| //===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the translation between an MLIR LLVM dialect module and |
| // the corresponding LLVMIR module. It only handles core LLVM IR operations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Target/LLVMIR/ModuleTranslation.h" |
| |
| #include "AttrKindDetail.h" |
| #include "DebugTranslation.h" |
| #include "LoopAnnotationTranslation.h" |
| #include "mlir/Analysis/TopologicalSortUtils.h" |
| #include "mlir/Dialect/DLTI/DLTI.h" |
| #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
| #include "mlir/Dialect/LLVMIR/LLVMInterfaces.h" |
| #include "mlir/Dialect/LLVMIR/Transforms/DIExpressionLegalization.h" |
| #include "mlir/Dialect/LLVMIR/Transforms/LegalizeForExport.h" |
| #include "mlir/Dialect/OpenMP/OpenMPDialect.h" |
| #include "mlir/Dialect/OpenMP/OpenMPInterfaces.h" |
| #include "mlir/IR/AttrTypeSubElements.h" |
| #include "mlir/IR/Attributes.h" |
| #include "mlir/IR/BuiltinOps.h" |
| #include "mlir/IR/BuiltinTypes.h" |
| #include "mlir/IR/DialectResourceBlobManager.h" |
| #include "mlir/IR/RegionGraphTraits.h" |
| #include "mlir/Support/LLVM.h" |
| #include "mlir/Target/LLVMIR/LLVMTranslationInterface.h" |
| #include "mlir/Target/LLVMIR/TypeToLLVM.h" |
| |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/TypeSwitch.h" |
| #include "llvm/Analysis/TargetFolder.h" |
| #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/IntrinsicsNVPTX.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Verifier.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/ModuleUtils.h" |
| #include <numeric> |
| #include <optional> |
| |
| #define DEBUG_TYPE "llvm-dialect-to-llvm-ir" |
| |
| using namespace mlir; |
| using namespace mlir::LLVM; |
| using namespace mlir::LLVM::detail; |
| |
| extern llvm::cl::opt<bool> UseNewDbgInfoFormat; |
| |
| #include "mlir/Dialect/LLVMIR/LLVMConversionEnumsToLLVM.inc" |
| |
| namespace { |
| /// A customized inserter for LLVM's IRBuilder that captures all LLVM IR |
| /// instructions that are created for future reference. |
| /// |
| /// This is intended to be used with the `CollectionScope` RAII object: |
| /// |
| /// llvm::IRBuilder<..., InstructionCapturingInserter> builder; |
| /// { |
| /// InstructionCapturingInserter::CollectionScope scope(builder); |
| /// // Call IRBuilder methods as usual. |
| /// |
| /// // This will return a list of all instructions created by the builder, |
| /// // in order of creation. |
| /// builder.getInserter().getCapturedInstructions(); |
| /// } |
| /// // This will return an empty list. |
| /// builder.getInserter().getCapturedInstructions(); |
| /// |
| /// The capturing functionality is _disabled_ by default for performance |
| /// consideration. It needs to be explicitly enabled, which is achieved by |
| /// creating a `CollectionScope`. |
| class InstructionCapturingInserter : public llvm::IRBuilderCallbackInserter { |
| public: |
| /// Constructs the inserter. |
| InstructionCapturingInserter() |
| : llvm::IRBuilderCallbackInserter([this](llvm::Instruction *instruction) { |
| if (LLVM_LIKELY(enabled)) |
| capturedInstructions.push_back(instruction); |
| }) {} |
| |
| /// Returns the list of LLVM IR instructions captured since the last cleanup. |
| ArrayRef<llvm::Instruction *> getCapturedInstructions() const { |
| return capturedInstructions; |
| } |
| |
| /// Clears the list of captured LLVM IR instructions. |
| void clearCapturedInstructions() { capturedInstructions.clear(); } |
| |
| /// RAII object enabling the capture of created LLVM IR instructions. |
| class CollectionScope { |
| public: |
| /// Creates the scope for the given inserter. |
| CollectionScope(llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing); |
| |
| /// Ends the scope. |
| ~CollectionScope(); |
| |
| ArrayRef<llvm::Instruction *> getCapturedInstructions() { |
| if (!inserter) |
| return {}; |
| return inserter->getCapturedInstructions(); |
| } |
| |
| private: |
| /// Back reference to the inserter. |
| InstructionCapturingInserter *inserter = nullptr; |
| |
| /// List of instructions in the inserter prior to this scope. |
| SmallVector<llvm::Instruction *> previouslyCollectedInstructions; |
| |
| /// Whether the inserter was enabled prior to this scope. |
| bool wasEnabled; |
| }; |
| |
| /// Enable or disable the capturing mechanism. |
| void setEnabled(bool enabled = true) { this->enabled = enabled; } |
| |
| private: |
| /// List of captured instructions. |
| SmallVector<llvm::Instruction *> capturedInstructions; |
| |
| /// Whether the collection is enabled. |
| bool enabled = false; |
| }; |
| |
| using CapturingIRBuilder = |
| llvm::IRBuilder<llvm::TargetFolder, InstructionCapturingInserter>; |
| } // namespace |
| |
| InstructionCapturingInserter::CollectionScope::CollectionScope( |
| llvm::IRBuilderBase &irBuilder, bool isBuilderCapturing) { |
| |
| if (!isBuilderCapturing) |
| return; |
| |
| auto &capturingIRBuilder = static_cast<CapturingIRBuilder &>(irBuilder); |
| inserter = &capturingIRBuilder.getInserter(); |
| wasEnabled = inserter->enabled; |
| if (wasEnabled) |
| previouslyCollectedInstructions.swap(inserter->capturedInstructions); |
| inserter->setEnabled(true); |
| } |
| |
| InstructionCapturingInserter::CollectionScope::~CollectionScope() { |
| if (!inserter) |
| return; |
| |
| previouslyCollectedInstructions.swap(inserter->capturedInstructions); |
| // If collection was enabled (likely in another, surrounding scope), keep |
| // the instructions collected in this scope. |
| if (wasEnabled) { |
| llvm::append_range(inserter->capturedInstructions, |
| previouslyCollectedInstructions); |
| } |
| inserter->setEnabled(wasEnabled); |
| } |
| |
| /// Translates the given data layout spec attribute to the LLVM IR data layout. |
| /// Only integer, float, pointer and endianness entries are currently supported. |
| static FailureOr<llvm::DataLayout> |
| translateDataLayout(DataLayoutSpecInterface attribute, |
| const DataLayout &dataLayout, |
| std::optional<Location> loc = std::nullopt) { |
| if (!loc) |
| loc = UnknownLoc::get(attribute.getContext()); |
| |
| // Translate the endianness attribute. |
| std::string llvmDataLayout; |
| llvm::raw_string_ostream layoutStream(llvmDataLayout); |
| for (DataLayoutEntryInterface entry : attribute.getEntries()) { |
| auto key = llvm::dyn_cast_if_present<StringAttr>(entry.getKey()); |
| if (!key) |
| continue; |
| if (key.getValue() == DLTIDialect::kDataLayoutEndiannessKey) { |
| auto value = cast<StringAttr>(entry.getValue()); |
| bool isLittleEndian = |
| value.getValue() == DLTIDialect::kDataLayoutEndiannessLittle; |
| layoutStream << "-" << (isLittleEndian ? "e" : "E"); |
| continue; |
| } |
| if (key.getValue() == DLTIDialect::kDataLayoutManglingModeKey) { |
| auto value = cast<StringAttr>(entry.getValue()); |
| layoutStream << "-m:" << value.getValue(); |
| continue; |
| } |
| if (key.getValue() == DLTIDialect::kDataLayoutProgramMemorySpaceKey) { |
| auto value = cast<IntegerAttr>(entry.getValue()); |
| uint64_t space = value.getValue().getZExtValue(); |
| // Skip the default address space. |
| if (space == 0) |
| continue; |
| layoutStream << "-P" << space; |
| continue; |
| } |
| if (key.getValue() == DLTIDialect::kDataLayoutGlobalMemorySpaceKey) { |
| auto value = cast<IntegerAttr>(entry.getValue()); |
| uint64_t space = value.getValue().getZExtValue(); |
| // Skip the default address space. |
| if (space == 0) |
| continue; |
| layoutStream << "-G" << space; |
| continue; |
| } |
| if (key.getValue() == DLTIDialect::kDataLayoutAllocaMemorySpaceKey) { |
| auto value = cast<IntegerAttr>(entry.getValue()); |
| uint64_t space = value.getValue().getZExtValue(); |
| // Skip the default address space. |
| if (space == 0) |
| continue; |
| layoutStream << "-A" << space; |
| continue; |
| } |
| if (key.getValue() == DLTIDialect::kDataLayoutStackAlignmentKey) { |
| auto value = cast<IntegerAttr>(entry.getValue()); |
| uint64_t alignment = value.getValue().getZExtValue(); |
| // Skip the default stack alignment. |
| if (alignment == 0) |
| continue; |
| layoutStream << "-S" << alignment; |
| continue; |
| } |
| emitError(*loc) << "unsupported data layout key " << key; |
| return failure(); |
| } |
| |
| // Go through the list of entries to check which types are explicitly |
| // specified in entries. Where possible, data layout queries are used instead |
| // of directly inspecting the entries. |
| for (DataLayoutEntryInterface entry : attribute.getEntries()) { |
| auto type = llvm::dyn_cast_if_present<Type>(entry.getKey()); |
| if (!type) |
| continue; |
| // Data layout for the index type is irrelevant at this point. |
| if (isa<IndexType>(type)) |
| continue; |
| layoutStream << "-"; |
| LogicalResult result = |
| llvm::TypeSwitch<Type, LogicalResult>(type) |
| .Case<IntegerType, Float16Type, Float32Type, Float64Type, |
| Float80Type, Float128Type>([&](Type type) -> LogicalResult { |
| if (auto intType = dyn_cast<IntegerType>(type)) { |
| if (intType.getSignedness() != IntegerType::Signless) |
| return emitError(*loc) |
| << "unsupported data layout for non-signless integer " |
| << intType; |
| layoutStream << "i"; |
| } else { |
| layoutStream << "f"; |
| } |
| uint64_t size = dataLayout.getTypeSizeInBits(type); |
| uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u; |
| uint64_t preferred = |
| dataLayout.getTypePreferredAlignment(type) * 8u; |
| layoutStream << size << ":" << abi; |
| if (abi != preferred) |
| layoutStream << ":" << preferred; |
| return success(); |
| }) |
| .Case([&](LLVMPointerType type) { |
| layoutStream << "p" << type.getAddressSpace() << ":"; |
| uint64_t size = dataLayout.getTypeSizeInBits(type); |
| uint64_t abi = dataLayout.getTypeABIAlignment(type) * 8u; |
| uint64_t preferred = |
| dataLayout.getTypePreferredAlignment(type) * 8u; |
| uint64_t index = *dataLayout.getTypeIndexBitwidth(type); |
| layoutStream << size << ":" << abi << ":" << preferred << ":" |
| << index; |
| return success(); |
| }) |
| .Default([loc](Type type) { |
| return emitError(*loc) |
| << "unsupported type in data layout: " << type; |
| }); |
| if (failed(result)) |
| return failure(); |
| } |
| StringRef layoutSpec(llvmDataLayout); |
| if (layoutSpec.starts_with("-")) |
| layoutSpec = layoutSpec.drop_front(); |
| |
| return llvm::DataLayout(layoutSpec); |
| } |
| |
| /// Builds a constant of a sequential LLVM type `type`, potentially containing |
| /// other sequential types recursively, from the individual constant values |
| /// provided in `constants`. `shape` contains the number of elements in nested |
| /// sequential types. Reports errors at `loc` and returns nullptr on error. |
| static llvm::Constant * |
| buildSequentialConstant(ArrayRef<llvm::Constant *> &constants, |
| ArrayRef<int64_t> shape, llvm::Type *type, |
| Location loc) { |
| if (shape.empty()) { |
| llvm::Constant *result = constants.front(); |
| constants = constants.drop_front(); |
| return result; |
| } |
| |
| llvm::Type *elementType; |
| if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { |
| elementType = arrayTy->getElementType(); |
| } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { |
| elementType = vectorTy->getElementType(); |
| } else { |
