| //===-- SIInstructions.td - SI Instruction Definitions --------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // This file was originally auto-generated from a GPU register header file and |
| // all the instruction definitions were originally commented out. Instructions |
| // that are not yet supported remain commented out. |
| //===----------------------------------------------------------------------===// |
| |
| class GCNPat<dag pattern, dag result> : Pat<pattern, result>, PredicateControl; |
| |
| class UniformSextInreg<ValueType VT> : PatFrag< |
| (ops node:$src), |
| (sext_inreg $src, VT), |
| [{ return !N->isDivergent(); }]>; |
| |
| class DivergentSextInreg<ValueType VT> : PatFrag< |
| (ops node:$src), |
| (sext_inreg $src, VT), |
| [{ return N->isDivergent(); }]>; |
| |
| include "SOPInstructions.td" |
| include "VOPInstructions.td" |
| include "SMInstructions.td" |
| include "FLATInstructions.td" |
| include "BUFInstructions.td" |
| include "EXPInstructions.td" |
| include "DSDIRInstructions.td" |
| include "VINTERPInstructions.td" |
| |
| //===----------------------------------------------------------------------===// |
| // VINTRP Instructions |
| //===----------------------------------------------------------------------===// |
| |
| // Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI) |
| def VINTRPDst : VINTRPDstOperand <VGPR_32>; |
| |
| let Uses = [MODE, M0, EXEC] in { |
| |
| // FIXME: Specify SchedRW for VINTRP instructions. |
| |
| multiclass V_INTERP_P1_F32_m : VINTRP_m < |
| 0x00000000, |
| (outs VINTRPDst:$vdst), |
| (ins VGPR_32:$vsrc, InterpAttr:$attr, InterpAttrChan:$attrchan), |
| "v_interp_p1_f32$vdst, $vsrc, $attr$attrchan", |
| [(set f32:$vdst, (int_amdgcn_interp_p1 f32:$vsrc, |
| (i32 timm:$attrchan), (i32 timm:$attr), M0))] |
| >; |
| |
| let OtherPredicates = [has32BankLDS, isNotGFX90APlus] in { |
| |
| defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m; |
| |
| } // End OtherPredicates = [has32BankLDS, isNotGFX90APlus] |
| |
| let OtherPredicates = [has16BankLDS, isNotGFX90APlus], |
| Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in { |
| |
| defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m; |
| |
| } // End OtherPredicates = [has32BankLDS, isNotGFX90APlus], |
| // Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 |
| |
| let OtherPredicates = [isNotGFX90APlus] in { |
| let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in { |
| |
| defm V_INTERP_P2_F32 : VINTRP_m < |
| 0x00000001, |
| (outs VINTRPDst:$vdst), |
| (ins VGPR_32:$src0, VGPR_32:$vsrc, InterpAttr:$attr, |
| InterpAttrChan:$attrchan), |
| "v_interp_p2_f32$vdst, $vsrc, $attr$attrchan", |
| [(set f32:$vdst, (int_amdgcn_interp_p2 f32:$src0, f32:$vsrc, |
| (i32 timm:$attrchan), (i32 timm:$attr), M0))]>; |
| |
| } // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst" |
| |
| defm V_INTERP_MOV_F32 : VINTRP_m < |
| 0x00000002, |
| (outs VINTRPDst:$vdst), |
| (ins InterpSlot:$vsrc, InterpAttr:$attr, InterpAttrChan:$attrchan), |
| "v_interp_mov_f32$vdst, $vsrc, $attr$attrchan", |
| [(set f32:$vdst, (int_amdgcn_interp_mov (i32 timm:$vsrc), |
| (i32 timm:$attrchan), (i32 timm:$attr), M0))]>; |
| |
| } // End OtherPredicates = [isNotGFX90APlus] |
| |
| } // End Uses = [MODE, M0, EXEC] |
| |
| //===----------------------------------------------------------------------===// |
| // Pseudo Instructions |
| //===----------------------------------------------------------------------===// |
| |
| // Insert a branch to an endpgm block to use as a fallback trap. |
| def ENDPGM_TRAP : SPseudoInstSI< |
| (outs), (ins), |
| [(AMDGPUendpgm_trap)], |
| "ENDPGM_TRAP"> { |
| let hasSideEffects = 1; |
| let usesCustomInserter = 1; |
| } |
| |
| def SIMULATED_TRAP : SPseudoInstSI<(outs), (ins), [(AMDGPUsimulated_trap)], |
| "SIMULATED_TRAP"> { |
| let hasSideEffects = 1; |
| let usesCustomInserter = 1; |
| } |
| |
| def ATOMIC_FENCE : SPseudoInstSI< |
| (outs), (ins i32imm:$ordering, i32imm:$scope), |
| [(atomic_fence (i32 timm:$ordering), (i32 timm:$scope))], |
| "ATOMIC_FENCE $ordering, $scope"> { |
| let hasSideEffects = 1; |
| } |
| |
| let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in { |
| |
| // For use in patterns |
| def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst), |
| (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> { |
| let isPseudo = 1; |
| let isCodeGenOnly = 1; |
| let usesCustomInserter = 1; |
| } |
| |
| // 64-bit vector move instruction. This is mainly used by the |
| // SIFoldOperands pass to enable folding of inline immediates. |
| def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst), |
| (ins VSrc_b64:$src0)> { |
| let isReMaterializable = 1; |
| let isAsCheapAsAMove = 1; |
| let isMoveImm = 1; |
| let SchedRW = [Write64Bit]; |
| let Size = 4; |
| let VOP1 = 1; // Not entirely correct, but close enough. |
| let UseNamedOperandTable = 1; |
| } |
| |
| // 32-bit materialize immediate which supports AGPR or VGPR. Typically |
| // this should just expand to V_MOV_B32, unless $vdst happens to be |
| // allocated to an AGPR in which case it will lower to |
| // V_ACCVGPR_WRITE_B32. This should always use an inline immediate |
| // operand, as v_accvgpr_write_b32 does not support literal constants. |
| def AV_MOV_B32_IMM_PSEUDO |
| : VPseudoInstSI<(outs AV_32:$vdst), (ins VCSrc_b32:$src0)> { |
| let isReMaterializable = 1; |
| let isAsCheapAsAMove = 1; |
| |
| // Imprecise, technically if AGPR it's VOP3 and VOP1 for AGPR. But |
| // this tricks the rematerialize logic into working for it. |
| let VOP3 = 1; |
| let isMoveImm = 1; |
| let SchedRW = [Write32Bit]; |
| let Size = 4; |
| let UseNamedOperandTable = 1; |
| } |
| |
| // 64-bit vector move with dpp. Expanded post-RA. |
| def V_MOV_B64_DPP_PSEUDO : VOP_DPP_Pseudo <"v_mov_b64_dpp", VOP_I64_I64> { |
| let Size = 16; // Requires two 8-byte v_mov_b32_dpp to complete. |
| } |
| |
| // 64-bit scalar move immediate instruction. This is used to avoid subregs |
| // initialization and allow rematerialization. |
| def S_MOV_B64_IMM_PSEUDO : SPseudoInstSI <(outs SReg_64:$sdst), |
| (ins i64imm:$src0)> { |
| let isReMaterializable = 1; |
| let isAsCheapAsAMove = 1; |
| let isMoveImm = 1; |
| let SchedRW = [WriteSALU, Write64Bit]; |
| let Size = 4; |
| let Uses = []; |
| let UseNamedOperandTable = 1; |
| } |
| |
| // Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the |
| // WQM pass processes it. |
| def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; |
| |
| // Pseudoinstruction for @llvm.amdgcn.softwqm. Like @llvm.amdgcn.wqm it is |
| // turned into a copy by WQM pass, but does not seed WQM requirements. |
| def SOFT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; |
| |
| // Pseudoinstruction for @llvm.amdgcn.strict.wwm. It is turned into a copy post-RA, so |
| // that the @earlyclobber is respected. The @earlyclobber is to make sure that |
| // the instruction that defines $src0 (which is run in Whole Wave Mode) doesn't |
| // accidentally clobber inactive channels of $vdst. |
| let Constraints = "@earlyclobber $vdst" in { |
| def STRICT_WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; |
| def STRICT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>; |
| } |
| |
| } // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] |
| |
| def WWM_COPY : SPseudoInstSI < |
| (outs unknown:$dst), (ins unknown:$src)> { |
