCandidate &B,
DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingA,
DenseMap<unsigned, DenseSet<unsigned>> &ValueNumberMappingB) {
if (A.getLength() != B.getLength())
return false;
if (A.ValueToNumber.size() != B.ValueToNumber.size())
return false;
iterator ItA = A.begin();
iterator ItB = B.begin();
// These ValueNumber Mapping sets create a create a mapping between the values
// in one candidate to values in the other candidate. If we create a set with
// one element, and that same element maps to the original element in the
// candidate we have a good mapping.
DenseMap<unsigned, DenseSet<unsigned>>::iterator ValueMappingIt;
// Iterate over the instructions contained in each candidate
unsigned SectionLength = A.getStartIdx() + A.getLength();
for (unsigned Loc = A.getStartIdx(); Loc < SectionLength;
ItA++, ItB++, Loc++) {
// Make sure the instructions are similar to one another.
if (!isClose(*ItA, *ItB))
return false;
Instruction *IA = ItA->Inst;
Instruction *IB = ItB->Inst;
if (!ItA->Legal || !ItB->Legal)
return false;
// Get the operand sets for the instructions.
ArrayRef<Value *> OperValsA = ItA->OperVals;
ArrayRef<Value *> OperValsB = ItB->OperVals;
unsigned InstValA = A.ValueToNumber.find(IA)->second;
unsigned InstValB = B.ValueToNumber.find(IB)->second;
bool WasInserted;
// Ensure that the mappings for the instructions exists.
std::tie(ValueMappingIt, WasInserted) = ValueNumberMappingA.insert(
std::make_pair(InstValA, DenseSet<unsigned>({InstValB})));
if (!WasInserted && !ValueMappingIt->second.contains(InstValB))
return false;
std::tie(ValueMappingIt, WasInserted) = ValueNumberMappingB.insert(
std::make_pair(InstValB, DenseSet<unsigned>({InstValA})));
if (!WasInserted && !ValueMappingIt->second.contains(InstValA))
return false;
// We have different paths for commutative instructions and non-commutative
// instructions since commutative instructions could allow multiple mappings
// to certain values.
if (IA->isCommutative() && !isa<FPMathOperator>(IA)) {
if (!compareCommutativeOperandMapping(
{A, OperValsA, ValueNumberMappingA},
{B, OperValsB, ValueNumberMappingB}))
return false;
// Handle the non-commutative cases.
if (!compareNonCommutativeOperandMapping(
{A, OperValsA, ValueNumberMappingA},
{B, OperValsB, ValueNumberMappingB}))
return false;
// Here we check that between two corresponding instructions,
// when referring to a basic block in the same region, the
// relative locations are the same. And, that the instructions refer to
// basic blocks outside the region in the same corresponding locations.
// We are able to make the assumption about blocks outside of the region
// since the target block labels are considered values and will follow the
// same number matching that we defined for the other instructions in the
// region. So, at this point, in each location we target a specific block
// outside the region, we are targeting a corresponding block in each
// analagous location in the region we are comparing to.
if (!(isa<BranchInst>(IA) && isa<BranchInst>(IB)) &&
!(isa<PHINode>(IA) && isa<PHINode>(IB)))
SmallVector<int, 4> &RelBlockLocsA = ItA->RelativeBlockLocations;
SmallVector<int, 4> &RelBlockLocsB = ItB->RelativeBlockLocations;
if (RelBlockLocsA.size() != RelBlockLocsB.size() &&
OperValsA.size() != OperValsB.size())
return false;
ZippedRelativeLocationsT ZippedRelativeLocations =
zip(RelBlockLocsA, RelBlockLocsB, OperValsA, OperValsB);
if (any_of(ZippedRelativeLocations,
[&A, &B](std::tuple<int, int, Value *, Value *> R) {
return !checkRelativeLocations(
{A, std::get<0>(R), std::get<2>(R)},
{B, std::get<1>(R), std::get<3>(R)});
return false;
return true;
bool IRSimilarityCandidate::overlap(const IRSimilarityCandidate &A,
const IRSimilarityCandidate &B) {
auto DoesOverlap = [](const IRSimilarityCandidate &X,
const IRSimilarityCandidate &Y) {
// Check:
// XXXXXX X starts before Y ends
// YYYYYYY Y starts after X starts
return X.StartIdx <= Y.getEndIdx() && Y.StartIdx >= X.StartIdx;
return DoesOverlap(A, B) || DoesOverlap(B, A);
void IRSimilarityIdentifier::populateMapper(
Module &M, std::vector<IRInstructionData *> &InstrList,
std::vector<unsigned> &IntegerMapping) {
std::vector<IRInstructionData *> InstrListForModule;
std::vector<unsigned> IntegerMappingForModule;
// Iterate over the functions in the module to map each Instruction in each
// BasicBlock to an unsigned integer.
for (Function &F : M) {
if (F.empty())
for (BasicBlock &BB : F) {
// BB has potential to have similarity since it has a size greater than 2
// and can therefore match other regions greater than 2. Map it to a list
// of unsigned integers.