| emitError(loc) << "expected sequential LLVM types wrapping a scalar"; |
| return nullptr; |
| } |
| |
| SmallVector<llvm::Constant *, 8> nested; |
| nested.reserve(shape.front()); |
| for (int64_t i = 0; i < shape.front(); ++i) { |
| nested.push_back(buildSequentialConstant(constants, shape.drop_front(), |
| elementType, loc)); |
| if (!nested.back()) |
| return nullptr; |
| } |
| |
| if (shape.size() == 1 && type->isVectorTy()) |
| return llvm::ConstantVector::get(nested); |
| return llvm::ConstantArray::get( |
| llvm::ArrayType::get(elementType, shape.front()), nested); |
| } |
| |
| /// Returns the first non-sequential type nested in sequential types. |
| static llvm::Type *getInnermostElementType(llvm::Type *type) { |
| do { |
| if (auto *arrayTy = dyn_cast<llvm::ArrayType>(type)) { |
| type = arrayTy->getElementType(); |
| } else if (auto *vectorTy = dyn_cast<llvm::VectorType>(type)) { |
| type = vectorTy->getElementType(); |
| } else { |
| return type; |
| } |
| } while (true); |
| } |
| |
| /// Convert a dense elements attribute to an LLVM IR constant using its raw data |
| /// storage if possible. This supports elements attributes of tensor or vector |
| /// type and avoids constructing separate objects for individual values of the |
| /// innermost dimension. Constants for other dimensions are still constructed |
| /// recursively. Returns null if constructing from raw data is not supported for |
| /// this type, e.g., element type is not a power-of-two-sized primitive. Reports |
| /// other errors at `loc`. |
| static llvm::Constant * |
| convertDenseElementsAttr(Location loc, DenseElementsAttr denseElementsAttr, |
| llvm::Type *llvmType, |
| const ModuleTranslation &moduleTranslation) { |
| if (!denseElementsAttr) |
| return nullptr; |
| |
| llvm::Type *innermostLLVMType = getInnermostElementType(llvmType); |
| if (!llvm::ConstantDataSequential::isElementTypeCompatible(innermostLLVMType)) |
| return nullptr; |
| |
| ShapedType type = denseElementsAttr.getType(); |
| if (type.getNumElements() == 0) |
| return nullptr; |
| |
| // Check that the raw data size matches what is expected for the scalar size. |
| // TODO: in theory, we could repack the data here to keep constructing from |
| // raw data. |
| // TODO: we may also need to consider endianness when cross-compiling to an |
| // architecture where it is different. |
| int64_t elementByteSize = denseElementsAttr.getRawData().size() / |
| denseElementsAttr.getNumElements(); |
| if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits()) |
| return nullptr; |
| |
| // Compute the shape of all dimensions but the innermost. Note that the |
| // innermost dimension may be that of the vector element type. |
| bool hasVectorElementType = isa<VectorType>(type.getElementType()); |
| int64_t numAggregates = |
| denseElementsAttr.getNumElements() / |
| (hasVectorElementType ? 1 |
| : denseElementsAttr.getType().getShape().back()); |
| ArrayRef<int64_t> outerShape = type.getShape(); |
| if (!hasVectorElementType) |
| outerShape = outerShape.drop_back(); |
| |
| // Handle the case of vector splat, LLVM has special support for it. |
| if (denseElementsAttr.isSplat() && |
| (isa<VectorType>(type) || hasVectorElementType)) { |
| llvm::Constant *splatValue = LLVM::detail::getLLVMConstant( |
| innermostLLVMType, denseElementsAttr.getSplatValue<Attribute>(), loc, |
| moduleTranslation); |
| llvm::Constant *splatVector = |
| llvm::ConstantDataVector::getSplat(0, splatValue); |
| SmallVector<llvm::Constant *> constants(numAggregates, splatVector); |
| ArrayRef<llvm::Constant *> constantsRef = constants; |
| return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); |
| } |
| if (denseElementsAttr.isSplat()) |
| return nullptr; |
| |
| // In case of non-splat, create a constructor for the innermost constant from |
| // a piece of raw data. |
| std::function<llvm::Constant *(StringRef)> buildCstData; |
| if (isa<TensorType>(type)) { |
| auto vectorElementType = dyn_cast<VectorType>(type.getElementType()); |
| if (vectorElementType && vectorElementType.getRank() == 1) { |
| buildCstData = [&](StringRef data) { |
| return llvm::ConstantDataVector::getRaw( |
| data, vectorElementType.getShape().back(), innermostLLVMType); |
| }; |
| } else if (!vectorElementType) { |
| buildCstData = [&](StringRef data) { |
| return llvm::ConstantDataArray::getRaw(data, type.getShape().back(), |
| innermostLLVMType); |
| }; |
| } |
| } else if (isa<VectorType>(type)) { |
| buildCstData = [&](StringRef data) { |
| return llvm::ConstantDataVector::getRaw(data, type.getShape().back(), |
| innermostLLVMType); |
| }; |
| } |
| if (!buildCstData) |
| return nullptr; |
| |
| // Create innermost constants and defer to the default constant creation |
| // mechanism for other dimensions. |
| SmallVector<llvm::Constant *> constants; |
| int64_t aggregateSize = denseElementsAttr.getType().getShape().back() * |
| (innermostLLVMType->getScalarSizeInBits() / 8); |
| constants.reserve(numAggregates); |
| for (unsigned i = 0; i < numAggregates; ++i) { |
| StringRef data(denseElementsAttr.getRawData().data() + i * aggregateSize, |
| aggregateSize); |
| constants.push_back(buildCstData(data)); |
| } |
| |
| ArrayRef<llvm::Constant *> constantsRef = constants; |
| return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); |
| } |
| |
| /// Convert a dense resource elements attribute to an LLVM IR constant using its |
| /// raw data storage if possible. This supports elements attributes of tensor or |
| /// vector type and avoids constructing separate objects for individual values |
| /// of the innermost dimension. Constants for other dimensions are still |
| /// constructed recursively. Returns nullptr on failure and emits errors at |
| /// `loc`. |
| static llvm::Constant *convertDenseResourceElementsAttr( |
| Location loc, DenseResourceElementsAttr denseResourceAttr, |
| llvm::Type *llvmType, const ModuleTranslation &moduleTranslation) { |
| assert(denseResourceAttr && "expected non-null attribute"); |
| |
| llvm::Type *innermostLLVMType = getInnermostElementType(llvmType); |
| if (!llvm::ConstantDataSequential::isElementTypeCompatible( |
| innermostLLVMType)) { |
| emitError(loc, "no known conversion for innermost element type"); |
| return nullptr; |
| } |
| |
| ShapedType type = denseResourceAttr.getType(); |
| assert(type.getNumElements() > 0 && "Expected non-empty elements attribute"); |
| |
| AsmResourceBlob *blob = denseResourceAttr.getRawHandle().getBlob(); |
| if (!blob) { |
| emitError(loc, "resource does not exist"); |
| return nullptr; |
| } |
| |
| ArrayRef<char> rawData = blob->getData(); |
| |
| // Check that the raw data size matches what is expected for the scalar size. |
| // TODO: in theory, we could repack the data here to keep constructing from |
| // raw data. |
| // TODO: we may also need to consider endianness when cross-compiling to an |
| // architecture where it is different. |
| int64_t numElements = denseResourceAttr.getType().getNumElements(); |
| int64_t elementByteSize = rawData.size() / numElements; |
| if (8 * elementByteSize != innermostLLVMType->getScalarSizeInBits()) { |
| emitError(loc, "raw data size does not match element type size"); |
| return nullptr; |
| } |
| |
| // Compute the shape of all dimensions but the innermost. Note that the |
| // innermost dimension may be that of the vector element type. |
| bool hasVectorElementType = isa<VectorType>(type.getElementType()); |
| int64_t numAggregates = |
| numElements / (hasVectorElementType |
| ? 1 |
| : denseResourceAttr.getType().getShape().back()); |
| ArrayRef<int64_t> outerShape = type.getShape(); |
| if (!hasVectorElementType) |
| outerShape = outerShape.drop_back(); |
| |
| // Create a constructor for the innermost constant from a piece of raw data. |
| std::function<llvm::Constant *(StringRef)> buildCstData; |
| if (isa<TensorType>(type)) { |
| auto vectorElementType = dyn_cast<VectorType>(type.getElementType()); |
| if (vectorElementType && vectorElementType.getRank() == 1) { |
| buildCstData = [&](StringRef data) { |
| return llvm::ConstantDataVector::getRaw( |
| data, vectorElementType.getShape().back(), innermostLLVMType); |
| }; |
| } else if (!vectorElementType) { |
| buildCstData = [&](StringRef data) { |
| return llvm::ConstantDataArray::getRaw(data, type.getShape().back(), |
| innermostLLVMType); |
| }; |
| } |
| } else if (isa<VectorType>(type)) { |
| buildCstData = [&](StringRef data) { |
| return llvm::ConstantDataVector::getRaw(data, type.getShape().back(), |
| innermostLLVMType); |
| }; |
| } |
| if (!buildCstData) { |
| emitError(loc, "unsupported dense_resource type"); |
| return nullptr; |
| } |
| |
| // Create innermost constants and defer to the default constant creation |
| // mechanism for other dimensions. |
| SmallVector<llvm::Constant *> constants; |
| int64_t aggregateSize = denseResourceAttr.getType().getShape().back() * |
| (innermostLLVMType->getScalarSizeInBits() / 8); |
| constants.reserve(numAggregates); |
| for (unsigned i = 0; i < numAggregates; ++i) { |
| StringRef data(rawData.data() + i * aggregateSize, aggregateSize); |
| constants.push_back(buildCstData(data)); |
| } |
| |
| ArrayRef<llvm::Constant *> constantsRef = constants; |
| return buildSequentialConstant(constantsRef, outerShape, llvmType, loc); |
| } |
| |
| /// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`. |
| /// This currently supports integer, floating point, splat and dense element |
| /// attributes and combinations thereof. Also, an array attribute with two |
| /// elements is supported to represent a complex constant. In case of error, |
| /// report it to `loc` and return nullptr. |
| llvm::Constant *mlir::LLVM::detail::getLLVMConstant( |
| llvm::Type *llvmType, Attribute attr, Location loc, |
| const ModuleTranslation &moduleTranslation) { |
| if (!attr) |
| return llvm::UndefValue::get(llvmType); |
| if (auto *structType = dyn_cast<::llvm::StructType>(llvmType)) { |
| auto arrayAttr = dyn_cast<ArrayAttr>(attr); |
| if (!arrayAttr) { |
| emitError(loc, "expected an array attribute for a struct constant"); |
| return nullptr; |
| } |
| SmallVector<llvm::Constant *> structElements; |
| structElements.reserve(structType->getNumElements()); |
| for (auto [elemType, elemAttr] : |
| zip_equal(structType->elements(), arrayAttr)) { |
| llvm::Constant *element = |
| getLLVMConstant(elemType, elemAttr, loc, moduleTranslation); |
| if (!element) |
| return nullptr; |
| structElements.push_back(element); |
| } |
| return llvm::ConstantStruct::get(structType, structElements); |
| } |
| // For integer types, we allow a mismatch in sizes as the index type in |
| // MLIR might have a different size than the index type in the LLVM module. |
| if (auto intAttr = dyn_cast<IntegerAttr>(attr)) |
| return llvm::ConstantInt::get( |
| llvmType, |
| intAttr.getValue().sextOrTrunc(llvmType->getIntegerBitWidth())); |
| if (auto floatAttr = dyn_cast<FloatAttr>(attr)) { |
| const llvm::fltSemantics &sem = floatAttr.getValue().getSemantics(); |
| // Special case for 8-bit floats, which are represented by integers due to |
| // the lack of native fp8 types in LLVM at the moment. Additionally, handle |
| // targets (like AMDGPU) that don't implement bfloat and convert all bfloats |