| let hasSideEffects = 0; |
| let isAsCheapAsAMove = 1; |
| let isConvergent = 1; |
| } |
| |
| def ENTER_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> { |
| let Uses = [EXEC]; |
| let Defs = [EXEC, SCC]; |
| let hasSideEffects = 0; |
| let mayLoad = 0; |
| let mayStore = 0; |
| } |
| |
| def EXIT_STRICT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> { |
| let hasSideEffects = 0; |
| let mayLoad = 0; |
| let mayStore = 0; |
| } |
| |
| def ENTER_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> { |
| let Uses = [EXEC]; |
| let Defs = [EXEC, SCC]; |
| let hasSideEffects = 0; |
| let mayLoad = 0; |
| let mayStore = 0; |
| } |
| |
| def EXIT_STRICT_WQM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> { |
| let hasSideEffects = 0; |
| let mayLoad = 0; |
| let mayStore = 0; |
| } |
| |
| let usesCustomInserter = 1 in { |
| let WaveSizePredicate = isWave32 in |
| def S_INVERSE_BALLOT_U32 : SPseudoInstSI< |
| (outs SReg_32:$sdst), (ins SSrc_b32:$mask), |
| [(set i1:$sdst, (int_amdgcn_inverse_ballot i32:$mask))] |
| >; |
| |
| let WaveSizePredicate = isWave64 in |
| def S_INVERSE_BALLOT_U64 : SPseudoInstSI< |
| (outs SReg_64:$sdst), (ins SSrc_b64:$mask), |
| [(set i1:$sdst, (int_amdgcn_inverse_ballot i64:$mask))] |
| >; |
| } // End usesCustomInserter = 1 |
| |
| // Pseudo instructions used for @llvm.fptrunc.round. The final codegen is done |
| // in the ModeRegister pass. |
| let Uses = [MODE, EXEC] in { |
| let True16Predicate = NotHasTrue16BitInsts in |
| def FPTRUNC_ROUND_F16_F32_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst), |
| (ins VGPR_32:$src0, i32imm:$round)>; |
| |
| let True16Predicate = UseFakeTrue16Insts in |
| def FPTRUNC_ROUND_F16_F32_PSEUDO_fake16_e32 : VPseudoInstSI <(outs VGPR_32:$vdst), |
| (ins VGPR_32:$src0, i32imm:$round)>; |
| |
| let True16Predicate = UseRealTrue16Insts in |
| // The operands of these pseudos should match V_CVT_F16_F32_t16_e64 |
| def FPTRUNC_ROUND_F16_F32_PSEUDO_t16_e64 : VPseudoInstSI <(outs VOPDstOperand_t16:$vdst), |
| (ins FP32InputMods:$src0_modifiers, VSrc_f32:$src0, Clamp0:$clamp, omod0:$omod, op_sel0:$op_sel, i32imm:$round)> { |
| let FPClamp = 1; |
| let ClampLo = 1; |
| let UseNamedOperandTable = 1; |
| } |
| |
| def FPTRUNC_ROUND_F32_F64_PSEUDO : VPseudoInstSI <(outs VGPR_32:$vdst), |
| (ins VReg_64:$src0, i32imm:$round)>; |
| } // End Uses = [MODE, EXEC] |
| |
| let True16Predicate = NotHasTrue16BitInsts in |
| def : GCNPat <(f16 (fptrunc_round f32:$src0, (i32 SupportedRoundMode:$round))), |
| (FPTRUNC_ROUND_F16_F32_PSEUDO $src0, (as_hw_round_mode $round))>; |
| |
| let True16Predicate = UseFakeTrue16Insts in |
| def : GCNPat <(f16 (fptrunc_round f32:$src0, (i32 SupportedRoundMode:$round))), |
| (FPTRUNC_ROUND_F16_F32_PSEUDO_fake16_e32 $src0, (as_hw_round_mode $round))>; |
| |
| let True16Predicate = UseRealTrue16Insts in |
| def : GCNPat <(f16 (fptrunc_round (f32 (VOP3OpSelMods f32:$src0, i32:$src0_modifiers)), (i32 SupportedRoundMode:$round))), |
| (FPTRUNC_ROUND_F16_F32_PSEUDO_t16_e64 $src0_modifiers, $src0, (as_hw_round_mode $round))>; |
| |
| def : GCNPat <(f32 (fptrunc_round f64:$src0, (i32 SupportedRoundMode:$round))), |
| (FPTRUNC_ROUND_F32_F64_PSEUDO $src0, (as_hw_round_mode $round))>; |
| |
| // Invert the exec mask and overwrite the inactive lanes of dst with inactive, |
| // restoring it after we're done. |
| let isConvergent = 1 in |
| def V_SET_INACTIVE_B32 : VOP3_Pseudo<"v_set_inactive_b32", VOP2e_I32_I32_I32_I1>; |
| |
| foreach vt = Reg32Types.types in { |
| def : GCNPat <(vt (int_amdgcn_set_inactive vt:$src, vt:$inactive)), |
| (V_SET_INACTIVE_B32 0, VSrc_b32:$src, 0, VSrc_b32:$inactive, (IMPLICIT_DEF))>; |
| } |
| |
| def : GCNPat<(i32 (int_amdgcn_set_inactive_chain_arg i32:$src, i32:$inactive)), |
| (V_SET_INACTIVE_B32 0, VGPR_32:$src, 0, VGPR_32:$inactive, (IMPLICIT_DEF))>; |
| |
| let usesCustomInserter = 1, hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in { |
| def WAVE_REDUCE_UMIN_PSEUDO_U32 : VPseudoInstSI <(outs SGPR_32:$sdst), |
| (ins VSrc_b32: $src, VSrc_b32:$strategy), |
| [(set i32:$sdst, (int_amdgcn_wave_reduce_umin i32:$src, i32:$strategy))]> { |
| } |
| |
| def WAVE_REDUCE_UMAX_PSEUDO_U32 : VPseudoInstSI <(outs SGPR_32:$sdst), |
| (ins VSrc_b32: $src, VSrc_b32:$strategy), |
| [(set i32:$sdst, (int_amdgcn_wave_reduce_umax i32:$src, i32:$strategy))]> { |
| } |
| } |
| |
| let usesCustomInserter = 1, Defs = [VCC] in { |
| def V_ADD_U64_PSEUDO : VPseudoInstSI < |
| (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1), |
| [(set VReg_64:$vdst, (DivergentBinFrag<add> i64:$src0, i64:$src1))] |
| >; |
| |
| def V_SUB_U64_PSEUDO : VPseudoInstSI < |
| (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1), |
| [(set VReg_64:$vdst, (DivergentBinFrag<sub> i64:$src0, i64:$src1))] |
| >; |
| } // End usesCustomInserter = 1, Defs = [VCC] |
| |
| let usesCustomInserter = 1, Defs = [SCC] in { |
| def S_ADD_U64_PSEUDO : SPseudoInstSI < |
| (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1), |
| [(set SReg_64:$sdst, (UniformBinFrag<add> i64:$src0, i64:$src1))] |
| >; |
| |
| def S_SUB_U64_PSEUDO : SPseudoInstSI < |
| (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1), |
| [(set SReg_64:$sdst, (UniformBinFrag<sub> i64:$src0, i64:$src1))] |
| >; |
| |
| def S_ADD_CO_PSEUDO : SPseudoInstSI < |
| (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in) |
| >; |
| |
| def S_SUB_CO_PSEUDO : SPseudoInstSI < |
| (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in) |
| >; |
| |
| def S_UADDO_PSEUDO : SPseudoInstSI < |
| (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1) |
| >; |
| |
| def S_USUBO_PSEUDO : SPseudoInstSI < |
| (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1) |
| >; |
| |
| let OtherPredicates = [HasShaderCyclesHiLoRegisters] in |
| def GET_SHADERCYCLESHILO : SPseudoInstSI< |
| (outs SReg_64:$sdst), (ins), |
| [(set SReg_64:$sdst, (i64 (readcyclecounter)))] |
| >; |
| |
| } // End usesCustomInserter = 1, Defs = [SCC] |
| |
| let usesCustomInserter = 1 in { |
| def GET_GROUPSTATICSIZE : SPseudoInstSI <(outs SReg_32:$sdst), (ins), |
| [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>; |
| } // End let usesCustomInserter = 1, SALU = 1 |
| |
| // Wrap an instruction by duplicating it, except for setting isTerminator. |
| class WrapTerminatorInst<SOP_Pseudo base_inst> : SPseudoInstSI< |
| base_inst.OutOperandList, |
| base_inst.InOperandList> { |
| let Uses = base_inst.Uses; |
| let Defs = base_inst.Defs; |
| let isTerminator = 1; |
| let isAsCheapAsAMove = base_inst.isAsCheapAsAMove; |
| let hasSideEffects = base_inst.hasSideEffects; |
| let UseNamedOperandTable = base_inst.UseNamedOperandTable; |
| let CodeSize = base_inst.CodeSize; |
| let SchedRW = base_inst.SchedRW; |
| } |
| |
| let WaveSizePredicate = isWave64 in { |
| def S_MOV_B64_term : WrapTerminatorInst<S_MOV_B64>; |
| def S_XOR_B64_term : WrapTerminatorInst<S_XOR_B64>; |
| def S_OR_B64_term : WrapTerminatorInst<S_OR_B64>; |
| def S_ANDN2_B64_term : WrapTerminatorInst<S_ANDN2_B64>; |
| def S_AND_B64_term : WrapTerminatorInst<S_AND_B64>; |
| def S_AND_SAVEEXEC_B64_term : WrapTerminatorInst<S_AND_SAVEEXEC_B64>; |
| } |
| |
| let WaveSizePredicate = isWave32 in { |
| def S_MOV_B32_term : WrapTerminatorInst<S_MOV_B32>; |
| def S_XOR_B32_term : WrapTerminatorInst<S_XOR_B32>; |
| def S_OR_B32_term : WrapTerminatorInst<S_OR_B32>; |
