blob: 2bea95017fa5f1bc1d04ed0b649d47821ab58941 [file] [log] [blame]
//===-- TestOps.td - Test dialect operation definitions ----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef TEST_OPS
#define TEST_OPS
include "mlir/Dialect/DLTI/DLTIBase.td"
include "mlir/IR/OpBase.td"
include "mlir/IR/OpAsmInterface.td"
include "mlir/IR/RegionKindInterface.td"
include "mlir/IR/SymbolInterfaces.td"
include "mlir/Interfaces/CallInterfaces.td"
include "mlir/Interfaces/ControlFlowInterfaces.td"
include "mlir/Interfaces/CopyOpInterface.td"
include "mlir/Interfaces/DataLayoutInterfaces.td"
include "mlir/Interfaces/InferTypeOpInterface.td"
include "mlir/Interfaces/SideEffectInterfaces.td"
include "mlir/Dialect/Linalg/IR/LinalgInterfaces.td"
include "TestInterfaces.td"
def Test_Dialect : Dialect {
let name = "test";
let cppNamespace = "::test";
let emitAccessorPrefix = kEmitAccessorPrefix_Prefixed;
let hasCanonicalizer = 1;
let hasConstantMaterializer = 1;
let hasOperationAttrVerify = 1;
let hasRegionArgAttrVerify = 1;
let hasRegionResultAttrVerify = 1;
let hasOperationInterfaceFallback = 1;
let hasNonDefaultDestructor = 1;
let useDefaultAttributePrinterParser = 1;
let dependentDialects = ["::mlir::DLTIDialect"];
let extraClassDeclaration = [{
void registerAttributes();
void registerTypes();
// Provides a custom printing/parsing for some operations.
::llvm::Optional<ParseOpHook>
getParseOperationHook(::llvm::StringRef opName) const override;
::llvm::unique_function<void(::mlir::Operation *,
::mlir::OpAsmPrinter &printer)>
getOperationPrinter(::mlir::Operation *op) const override;
private:
// Storage for a custom fallback interface.
void *fallbackEffectOpInterfaces;
}];
}
// Include the attribute definitions.
include "TestAttrDefs.td"
class TEST_Op<string mnemonic, list<OpTrait> traits = []> :
Op<Test_Dialect, mnemonic, traits>;
//===----------------------------------------------------------------------===//
// Test Types
//===----------------------------------------------------------------------===//
def IntTypesOp : TEST_Op<"int_types"> {
let results = (outs
AnyI16:$any_i16,
SI32:$si32,
UI64:$ui64,
AnyInteger:$any_int
);
}
def ComplexF64 : Complex<F64>;
def ComplexOp : TEST_Op<"complex_f64"> {
let results = (outs ComplexF64);
}
def ComplexTensorOp : TEST_Op<"complex_f64_tensor"> {
let results = (outs TensorOf<[ComplexF64]>);
}
def TupleOp : TEST_Op<"tuple_32_bit"> {
let results = (outs TupleOf<[I32, F32]>);
}
def NestedTupleOp : TEST_Op<"nested_tuple_32_bit"> {
let results = (outs NestedTupleOf<[I32, F32]>);
}
def TakesStaticMemRefOp : TEST_Op<"takes_static_memref"> {
let arguments = (ins AnyStaticShapeMemRef:$x);
}
def RankLessThan2I8F32MemRefOp : TEST_Op<"rank_less_than_2_I8_F32_memref"> {
let results = (outs MemRefRankOf<[I8, F32], [0, 1]>);
}
def NDTensorOfOp : TEST_Op<"nd_tensor_of"> {
let arguments = (ins
0DTensorOf<[F32]>:$arg0,
1DTensorOf<[F32]>:$arg1,
2DTensorOf<[I16]>:$arg2,
3DTensorOf<[I16]>:$arg3,
4DTensorOf<[I16]>:$arg4
);
}
def RankedTensorOp : TEST_Op<"ranked_tensor_op"> {
let arguments = (ins AnyRankedTensor:$input);
}
def MultiTensorRankOf : TEST_Op<"multi_tensor_rank_of"> {
let arguments = (ins
TensorRankOf<[I8, I32, F32], [0, 1]>:$arg0
);
}
def TEST_TestType : DialectType<Test_Dialect,
CPred<"$_self.isa<::test::TestType>()">, "test">,
BuildableType<"$_builder.getType<::test::TestType>()">;
//===----------------------------------------------------------------------===//
// Test Symbols
//===----------------------------------------------------------------------===//
def SymbolOp : TEST_Op<"symbol", [Symbol]> {
let summary = "operation which defines a new symbol";
let arguments = (ins StrAttr:$sym_name,
OptionalAttr<StrAttr>:$sym_visibility);
}
def SymbolScopeOp : TEST_Op<"symbol_scope",
[SymbolTable, SingleBlockImplicitTerminator<"TerminatorOp">]> {
let summary = "operation which defines a new symbol table";
let regions = (region SizedRegion<1>:$region);
}
def SymbolTableRegionOp : TEST_Op<"symbol_table_region", [SymbolTable]> {
let summary = "operation which defines a new symbol table without a "
"restriction on a terminator";
let regions = (region SizedRegion<1>:$region);
}
//===----------------------------------------------------------------------===//
// Test Operands
//===----------------------------------------------------------------------===//
def MixedNormalVariadicOperandOp : TEST_Op<
"mixed_normal_variadic_operand", [SameVariadicOperandSize]> {
let arguments = (ins
Variadic<AnyTensor>:$input1,
AnyTensor:$input2,
Variadic<AnyTensor>:$input3
);
}
def VariadicWithSameOperandsResult :
TEST_Op<"variadic_with_same_operand_results",
[SameOperandsAndResultType]> {
let arguments = (ins Variadic<AnySignlessInteger>);
let results = (outs AnySignlessInteger:$result);
}
def SameOperandsResultType : TEST_Op<
"same_operand_result_type", [SameOperandsAndResultType]> {
let arguments = (ins AnyTensor:$operand);
let results = (outs AnyTensor:$result);
}
//===----------------------------------------------------------------------===//
// Test Results
//===----------------------------------------------------------------------===//
def MixedNormalVariadicResults : TEST_Op<
"mixed_normal_variadic_result", [SameVariadicResultSize]> {
let results = (outs
Variadic<AnyTensor>:$output1,
AnyTensor:$output2,
Variadic<AnyTensor>:$output3
);
}
//===----------------------------------------------------------------------===//
// Test Attributes
//===----------------------------------------------------------------------===//
def AnyAttrOfOp : TEST_Op<"any_attr_of_i32_str"> {
let arguments = (ins AnyAttrOf<[I32Attr, StrAttr]>:$attr);
}
def NonNegIntAttrOp : TEST_Op<"non_negative_int_attr"> {
let arguments = (ins
Confined<I32Attr, [IntNonNegative]>:$i32attr,
Confined<I64Attr, [IntNonNegative]>:$i64attr
);
}
def PositiveIntAttrOp : TEST_Op<"positive_int_attr"> {
let arguments = (ins
Confined<I32Attr, [IntPositive]>:$i32attr,
Confined<I64Attr, [IntPositive]>:$i64attr
);
}
def TypeArrayAttrOp : TEST_Op<"type_array_attr"> {
let arguments = (ins TypeArrayAttr:$attr);
}
def TypeArrayAttrWithDefaultOp : TEST_Op<"type_array_attr_with_default"> {
let arguments = (ins DefaultValuedAttr<TypeArrayAttr, "{}">:$attr);
}
def TypeStringAttrWithTypeOp : TEST_Op<"string_attr_with_type"> {
let arguments = (ins TypedStrAttr<AnyType>:$attr);
let assemblyFormat = "$attr attr-dict";
}
def StrCaseA: StrEnumAttrCase<"A">;
def StrCaseB: StrEnumAttrCase<"B">;
def SomeStrEnum: StrEnumAttr<
"SomeStrEnum", "", [StrCaseA, StrCaseB]>;
def StrEnumAttrOp : TEST_Op<"str_enum_attr"> {
let arguments = (ins SomeStrEnum:$attr);
let results = (outs I32:$val);
}
def I32Case5: I32EnumAttrCase<"case5", 5>;
def I32Case10: I32EnumAttrCase<"case10", 10>;
def SomeI32Enum: I32EnumAttr<
"SomeI32Enum", "", [I32Case5, I32Case10]>;
def I32EnumAttrOp : TEST_Op<"i32_enum_attr"> {
let arguments = (ins SomeI32Enum:$attr);
let results = (outs I32:$val);
}
def I64Case5: I64EnumAttrCase<"case5", 5>;
def I64Case10: I64EnumAttrCase<"case10", 10>;
def SomeI64Enum: I64EnumAttr<
"SomeI64Enum", "", [I64Case5, I64Case10]>;
def I64EnumAttrOp : TEST_Op<"i64_enum_attr"> {
let arguments = (ins SomeI64Enum:$attr);
let results = (outs I32:$val);
}
def SomeStructAttr : StructAttr<"SomeStructAttr", Test_Dialect, [
StructFieldAttr<"some_field", I64Attr>,
StructFieldAttr<"some_other_field", I64Attr>
]> {}
def StructAttrOp : TEST_Op<"struct_attr"> {
let arguments = (ins SomeStructAttr:$the_struct_attr);
let results = (outs);
}
def IntAttrOp : TEST_Op<"int_attrs"> {
let arguments = (ins
AnyI32Attr:$any_i32_attr,
IndexAttr:$index_attr,
UI32Attr:$ui32_attr,
SI32Attr:$si32_attr
);
}
def FloatElementsAttrOp : TEST_Op<"float_elements_attr"> {
let arguments = (ins
RankedF32ElementsAttr<[2]>:$scalar_f32_attr,
RankedF64ElementsAttr<[4, 8]>:$tensor_f64_attr
);
}
// A pattern that updates dense<[3.0, 4.0]> to dense<[5.0, 6.0]>.