Mapper.convertToUnsignedVec(BB, InstrListForModule,
BasicBlock::iterator It = F.begin()->end();
Mapper.mapToIllegalUnsigned(It, IntegerMappingForModule, InstrListForModule,
if (InstrListForModule.size() > 0)
// Insert the InstrListForModule at the end of the overall InstrList so that
// we can have a long InstrList for the entire set of Modules being analyzed.
llvm::append_range(InstrList, InstrListForModule);
// Do the same as above, but for IntegerMapping.
llvm::append_range(IntegerMapping, IntegerMappingForModule);
void IRSimilarityIdentifier::populateMapper(
ArrayRef<std::unique_ptr<Module>> &Modules,
std::vector<IRInstructionData *> &InstrList,
std::vector<unsigned> &IntegerMapping) {
// Iterate over, and map the instructions in each module.
for (const std::unique_ptr<Module> &M : Modules)
populateMapper(*M, InstrList, IntegerMapping);
/// From a repeated subsequence, find all the different instances of the
/// subsequence from the \p InstrList, and create an IRSimilarityCandidate from
/// the IRInstructionData in subsequence.
/// \param [in] Mapper - The instruction mapper for basic correctness checks.
/// \param [in] InstrList - The vector that holds the instruction data.
/// \param [in] IntegerMapping - The vector that holds the mapped integers.
/// \param [out] CandsForRepSubstring - The vector to store the generated
/// IRSimilarityCandidates.
static void createCandidatesFromSuffixTree(
const IRInstructionMapper& Mapper, std::vector<IRInstructionData *> &InstrList,
std::vector<unsigned> &IntegerMapping, SuffixTree::RepeatedSubstring &RS,
std::vector<IRSimilarityCandidate> &CandsForRepSubstring) {
unsigned StringLen = RS.Length;
if (StringLen < 2)
// Create an IRSimilarityCandidate for instance of this subsequence \p RS.
for (const unsigned &StartIdx : RS.StartIndices) {
unsigned EndIdx = StartIdx + StringLen - 1;
// Check that this subsequence does not contain an illegal instruction.
bool ContainsIllegal = false;
for (unsigned CurrIdx = StartIdx; CurrIdx <= EndIdx; CurrIdx++) {
unsigned Key = IntegerMapping[CurrIdx];
if (Key > Mapper.IllegalInstrNumber) {
ContainsIllegal = true;
// If we have an illegal instruction, we should not create an
// IRSimilarityCandidate for this region.
if (ContainsIllegal)
// We are getting iterators to the instructions in this region of code
// by advancing the start and end indices from the start of the
// InstrList.
std::vector<IRInstructionData *>::iterator StartIt = InstrList.begin();
std::advance(StartIt, StartIdx);
std::vector<IRInstructionData *>::iterator EndIt = InstrList.begin();
std::advance(EndIt, EndIdx);
CandsForRepSubstring.emplace_back(StartIdx, StringLen, *StartIt, *EndIt);
void IRSimilarityCandidate::createCanonicalRelationFrom(
IRSimilarityCandidate &SourceCand,
DenseMap<unsigned, DenseSet<unsigned>> &ToSourceMapping,
DenseMap<unsigned, DenseSet<unsigned>> &FromSourceMapping) {
assert(SourceCand.CanonNumToNumber.size() != 0 &&
"Base canonical relationship is empty!");
assert(SourceCand.NumberToCanonNum.size() != 0 &&
"Base canonical relationship is empty!");
assert(CanonNumToNumber.size() == 0 && "Canonical Relationship is non-empty");
assert(NumberToCanonNum.size() == 0 && "Canonical Relationship is non-empty");
DenseSet<unsigned> UsedGVNs;
// Iterate over the mappings provided from this candidate to SourceCand. We
// are then able to map the GVN in this candidate to the same canonical number
// given to the corresponding GVN in SourceCand.
for (std::pair<unsigned, DenseSet<unsigned>> &GVNMapping : ToSourceMapping) {
unsigned SourceGVN = GVNMapping.first;
assert(GVNMapping.second.size() != 0 && "Possible GVNs is 0!");
unsigned ResultGVN;
// We need special handling if we have more than one potential value. This
// means that there are at least two GVNs that could correspond to this GVN.