| def S_ANDN2_B32_term : WrapTerminatorInst<S_ANDN2_B32>; |
| def S_AND_B32_term : WrapTerminatorInst<S_AND_B32>; |
| def S_AND_SAVEEXEC_B32_term : WrapTerminatorInst<S_AND_SAVEEXEC_B32>; |
| } |
| |
| |
| def WAVE_BARRIER : SPseudoInstSI<(outs), (ins), |
| [(int_amdgcn_wave_barrier)]> { |
| let SchedRW = []; |
| let hasNoSchedulingInfo = 1; |
| let hasSideEffects = 1; |
| let mayLoad = 0; |
| let mayStore = 0; |
| let isConvergent = 1; |
| let FixedSize = 1; |
| let Size = 0; |
| let isMeta = 1; |
| } |
| |
| def SCHED_BARRIER : SPseudoInstSI<(outs), (ins i32imm:$mask), |
| [(int_amdgcn_sched_barrier (i32 timm:$mask))]> { |
| let SchedRW = []; |
| let hasNoSchedulingInfo = 1; |
| let hasSideEffects = 1; |
| let mayLoad = 0; |
| let mayStore = 0; |
| let isConvergent = 1; |
| let FixedSize = 1; |
| let Size = 0; |
| let isMeta = 1; |
| } |
| |
| def SCHED_GROUP_BARRIER : SPseudoInstSI< |
| (outs), |
| (ins i32imm:$mask, i32imm:$size, i32imm:$syncid), |
| [(int_amdgcn_sched_group_barrier (i32 timm:$mask), (i32 timm:$size), (i32 timm:$syncid))]> { |
| let SchedRW = []; |
| let hasNoSchedulingInfo = 1; |
| let hasSideEffects = 1; |
| let mayLoad = 0; |
| let mayStore = 0; |
| let isConvergent = 1; |
| let FixedSize = 1; |
| let Size = 0; |
| let isMeta = 1; |
| } |
| |
| def IGLP_OPT : SPseudoInstSI<(outs), (ins i32imm:$mask), |
| [(int_amdgcn_iglp_opt (i32 timm:$mask))]> { |
| let SchedRW = []; |
| let hasNoSchedulingInfo = 1; |
| let hasSideEffects = 1; |
| let mayLoad = 0; |
| let mayStore = 0; |
| let isConvergent = 1; |
| let FixedSize = 1; |
| let Size = 0; |
| let isMeta = 1; |
| } |
| |
| // SI pseudo instructions. These are used by the CFG structurizer pass |
| // and should be lowered to ISA instructions prior to codegen. |
| |
| // As we have enhanced control flow intrinsics to work under unstructured CFG, |
| // duplicating such intrinsics can be actually treated as legal. On the contrary, |
| // by making them non-duplicable, we are observing better code generation result. |
| // So we choose to mark them non-duplicable in hope of getting better code |
| // generation as well as simplied CFG during Machine IR optimization stage. |
| |
| let isTerminator = 1, isNotDuplicable = 1 in { |
| |
| def SI_IF: CFPseudoInstSI < |
| (outs SReg_1:$dst), (ins SReg_1:$vcc, brtarget:$target), |
| [(set i1:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> { |
| let Constraints = ""; |
| let Size = 12; |
| let hasSideEffects = 1; |
| let IsNeverUniform = 1; |
| } |
| |
| def SI_ELSE : CFPseudoInstSI < |
| (outs SReg_1:$dst), |
| (ins SReg_1:$src, brtarget:$target), [], 1, 1> { |
| let Size = 12; |
| let hasSideEffects = 1; |
| let IsNeverUniform = 1; |
| } |
| |
| def SI_WATERFALL_LOOP : CFPseudoInstSI < |
| (outs), |
| (ins brtarget:$target), [], 1> { |
| let Size = 8; |
| let isBranch = 1; |
| let Defs = []; |
| } |
| |
| def SI_LOOP : CFPseudoInstSI < |
| (outs), (ins SReg_1:$saved, brtarget:$target), |
| [(AMDGPUloop i1:$saved, bb:$target)], 1, 1> { |
| let Size = 8; |
| let isBranch = 1; |
| let hasSideEffects = 1; |
| let IsNeverUniform = 1; |
| } |
| |
| } // End isTerminator = 1 |
| |
| def SI_END_CF : CFPseudoInstSI < |
| (outs), (ins SReg_1:$saved), [], 1, 1> { |
| let Size = 4; |
| let isAsCheapAsAMove = 1; |
| let isReMaterializable = 1; |
| let hasSideEffects = 1; |
| let isNotDuplicable = 1; // Not a hard requirement, see long comments above for details. |
| let mayLoad = 1; // FIXME: Should not need memory flags |
| let mayStore = 1; |
| } |
| |
| def SI_IF_BREAK : CFPseudoInstSI < |
| (outs SReg_1:$dst), (ins SReg_1:$vcc, SReg_1:$src), []> { |
| let Size = 4; |
| let isNotDuplicable = 1; // Not a hard requirement, see long comments above for details. |
| let isAsCheapAsAMove = 1; |
| let isReMaterializable = 1; |
| } |
| |
| // Branch to the early termination block of the shader if SCC is 0. |
| // This uses SCC from a previous SALU operation, i.e. the update of |
| // a mask of live lanes after a kill/demote operation. |
| // Only valid in pixel shaders. |
| def SI_EARLY_TERMINATE_SCC0 : SPseudoInstSI <(outs), (ins)> { |
| let Uses = [EXEC,SCC]; |
| } |
| |
| let Uses = [EXEC] in { |
| |
| multiclass PseudoInstKill <dag ins> { |
| // Even though this pseudo can usually be expanded without an SCC def, we |
| // conservatively assume that it has an SCC def, both because it is sometimes |
| // required in degenerate cases (when V_CMPX cannot be used due to constant |
| // bus limitations) and because it allows us to avoid having to track SCC |
| // liveness across basic blocks. |
| let Defs = [EXEC,SCC] in |
| def _PSEUDO : PseudoInstSI <(outs), ins> { |
| let isConvergent = 1; |
| let usesCustomInserter = 1; |
| } |
| |
| let Defs = [EXEC,SCC] in |
| def _TERMINATOR : SPseudoInstSI <(outs), ins> { |
| let isTerminator = 1; |
| } |
| } |
| |
| defm SI_KILL_I1 : PseudoInstKill <(ins SCSrc_i1:$src, i1imm:$killvalue)>; |
| let Defs = [VCC] in |
| defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>; |
| |
| let Defs = [EXEC,VCC] in |
| def SI_ILLEGAL_COPY : SPseudoInstSI < |
| (outs unknown:$dst), (ins unknown:$src), |
| [], " ; illegal copy $src to $dst">; |
| |
| } // End Uses = [EXEC], Defs = [EXEC,VCC] |
| |
| // Branch on undef scc. Used to avoid intermediate copy from |
| // IMPLICIT_DEF to SCC. |
| def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins SOPPBrTarget:$simm16)> { |
| let isTerminator = 1; |
| let usesCustomInserter = 1; |
| let isBranch = 1; |
| } |
| |
| def SI_PS_LIVE : PseudoInstSI < |
| (outs SReg_1:$dst), (ins), |
| [(set i1:$dst, (int_amdgcn_ps_live))]> { |
| let SALU = 1; |
| } |
| |
| let Uses = [EXEC] in { |
| def SI_LIVE_MASK : PseudoInstSI < |
| (outs SReg_1:$dst), (ins), |
| [(set i1:$dst, (int_amdgcn_live_mask))]> { |
| let SALU = 1; |
| } |
| let Defs = [EXEC,SCC] in { |
| // Demote: Turn a pixel shader thread into a helper lane. |
| def SI_DEMOTE_I1 : SPseudoInstSI <(outs), (ins SCSrc_i1:$src, i1imm:$killvalue)>; |
| } // End Defs = [EXEC,SCC] |
| } // End Uses = [EXEC] |
| |
| def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins), |
| [(int_amdgcn_unreachable)], |
| "; divergent unreachable"> { |
| let Size = 0; |
| let hasNoSchedulingInfo = 1; |
| let FixedSize = 1; |
| let isMeta = 1; |
| let maybeAtomic = 0; |
| } |
| |
| // Used as an isel pseudo to directly emit initialization with an |
| // s_mov_b32 rather than a copy of another initialized |
| // register. MachineCSE skips copies, and we don't want to have to |
| // fold operands before it runs. |
| def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> { |
| let Defs = [M0]; |
| let usesCustomInserter = 1; |
| let isAsCheapAsAMove = 1; |
| let isReMaterializable = 1; |
| } |
| |
| def SI_INIT_EXEC : SPseudoInstSI < |
| (outs), (ins i64imm:$src), |
| [(int_amdgcn_init_exec (i64 timm:$src))]> { |
| let Defs = [EXEC]; |
| let isAsCheapAsAMove = 1; |
| } |
| |
| def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI < |
| (outs), (ins SSrc_b32:$input, i32imm:$shift), |
| [(int_amdgcn_init_exec_from_input i32:$input, (i32 timm:$shift))]> { |
| let Defs = [EXEC]; |
| } |
| |
| // Sets EXEC to all lanes and returns the previous EXEC. |
| def SI_INIT_WHOLE_WAVE : SPseudoInstSI < |
| (outs SReg_1:$dst), (ins), |
| [(set i1:$dst, (int_amdgcn_init_whole_wave))]> { |
| let Defs = [EXEC]; |
| let Uses = [EXEC]; |
| |