// This tests both matching and generating float elements attributes.
def UpdateFloatElementsAttr : Pat<
(FloatElementsAttrOp
ConstantAttr<RankedF32ElementsAttr<[2]>, "{3.0f, 4.0f}">:$f32attr,
$f64attr),
(FloatElementsAttrOp
ConstantAttr<RankedF32ElementsAttr<[2]>, "{5.0f, 6.0f}">:$f32attr,
$f64attr)>;
def IntElementsAttrOp : TEST_Op<"int_elements_attr"> {
let arguments = (ins
AnyI32ElementsAttr:$any_i32_attr,
I32ElementsAttr:$i32_attr
);
}
def RankedIntElementsAttrOp : TEST_Op<"ranked_int_elements_attr"> {
let arguments = (ins
RankedI32ElementsAttr<[2]>:$vector_i32_attr,
RankedI64ElementsAttr<[4, 8]>:$matrix_i64_attr
);
}
def DerivedTypeAttrOp : TEST_Op<"derived_type_attr", []> {
let results = (outs AnyTensor:$output);
DerivedTypeAttr element_dtype =
DerivedTypeAttr<"return getElementTypeOrSelf(getOutput().getType());">;
DerivedAttr size = DerivedAttr<"int",
"return getOutput().getType().cast<ShapedType>().getSizeInBits();",
"$_builder.getI32IntegerAttr($_self)">;
}
def StringElementsAttrOp : TEST_Op<"string_elements_attr"> {
let arguments = (ins
StringElementsAttr:$scalar_string_attr
);
}
//===----------------------------------------------------------------------===//
// Test Attribute Constraints
//===----------------------------------------------------------------------===//
def SymbolRefOp : TEST_Op<"symbol_ref_attr"> {
let arguments = (ins
Confined<FlatSymbolRefAttr, [ReferToOp<"FuncOp">]>:$symbol
);
}
//===----------------------------------------------------------------------===//
// Test Regions
//===----------------------------------------------------------------------===//
def OneRegionOp : TEST_Op<"one_region_op", []> {
let regions = (region AnyRegion);
}
def TwoRegionOp : TEST_Op<"two_region_op", []> {
let regions = (region AnyRegion, AnyRegion);
}
def SizedRegionOp : TEST_Op<"sized_region_op", []> {
let regions = (region SizedRegion<2>:$my_region, SizedRegion<1>);
}
//===----------------------------------------------------------------------===//
// NoTerminator Operation
//===----------------------------------------------------------------------===//
def SingleNoTerminatorOp : TEST_Op<"single_no_terminator_op",
GraphRegionNoTerminator.traits> {
let regions = (region SizedRegion<1>:$my_region);
let assemblyFormat = "attr-dict `:` $my_region";
}
def SingleNoTerminatorCustomAsmOp : TEST_Op<"single_no_terminator_custom_asm_op",
[SingleBlock, NoTerminator]> {
let regions = (region SizedRegion<1>);
let parser = [{ return ::parseSingleNoTerminatorCustomAsmOp(parser, result); }];
let printer = [{ return ::print(*this, p); }];
}
def VariadicNoTerminatorOp : TEST_Op<"variadic_no_terminator_op",
GraphRegionNoTerminator.traits> {
let regions = (region VariadicRegion<SizedRegion<1>>:$my_regions);
let assemblyFormat = "attr-dict `:` $my_regions";
}
//===----------------------------------------------------------------------===//
// Test Call Interfaces
//===----------------------------------------------------------------------===//
def ConversionCallOp : TEST_Op<"conversion_call_op",
[CallOpInterface]> {
let arguments = (ins Variadic<AnyType>:$arg_operands, SymbolRefAttr:$callee);
let results = (outs Variadic<AnyType>);
let extraClassDeclaration = [{
/// Return the callee of this operation.
::mlir::CallInterfaceCallable getCallableForCallee() {
return (*this)->getAttrOfType<::mlir::SymbolRefAttr>("callee");
}
}];
}
def FunctionalRegionOp : TEST_Op<"functional_region_op",
[CallableOpInterface]> {
let regions = (region AnyRegion:$body);
let results = (outs FunctionType);
let extraClassDeclaration = [{
::mlir::Region *getCallableRegion() { return &getBody(); }
::llvm::ArrayRef<::mlir::Type> getCallableResults() {
return getType().cast<::mlir::FunctionType>().getResults();
}
}];
}
def FoldToCallOp : TEST_Op<"fold_to_call_op"> {
let arguments = (ins FlatSymbolRefAttr:$callee);
let hasCanonicalizer = 1;
}
//===----------------------------------------------------------------------===//
// Test Traits
//===----------------------------------------------------------------------===//
def SameOperandElementTypeOp : TEST_Op<"same_operand_element_type",
[SameOperandsElementType]> {
let arguments = (ins AnyType, AnyType);
let results = (outs AnyType);
}
def SameOperandAndResultElementTypeOp :
TEST_Op<"same_operand_and_result_element_type",
[SameOperandsAndResultElementType]> {
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>);
}
def SameOperandShapeOp : TEST_Op<"same_operand_shape", [SameOperandsShape]> {
let arguments = (ins Variadic<AnyShaped>);
}
def SameOperandAndResultShapeOp : TEST_Op<"same_operand_and_result_shape",
[SameOperandsAndResultShape]> {
let arguments = (ins Variadic<AnyShaped>);
let results = (outs Variadic<AnyShaped>);
}
def SameOperandAndResultTypeOp : TEST_Op<"same_operand_and_result_type",
[SameOperandsAndResultType]> {
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>);
}
def ElementwiseMappableOp : TEST_Op<"elementwise_mappable",
ElementwiseMappable.traits> {
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>);
}
def ArgAndResHaveFixedElementTypesOp :
TEST_Op<"arg_and_res_have_fixed_element_types",
[PredOpTrait<"fixed type combination",
And<[ElementTypeIsPred<"x", I32>,
ElementTypeIsPred<"y", F32>]>>,
ElementTypeIs<"res", I16>]> {
let arguments = (ins
AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def OperandsHaveSameElementType : TEST_Op<"operands_have_same_element_type", [
AllElementTypesMatch<["x", "y"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
}
def OperandZeroAndResultHaveSameElementType : TEST_Op<
"operand0_and_result_have_same_element_type",
[AllElementTypesMatch<["x", "res"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
let results = (outs AnyType:$res);
}
def OperandsHaveSameType :
TEST_Op<"operands_have_same_type", [AllTypesMatch<["x", "y"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
}
def ResultHasSameTypeAsAttr :
TEST_Op<"result_has_same_type_as_attr",
[AllTypesMatch<["attr", "result"]>]> {
let arguments = (ins AnyAttr:$attr);
let results = (outs AnyType:$result);
let assemblyFormat = "$attr `->` type($result) attr-dict";
}
def OperandZeroAndResultHaveSameType :
TEST_Op<"operand0_and_result_have_same_type",
[AllTypesMatch<["x", "res"]>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
let results = (outs AnyType:$res);
}
def OperandsHaveSameRank :
TEST_Op<"operands_have_same_rank", [AllRanksMatch<["x", "y"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
}
def OperandZeroAndResultHaveSameRank :
TEST_Op<"operand0_and_result_have_same_rank",
[AllRanksMatch<["x", "res"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def OperandZeroAndResultHaveSameShape :
TEST_Op<"operand0_and_result_have_same_shape",
[AllShapesMatch<["x", "res"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def OperandZeroAndResultHaveSameElementCount :
TEST_Op<"operand0_and_result_have_same_element_count",
[AllElementCountsMatch<["x", "res"]>]> {
let arguments = (ins AnyShaped:$x, AnyShaped:$y);
let results = (outs AnyShaped:$res);
}
def FourEqualsFive :
TEST_Op<"four_equals_five", [AllMatch<["5", "4"], "4 equals 5">]>;
def OperandRankEqualsResultSize :
TEST_Op<"operand_rank_equals_result_size",
[AllMatch<[Rank<"operand">.result, ElementCount<"result">.result],
"operand rank equals result size">]> {
let arguments = (ins AnyShaped:$operand);
let results = (outs AnyShaped:$result);
}
def IfFirstOperandIsNoneThenSoIsSecond :
TEST_Op<"if_first_operand_is_none_then_so_is_second", [PredOpTrait<
"has either both none type operands or first is not none",
Or<[
And<[TypeIsPred<"x", NoneType>, TypeIsPred<"y", NoneType>]>,
Neg<TypeIsPred<"x", NoneType>>]>>]> {
let arguments = (ins AnyType:$x, AnyType:$y);
}
def BroadcastableOp : TEST_Op<"broadcastable", [ResultsBroadcastableShape]> {
let arguments = (ins Variadic<AnyTensor>);
let results = (outs AnyTensor);
}
// HasParent trait
def ParentOp : TEST_Op<"parent"> {
let regions = (region AnyRegion);
}
def ChildOp : TEST_Op<"child", [HasParent<"ParentOp">]>;
// ParentOneOf trait
def ParentOp1 : TEST_Op<"parent1"> {
let regions = (region AnyRegion);
}
def ChildWithParentOneOf : TEST_Op<"child_with_parent_one_of",
[ParentOneOf<["ParentOp", "ParentOp1"]>]>;
def TerminatorOp : TEST_Op<"finish", [Terminator]>;
def SingleBlockImplicitTerminatorOp : TEST_Op<"SingleBlockImplicitTerminator",
[SingleBlockImplicitTerminator<"TerminatorOp">]> {
let regions = (region SizedRegion<1>:$region);
}
def I32ElementsAttrOp : TEST_Op<"i32ElementsAttr"> {
let arguments = (ins I32ElementsAttr:$attr);
}
def IndexElementsAttrOp : TEST_Op<"indexElementsAttr"> {
let arguments = (ins IndexElementsAttr:$attr);
}
def OpWithInferTypeInterfaceOp : TEST_Op<"op_with_infer_type_if", [
DeclareOpInterfaceMethods<InferTypeOpInterface,
["inferReturnTypeComponents"]>]> {
let arguments = (ins AnyTensor, AnyTensor);
let results = (outs AnyTensor);
}
def OpWithShapedTypeInferTypeInterfaceOp : TEST_Op<"op_with_shaped_type_infer_type_if",
[InferTensorTypeWithReify]> {
let arguments = (ins AnyTensor, AnyTensor);
let results = (outs AnyTensor);
}
def OpWithResultShapeInterfaceOp : TEST_Op<"op_with_result_shape_interface",
[DeclareOpInterfaceMethods<InferShapedTypeOpInterface,
["reifyReturnTypeShapes"]>]> {
let arguments = (ins AnyRankedTensor:$operand1, AnyRankedTensor:$operand2);
let results = (outs AnyRankedTensor:$result1, AnyRankedTensor:$result2);
}
def OpWithResultShapePerDimInterfaceOp :
TEST_Op<"op_with_result_shape_per_dim_interface",
[DeclareOpInterfaceMethods<ReifyRankedShapedTypeOpInterface>]> {
let arguments = (ins AnyRankedTensor:$operand1, AnyRankedTensor:$operand2);
let results = (outs AnyRankedTensor:$result1, AnyRankedTensor:$result2);
}
def IsNotScalar : Constraint<CPred<"$0.getType().getRank() != 0">>;
def UpdateAttr : Pat<(I32ElementsAttrOp $attr),
(I32ElementsAttrOp ConstantAttr<I32ElementsAttr, "0">),
[(IsNotScalar $attr)]>;
def TestBranchOp : TEST_Op<"br",
[DeclareOpInterfaceMethods<BranchOpInterface>, Terminator]> {
let arguments = (ins Variadic<AnyType>:$targetOperands);
let successors = (successor AnySuccessor:$target);
}
def AttrSizedOperandOp : TEST_Op<"attr_sized_operands",
[AttrSizedOperandSegments]> {
let arguments = (ins
Variadic<I32>:$a,
Variadic<I32>:$b,
I32:$c,
Variadic<I32>:$d,
I32ElementsAttr:$operand_segment_sizes
);
}
def AttrSizedResultOp : TEST_Op<"attr_sized_results",
[AttrSizedResultSegments]> {
let arguments = (ins
I32ElementsAttr:$result_segment_sizes
);
let results = (outs
Variadic<I32>:$a,
Variadic<I32>:$b,
I32:$c,
Variadic<I32>:$d
);
}
// This is used to test encoding of a string attribute into an SSA name of a
// pretty printed value name.
def StringAttrPrettyNameOp
: TEST_Op<"string_attr_pretty_name",
[DeclareOpInterfaceMethods<OpAsmOpInterface, ["getAsmResultNames"]>]> {
let arguments = (ins StrArrayAttr:$names);
let results = (outs Variadic<I32>:$r);
let printer = [{ return ::print(p, *this); }];
let parser = [{ return ::parse$cppClass(parser, result); }];
}
// This is used to test the OpAsmOpInterface::getDefaultDialect() feature:
// operations nested in a region under this op will drop the "test." dialect
// prefix.
def DefaultDialectOp : TEST_Op<"default_dialect", [OpAsmOpInterface]> {
let regions = (region AnyRegion:$body);
let extraClassDeclaration = [{
static ::llvm::StringRef getDefaultDialect() {
return "test";
}
void getAsmResultNames(::llvm::function_ref<void(::mlir::Value, ::llvm::StringRef)> setNameFn) {}
}];
let assemblyFormat = "regions attr-dict-with-keyword";
}
// This operation requires its return type to have the trait 'TestTypeTrait'.
