blob: d501bd02621993f58c698ab4f431e29cdcca0848 [file] [log] [blame]
//===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Driver/Driver.h"
#include "ToolChains/AIX.h"
#include "ToolChains/AMDGPU.h"
#include "ToolChains/AMDGPUOpenMP.h"
#include "ToolChains/AVR.h"
#include "ToolChains/Ananas.h"
#include "ToolChains/BareMetal.h"
#include "ToolChains/Clang.h"
#include "ToolChains/CloudABI.h"
#include "ToolChains/Contiki.h"
#include "ToolChains/CrossWindows.h"
#include "ToolChains/Cuda.h"
#include "ToolChains/Darwin.h"
#include "ToolChains/DragonFly.h"
#include "ToolChains/FreeBSD.h"
#include "ToolChains/Fuchsia.h"
#include "ToolChains/Gnu.h"
#include "ToolChains/HIP.h"
#include "ToolChains/Haiku.h"
#include "ToolChains/Hexagon.h"
#include "ToolChains/Hurd.h"
#include "ToolChains/Lanai.h"
#include "ToolChains/Linux.h"
#include "ToolChains/MSP430.h"
#include "ToolChains/MSVC.h"
#include "ToolChains/MinGW.h"
#include "ToolChains/Minix.h"
#include "ToolChains/MipsLinux.h"
#include "ToolChains/Myriad.h"
#include "ToolChains/NaCl.h"
#include "ToolChains/NetBSD.h"
#include "ToolChains/OpenBSD.h"
#include "ToolChains/PPCFreeBSD.h"
#include "ToolChains/PPCLinux.h"
#include "ToolChains/PS4CPU.h"
#include "ToolChains/RISCVToolchain.h"
#include "ToolChains/Solaris.h"
#include "ToolChains/TCE.h"
#include "ToolChains/VEToolchain.h"
#include "ToolChains/WebAssembly.h"
#include "ToolChains/XCore.h"
#include "ToolChains/ZOS.h"
#include "clang/Basic/TargetID.h"
#include "clang/Basic/Version.h"
#include "clang/Config/config.h"
#include "clang/Driver/Action.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/Driver/InputInfo.h"
#include "clang/Driver/Job.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/SanitizerArgs.h"
#include "clang/Driver/Tool.h"
#include "clang/Driver/ToolChain.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Option/Arg.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Option/OptSpecifier.h"
#include "llvm/Option/OptTable.h"
#include "llvm/Option/Option.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ExitCodes.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
#include <memory>
#include <utility>
#if LLVM_ON_UNIX
#include <unistd.h> // getpid
#endif
using namespace clang::driver;
using namespace clang;
using namespace llvm::opt;
static llvm::Triple getHIPOffloadTargetTriple() {
static const llvm::Triple T("amdgcn-amd-amdhsa");
return T;
}
// static
std::string Driver::GetResourcesPath(StringRef BinaryPath,
StringRef CustomResourceDir) {
// Since the resource directory is embedded in the module hash, it's important
// that all places that need it call this function, so that they get the
// exact same string ("a/../b/" and "b/" get different hashes, for example).
// Dir is bin/ or lib/, depending on where BinaryPath is.
std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
SmallString<128> P(Dir);
if (CustomResourceDir != "") {
llvm::sys::path::append(P, CustomResourceDir);
} else {
// On Windows, libclang.dll is in bin/.
// On non-Windows, libclang.so/.dylib is in lib/.
// With a static-library build of libclang, LibClangPath will contain the
// path of the embedding binary, which for LLVM binaries will be in bin/.
// ../lib gets us to lib/ in both cases.
P = llvm::sys::path::parent_path(Dir);
llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
CLANG_VERSION_STRING);
}
return std::string(P.str());
}
Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
DiagnosticsEngine &Diags, std::string Title,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
: Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None),
ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
DriverTitle(Title), CCPrintStatReportFilename(), CCPrintOptionsFilename(),
CCPrintHeadersFilename(), CCLogDiagnosticsFilename(),
CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false),
CCLogDiagnostics(false), CCGenDiagnostics(false),
CCPrintProcessStats(false), TargetTriple(TargetTriple),
CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true),
GenReproducer(false), SuppressMissingInputWarning(false) {
// Provide a sane fallback if no VFS is specified.
if (!this->VFS)
this->VFS = llvm::vfs::getRealFileSystem();
Name = std::string(llvm::sys::path::filename(ClangExecutable));
Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
InstalledDir = Dir; // Provide a sensible default installed dir.
if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
// Prepend InstalledDir if SysRoot is relative
SmallString<128> P(InstalledDir);
llvm::sys::path::append(P, SysRoot);
SysRoot = std::string(P);
}
#if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
#endif
#if defined(CLANG_CONFIG_FILE_USER_DIR)
UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
#endif
// Compute the path to the resource directory.
ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
}
void Driver::setDriverMode(StringRef Value) {
static const std::string OptName =
getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
.Case("gcc", GCCMode)
.Case("g++", GXXMode)
.Case("cpp", CPPMode)
.Case("cl", CLMode)
.Case("flang", FlangMode)
.Default(None))
Mode = *M;
else
Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
}
InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
bool IsClCompatMode,
bool &ContainsError) {
llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
ContainsError = false;
unsigned IncludedFlagsBitmask;
unsigned ExcludedFlagsBitmask;
std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
getIncludeExcludeOptionFlagMasks(IsClCompatMode);
// Make sure that Flang-only options don't pollute the Clang output
// TODO: Make sure that Clang-only options don't pollute Flang output
if (!IsFlangMode())
ExcludedFlagsBitmask |= options::FlangOnlyOption;
unsigned MissingArgIndex, MissingArgCount;
InputArgList Args =
getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
IncludedFlagsBitmask, ExcludedFlagsBitmask);
// Check for missing argument error.
if (MissingArgCount) {
Diag(diag::err_drv_missing_argument)
<< Args.getArgString(MissingArgIndex) << MissingArgCount;
ContainsError |=
Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
SourceLocation()) > DiagnosticsEngine::Warning;
}
// Check for unsupported options.
for (const Arg *A : Args) {
if (A->getOption().hasFlag(options::Unsupported)) {
unsigned DiagID;
auto ArgString = A->getAsString(Args);
std::string Nearest;
if (getOpts().findNearest(
ArgString, Nearest, IncludedFlagsBitmask,
ExcludedFlagsBitmask | options::Unsupported) > 1) {
DiagID = diag::err_drv_unsupported_opt;
Diag(DiagID) << ArgString;
} else {
DiagID = diag::err_drv_unsupported_opt_with_suggestion;
Diag(DiagID) << ArgString << Nearest;
}
ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
DiagnosticsEngine::Warning;
continue;
}
// Warn about -mcpu= without an argument.
if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
ContainsError |= Diags.getDiagnosticLevel(
diag::warn_drv_empty_joined_argument,
SourceLocation()) > DiagnosticsEngine::Warning;
}
}
for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
unsigned DiagID;
auto ArgString = A->getAsString(Args);
std::string Nearest;
if (getOpts().findNearest(
ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
: diag::err_drv_unknown_argument;
Diags.Report(DiagID) << ArgString;
} else {
DiagID = IsCLMode()
? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
: diag::err_drv_unknown_argument_with_suggestion;
Diags.Report(DiagID) << ArgString << Nearest;
}
ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
DiagnosticsEngine::Warning;
}
return Args;
}
// Determine which compilation mode we are in. We look for options which
// affect the phase, starting with the earliest phases, and record which
// option we used to determine the final phase.
phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
Arg **FinalPhaseArg) const {
Arg *PhaseArg = nullptr;
phases::ID FinalPhase;
// -{E,EP,P,M,MM} only run the preprocessor.
if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
(PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
(PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
(PhaseArg = DAL.getLastArg(options::OPT__SLASH_P)) ||
CCGenDiagnostics) {
FinalPhase = phases::Preprocess;
// --precompile only runs up to precompilation.
} else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
FinalPhase = phases::Precompile;
// -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
} else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
(PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
(PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
(PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
(PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
(PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
(PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
(PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
(PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
FinalPhase = phases::Compile;
// -S only runs up to the backend.
} else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
FinalPhase = phases::Backend;
// -c compilation only runs up to the assembler.
} else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
FinalPhase = phases::Assemble;
} else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) {
FinalPhase = phases::IfsMerge;
// Otherwise do everything.
} else
FinalPhase = phases::Link;
if (FinalPhaseArg)
*FinalPhaseArg = PhaseArg;
return FinalPhase;
}
static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
StringRef Value, bool Claim = true) {
Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
Args.getBaseArgs().MakeIndex(Value), Value.data());
Args.AddSynthesizedArg(A);
if (Claim)
A->claim();
return A;
}
DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
const llvm::opt::OptTable &Opts = getOpts();
DerivedArgList *DAL = new DerivedArgList(Args);
bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
for (Arg *A : Args) {
// Unfortunately, we have to parse some forwarding options (-Xassembler,
// -Xlinker, -Xpreprocessor) because we either integrate their functionality
// (assembler and preprocessor), or bypass a previous driver ('collect2').
// Rewrite linker options, to replace --no-demangle with a custom internal
// option.
if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
A->getOption().matches(options::OPT_Xlinker)) &&
A->containsValue("--no-demangle")) {
// Add the rewritten no-demangle argument.
DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
// Add the remaining values as Xlinker arguments.
for (StringRef Val : A->getValues())
if (Val != "--no-demangle")
DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
continue;
}
// Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
// some build systems. We don't try to be complete here because we don't
// care to encourage this usage model.
if (A->getOption().matches(options::OPT_Wp_COMMA) &&
(A->getValue(0) == StringRef("-MD") ||
A->getValue(0) == StringRef("-MMD"))) {
// Rewrite to -MD/-MMD along with -MF.
if (A->getValue(0) == StringRef("-MD"))
DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
else
DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
if (A->getNumValues() == 2)
DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
continue;
}
// Rewrite reserved library names.
if (A->getOption().matches(options::OPT_l)) {
StringRef Value = A->getValue();
// Rewrite unless -nostdlib is present.
if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
Value == "stdc++") {
DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
continue;
}
// Rewrite unconditionally.
if (Value == "cc_kext") {
DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
continue;
}
}
// Pick up inputs via the -- option.
if (A->getOption().matches(options::OPT__DASH_DASH)) {
A->claim();
for (StringRef Val : A->getValues())
DAL->append(MakeInputArg(*DAL, Opts, Val, false));
continue;
}
DAL->append(A);
}
// Enforce -static if -miamcu is present.
if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
DAL->AddFlagArg(0, Opts.getOption(options::OPT_static));
// Add a default value of -mlinker-version=, if one was given and the user
// didn't specify one.
#if defined(HOST_LINK_VERSION)
if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
strlen(HOST_LINK_VERSION) > 0) {
DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
HOST_LINK_VERSION);
DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
}
#endif
return DAL;
}
/// Compute target triple from args.
///
/// This routine provides the logic to compute a target triple from various
/// args passed to the driver and the default triple string.
static llvm::Triple computeTargetTriple(const Driver &D,
StringRef TargetTriple,
const ArgList &Args,
StringRef DarwinArchName = "") {
// FIXME: Already done in Compilation *Driver::BuildCompilation
if (const Arg *A = Args.getLastArg(options::OPT_target))
TargetTriple = A->getValue();
llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
// GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
// -gnu* only, and we can not change this, so we have to detect that case as
// being the Hurd OS.
if (TargetTriple.contains("-unknown-gnu") || TargetTriple.contains("-pc-gnu"))
Target.setOSName("hurd");
// Handle Apple-specific options available here.
if (Target.isOSBinFormatMachO()) {
// If an explicit Darwin arch name is given, that trumps all.
if (!DarwinArchName.empty()) {
tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
return Target;
}
// Handle the Darwin '-arch' flag.
if (Arg *A = Args.getLastArg(options::OPT_arch)) {
StringRef ArchName = A->getValue();
tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
}
}
// Handle pseudo-target flags '-mlittle-endian'/'-EL' and
// '-mbig-endian'/'-EB'.
if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
options::OPT_mbig_endian)) {
if (A->getOption().matches(options::OPT_mlittle_endian)) {
llvm::Triple LE = Target.getLittleEndianArchVariant();
if (LE.getArch() != llvm::Triple::UnknownArch)
Target = std::move(LE);
} else {
llvm::Triple BE = Target.getBigEndianArchVariant();
if (BE.getArch() != llvm::Triple::UnknownArch)
Target = std::move(BE);
}
}
// Skip further flag support on OSes which don't support '-m32' or '-m64'.
if (Target.getArch() == llvm::Triple::tce ||
Target.getOS() == llvm::Triple::Minix)
return Target;
// On AIX, the env OBJECT_MODE may affect the resulting arch variant.
if (Target.isOSAIX()) {
if (Optional<std::string> ObjectModeValue =
llvm::sys::Process::GetEnv("OBJECT_MODE")) {
StringRef ObjectMode = *ObjectModeValue;
llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
if (ObjectMode.equals("64")) {
AT = Target.get64BitArchVariant().getArch();
} else if (ObjectMode.equals("32")) {
AT = Target.get32BitArchVariant().getArch();
} else {
D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
}
if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
Target.setArch(AT);
}
}
// Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
options::OPT_m32, options::OPT_m16);
if (A) {
llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
if (A->getOption().matches(options::OPT_m64)) {
AT = Target.get64BitArchVariant().getArch();
if (Target.getEnvironment() == llvm::Triple::GNUX32)
Target.setEnvironment(llvm::Triple::GNU);
else if (Target.getEnvironment() == llvm::Triple::MuslX32)
Target.setEnvironment(llvm::Triple::Musl);
} else if (A->getOption().matches(options::OPT_mx32) &&
Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
AT = llvm::Triple::x86_64;
if (Target.getEnvironment() == llvm::Triple::Musl)
Target.setEnvironment(llvm::Triple::MuslX32);
else
Target.setEnvironment(llvm::Triple::GNUX32);
} else if (A->getOption().matches(options::OPT_m32)) {
AT = Target.get32BitArchVariant().getArch();
if (Target.getEnvironment() == llvm::Triple::GNUX32)
Target.setEnvironment(llvm::Triple::GNU);
else if (Target.getEnvironment() == llvm::Triple::MuslX32)
Target.setEnvironment(llvm::Triple::Musl);
} else if (A->getOption().matches(options::OPT_m16) &&
Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
AT = llvm::Triple::x86;
Target.setEnvironment(llvm::Triple::CODE16);
}
if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) {
Target.setArch(AT);
if (Target.isWindowsGNUEnvironment())
toolchains::MinGW::fixTripleArch(D, Target, Args);
}
}
// Handle -miamcu flag.
if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
<< Target.str();
if (A && !A->getOption().matches(options::OPT_m32))
D.Diag(diag::err_drv_argument_not_allowed_with)
<< "-miamcu" << A->getBaseArg().getAsString(Args);
Target.setArch(llvm::Triple::x86);
Target.setArchName("i586");
Target.setEnvironment(llvm::Triple::UnknownEnvironment);
Target.setEnvironmentName("");
Target.setOS(llvm::Triple::ELFIAMCU);
Target.setVendor(llvm::Triple::UnknownVendor);
Target.setVendorName("intel");
}
// If target is MIPS adjust the target triple
// accordingly to provided ABI name.
A = Args.getLastArg(options::OPT_mabi_EQ);
if (A && Target.isMIPS()) {
StringRef ABIName = A->getValue();
if (ABIName == "32") {
Target = Target.get32BitArchVariant();
if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
Target.getEnvironment() == llvm::Triple::GNUABIN32)
Target.setEnvironment(llvm::Triple::GNU);
} else if (ABIName == "n32") {
Target = Target.get64BitArchVariant();
if (Target.getEnvironment() == llvm::Triple::GNU ||
Target.getEnvironment() == llvm::Triple::GNUABI64)
Target.setEnvironment(llvm::Triple::GNUABIN32);
} else if (ABIName == "64") {
Target = Target.get64BitArchVariant();
if (Target.getEnvironment() == llvm::Triple::GNU ||
Target.getEnvironment() == llvm::Triple::GNUABIN32)
Target.setEnvironment(llvm::Triple::GNUABI64);
}
}
// If target is RISC-V adjust the target triple according to
// provided architecture name
A = Args.getLastArg(options::OPT_march_EQ);
if (A && Target.isRISCV()) {
StringRef ArchName = A->getValue();
if (ArchName.startswith_insensitive("rv32"))
Target.setArch(llvm::Triple::riscv32);
else if (ArchName.startswith_insensitive("rv64"))
Target.setArch(llvm::Triple::riscv64);
}
return Target;
}
// Parse the LTO options and record the type of LTO compilation
// based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
// option occurs last.
static driver::LTOKind parseLTOMode(Driver &D, const llvm::opt::ArgList &Args,
OptSpecifier OptEq, OptSpecifier OptNeg) {
if (!Args.hasFlag(OptEq, OptNeg, false))
return LTOK_None;
const Arg *A = Args.getLastArg(OptEq);
StringRef LTOName = A->getValue();
driver::LTOKind LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
.Case("full", LTOK_Full)
.Case("thin", LTOK_Thin)
.Default(LTOK_Unknown);
if (LTOMode == LTOK_Unknown) {
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << A->getValue();
return LTOK_None;
}
return LTOMode;
}
// Parse the LTO options.
void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
LTOMode =
parseLTOMode(*this, Args, options::OPT_flto_EQ, options::OPT_fno_lto);
OffloadLTOMode = parseLTOMode(*this, Args, options::OPT_foffload_lto_EQ,
options::OPT_fno_offload_lto);
}
/// Compute the desired OpenMP runtime from the flags provided.
Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
if (A)
RuntimeName = A->getValue();
auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
.Case("libomp", OMPRT_OMP)
.Case("libgomp", OMPRT_GOMP)
.Case("libiomp5", OMPRT_IOMP5)
.Default(OMPRT_Unknown);
if (RT == OMPRT_Unknown) {
if (A)
Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << A->getValue();
else
// FIXME: We could use a nicer diagnostic here.
Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
}
return RT;
}
void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
InputList &Inputs) {
//
// CUDA/HIP
//
// We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
// or HIP type. However, mixed CUDA/HIP compilation is not supported.
bool IsCuda =
llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
return types::isCuda(I.first);
});
bool IsHIP =
llvm::any_of(Inputs,
[](std::pair<types::ID, const llvm::opt::Arg *> &I) {
return types::isHIP(I.first);
}) ||
C.getInputArgs().hasArg(options::OPT_hip_link);
if (IsCuda && IsHIP) {
Diag(clang::diag::err_drv_mix_cuda_hip);
return;
}
if (IsCuda) {
const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
const llvm::Triple &HostTriple = HostTC->getTriple();
StringRef DeviceTripleStr;
auto OFK = Action::OFK_Cuda;
DeviceTripleStr =
HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
llvm::Triple CudaTriple(DeviceTripleStr);
// Use the CUDA and host triples as the key into the ToolChains map,
// because the device toolchain we create depends on both.
auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
if (!CudaTC) {
CudaTC = std::make_unique<toolchains::CudaToolChain>(
*this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
}
C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
} else if (IsHIP) {
if (auto *OMPTargetArg =
C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
Diag(clang::diag::err_drv_unsupported_opt_for_language_mode)
<< OMPTargetArg->getSpelling() << "HIP";
return;
}
const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
const llvm::Triple &HostTriple = HostTC->getTriple();
auto OFK = Action::OFK_HIP;
llvm::Triple HIPTriple = getHIPOffloadTargetTriple();
// Use the HIP and host triples as the key into the ToolChains map,
// because the device toolchain we create depends on both.
auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
if (!HIPTC) {
HIPTC = std::make_unique<toolchains::HIPToolChain>(
*this, HIPTriple, *HostTC, C.getInputArgs());
}
C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
}
//
// OpenMP
//
// We need to generate an OpenMP toolchain if the user specified targets with
// the -fopenmp-targets option.
if (Arg *OpenMPTargets =
C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
if (OpenMPTargets->getNumValues()) {
// We expect that -fopenmp-targets is always used in conjunction with the
// option -fopenmp specifying a valid runtime with offloading support,
// i.e. libomp or libiomp.
bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
options::OPT_fopenmp, options::OPT_fopenmp_EQ,
options::OPT_fno_openmp, false);
if (HasValidOpenMPRuntime) {
OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs());
HasValidOpenMPRuntime =
OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
}
if (HasValidOpenMPRuntime) {
llvm::StringMap<const char *> FoundNormalizedTriples;
for (const char *Val : OpenMPTargets->getValues()) {
llvm::Triple TT(Val);
std::string NormalizedName = TT.normalize();
// Make sure we don't have a duplicate triple.
auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
if (Duplicate != FoundNormalizedTriples.end()) {
Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
<< Val << Duplicate->second;
continue;
}
// Store the current triple so that we can check for duplicates in the
// following iterations.
FoundNormalizedTriples[NormalizedName] = Val;
// If the specified target is invalid, emit a diagnostic.
if (TT.getArch() == llvm::Triple::UnknownArch)
Diag(clang::diag::err_drv_invalid_omp_target) << Val;
else {
const ToolChain *TC;
// Device toolchains have to be selected differently. They pair host
// and device in their implementation.
if (TT.isNVPTX() || TT.isAMDGCN()) {
const ToolChain *HostTC =
C.getSingleOffloadToolChain<Action::OFK_Host>();
assert(HostTC && "Host toolchain should be always defined.");
auto &DeviceTC =
ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
if (!DeviceTC) {
if (TT.isNVPTX())
DeviceTC = std::make_unique<toolchains::CudaToolChain>(
*this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
else if (TT.isAMDGCN())
DeviceTC =
std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
*this, TT, *HostTC, C.getInputArgs());
else
assert(DeviceTC && "Device toolchain not defined.");
}
TC = DeviceTC.get();
} else
TC = &getToolChain(C.getInputArgs(), TT);
C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
}
}
} else
Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
} else
Diag(clang::diag::warn_drv_empty_joined_argument)
<< OpenMPTargets->getAsString(C.getInputArgs());
}
//
// TODO: Add support for other offloading programming models here.
//
}
/// Looks the given directories for the specified file.
///
/// \param[out] FilePath File path, if the file was found.
/// \param[in] Dirs Directories used for the search.
/// \param[in] FileName Name of the file to search for.
/// \return True if file was found.
///
/// Looks for file specified by FileName sequentially in directories specified
/// by Dirs.
///
static bool searchForFile(SmallVectorImpl<char> &FilePath,
ArrayRef<StringRef> Dirs, StringRef FileName) {
SmallString<128> WPath;
for (const StringRef &Dir : Dirs) {
if (Dir.empty())
continue;
WPath.clear();
llvm::sys::path::append(WPath, Dir, FileName);
llvm::sys::path::native(WPath);
if (llvm::sys::fs::is_regular_file(WPath)) {
FilePath = std::move(WPath);
return true;
}
}
return false;
}
bool Driver::readConfigFile(StringRef FileName) {
// Try reading the given file.
SmallVector<const char *, 32> NewCfgArgs;
if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
Diag(diag::err_drv_cannot_read_config_file) << FileName;
return true;
}
// Read options from config file.
llvm::SmallString<128> CfgFileName(FileName);
llvm::sys::path::native(CfgFileName);
ConfigFile = std::string(CfgFileName);
bool ContainErrors;
CfgOptions = std::make_unique<InputArgList>(
ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
if (ContainErrors) {
CfgOptions.reset();
return true;
}
if (CfgOptions->hasArg(options::OPT_config)) {
CfgOptions.reset();
Diag(diag::err_drv_nested_config_file);
return true;
}
// Claim all arguments that come from a configuration file so that the driver
// does not warn on any that is unused.
for (Arg *A : *CfgOptions)
A->claim();
return false;
}
bool Driver::loadConfigFile() {
std::string CfgFileName;
bool FileSpecifiedExplicitly = false;
// Process options that change search path for config files.
if (CLOptions) {
if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
SmallString<128> CfgDir;
CfgDir.append(
CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
if (!CfgDir.empty()) {
if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
SystemConfigDir.clear();
else
SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
}
}
if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
SmallString<128> CfgDir;
CfgDir.append(
CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
if (!CfgDir.empty()) {
if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
UserConfigDir.clear();
else
UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
}
}
}
// First try to find config file specified in command line.
if (CLOptions) {
std::vector<std::string> ConfigFiles =
CLOptions->getAllArgValues(options::OPT_config);
if (ConfigFiles.size() > 1) {
if (!llvm::all_of(ConfigFiles, [ConfigFiles](const std::string &s) {
return s == ConfigFiles[0];
})) {
Diag(diag::err_drv_duplicate_config);
return true;
}
}
if (!ConfigFiles.empty()) {
CfgFileName = ConfigFiles.front();
assert(!CfgFileName.empty());
// If argument contains directory separator, treat it as a path to
// configuration file.
if (llvm::sys::path::has_parent_path(CfgFileName)) {
SmallString<128> CfgFilePath;
if (llvm::sys::path::is_relative(CfgFileName))
llvm::sys::fs::current_path(CfgFilePath);
llvm::sys::path::append(CfgFilePath, CfgFileName);
if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
return true;
}
return readConfigFile(CfgFilePath);
}
FileSpecifiedExplicitly = true;
}
}
// If config file is not specified explicitly, try to deduce configuration
// from executable name. For instance, an executable 'armv7l-clang' will
// search for config file 'armv7l-clang.cfg'.
if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix;
if (CfgFileName.empty())
return false;
// Determine architecture part of the file name, if it is present.
StringRef CfgFileArch = CfgFileName;
size_t ArchPrefixLen = CfgFileArch.find('-');
if (ArchPrefixLen == StringRef::npos)
ArchPrefixLen = CfgFileArch.size();
llvm::Triple CfgTriple;
CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
ArchPrefixLen = 0;
if (!StringRef(CfgFileName).endswith(".cfg"))
CfgFileName += ".cfg";
// If config file starts with architecture name and command line options
// redefine architecture (with options like -m32 -LE etc), try finding new
// config file with that architecture.
SmallString<128> FixedConfigFile;
size_t FixedArchPrefixLen = 0;
if (ArchPrefixLen) {
// Get architecture name from config file name like 'i386.cfg' or
// 'armv7l-clang.cfg'.
// Check if command line options changes effective triple.
llvm::Triple EffectiveTriple = computeTargetTriple(*this,
CfgTriple.getTriple(), *CLOptions);
if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
FixedConfigFile = EffectiveTriple.getArchName();
FixedArchPrefixLen = FixedConfigFile.size();
// Append the rest of original file name so that file name transforms
// like: i386-clang.cfg -> x86_64-clang.cfg.
if (ArchPrefixLen < CfgFileName.size())
FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
}
}
// Prepare list of directories where config file is searched for.
StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
// Try to find config file. First try file with corrected architecture.
llvm::SmallString<128> CfgFilePath;
if (!FixedConfigFile.empty()) {
if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
return readConfigFile(CfgFilePath);
// If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
FixedConfigFile.resize(FixedArchPrefixLen);
FixedConfigFile.append(".cfg");
if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
return readConfigFile(CfgFilePath);
}
// Then try original file name.
if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
return readConfigFile(CfgFilePath);
// Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
if (!ClangNameParts.ModeSuffix.empty() &&
!ClangNameParts.TargetPrefix.empty()) {
CfgFileName.assign(ClangNameParts.TargetPrefix);
CfgFileName.append(".cfg");
if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
return readConfigFile(CfgFilePath);
}
// Report error but only if config file was specified explicitly, by option
// --config. If it was deduced from executable name, it is not an error.
if (FileSpecifiedExplicitly) {
Diag(diag::err_drv_config_file_not_found) << CfgFileName;
for (const StringRef &SearchDir : CfgFileSearchDirs)
if (!SearchDir.empty())
Diag(diag::note_drv_config_file_searched_in) << SearchDir;
return true;
}
return false;
}
Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
llvm::PrettyStackTraceString CrashInfo("Compilation construction");
// FIXME: Handle environment options which affect driver behavior, somewhere
// (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
// We look for the driver mode option early, because the mode can affect
// how other options are parsed.
auto DriverMode = getDriverMode(ClangExecutable, ArgList.slice(1));
if (!DriverMode.empty())
setDriverMode(DriverMode);
// FIXME: What are we going to do with -V and -b?