| let isConvergent = 1; |
| } |
| |
| // Return for returning shaders to a shader variant epilog. |
| def SI_RETURN_TO_EPILOG : SPseudoInstSI < |
| (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> { |
| let isTerminator = 1; |
| let isBarrier = 1; |
| let isReturn = 1; |
| let hasNoSchedulingInfo = 1; |
| let DisableWQM = 1; |
| let FixedSize = 1; |
| |
| // TODO: Should this be true? |
| let isMeta = 0; |
| } |
| |
| // Return for returning function calls. |
| def SI_RETURN : SPseudoInstSI < |
| (outs), (ins), [(AMDGPUret_glue)], |
| "; return"> { |
| let isTerminator = 1; |
| let isBarrier = 1; |
| let isReturn = 1; |
| let SchedRW = [WriteBranch]; |
| } |
| |
| // Return for returning function calls without output register. |
| // |
| // This version is only needed so we can fill in the output register |
| // in the custom inserter. |
| def SI_CALL_ISEL : SPseudoInstSI < |
| (outs), (ins SSrc_b64:$src0, unknown:$callee), |
| [(AMDGPUcall i64:$src0, tglobaladdr:$callee)]> { |
| let Size = 4; |
| let isCall = 1; |
| let SchedRW = [WriteBranch]; |
| let usesCustomInserter = 1; |
| // TODO: Should really base this on the call target |
| let isConvergent = 1; |
| } |
| |
| def : GCNPat< |
| (AMDGPUcall i64:$src0, (i64 0)), |
| (SI_CALL_ISEL $src0, (i64 0)) |
| >; |
| |
| // Wrapper around s_swappc_b64 with extra $callee parameter to track |
| // the called function after regalloc. |
| def SI_CALL : SPseudoInstSI < |
| (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> { |
| let Size = 4; |
| let FixedSize = 1; |
| let isCall = 1; |
| let UseNamedOperandTable = 1; |
| let SchedRW = [WriteBranch]; |
| // TODO: Should really base this on the call target |
| let isConvergent = 1; |
| } |
| |
| class SI_TCRETURN_Pseudo<RegisterClass rc, SDNode sd> : SPseudoInstSI <(outs), |
| (ins rc:$src0, unknown:$callee, i32imm:$fpdiff), |
| [(sd i64:$src0, tglobaladdr:$callee, i32:$fpdiff)]> { |
| let Size = 4; |
| let FixedSize = 1; |
| let isCall = 1; |
| let isTerminator = 1; |
| let isReturn = 1; |
| let isBarrier = 1; |
| let UseNamedOperandTable = 1; |
| let SchedRW = [WriteBranch]; |
| // TODO: Should really base this on the call target |
| let isConvergent = 1; |
| } |
| |
| // Tail call handling pseudo |
| def SI_TCRETURN : SI_TCRETURN_Pseudo<CCR_SGPR_64, AMDGPUtc_return>; |
| def SI_TCRETURN_GFX : SI_TCRETURN_Pseudo<Gfx_CCR_SGPR_64, AMDGPUtc_return_gfx>; |
| |
| // Handle selecting indirect tail calls |
| def : GCNPat< |
| (AMDGPUtc_return i64:$src0, (i64 0), (i32 timm:$fpdiff)), |
| (SI_TCRETURN CCR_SGPR_64:$src0, (i64 0), i32imm:$fpdiff) |
| >; |
| |
| // Handle selecting indirect tail calls for AMDGPU_gfx |
| def : GCNPat< |
| (AMDGPUtc_return_gfx i64:$src0, (i64 0), (i32 timm:$fpdiff)), |
| (SI_TCRETURN_GFX Gfx_CCR_SGPR_64:$src0, (i64 0), i32imm:$fpdiff) |
| >; |
| |
| // Pseudo for the llvm.amdgcn.cs.chain intrinsic. |
| // This is essentially a tail call, but it also takes a mask to put in EXEC |
| // right before jumping to the callee. |
| class SI_CS_CHAIN_TC< |
| ValueType execvt, Predicate wavesizepred, |
| RegisterOperand execrc = getSOPSrcForVT<execvt>.ret> |
| : SPseudoInstSI <(outs), |
| (ins CCR_SGPR_64:$src0, unknown:$callee, i32imm:$fpdiff, execrc:$exec)> { |
| let FixedSize = 0; |
| let isCall = 1; |
| let isTerminator = 1; |
| let isBarrier = 1; |
| let isReturn = 1; |
| let UseNamedOperandTable = 1; |
| let SchedRW = [WriteBranch]; |
| let isConvergent = 1; |
| |
| let WaveSizePredicate = wavesizepred; |
| } |
| |
| def SI_CS_CHAIN_TC_W32 : SI_CS_CHAIN_TC<i32, isWave32>; |
| def SI_CS_CHAIN_TC_W64 : SI_CS_CHAIN_TC<i64, isWave64>; |
| |
| // Handle selecting direct & indirect calls via SI_CS_CHAIN_TC_W32/64 |
| multiclass si_cs_chain_tc_pattern< |
| dag callee, ValueType execvt, RegisterOperand execrc, Instruction tc> { |
| def : GCNPat< |
| (AMDGPUtc_return_chain i64:$src0, callee, (i32 timm:$fpdiff), execvt:$exec), |
| (tc CCR_SGPR_64:$src0, callee, i32imm:$fpdiff, execrc:$exec) |
| >; |
| } |
| |
| multiclass si_cs_chain_tc_patterns< |
| ValueType execvt, |
| RegisterOperand execrc = getSOPSrcForVT<execvt>.ret, |
| Instruction tc = !if(!eq(execvt, i32), SI_CS_CHAIN_TC_W32, SI_CS_CHAIN_TC_W64) |
| > { |
| defm direct: si_cs_chain_tc_pattern<(tglobaladdr:$callee), execvt, execrc, tc>; |
| defm indirect: si_cs_chain_tc_pattern<(i64 0), execvt, execrc, tc>; |
| } |
| |
| defm : si_cs_chain_tc_patterns<i32>; |
| defm : si_cs_chain_tc_patterns<i64>; |
| |
| def ADJCALLSTACKUP : SPseudoInstSI< |
| (outs), (ins i32imm:$amt0, i32imm:$amt1), |
| [(callseq_start timm:$amt0, timm:$amt1)], |
| "; adjcallstackup $amt0 $amt1"> { |
| let Size = 8; // Worst case. (s_add_u32 + constant) |
| let FixedSize = 1; |
| let hasSideEffects = 1; |
| let usesCustomInserter = 1; |
| let SchedRW = [WriteSALU]; |
| let Defs = [SCC]; |
| } |
| |
| def ADJCALLSTACKDOWN : SPseudoInstSI< |
| (outs), (ins i32imm:$amt1, i32imm:$amt2), |
| [(callseq_end timm:$amt1, timm:$amt2)], |
| "; adjcallstackdown $amt1"> { |
| let Size = 8; // Worst case. (s_add_u32 + constant) |
| let hasSideEffects = 1; |
| let usesCustomInserter = 1; |
| let SchedRW = [WriteSALU]; |
| let Defs = [SCC]; |
| } |
| |
| let Defs = [M0, EXEC, SCC], |
| UseNamedOperandTable = 1 in { |
| |
| // SI_INDIRECT_SRC/DST are only used by legacy SelectionDAG indirect |
| // addressing implementation. |
| class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI < |
| (outs VGPR_32:$vdst), |
| (ins rc:$src, VS_32:$idx, i32imm:$offset)> { |
| let usesCustomInserter = 1; |
| } |
| |
| class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI < |
| (outs rc:$vdst), |
| (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> { |
| let Constraints = "$src = $vdst"; |
| let usesCustomInserter = 1; |
| } |
| |
| def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>; |
| def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>; |
| def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>; |
| def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>; |
| def SI_INDIRECT_SRC_V9 : SI_INDIRECT_SRC<VReg_288>; |
| def SI_INDIRECT_SRC_V10 : SI_INDIRECT_SRC<VReg_320>; |
| def SI_INDIRECT_SRC_V11 : SI_INDIRECT_SRC<VReg_352>; |
| def SI_INDIRECT_SRC_V12 : SI_INDIRECT_SRC<VReg_384>; |
| def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>; |
| def SI_INDIRECT_SRC_V32 : SI_INDIRECT_SRC<VReg_1024>; |
| |
| def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>; |
| def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>; |
| def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>; |
| def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>; |
| def SI_INDIRECT_DST_V9 : SI_INDIRECT_DST<VReg_288>; |
| def SI_INDIRECT_DST_V10 : SI_INDIRECT_DST<VReg_320>; |
| def SI_INDIRECT_DST_V11 : SI_INDIRECT_DST<VReg_352>; |
| def SI_INDIRECT_DST_V12 : SI_INDIRECT_DST<VReg_384>; |
| def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>; |
| def SI_INDIRECT_DST_V32 : SI_INDIRECT_DST<VReg_1024>; |
| |
| } // End Uses = [EXEC], Defs = [M0, EXEC] |
| |
| // This is a pseudo variant of the v_movreld_b32 instruction in which the |
| // vector operand appears only twice, once as def and once as use. Using this |
| // pseudo avoids problems with the Two Address instructions pass. |
| class INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc, |
| RegisterOperand val_ty> : PseudoInstSI < |