def ResultTypeWithTraitOp : TEST_Op<"result_type_with_trait", []> {
let results = (outs AnyType);
let verifier = [{
if((*this)->getResultTypes()[0].hasTrait<TypeTrait::TestTypeTrait>())
return success();
return this->emitError("result type should have trait 'TestTypeTrait'");
}];
}
// This operation requires its "attr" attribute to have the
// trait 'TestAttrTrait'.
def AttrWithTraitOp : TEST_Op<"attr_with_trait", []> {
let arguments = (ins AnyAttr:$attr);
let verifier = [{
if (this->getAttr().hasTrait<AttributeTrait::TestAttrTrait>())
return success();
return this->emitError("'attr' attribute should have trait 'TestAttrTrait'");
}];
}
//===----------------------------------------------------------------------===//
// Test Locations
//===----------------------------------------------------------------------===//
def TestLocationSrcOp : TEST_Op<"loc_src"> {
let arguments = (ins I32:$input);
let results = (outs I32:$output);
}
def TestLocationDstOp : TEST_Op<"loc_dst", [SameOperandsAndResultType]> {
let arguments = (ins I32:$input);
let results = (outs I32:$output);
}
//===----------------------------------------------------------------------===//
// Test Patterns
//===----------------------------------------------------------------------===//
def OpA : TEST_Op<"op_a"> {
let arguments = (ins I32, I32Attr:$attr);
let results = (outs I32);
}
def OpB : TEST_Op<"op_b"> {
let arguments = (ins I32, I32Attr:$attr);
let results = (outs I32);
}
// Test named pattern.
def TestNamedPatternRule : Pat<(OpA $input, $attr), (OpB $input, $attr)>;
// Test with fused location.
def : Pat<(OpA (OpA $input, $attr), $bttr), (OpB $input, $bttr)>;
// Test added benefit.
def OpD : TEST_Op<"op_d">, Arguments<(ins I32)>, Results<(outs I32)>;
def OpE : TEST_Op<"op_e">, Arguments<(ins I32)>, Results<(outs I32)>;
def OpF : TEST_Op<"op_f">, Arguments<(ins I32)>, Results<(outs I32)>;
def OpG : TEST_Op<"op_g">, Arguments<(ins I32)>, Results<(outs I32)>;
// Verify that bumping benefit results in selecting different op.
def : Pat<(OpD $input), (OpE $input)>;
def : Pat<(OpD $input), (OpF $input), [], (addBenefit 10)>;
// Verify that patterns with more source nodes are selected before those with fewer.
def : Pat<(OpG $input), (OpB $input, ConstantAttr<I32Attr, "20">:$attr)>;
def : Pat<(OpG (OpG $input)), (OpB $input, ConstantAttr<I32Attr, "34">:$attr)>;
// Test patterns for zero-result op.
def OpH : TEST_Op<"op_h">, Arguments<(ins I32)>, Results<(outs)>;
def OpI : TEST_Op<"op_i">, Arguments<(ins I32)>, Results<(outs)>;
def : Pat<(OpH $input), (OpI $input)>;
// Test patterns for zero-input op.
def OpJ : TEST_Op<"op_j">, Arguments<(ins)>, Results<(outs I32)>;
def OpK : TEST_Op<"op_k">, Arguments<(ins)>, Results<(outs I32)>;
def : Pat<(OpJ), (OpK)>;
// Test that natives calls are only called once during rewrites.
def OpM : TEST_Op<"op_m"> {
let arguments = (ins I32, OptionalAttr<I32Attr>:$optional_attr);
let results = (outs I32);
}
def OpN : TEST_Op<"op_n"> {
let arguments = (ins I32, I32);
let results = (outs I32);
}
def OpO : TEST_Op<"op_o"> {
let arguments = (ins I32);
let results = (outs I32);
}
def OpP : TEST_Op<"op_p"> {
let arguments = (ins I32, I32, I32, I32, I32, I32);
let results = (outs I32);
}
// Test same operand name enforces equality condition check.
def TestEqualArgsPattern : Pat<(OpN $a, $a), (OpO $a)>;
// Test when equality is enforced at different depth.
def TestNestedOpEqualArgsPattern :
Pat<(OpN $b, (OpP $a, $b, $c, $d, $e, $f)), (replaceWithValue $b)>;
// Test when equality is enforced on same op and same operand but at different
// depth. We only bound one of the $x to the second operand of outer OpN and
// left another be the default value (which is the value of first operand of
// outer OpN). As a result, it ended up comparing wrong values in some cases.
def TestNestedSameOpAndSameArgEqualityPattern :
Pat<(OpN (OpN $_, $x), $x), (replaceWithValue $x)>;
// Test multiple equal arguments check enforced.
def TestMultipleEqualArgsPattern :
Pat<(OpP $a, $b, $a, $a, $b, $c), (OpN $c, $b)>;
// Test for memrefs normalization of an op with normalizable memrefs.
def OpNorm : TEST_Op<"op_norm", [MemRefsNormalizable]> {
let arguments = (ins AnyMemRef:$X, AnyMemRef:$Y);
}
// Test for memrefs normalization of an op without normalizable memrefs.
def OpNonNorm : TEST_Op<"op_nonnorm"> {
let arguments = (ins AnyMemRef:$X, AnyMemRef:$Y);
}
// Test for memrefs normalization of an op that has normalizable memref results.
def OpNormRet : TEST_Op<"op_norm_ret", [MemRefsNormalizable]> {
let arguments = (ins AnyMemRef:$X);
let results = (outs AnyMemRef:$Y, AnyMemRef:$Z);
}
// Test for memrefs normalization of an op with a reference to a function
// symbol.
def OpFuncRef : TEST_Op<"op_funcref"> {
let summary = "Test op with a reference to a function symbol";
let description = [{
The "test.op_funcref" is a test op with a reference to a function symbol.
}];
let builders = [OpBuilder<(ins "::mlir::FuncOp":$function)>];
}
// Pattern add the argument plus a increasing static number hidden in
// OpMTest function. That value is set into the optional argument.
// That way, we will know if operations is called once or twice.
def OpMGetNullAttr : NativeCodeCall<"Attribute()">;
def OpMAttributeIsNull : Constraint<CPred<"! ($_self)">, "Attribute is null">;
def OpMVal : NativeCodeCall<"OpMTest($_builder, $0)">;
def : Pat<(OpM $attr, $optAttr), (OpM $attr, (OpMVal $attr) ),
[(OpMAttributeIsNull:$optAttr)]>;
// Test `$_` for ignoring op argument match.
def TestIgnoreArgMatchSrcOp : TEST_Op<"ignore_arg_match_src"> {
let arguments = (ins
AnyType:$a, AnyType:$b, AnyType:$c,
AnyAttr:$d, AnyAttr:$e, AnyAttr:$f);
}
def TestIgnoreArgMatchDstOp : TEST_Op<"ignore_arg_match_dst"> {
let arguments = (ins AnyType:$b, AnyAttr:$f);
}
def : Pat<(TestIgnoreArgMatchSrcOp $_, $b, I32, I64Attr:$_, $_, $f),
(TestIgnoreArgMatchDstOp $b, $f)>;
def OpInterleavedOperandAttribute1 : TEST_Op<"interleaved_operand_attr1"> {
let arguments = (ins
I32:$input1,
I64Attr:$attr1,
I32:$input2,
I64Attr:$attr2
);
}
def OpInterleavedOperandAttribute2 : TEST_Op<"interleaved_operand_attr2"> {
let arguments = (ins
I32:$input1,
I64Attr:$attr1,
I32:$input2,
I64Attr:$attr2
);
}
def ManyArgsOp : TEST_Op<"many_arguments"> {
let arguments = (ins
I32:$input1, I32:$input2, I32:$input3, I32:$input4, I32:$input5,
I32:$input6, I32:$input7, I32:$input8, I32:$input9,
I64Attr:$attr1, I64Attr:$attr2, I64Attr:$attr3, I64Attr:$attr4,
I64Attr:$attr5, I64Attr:$attr6, I64Attr:$attr7, I64Attr:$attr8,
I64Attr:$attr9
);
}
// Test that DRR does not blow up when seeing lots of arguments.
def : Pat<(ManyArgsOp
$input1, $input2, $input3, $input4, $input5,
$input6, $input7, $input8, $input9,
ConstantAttr<I64Attr, "42">,
$attr2, $attr3, $attr4, $attr5, $attr6,
$attr7, $attr8, $attr9),
(ManyArgsOp
$input1, $input2, $input3, $input4, $input5,
$input6, $input7, $input8, $input9,
ConstantAttr<I64Attr, "24">,
$attr2, $attr3, $attr4, $attr5, $attr6,
$attr7, $attr8, $attr9)>;
// Test that we can capture and reference interleaved operands and attributes.
def : Pat<(OpInterleavedOperandAttribute1 $input1, $attr1, $input2, $attr2),
(OpInterleavedOperandAttribute2 $input1, $attr1, $input2, $attr2)>;
// Test NativeCodeCall.
def OpNativeCodeCall1 : TEST_Op<"native_code_call1"> {
let arguments = (ins
I32:$input1, I32:$input2,
BoolAttr:$choice,
I64Attr:$attr1, I64Attr:$attr2
);
let results = (outs I32);
}
def OpNativeCodeCall2 : TEST_Op<"native_code_call2"> {
let arguments = (ins I32:$input, I64ArrayAttr:$attr);
let results = (outs I32);
}
// Native code call to invoke a C++ function
def CreateOperand: NativeCodeCall<"chooseOperand($0, $1, $2)">;
// Native code call to invoke a C++ expression
def CreateArrayAttr: NativeCodeCall<"$_builder.getArrayAttr({$0, $1})">;
// Test that we can use NativeCodeCall to create operand and attribute.
// This pattern chooses between $input1 and $input2 according to $choice and
// it combines $attr1 and $attr2 into an array attribute.
def : Pat<(OpNativeCodeCall1 $input1, $input2,
ConstBoolAttrTrue:$choice, $attr1, $attr2),
(OpNativeCodeCall2 (CreateOperand $input1, $input2, $choice),
(CreateArrayAttr $attr1, $attr2))>;
// Note: the following is just for testing purpose.