// This could lead to potential swapping later on, so we make a decision
// here to ensure a one-to-one mapping.
if (GVNMapping.second.size() > 1) {
bool Found = false;
for (unsigned Val : GVNMapping.second) {
// We make sure the target value number hasn't already been reserved.
if (UsedGVNs.contains(Val))
// We make sure that the opposite mapping is still consistent.
DenseMap<unsigned, DenseSet<unsigned>>::iterator It =
if (!It->second.contains(SourceGVN))
// We pick the first item that satisfies these conditions.
Found = true;
ResultGVN = Val;
assert(Found && "Could not find matching value for source GVN");
} else
ResultGVN = *GVNMapping.second.begin();
// Whatever GVN is found, we mark it as used.
unsigned CanonNum = *SourceCand.getCanonicalNum(ResultGVN);
CanonNumToNumber.insert(std::make_pair(CanonNum, SourceGVN));
NumberToCanonNum.insert(std::make_pair(SourceGVN, CanonNum));
void IRSimilarityCandidate::createCanonicalMappingFor(
IRSimilarityCandidate &CurrCand) {
assert(CurrCand.CanonNumToNumber.size() == 0 &&
"Canonical Relationship is non-empty");
assert(CurrCand.NumberToCanonNum.size() == 0 &&
"Canonical Relationship is non-empty");
unsigned CanonNum = 0;
// Iterate over the value numbers found, the order does not matter in this
// case.
for (std::pair<unsigned, Value *> &NumToVal : CurrCand.NumberToValue) {
CurrCand.NumberToCanonNum.insert(std::make_pair(NumToVal.first, CanonNum));
CurrCand.CanonNumToNumber.insert(std::make_pair(CanonNum, NumToVal.first));
/// From the list of IRSimilarityCandidates, perform a comparison between each
/// IRSimilarityCandidate to determine if there are overlapping
/// IRInstructionData, or if they do not have the same structure.
/// \param [in] CandsForRepSubstring - The vector containing the
/// IRSimilarityCandidates.
/// \param [out] StructuralGroups - the mapping of unsigned integers to vector
/// of IRSimilarityCandidates where each of the IRSimilarityCandidates in the
/// vector are structurally similar to one another.
static void findCandidateStructures(
std::vector<IRSimilarityCandidate> &CandsForRepSubstring,
DenseMap<unsigned, SimilarityGroup> &StructuralGroups) {
std::vector<IRSimilarityCandidate>::iterator CandIt, CandEndIt, InnerCandIt,
// IRSimilarityCandidates each have a structure for operand use. It is
// possible that two instances of the same subsequences have different
// structure. Each type of structure found is assigned a number. This
// DenseMap maps an IRSimilarityCandidate to which type of similarity
// discovered it fits within.
DenseMap<IRSimilarityCandidate *, unsigned> CandToGroup;
// Find the compatibility from each candidate to the others to determine
// which candidates overlap and which have the same structure by mapping
// each structure to a different group.
bool SameStructure;
bool Inserted;
unsigned CurrentGroupNum = 0;
unsigned OuterGroupNum;
DenseMap<IRSimilarityCandidate *, unsigned>::iterator CandToGroupIt;
DenseMap<IRSimilarityCandidate *, unsigned>::iterator CandToGroupItInner;
DenseMap<unsigned, SimilarityGroup>::iterator CurrentGroupPair;
// Iterate over the candidates to determine its structural and overlapping
// compatibility with other instructions
DenseMap<unsigned, DenseSet<unsigned>> ValueNumberMappingA;
DenseMap<unsigned, DenseSet<unsigned>> ValueNumberMappingB;
for (CandIt = CandsForRepSubstring.begin(),
CandEndIt = CandsForRepSubstring.end();
CandIt != CandEndIt; CandIt++) {
// Determine if it has an assigned structural group already.
CandToGroupIt = CandToGroup.find(&*CandIt);
if (CandToGroupIt == CandToGroup.end()) {
// If not, we assign it one, and add it to our mapping.
std::tie(CandToGroupIt, Inserted) =
CandToGroup.insert(std::make_pair(&*CandIt, CurrentGroupNum++));
// Get the structural group number from the iterator.
OuterGroupNum = CandToGroupIt->second;
// Check if we already have a list of IRSimilarityCandidates for the current
// structural group. Create one if one does not exist.
CurrentGroupPair = StructuralGroups.find(OuterGroupNum);
if (CurrentGroupPair == StructuralGroups.end()) {
std::tie(CurrentGroupPair, Inserted) = StructuralGroups.insert(
std::make_pair(OuterGroupNum, SimilarityGroup({*CandIt})));
// Iterate over the IRSimilarityCandidates following the current
// IRSimilarityCandidate in the list to determine whether the two
// IRSimilarityCandidates are compatible. This is so we do not repeat pairs
// of IRSimilarityCandidates.
for (InnerCandIt = std::next(CandIt),
InnerCandEndIt = CandsForRepSubstring.end();
InnerCandIt != InnerCandEndIt; InnerCandIt++) {
// We check if the inner item has a group already, if it does, we skip it.