| (outs rc:$vdst), (ins rc:$vsrc, val_ty:$val, i32imm:$subreg)> { |
| let Constraints = "$vsrc = $vdst"; |
| let Uses = [M0]; |
| } |
| |
| class V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> : |
| INDIRECT_REG_WRITE_MOVREL_pseudo<rc, VSrc_b32> { |
| let VALU = 1; |
| let VOP1 = 1; |
| let Uses = [M0, EXEC]; |
| } |
| |
| class S_INDIRECT_REG_WRITE_MOVREL_pseudo<RegisterClass rc, |
| RegisterOperand val_ty> : |
| INDIRECT_REG_WRITE_MOVREL_pseudo<rc, val_ty> { |
| let SALU = 1; |
| let SOP1 = 1; |
| let Uses = [M0]; |
| } |
| |
| class S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<RegisterClass rc> : |
| S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b32>; |
| class S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<RegisterClass rc> : |
| S_INDIRECT_REG_WRITE_MOVREL_pseudo<rc, SSrc_b64>; |
| |
| def V_INDIRECT_REG_WRITE_MOVREL_B32_V1 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VGPR_32>; |
| def V_INDIRECT_REG_WRITE_MOVREL_B32_V2 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_64>; |
| def V_INDIRECT_REG_WRITE_MOVREL_B32_V3 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_96>; |
| def V_INDIRECT_REG_WRITE_MOVREL_B32_V4 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_128>; |
| def V_INDIRECT_REG_WRITE_MOVREL_B32_V5 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_160>; |
| def V_INDIRECT_REG_WRITE_MOVREL_B32_V8 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_256>; |
| def V_INDIRECT_REG_WRITE_MOVREL_B32_V9 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_288>; |
| def V_INDIRECT_REG_WRITE_MOVREL_B32_V10 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_320>; |
| def V_INDIRECT_REG_WRITE_MOVREL_B32_V11 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_352>; |
| def V_INDIRECT_REG_WRITE_MOVREL_B32_V12 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_384>; |
| def V_INDIRECT_REG_WRITE_MOVREL_B32_V16 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_512>; |
| def V_INDIRECT_REG_WRITE_MOVREL_B32_V32 : V_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<VReg_1024>; |
| |
| def S_INDIRECT_REG_WRITE_MOVREL_B32_V1 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_32>; |
| def S_INDIRECT_REG_WRITE_MOVREL_B32_V2 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_64>; |
| def S_INDIRECT_REG_WRITE_MOVREL_B32_V3 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_96>; |
| def S_INDIRECT_REG_WRITE_MOVREL_B32_V4 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_128>; |
| def S_INDIRECT_REG_WRITE_MOVREL_B32_V5 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_160>; |
| def S_INDIRECT_REG_WRITE_MOVREL_B32_V8 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_256>; |
| def S_INDIRECT_REG_WRITE_MOVREL_B32_V9 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_288>; |
| def S_INDIRECT_REG_WRITE_MOVREL_B32_V10 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_320>; |
| def S_INDIRECT_REG_WRITE_MOVREL_B32_V11 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_352>; |
| def S_INDIRECT_REG_WRITE_MOVREL_B32_V12 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_384>; |
| def S_INDIRECT_REG_WRITE_MOVREL_B32_V16 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_512>; |
| def S_INDIRECT_REG_WRITE_MOVREL_B32_V32 : S_INDIRECT_REG_WRITE_MOVREL_B32_pseudo<SReg_1024>; |
| |
| def S_INDIRECT_REG_WRITE_MOVREL_B64_V1 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_64>; |
| def S_INDIRECT_REG_WRITE_MOVREL_B64_V2 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_128>; |
| def S_INDIRECT_REG_WRITE_MOVREL_B64_V4 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_256>; |
| def S_INDIRECT_REG_WRITE_MOVREL_B64_V8 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_512>; |
| def S_INDIRECT_REG_WRITE_MOVREL_B64_V16 : S_INDIRECT_REG_WRITE_MOVREL_B64_pseudo<SReg_1024>; |
| |
| // These variants of V_INDIRECT_REG_READ/WRITE use VGPR indexing. By using these |
| // pseudos we avoid spills or copies being inserted within indirect sequences |
| // that switch the VGPR indexing mode. Spills to accvgprs could be effected by |
| // this mode switching. |
| |
| class V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI < |
| (outs rc:$vdst), (ins rc:$vsrc, VSrc_b32:$val, SSrc_b32:$idx, i32imm:$subreg)> { |
| let Constraints = "$vsrc = $vdst"; |
| let VALU = 1; |
| let Uses = [M0, EXEC]; |
| let Defs = [M0]; |
| } |
| |
| def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VGPR_32>; |
| def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_64>; |
| def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_96>; |
| def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_128>; |
| def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_160>; |
| def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_256>; |
| def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_288>; |
| def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_320>; |
| def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_352>; |
| def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_384>; |
| def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_512>; |
| def V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32 : V_INDIRECT_REG_WRITE_GPR_IDX_pseudo<VReg_1024>; |
| |
| class V_INDIRECT_REG_READ_GPR_IDX_pseudo<RegisterClass rc> : PseudoInstSI < |
| (outs VGPR_32:$vdst), (ins rc:$vsrc, SSrc_b32:$idx, i32imm:$subreg)> { |
| let VALU = 1; |
| let Uses = [M0, EXEC]; |
| let Defs = [M0]; |
| } |
| |
| def V_INDIRECT_REG_READ_GPR_IDX_B32_V1 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VGPR_32>; |
| def V_INDIRECT_REG_READ_GPR_IDX_B32_V2 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_64>; |
| def V_INDIRECT_REG_READ_GPR_IDX_B32_V3 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_96>; |
| def V_INDIRECT_REG_READ_GPR_IDX_B32_V4 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_128>; |
| def V_INDIRECT_REG_READ_GPR_IDX_B32_V5 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_160>; |
| def V_INDIRECT_REG_READ_GPR_IDX_B32_V8 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_256>; |
| def V_INDIRECT_REG_READ_GPR_IDX_B32_V9 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_288>; |
| def V_INDIRECT_REG_READ_GPR_IDX_B32_V10 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_320>; |
| def V_INDIRECT_REG_READ_GPR_IDX_B32_V11 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_352>; |
| def V_INDIRECT_REG_READ_GPR_IDX_B32_V12 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_384>; |
| def V_INDIRECT_REG_READ_GPR_IDX_B32_V16 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_512>; |
| def V_INDIRECT_REG_READ_GPR_IDX_B32_V32 : V_INDIRECT_REG_READ_GPR_IDX_pseudo<VReg_1024>; |
| |
| multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> { |
| let UseNamedOperandTable = 1, Spill = 1, SALU = 1, Uses = [EXEC] in { |
| def _SAVE : PseudoInstSI < |
| (outs), |
| (ins sgpr_class:$data, i32imm:$addr)> { |
| let mayStore = 1; |
| let mayLoad = 0; |
| } |
| |
| def _RESTORE : PseudoInstSI < |
| (outs sgpr_class:$data), |
| (ins i32imm:$addr)> { |
| let mayStore = 0; |
| let mayLoad = 1; |
| } |
| } // End UseNamedOperandTable = 1 |
| } |
| |
| // You cannot use M0 as the output of v_readlane_b32 instructions or |
| // use it in the sdata operand of SMEM instructions. We still need to |
| // be able to spill the physical register m0, so allow it for |