// Should use the replaceWithValue directive instead.
def UseOpResult: NativeCodeCall<"$0">;
// Test that we can use NativeCodeCall to create result.
def : Pat<(OpNativeCodeCall1 $input1, $input2,
ConstBoolAttrFalse, $attr1, $attr2),
(UseOpResult $input2)>;
def OpNativeCodeCall3 : TEST_Op<"native_code_call3"> {
let arguments = (ins I32:$input);
let results = (outs I32);
}
// Test that NativeCodeCall is not ignored if it is not used to directly
// replace the matched root op.
def : Pattern<(OpNativeCodeCall3 $input),
[(NativeCodeCallVoid<"createOpI($_builder, $_loc, $0)"> $input),
(OpK)]>;
def OpNativeCodeCall4 : TEST_Op<"native_code_call4"> {
let arguments = (ins AnyType:$input1);
let results = (outs I32:$output1, I32:$output2);
}
def OpNativeCodeCall5 : TEST_Op<"native_code_call5"> {
let arguments = (ins I32:$input1, I32:$input2);
let results = (outs I32:$output1, I32:$output2);
}
def GetFirstI32Result : NativeCodeCall<"success(getFirstI32Result($_self, $0))">;
def BindNativeCodeCallResult : NativeCodeCall<"bindNativeCodeCallResult($0)">;
def : Pat<(OpNativeCodeCall4 (GetFirstI32Result $ret)),
(OpNativeCodeCall5 (BindNativeCodeCallResult:$native $ret), $native)>;
def OpNativeCodeCall6 : TEST_Op<"native_code_call6"> {
let arguments = (ins I32:$input1, I32:$input2);
let results = (outs I32:$output1, I32:$output2);
}
def OpNativeCodeCall7 : TEST_Op<"native_code_call7"> {
let arguments = (ins I32:$input);
let results = (outs I32);
}
def BindMultipleNativeCodeCallResult : NativeCodeCall<"bindMultipleNativeCodeCallResult($0, $1)", 2>;
def : Pattern<(OpNativeCodeCall6 $arg1, $arg2),
[(OpNativeCodeCall7 (BindMultipleNativeCodeCallResult:$native__0 $arg1, $arg2)),
(OpNativeCodeCall7 $native__1)]>;
// Test AllAttrConstraintsOf.
def OpAllAttrConstraint1 : TEST_Op<"all_attr_constraint_of1"> {
let arguments = (ins I64ArrayAttr:$attr);
let results = (outs I32);
}
def OpAllAttrConstraint2 : TEST_Op<"all_attr_constraint_of2"> {
let arguments = (ins I64ArrayAttr:$attr);
let results = (outs I32);
}
def Constraint0 : AttrConstraint<
CPred<"$_self.cast<ArrayAttr>()[0]."
"cast<::mlir::IntegerAttr>().getInt() == 0">,
"[0] == 0">;
def Constraint1 : AttrConstraint<
CPred<"$_self.cast<ArrayAttr>()[1].cast<::mlir::IntegerAttr>().getInt() == 1">,
"[1] == 1">;
def : Pat<(OpAllAttrConstraint1
AllAttrConstraintsOf<[Constraint0, Constraint1]>:$attr),
(OpAllAttrConstraint2 $attr)>;
// Op for testing RewritePattern removing op with inner ops.
def TestOpWithRegionPattern : TEST_Op<"op_with_region_pattern"> {
let regions = (region SizedRegion<1>:$region);
let hasCanonicalizer = 1;
}
def TestOpConstant : TEST_Op<"constant", [ConstantLike, NoSideEffect]> {
let arguments = (ins AnyAttr:$value);
let results = (outs AnyType);
let hasFolder = 1;
}
def OpR : TEST_Op<"op_r">, Arguments<(ins AnyInteger, AnyInteger)>, Results<(outs AnyInteger)>;
def OpS : TEST_Op<"op_s">, Arguments<(ins AnyInteger, AnyAttr:$value)>, Results<(outs AnyInteger)>;
def : Pat<(OpR $input1, (ConstantLikeMatcher I32Attr:$input2)),
(OpS:$unused $input1, $input2)>;
// Op for testing trivial removal via folding of op with inner ops and no uses.
def TestOpWithRegionFoldNoSideEffect : TEST_Op<
"op_with_region_fold_no_side_effect", [NoSideEffect]> {
let regions = (region SizedRegion<1>:$region);
}
// Op for testing folding of outer op with inner ops.
def TestOpWithRegionFold : TEST_Op<"op_with_region_fold"> {
let arguments = (ins I32:$operand);
let results = (outs I32);
let regions = (region SizedRegion<1>:$region);
let hasFolder = 1;
}
def TestOpWithVariadicResultsAndFolder: TEST_Op<"op_with_variadic_results_and_folder"> {
let arguments = (ins Variadic<I32>);
let results = (outs Variadic<I32>);
let hasFolder = 1;
}
def TestCommutativeOp : TEST_Op<"op_commutative", [Commutative]> {
let arguments = (ins I32:$op1, I32:$op2, I32:$op3, I32:$op4);
let results = (outs I32);
}
def TestIdempotentTraitOp
: TEST_Op<"op_idempotent_trait",
[SameOperandsAndResultType, NoSideEffect, Idempotent]> {
let arguments = (ins I32:$op1);
let results = (outs I32);
}
def TestIdempotentTraitBinaryOp
: TEST_Op<"op_idempotent_trait_binary",
[SameOperandsAndResultType, NoSideEffect, Idempotent]> {
let arguments = (ins I32:$op1, I32:$op2);
let results = (outs I32);
}
def TestInvolutionTraitNoOperationFolderOp
: TEST_Op<"op_involution_trait_no_operation_fold",
[SameOperandsAndResultType, NoSideEffect, Involution]> {
let arguments = (ins I32:$op1);
let results = (outs I32);
}
def TestInvolutionTraitFailingOperationFolderOp
: TEST_Op<"op_involution_trait_failing_operation_fold",
[SameOperandsAndResultType, NoSideEffect, Involution]> {
let arguments = (ins I32:$op1);
let results = (outs I32);
let hasFolder = 1;
}
def TestInvolutionTraitSuccesfulOperationFolderOp
: TEST_Op<"op_involution_trait_succesful_operation_fold",
[SameOperandsAndResultType, NoSideEffect, Involution]> {
let arguments = (ins I32:$op1);
let results = (outs I32);
let hasFolder = 1;
}
def TestOpInPlaceFoldAnchor : TEST_Op<"op_in_place_fold_anchor"> {
let arguments = (ins I32);
let results = (outs I32);
}
def TestOpInPlaceFold : TEST_Op<"op_in_place_fold"> {
let arguments = (ins I32:$op, I32Attr:$attr);
let results = (outs I32);
let hasFolder = 1;
}
// An op that always fold itself.
def TestPassthroughFold : TEST_Op<"passthrough_fold"> {
let arguments = (ins AnyType:$op);
let results = (outs AnyType);
let hasFolder = 1;
}
def TestDialectCanonicalizerOp : TEST_Op<"dialect_canonicalizable"> {
let arguments = (ins);
let results = (outs I32);
}
//===----------------------------------------------------------------------===//
// Test Patterns (Symbol Binding)
// Test symbol binding.
def OpSymbolBindingA : TEST_Op<"symbol_binding_a", []> {
let arguments = (ins I32:$operand, I64Attr:$attr);
let results = (outs I32);
}
def OpSymbolBindingB : TEST_Op<"symbol_binding_b", []> {
let arguments = (ins I32:$operand);
let results = (outs I32);
}
def OpSymbolBindingC : TEST_Op<"symbol_binding_c", []> {
let arguments = (ins I32:$operand);
let results = (outs I32);
let builders = OpSymbolBindingB.builders;
}
def OpSymbolBindingD : TEST_Op<"symbol_binding_d", []> {
let arguments = (ins I32:$input1, I32:$input2, I64Attr:$attr);
let results = (outs I32);
}
def HasOneUse: Constraint<CPred<"$0.hasOneUse()">, "has one use">;
def : Pattern<
// Bind to source pattern op operand/attribute/result
(OpSymbolBindingA:$res_a $operand, $attr), [
// Bind to auxiliary op result
(OpSymbolBindingC:$res_c (OpSymbolBindingB:$res_b $operand)),
// Use bound symbols in resultant ops
(OpSymbolBindingD $res_b, $res_c, $attr)],
// Use bound symbols in additional constraints
[(HasOneUse $res_a)]>;
def OpSymbolBindingNoResult : TEST_Op<"symbol_binding_no_result", []> {
let arguments = (ins I32:$operand);
}
// Test that we can bind to an op without results and reference it later.
def : Pat<(OpSymbolBindingNoResult:$op $operand),
(NativeCodeCallVoid<"handleNoResultOp($_builder, $0)"> $op)>;
//===----------------------------------------------------------------------===//
// Test Patterns (Attributes)
// Test matching against op attributes.
def OpAttrMatch1 : TEST_Op<"match_op_attribute1"> {
let arguments = (ins
I32Attr:$required_attr,
OptionalAttr<I32Attr>:$optional_attr,
DefaultValuedAttr<I32Attr, "42">:$default_valued_attr,
I32Attr:$more_attr
);
let results = (outs I32);
}
def OpAttrMatch2 : TEST_Op<"match_op_attribute2"> {
let arguments = OpAttrMatch1.arguments;
let results = (outs I32);
}
def MoreConstraint : AttrConstraint<
CPred<"$_self.cast<IntegerAttr>().getInt() == 4">, "more constraint">;
def : Pat<(OpAttrMatch1 $required, $optional, $default_valued,
MoreConstraint:$more),
(OpAttrMatch2 $required, $optional, $default_valued, $more)>;
// Test unit attrs.
def OpAttrMatch3 : TEST_Op<"match_op_attribute3"> {
let arguments = (ins UnitAttr:$attr);
let results = (outs I32);
}
def OpAttrMatch4 : TEST_Op<"match_op_attribute4"> {
let arguments = (ins UnitAttr:$attr1, UnitAttr:$attr2);
let results = (outs I32);
}
def : Pat<(OpAttrMatch3 $attr), (OpAttrMatch4 ConstUnitAttr, $attr)>;
// Test with constant attr.
def OpC : TEST_Op<"op_c">, Arguments<(ins I32)>, Results<(outs I32)>;
def : Pat<(OpC $input), (OpB $input, ConstantAttr<I32Attr, "17">:$attr)>;
// Test string enum attribute in rewrites.
def : Pat<(StrEnumAttrOp StrCaseA), (StrEnumAttrOp StrCaseB)>;
// Test integer enum attribute in rewrites.
def : Pat<(I32EnumAttrOp I32Case5), (I32EnumAttrOp I32Case10)>;
def : Pat<(I64EnumAttrOp I64Case5), (I64EnumAttrOp I64Case10)>;
//===----------------------------------------------------------------------===//
// Test Patterns (Multi-result Ops)
def MultiResultOpKind1: I64EnumAttrCase<"kind1", 1>;
def MultiResultOpKind2: I64EnumAttrCase<"kind2", 2>;
def MultiResultOpKind3: I64EnumAttrCase<"kind3", 3>;
def MultiResultOpKind4: I64EnumAttrCase<"kind4", 4>;
def MultiResultOpKind5: I64EnumAttrCase<"kind5", 5>;
def MultiResultOpKind6: I64EnumAttrCase<"kind6", 6>;
def MultiResultOpEnum: I64EnumAttr<
"MultiResultOpEnum", "Multi-result op kinds", [
MultiResultOpKind1, MultiResultOpKind2, MultiResultOpKind3,
MultiResultOpKind4, MultiResultOpKind5, MultiResultOpKind6
]>;
def ThreeResultOp : TEST_Op<"three_result"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1, F32:$result2, F32:$result3);
}
def AnotherThreeResultOp : TEST_Op<"another_three_result", [DeclareOpInterfaceMethods<InferTypeOpInterface>]> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1, F32:$result2, F32:$result3);
}
def TwoResultOp : TEST_Op<"two_result"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1, F32:$result2);
}
def AnotherTwoResultOp : TEST_Op<"another_two_result"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs F32:$result1, F32:$result2);
}
def OneResultOp1 : TEST_Op<"one_result1"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs F32:$result1);
}
def OneResultOp2 : TEST_Op<"one_result2"> {
let arguments = (ins MultiResultOpEnum:$kind);
let results = (outs I32:$result1);
}
def OneResultOp3 : TEST_Op<"one_result3"> {
let arguments = (ins F32);
let results = (outs I32:$result1);
}
// Test using multi-result op as a whole
def : Pat<(ThreeResultOp MultiResultOpKind1:$kind),
(AnotherThreeResultOp $kind)>;
// Test using multi-result op as a whole for partial replacement
def : Pattern<(ThreeResultOp MultiResultOpKind2:$kind),
[(TwoResultOp $kind),
(OneResultOp1 $kind)]>;
def : Pattern<(ThreeResultOp MultiResultOpKind3:$kind),
[(OneResultOp2 $kind),
(AnotherTwoResultOp $kind)]>;
// Test using results separately in a multi-result op
def : Pattern<(ThreeResultOp MultiResultOpKind4:$kind),
[(TwoResultOp:$res1__0 $kind),
(OneResultOp1 $kind),
(TwoResultOp:$res2__1 $kind)]>;
// Test referencing a single value in the value pack
// This rule only matches TwoResultOp if its second result has no use.
def : Pattern<(TwoResultOp:$res MultiResultOpKind5:$kind),
[(OneResultOp2 $kind),
(OneResultOp1 $kind)],
[(HasNoUseOf:$res__1)]>;
// Test using auxiliary ops for replacing multi-result op
def : Pattern<
(ThreeResultOp MultiResultOpKind6:$kind), [
// Auxiliary op generated to help building the final result but not
// directly used to replace the source op's results.