// Arguments specified in command line.
bool ContainsError;
CLOptions = std::make_unique<InputArgList>(
ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
// Try parsing configuration file.
if (!ContainsError)
ContainsError = loadConfigFile();
bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
// All arguments, from both config file and command line.
InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
: std::move(*CLOptions));
// The args for config files or /clang: flags belong to different InputArgList
// objects than Args. This copies an Arg from one of those other InputArgLists
// to the ownership of Args.
auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
unsigned Index = Args.MakeIndex(Opt->getSpelling());
Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index),
Index, BaseArg);
Copy->getValues() = Opt->getValues();
if (Opt->isClaimed())
Copy->claim();
Copy->setOwnsValues(Opt->getOwnsValues());
Opt->setOwnsValues(false);
Args.append(Copy);
};
if (HasConfigFile)
for (auto *Opt : *CLOptions) {
if (Opt->getOption().matches(options::OPT_config))
continue;
const Arg *BaseArg = &Opt->getBaseArg();
if (BaseArg == Opt)
BaseArg = nullptr;
appendOneArg(Opt, BaseArg);
}
// In CL mode, look for any pass-through arguments
if (IsCLMode() && !ContainsError) {
SmallVector<const char *, 16> CLModePassThroughArgList;
for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
A->claim();
CLModePassThroughArgList.push_back(A->getValue());
}
if (!CLModePassThroughArgList.empty()) {
// Parse any pass through args using default clang processing rather
// than clang-cl processing.
auto CLModePassThroughOptions = std::make_unique<InputArgList>(
ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
if (!ContainsError)
for (auto *Opt : *CLModePassThroughOptions) {
appendOneArg(Opt, nullptr);
}
}
}
// Check for working directory option before accessing any files
if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
if (VFS->setCurrentWorkingDirectory(WD->getValue()))
Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
// FIXME: This stuff needs to go into the Compilation, not the driver.
bool CCCPrintPhases;
// Silence driver warnings if requested
Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
// -canonical-prefixes, -no-canonical-prefixes are used very early in main.
Args.ClaimAllArgs(options::OPT_canonical_prefixes);
Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
// f(no-)integated-cc1 is also used very early in main.
Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
// Ignore -pipe.
Args.ClaimAllArgs(options::OPT_pipe);
// Extract -ccc args.
//
// FIXME: We need to figure out where this behavior should live. Most of it
// should be outside in the client; the parts that aren't should have proper
// options, either by introducing new ones or by overloading gcc ones like -V
// or -b.
CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
CCCGenericGCCName = A->getValue();
GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
options::OPT_fno_crash_diagnostics,
!!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
// Process -fproc-stat-report options.
if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) {
CCPrintProcessStats = true;
CCPrintStatReportFilename = A->getValue();
}
if (Args.hasArg(options::OPT_fproc_stat_report))
CCPrintProcessStats = true;
// FIXME: TargetTriple is used by the target-prefixed calls to as/ld
// and getToolChain is const.
if (IsCLMode()) {
// clang-cl targets MSVC-style Win32.
llvm::Triple T(TargetTriple);
T.setOS(llvm::Triple::Win32);
T.setVendor(llvm::Triple::PC);
T.setEnvironment(llvm::Triple::MSVC);
T.setObjectFormat(llvm::Triple::COFF);
TargetTriple = T.str();
}
if (const Arg *A = Args.getLastArg(options::OPT_target))
TargetTriple = A->getValue();
if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
Dir = InstalledDir = A->getValue();
for (const Arg *A : Args.filtered(options::OPT_B)) {
A->claim();
PrefixDirs.push_back(A->getValue(0));
}
if (Optional<std::string> CompilerPathValue =
llvm::sys::Process::GetEnv("COMPILER_PATH")) {
StringRef CompilerPath = *CompilerPathValue;
while (!CompilerPath.empty()) {
std::pair<StringRef, StringRef> Split =
CompilerPath.split(llvm::sys::EnvPathSeparator);
PrefixDirs.push_back(std::string(Split.first));
CompilerPath = Split.second;
}
}
if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
SysRoot = A->getValue();
if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
DyldPrefix = A->getValue();
if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
ResourceDir = A->getValue();
if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
.Case("cwd", SaveTempsCwd)
.Case("obj", SaveTempsObj)
.Default(SaveTempsCwd);
}
setLTOMode(Args);
// Process -fembed-bitcode= flags.
if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
StringRef Name = A->getValue();
unsigned Model = llvm::StringSwitch<unsigned>(Name)
.Case("off", EmbedNone)
.Case("all", EmbedBitcode)
.Case("bitcode", EmbedBitcode)
.Case("marker", EmbedMarker)
.Default(~0U);
if (Model == ~0U) {
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
<< Name;
} else
BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
}
std::unique_ptr<llvm::opt::InputArgList> UArgs =
std::make_unique<InputArgList>(std::move(Args));
// Perform the default argument translations.
DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
// Owned by the host.
const ToolChain &TC = getToolChain(
*UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
// The compilation takes ownership of Args.
Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
ContainsError);
if (!HandleImmediateArgs(*C))
return C;
// Construct the list of inputs.
InputList Inputs;
BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
// Populate the tool chains for the offloading devices, if any.
CreateOffloadingDeviceToolChains(*C, Inputs);
// Construct the list of abstract actions to perform for this compilation. On
// MachO targets this uses the driver-driver and universal actions.
if (TC.getTriple().isOSBinFormatMachO())
BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
else
BuildActions(*C, C->getArgs(), Inputs, C->getActions());
if (CCCPrintPhases) {
PrintActions(*C);
return C;
}
BuildJobs(*C);
return C;
}
static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
llvm::opt::ArgStringList ASL;
for (const auto *A : Args) {
// Use user's original spelling of flags. For example, use
// `/source-charset:utf-8` instead of `-finput-charset=utf-8` if the user
// wrote the former.
while (A->getAlias())
A = A->getAlias();
A->render(Args, ASL);
}
for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
if (I != ASL.begin())
OS << ' ';
llvm::sys::printArg(OS, *I, true);
}
OS << '\n';
}
bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
SmallString<128> &CrashDiagDir) {
using namespace llvm::sys;
assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
"Only knows about .crash files on Darwin");
// The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
// (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
// clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
path::home_directory(CrashDiagDir);
if (CrashDiagDir.startswith("/var/root"))
CrashDiagDir = "/";
path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
int PID =
#if LLVM_ON_UNIX
getpid();
#else
0;
#endif
std::error_code EC;
fs::file_status FileStatus;
TimePoint<> LastAccessTime;
SmallString<128> CrashFilePath;
// Lookup the .crash files and get the one generated by a subprocess spawned
// by this driver invocation.
for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
File != FileEnd && !EC; File.increment(EC)) {
StringRef FileName = path::filename(File->path());
if (!FileName.startswith(Name))
continue;
if (fs::status(File->path(), FileStatus))
continue;
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
llvm::MemoryBuffer::getFile(File->path());
if (!CrashFile)
continue;
// The first line should start with "Process:", otherwise this isn't a real
// .crash file.
StringRef Data = CrashFile.get()->getBuffer();
if (!Data.startswith("Process:"))
continue;
// Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
size_t ParentProcPos = Data.find("Parent Process:");
if (ParentProcPos == StringRef::npos)
continue;
size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
if (LineEnd == StringRef::npos)
continue;
StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
int OpenBracket = -1, CloseBracket = -1;
for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
if (ParentProcess[i] == '[')
OpenBracket = i;
if (ParentProcess[i] == ']')
CloseBracket = i;
}
// Extract the parent process PID from the .crash file and check whether
// it matches this driver invocation pid.
int CrashPID;
if (OpenBracket < 0 || CloseBracket < 0 ||
ParentProcess.slice(OpenBracket + 1, CloseBracket)
.getAsInteger(10, CrashPID) || CrashPID != PID) {
continue;
}
// Found a .crash file matching the driver pid. To avoid getting an older
// and misleading crash file, continue looking for the most recent.
// FIXME: the driver can dispatch multiple cc1 invocations, leading to
// multiple crashes poiting to the same parent process. Since the driver
// does not collect pid information for the dispatched invocation there's
// currently no way to distinguish among them.
const auto FileAccessTime = FileStatus.getLastModificationTime();
if (FileAccessTime > LastAccessTime) {
CrashFilePath.assign(File->path());
LastAccessTime = FileAccessTime;
}
}
// If found, copy it over to the location of other reproducer files.
if (!CrashFilePath.empty()) {
EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
if (EC)
return false;
return true;
}
return false;
}
// When clang crashes, produce diagnostic information including the fully
// preprocessed source file(s). Request that the developer attach the
// diagnostic information to a bug report.
void Driver::generateCompilationDiagnostics(
Compilation &C, const Command &FailingCommand,
StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
return;
// Don't try to generate diagnostics for link or dsymutil jobs.
if (FailingCommand.getCreator().isLinkJob() ||
FailingCommand.getCreator().isDsymutilJob())
return;
// Print the version of the compiler.