| // SI_SPILL_32_* instructions. |
| defm SI_SPILL_S32 : SI_SPILL_SGPR <SReg_32>; |
| defm SI_SPILL_S64 : SI_SPILL_SGPR <SReg_64>; |
| defm SI_SPILL_S96 : SI_SPILL_SGPR <SReg_96>; |
| defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>; |
| defm SI_SPILL_S160 : SI_SPILL_SGPR <SReg_160>; |
| defm SI_SPILL_S192 : SI_SPILL_SGPR <SReg_192>; |
| defm SI_SPILL_S224 : SI_SPILL_SGPR <SReg_224>; |
| defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>; |
| defm SI_SPILL_S288 : SI_SPILL_SGPR <SReg_288>; |
| defm SI_SPILL_S320 : SI_SPILL_SGPR <SReg_320>; |
| defm SI_SPILL_S352 : SI_SPILL_SGPR <SReg_352>; |
| defm SI_SPILL_S384 : SI_SPILL_SGPR <SReg_384>; |
| defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>; |
| defm SI_SPILL_S1024 : SI_SPILL_SGPR <SReg_1024>; |
| |
| let Spill = 1, VALU = 1, isConvergent = 1 in { |
| def SI_SPILL_S32_TO_VGPR : PseudoInstSI <(outs VGPR_32:$vdst), |
| (ins SReg_32:$src0, i32imm:$src1, VGPR_32:$vdst_in)> { |
| let Size = 4; |
| let FixedSize = 1; |
| let IsNeverUniform = 1; |
| let hasSideEffects = 0; |
| let mayLoad = 0; |
| let mayStore = 0; |
| let hasExtraDefRegAllocReq = 1; |
| let Constraints = "$vdst = $vdst_in"; |
| } |
| |
| def SI_RESTORE_S32_FROM_VGPR : PseudoInstSI <(outs SReg_32:$sdst), |
| (ins VGPR_32:$src0, i32imm:$src1)> { |
| let Size = 4; |
| let FixedSize = 1; |
| let hasSideEffects = 0; |
| let mayLoad = 0; |
| let mayStore = 0; |
| let hasExtraSrcRegAllocReq = 1; |
| } |
| } // End Spill = 1, VALU = 1, isConvergent = 1 |
| |
| // VGPR or AGPR spill instructions. In case of AGPR spilling a temp register |
| // needs to be used and an extra instruction to move between VGPR and AGPR. |
| // UsesTmp adds to the total size of an expanded spill in this case. |
| multiclass SI_SPILL_VGPR <RegisterClass vgpr_class, bit UsesTmp = 0> { |
| let UseNamedOperandTable = 1, Spill = 1, VALU = 1, |
| SchedRW = [WriteVMEM] in { |
| def _SAVE : VPseudoInstSI < |
| (outs), |
| (ins vgpr_class:$vdata, i32imm:$vaddr, |
| SReg_32:$soffset, i32imm:$offset)> { |
| let mayStore = 1; |
| let mayLoad = 0; |
| // (2 * 4) + (8 * num_subregs) bytes maximum |
| int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8); |
| // Size field is unsigned char and cannot fit more. |
| let Size = !if(!le(MaxSize, 256), MaxSize, 252); |
| } |
| |
| def _RESTORE : VPseudoInstSI < |
| (outs vgpr_class:$vdata), |
| (ins i32imm:$vaddr, |
| SReg_32:$soffset, i32imm:$offset)> { |
| let mayStore = 0; |
| let mayLoad = 1; |
| |
| // (2 * 4) + (8 * num_subregs) bytes maximum |
| int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), !add(UsesTmp, 3)), 8); |
| // Size field is unsigned char and cannot fit more. |
| let Size = !if(!le(MaxSize, 256), MaxSize, 252); |
| } |
| } // End UseNamedOperandTable = 1, Spill = 1, VALU = 1, SchedRW = [WriteVMEM] |
| } |
| |
| defm SI_SPILL_V16 : SI_SPILL_VGPR <VGPR_16>; |
| defm SI_SPILL_V32 : SI_SPILL_VGPR <VGPR_32>; |
| defm SI_SPILL_V64 : SI_SPILL_VGPR <VReg_64>; |
| defm SI_SPILL_V96 : SI_SPILL_VGPR <VReg_96>; |
| defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>; |
| defm SI_SPILL_V160 : SI_SPILL_VGPR <VReg_160>; |
| defm SI_SPILL_V192 : SI_SPILL_VGPR <VReg_192>; |
| defm SI_SPILL_V224 : SI_SPILL_VGPR <VReg_224>; |
| defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>; |
| defm SI_SPILL_V288 : SI_SPILL_VGPR <VReg_288>; |
| defm SI_SPILL_V320 : SI_SPILL_VGPR <VReg_320>; |
| defm SI_SPILL_V352 : SI_SPILL_VGPR <VReg_352>; |
| defm SI_SPILL_V384 : SI_SPILL_VGPR <VReg_384>; |
| defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>; |
| defm SI_SPILL_V1024 : SI_SPILL_VGPR <VReg_1024>; |
| |
| defm SI_SPILL_A32 : SI_SPILL_VGPR <AGPR_32, 1>; |
| defm SI_SPILL_A64 : SI_SPILL_VGPR <AReg_64, 1>; |
| defm SI_SPILL_A96 : SI_SPILL_VGPR <AReg_96, 1>; |
| defm SI_SPILL_A128 : SI_SPILL_VGPR <AReg_128, 1>; |
| defm SI_SPILL_A160 : SI_SPILL_VGPR <AReg_160, 1>; |
| defm SI_SPILL_A192 : SI_SPILL_VGPR <AReg_192, 1>; |
| defm SI_SPILL_A224 : SI_SPILL_VGPR <AReg_224, 1>; |
| defm SI_SPILL_A256 : SI_SPILL_VGPR <AReg_256, 1>; |
| defm SI_SPILL_A288 : SI_SPILL_VGPR <AReg_288, 1>; |
| defm SI_SPILL_A320 : SI_SPILL_VGPR <AReg_320, 1>; |
| defm SI_SPILL_A352 : SI_SPILL_VGPR <AReg_352, 1>; |
| defm SI_SPILL_A384 : SI_SPILL_VGPR <AReg_384, 1>; |
| defm SI_SPILL_A512 : SI_SPILL_VGPR <AReg_512, 1>; |
| defm SI_SPILL_A1024 : SI_SPILL_VGPR <AReg_1024, 1>; |
| |
| defm SI_SPILL_AV32 : SI_SPILL_VGPR <AV_32, 1>; |
| defm SI_SPILL_AV64 : SI_SPILL_VGPR <AV_64, 1>; |
| defm SI_SPILL_AV96 : SI_SPILL_VGPR <AV_96, 1>; |
| defm SI_SPILL_AV128 : SI_SPILL_VGPR <AV_128, 1>; |
| defm SI_SPILL_AV160 : SI_SPILL_VGPR <AV_160, 1>; |
| defm SI_SPILL_AV192 : SI_SPILL_VGPR <AV_192, 1>; |
| defm SI_SPILL_AV224 : SI_SPILL_VGPR <AV_224, 1>; |
| defm SI_SPILL_AV256 : SI_SPILL_VGPR <AV_256, 1>; |
| defm SI_SPILL_AV288 : SI_SPILL_VGPR <AV_288, 1>; |
| defm SI_SPILL_AV320 : SI_SPILL_VGPR <AV_320, 1>; |
| defm SI_SPILL_AV352 : SI_SPILL_VGPR <AV_352, 1>; |
| defm SI_SPILL_AV384 : SI_SPILL_VGPR <AV_384, 1>; |
| defm SI_SPILL_AV512 : SI_SPILL_VGPR <AV_512, 1>; |
| defm SI_SPILL_AV1024 : SI_SPILL_VGPR <AV_1024, 1>; |
| |
| let isConvergent = 1 in { |
| defm SI_SPILL_WWM_V32 : SI_SPILL_VGPR <VGPR_32>; |
| defm SI_SPILL_WWM_AV32 : SI_SPILL_VGPR <AV_32, 1>; |
| } |
| |
| let isReMaterializable = 1, isAsCheapAsAMove = 1 in |
| def SI_PC_ADD_REL_OFFSET : SPseudoInstSI < |
| (outs SReg_64:$dst), |
| (ins si_ga:$ptr_lo, si_ga:$ptr_hi), |
| [(set SReg_64:$dst, |
| (i64 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, tglobaladdr:$ptr_hi)))]> { |
| let Defs = [SCC]; |
| } |
| |
| def : GCNPat < |
| (SIpc_add_rel_offset tglobaladdr:$ptr_lo, 0), |
| (SI_PC_ADD_REL_OFFSET $ptr_lo, (i32 0)) |
| >; |
| |
| def : GCNPat< |
| (AMDGPUtrap timm:$trapid), |
| (S_TRAP $trapid) |
| >; |
| |
| def : GCNPat< |
| (AMDGPUelse i1:$src, bb:$target), |
| (SI_ELSE $src, $target) |
| >; |
| |
| def : GCNPat < |
| (int_amdgcn_kill i1:$src), |
| (SI_KILL_I1_PSEUDO SCSrc_i1:$src, 0) |
| >; |
| |
| def : GCNPat < |
| (int_amdgcn_kill (i1 (not i1:$src))), |
| (SI_KILL_I1_PSEUDO SCSrc_i1:$src, -1) |
| >; |
| |
| let SubtargetPredicate = NotHasSALUFloatInsts in |
| def : GCNPat < |
| (int_amdgcn_kill (i1 (setcc f32:$src, InlineImmFP32:$imm, cond:$cond))), |
| (SI_KILL_F32_COND_IMM_PSEUDO VSrc_b32:$src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond)) |
| >; |
| |
| def : GCNPat < |
| (int_amdgcn_wqm_demote i1:$src), |
| (SI_DEMOTE_I1 SCSrc_i1:$src, 0) |
| >; |
| |
| def : GCNPat < |
| (int_amdgcn_wqm_demote (i1 (not i1:$src))), |
| (SI_DEMOTE_I1 SCSrc_i1:$src, -1) |
| >; |
| |
| // TODO: we could add more variants for other types of conditionals |
| |
| def : GCNPat < |
| (i64 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))), |
| (COPY $src) // Return the SGPRs representing i1 src |
| >; |
| |
| def : GCNPat < |
| (i32 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))), |
| (COPY $src) // Return the SGPRs representing i1 src |
| >; |
| |
| //===----------------------------------------------------------------------===// |
| // VOP1 Patterns |
| //===----------------------------------------------------------------------===// |
| |
| multiclass f16_to_fp_Pats<Instruction cvt_f16_f32_inst_e64, Instruction cvt_f32_f16_inst_e64> { |
| // f16_to_fp patterns |
| def : GCNPat < |
| (f32 (any_f16_to_fp i32:$src0)), |
| (cvt_f32_f16_inst_e64 SRCMODS.NONE, $src0) |