| // to i16. |
| unsigned floatWidth = APFloat::getSizeInBits(sem); |
| if (llvmType->isIntegerTy(floatWidth)) |
| return llvm::ConstantInt::get(llvmType, |
| floatAttr.getValue().bitcastToAPInt()); |
| if (llvmType != |
| llvm::Type::getFloatingPointTy(llvmType->getContext(), |
| floatAttr.getValue().getSemantics())) { |
| emitError(loc, "FloatAttr does not match expected type of the constant"); |
| return nullptr; |
| } |
| return llvm::ConstantFP::get(llvmType, floatAttr.getValue()); |
| } |
| if (auto funcAttr = dyn_cast<FlatSymbolRefAttr>(attr)) |
| return llvm::ConstantExpr::getBitCast( |
| moduleTranslation.lookupFunction(funcAttr.getValue()), llvmType); |
| if (auto splatAttr = dyn_cast<SplatElementsAttr>(attr)) { |
| llvm::Type *elementType; |
| uint64_t numElements; |
| bool isScalable = false; |
| if (auto *arrayTy = dyn_cast<llvm::ArrayType>(llvmType)) { |
| elementType = arrayTy->getElementType(); |
| numElements = arrayTy->getNumElements(); |
| } else if (auto *fVectorTy = dyn_cast<llvm::FixedVectorType>(llvmType)) { |
| elementType = fVectorTy->getElementType(); |
| numElements = fVectorTy->getNumElements(); |
| } else if (auto *sVectorTy = dyn_cast<llvm::ScalableVectorType>(llvmType)) { |
| elementType = sVectorTy->getElementType(); |
| numElements = sVectorTy->getMinNumElements(); |
| isScalable = true; |
| } else { |
| llvm_unreachable("unrecognized constant vector type"); |
| } |
| // Splat value is a scalar. Extract it only if the element type is not |
| // another sequence type. The recursion terminates because each step removes |
| // one outer sequential type. |
| bool elementTypeSequential = |
| isa<llvm::ArrayType, llvm::VectorType>(elementType); |
| llvm::Constant *child = getLLVMConstant( |
| elementType, |
| elementTypeSequential ? splatAttr |
| : splatAttr.getSplatValue<Attribute>(), |
| loc, moduleTranslation); |
| if (!child) |
| return nullptr; |
| if (llvmType->isVectorTy()) |
| return llvm::ConstantVector::getSplat( |
| llvm::ElementCount::get(numElements, /*Scalable=*/isScalable), child); |
| if (llvmType->isArrayTy()) { |
| auto *arrayType = llvm::ArrayType::get(elementType, numElements); |
| if (child->isZeroValue()) { |
| return llvm::ConstantAggregateZero::get(arrayType); |
| } else { |
| if (llvm::ConstantDataSequential::isElementTypeCompatible( |
| elementType)) { |
| // TODO: Handle all compatible types. This code only handles integer. |
| if (isa<llvm::IntegerType>(elementType)) { |
| if (llvm::ConstantInt *ci = dyn_cast<llvm::ConstantInt>(child)) { |
| if (ci->getBitWidth() == 8) { |
| SmallVector<int8_t> constants(numElements, ci->getZExtValue()); |
| return llvm::ConstantDataArray::get(elementType->getContext(), |
| constants); |
| } |
| if (ci->getBitWidth() == 16) { |
| SmallVector<int16_t> constants(numElements, ci->getZExtValue()); |
| return llvm::ConstantDataArray::get(elementType->getContext(), |
| constants); |
| } |
| if (ci->getBitWidth() == 32) { |
| SmallVector<int32_t> constants(numElements, ci->getZExtValue()); |
| return llvm::ConstantDataArray::get(elementType->getContext(), |
| constants); |
| } |
| if (ci->getBitWidth() == 64) { |
| SmallVector<int64_t> constants(numElements, ci->getZExtValue()); |
| return llvm::ConstantDataArray::get(elementType->getContext(), |
| constants); |
| } |
| } |
| } |
| } |
| // std::vector is used here to accomodate large number of elements that |
| // exceed SmallVector capacity. |
| std::vector<llvm::Constant *> constants(numElements, child); |
| return llvm::ConstantArray::get(arrayType, constants); |
| } |
| } |
| } |
| |
| // Try using raw elements data if possible. |
| if (llvm::Constant *result = |
| convertDenseElementsAttr(loc, dyn_cast<DenseElementsAttr>(attr), |
| llvmType, moduleTranslation)) { |
| return result; |
| } |
| |
| if (auto denseResourceAttr = dyn_cast<DenseResourceElementsAttr>(attr)) { |
| return convertDenseResourceElementsAttr(loc, denseResourceAttr, llvmType, |
| moduleTranslation); |
| } |
| |
| // Fall back to element-by-element construction otherwise. |
| if (auto elementsAttr = dyn_cast<ElementsAttr>(attr)) { |
| assert(elementsAttr.getShapedType().hasStaticShape()); |
| assert(!elementsAttr.getShapedType().getShape().empty() && |
| "unexpected empty elements attribute shape"); |
| |
| SmallVector<llvm::Constant *, 8> constants; |
| constants.reserve(elementsAttr.getNumElements()); |
| llvm::Type *innermostType = getInnermostElementType(llvmType); |
| for (auto n : elementsAttr.getValues<Attribute>()) { |
| constants.push_back( |
| getLLVMConstant(innermostType, n, loc, moduleTranslation)); |
| if (!constants.back()) |
| return nullptr; |
| } |
| ArrayRef<llvm::Constant *> constantsRef = constants; |
| llvm::Constant *result = buildSequentialConstant( |
| constantsRef, elementsAttr.getShapedType().getShape(), llvmType, loc); |
| assert(constantsRef.empty() && "did not consume all elemental constants"); |
| return result; |
| } |
| |
| if (auto stringAttr = dyn_cast<StringAttr>(attr)) { |
| return llvm::ConstantDataArray::get( |
| moduleTranslation.getLLVMContext(), |
| ArrayRef<char>{stringAttr.getValue().data(), |
| stringAttr.getValue().size()}); |
| } |
| emitError(loc, "unsupported constant value"); |
| return nullptr; |
| } |
| |
| ModuleTranslation::ModuleTranslation(Operation *module, |
| std::unique_ptr<llvm::Module> llvmModule) |
| : mlirModule(module), llvmModule(std::move(llvmModule)), |
| debugTranslation( |
| std::make_unique<DebugTranslation>(module, *this->llvmModule)), |
| loopAnnotationTranslation(std::make_unique<LoopAnnotationTranslation>( |
| *this, *this->llvmModule)), |
| typeTranslator(this->llvmModule->getContext()), |
| iface(module->getContext()) { |
| assert(satisfiesLLVMModule(mlirModule) && |
| "mlirModule should honor LLVM's module semantics."); |
| } |
| |
| ModuleTranslation::~ModuleTranslation() { |
| if (ompBuilder) |
| ompBuilder->finalize(); |
| } |
| |
| void ModuleTranslation::forgetMapping(Region ®ion) { |
| SmallVector<Region *> toProcess; |
| toProcess.push_back(®ion); |
| while (!toProcess.empty()) { |
| Region *current = toProcess.pop_back_val(); |
| for (Block &block : *current) { |
| blockMapping.erase(&block); |
| for (Value arg : block.getArguments()) |
| valueMapping.erase(arg); |
| for (Operation &op : block) { |
| for (Value value : op.getResults()) |
| valueMapping.erase(value); |
| if (op.hasSuccessors()) |
| branchMapping.erase(&op); |
| if (isa<LLVM::GlobalOp>(op)) |
| globalsMapping.erase(&op); |
| if (isa<LLVM::AliasOp>(op)) |
| aliasesMapping.erase(&op); |
| if (isa<LLVM::CallOp>(op)) |
| callMapping.erase(&op); |
| llvm::append_range( |
| toProcess, |
| llvm::map_range(op.getRegions(), [](Region &r) { return &r; })); |
| } |
| } |
| } |
| } |
| |
| /// Get the SSA value passed to the current block from the terminator operation |
| /// of its predecessor. |
| static Value getPHISourceValue(Block *current, Block *pred, |
| unsigned numArguments, unsigned index) { |
| Operation &terminator = *pred->getTerminator(); |
| if (isa<LLVM::BrOp>(terminator)) |
| return terminator.getOperand(index); |
| |
| #ifndef NDEBUG |
| llvm::SmallPtrSet<Block *, 4> seenSuccessors; |
| for (unsigned i = 0, e = terminator.getNumSuccessors(); i < e; ++i) { |
| Block *successor = terminator.getSuccessor(i); |
| auto branch = cast<BranchOpInterface>(terminator); |
| SuccessorOperands successorOperands = branch.getSuccessorOperands(i); |
| assert( |
| (!seenSuccessors.contains(successor) || successorOperands.empty()) && |
| "successors with arguments in LLVM branches must be different blocks"); |
| seenSuccessors.insert(successor); |
| } |
| #endif |
| |
| // For instructions that branch based on a condition value, we need to take |
| // the operands for the branch that was taken. |
| if (auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator)) { |
| // For conditional branches, we take the operands from either the "true" or |
| // the "false" branch. |
| return condBranchOp.getSuccessor(0) == current |
| ? condBranchOp.getTrueDestOperands()[index] |
| : condBranchOp.getFalseDestOperands()[index]; |
| } |
| |
| if (auto switchOp = dyn_cast<LLVM::SwitchOp>(terminator)) { |
| // For switches, we take the operands from either the default case, or from |
| // the case branch that was taken. |
| if (switchOp.getDefaultDestination() == current) |
| return switchOp.getDefaultOperands()[index]; |
| for (const auto &i : llvm::enumerate(switchOp.getCaseDestinations())) |
| if (i.value() == current) |
| return switchOp.getCaseOperands(i.index())[index]; |
| } |
| |
| if (auto invokeOp = dyn_cast<LLVM::InvokeOp>(terminator)) { |
| return invokeOp.getNormalDest() == current |
| ? invokeOp.getNormalDestOperands()[index] |
| : invokeOp.getUnwindDestOperands()[index]; |
| } |
| |
| llvm_unreachable( |
| "only branch, switch or invoke operations can be terminators " |
| "of a block that has successors"); |
| } |
| |
| /// Connect the PHI nodes to the results of preceding blocks. |
| void mlir::LLVM::detail::connectPHINodes(Region ®ion, |
| const ModuleTranslation &state) { |
| // Skip the first block, it cannot be branched to and its arguments correspond |
| // to the arguments of the LLVM function. |
| for (Block &bb : llvm::drop_begin(region)) { |
| llvm::BasicBlock *llvmBB = state.lookupBlock(&bb); |
| auto phis = llvmBB->phis(); |
| auto numArguments = bb.getNumArguments(); |
| assert(numArguments == std::distance(phis.begin(), phis.end())); |
| for (auto [index, phiNode] : llvm::enumerate(phis)) { |
| for (auto *pred : bb.getPredecessors()) { |
| // Find the LLVM IR block that contains the converted terminator |
| // instruction and use it in the PHI node. Note that this block is not |
| // necessarily the same as state.lookupBlock(pred), some operations |
| // (in particular, OpenMP operations using OpenMPIRBuilder) may have |
| // split the blocks. |
| llvm::Instruction *terminator = |
| state.lookupBranch(pred->getTerminator()); |
| assert(terminator && "missing the mapping for a terminator"); |
| phiNode.addIncoming(state.lookupValue(getPHISourceValue( |
| &bb, pred, numArguments, index)), |
| terminator->getParent()); |
| } |
| } |
| } |
| } |
| |
| llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall( |
| llvm::IRBuilderBase &builder, llvm::Intrinsic::ID intrinsic, |
| ArrayRef<llvm::Value *> args, ArrayRef<llvm::Type *> tys) { |
| llvm::Module *module = builder.GetInsertBlock()->getModule(); |
| llvm::Function *fn = |
| llvm::Intrinsic::getOrInsertDeclaration(module, intrinsic, tys); |
| return builder.CreateCall(fn, args); |
| } |
| |
| llvm::CallInst *mlir::LLVM::detail::createIntrinsicCall( |
| llvm::IRBuilderBase &builder, ModuleTranslation &moduleTranslation, |
| Operation *intrOp, llvm::Intrinsic::ID intrinsic, unsigned numResults, |
| ArrayRef<unsigned> overloadedResults, ArrayRef<unsigned> overloadedOperands, |
| ArrayRef<unsigned> immArgPositions, |
| ArrayRef<StringLiteral> immArgAttrNames) { |
| assert(immArgPositions.size() == immArgAttrNames.size() && |
| "LLVM `immArgPositions` and MLIR `immArgAttrNames` should have equal " |
| "length"); |
| |
| SmallVector<llvm::OperandBundleDef> opBundles; |
| size_t numOpBundleOperands = 0; |
| auto opBundleSizesAttr = cast_if_present<DenseI32ArrayAttr>( |