PrintVersion(C, llvm::errs());
// Suppress driver output and emit preprocessor output to temp file.
CCGenDiagnostics = true;
// Save the original job command(s).
Command Cmd = FailingCommand;
// Keep track of whether we produce any errors while trying to produce
// preprocessed sources.
DiagnosticErrorTrap Trap(Diags);
// Suppress tool output.
C.initCompilationForDiagnostics();
// Construct the list of inputs.
InputList Inputs;
BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
bool IgnoreInput = false;
// Ignore input from stdin or any inputs that cannot be preprocessed.
// Check type first as not all linker inputs have a value.
if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
IgnoreInput = true;
} else if (!strcmp(it->second->getValue(), "-")) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating preprocessed source(s) - "
"ignoring input from stdin.";
IgnoreInput = true;
}
if (IgnoreInput) {
it = Inputs.erase(it);
ie = Inputs.end();
} else {
++it;
}
}
if (Inputs.empty()) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating preprocessed source(s) - "
"no preprocessable inputs.";
return;
}
// Don't attempt to generate preprocessed files if multiple -arch options are
// used, unless they're all duplicates.
llvm::StringSet<> ArchNames;
for (const Arg *A : C.getArgs()) {
if (A->getOption().matches(options::OPT_arch)) {
StringRef ArchName = A->getValue();
ArchNames.insert(ArchName);
}
}
if (ArchNames.size() > 1) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating preprocessed source(s) - cannot generate "
"preprocessed source with multiple -arch options.";
return;
}
// Construct the list of abstract actions to perform for this compilation. On
// Darwin OSes this uses the driver-driver and builds universal actions.
const ToolChain &TC = C.getDefaultToolChain();
if (TC.getTriple().isOSBinFormatMachO())
BuildUniversalActions(C, TC, Inputs);
else
BuildActions(C, C.getArgs(), Inputs, C.getActions());
BuildJobs(C);
// If there were errors building the compilation, quit now.
if (Trap.hasErrorOccurred()) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating preprocessed source(s).";
return;
}
// Generate preprocessed output.
SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
C.ExecuteJobs(C.getJobs(), FailingCommands);
// If any of the preprocessing commands failed, clean up and exit.
if (!FailingCommands.empty()) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating preprocessed source(s).";
return;
}
const ArgStringList &TempFiles = C.getTempFiles();
if (TempFiles.empty()) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating preprocessed source(s).";
return;
}
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "\n********************\n\n"
"PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
"Preprocessed source(s) and associated run script(s) are located at:";
SmallString<128> VFS;
SmallString<128> ReproCrashFilename;
for (const char *TempFile : TempFiles) {
Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
if (Report)
Report->TemporaryFiles.push_back(TempFile);
if (ReproCrashFilename.empty()) {
ReproCrashFilename = TempFile;
llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
}
if (StringRef(TempFile).endswith(".cache")) {
// In some cases (modules) we'll dump extra data to help with reproducing
// the crash into a directory next to the output.
VFS = llvm::sys::path::filename(TempFile);
llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
}
}
// Assume associated files are based off of the first temporary file.
CrashReportInfo CrashInfo(TempFiles[0], VFS);
llvm::SmallString<128> Script(CrashInfo.Filename);
llvm::sys::path::replace_extension(Script, "sh");
std::error_code EC;
llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
llvm::sys::fs::FA_Write,
llvm::sys::fs::OF_Text);
if (EC) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Error generating run script: " << Script << " " << EC.message();
} else {
ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
<< "# Driver args: ";
printArgList(ScriptOS, C.getInputArgs());
ScriptOS << "# Original command: ";
Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
if (!AdditionalInformation.empty())
ScriptOS << "\n# Additional information: " << AdditionalInformation
<< "\n";
if (Report)
Report->TemporaryFiles.push_back(std::string(Script.str()));
Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
}
// On darwin, provide information about the .crash diagnostic report.
if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
SmallString<128> CrashDiagDir;
if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< ReproCrashFilename.str();
} else { // Suggest a directory for the user to look for .crash files.
llvm::sys::path::append(CrashDiagDir, Name);
CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "Crash backtrace is located in";
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< CrashDiagDir.str();
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "(choose the .crash file that corresponds to your crash)";
}
}
for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file_EQ))
Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
Diag(clang::diag::note_drv_command_failed_diag_msg)
<< "\n\n********************";
}
void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
// Since commandLineFitsWithinSystemLimits() may underestimate system's
// capacity if the tool does not support response files, there is a chance/
// that things will just work without a response file, so we silently just
// skip it.
if (Cmd.getResponseFileSupport().ResponseKind ==
ResponseFileSupport::RF_None ||
llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
Cmd.getArguments()))
return;
std::string TmpName = GetTemporaryPath("response", "txt");
Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
}
int Driver::ExecuteCompilation(
Compilation &C,
SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
// Just print if -### was present.
if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
C.getJobs().Print(llvm::errs(), "\n", true);
return 0;
}
// If there were errors building the compilation, quit now.
if (Diags.hasErrorOccurred())
return 1;
// Set up response file names for each command, if necessary
for (auto &Job : C.getJobs())
setUpResponseFiles(C, Job);
C.ExecuteJobs(C.getJobs(), FailingCommands);
// If the command succeeded, we are done.
if (FailingCommands.empty())
return 0;
// Otherwise, remove result files and print extra information about abnormal
// failures.
int Res = 0;
for (const auto &CmdPair : FailingCommands) {
int CommandRes = CmdPair.first;
const Command *FailingCommand = CmdPair.second;
// Remove result files if we're not saving temps.
if (!isSaveTempsEnabled()) {
const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
C.CleanupFileMap(C.getResultFiles(), JA, true);
// Failure result files are valid unless we crashed.
if (CommandRes < 0)
C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
}
#if LLVM_ON_UNIX
// llvm/lib/Support/Unix/Signals.inc will exit with a special return code
// for SIGPIPE. Do not print diagnostics for this case.
if (CommandRes == EX_IOERR) {
Res = CommandRes;
continue;
}
#endif
// Print extra information about abnormal failures, if possible.
//
// This is ad-hoc, but we don't want to be excessively noisy. If the result
// status was 1, assume the command failed normally. In particular, if it
// was the compiler then assume it gave a reasonable error code. Failures
// in other tools are less common, and they generally have worse
// diagnostics, so always print the diagnostic there.
const Tool &FailingTool = FailingCommand->getCreator();
if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
// FIXME: See FIXME above regarding result code interpretation.
if (CommandRes < 0)
Diag(clang::diag::err_drv_command_signalled)
<< FailingTool.getShortName();
else
Diag(clang::diag::err_drv_command_failed)
<< FailingTool.getShortName() << CommandRes;
}
}
return Res;
}
void Driver::PrintHelp(bool ShowHidden) const {
unsigned IncludedFlagsBitmask;
unsigned ExcludedFlagsBitmask;
std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
getIncludeExcludeOptionFlagMasks(IsCLMode());
ExcludedFlagsBitmask |= options::NoDriverOption;
if (!ShowHidden)
ExcludedFlagsBitmask |= HelpHidden;
if (IsFlangMode())
IncludedFlagsBitmask |= options::FlangOption;
else
ExcludedFlagsBitmask |= options::FlangOnlyOption;
std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
getOpts().printHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
IncludedFlagsBitmask, ExcludedFlagsBitmask,
/*ShowAllAliases=*/false);
}
void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
if (IsFlangMode()) {
OS << getClangToolFullVersion("flang-new") << '\n';
} else {
// FIXME: The following handlers should use a callback mechanism, we don't
// know what the client would like to do.
OS << getClangFullVersion() << '\n';
}
const ToolChain &TC = C.getDefaultToolChain();
OS << "Target: " << TC.getTripleString() << '\n';
// Print the threading model.
if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
// Don't print if the ToolChain would have barfed on it already
if (TC.isThreadModelSupported(A->getValue()))
OS << "Thread model: " << A->getValue();
} else
OS << "Thread model: " << TC.getThreadModel();
OS << '\n';
// Print out the install directory.
OS << "InstalledDir: " << InstalledDir << '\n';
// If configuration file was used, print its path.
if (!ConfigFile.empty())
OS << "Configuration file: " << ConfigFile << '\n';
}
/// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
/// option.
static void PrintDiagnosticCategories(raw_ostream &OS) {
// Skip the empty category.
for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
++i)
OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
}
void Driver::HandleAutocompletions(StringRef PassedFlags) const {
if (PassedFlags == "")
return;
// Print out all options that start with a given argument. This is used for
// shell autocompletion.
std::vector<std::string> SuggestedCompletions;
std::vector<std::string> Flags;
unsigned int DisableFlags =
options::NoDriverOption | options::Unsupported | options::Ignored;
// Make sure that Flang-only options don't pollute the Clang output
// TODO: Make sure that Clang-only options don't pollute Flang output
if (!IsFlangMode())
DisableFlags |= options::FlangOnlyOption;
// Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
// because the latter indicates that the user put space before pushing tab
// which should end up in a file completion.
const bool HasSpace = PassedFlags.endswith(",");
// Parse PassedFlags by "," as all the command-line flags are passed to this
// function separated by ","
StringRef TargetFlags = PassedFlags;
while (TargetFlags != "") {
StringRef CurFlag;
std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
Flags.push_back(std::string(CurFlag));
}
// We want to show cc1-only options only when clang is invoked with -cc1 or
// -Xclang.
if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
DisableFlags &= ~options::NoDriverOption;
const llvm::opt::OptTable &Opts = getOpts();
StringRef Cur;
Cur = Flags.at(Flags.size() - 1);
StringRef Prev;
if (Flags.size() >= 2) {
Prev = Flags.at(Flags.size() - 2);
SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
}
if (SuggestedCompletions.empty())
SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
// If Flags were empty, it means the user typed `clang [tab]` where we should
// list all possible flags. If there was no value completion and the user
// pressed tab after a space, we should fall back to a file completion.