| >; |
| |
| def : GCNPat < |
| (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))), |
| (cvt_f32_f16_inst_e64 SRCMODS.ABS, $src0) |
| >; |
| |
| def : GCNPat < |
| (f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))), |
| (cvt_f32_f16_inst_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0))) |
| >; |
| |
| def : GCNPat < |
| (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))), |
| (cvt_f32_f16_inst_e64 SRCMODS.NEG_ABS, $src0) |
| >; |
| |
| def : GCNPat < |
| (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))), |
| (cvt_f32_f16_inst_e64 SRCMODS.NEG, $src0) |
| >; |
| |
| // fp_to_fp16 patterns |
| def : GCNPat < |
| (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))), |
| (cvt_f16_f32_inst_e64 $src0_modifiers, f32:$src0) |
| >; |
| |
| // This is only used on targets without half support |
| // TODO: Introduce strict variant of AMDGPUfp_to_f16 and share custom lowering |
| def : GCNPat < |
| (i32 (strict_fp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))), |
| (cvt_f16_f32_inst_e64 $src0_modifiers, f32:$src0) |
| >; |
| } |
| |
| let True16Predicate = NotHasTrue16BitInsts in |
| defm : f16_to_fp_Pats<V_CVT_F16_F32_e64, V_CVT_F32_F16_e64>; |
| |
| let True16Predicate = UseFakeTrue16Insts in |
| defm : f16_to_fp_Pats<V_CVT_F16_F32_fake16_e64, V_CVT_F32_F16_fake16_e64>; |
| |
| multiclass f16_fp_Pats<Instruction cvt_f16_f32_inst_e64, |
| Instruction cvt_f32_f16_inst_e64, |
| RegOrImmOperand VSrc> { |
| def : GCNPat < |
| (f64 (any_fpextend f16:$src)), |
| (V_CVT_F64_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, $src)) |
| >; |
| |
| def : GCNPat < |
| (i32 (fp_to_sint f16:$src)), |
| (V_CVT_I32_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, VSrc:$src)) |
| >; |
| |
| def : GCNPat < |
| (i32 (fp_to_uint f16:$src)), |
| (V_CVT_U32_F32_e32 (cvt_f32_f16_inst_e64 SRCMODS.NONE, VSrc:$src)) |
| >; |
| |
| def : GCNPat < |
| (f16 (sint_to_fp i32:$src)), |
| (cvt_f16_f32_inst_e64 SRCMODS.NONE, (V_CVT_F32_I32_e32 VSrc_b32:$src)) |
| >; |
| |
| def : GCNPat < |
| (f16 (uint_to_fp i32:$src)), |
| (cvt_f16_f32_inst_e64 SRCMODS.NONE, (V_CVT_F32_U32_e32 VSrc_b32:$src)) |
| >; |
| } |
| |
| let True16Predicate = NotHasTrue16BitInsts in |
| defm : f16_fp_Pats<V_CVT_F16_F32_e64, V_CVT_F32_F16_e64, VSrc_b32>; |
| |
| let True16Predicate = UseRealTrue16Insts in |
| defm : f16_fp_Pats<V_CVT_F16_F32_t16_e64, V_CVT_F32_F16_t16_e64, VSrcT_b16>; |
| |
| let True16Predicate = UseFakeTrue16Insts in |
| defm : f16_fp_Pats<V_CVT_F16_F32_fake16_e64, V_CVT_F32_F16_fake16_e64, VSrc_b16>; |
| |
| //===----------------------------------------------------------------------===// |
| // VOP2 Patterns |
| //===----------------------------------------------------------------------===// |
| |
| // NoMods pattern used for mac. If there are any source modifiers then it's |
| // better to select mad instead of mac. |
| class FMADPat <ValueType vt, Instruction inst> |
| : GCNPat <(vt (any_fmad (vt (VOP3NoMods vt:$src0)), |
| (vt (VOP3NoMods vt:$src1)), |
| (vt (VOP3NoMods vt:$src2)))), |
| (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, |
| SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) |
| >; |
| |
| // Prefer mac form when there are no modifiers. |
| let AddedComplexity = 9 in { |
| let OtherPredicates = [HasMadMacF32Insts] in |
| def : FMADPat <f32, V_MAC_F32_e64>; |
| |
| // Don't allow source modifiers. If there are any source modifiers then it's |
| // better to select mad instead of mac. |
| let SubtargetPredicate = isGFX6GFX7GFX10, |
| OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in |
| def : GCNPat < |
| (f32 (fadd (AMDGPUfmul_legacy (VOP3NoMods f32:$src0), |
| (VOP3NoMods f32:$src1)), |
| (VOP3NoMods f32:$src2))), |
| (V_MAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, |
| SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) |
| >; |
| |
| // Don't allow source modifiers. If there are any source modifiers then it's |
| // better to select fma instead of fmac. |
| let SubtargetPredicate = HasFmaLegacy32 in |
| def : GCNPat < |
| (f32 (int_amdgcn_fma_legacy (VOP3NoMods f32:$src0), |
| (VOP3NoMods f32:$src1), |
| (VOP3NoMods f32:$src2))), |
| (V_FMAC_LEGACY_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, |
| SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) |
| >; |
| |
| let SubtargetPredicate = Has16BitInsts in |
| def : FMADPat <f16, V_MAC_F16_e64>; |
| } // AddedComplexity = 9 |
| |
| let OtherPredicates = [HasMadMacF32Insts, NoFP32Denormals] in |
| def : GCNPat < |
| (f32 (fadd (AMDGPUfmul_legacy (VOP3Mods f32:$src0, i32:$src0_mod), |
| (VOP3Mods f32:$src1, i32:$src1_mod)), |
| (VOP3Mods f32:$src2, i32:$src2_mod))), |
| (V_MAD_LEGACY_F32_e64 $src0_mod, $src0, $src1_mod, $src1, |
| $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE) |
| >; |
| |
| class VOPSelectModsPat <ValueType vt> : GCNPat < |
| (vt (select i1:$src0, (VOP3ModsNonCanonicalizing vt:$src1, i32:$src1_mods), |
| (VOP3ModsNonCanonicalizing vt:$src2, i32:$src2_mods))), |
| (V_CNDMASK_B32_e64 FP32InputMods:$src2_mods, VSrc_b32:$src2, |
| FP32InputMods:$src1_mods, VSrc_b32:$src1, SSrc_i1:$src0) |
| >; |
| |
| class VOPSelectPat <ValueType vt> : GCNPat < |
| (vt (select i1:$src0, vt:$src1, vt:$src2)), |
| (V_CNDMASK_B32_e64 0, VSrc_b32:$src2, 0, VSrc_b32:$src1, SSrc_i1:$src0) |
| >; |
| class VOPSelectPat_t16 <ValueType vt> : GCNPat < |
| (vt (select i1:$src0, vt:$src1, vt:$src2)), |
| (V_CNDMASK_B16_t16_e64 0, VSrcT_b16:$src2, 0, VSrcT_b16:$src1, SSrc_i1:$src0) |
| >; |
| |
| def : VOPSelectModsPat <i32>; |
| def : VOPSelectModsPat <f32>; |
| foreach p = [NotHasTrue16BitInsts, UseFakeTrue16Insts] in |
| let True16Predicate = p in { |
| def : VOPSelectPat <f16>; |
| def : VOPSelectPat <i16>; |
| } // End True16Predicate = p |
| let True16Predicate = UseRealTrue16Insts in { |
| def : VOPSelectPat_t16 <f16>; |
| def : VOPSelectPat_t16 <i16>; |
| } // End True16Predicate = UseRealTrue16Insts |
| |
| let AddedComplexity = 1 in { |
| def : GCNPat < |
| (i32 (add (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)), i32:$val)), |
| (V_BCNT_U32_B32_e64 $popcnt, $val) |
| >; |
| } |
| |
| def : GCNPat < |
| (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)), |
| (V_BCNT_U32_B32_e64 VSrc_b32:$popcnt, (i32 0)) |
| >; |
| |
| def : GCNPat < |
| (i16 (add (i16 (trunc (i32 (DivergentUnaryFrag<ctpop> i32:$popcnt)))), i16:$val)), |
| (V_BCNT_U32_B32_e64 $popcnt, $val) |
| >; |
| |
| def : GCNPat < |
| (i64 (DivergentUnaryFrag<ctpop> i64:$src)), |
| (REG_SEQUENCE VReg_64, |
| (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub1)), |
| (i32 (V_BCNT_U32_B32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0)))), sub0, |
| (i32 (V_MOV_B32_e32 (i32 0))), sub1) |
| >; |
| |
| /********** ============================================ **********/ |
| /********** Extraction, Insertion, Building and Casting **********/ |
| /********** ============================================ **********/ |
| |
| // Special case for 2 element vectors. REQ_SEQUENCE produces better code |
| // than an INSERT_SUBREG. |
| multiclass Insert_Element_V2<RegisterClass RC, ValueType elem_type, ValueType vec_type> { |
| def : GCNPat < |
| (insertelt vec_type:$vec, elem_type:$elem, 0), |
| (REG_SEQUENCE RC, $elem, sub0, (elem_type (EXTRACT_SUBREG $vec, sub1)), sub1) |
| >; |
| |
| def : GCNPat < |
| (insertelt vec_type:$vec, elem_type:$elem, 1), |