| intrOp->getAttr(LLVMDialect::getOpBundleSizesAttrName())); |
| auto opBundleTagsAttr = cast_if_present<ArrayAttr>( |
| intrOp->getAttr(LLVMDialect::getOpBundleTagsAttrName())); |
| |
| if (opBundleSizesAttr && opBundleTagsAttr) { |
| ArrayRef<int> opBundleSizes = opBundleSizesAttr.asArrayRef(); |
| assert(opBundleSizes.size() == opBundleTagsAttr.size() && |
| "operand bundles and tags do not match"); |
| |
| numOpBundleOperands = |
| std::accumulate(opBundleSizes.begin(), opBundleSizes.end(), size_t(0)); |
| assert(numOpBundleOperands <= intrOp->getNumOperands() && |
| "operand bundle operands is more than the number of operands"); |
| |
| ValueRange operands = intrOp->getOperands().take_back(numOpBundleOperands); |
| size_t nextOperandIdx = 0; |
| opBundles.reserve(opBundleSizesAttr.size()); |
| |
| for (auto [opBundleTagAttr, bundleSize] : |
| llvm::zip(opBundleTagsAttr, opBundleSizes)) { |
| auto bundleTag = cast<StringAttr>(opBundleTagAttr).str(); |
| auto bundleOperands = moduleTranslation.lookupValues( |
| operands.slice(nextOperandIdx, bundleSize)); |
| opBundles.emplace_back(std::move(bundleTag), std::move(bundleOperands)); |
| nextOperandIdx += bundleSize; |
| } |
| } |
| |
| // Map operands and attributes to LLVM values. |
| auto opOperands = intrOp->getOperands().drop_back(numOpBundleOperands); |
| auto operands = moduleTranslation.lookupValues(opOperands); |
| SmallVector<llvm::Value *> args(immArgPositions.size() + operands.size()); |
| for (auto [immArgPos, immArgName] : |
| llvm::zip(immArgPositions, immArgAttrNames)) { |
| auto attr = llvm::cast<TypedAttr>(intrOp->getAttr(immArgName)); |
| assert(attr.getType().isIntOrFloat() && "expected int or float immarg"); |
| auto *type = moduleTranslation.convertType(attr.getType()); |
| args[immArgPos] = LLVM::detail::getLLVMConstant( |
| type, attr, intrOp->getLoc(), moduleTranslation); |
| } |
| unsigned opArg = 0; |
| for (auto &arg : args) { |
| if (!arg) |
| arg = operands[opArg++]; |
| } |
| |
| // Resolve overloaded intrinsic declaration. |
| SmallVector<llvm::Type *> overloadedTypes; |
| for (unsigned overloadedResultIdx : overloadedResults) { |
| if (numResults > 1) { |
| // More than one result is mapped to an LLVM struct. |
| overloadedTypes.push_back(moduleTranslation.convertType( |
| llvm::cast<LLVM::LLVMStructType>(intrOp->getResult(0).getType()) |
| .getBody()[overloadedResultIdx])); |
| } else { |
| overloadedTypes.push_back( |
| moduleTranslation.convertType(intrOp->getResult(0).getType())); |
| } |
| } |
| for (unsigned overloadedOperandIdx : overloadedOperands) |
| overloadedTypes.push_back(args[overloadedOperandIdx]->getType()); |
| llvm::Module *module = builder.GetInsertBlock()->getModule(); |
| llvm::Function *llvmIntr = llvm::Intrinsic::getOrInsertDeclaration( |
| module, intrinsic, overloadedTypes); |
| |
| return builder.CreateCall(llvmIntr, args, opBundles); |
| } |
| |
| /// Given a single MLIR operation, create the corresponding LLVM IR operation |
| /// using the `builder`. |
| LogicalResult ModuleTranslation::convertOperation(Operation &op, |
| llvm::IRBuilderBase &builder, |
| bool recordInsertions) { |
| const LLVMTranslationDialectInterface *opIface = iface.getInterfaceFor(&op); |
| if (!opIface) |
| return op.emitError("cannot be converted to LLVM IR: missing " |
| "`LLVMTranslationDialectInterface` registration for " |
| "dialect for op: ") |
| << op.getName(); |
| |
| InstructionCapturingInserter::CollectionScope scope(builder, |
| recordInsertions); |
| if (failed(opIface->convertOperation(&op, builder, *this))) |
| return op.emitError("LLVM Translation failed for operation: ") |
| << op.getName(); |
| |
| return convertDialectAttributes(&op, scope.getCapturedInstructions()); |
| } |
| |
| /// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes |
| /// to define values corresponding to the MLIR block arguments. These nodes |
| /// are not connected to the source basic blocks, which may not exist yet. Uses |
| /// `builder` to construct the LLVM IR. Expects the LLVM IR basic block to have |
| /// been created for `bb` and included in the block mapping. Inserts new |
| /// instructions at the end of the block and leaves `builder` in a state |
| /// suitable for further insertion into the end of the block. |
| LogicalResult ModuleTranslation::convertBlockImpl(Block &bb, |
| bool ignoreArguments, |
| llvm::IRBuilderBase &builder, |
| bool recordInsertions) { |
| builder.SetInsertPoint(lookupBlock(&bb)); |
| auto *subprogram = builder.GetInsertBlock()->getParent()->getSubprogram(); |
| |
| // Before traversing operations, make block arguments available through |
| // value remapping and PHI nodes, but do not add incoming edges for the PHI |
| // nodes just yet: those values may be defined by this or following blocks. |
| // This step is omitted if "ignoreArguments" is set. The arguments of the |
| // first block have been already made available through the remapping of |
| // LLVM function arguments. |
| if (!ignoreArguments) { |
| auto predecessors = bb.getPredecessors(); |
| unsigned numPredecessors = |
| std::distance(predecessors.begin(), predecessors.end()); |
| for (auto arg : bb.getArguments()) { |
| auto wrappedType = arg.getType(); |
| if (!isCompatibleType(wrappedType)) |
| return emitError(bb.front().getLoc(), |
| "block argument does not have an LLVM type"); |
| builder.SetCurrentDebugLocation( |
| debugTranslation->translateLoc(arg.getLoc(), subprogram)); |
| llvm::Type *type = convertType(wrappedType); |
| llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors); |
| mapValue(arg, phi); |
| } |
| } |
| |
| // Traverse operations. |
| for (auto &op : bb) { |
| // Set the current debug location within the builder. |
| builder.SetCurrentDebugLocation( |
| debugTranslation->translateLoc(op.getLoc(), subprogram)); |
| |
| if (failed(convertOperation(op, builder, recordInsertions))) |
| return failure(); |
| |
| // Set the branch weight metadata on the translated instruction. |
| if (auto iface = dyn_cast<BranchWeightOpInterface>(op)) |
| setBranchWeightsMetadata(iface); |
| } |
| |
| return success(); |
| } |
| |
| /// A helper method to get the single Block in an operation honoring LLVM's |
| /// module requirements. |
| static Block &getModuleBody(Operation *module) { |
| return module->getRegion(0).front(); |
| } |
| |
| /// A helper method to decide if a constant must not be set as a global variable |
| /// initializer. For an external linkage variable, the variable with an |
| /// initializer is considered externally visible and defined in this module, the |
| /// variable without an initializer is externally available and is defined |
| /// elsewhere. |
| static bool shouldDropGlobalInitializer(llvm::GlobalValue::LinkageTypes linkage, |
| llvm::Constant *cst) { |
| return (linkage == llvm::GlobalVariable::ExternalLinkage && !cst) || |
| linkage == llvm::GlobalVariable::ExternalWeakLinkage; |
| } |
| |
| /// Sets the runtime preemption specifier of `gv` to dso_local if |
| /// `dsoLocalRequested` is true, otherwise it is left unchanged. |
| static void addRuntimePreemptionSpecifier(bool dsoLocalRequested, |
| llvm::GlobalValue *gv) { |
| if (dsoLocalRequested) |
| gv->setDSOLocal(true); |
| } |
| |
| LogicalResult ModuleTranslation::convertGlobalsAndAliases() { |
| // Mapping from compile unit to its respective set of global variables. |
| DenseMap<llvm::DICompileUnit *, SmallVector<llvm::Metadata *>> allGVars; |
| |
| // First, create all global variables and global aliases in LLVM IR. A global |
| // or alias body may refer to another global/alias or itself, so all the |
| // mapping needs to happen prior to body conversion. |
| |
| // Create all llvm::GlobalVariable |
| for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { |
| llvm::Type *type = convertType(op.getType()); |
| llvm::Constant *cst = nullptr; |
| if (op.getValueOrNull()) { |
| // String attributes are treated separately because they cannot appear as |
| // in-function constants and are thus not supported by getLLVMConstant. |
| if (auto strAttr = dyn_cast_or_null<StringAttr>(op.getValueOrNull())) { |
| cst = llvm::ConstantDataArray::getString( |
| llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false); |
| type = cst->getType(); |
| } else if (!(cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc(), |
| *this))) { |
| return failure(); |
| } |
| } |
| |
| auto linkage = convertLinkageToLLVM(op.getLinkage()); |
| |
| // LLVM IR requires constant with linkage other than external or weak |
| // external to have initializers. If MLIR does not provide an initializer, |
| // default to undef. |
| bool dropInitializer = shouldDropGlobalInitializer(linkage, cst); |
| if (!dropInitializer && !cst) |
| cst = llvm::UndefValue::get(type); |
| else if (dropInitializer && cst) |
| cst = nullptr; |
| |
| auto *var = new llvm::GlobalVariable( |
| *llvmModule, type, op.getConstant(), linkage, cst, op.getSymName(), |
| /*InsertBefore=*/nullptr, |
| op.getThreadLocal_() ? llvm::GlobalValue::GeneralDynamicTLSModel |
| : llvm::GlobalValue::NotThreadLocal, |
| op.getAddrSpace(), op.getExternallyInitialized()); |
| |
| if (std::optional<mlir::SymbolRefAttr> comdat = op.getComdat()) { |
| auto selectorOp = cast<ComdatSelectorOp>( |
| SymbolTable::lookupNearestSymbolFrom(op, *comdat)); |
| var->setComdat(comdatMapping.lookup(selectorOp)); |
| } |
| |
| if (op.getUnnamedAddr().has_value()) |
| var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr())); |
| |
| if (op.getSection().has_value()) |
| var->setSection(*op.getSection()); |
| |
| addRuntimePreemptionSpecifier(op.getDsoLocal(), var); |
| |
| std::optional<uint64_t> alignment = op.getAlignment(); |
| if (alignment.has_value()) |
| var->setAlignment(llvm::MaybeAlign(alignment.value())); |
| |
| var->setVisibility(convertVisibilityToLLVM(op.getVisibility_())); |
| |
| globalsMapping.try_emplace(op, var); |
| |
| // Add debug information if present. |
| if (op.getDbgExprs()) { |
| for (auto exprAttr : |
| op.getDbgExprs()->getAsRange<DIGlobalVariableExpressionAttr>()) { |
| llvm::DIGlobalVariableExpression *diGlobalExpr = |
| debugTranslation->translateGlobalVariableExpression(exprAttr); |
| llvm::DIGlobalVariable *diGlobalVar = diGlobalExpr->getVariable(); |
| var->addDebugInfo(diGlobalExpr); |
| |
| // There is no `globals` field in DICompileUnitAttr which can be |
| // directly assigned to DICompileUnit. We have to build the list by |
| // looking at the dbgExpr of all the GlobalOps. The scope of the |
| // variable is used to get the DICompileUnit in which to add it. But |
| // there are cases where the scope of a global does not directly point |
| // to the DICompileUnit and we have to do a bit more work to get to |
| // it. Some of those cases are: |
| // |
| // 1. For the languages that support modules, the scope hierarchy can |
| // be variable -> DIModule -> DICompileUnit |
| // |
| // 2. For the Fortran common block variable, the scope hierarchy can |
| // be variable -> DICommonBlock -> DISubprogram -> DICompileUnit |
| // |
| // 3. For entities like static local variables in C or variable with |
| // SAVE attribute in Fortran, the scope hierarchy can be |
| // variable -> DISubprogram -> DICompileUnit |