// We're printing a newline to be consistent with what we print at the end of
// this function.
if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
llvm::outs() << '\n';
return;
}
// When flag ends with '=' and there was no value completion, return empty
// string and fall back to the file autocompletion.
if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
// If the flag is in the form of "--autocomplete=-foo",
// we were requested to print out all option names that start with "-foo".
// For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags);
// We have to query the -W flags manually as they're not in the OptTable.
// TODO: Find a good way to add them to OptTable instead and them remove
// this code.
for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
if (S.startswith(Cur))
SuggestedCompletions.push_back(std::string(S));
}
// Sort the autocomplete candidates so that shells print them out in a
// deterministic order. We could sort in any way, but we chose
// case-insensitive sorting for consistency with the -help option
// which prints out options in the case-insensitive alphabetical order.
llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
if (int X = A.compare_insensitive(B))
return X < 0;
return A.compare(B) > 0;
});
llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
}
bool Driver::HandleImmediateArgs(const Compilation &C) {
// The order these options are handled in gcc is all over the place, but we
// don't expect inconsistencies w.r.t. that to matter in practice.
if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
return false;
}
if (C.getArgs().hasArg(options::OPT_dumpversion)) {
// Since -dumpversion is only implemented for pedantic GCC compatibility, we
// return an answer which matches our definition of __VERSION__.
llvm::outs() << CLANG_VERSION_STRING << "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
PrintDiagnosticCategories(llvm::outs());
return false;
}
if (C.getArgs().hasArg(options::OPT_help) ||
C.getArgs().hasArg(options::OPT__help_hidden)) {
PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
return false;
}
if (C.getArgs().hasArg(options::OPT__version)) {
// Follow gcc behavior and use stdout for --version and stderr for -v.
PrintVersion(C, llvm::outs());
return false;
}
if (C.getArgs().hasArg(options::OPT_v) ||
C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
PrintVersion(C, llvm::errs());
SuppressMissingInputWarning = true;
}
if (C.getArgs().hasArg(options::OPT_v)) {
if (!SystemConfigDir.empty())
llvm::errs() << "System configuration file directory: "
<< SystemConfigDir << "\n";
if (!UserConfigDir.empty())
llvm::errs() << "User configuration file directory: "
<< UserConfigDir << "\n";
}
const ToolChain &TC = C.getDefaultToolChain();
if (C.getArgs().hasArg(options::OPT_v))
TC.printVerboseInfo(llvm::errs());
if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
llvm::outs() << ResourceDir << '\n';
return false;
}
if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
llvm::outs() << "programs: =";
bool separator = false;
// Print -B and COMPILER_PATH.
for (const std::string &Path : PrefixDirs) {
if (separator)
llvm::outs() << llvm::sys::EnvPathSeparator;
llvm::outs() << Path;
separator = true;
}
for (const std::string &Path : TC.getProgramPaths()) {
if (separator)
llvm::outs() << llvm::sys::EnvPathSeparator;
llvm::outs() << Path;
separator = true;
}
llvm::outs() << "\n";
llvm::outs() << "libraries: =" << ResourceDir;
StringRef sysroot = C.getSysRoot();
for (const std::string &Path : TC.getFilePaths()) {
// Always print a separator. ResourceDir was the first item shown.
llvm::outs() << llvm::sys::EnvPathSeparator;
// Interpretation of leading '=' is needed only for NetBSD.
if (Path[0] == '=')
llvm::outs() << sysroot << Path.substr(1);
else
llvm::outs() << Path;
}
llvm::outs() << "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) {
std::string CandidateRuntimePath = TC.getRuntimePath();
if (getVFS().exists(CandidateRuntimePath))
llvm::outs() << CandidateRuntimePath << '\n';
else
llvm::outs() << TC.getCompilerRTPath() << '\n';
return false;
}
// FIXME: The following handlers should use a callback mechanism, we don't
// know what the client would like to do.
if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
return false;
}
if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
StringRef ProgName = A->getValue();
// Null program name cannot have a path.
if (! ProgName.empty())
llvm::outs() << GetProgramPath(ProgName, TC);
llvm::outs() << "\n";
return false;
}
if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
StringRef PassedFlags = A->getValue();
HandleAutocompletions(PassedFlags);
return false;
}
if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
RegisterEffectiveTriple TripleRAII(TC, Triple);
switch (RLT) {
case ToolChain::RLT_CompilerRT:
llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
break;
case ToolChain::RLT_Libgcc:
llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
break;
}
return false;
}
if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
for (const Multilib &Multilib : TC.getMultilibs())
llvm::outs() << Multilib << "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
const Multilib &Multilib = TC.getMultilib();
if (Multilib.gccSuffix().empty())
llvm::outs() << ".\n";
else {
StringRef Suffix(Multilib.gccSuffix());
assert(Suffix.front() == '/');
llvm::outs() << Suffix.substr(1) << "\n";
}
return false;
}
if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
llvm::outs() << TC.getTripleString() << "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
llvm::outs() << Triple.getTriple() << "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT_print_multiarch)) {
llvm::outs() << TC.getMultiarchTriple(*this, TC.getTriple(), SysRoot)
<< "\n";
return false;
}
if (C.getArgs().hasArg(options::OPT_print_targets)) {
llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
return false;
}
return true;
}
enum {
TopLevelAction = 0,
HeadSibAction = 1,
OtherSibAction = 2,
};
// Display an action graph human-readably. Action A is the "sink" node
// and latest-occuring action. Traversal is in pre-order, visiting the
// inputs to each action before printing the action itself.
static unsigned PrintActions1(const Compilation &C, Action *A,
std::map<Action *, unsigned> &Ids,
Twine Indent = {}, int Kind = TopLevelAction) {
if (Ids.count(A)) // A was already visited.
return Ids[A];
std::string str;
llvm::raw_string_ostream os(str);
auto getSibIndent = [](int K) -> Twine {
return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : "";
};
Twine SibIndent = Indent + getSibIndent(Kind);
int SibKind = HeadSibAction;
os << Action::getClassName(A->getKind()) << ", ";
if (InputAction *IA = dyn_cast<InputAction>(A)) {
os << "\"" << IA->getInputArg().getValue() << "\"";
} else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
os << '"' << BIA->getArchName() << '"' << ", {"
<< PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
} else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
bool IsFirst = true;
OA->doOnEachDependence(
[&](Action *A, const ToolChain *TC, const char *BoundArch) {
assert(TC && "Unknown host toolchain");
// E.g. for two CUDA device dependences whose bound arch is sm_20 and
// sm_35 this will generate:
// "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
// (nvptx64-nvidia-cuda:sm_35) {#ID}
if (!IsFirst)
os << ", ";
os << '"';
os << A->getOffloadingKindPrefix();
os << " (";
os << TC->getTriple().normalize();
if (BoundArch)
os << ":" << BoundArch;
os << ")";
os << '"';
os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
IsFirst = false;
SibKind = OtherSibAction;
});
} else {
const ActionList *AL = &A->getInputs();
if (AL->size()) {
const char *Prefix = "{";
for (Action *PreRequisite : *AL) {
os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
Prefix = ", ";
SibKind = OtherSibAction;
}
os << "}";
} else
os << "{}";
}
// Append offload info for all options other than the offloading action
// itself (e.g. (cuda-device, sm_20) or (cuda-host)).
std::string offload_str;
llvm::raw_string_ostream offload_os(offload_str);
if (!isa<OffloadAction>(A)) {
auto S = A->getOffloadingKindPrefix();
if (!S.empty()) {
offload_os << ", (" << S;
if (A->getOffloadingArch())
offload_os << ", " << A->getOffloadingArch();
offload_os << ")";
}
}
auto getSelfIndent = [](int K) -> Twine {
return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
};
unsigned Id = Ids.size();
Ids[A] = Id;
llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
<< types::getTypeName(A->getType()) << offload_os.str() << "\n";
return Id;
}
// Print the action graphs in a compilation C.