(TwoResultOp:$interm $kind),
(OneResultOp3 $interm__1),
(AnotherTwoResultOp $kind)
]>;
//===----------------------------------------------------------------------===//
// Test Patterns (Variadic Ops)
def OneVResOneVOperandOp1 : TEST_Op<"one_variadic_out_one_variadic_in1"> {
let arguments = (ins Variadic<I32>);
let results = (outs Variadic<I32>);
}
def OneVResOneVOperandOp2 : TEST_Op<"one_variadic_out_one_variadic_in2"> {
let arguments = (ins Variadic<I32>);
let results = (outs Variadic<I32>);
}
// Rewrite an op with one variadic operand and one variadic result to
// another similar op.
def : Pat<(OneVResOneVOperandOp1 $inputs), (OneVResOneVOperandOp2 $inputs)>;
def MixedVOperandOp1 : TEST_Op<"mixed_variadic_in1",
[SameVariadicOperandSize]> {
let arguments = (ins
Variadic<I32>:$input1,
F32:$input2,
Variadic<I32>:$input3
);
}
def MixedVOperandOp2 : TEST_Op<"mixed_variadic_in2",
[SameVariadicOperandSize]> {
let arguments = (ins
Variadic<I32>:$input1,
F32:$input2,
Variadic<I32>:$input3
);
}
// Rewrite an op with both variadic operands and normal operands.
def : Pat<(MixedVOperandOp1 $input1, $input2, $input3),
(MixedVOperandOp2 $input1, $input2, $input3)>;
def MixedVResultOp1 : TEST_Op<"mixed_variadic_out1", [SameVariadicResultSize]> {
let results = (outs
Variadic<I32>:$output1,
F32:$output2,
Variadic<I32>:$output3
);
}
def MixedVResultOp2 : TEST_Op<"mixed_variadic_out2", [SameVariadicResultSize]> {
let results = (outs
Variadic<I32>:$output1,
F32:$output2,
Variadic<I32>:$output3
);
}
// Rewrite an op with both variadic results and normal results.
// Note that because we are generating the op with a top-level result pattern,
// we are able to deduce the correct result types for the generated op using
// the information from the matched root op.
def : Pat<(MixedVResultOp1), (MixedVResultOp2)>;
def OneI32ResultOp : TEST_Op<"one_i32_out"> {
let results = (outs I32);
}
def MixedVOperandOp3 : TEST_Op<"mixed_variadic_in3",
[SameVariadicOperandSize]> {
let arguments = (ins
I32:$input1,
Variadic<I32>:$input2,
Variadic<I32>:$input3,
I32Attr:$count
);
let results = (outs I32);
}
def MixedVResultOp3 : TEST_Op<"mixed_variadic_out3",
[SameVariadicResultSize]> {
let arguments = (ins I32Attr:$count);
let results = (outs
I32:$output1,
Variadic<I32>:$output2,
Variadic<I32>:$output3
);
// We will use this op in a nested result pattern, where we cannot deduce the
// result type. So need to provide a builder not requiring result types.
let builders = [
OpBuilder<(ins "::mlir::IntegerAttr":$count),
[{
auto i32Type = $_builder.getIntegerType(32);
$_state.addTypes(i32Type); // $output1
SmallVector<Type, 4> types(count.getInt(), i32Type);
$_state.addTypes(types); // $output2
$_state.addTypes(types); // $output3
$_state.addAttribute("count", count);
}]>
];
}
// Generates an op with variadic results using nested pattern.
def : Pat<(OneI32ResultOp),
(MixedVOperandOp3
(MixedVResultOp3:$results__0 ConstantAttr<I32Attr, "2">),
(replaceWithValue $results__1),
(replaceWithValue $results__2),
ConstantAttr<I32Attr, "2">)>;
//===----------------------------------------------------------------------===//
// Test Patterns (either)
def TestEitherOpA : TEST_Op<"either_op_a"> {
let arguments = (ins AnyInteger:$arg0, AnyInteger:$arg1, AnyInteger:$arg2);
let results = (outs I32:$output);
}
def TestEitherOpB : TEST_Op<"either_op_b"> {
let arguments = (ins AnyInteger:$arg0);
let results = (outs I32:$output);
}
def : Pat<(TestEitherOpA (either I32:$arg1, I16:$arg2), $_),
(TestEitherOpB $arg2)>;
def : Pat<(TestEitherOpA (either (TestEitherOpB I32:$arg1), I16:$arg2), $_),
(TestEitherOpB $arg2)>;
def : Pat<(TestEitherOpA (either (TestEitherOpB I32:$arg1),
(TestEitherOpB I16:$arg2)),
$_),
(TestEitherOpB $arg2)>;
//===----------------------------------------------------------------------===//
// Test Patterns (Location)
// Test that we can specify locations for generated ops.
def : Pat<(TestLocationSrcOp:$res1
(TestLocationSrcOp:$res2
(TestLocationSrcOp:$res3 $input))),
(TestLocationDstOp
(TestLocationDstOp
(TestLocationDstOp $input, (location $res1)),
(location "named")),
(location "fused", $res2, $res3))>;
//===----------------------------------------------------------------------===//
// Test Patterns (Type Builders)
def SourceOp : TEST_Op<"source_op"> {
let arguments = (ins AnyInteger:$arg, AnyI32Attr:$tag);
let results = (outs AnyInteger);
}
// An op without return type deduction.
def OpX : TEST_Op<"op_x"> {
let arguments = (ins AnyInteger:$input);
let results = (outs AnyInteger);
}
// Test that ops without built-in type deduction can be created in the
// replacement DAG with an explicitly specified type.
def : Pat<(SourceOp $val, ConstantAttr<I32Attr, "11">:$attr),
(OpX (OpX $val, (returnType "$_builder.getI32Type()")))>;
// Test NativeCodeCall type builder can accept arguments.
def SameTypeAs : NativeCodeCall<"$0.getType()">;
def : Pat<(SourceOp $val, ConstantAttr<I32Attr, "22">:$attr),
(OpX (OpX $val, (returnType (SameTypeAs $val))))>;
// Test multiple return types.
def MakeI64Type : NativeCodeCall<"$_builder.getI64Type()">;
def MakeI32Type : NativeCodeCall<"$_builder.getI32Type()">;
def OneToTwo : TEST_Op<"one_to_two"> {
let arguments = (ins AnyInteger);
let results = (outs AnyInteger, AnyInteger);
}
def TwoToOne : TEST_Op<"two_to_one"> {
let arguments = (ins AnyInteger, AnyInteger);
let results = (outs AnyInteger);
}
def : Pat<(SourceOp $val, ConstantAttr<I32Attr, "33">:$attr),
(TwoToOne (OpX (OneToTwo:$res__0 $val, (returnType (MakeI64Type), (MakeI32Type))), (returnType (MakeI32Type))),
(OpX $res__1, (returnType (MakeI64Type))))>;
// Test copy value return type.
def : Pat<(SourceOp $val, ConstantAttr<I32Attr, "44">:$attr),
(OpX (OpX $val, (returnType $val)))>;
// Test create multiple return types with different methods.
def : Pat<(SourceOp $val, ConstantAttr<I32Attr, "55">:$attr),
(TwoToOne (OneToTwo:$res__0 $val, (returnType $val, "$_builder.getI64Type()")), $res__1)>;
//===----------------------------------------------------------------------===//
// Test Patterns (Trailing Directives)
// Test that we can specify both `location` and `returnType` directives.
def : Pat<(SourceOp $val, ConstantAttr<I32Attr, "66">:$attr),
(TwoToOne (OpX $val, (returnType $val), (location "loc1")),
(OpX $val, (location "loc2"), (returnType $val)))>;
//===----------------------------------------------------------------------===//
// Test Legalization
//===----------------------------------------------------------------------===//
def Test_LegalizerEnum_Success : StrEnumAttrCase<"Success">;
def Test_LegalizerEnum_Failure : StrEnumAttrCase<"Failure">;
def Test_LegalizerEnum : StrEnumAttr<"Success", "Failure",
[Test_LegalizerEnum_Success, Test_LegalizerEnum_Failure]>;
def ILLegalOpA : TEST_Op<"illegal_op_a">, Results<(outs I32)>;
def ILLegalOpB : TEST_Op<"illegal_op_b">, Results<(outs I32)>;
def ILLegalOpC : TEST_Op<"illegal_op_c">, Results<(outs I32)>;
def ILLegalOpD : TEST_Op<"illegal_op_d">, Results<(outs I32)>;
def ILLegalOpE : TEST_Op<"illegal_op_e">, Results<(outs I32)>;
def ILLegalOpF : TEST_Op<"illegal_op_f">, Results<(outs I32)>;
def ILLegalOpG : TEST_Op<"illegal_op_g">, Results<(outs I32)>;
def LegalOpA : TEST_Op<"legal_op_a">,
Arguments<(ins Test_LegalizerEnum:$status)>, Results<(outs I32)>;
def LegalOpB : TEST_Op<"legal_op_b">, Results<(outs I32)>;
def LegalOpC : TEST_Op<"legal_op_c">,
Arguments<(ins I32)>, Results<(outs I32)>;
// Check that the conversion infrastructure can properly undo the creation of
// operations where an operation was created before its parent, in this case,
// in the parent's builder.
def IllegalOpTerminator : TEST_Op<"illegal_op_terminator", [Terminator]>;
def IllegalOpWithRegion : TEST_Op<"illegal_op_with_region"> {
let skipDefaultBuilders = 1;
let builders = [OpBuilder<(ins),
[{
Region *bodyRegion = $_state.addRegion();
OpBuilder::InsertionGuard g($_builder);
Block *body = $_builder.createBlock(bodyRegion);
$_builder.setInsertionPointToEnd(body);
$_builder.create<IllegalOpTerminator>($_state.location);
}]>];
}
def IllegalOpWithRegionAnchor : TEST_Op<"illegal_op_with_region_anchor">;
// Check that smaller pattern depths are chosen, i.e. prioritize more direct
// mappings.
def : Pat<(ILLegalOpA), (LegalOpA Test_LegalizerEnum_Success)>;
def : Pat<(ILLegalOpA), (ILLegalOpB)>;
def : Pat<(ILLegalOpB), (LegalOpA Test_LegalizerEnum_Failure)>;
// Check that the higher benefit pattern is taken for multiple legalizations
// with the same depth.
def : Pat<(ILLegalOpC), (ILLegalOpD)>;
def : Pat<(ILLegalOpD), (LegalOpA Test_LegalizerEnum_Failure)>;
def : Pat<(ILLegalOpC), (ILLegalOpE), [], (addBenefit 10)>;
def : Pat<(ILLegalOpE), (LegalOpA Test_LegalizerEnum_Success)>;
// Check that patterns use the most up-to-date value when being replaced.