| llvm::DIScope *scope = diGlobalVar->getScope(); |
| if (auto *mod = dyn_cast_if_present<llvm::DIModule>(scope)) |
| scope = mod->getScope(); |
| else if (auto *cb = dyn_cast_if_present<llvm::DICommonBlock>(scope)) { |
| if (auto *sp = |
| dyn_cast_if_present<llvm::DISubprogram>(cb->getScope())) |
| scope = sp->getUnit(); |
| } else if (auto *sp = dyn_cast_if_present<llvm::DISubprogram>(scope)) |
| scope = sp->getUnit(); |
| |
| // Get the compile unit (scope) of the the global variable. |
| if (llvm::DICompileUnit *compileUnit = |
| dyn_cast_if_present<llvm::DICompileUnit>(scope)) { |
| // Update the compile unit with this incoming global variable |
| // expression during the finalizing step later. |
| allGVars[compileUnit].push_back(diGlobalExpr); |
| } |
| } |
| } |
| } |
| |
| // Create all llvm::GlobalAlias |
| for (auto op : getModuleBody(mlirModule).getOps<LLVM::AliasOp>()) { |
| llvm::Type *type = convertType(op.getType()); |
| llvm::Constant *cst = nullptr; |
| llvm::GlobalValue::LinkageTypes linkage = |
| convertLinkageToLLVM(op.getLinkage()); |
| llvm::Module &llvmMod = *llvmModule; |
| |
| // Note address space and aliasee info isn't set just yet. |
| llvm::GlobalAlias *var = llvm::GlobalAlias::create( |
| type, op.getAddrSpace(), linkage, op.getSymName(), /*placeholder*/ cst, |
| &llvmMod); |
| |
| var->setThreadLocalMode(op.getThreadLocal_() |
| ? llvm::GlobalAlias::GeneralDynamicTLSModel |
| : llvm::GlobalAlias::NotThreadLocal); |
| |
| // Note there is no need to setup the comdat because GlobalAlias calls into |
| // the aliasee comdat information automatically. |
| |
| if (op.getUnnamedAddr().has_value()) |
| var->setUnnamedAddr(convertUnnamedAddrToLLVM(*op.getUnnamedAddr())); |
| |
| var->setVisibility(convertVisibilityToLLVM(op.getVisibility_())); |
| |
| aliasesMapping.try_emplace(op, var); |
| } |
| |
| // Convert global variable bodies. |
| for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) { |
| if (Block *initializer = op.getInitializerBlock()) { |
| llvm::IRBuilder<llvm::TargetFolder> builder( |
| llvmModule->getContext(), |
| llvm::TargetFolder(llvmModule->getDataLayout())); |
| |
| [[maybe_unused]] int numConstantsHit = 0; |
| [[maybe_unused]] int numConstantsErased = 0; |
| DenseMap<llvm::ConstantAggregate *, int> constantAggregateUseMap; |
| |
| for (auto &op : initializer->without_terminator()) { |
| if (failed(convertOperation(op, builder))) |
| return emitError(op.getLoc(), "fail to convert global initializer"); |
| auto *cst = dyn_cast<llvm::Constant>(lookupValue(op.getResult(0))); |
| if (!cst) |
| return emitError(op.getLoc(), "unemittable constant value"); |
| |
| // When emitting an LLVM constant, a new constant is created and the old |
| // constant may become dangling and take space. We should remove the |
| // dangling constants to avoid memory explosion especially for constant |
| // arrays whose number of elements is large. |
| // Because multiple operations may refer to the same constant, we need |
| // to count the number of uses of each constant array and remove it only |
| // when the count becomes zero. |
| if (auto *agg = dyn_cast<llvm::ConstantAggregate>(cst)) { |
| numConstantsHit++; |
| Value result = op.getResult(0); |
| int numUsers = std::distance(result.use_begin(), result.use_end()); |
| auto [iterator, inserted] = |
| constantAggregateUseMap.try_emplace(agg, numUsers); |
| if (!inserted) { |
| // Key already exists, update the value |
| iterator->second += numUsers; |
| } |
| } |
| // Scan the operands of the operation to decrement the use count of |
| // constants. Erase the constant if the use count becomes zero. |
| for (Value v : op.getOperands()) { |
| auto cst = dyn_cast<llvm::ConstantAggregate>(lookupValue(v)); |
| if (!cst) |
| continue; |
| auto iter = constantAggregateUseMap.find(cst); |
| assert(iter != constantAggregateUseMap.end() && "constant not found"); |
| iter->second--; |
| if (iter->second == 0) { |
| // NOTE: cannot call removeDeadConstantUsers() here because it |
| // may remove the constant which has uses not be converted yet. |
| if (cst->user_empty()) { |
| cst->destroyConstant(); |
| numConstantsErased++; |
| } |
| constantAggregateUseMap.erase(iter); |
| } |
| } |
| } |
| |
| ReturnOp ret = cast<ReturnOp>(initializer->getTerminator()); |
| llvm::Constant *cst = |
| cast<llvm::Constant>(lookupValue(ret.getOperand(0))); |
| auto *global = cast<llvm::GlobalVariable>(lookupGlobal(op)); |
| if (!shouldDropGlobalInitializer(global->getLinkage(), cst)) |
| global->setInitializer(cst); |
| |
| // Try to remove the dangling constants again after all operations are |
| // converted. |
| for (auto it : constantAggregateUseMap) { |
| auto cst = it.first; |
| cst->removeDeadConstantUsers(); |
| if (cst->user_empty()) { |
| cst->destroyConstant(); |
| numConstantsErased++; |
| } |
| } |
| |
| LLVM_DEBUG(llvm::dbgs() |
| << "Convert initializer for " << op.getName() << "\n"; |
| llvm::dbgs() << numConstantsHit << " new constants hit\n"; |
| llvm::dbgs() |
| << numConstantsErased << " dangling constants erased\n";); |
| } |
| } |
| |
| // Convert llvm.mlir.global_ctors and dtors. |
| for (Operation &op : getModuleBody(mlirModule)) { |
| auto ctorOp = dyn_cast<GlobalCtorsOp>(op); |
| auto dtorOp = dyn_cast<GlobalDtorsOp>(op); |
| if (!ctorOp && !dtorOp) |
| continue; |
| |
| // The empty / zero initialized version of llvm.global_(c|d)tors cannot be |
| // handled by appendGlobalFn logic below, which just ignores empty (c|d)tor |
| // lists. Make sure it gets emitted. |
| if ((ctorOp && ctorOp.getCtors().empty()) || |
| (dtorOp && dtorOp.getDtors().empty())) { |
| llvm::IRBuilder<llvm::TargetFolder> builder( |
| llvmModule->getContext(), |
| llvm::TargetFolder(llvmModule->getDataLayout())); |
| llvm::Type *eltTy = llvm::StructType::get( |
| builder.getInt32Ty(), builder.getPtrTy(), builder.getPtrTy()); |
| llvm::ArrayType *at = llvm::ArrayType::get(eltTy, 0); |
| llvm::Constant *zeroInit = llvm::Constant::getNullValue(at); |
| (void)new llvm::GlobalVariable( |
| *llvmModule, zeroInit->getType(), false, |
| llvm::GlobalValue::AppendingLinkage, zeroInit, |
| ctorOp ? "llvm.global_ctors" : "llvm.global_dtors"); |
| } else { |
| auto range = ctorOp |
| ? llvm::zip(ctorOp.getCtors(), ctorOp.getPriorities()) |
| : llvm::zip(dtorOp.getDtors(), dtorOp.getPriorities()); |
| auto appendGlobalFn = |
| ctorOp ? llvm::appendToGlobalCtors : llvm::appendToGlobalDtors; |
| for (const auto &[sym, prio] : range) { |
| llvm::Function *f = |
| lookupFunction(cast<FlatSymbolRefAttr>(sym).getValue()); |
| appendGlobalFn(*llvmModule, f, cast<IntegerAttr>(prio).getInt(), |
| /*Data=*/nullptr); |
| } |
| } |
| } |
| |
| for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) |
| if (failed(convertDialectAttributes(op, {}))) |
| return failure(); |
| |
| // Finally, update the compile units their respective sets of global variables |
| // created earlier. |
| for (const auto &[compileUnit, globals] : allGVars) { |
| compileUnit->replaceGlobalVariables( |
| llvm::MDTuple::get(getLLVMContext(), globals)); |
| } |
| |
| // Convert global alias bodies. |
| for (auto op : getModuleBody(mlirModule).getOps<LLVM::AliasOp>()) { |
| Block &initializer = op.getInitializerBlock(); |
| llvm::IRBuilder<llvm::TargetFolder> builder( |
| llvmModule->getContext(), |
| llvm::TargetFolder(llvmModule->getDataLayout())); |
| |
| for (mlir::Operation &op : initializer.without_terminator()) { |
| if (failed(convertOperation(op, builder))) |
| return emitError(op.getLoc(), "fail to convert alias initializer"); |
| if (!isa<llvm::Constant>(lookupValue(op.getResult(0)))) |
| return emitError(op.getLoc(), "unemittable constant value"); |
| } |
| |
| auto ret = cast<ReturnOp>(initializer.getTerminator()); |
| auto *cst = cast<llvm::Constant>(lookupValue(ret.getOperand(0))); |
| assert(aliasesMapping.count(op)); |
| auto *alias = cast<llvm::GlobalAlias>(aliasesMapping[op]); |
| alias->setAliasee(cst); |
| } |
| |
| for (auto op : getModuleBody(mlirModule).getOps<LLVM::AliasOp>()) |
| if (failed(convertDialectAttributes(op, {}))) |
| return failure(); |
| |
| return success(); |
| } |
| |
| /// Attempts to add an attribute identified by `key`, optionally with the given |
| /// `value` to LLVM function `llvmFunc`. Reports errors at `loc` if any. If the |
| /// attribute has a kind known to LLVM IR, create the attribute of this kind, |
| /// otherwise keep it as a string attribute. Performs additional checks for |
| /// attributes known to have or not have a value in order to avoid assertions |
| /// inside LLVM upon construction. |
| static LogicalResult checkedAddLLVMFnAttribute(Location loc, |
| llvm::Function *llvmFunc, |
| StringRef key, |
| StringRef value = StringRef()) { |
| auto kind = llvm::Attribute::getAttrKindFromName(key); |
| if (kind == llvm::Attribute::None) { |
| llvmFunc->addFnAttr(key, value); |
| return success(); |
| } |
| |
| if (llvm::Attribute::isIntAttrKind(kind)) { |
| if (value.empty()) |
| return emitError(loc) << "LLVM attribute '" << key << "' expects a value"; |
| |
| int64_t result; |
| if (!value.getAsInteger(/*Radix=*/0, result)) |
| llvmFunc->addFnAttr( |
| llvm::Attribute::get(llvmFunc->getContext(), kind, result)); |
| else |
| llvmFunc->addFnAttr(key, value); |
| return success(); |
| } |
| |
| if (!value.empty()) |
| return emitError(loc) << "LLVM attribute '" << key |
| << "' does not expect a value, found '" << value |
| << "'"; |
| |
| llvmFunc->addFnAttr(kind); |
| return success(); |
| } |
| |
| /// Return a representation of `value` as metadata. |
| static llvm::Metadata *convertIntegerToMetadata(llvm::LLVMContext &context, |
| const llvm::APInt &value) { |
| llvm::Constant *constant = llvm::ConstantInt::get(context, value); |
| return llvm::ConstantAsMetadata::get(constant); |
| } |
| |
| /// Return a representation of `value` as an MDNode. |
| static llvm::MDNode *convertIntegerToMDNode(llvm::LLVMContext &context, |
| const llvm::APInt &value) { |
| return llvm::MDNode::get(context, convertIntegerToMetadata(context, value)); |
| } |
| |
| /// Return an MDNode encoding `vec_type_hint` metadata. |
| static llvm::MDNode *convertVecTypeHintToMDNode(llvm::LLVMContext &context, |
| llvm::Type *type, |
| bool isSigned) { |
| llvm::Metadata *typeMD = |
| llvm::ConstantAsMetadata::get(llvm::UndefValue::get(type)); |
| llvm::Metadata *isSignedMD = |
| convertIntegerToMetadata(context, llvm::APInt(32, isSigned ? 1 : 0)); |
| return llvm::MDNode::get(context, {typeMD, isSignedMD}); |
| } |
| |
| /// Return an MDNode with a tuple given by the values in `values`. |
| static llvm::MDNode *convertIntegerArrayToMDNode(llvm::LLVMContext &context, |
| ArrayRef<int32_t> values) { |
| SmallVector<llvm::Metadata *> mdValues; |
| llvm::transform( |
| values, std::back_inserter(mdValues), [&context](int32_t value) { |
| return convertIntegerToMetadata(context, llvm::APInt(32, value)); |
| }); |
| return llvm::MDNode::get(context, mdValues); |
| } |
| |
| /// Attaches the attributes listed in the given array attribute to `llvmFunc`. |
| /// Reports error to `loc` if any and returns immediately. Expects `attributes` |
| /// to be an array attribute containing either string attributes, treated as |