// For example "clang -c file1.c file2.c" is composed of two subgraphs.
void Driver::PrintActions(const Compilation &C) const {
std::map<Action *, unsigned> Ids;
for (Action *A : C.getActions())
PrintActions1(C, A, Ids);
}
/// Check whether the given input tree contains any compilation or
/// assembly actions.
static bool ContainsCompileOrAssembleAction(const Action *A) {
if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
isa<AssembleJobAction>(A))
return true;
for (const Action *Input : A->inputs())
if (ContainsCompileOrAssembleAction(Input))
return true;
return false;
}
void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
const InputList &BAInputs) const {
DerivedArgList &Args = C.getArgs();
ActionList &Actions = C.getActions();
llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
// Collect the list of architectures. Duplicates are allowed, but should only
// be handled once (in the order seen).
llvm::StringSet<> ArchNames;
SmallVector<const char *, 4> Archs;
for (Arg *A : Args) {
if (A->getOption().matches(options::OPT_arch)) {
// Validate the option here; we don't save the type here because its
// particular spelling may participate in other driver choices.
llvm::Triple::ArchType Arch =
tools::darwin::getArchTypeForMachOArchName(A->getValue());
if (Arch == llvm::Triple::UnknownArch) {
Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
continue;
}
A->claim();
if (ArchNames.insert(A->getValue()).second)
Archs.push_back(A->getValue());
}
}
// When there is no explicit arch for this platform, make sure we still bind
// the architecture (to the default) so that -Xarch_ is handled correctly.
if (!Archs.size())
Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
ActionList SingleActions;
BuildActions(C, Args, BAInputs, SingleActions);
// Add in arch bindings for every top level action, as well as lipo and
// dsymutil steps if needed.
for (Action* Act : SingleActions) {
// Make sure we can lipo this kind of output. If not (and it is an actual
// output) then we disallow, since we can't create an output file with the
// right name without overwriting it. We could remove this oddity by just
// changing the output names to include the arch, which would also fix
// -save-temps. Compatibility wins for now.
if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
<< types::getTypeName(Act->getType());
ActionList Inputs;
for (unsigned i = 0, e = Archs.size(); i != e; ++i)
Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
// Lipo if necessary, we do it this way because we need to set the arch flag
// so that -Xarch_ gets overwritten.
if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
Actions.append(Inputs.begin(), Inputs.end());
else
Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
// Handle debug info queries.
Arg *A = Args.getLastArg(options::OPT_g_Group);
bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
!A->getOption().matches(options::OPT_gstabs);
if ((enablesDebugInfo || willEmitRemarks(Args)) &&
ContainsCompileOrAssembleAction(Actions.back())) {
// Add a 'dsymutil' step if necessary, when debug info is enabled and we
// have a compile input. We need to run 'dsymutil' ourselves in such cases
// because the debug info will refer to a temporary object file which
// will be removed at the end of the compilation process.
if (Act->getType() == types::TY_Image) {
ActionList Inputs;
Inputs.push_back(Actions.back());
Actions.pop_back();
Actions.push_back(
C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
}
// Verify the debug info output.
if (Args.hasArg(options::OPT_verify_debug_info)) {
Action* LastAction = Actions.back();
Actions.pop_back();
Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
LastAction, types::TY_Nothing));
}
}
}
}
bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
types::ID Ty, bool TypoCorrect) const {
if (!getCheckInputsExist())
return true;
// stdin always exists.
if (Value == "-")
return true;
if (getVFS().exists(Value))
return true;
if (TypoCorrect) {
// Check if the filename is a typo for an option flag. OptTable thinks
// that all args that are not known options and that start with / are
// filenames, but e.g. `/diagnostic:caret` is more likely a typo for
// the option `/diagnostics:caret` than a reference to a file in the root
// directory.
unsigned IncludedFlagsBitmask;
unsigned ExcludedFlagsBitmask;
std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
getIncludeExcludeOptionFlagMasks(IsCLMode());
std::string Nearest;
if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
ExcludedFlagsBitmask) <= 1) {
Diag(clang::diag::err_drv_no_such_file_with_suggestion)
<< Value << Nearest;
return false;
}
}
// In CL mode, don't error on apparently non-existent linker inputs, because
// they can be influenced by linker flags the clang driver might not
// understand.
// Examples:
// - `clang-cl main.cc ole32.lib` in a a non-MSVC shell will make the driver
// module look for an MSVC installation in the registry. (We could ask
// the MSVCToolChain object if it can find `ole32.lib`, but the logic to
// look in the registry might move into lld-link in the future so that
// lld-link invocations in non-MSVC shells just work too.)
// - `clang-cl ... /link ...` can pass arbitrary flags to the linker,
// including /libpath:, which is used to find .lib and .obj files.
// So do not diagnose this on the driver level. Rely on the linker diagnosing
// it. (If we don't end up invoking the linker, this means we'll emit a
// "'linker' input unused [-Wunused-command-line-argument]" warning instead
// of an error.)
//
// Only do this skip after the typo correction step above. `/Brepo` is treated
// as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit
// an error if we have a flag that's within an edit distance of 1 from a
// flag. (Users can use `-Wl,` or `/linker` to launder the flag past the
// driver in the unlikely case they run into this.)
//
// Don't do this for inputs that start with a '/', else we'd pass options
// like /libpath: through to the linker silently.
//
// Emitting an error for linker inputs can also cause incorrect diagnostics
// with the gcc driver. The command
// clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o
// will make lld look for some/dir/file.o, while we will diagnose here that
// `/file.o` does not exist. However, configure scripts check if
// `clang /GR-` compiles without error to see if the compiler is cl.exe,
// so we can't downgrade diagnostics for `/GR-` from an error to a warning
// in cc mode. (We can in cl mode because cl.exe itself only warns on
// unknown flags.)
if (IsCLMode() && Ty == types::TY_Object && !Value.startswith("/"))
return true;
Diag(clang::diag::err_drv_no_such_file) << Value;
return false;
}
// Construct a the list of inputs and their types.
void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
InputList &Inputs) const {
const llvm::opt::OptTable &Opts = getOpts();
// Track the current user specified (-x) input. We also explicitly track the
// argument used to set the type; we only want to claim the type when we
// actually use it, so we warn about unused -x arguments.
types::ID InputType = types::TY_Nothing;
Arg *InputTypeArg = nullptr;
// The last /TC or /TP option sets the input type to C or C++ globally.
if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
options::OPT__SLASH_TP)) {
InputTypeArg = TCTP;
InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
? types::TY_C
: types::TY_CXX;
Arg *Previous = nullptr;
bool ShowNote = false;
for (Arg *A :
Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
if (Previous) {
Diag(clang::diag::warn_drv_overriding_flag_option)
<< Previous->getSpelling() << A->getSpelling();
ShowNote = true;
}
Previous = A;
}
if (ShowNote)
Diag(clang::diag::note_drv_t_option_is_global);
// No driver mode exposes -x and /TC or /TP; we don't support mixing them.
assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
}
for (Arg *A : Args) {
if (A->getOption().getKind() == Option::InputClass) {
const char *Value = A->getValue();
types::ID Ty = types::TY_INVALID;
// Infer the input type if necessary.
if (InputType == types::TY_Nothing) {
// If there was an explicit arg for this, claim it.
if (InputTypeArg)
InputTypeArg->claim();
// stdin must be handled specially.
if (memcmp(Value, "-", 2) == 0) {
if (IsFlangMode()) {
Ty = types::TY_Fortran;
} else {
// If running with -E, treat as a C input (this changes the
// builtin macros, for example). This may be overridden by -ObjC
// below.
//
// Otherwise emit an error but still use a valid type to avoid
// spurious errors (e.g., no inputs).
assert(!CCGenDiagnostics && "stdin produces no crash reproducer");
if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
: clang::diag::err_drv_unknown_stdin_type);
Ty = types::TY_C;
}
} else {
// Otherwise lookup by extension.
// Fallback is C if invoked as C preprocessor, C++ if invoked with
// clang-cl /E, or Object otherwise.
// We use a host hook here because Darwin at least has its own
// idea of what .s is.
if (const char *Ext = strrchr(Value, '.'))
Ty = TC.LookupTypeForExtension(Ext + 1);
if (Ty == types::TY_INVALID) {
if (IsCLMode() && (Args.hasArgNoClaim(options::OPT_E) || CCGenDiagnostics))
Ty = types::TY_CXX;
else if (CCCIsCPP() || CCGenDiagnostics)
Ty = types::TY_C;
else
Ty = types::TY_Object;
}
// If the driver is invoked as C++ compiler (like clang++ or c++) it
// should autodetect some input files as C++ for g++ compatibility.
if (CCCIsCXX()) {
types::ID OldTy = Ty;
Ty = types::lookupCXXTypeForCType(Ty);
if (Ty != OldTy)
Diag(clang::diag::warn_drv_treating_input_as_cxx)
<< getTypeName(OldTy) << getTypeName(Ty);
}
// If running with -fthinlto-index=, extensions that normally identify
// native object files actually identify LLVM bitcode files.
if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
Ty == types::TY_Object)
Ty = types::TY_LLVM_BC;
}
// -ObjC and -ObjC++ override the default language, but only for "source
// files". We just treat everything that isn't a linker input as a
// source file.