def TestRewriteOp : TEST_Op<"rewrite">,
Arguments<(ins AnyType)>, Results<(outs AnyType)>;
def : Pat<(TestRewriteOp $input), (replaceWithValue $input)>;
// Check that patterns can specify bounded recursion when rewriting.
def TestRecursiveRewriteOp : TEST_Op<"recursive_rewrite"> {
let arguments = (ins I64Attr:$depth);
let assemblyFormat = "$depth attr-dict";
}
// Test legalization pattern: this op will be erase and will also erase the
// producer of its operand.
def BlackHoleOp : TEST_Op<"blackhole">,
Arguments<(ins AnyType)>;
//===----------------------------------------------------------------------===//
// Test Type Legalization
//===----------------------------------------------------------------------===//
def TestRegionBuilderOp : TEST_Op<"region_builder">;
def TestReturnOp : TEST_Op<"return", [ReturnLike, Terminator]> {
let arguments = (ins Variadic<AnyType>);
let builders = [OpBuilder<(ins),
[{ build($_builder, $_state, {}); }]>
];
}
def TestCastOp : TEST_Op<"cast">,
Arguments<(ins Variadic<AnyType>)>, Results<(outs AnyType)>;
def TestInvalidOp : TEST_Op<"invalid", [Terminator]>,
Arguments<(ins Variadic<AnyType>)>;
def TestTypeProducerOp : TEST_Op<"type_producer">,
Results<(outs AnyType)>;
def TestAnotherTypeProducerOp : TEST_Op<"another_type_producer">,
Results<(outs AnyType)>;
def TestTypeConsumerOp : TEST_Op<"type_consumer">,
Arguments<(ins AnyType)>;
def TestValidOp : TEST_Op<"valid", [Terminator]>,
Arguments<(ins Variadic<AnyType>)>;
def TestMergeBlocksOp : TEST_Op<"merge_blocks"> {
let summary = "merge_blocks operation";
let description = [{
Test op with multiple blocks that are merged with Dialect Conversion
}];
let regions = (region AnyRegion:$body);
let results = (outs Variadic<AnyType>:$result);
}
def TestRemappedValueRegionOp : TEST_Op<"remapped_value_region",
[SingleBlock]> {
let summary = "remapped_value_region operation";
let description = [{
Test op that remaps values that haven't yet been converted in Dialect
Conversion.
}];
let regions = (region SizedRegion<1>:$body);
let results = (outs Variadic<AnyType>:$result);
}
def TestSignatureConversionUndoOp : TEST_Op<"signature_conversion_undo"> {
let regions = (region AnyRegion);
}
def TestSignatureConversionNoConverterOp
: TEST_Op<"signature_conversion_no_converter"> {
let regions = (region AnyRegion);
}
//===----------------------------------------------------------------------===//
// Test parser.
//===----------------------------------------------------------------------===//
def ParseIntegerLiteralOp : TEST_Op<"parse_integer_literal"> {
let results = (outs Variadic<Index>:$results);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
def ParseWrappedKeywordOp : TEST_Op<"parse_wrapped_keyword"> {
let arguments = (ins StrAttr:$keyword);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
//===----------------------------------------------------------------------===//
// Test region argument list parsing.
def IsolatedRegionOp : TEST_Op<"isolated_region", [IsolatedFromAbove]> {
let summary = "isolated region operation";
let description = [{
Test op with an isolated region, to test passthrough region arguments. Each
argument is of index type.
}];
let arguments = (ins Index);
let regions = (region SizedRegion<1>:$region);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
def SSACFGRegionOp : TEST_Op<"ssacfg_region", [
DeclareOpInterfaceMethods<RegionKindInterface>]> {
let summary = "operation with an SSACFG region";
let description = [{
Test op that defines an SSACFG region.
}];
let regions = (region VariadicRegion<AnyRegion>:$regions);
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>);
}
def GraphRegionOp : TEST_Op<"graph_region", [
DeclareOpInterfaceMethods<RegionKindInterface>]> {
let summary = "operation with a graph region";
let description = [{
Test op that defines a graph region.
}];
let regions = (region AnyRegion:$region);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
def AffineScopeOp : TEST_Op<"affine_scope", [AffineScope]> {
let summary = "affine scope operation";
let description = [{
Test op that defines a new affine scope.
}];
let regions = (region SizedRegion<1>:$region);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
def WrappingRegionOp : TEST_Op<"wrapping_region",
[SingleBlockImplicitTerminator<"TestReturnOp">]> {
let summary = "wrapping region operation";
let description = [{
Test op wrapping another op in a region, to test calling
parseGenericOperation from the custom parser.
}];
let results = (outs Variadic<AnyType>);
let regions = (region SizedRegion<1>:$region);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
def PrettyPrintedRegionOp : TEST_Op<"pretty_printed_region",
[SingleBlockImplicitTerminator<"TestReturnOp">]> {
let summary = "pretty_printed_region operation";
let description = [{
Test-op can be printed either in a "pretty" or "non-pretty" way based on
some criteria. The custom parser parsers both the versions while testing
APIs: parseCustomOperationName & parseGenericOperationAfterOpName.
}];
let arguments = (ins
AnyType:$input1,
AnyType:$input2
);
let results = (outs AnyType);
let regions = (region SizedRegion<1>:$region);
let parser = [{ return ::parse$cppClass(parser, result); }];
let printer = [{ return ::print(p, *this); }];
}
def PolyForOp : TEST_Op<"polyfor">
{
let summary = "polyfor operation";
let description = [{
Test op with multiple region arguments, each argument of index type.
}];
let regions = (region SizedRegion<1>:$region);
let parser = [{ return ::parse$cppClass(parser, result); }];
}
//===----------------------------------------------------------------------===//
// Test OpAsmInterface.
def AsmInterfaceOp : TEST_Op<"asm_interface_op"> {
let results = (outs AnyType:$first, Variadic<AnyType>:$middle_results,
AnyType);
}
def AsmDialectInterfaceOp : TEST_Op<"asm_dialect_interface_op"> {
let results = (outs AnyType);
}
//===----------------------------------------------------------------------===//
// Test Op Asm Format
//===----------------------------------------------------------------------===//
def FormatLiteralOp : TEST_Op<"format_literal_op"> {
let assemblyFormat = [{
`keyword_$.` `->` `:` `,` `=` `<` `>` `(` `)` `[` `]` `` `(` ` ` `)`
`?` `+` `*` `{` `\n` `}` attr-dict
}];
}
// Test that we elide attributes that are within the syntax.
def FormatAttrOp : TEST_Op<"format_attr_op"> {
let arguments = (ins I64Attr:$attr);
let assemblyFormat = "$attr attr-dict";
}
// Test that we elide optional attributes that are within the syntax.
def FormatOptAttrAOp : TEST_Op<"format_opt_attr_op_a"> {
let arguments = (ins OptionalAttr<I64Attr>:$opt_attr);
let assemblyFormat = "(`(` $opt_attr^ `)` )? attr-dict";
}
def FormatOptAttrBOp : TEST_Op<"format_opt_attr_op_b"> {
let arguments = (ins OptionalAttr<I64Attr>:$opt_attr);
let assemblyFormat = "($opt_attr^)? attr-dict";
}
// Test that we format symbol name attributes properly.
def FormatSymbolNameAttrOp : TEST_Op<"format_symbol_name_attr_op"> {
let arguments = (ins SymbolNameAttr:$attr);
let assemblyFormat = "$attr attr-dict";
}
// Test that we format optional symbol name attributes properly.
def FormatOptSymbolNameAttrOp : TEST_Op<"format_opt_symbol_name_attr_op"> {
let arguments = (ins OptionalAttr<SymbolNameAttr>:$opt_attr);
let assemblyFormat = "($opt_attr^)? attr-dict";
}
// Test that we elide attributes that are within the syntax.
def FormatAttrDictWithKeywordOp : TEST_Op<"format_attr_dict_w_keyword"> {
let arguments = (ins I64Attr:$attr, OptionalAttr<I64Attr>:$opt_attr);
let assemblyFormat = "attr-dict-with-keyword";
}
// Test that we don't need to provide types in the format if they are buildable.
def FormatBuildableTypeOp : TEST_Op<"format_buildable_type_op"> {
let arguments = (ins I64:$buildable);
let results = (outs I64:$buildable_res);
let assemblyFormat = "$buildable attr-dict";
}
// Test various mixings of region formatting.
class FormatRegionBase<string suffix, string fmt>
: TEST_Op<"format_region_" # suffix # "_op"> {
let regions = (region AnyRegion:$region);
let assemblyFormat = fmt;
}
def FormatRegionAOp : FormatRegionBase<"a", [{
regions attr-dict
}]>;
def FormatRegionBOp : FormatRegionBase<"b", [{
$region attr-dict
}]>;
def FormatRegionCOp : FormatRegionBase<"c", [{
(`region` $region^)? attr-dict
}]>;
class FormatVariadicRegionBase<string suffix, string fmt>
: TEST_Op<"format_variadic_region_" # suffix # "_op"> {
let regions = (region VariadicRegion<AnyRegion>:$regions);
let assemblyFormat = fmt;
}
def FormatVariadicRegionAOp : FormatVariadicRegionBase<"a", [{
$regions attr-dict
}]>;
def FormatVariadicRegionBOp : FormatVariadicRegionBase<"b", [{
($regions^ `found_regions`)? attr-dict
}]>;
class FormatRegionImplicitTerminatorBase<string suffix, string fmt>
: TEST_Op<"format_implicit_terminator_region_" # suffix # "_op",
[SingleBlockImplicitTerminator<"TestReturnOp">]> {
let regions = (region AnyRegion:$region);
let assemblyFormat = fmt;
}
def FormatFormatRegionImplicitTerminatorAOp
: FormatRegionImplicitTerminatorBase<"a", [{
$region attr-dict
}]>;
// Test various mixings of result type formatting.
class FormatResultBase<string suffix, string fmt>
: TEST_Op<"format_result_" # suffix # "_op"> {
let results = (outs I64:$buildable_res, AnyMemRef:$result);
let assemblyFormat = fmt;
}
def FormatResultAOp : FormatResultBase<"a", [{
type($result) attr-dict
}]>;
def FormatResultBOp : FormatResultBase<"b", [{
type(results) attr-dict
}]>;
def FormatResultCOp : FormatResultBase<"c", [{
functional-type($buildable_res, $result) attr-dict
}]>;
def FormatVariadicResult : TEST_Op<"format_variadic_result"> {
let results = (outs Variadic<I64>:$result);
let assemblyFormat = [{ `:` type($result) attr-dict}];
}
def FormatMultipleVariadicResults : TEST_Op<"format_multiple_variadic_results",
[AttrSizedResultSegments]> {
let results = (outs Variadic<I64>:$result0, Variadic<AnyType>:$result1);
let assemblyFormat = [{
`:` `(` type($result0) `)` `,` `(` type($result1) `)` attr-dict
}];
}
// Test various mixings of operand type formatting.