| /// value-less LLVM attributes, or array attributes containing two string |
| /// attributes, with the first string being the name of the corresponding LLVM |
| /// attribute and the second string beings its value. Note that even integer |
| /// attributes are expected to have their values expressed as strings. |
| static LogicalResult |
| forwardPassthroughAttributes(Location loc, std::optional<ArrayAttr> attributes, |
| llvm::Function *llvmFunc) { |
| if (!attributes) |
| return success(); |
| |
| for (Attribute attr : *attributes) { |
| if (auto stringAttr = dyn_cast<StringAttr>(attr)) { |
| if (failed( |
| checkedAddLLVMFnAttribute(loc, llvmFunc, stringAttr.getValue()))) |
| return failure(); |
| continue; |
| } |
| |
| auto arrayAttr = dyn_cast<ArrayAttr>(attr); |
| if (!arrayAttr || arrayAttr.size() != 2) |
| return emitError(loc) |
| << "expected 'passthrough' to contain string or array attributes"; |
| |
| auto keyAttr = dyn_cast<StringAttr>(arrayAttr[0]); |
| auto valueAttr = dyn_cast<StringAttr>(arrayAttr[1]); |
| if (!keyAttr || !valueAttr) |
| return emitError(loc) |
| << "expected arrays within 'passthrough' to contain two strings"; |
| |
| if (failed(checkedAddLLVMFnAttribute(loc, llvmFunc, keyAttr.getValue(), |
| valueAttr.getValue()))) |
| return failure(); |
| } |
| return success(); |
| } |
| |
| LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) { |
| // Clear the block, branch value mappings, they are only relevant within one |
| // function. |
| blockMapping.clear(); |
| valueMapping.clear(); |
| branchMapping.clear(); |
| llvm::Function *llvmFunc = lookupFunction(func.getName()); |
| |
| // Add function arguments to the value remapping table. |
| for (auto [mlirArg, llvmArg] : |
| llvm::zip(func.getArguments(), llvmFunc->args())) |
| mapValue(mlirArg, &llvmArg); |
| |
| // Check the personality and set it. |
| if (func.getPersonality()) { |
| llvm::Type *ty = llvm::PointerType::getUnqual(llvmFunc->getContext()); |
| if (llvm::Constant *pfunc = getLLVMConstant(ty, func.getPersonalityAttr(), |
| func.getLoc(), *this)) |
| llvmFunc->setPersonalityFn(pfunc); |
| } |
| |
| if (std::optional<StringRef> section = func.getSection()) |
| llvmFunc->setSection(*section); |
| |
| if (func.getArmStreaming()) |
| llvmFunc->addFnAttr("aarch64_pstate_sm_enabled"); |
| else if (func.getArmLocallyStreaming()) |
| llvmFunc->addFnAttr("aarch64_pstate_sm_body"); |
| else if (func.getArmStreamingCompatible()) |
| llvmFunc->addFnAttr("aarch64_pstate_sm_compatible"); |
| |
| if (func.getArmNewZa()) |
| llvmFunc->addFnAttr("aarch64_new_za"); |
| else if (func.getArmInZa()) |
| llvmFunc->addFnAttr("aarch64_in_za"); |
| else if (func.getArmOutZa()) |
| llvmFunc->addFnAttr("aarch64_out_za"); |
| else if (func.getArmInoutZa()) |
| llvmFunc->addFnAttr("aarch64_inout_za"); |
| else if (func.getArmPreservesZa()) |
| llvmFunc->addFnAttr("aarch64_preserves_za"); |
| |
| if (auto targetCpu = func.getTargetCpu()) |
| llvmFunc->addFnAttr("target-cpu", *targetCpu); |
| |
| if (auto tuneCpu = func.getTuneCpu()) |
| llvmFunc->addFnAttr("tune-cpu", *tuneCpu); |
| |
| if (auto attr = func.getVscaleRange()) |
| llvmFunc->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( |
| getLLVMContext(), attr->getMinRange().getInt(), |
| attr->getMaxRange().getInt())); |
| |
| if (auto unsafeFpMath = func.getUnsafeFpMath()) |
| llvmFunc->addFnAttr("unsafe-fp-math", llvm::toStringRef(*unsafeFpMath)); |
| |
| if (auto noInfsFpMath = func.getNoInfsFpMath()) |
| llvmFunc->addFnAttr("no-infs-fp-math", llvm::toStringRef(*noInfsFpMath)); |
| |
| if (auto noNansFpMath = func.getNoNansFpMath()) |
| llvmFunc->addFnAttr("no-nans-fp-math", llvm::toStringRef(*noNansFpMath)); |
| |
| if (auto approxFuncFpMath = func.getApproxFuncFpMath()) |
| llvmFunc->addFnAttr("approx-func-fp-math", |
| llvm::toStringRef(*approxFuncFpMath)); |
| |
| if (auto noSignedZerosFpMath = func.getNoSignedZerosFpMath()) |
| llvmFunc->addFnAttr("no-signed-zeros-fp-math", |
| llvm::toStringRef(*noSignedZerosFpMath)); |
| |
| if (auto denormalFpMath = func.getDenormalFpMath()) |
| llvmFunc->addFnAttr("denormal-fp-math", *denormalFpMath); |
| |
| if (auto denormalFpMathF32 = func.getDenormalFpMathF32()) |
| llvmFunc->addFnAttr("denormal-fp-math-f32", *denormalFpMathF32); |
| |
| if (auto fpContract = func.getFpContract()) |
| llvmFunc->addFnAttr("fp-contract", *fpContract); |
| |
| // First, create all blocks so we can jump to them. |
| llvm::LLVMContext &llvmContext = llvmFunc->getContext(); |
| for (auto &bb : func) { |
| auto *llvmBB = llvm::BasicBlock::Create(llvmContext); |
| llvmBB->insertInto(llvmFunc); |
| mapBlock(&bb, llvmBB); |
| } |
| |
| // Then, convert blocks one by one in topological order to ensure defs are |
| // converted before uses. |
| auto blocks = getBlocksSortedByDominance(func.getBody()); |
| for (Block *bb : blocks) { |
| CapturingIRBuilder builder(llvmContext, |
| llvm::TargetFolder(llvmModule->getDataLayout())); |
| if (failed(convertBlockImpl(*bb, bb->isEntryBlock(), builder, |
| /*recordInsertions=*/true))) |
| return failure(); |
| } |
| |
| // After all blocks have been traversed and values mapped, connect the PHI |
| // nodes to the results of preceding blocks. |
| detail::connectPHINodes(func.getBody(), *this); |
| |
| // Finally, convert dialect attributes attached to the function. |
| return convertDialectAttributes(func, {}); |
| } |
| |
| LogicalResult ModuleTranslation::convertDialectAttributes( |
| Operation *op, ArrayRef<llvm::Instruction *> instructions) { |
| for (NamedAttribute attribute : op->getDialectAttrs()) |
| if (failed(iface.amendOperation(op, instructions, attribute, *this))) |
| return failure(); |
| return success(); |
| } |
| |
| /// Converts memory effect attributes from `func` and attaches them to |
| /// `llvmFunc`. |
| static void convertFunctionMemoryAttributes(LLVMFuncOp func, |
| llvm::Function *llvmFunc) { |
| if (!func.getMemoryEffects()) |
| return; |
| |
| MemoryEffectsAttr memEffects = func.getMemoryEffectsAttr(); |
| |
| // Add memory effects incrementally. |
| llvm::MemoryEffects newMemEffects = |
| llvm::MemoryEffects(llvm::MemoryEffects::Location::ArgMem, |
| convertModRefInfoToLLVM(memEffects.getArgMem())); |
| newMemEffects |= llvm::MemoryEffects( |
| llvm::MemoryEffects::Location::InaccessibleMem, |
| convertModRefInfoToLLVM(memEffects.getInaccessibleMem())); |
| newMemEffects |= |
| llvm::MemoryEffects(llvm::MemoryEffects::Location::Other, |
| convertModRefInfoToLLVM(memEffects.getOther())); |
| llvmFunc->setMemoryEffects(newMemEffects); |
| } |
| |
| /// Converts function attributes from `func` and attaches them to `llvmFunc`. |
| static void convertFunctionAttributes(LLVMFuncOp func, |
| llvm::Function *llvmFunc) { |
| if (func.getNoInlineAttr()) |
| llvmFunc->addFnAttr(llvm::Attribute::NoInline); |
| if (func.getAlwaysInlineAttr()) |
| llvmFunc->addFnAttr(llvm::Attribute::AlwaysInline); |
| if (func.getOptimizeNoneAttr()) |
| llvmFunc->addFnAttr(llvm::Attribute::OptimizeNone); |
| if (func.getConvergentAttr()) |
| llvmFunc->addFnAttr(llvm::Attribute::Convergent); |
| if (func.getNoUnwindAttr()) |
| llvmFunc->addFnAttr(llvm::Attribute::NoUnwind); |
| if (func.getWillReturnAttr()) |
| llvmFunc->addFnAttr(llvm::Attribute::WillReturn); |
| if (TargetFeaturesAttr targetFeatAttr = func.getTargetFeaturesAttr()) |
| llvmFunc->addFnAttr("target-features", targetFeatAttr.getFeaturesString()); |
| if (FramePointerKindAttr fpAttr = func.getFramePointerAttr()) |
| llvmFunc->addFnAttr("frame-pointer", stringifyFramePointerKind( |
| fpAttr.getFramePointerKind())); |
| convertFunctionMemoryAttributes(func, llvmFunc); |
| } |
| |
| /// Converts function attributes from `func` and attaches them to `llvmFunc`. |
| static void convertFunctionKernelAttributes(LLVMFuncOp func, |
| llvm::Function *llvmFunc, |
| ModuleTranslation &translation) { |
| llvm::LLVMContext &llvmContext = llvmFunc->getContext(); |
| |
| if (VecTypeHintAttr vecTypeHint = func.getVecTypeHintAttr()) { |
| Type type = vecTypeHint.getHint().getValue(); |
| llvm::Type *llvmType = translation.convertType(type); |
| bool isSigned = vecTypeHint.getIsSigned(); |
| llvmFunc->setMetadata( |
| func.getVecTypeHintAttrName(), |
| convertVecTypeHintToMDNode(llvmContext, llvmType, isSigned)); |
| } |
| |
| if (std::optional<ArrayRef<int32_t>> workGroupSizeHint = |
| func.getWorkGroupSizeHint()) { |
| llvmFunc->setMetadata( |
| func.getWorkGroupSizeHintAttrName(), |
| convertIntegerArrayToMDNode(llvmContext, *workGroupSizeHint)); |
| } |
| |
| if (std::optional<ArrayRef<int32_t>> reqdWorkGroupSize = |
| func.getReqdWorkGroupSize()) { |
| llvmFunc->setMetadata( |
| func.getReqdWorkGroupSizeAttrName(), |
| convertIntegerArrayToMDNode(llvmContext, *reqdWorkGroupSize)); |
| } |
| |
| if (std::optional<uint32_t> intelReqdSubGroupSize = |
| func.getIntelReqdSubGroupSize()) { |
| llvmFunc->setMetadata( |
| func.getIntelReqdSubGroupSizeAttrName(), |
| convertIntegerToMDNode(llvmContext, |
| llvm::APInt(32, *intelReqdSubGroupSize))); |
| } |
| } |
| |
| static LogicalResult convertParameterAttr(llvm::AttrBuilder &attrBuilder, |
| llvm::Attribute::AttrKind llvmKind, |
| NamedAttribute namedAttr, |
| ModuleTranslation &moduleTranslation, |
| Location loc) { |
| return llvm::TypeSwitch<Attribute, LogicalResult>(namedAttr.getValue()) |
| .Case<TypeAttr>([&](auto typeAttr) { |
| attrBuilder.addTypeAttr( |
| llvmKind, moduleTranslation.convertType(typeAttr.getValue())); |
| return success(); |
| }) |
| .Case<IntegerAttr>([&](auto intAttr) { |
| attrBuilder.addRawIntAttr(llvmKind, intAttr.getInt()); |
| return success(); |
| }) |
| .Case<UnitAttr>([&](auto) { |
| attrBuilder.addAttribute(llvmKind); |
| return success(); |
| }) |
| .Case<LLVM::ConstantRangeAttr>([&](auto rangeAttr) { |
| attrBuilder.addConstantRangeAttr( |
| llvmKind, |
| llvm::ConstantRange(rangeAttr.getLower(), rangeAttr.getUpper())); |
| return success(); |
| }) |
| .Default([loc](auto) { |
| return emitError(loc, "unsupported parameter attribute type"); |
| }); |
| } |
| |
| FailureOr<llvm::AttrBuilder> |
| ModuleTranslation::convertParameterAttrs(LLVMFuncOp func, int argIdx, |
| DictionaryAttr paramAttrs) { |
| llvm::AttrBuilder attrBuilder(llvmModule->getContext()); |
| auto attrNameToKindMapping = getAttrNameToKindMapping(); |
| Location loc = func.getLoc(); |
| |
| for (auto namedAttr : paramAttrs) { |
| auto it = attrNameToKindMapping.find(namedAttr.getName()); |
| if (it != attrNameToKindMapping.end()) { |
| llvm::Attribute::AttrKind llvmKind = it->second; |
| if (failed(convertParameterAttr(attrBuilder, llvmKind, namedAttr, *this, |
| loc))) |
| return failure(); |
| } else if (namedAttr.getNameDialect()) { |
| if (failed(iface.convertParameterAttr(func, argIdx, namedAttr, *this))) |
| return failure(); |
| } |
| } |
| |
| return attrBuilder; |
| } |
| |
| FailureOr<llvm::AttrBuilder> |
| ModuleTranslation::convertParameterAttrs(Location loc, |
| DictionaryAttr paramAttrs) { |
| llvm::AttrBuilder attrBuilder(llvmModule->getContext()); |
| auto attrNameToKindMapping = getAttrNameToKindMapping(); |
| |
| for (auto namedAttr : paramAttrs) { |
| auto it = attrNameToKindMapping.find(namedAttr.getName()); |
| if (it != attrNameToKindMapping.end()) { |