//
// FIXME: Clean this up if we move the phase sequence into the type.
if (Ty != types::TY_Object) {
if (Args.hasArg(options::OPT_ObjC))
Ty = types::TY_ObjC;
else if (Args.hasArg(options::OPT_ObjCXX))
Ty = types::TY_ObjCXX;
}
} else {
assert(InputTypeArg && "InputType set w/o InputTypeArg");
if (!InputTypeArg->getOption().matches(options::OPT_x)) {
// If emulating cl.exe, make sure that /TC and /TP don't affect input
// object files.
const char *Ext = strrchr(Value, '.');
if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
Ty = types::TY_Object;
}
if (Ty == types::TY_INVALID) {
Ty = InputType;
InputTypeArg->claim();
}
}
if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
Inputs.push_back(std::make_pair(Ty, A));
} else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
StringRef Value = A->getValue();
if (DiagnoseInputExistence(Args, Value, types::TY_C,
/*TypoCorrect=*/false)) {
Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
Inputs.push_back(std::make_pair(types::TY_C, InputArg));
}
A->claim();
} else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
StringRef Value = A->getValue();
if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
/*TypoCorrect=*/false)) {
Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
}
A->claim();
} else if (A->getOption().hasFlag(options::LinkerInput)) {
// Just treat as object type, we could make a special type for this if
// necessary.
Inputs.push_back(std::make_pair(types::TY_Object, A));
} else if (A->getOption().matches(options::OPT_x)) {
InputTypeArg = A;
InputType = types::lookupTypeForTypeSpecifier(A->getValue());
A->claim();
// Follow gcc behavior and treat as linker input for invalid -x
// options. Its not clear why we shouldn't just revert to unknown; but
// this isn't very important, we might as well be bug compatible.
if (!InputType) {
Diag(clang::diag::err_drv_unknown_language) << A->getValue();
InputType = types::TY_Object;
}
} else if (A->getOption().getID() == options::OPT_U) {
assert(A->getNumValues() == 1 && "The /U option has one value.");
StringRef Val = A->getValue(0);
if (Val.find_first_of("/\\") != StringRef::npos) {
// Warn about e.g. "/Users/me/myfile.c".
Diag(diag::warn_slash_u_filename) << Val;
Diag(diag::note_use_dashdash);
}
}
}
if (CCCIsCPP() && Inputs.empty()) {
// If called as standalone preprocessor, stdin is processed
// if no other input is present.
Arg *A = MakeInputArg(Args, Opts, "-");
Inputs.push_back(std::make_pair(types::TY_C, A));
}
}
namespace {
/// Provides a convenient interface for different programming models to generate
/// the required device actions.
class OffloadingActionBuilder final {
/// Flag used to trace errors in the builder.
bool IsValid = false;
/// The compilation that is using this builder.
Compilation &C;
/// Map between an input argument and the offload kinds used to process it.
std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
/// Builder interface. It doesn't build anything or keep any state.
class DeviceActionBuilder {
public:
typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
enum ActionBuilderReturnCode {
// The builder acted successfully on the current action.
ABRT_Success,
// The builder didn't have to act on the current action.
ABRT_Inactive,
// The builder was successful and requested the host action to not be
// generated.
ABRT_Ignore_Host,
};
protected:
/// Compilation associated with this builder.
Compilation &C;
/// Tool chains associated with this builder. The same programming
/// model may have associated one or more tool chains.
SmallVector<const ToolChain *, 2> ToolChains;
/// The derived arguments associated with this builder.
DerivedArgList &Args;
/// The inputs associated with this builder.
const Driver::InputList &Inputs;
/// The associated offload kind.
Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
public:
DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
const Driver::InputList &Inputs,
Action::OffloadKind AssociatedOffloadKind)
: C(C), Args(Args), Inputs(Inputs),
AssociatedOffloadKind(AssociatedOffloadKind) {}
virtual ~DeviceActionBuilder() {}
/// Fill up the array \a DA with all the device dependences that should be
/// added to the provided host action \a HostAction. By default it is
/// inactive.
virtual ActionBuilderReturnCode
getDeviceDependences(OffloadAction::DeviceDependences &DA,
phases::ID CurPhase, phases::ID FinalPhase,
PhasesTy &Phases) {
return ABRT_Inactive;
}
/// Update the state to include the provided host action \a HostAction as a
/// dependency of the current device action. By default it is inactive.
virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
return ABRT_Inactive;
}
/// Append top level actions generated by the builder.
virtual void appendTopLevelActions(ActionList &AL) {}
/// Append linker device actions generated by the builder.
virtual void appendLinkDeviceActions(ActionList &AL) {}
/// Append linker host action generated by the builder.
virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
/// Append linker actions generated by the builder.
virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
/// Initialize the builder. Return true if any initialization errors are
/// found.
virtual bool initialize() { return false; }
/// Return true if the builder can use bundling/unbundling.
virtual bool canUseBundlerUnbundler() const { return false; }
/// Return true if this builder is valid. We have a valid builder if we have
/// associated device tool chains.
bool isValid() { return !ToolChains.empty(); }
/// Return the associated offload kind.
Action::OffloadKind getAssociatedOffloadKind() {
return AssociatedOffloadKind;
}
};
/// Base class for CUDA/HIP action builder. It injects device code in
/// the host backend action.
class CudaActionBuilderBase : public DeviceActionBuilder {
protected:
/// Flags to signal if the user requested host-only or device-only
/// compilation.
bool CompileHostOnly = false;
bool CompileDeviceOnly = false;
bool EmitLLVM = false;
bool EmitAsm = false;
/// ID to identify each device compilation. For CUDA it is simply the
/// GPU arch string. For HIP it is either the GPU arch string or GPU
/// arch string plus feature strings delimited by a plus sign, e.g.
/// gfx906+xnack.
struct TargetID {
/// Target ID string which is persistent throughout the compilation.
const char *ID;
TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); }
TargetID(const char *ID) : ID(ID) {}
operator const char *() { return ID; }
operator StringRef() { return StringRef(ID); }
};
/// List of GPU architectures to use in this compilation.
SmallVector<TargetID, 4> GpuArchList;
/// The CUDA actions for the current input.
ActionList CudaDeviceActions;
/// The CUDA fat binary if it was generated for the current input.
Action *CudaFatBinary = nullptr;
/// Flag that is set to true if this builder acted on the current input.
bool IsActive = false;
/// Flag for -fgpu-rdc.
bool Relocatable = false;
/// Default GPU architecture if there's no one specified.
CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
/// Method to generate compilation unit ID specified by option
/// '-fuse-cuid='.
enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid };
UseCUIDKind UseCUID = CUID_Hash;
/// Compilation unit ID specified by option '-cuid='.
StringRef FixedCUID;
public:
CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
const Driver::InputList &Inputs,
Action::OffloadKind OFKind)
: DeviceActionBuilder(C, Args, Inputs, OFKind) {}
ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
// While generating code for CUDA, we only depend on the host input action
// to trigger the creation of all the CUDA device actions.
// If we are dealing with an input action, replicate it for each GPU
// architecture. If we are in host-only mode we return 'success' so that
// the host uses the CUDA offload kind.
if (auto *IA = dyn_cast<InputAction>(HostAction)) {
assert(!GpuArchList.empty() &&
"We should have at least one GPU architecture.");
// If the host input is not CUDA or HIP, we don't need to bother about
// this input.
if (!(IA->getType() == types::TY_CUDA ||
IA->getType() == types::TY_HIP ||
IA->getType() == types::TY_PP_HIP)) {
// The builder will ignore this input.
IsActive = false;
return ABRT_Inactive;
}
// Set the flag to true, so that the builder acts on the current input.
IsActive = true;
if (CompileHostOnly)
return ABRT_Success;
// Replicate inputs for each GPU architecture.
auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
: types::TY_CUDA_DEVICE;
std::string CUID = FixedCUID.str();
if (CUID.empty()) {
if (UseCUID == CUID_Random)
CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
/*LowerCase=*/true);
else if (UseCUID == CUID_Hash) {
llvm::MD5 Hasher;
llvm::MD5::MD5Result Hash;
SmallString<256> RealPath;
llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath,
/*expand_tilde=*/true);
Hasher.update(RealPath);
for (auto *A : Args) {
if (A->getOption().matches(options::OPT_INPUT))
continue;
Hasher.update(A->getAsString(Args));
}
Hasher.final(Hash);
CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
}
}
IA->setId(CUID);
for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
CudaDeviceActions.push_back(
C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId()));
}
return ABRT_Success;
}
// If this is an unbundling action use it as is for each CUDA toolchain.
if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
// If -fgpu-rdc is disabled, should not unbundle since there is no
// device code to link.
if (UA->getType() == types::TY_Object && !Relocatable)
return ABRT_Inactive;
CudaDeviceActions.clear();
auto *IA = cast<InputAction>(UA->getInputs().back());
std::string FileName = IA->getInputArg().getAsString(Args);
// Check if the type of the file is the same as the action. Do not
// unbundle it if it is not. Do not unbundle .so files, for example,
// which are not object files.
if (IA->getType() == types::TY_Object &&
(!llvm::sys::path::has_extension(FileName) ||
types::lookupTypeForExtension(
llvm::sys::path::extension(FileName).drop_front()) !=
types::TY_Object))
return ABRT_Inactive;
for (auto Arch : GpuArchList) {
CudaDeviceActions.push_back(UA);
UA->registerDependentActionInfo(ToolChains[0], Arch,
AssociatedOffloadKind);
}
return ABRT_Success;
}
return IsActive ? ABRT_Success : ABRT_Inactive;
}
void appendTopLevelActions(ActionList &AL) override {
// Utility to append actions to the top level list.
auto AddTopLevel = [&](Action *A, TargetID TargetID) {
OffloadAction::DeviceDependences Dep;
Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
};
// If we have a fat binary, add it to the list.
if (CudaFatBinary) {
AddTopLevel(CudaFatBinary, CudaArch::UNUSED);
CudaDeviceActions.c