class FormatOperandBase<string suffix, string fmt>
: TEST_Op<"format_operand_" # suffix # "_op"> {
let arguments = (ins I64:$buildable, AnyMemRef:$operand);
let assemblyFormat = fmt;
}
def FormatOperandAOp : FormatOperandBase<"a", [{
operands `:` type(operands) attr-dict
}]>;
def FormatOperandBOp : FormatOperandBase<"b", [{
operands `:` type($operand) attr-dict
}]>;
def FormatOperandCOp : FormatOperandBase<"c", [{
$buildable `,` $operand `:` type(operands) attr-dict
}]>;
def FormatOperandDOp : FormatOperandBase<"d", [{
$buildable `,` $operand `:` type($operand) attr-dict
}]>;
def FormatOperandEOp : FormatOperandBase<"e", [{
$buildable `,` $operand `:` type($buildable) `,` type($operand) attr-dict
}]>;
def FormatSuccessorAOp : TEST_Op<"format_successor_a_op", [Terminator]> {
let successors = (successor VariadicSuccessor<AnySuccessor>:$targets);
let assemblyFormat = "$targets attr-dict";
}
def FormatVariadicOperand : TEST_Op<"format_variadic_operand"> {
let arguments = (ins Variadic<I64>:$operand);
let assemblyFormat = [{ $operand `:` type($operand) attr-dict}];
}
def FormatVariadicOfVariadicOperand
: TEST_Op<"format_variadic_of_variadic_operand"> {
let arguments = (ins
VariadicOfVariadic<I64, "operand_segments">:$operand,
I32ElementsAttr:$operand_segments
);
let assemblyFormat = [{ $operand `:` type($operand) attr-dict}];
}
def FormatMultipleVariadicOperands :
TEST_Op<"format_multiple_variadic_operands", [AttrSizedOperandSegments]> {
let arguments = (ins Variadic<I64>:$operand0, Variadic<AnyType>:$operand1);
let assemblyFormat = [{
` ` `(` $operand0 `)` `,` `(` $operand1 `:` type($operand1) `)` attr-dict
}];
}
// Test various mixings of optional operand and result type formatting.
class FormatOptionalOperandResultOpBase<string suffix, string fmt>
: TEST_Op<"format_optional_operand_result_" # suffix # "_op",
[AttrSizedOperandSegments]> {
let arguments = (ins Optional<I64>:$optional, Variadic<I64>:$variadic);
let results = (outs Optional<I64>:$optional_res);
let assemblyFormat = fmt;
}
def FormatOptionalOperandResultAOp : FormatOptionalOperandResultOpBase<"a", [{
`(` $optional `:` type($optional) `)` `:` type($optional_res)
(`[` $variadic^ `]`)? attr-dict
}]>;
def FormatOptionalOperandResultBOp : FormatOptionalOperandResultOpBase<"b", [{
(`(` $optional^ `:` type($optional) `)`)? `:` type($optional_res)
(`[` $variadic^ `]`)? attr-dict
}]>;
// Test optional result type formatting.
class FormatOptionalResultOpBase<string suffix, string fmt>
: TEST_Op<"format_optional_result_" # suffix # "_op",
[AttrSizedResultSegments]> {
let results = (outs Optional<I64>:$optional, Variadic<I64>:$variadic);
let assemblyFormat = fmt;
}
def FormatOptionalResultAOp : FormatOptionalResultOpBase<"a", [{
(`:` type($optional)^ `->` type($variadic))? attr-dict
}]>;
def FormatOptionalResultBOp : FormatOptionalResultOpBase<"b", [{
(`:` type($optional) `->` type($variadic)^)? attr-dict
}]>;
def FormatOptionalResultCOp : FormatOptionalResultOpBase<"c", [{
(`:` functional-type($optional, $variadic)^)? attr-dict
}]>;
def FormatTwoVariadicOperandsNoBuildableTypeOp
: TEST_Op<"format_two_variadic_operands_no_buildable_type_op",
[AttrSizedOperandSegments]> {
let arguments = (ins Variadic<AnyType>:$a,
Variadic<AnyType>:$b);
let assemblyFormat = [{
`(` $a `:` type($a) `)` `->` `(` $b `:` type($b) `)` attr-dict
}];
}
def FormatInferVariadicTypeFromNonVariadic
: TEST_Op<"format_infer_variadic_type_from_non_variadic",
[SameOperandsAndResultType]> {
let arguments = (ins Variadic<AnyType>:$args);
let results = (outs AnyType:$result);
let assemblyFormat = "$args attr-dict `:` type($result)";
}
def FormatOptionalUnitAttr : TEST_Op<"format_optional_unit_attribute"> {
let arguments = (ins UnitAttr:$is_optional);
let assemblyFormat = "(`is_optional` $is_optional^)? attr-dict";
}
def FormatOptionalUnitAttrNoElide
: TEST_Op<"format_optional_unit_attribute_no_elide"> {
let arguments = (ins UnitAttr:$is_optional);
let assemblyFormat = "($is_optional^)? attr-dict";
}
def FormatOptionalEnumAttr : TEST_Op<"format_optional_enum_attr"> {
let arguments = (ins OptionalAttr<SomeI64Enum>:$attr);
let assemblyFormat = "($attr^)? attr-dict";
}
def FormatOptionalWithElse : TEST_Op<"format_optional_else"> {
let arguments = (ins UnitAttr:$isFirstBranchPresent);
let assemblyFormat = "(`then` $isFirstBranchPresent^):(`else`)? attr-dict";
}
def FormatCompoundAttr : TEST_Op<"format_compound_attr"> {
let arguments = (ins CompoundAttrA:$compound);
let assemblyFormat = "$compound attr-dict-with-keyword";
}
def FormatNestedAttr : TEST_Op<"format_nested_attr"> {
let arguments = (ins CompoundAttrNested:$nested);
let assemblyFormat = "$nested attr-dict-with-keyword";
}
//===----------------------------------------------------------------------===//
// Custom Directives
def FormatCustomDirectiveOperands
: TEST_Op<"format_custom_directive_operands", [AttrSizedOperandSegments]> {
let arguments = (ins I64:$operand, Optional<I64>:$optOperand,
Variadic<I64>:$varOperands);
let assemblyFormat = [{
custom<CustomDirectiveOperands>(
$operand, $optOperand, $varOperands
)
attr-dict
}];
}
def FormatCustomDirectiveOperandsAndTypes
: TEST_Op<"format_custom_directive_operands_and_types",
[AttrSizedOperandSegments]> {
let arguments = (ins AnyType:$operand, Optional<AnyType>:$optOperand,
Variadic<AnyType>:$varOperands);
let assemblyFormat = [{
custom<CustomDirectiveOperandsAndTypes>(
$operand, $optOperand, $varOperands,
type($operand), type($optOperand), type($varOperands)
)
attr-dict
}];
}
def FormatCustomDirectiveRegions : TEST_Op<"format_custom_directive_regions"> {
let regions = (region AnyRegion:$region, VariadicRegion<AnyRegion>:$other_regions);
let assemblyFormat = [{
custom<CustomDirectiveRegions>(
$region, $other_regions
)
attr-dict
}];
}
def FormatCustomDirectiveResults
: TEST_Op<"format_custom_directive_results", [AttrSizedResultSegments]> {
let results = (outs AnyType:$result, Optional<AnyType>:$optResult,
Variadic<AnyType>:$varResults);
let assemblyFormat = [{
custom<CustomDirectiveResults>(
type($result), type($optResult), type($varResults)
)
attr-dict
}];
}
def FormatCustomDirectiveResultsWithTypeRefs
: TEST_Op<"format_custom_directive_results_with_type_refs",
[AttrSizedResultSegments]> {
let results = (outs AnyType:$result, Optional<AnyType>:$optResult,
Variadic<AnyType>:$varResults);
let assemblyFormat = [{
custom<CustomDirectiveResults>(
type($result), type($optResult), type($varResults)
)
custom<CustomDirectiveWithTypeRefs>(
ref(type($result)), ref(type($optResult)), ref(type($varResults))
)
attr-dict
}];
}
def FormatCustomDirectiveWithOptionalOperandRef
: TEST_Op<"format_custom_directive_with_optional_operand_ref"> {
let arguments = (ins Optional<I64>:$optOperand);
let assemblyFormat = [{
($optOperand^)? `:`
custom<CustomDirectiveOptionalOperandRef>(ref($optOperand))
attr-dict
}];
}
def FormatCustomDirectiveSuccessors
: TEST_Op<"format_custom_directive_successors", [Terminator]> {
let successors = (successor AnySuccessor:$successor,
VariadicSuccessor<AnySuccessor>:$successors);
let assemblyFormat = [{
custom<CustomDirectiveSuccessors>(
$successor, $successors
)
attr-dict
}];
}
def FormatCustomDirectiveAttributes
: TEST_Op<"format_custom_directive_attributes"> {
let arguments = (ins I64Attr:$attr, OptionalAttr<I64Attr>:$optAttr);
let assemblyFormat = [{
custom<CustomDirectiveAttributes>(
$attr, $optAttr
)
attr-dict
}];
}
def FormatCustomDirectiveAttrDict
: TEST_Op<"format_custom_directive_attrdict"> {
let arguments = (ins I64Attr:$attr, OptionalAttr<I64Attr>:$optAttr);
let assemblyFormat = [{
custom<CustomDirectiveAttrDict>( attr-dict )
}];
}
//===----------------------------------------------------------------------===//
// AllTypesMatch type inference
def FormatAllTypesMatchVarOp : TEST_Op<"format_all_types_match_var", [
AllTypesMatch<["value1", "value2", "result"]>
]> {
let arguments = (ins AnyType:$value1, AnyType:$value2);
let results = (outs AnyType:$result);
let assemblyFormat = "attr-dict $value1 `,` $value2 `:` type($value1)";
}
def FormatAllTypesMatchAttrOp : TEST_Op<"format_all_types_match_attr", [
AllTypesMatch<["value1", "value2", "result"]>
]> {
let arguments = (ins AnyAttr:$value1, AnyType:$value2);
let results = (outs AnyType:$result);
let assemblyFormat = "attr-dict $value1 `,` $value2";
}
//===----------------------------------------------------------------------===//
// TypesMatchWith type inference
def FormatTypesMatchVarOp : TEST_Op<"format_types_match_var", [
TypesMatchWith<"result type matches operand", "value", "result", "$_self">
]> {
let arguments = (ins AnyType:$value);
let results = (outs AnyType:$result);
let assemblyFormat = "attr-dict $value `:` type($value)";
}
def FormatTypesMatchVariadicOp : TEST_Op<"format_types_match_variadic", [
RangedTypesMatchWith<"result type matches operand", "value", "result",
"llvm::make_range($_self.begin(), $_self.end())">
]> {
let arguments = (ins Variadic<AnyType>:$value);
let results = (outs Variadic<AnyType>:$result);
let assemblyFormat = "attr-dict $value `:` type($value)";
}
def FormatTypesMatchAttrOp : TEST_Op<"format_types_match_attr", [
TypesMatchWith<"result type matches constant", "value", "result", "$_self">
]> {
let arguments = (ins AnyAttr:$value);
let results = (outs AnyType:$result);
let assemblyFormat = "attr-dict $value";
}
def FormatTypesMatchContextOp : TEST_Op<"format_types_match_context", [
TypesMatchWith<"tuple result type matches operand type", "value", "result",
"::mlir::TupleType::get($_ctxt, $_self)">
]> {
let arguments = (ins AnyType:$value);
let results = (outs AnyType:$result);
let assemblyFormat = "attr-dict $value `:` type($value)";
}
//===----------------------------------------------------------------------===//
// InferTypeOpInterface type inference in assembly format
def FormatInferTypeOp : TEST_Op<"format_infer_type", [InferTypeOpInterface]> {
let results = (outs AnyType);
let assemblyFormat = "attr-dict";
let extraClassDeclaration = [{
static ::mlir::LogicalResult inferReturnTypes(::mlir::MLIRContext *context,
::llvm::Optional<::mlir::Location> location, ::mlir::ValueRange operands,
::mlir::DictionaryAttr attributes, ::mlir::RegionRange regions,
::llvm::SmallVectorImpl<::mlir::Type> &inferredReturnTypes) {
inferredReturnTypes.assign({::mlir::IntegerType::get(context, 16)});
return ::mlir::success();
}
}];
}
//===----------------------------------------------------------------------===//
// Test SideEffects
//===----------------------------------------------------------------------===//
def SideEffectOp : TEST_Op<"side_effect_op",
[DeclareOpInterfaceMethods<MemoryEffectsOpInterface>,
DeclareOpInterfaceMethods<TestEffectOpInterface>]> {
let results = (outs AnyType:$result);
}
//===----------------------------------------------------------------------===//
// Test CopyOpInterface
//===----------------------------------------------------------------------===//
def CopyOp : TEST_Op<"copy", [CopyOpInterface]> {
let description = [{
Represents a copy operation.