| llvm::Attribute::AttrKind llvmKind = it->second; |
| if (failed(convertParameterAttr(attrBuilder, llvmKind, namedAttr, *this, |
| loc))) |
| return failure(); |
| } |
| } |
| |
| return attrBuilder; |
| } |
| |
| LogicalResult ModuleTranslation::convertFunctionSignatures() { |
| // Declare all functions first because there may be function calls that form a |
| // call graph with cycles, or global initializers that reference functions. |
| for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { |
| llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction( |
| function.getName(), |
| cast<llvm::FunctionType>(convertType(function.getFunctionType()))); |
| llvm::Function *llvmFunc = cast<llvm::Function>(llvmFuncCst.getCallee()); |
| llvmFunc->setLinkage(convertLinkageToLLVM(function.getLinkage())); |
| llvmFunc->setCallingConv(convertCConvToLLVM(function.getCConv())); |
| mapFunction(function.getName(), llvmFunc); |
| addRuntimePreemptionSpecifier(function.getDsoLocal(), llvmFunc); |
| |
| // Convert function attributes. |
| convertFunctionAttributes(function, llvmFunc); |
| |
| // Convert function kernel attributes to metadata. |
| convertFunctionKernelAttributes(function, llvmFunc, *this); |
| |
| // Convert function_entry_count attribute to metadata. |
| if (std::optional<uint64_t> entryCount = function.getFunctionEntryCount()) |
| llvmFunc->setEntryCount(entryCount.value()); |
| |
| // Convert result attributes. |
| if (ArrayAttr allResultAttrs = function.getAllResultAttrs()) { |
| DictionaryAttr resultAttrs = cast<DictionaryAttr>(allResultAttrs[0]); |
| FailureOr<llvm::AttrBuilder> attrBuilder = |
| convertParameterAttrs(function, -1, resultAttrs); |
| if (failed(attrBuilder)) |
| return failure(); |
| llvmFunc->addRetAttrs(*attrBuilder); |
| } |
| |
| // Convert argument attributes. |
| for (auto [argIdx, llvmArg] : llvm::enumerate(llvmFunc->args())) { |
| if (DictionaryAttr argAttrs = function.getArgAttrDict(argIdx)) { |
| FailureOr<llvm::AttrBuilder> attrBuilder = |
| convertParameterAttrs(function, argIdx, argAttrs); |
| if (failed(attrBuilder)) |
| return failure(); |
| llvmArg.addAttrs(*attrBuilder); |
| } |
| } |
| |
| // Forward the pass-through attributes to LLVM. |
| if (failed(forwardPassthroughAttributes( |
| function.getLoc(), function.getPassthrough(), llvmFunc))) |
| return failure(); |
| |
| // Convert visibility attribute. |
| llvmFunc->setVisibility(convertVisibilityToLLVM(function.getVisibility_())); |
| |
| // Convert the comdat attribute. |
| if (std::optional<mlir::SymbolRefAttr> comdat = function.getComdat()) { |
| auto selectorOp = cast<ComdatSelectorOp>( |
| SymbolTable::lookupNearestSymbolFrom(function, *comdat)); |
| llvmFunc->setComdat(comdatMapping.lookup(selectorOp)); |
| } |
| |
| if (auto gc = function.getGarbageCollector()) |
| llvmFunc->setGC(gc->str()); |
| |
| if (auto unnamedAddr = function.getUnnamedAddr()) |
| llvmFunc->setUnnamedAddr(convertUnnamedAddrToLLVM(*unnamedAddr)); |
| |
| if (auto alignment = function.getAlignment()) |
| llvmFunc->setAlignment(llvm::MaybeAlign(*alignment)); |
| |
| // Translate the debug information for this function. |
| debugTranslation->translate(function, *llvmFunc); |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult ModuleTranslation::convertFunctions() { |
| // Convert functions. |
| for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) { |
| // Do not convert external functions, but do process dialect attributes |
| // attached to them. |
| if (function.isExternal()) { |
| if (failed(convertDialectAttributes(function, {}))) |
| return failure(); |
| continue; |
| } |
| |
| if (failed(convertOneFunction(function))) |
| return failure(); |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult ModuleTranslation::convertComdats() { |
| for (auto comdatOp : getModuleBody(mlirModule).getOps<ComdatOp>()) { |
| for (auto selectorOp : comdatOp.getOps<ComdatSelectorOp>()) { |
| llvm::Module *module = getLLVMModule(); |
| if (module->getComdatSymbolTable().contains(selectorOp.getSymName())) |
| return emitError(selectorOp.getLoc()) |
| << "comdat selection symbols must be unique even in different " |
| "comdat regions"; |
| llvm::Comdat *comdat = module->getOrInsertComdat(selectorOp.getSymName()); |
| comdat->setSelectionKind(convertComdatToLLVM(selectorOp.getComdat())); |
| comdatMapping.try_emplace(selectorOp, comdat); |
| } |
| } |
| return success(); |
| } |
| |
| LogicalResult ModuleTranslation::convertUnresolvedBlockAddress() { |
| for (auto &[blockAddressOp, llvmCst] : unresolvedBlockAddressMapping) { |
| BlockAddressAttr blockAddressAttr = blockAddressOp.getBlockAddr(); |
| BlockTagOp blockTagOp = lookupBlockTag(blockAddressAttr); |
| assert(blockTagOp && "expected all block tags to be already seen"); |
| |
| llvm::BasicBlock *llvmBlock = lookupBlock(blockTagOp->getBlock()); |
| assert(llvmBlock && "expected LLVM blocks to be already translated"); |
| |
| // Update mapping with new block address constant. |
| auto *llvmBlockAddr = llvm::BlockAddress::get( |
| lookupFunction(blockAddressAttr.getFunction().getValue()), llvmBlock); |
| llvmCst->replaceAllUsesWith(llvmBlockAddr); |
| mapValue(blockAddressOp.getResult(), llvmBlockAddr); |
| assert(llvmCst->use_empty() && "expected all uses to be replaced"); |
| cast<llvm::GlobalVariable>(llvmCst)->eraseFromParent(); |
| } |
| unresolvedBlockAddressMapping.clear(); |
| return success(); |
| } |
| |
| void ModuleTranslation::setAccessGroupsMetadata(AccessGroupOpInterface op, |
| llvm::Instruction *inst) { |
| if (llvm::MDNode *node = loopAnnotationTranslation->getAccessGroups(op)) |
| inst->setMetadata(llvm::LLVMContext::MD_access_group, node); |
| } |
| |
| llvm::MDNode * |
| ModuleTranslation::getOrCreateAliasScope(AliasScopeAttr aliasScopeAttr) { |
| auto [scopeIt, scopeInserted] = |
| aliasScopeMetadataMapping.try_emplace(aliasScopeAttr, nullptr); |
| if (!scopeInserted) |
| return scopeIt->second; |
| llvm::LLVMContext &ctx = llvmModule->getContext(); |
| auto dummy = llvm::MDNode::getTemporary(ctx, std::nullopt); |
| // Convert the domain metadata node if necessary. |
| auto [domainIt, insertedDomain] = aliasDomainMetadataMapping.try_emplace( |
| aliasScopeAttr.getDomain(), nullptr); |
| if (insertedDomain) { |
| llvm::SmallVector<llvm::Metadata *, 2> operands; |
| // Placeholder for potential self-reference. |
| operands.push_back(dummy.get()); |
| if (StringAttr description = aliasScopeAttr.getDomain().getDescription()) |
| operands.push_back(llvm::MDString::get(ctx, description)); |
| domainIt->second = llvm::MDNode::get(ctx, operands); |
| // Self-reference for uniqueness. |
| llvm::Metadata *replacement; |
| if (auto stringAttr = |
| dyn_cast<StringAttr>(aliasScopeAttr.getDomain().getId())) |
| replacement = llvm::MDString::get(ctx, stringAttr.getValue()); |
| else |
| replacement = domainIt->second; |
| domainIt->second->replaceOperandWith(0, replacement); |
| } |
| // Convert the scope metadata node. |
| assert(domainIt->second && "Scope's domain should already be valid"); |
| llvm::SmallVector<llvm::Metadata *, 3> operands; |
| // Placeholder for potential self-reference. |
| operands.push_back(dummy.get()); |
| operands.push_back(domainIt->second); |
| if (StringAttr description = aliasScopeAttr.getDescription()) |
| operands.push_back(llvm::MDString::get(ctx, description)); |
| scopeIt->second = llvm::MDNode::get(ctx, operands); |
| // Self-reference for uniqueness. |
| llvm::Metadata *replacement; |
| if (auto stringAttr = dyn_cast<StringAttr>(aliasScopeAttr.getId())) |
| replacement = llvm::MDString::get(ctx, stringAttr.getValue()); |
| else |
| replacement = scopeIt->second; |
| scopeIt->second->replaceOperandWith(0, replacement); |
| return scopeIt->second; |
| } |
| |
| llvm::MDNode *ModuleTranslation::getOrCreateAliasScopes( |
| ArrayRef<AliasScopeAttr> aliasScopeAttrs) { |
| SmallVector<llvm::Metadata *> nodes; |
| nodes.reserve(aliasScopeAttrs.size()); |
| for (AliasScopeAttr aliasScopeAttr : aliasScopeAttrs) |
| nodes.push_back(getOrCreateAliasScope(aliasScopeAttr)); |
| return llvm::MDNode::get(getLLVMContext(), nodes); |
| } |
| |
| void ModuleTranslation::setAliasScopeMetadata(AliasAnalysisOpInterface op, |
| llvm::Instruction *inst) { |
| auto populateScopeMetadata = [&](ArrayAttr aliasScopeAttrs, unsigned kind) { |
| if (!aliasScopeAttrs || aliasScopeAttrs.empty()) |
| return; |
| llvm::MDNode *node = getOrCreateAliasScopes( |
| llvm::to_vector(aliasScopeAttrs.getAsRange<AliasScopeAttr>())); |
| inst->setMetadata(kind, node); |
| }; |
| |
| populateScopeMetadata(op.getAliasScopesOrNull(), |
| llvm::LLVMContext::MD_alias_scope); |
| populateScopeMetadata(op.getNoAliasScopesOrNull(), |
| llvm::LLVMContext::MD_noalias); |
| } |
| |
| llvm::MDNode *ModuleTranslation::getTBAANode(TBAATagAttr tbaaAttr) const { |
| return tbaaMetadataMapping.lookup(tbaaAttr); |
| } |
| |
| void ModuleTranslation::setTBAAMetadata(AliasAnalysisOpInterface op, |
| llvm::Instruction *inst) { |
| ArrayAttr tagRefs = op.getTBAATagsOrNull(); |
| if (!tagRefs || tagRefs.empty()) |
| return; |
| |
| // LLVM IR currently does not support attaching more than one TBAA access tag |
| // to a memory accessing instruction. It may be useful to support this in |
| // future, but for the time being just ignore the metadata if MLIR operation |
| // has multiple access tags. |
| if (tagRefs.size() > 1) { |
| op.emitWarning() << "TBAA access tags were not translated, because LLVM " |
| "IR only supports a single tag per instruction"; |
| return; |
| } |
| |
| llvm::MDNode *node = getTBAANode(cast<TBAATagAttr>(tagRefs[0])); |
| inst->setMetadata(llvm::LLVMContext::MD_tbaa, node); |
| } |
| |
| void ModuleTranslation::setDereferenceableMetadata( |
| DereferenceableOpInterface op, llvm::Instruction *inst) { |
| DereferenceableAttr derefAttr = op.getDereferenceableOrNull(); |
| if (!derefAttr) |
| return; |
| |
| llvm::MDNode *derefSizeNode = llvm::MDNode::get( |
| getLLVMContext(), |
| llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( |
| llvm::IntegerType::get(getLLVMContext(), 64), derefAttr.getBytes()))); |
| unsigned kindId = derefAttr.getMayBeNull() |
| ? llvm::LLVMContext::MD_dereferenceable_or_null |
| : llvm::LLVMContext::MD_dereferenceable; |
| inst->setMetadata(kindId, derefSizeNode); |
| } |
| |
| void ModuleTranslation::setBranchWeightsMetadata(BranchWeightOpInterface op) { |
| DenseI32ArrayAttr weightsAttr = op.getBranchWeightsOrNull(); |
| if (!weightsAttr) |
| return; |
| |
| llvm::Instruction *inst = isa<CallOp>(op) ? lookupCall(op) : lookupBranch(op); |
| assert(inst && "expected the operation to have a mapping to an instruction"); |
| SmallVector<uint32_t> weights(weightsAttr.asArrayRef()); |
| inst->setMetadata( |
| llvm::LLVMContext::MD_prof, |
| llvm::MDBuilder(getLLVMContext()).createBranchWeights(weights)); |
| } |
| |
| LogicalResult ModuleTranslation::createTBAAMetadata() { |
| llvm::LLVMContext &ctx = llvmModule->getContext(); |
| llvm::IntegerType *offsetTy = llvm::IntegerType::get(ctx, 64); |
| |
| // Walk the entire module and create all metadata nodes for the TBAA |
| // attributes. The code below relies on two invariants of the |
| // `AttrTypeWalker`: |