CandToGroupItInner = CandToGroup.find(&*InnerCandIt);
if (CandToGroupItInner != CandToGroup.end())
// Otherwise we determine if they have the same structure and add it to
// vector if they match.
SameStructure = IRSimilarityCandidate::compareStructure(
*CandIt, *InnerCandIt, ValueNumberMappingA, ValueNumberMappingB);
if (!SameStructure)
InnerCandIt->createCanonicalRelationFrom(*CandIt, ValueNumberMappingA,
CandToGroup.insert(std::make_pair(&*InnerCandIt, OuterGroupNum));
void IRSimilarityIdentifier::findCandidates(
std::vector<IRInstructionData *> &InstrList,
std::vector<unsigned> &IntegerMapping) {
SuffixTree ST(IntegerMapping);
std::vector<IRSimilarityCandidate> CandsForRepSubstring;
std::vector<SimilarityGroup> NewCandidateGroups;
DenseMap<unsigned, SimilarityGroup> StructuralGroups;
// Iterate over the subsequences found by the Suffix Tree to create
// IRSimilarityCandidates for each repeated subsequence and determine which
// instances are structurally similar to one another.
for (SuffixTree::RepeatedSubstring &RS : ST) {
createCandidatesFromSuffixTree(Mapper, InstrList, IntegerMapping, RS,
if (CandsForRepSubstring.size() < 2)
findCandidateStructures(CandsForRepSubstring, StructuralGroups);
for (std::pair<unsigned, SimilarityGroup> &Group : StructuralGroups)
// We only add the group if it contains more than one
// IRSimilarityCandidate. If there is only one, that means there is no
// other repeated subsequence with the same structure.
if (Group.second.size() > 1)
SimilarityGroupList &IRSimilarityIdentifier::findSimilarity(
ArrayRef<std::unique_ptr<Module>> Modules) {
std::vector<IRInstructionData *> InstrList;
std::vector<unsigned> IntegerMapping;
Mapper.InstClassifier.EnableBranches = this->EnableBranches;
populateMapper(Modules, InstrList, IntegerMapping);
findCandidates(InstrList, IntegerMapping);
return SimilarityCandidates.getValue();
SimilarityGroupList &IRSimilarityIdentifier::findSimilarity(Module &M) {
Mapper.InstClassifier.EnableBranches = this->EnableBranches;
std::vector<IRInstructionData *> InstrList;
std::vector<unsigned> IntegerMapping;
populateMapper(M, InstrList, IntegerMapping);
findCandidates(InstrList, IntegerMapping);
return SimilarityCandidates.getValue();
INITIALIZE_PASS(IRSimilarityIdentifierWrapperPass, "ir-similarity-identifier",
"ir-similarity-identifier", false, true)
: ModulePass(ID) {
bool IRSimilarityIdentifierWrapperPass::doInitialization(Module &M) {
IRSI.reset(new IRSimilarityIdentifier(!DisableBranches));
return false;
bool IRSimilarityIdentifierWrapperPass::doFinalization(Module &M) {
return false;
bool IRSimilarityIdentifierWrapperPass::runOnModule(Module &M) {
return false;
AnalysisKey IRSimilarityAnalysis::Key;
IRSimilarityIdentifier IRSimilarityAnalysis::run(Module &M,
ModuleAnalysisManager &) {
auto IRSI = IRSimilarityIdentifier(!DisableBranches);
return IRSI;
IRSimilarityAnalysisPrinterPass::run(Module &M, ModuleAnalysisManager &AM) {
IRSimilarityIdentifier &IRSI = AM.getResult<IRSimilarityAnalysis>(M);
Optional<SimilarityGroupList> &SimilarityCandidatesOpt = IRSI.getSimilarity();
for (std::vector<IRSimilarityCandidate> &CandVec : *SimilarityCandidatesOpt) {
OS << CandVec.size() << " candidates of length "
<< CandVec.begin()->getLength() << ". Found in: \n";
for (IRSimilarityCandidate &Cand : CandVec) {
OS << " Function: " << Cand.front()->Inst->getFunction()->getName().str()
<< ", Basic Block: ";
if (Cand.front()->Inst->getParent()->getName().str() == "")
OS << "(unnamed)";
OS << Cand.front()->Inst->getParent()->getName().str();
OS << "\n Start Instruction: ";
OS << "\n End Instruction: ";
OS << "\n";
return PreservedAnalyses::all();
char IRSimilarityIdentifierWrapperPass::ID = 0;