}];
let arguments = (ins Res<AnyRankedOrUnrankedMemRef, "", [MemRead]>:$source,
Res<AnyRankedOrUnrankedMemRef, "", [MemWrite]>:$target);
let assemblyFormat = [{
`(` $source `,` $target `)` `:` `(` type($source) `,` type($target) `)`
attr-dict
}];
}
//===----------------------------------------------------------------------===//
// Test Buffer/Tensor
//===----------------------------------------------------------------------===//
def RegionYieldOp : TEST_Op<"region_yield",
[NoSideEffect, ReturnLike, Terminator]> {
let description = [{
This operation is used in a region and yields the corresponding type for
that operation.
}];
let arguments = (ins AnyType:$result);
let assemblyFormat = [{
$result `:` type($result) attr-dict
}];
let builders = [OpBuilder<(ins),
[{ build($_builder, $_state, {}); }]>
];
}
class BufferBasedOpBase<string mnemonic, list<OpTrait> traits>
: TEST_Op<mnemonic, traits> {
let description = [{
A buffer based operation, that uses memRefs as input and output.
}];
let arguments = (ins AnyRankedOrUnrankedMemRef:$input,
AnyRankedOrUnrankedMemRef:$output);
}
def BufferBasedOp : BufferBasedOpBase<"buffer_based", []>{
let assemblyFormat = [{
`in` `(` $input`:` type($input) `)` `out` `(` $output`:` type($output) `)`
attr-dict
}];
}
def RegionBufferBasedOp : BufferBasedOpBase<"region_buffer_based",
[SingleBlockImplicitTerminator<"RegionYieldOp">]> {
let regions = (region AnyRegion:$region);
let assemblyFormat = [{
`in` `(` $input`:` type($input) `)` `out` `(` $output`:` type($output) `)`
$region attr-dict
}];
}
def TensorBasedOp : TEST_Op<"tensor_based", []> {
let description = [{
A tensor based operation, that uses a tensor as an input and results in a
tensor again.
}];
let arguments = (ins AnyRankedTensor:$input);
let results = (outs AnyRankedTensor:$result);
let assemblyFormat = [{
`in` `(` $input`:` type($input) `)` `->` type($result) attr-dict
}];
}
//===----------------------------------------------------------------------===//
// Test RegionBranchOpInterface
//===----------------------------------------------------------------------===//
def RegionIfYieldOp : TEST_Op<"region_if_yield",
[NoSideEffect, ReturnLike, Terminator]> {
let arguments = (ins Variadic<AnyType>:$results);
let assemblyFormat = [{
$results `:` type($results) attr-dict
}];
}
def RegionIfOp : TEST_Op<"region_if",
[DeclareOpInterfaceMethods<RegionBranchOpInterface>,
SingleBlockImplicitTerminator<"RegionIfYieldOp">,
RecursiveSideEffects]> {
let description =[{
Represents an abstract if-then-else-join pattern. In this context, the then
and else regions jump to the join region, which finally returns to its
parent op.
}];
let printer = [{ return ::print(p, *this); }];
let parser = [{ return ::parseRegionIfOp(parser, result); }];
let arguments = (ins Variadic<AnyType>);
let results = (outs Variadic<AnyType>:$results);
let regions = (region SizedRegion<1>:$thenRegion,
AnyRegion:$elseRegion,
AnyRegion:$joinRegion);
let extraClassDeclaration = [{
::mlir::Block::BlockArgListType getThenArgs() {
return getBody(0)->getArguments();
}
::mlir::Block::BlockArgListType getElseArgs() {
return getBody(1)->getArguments();
}
::mlir::Block::BlockArgListType getJoinArgs() {
return getBody(2)->getArguments();
}
::mlir::OperandRange getSuccessorEntryOperands(unsigned index);
}];
}
//===----------------------------------------------------------------------===//
// Test TableGen generated build() methods
//===----------------------------------------------------------------------===//
def TableGenConstant : TEST_Op<"tblgen_constant"> {
let results = (outs AnyType);
}
// No variadic args or results.
def TableGenBuildOp0 : TEST_Op<"tblgen_build_0"> {
let arguments = (ins AnyType:$value);
let results = (outs AnyType:$result);
}
// Sigle variadic arg and single variadic results.
def TableGenBuildOp1 : TEST_Op<"tblgen_build_1"> {
let arguments = (ins Variadic<AnyType>:$inputs);
let results = (outs Variadic<AnyType>:$results);
}
// Single variadic arg and non-variadic results.
def TableGenBuildOp2 : TEST_Op<"tblgen_build_2"> {
let arguments = (ins Variadic<AnyType>:$inputs);
let results = (outs AnyType:$result);
}
// Single variadic arg and multiple variadic results.
def TableGenBuildOp3 : TEST_Op<"tblgen_build_3", [SameVariadicResultSize]> {
let arguments = (ins Variadic<AnyType>:$inputs);
let results = (outs Variadic<AnyType>:$resultA, Variadic<AnyType>:$resultB);
}
// Single variadic arg, non variadic results, with SameOperandsAndResultType.
// Tests suppression of ambiguous build methods for operations with
// SameOperandsAndResultType trait.
def TableGenBuildOp4 : TEST_Op<"tblgen_build_4", [SameOperandsAndResultType]> {
let arguments = (ins Variadic<AnyType>:$inputs);
let results = (outs AnyType:$result);
}
// Single variadic arg with SameOperandsAndResultType and InferTypeOpInterface.
// Tests suppression of ambiguous build methods for operations with
// SameOperandsAndResultType and InferTypeOpInterface.
def TableGenBuildOp5 : TEST_Op<"tblgen_build_5",
[SameOperandsAndResultType, InferTypeOpInterface]> {
let arguments = (ins Variadic<AnyType>:$inputs);
let results = (outs AnyType:$result);
let extraClassDeclaration = [{
static ::mlir::LogicalResult inferReturnTypes(::mlir::MLIRContext *,
::llvm::Optional<::mlir::Location> location, ::mlir::ValueRange operands,
::mlir::DictionaryAttr attributes, ::mlir::RegionRange regions,
::llvm::SmallVectorImpl<::mlir::Type> &inferredReturnTypes) {
inferredReturnTypes.assign({operands[0].getType()});
return ::mlir::success();
}
}];
}
//===----------------------------------------------------------------------===//
// Test BufferPlacement
//===----------------------------------------------------------------------===//
def GetTupleElementOp: TEST_Op<"get_tuple_element"> {
let description = [{
Test op that returns a specified element of the tuple.
}];
let arguments = (ins
TupleOf<[AnyType]>,
I32Attr:$index
);
let results = (outs AnyType);
}
def MakeTupleOp: TEST_Op<"make_tuple"> {
let description = [{
Test op that creates a tuple value from a list of values.
}];
let arguments = (ins
Variadic<AnyType>:$inputs
);
let results = (outs TupleOf<[AnyType]>);
}
//===----------------------------------------------------------------------===//
// Test Target DataLayout
//===----------------------------------------------------------------------===//
def OpWithDataLayoutOp : TEST_Op<"op_with_data_layout",
[HasDefaultDLTIDataLayout, DataLayoutOpInterface]> {
let summary =
"An op that uses DataLayout implementation from the Target dialect";
let regions = (region VariadicRegion<AnyRegion>:$regions);
}
def DataLayoutQueryOp : TEST_Op<"data_layout_query"> {
let summary = "A token op recognized by data layout query test pass";
let description = [{
The data layout query pass pattern-matches this op and attaches to it an
array attribute containing the result of data layout query of the result
type of this op.
}];
let results = (outs AnyType:$res);
}
//===----------------------------------------------------------------------===//
// Test Reducer Patterns
//===----------------------------------------------------------------------===//
def OpCrashLong : TEST_Op<"op_crash_long"> {
let arguments = (ins I32, I32, I32);
let results = (outs I32);
}
def OpCrashShort : TEST_Op<"op_crash_short"> {
let results = (outs I32);
}
def : Pat<(OpCrashLong $_, $_, $_), (OpCrashShort)>;
//===----------------------------------------------------------------------===//
// Test LinalgConvolutionOpInterface.
//===----------------------------------------------------------------------===//
def TestLinalgConvOpNotLinalgOp : TEST_Op<"conv_op_not_linalg_op", [
LinalgConvolutionOpInterface]> {
let arguments = (ins
AnyType:$image, AnyType:$filter, AnyType:$output);
let results = (outs AnyRankedTensor:$result);
}
def TestLinalgConvOp :
TEST_Op<"linalg_conv_op", [AttrSizedOperandSegments, SingleBlock,
LinalgStructuredInterface, LinalgConvolutionOpInterface]> {
let arguments = (ins Variadic<AnyType>:$inputs,
Variadic<AnyType>:$outputs);
let results = (outs Variadic<AnyType>:$results);
let regions = (region AnyRegion:$region);
let assemblyFormat = [{
attr-dict (`ins` `(` $inputs^ `:` type($inputs) `)`)?
`outs` `(` $outputs `:` type($outputs) `)`
$region (`->` type($results)^)?
}];
let extraClassDeclaration = [{
bool hasIndexSemantics() { return false; }
static void regionBuilder(mlir::ImplicitLocOpBuilder &b, mlir::Block &block) {
b.create<mlir::linalg::YieldOp>(block.getArguments().back());
}
static std::function<void(mlir::ImplicitLocOpBuilder &b, mlir::Block &block)>
getRegionBuilder() {
return &regionBuilder;
}
mlir::ArrayAttr iterator_types() {
return getOperation()->getAttrOfType<mlir::ArrayAttr>("iterator_types");
}
mlir::ArrayAttr indexing_maps() {
return getOperation()->getAttrOfType<mlir::ArrayAttr>("indexing_maps");
}
std::string getLibraryCallName() {
return "";
}
// To conform with interface requirement on operand naming.
mlir::ValueRange inputs() { return getInputs(); }
mlir::ValueRange outputs() { return getOutputs(); }
}];
}
//===----------------------------------------------------------------------===//
// Test Ops with Default-Valued String Attributes
//===----------------------------------------------------------------------===//
def TestDefaultStrAttrNoValueOp : TEST_Op<"no_str_value"> {
let arguments = (ins DefaultValuedAttr<StrAttr, "">:$value);
let assemblyFormat = "attr-dict";
}
def TestDefaultStrAttrHasValueOp : TEST_Op<"has_str_value"> {
let arguments = (ins DefaultValuedStrAttr<StrAttr, "">:$value);
let assemblyFormat = "attr-dict";
}
def : Pat<(TestDefaultStrAttrNoValueOp $value),
(TestDefaultStrAttrHasValueOp ConstantStrAttr<StrAttr, "foo">)>;
#endif // TEST_OPS