| // 1. Attributes are visited in post-order: Since the attributes create a DAG, |
| // this ensures that any lookups into `tbaaMetadataMapping` for child |
| // attributes succeed. |
| // 2. Attributes are only ever visited once: This way we don't leak any |
| // LLVM metadata instances. |
| AttrTypeWalker walker; |
| walker.addWalk([&](TBAARootAttr root) { |
| tbaaMetadataMapping.insert( |
| {root, llvm::MDNode::get(ctx, llvm::MDString::get(ctx, root.getId()))}); |
| }); |
| |
| walker.addWalk([&](TBAATypeDescriptorAttr descriptor) { |
| SmallVector<llvm::Metadata *> operands; |
| operands.push_back(llvm::MDString::get(ctx, descriptor.getId())); |
| for (TBAAMemberAttr member : descriptor.getMembers()) { |
| operands.push_back(tbaaMetadataMapping.lookup(member.getTypeDesc())); |
| operands.push_back(llvm::ConstantAsMetadata::get( |
| llvm::ConstantInt::get(offsetTy, member.getOffset()))); |
| } |
| |
| tbaaMetadataMapping.insert({descriptor, llvm::MDNode::get(ctx, operands)}); |
| }); |
| |
| walker.addWalk([&](TBAATagAttr tag) { |
| SmallVector<llvm::Metadata *> operands; |
| |
| operands.push_back(tbaaMetadataMapping.lookup(tag.getBaseType())); |
| operands.push_back(tbaaMetadataMapping.lookup(tag.getAccessType())); |
| |
| operands.push_back(llvm::ConstantAsMetadata::get( |
| llvm::ConstantInt::get(offsetTy, tag.getOffset()))); |
| if (tag.getConstant()) |
| operands.push_back( |
| llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(offsetTy, 1))); |
| |
| tbaaMetadataMapping.insert({tag, llvm::MDNode::get(ctx, operands)}); |
| }); |
| |
| mlirModule->walk([&](AliasAnalysisOpInterface analysisOpInterface) { |
| if (auto attr = analysisOpInterface.getTBAATagsOrNull()) |
| walker.walk(attr); |
| }); |
| |
| return success(); |
| } |
| |
| LogicalResult ModuleTranslation::createIdentMetadata() { |
| if (auto attr = mlirModule->getAttrOfType<StringAttr>( |
| LLVMDialect::getIdentAttrName())) { |
| StringRef ident = attr; |
| llvm::LLVMContext &ctx = llvmModule->getContext(); |
| llvm::NamedMDNode *namedMd = |
| llvmModule->getOrInsertNamedMetadata(LLVMDialect::getIdentAttrName()); |
| llvm::MDNode *md = llvm::MDNode::get(ctx, llvm::MDString::get(ctx, ident)); |
| namedMd->addOperand(md); |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult ModuleTranslation::createCommandlineMetadata() { |
| if (auto attr = mlirModule->getAttrOfType<StringAttr>( |
| LLVMDialect::getCommandlineAttrName())) { |
| StringRef cmdLine = attr; |
| llvm::LLVMContext &ctx = llvmModule->getContext(); |
| llvm::NamedMDNode *nmd = llvmModule->getOrInsertNamedMetadata( |
| LLVMDialect::getCommandlineAttrName()); |
| llvm::MDNode *md = |
| llvm::MDNode::get(ctx, llvm::MDString::get(ctx, cmdLine)); |
| nmd->addOperand(md); |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult ModuleTranslation::createDependentLibrariesMetadata() { |
| if (auto dependentLibrariesAttr = mlirModule->getDiscardableAttr( |
| LLVM::LLVMDialect::getDependentLibrariesAttrName())) { |
| auto *nmd = |
| llvmModule->getOrInsertNamedMetadata("llvm.dependent-libraries"); |
| llvm::LLVMContext &ctx = llvmModule->getContext(); |
| for (auto libAttr : |
| cast<ArrayAttr>(dependentLibrariesAttr).getAsRange<StringAttr>()) { |
| auto *md = |
| llvm::MDNode::get(ctx, llvm::MDString::get(ctx, libAttr.getValue())); |
| nmd->addOperand(md); |
| } |
| } |
| return success(); |
| } |
| |
| void ModuleTranslation::setLoopMetadata(Operation *op, |
| llvm::Instruction *inst) { |
| LoopAnnotationAttr attr = |
| TypeSwitch<Operation *, LoopAnnotationAttr>(op) |
| .Case<LLVM::BrOp, LLVM::CondBrOp>( |
| [](auto branchOp) { return branchOp.getLoopAnnotationAttr(); }); |
| if (!attr) |
| return; |
| llvm::MDNode *loopMD = |
| loopAnnotationTranslation->translateLoopAnnotation(attr, op); |
| inst->setMetadata(llvm::LLVMContext::MD_loop, loopMD); |
| } |
| |
| void ModuleTranslation::setDisjointFlag(Operation *op, llvm::Value *value) { |
| auto iface = cast<DisjointFlagInterface>(op); |
| // We do a dyn_cast here in case the value got folded into a constant. |
| if (auto disjointInst = dyn_cast<llvm::PossiblyDisjointInst>(value)) |
| disjointInst->setIsDisjoint(iface.getIsDisjoint()); |
| } |
| |
| llvm::Type *ModuleTranslation::convertType(Type type) { |
| return typeTranslator.translateType(type); |
| } |
| |
| /// A helper to look up remapped operands in the value remapping table. |
| SmallVector<llvm::Value *> ModuleTranslation::lookupValues(ValueRange values) { |
| SmallVector<llvm::Value *> remapped; |
| remapped.reserve(values.size()); |
| for (Value v : values) |
| remapped.push_back(lookupValue(v)); |
| return remapped; |
| } |
| |
| llvm::OpenMPIRBuilder *ModuleTranslation::getOpenMPBuilder() { |
| if (!ompBuilder) { |
| ompBuilder = std::make_unique<llvm::OpenMPIRBuilder>(*llvmModule); |
| ompBuilder->initialize(); |
| |
| // Flags represented as top-level OpenMP dialect attributes are set in |
| // `OpenMPDialectLLVMIRTranslationInterface::amendOperation()`. Here we set |
| // the default configuration. |
| ompBuilder->setConfig(llvm::OpenMPIRBuilderConfig( |
| /* IsTargetDevice = */ false, /* IsGPU = */ false, |
| /* OpenMPOffloadMandatory = */ false, |
| /* HasRequiresReverseOffload = */ false, |
| /* HasRequiresUnifiedAddress = */ false, |
| /* HasRequiresUnifiedSharedMemory = */ false, |
| /* HasRequiresDynamicAllocators = */ false)); |
| } |
| return ompBuilder.get(); |
| } |
| |
| llvm::DILocation *ModuleTranslation::translateLoc(Location loc, |
| llvm::DILocalScope *scope) { |
| return debugTranslation->translateLoc(loc, scope); |
| } |
| |
| llvm::DIExpression * |
| ModuleTranslation::translateExpression(LLVM::DIExpressionAttr attr) { |
| return debugTranslation->translateExpression(attr); |
| } |
| |
| llvm::DIGlobalVariableExpression * |
| ModuleTranslation::translateGlobalVariableExpression( |
| LLVM::DIGlobalVariableExpressionAttr attr) { |
| return debugTranslation->translateGlobalVariableExpression(attr); |
| } |
| |
| llvm::Metadata *ModuleTranslation::translateDebugInfo(LLVM::DINodeAttr attr) { |
| return debugTranslation->translate(attr); |
| } |
| |
| llvm::RoundingMode |
| ModuleTranslation::translateRoundingMode(LLVM::RoundingMode rounding) { |
| return convertRoundingModeToLLVM(rounding); |
| } |
| |
| llvm::fp::ExceptionBehavior ModuleTranslation::translateFPExceptionBehavior( |
| LLVM::FPExceptionBehavior exceptionBehavior) { |
| return convertFPExceptionBehaviorToLLVM(exceptionBehavior); |
| } |
| |
| llvm::NamedMDNode * |
| ModuleTranslation::getOrInsertNamedModuleMetadata(StringRef name) { |
| return llvmModule->getOrInsertNamedMetadata(name); |
| } |
| |
| void ModuleTranslation::StackFrame::anchor() {} |
| |
| static std::unique_ptr<llvm::Module> |
| prepareLLVMModule(Operation *m, llvm::LLVMContext &llvmContext, |
| StringRef name) { |
| m->getContext()->getOrLoadDialect<LLVM::LLVMDialect>(); |
| auto llvmModule = std::make_unique<llvm::Module>(name, llvmContext); |
| // ModuleTranslation can currently only construct modules in the old debug |
| // info format, so set the flag accordingly. |
| llvmModule->setNewDbgInfoFormatFlag(false); |
| if (auto dataLayoutAttr = |
| m->getDiscardableAttr(LLVM::LLVMDialect::getDataLayoutAttrName())) { |
| llvmModule->setDataLayout(cast<StringAttr>(dataLayoutAttr).getValue()); |
| } else { |
| FailureOr<llvm::DataLayout> llvmDataLayout(llvm::DataLayout("")); |
| if (auto iface = dyn_cast<DataLayoutOpInterface>(m)) { |
| if (DataLayoutSpecInterface spec = iface.getDataLayoutSpec()) { |
| llvmDataLayout = |
| translateDataLayout(spec, DataLayout(iface), m->getLoc()); |
| } |
| } else if (auto mod = dyn_cast<ModuleOp>(m)) { |
| if (DataLayoutSpecInterface spec = mod.getDataLayoutSpec()) { |
| llvmDataLayout = |
| translateDataLayout(spec, DataLayout(mod), m->getLoc()); |
| } |
| } |
| if (failed(llvmDataLayout)) |
| return nullptr; |
| llvmModule->setDataLayout(*llvmDataLayout); |
| } |
| if (auto targetTripleAttr = |
| m->getDiscardableAttr(LLVM::LLVMDialect::getTargetTripleAttrName())) |
| llvmModule->setTargetTriple( |
| llvm::Triple(cast<StringAttr>(targetTripleAttr).getValue())); |
| |
| return llvmModule; |
| } |
| |
| std::unique_ptr<llvm::Module> |
| mlir::translateModuleToLLVMIR(Operation *module, llvm::LLVMContext &llvmContext, |
| StringRef name, bool disableVerification) { |
| if (!satisfiesLLVMModule(module)) { |
| module->emitOpError("can not be translated to an LLVMIR module"); |
| return nullptr; |
| } |
| |
| std::unique_ptr<llvm::Module> llvmModule = |
| prepareLLVMModule(module, llvmContext, name); |
| if (!llvmModule) |
| return nullptr; |
| |
| LLVM::ensureDistinctSuccessors(module); |
| LLVM::legalizeDIExpressionsRecursively(module); |
| |
| ModuleTranslation translator(module, std::move(llvmModule)); |
| llvm::IRBuilder<llvm::TargetFolder> llvmBuilder( |
| llvmContext, |
| llvm::TargetFolder(translator.getLLVMModule()->getDataLayout())); |
| |
| // Convert module before functions and operations inside, so dialect |
| // attributes can be used to change dialect-specific global configurations via |
| // `amendOperation()`. These configurations can then influence the translation |
| // of operations afterwards. |
| if (failed(translator.convertOperation(*module, llvmBuilder))) |
| return nullptr; |
| |
| if (failed(translator.convertComdats())) |
| return nullptr; |
| if (failed(translator.convertFunctionSignatures())) |
| return nullptr; |
| if (failed(translator.convertGlobalsAndAliases())) |
| return nullptr; |
| if (failed(translator.createTBAAMetadata())) |
| return nullptr; |
| if (failed(translator.createIdentMetadata())) |
| return nullptr; |
| if (failed(translator.createCommandlineMetadata())) |
| return nullptr; |
| if (failed(translator.createDependentLibrariesMetadata())) |
| return nullptr; |
| |
| // Convert other top-level operations if possible. |
| for (Operation &o : getModuleBody(module).getOperations()) { |
| if (!isa<LLVM::LLVMFuncOp, LLVM::AliasOp, LLVM::GlobalOp, |
| LLVM::GlobalCtorsOp, LLVM::GlobalDtorsOp, LLVM::ComdatOp>(&o) && |
| !o.hasTrait<OpTrait::IsTerminator>() && |
| failed(translator.convertOperation(o, llvmBuilder))) { |
| return nullptr; |
| } |
| } |
| |
| // Operations in function bodies with symbolic references must be converted |
| // after the top-level operations they refer to are declared, so we do it |
| // last. |
| if (failed(translator.convertFunctions())) |
| return nullptr; |
| |
| // Now that all MLIR blocks are resolved into LLVM ones, patch block address |
| // constants to point to the correct blocks. |
| if (failed(translator.convertUnresolvedBlockAddress())) |
| return nullptr; |
| |
| // Once we've finished constructing elements in the module, we should convert |
| // it to use the debug info format desired by LLVM. |
| // See https://llvm.org/docs/RemoveDIsDebugInfo.html |
| translator.llvmModule->setIsNewDbgInfoFormat(UseNewDbgInfoFormat); |
| |
| // Add the necessary debug info module flags, if they were not encoded in MLIR |
| // beforehand. |
| translator.debugTranslation->addModuleFlagsIfNotPresent(); |
| |
| if (!disableVerification && |
| llvm::verifyModule(*translator.llvmModule, &llvm::errs())) |
| return nullptr; |
| |
| return std::move(translator.llvmModule); |
| } |