| (REG_SEQUENCE RC, (elem_type (EXTRACT_SUBREG $vec, sub0)), sub0, $elem, sub1) |
| >; |
| } |
| |
| foreach Index = 0-1 in { |
| def Extract_Element_v2i32_#Index : Extract_Element < |
| i32, v2i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Extract_Element_v2f32_#Index : Extract_Element < |
| f32, v2f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| } |
| |
| defm : Insert_Element_V2 <SReg_64, i32, v2i32>; |
| defm : Insert_Element_V2 <SReg_64, f32, v2f32>; |
| |
| foreach Index = 0-2 in { |
| def Extract_Element_v3i32_#Index : Extract_Element < |
| i32, v3i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v3i32_#Index : Insert_Element < |
| i32, v3i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Extract_Element_v3f32_#Index : Extract_Element < |
| f32, v3f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v3f32_#Index : Insert_Element < |
| f32, v3f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| } |
| |
| foreach Index = 0-3 in { |
| def Extract_Element_v4i32_#Index : Extract_Element < |
| i32, v4i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v4i32_#Index : Insert_Element < |
| i32, v4i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Extract_Element_v4f32_#Index : Extract_Element < |
| f32, v4f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v4f32_#Index : Insert_Element < |
| f32, v4f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| } |
| |
| foreach Index = 0-4 in { |
| def Extract_Element_v5i32_#Index : Extract_Element < |
| i32, v5i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v5i32_#Index : Insert_Element < |
| i32, v5i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Extract_Element_v5f32_#Index : Extract_Element < |
| f32, v5f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v5f32_#Index : Insert_Element < |
| f32, v5f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| } |
| |
| foreach Index = 0-5 in { |
| def Extract_Element_v6i32_#Index : Extract_Element < |
| i32, v6i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v6i32_#Index : Insert_Element < |
| i32, v6i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Extract_Element_v6f32_#Index : Extract_Element < |
| f32, v6f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v6f32_#Index : Insert_Element < |
| f32, v6f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| } |
| |
| foreach Index = 0-6 in { |
| def Extract_Element_v7i32_#Index : Extract_Element < |
| i32, v7i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v7i32_#Index : Insert_Element < |
| i32, v7i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Extract_Element_v7f32_#Index : Extract_Element < |
| f32, v7f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v7f32_#Index : Insert_Element < |
| f32, v7f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| } |
| |
| foreach Index = 0-7 in { |
| def Extract_Element_v8i32_#Index : Extract_Element < |
| i32, v8i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v8i32_#Index : Insert_Element < |
| i32, v8i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Extract_Element_v8f32_#Index : Extract_Element < |
| f32, v8f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v8f32_#Index : Insert_Element < |
| f32, v8f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| } |
| |
| foreach Index = 0-8 in { |
| def Extract_Element_v9i32_#Index : Extract_Element < |
| i32, v9i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v9i32_#Index : Insert_Element < |
| i32, v9i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Extract_Element_v9f32_#Index : Extract_Element < |
| f32, v9f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v9f32_#Index : Insert_Element < |
| f32, v9f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| } |
| |
| foreach Index = 0-9 in { |
| def Extract_Element_v10i32_#Index : Extract_Element < |
| i32, v10i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v10i32_#Index : Insert_Element < |
| i32, v10i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Extract_Element_v10f32_#Index : Extract_Element < |
| f32, v10f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v10f32_#Index : Insert_Element < |
| f32, v10f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| } |
| |
| foreach Index = 0-10 in { |
| def Extract_Element_v11i32_#Index : Extract_Element < |
| i32, v11i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v11i32_#Index : Insert_Element < |
| i32, v11i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Extract_Element_v11f32_#Index : Extract_Element < |
| f32, v11f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v11f32_#Index : Insert_Element < |
| f32, v11f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| } |
| |
| foreach Index = 0-11 in { |
| def Extract_Element_v12i32_#Index : Extract_Element < |
| i32, v12i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v12i32_#Index : Insert_Element < |
| i32, v12i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Extract_Element_v12f32_#Index : Extract_Element < |
| f32, v12f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v12f32_#Index : Insert_Element < |
| f32, v12f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| } |
| |
| foreach Index = 0-15 in { |
| def Extract_Element_v16i32_#Index : Extract_Element < |
| i32, v16i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v16i32_#Index : Insert_Element < |
| i32, v16i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Extract_Element_v16f32_#Index : Extract_Element < |
| f32, v16f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| def Insert_Element_v16f32_#Index : Insert_Element < |
| f32, v16f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| } |
| |
| |
| foreach Index = 0-31 in { |
| def Extract_Element_v32i32_#Index : Extract_Element < |
| i32, v32i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Insert_Element_v32i32_#Index : Insert_Element < |
| i32, v32i32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Extract_Element_v32f32_#Index : Extract_Element < |
| f32, v32f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| |
| def Insert_Element_v32f32_#Index : Insert_Element < |
| f32, v32f32, Index, !cast<SubRegIndex>(sub#Index) |
| >; |
| } |
| |
| // FIXME: Why do only some of these type combinations for SReg and |
| // VReg? |
| // 16-bit bitcast |
| def : BitConvert <i16, f16, VGPR_32>; |
| def : BitConvert <f16, i16, VGPR_32>; |
| def : BitConvert <f16, bf16, VGPR_32>; |
| def : BitConvert <bf16, f16, VGPR_32>; |
| |
| def : BitConvert <i16, f16, SReg_32>; |
| def : BitConvert <f16, i16, SReg_32>; |
| def : BitConvert <f16, bf16, SReg_32>; |
| def : BitConvert <bf16, f16, SReg_32>; |
| |
| def : BitConvert <i16, bf16, VGPR_32>; |
| def : BitConvert <bf16, i16, VGPR_32>; |
| def : BitConvert <i16, bf16, SReg_32>; |
| def : BitConvert <bf16, i16, SReg_32>; |
| |
| // 32-bit bitcast |
| def : BitConvert <i32, f32, VGPR_32>; |
| def : BitConvert <f32, i32, VGPR_32>; |
| def : BitConvert <i32, f32, SReg_32>; |
| def : BitConvert <f32, i32, SReg_32>; |
| def : BitConvert <v2i16, i32, SReg_32>; |
| def : BitConvert <i32, v2i16, SReg_32>; |
| def : BitConvert <v2f16, i32, SReg_32>; |
| def : BitConvert <i32, v2f16, SReg_32>; |
| def : BitConvert <v2i16, v2f16, SReg_32>; |
| def : BitConvert <v2f16, v2i16, SReg_32>; |
| def : BitConvert <v2f16, f32, SReg_32>; |
| def : BitConvert <f32, v2f16, SReg_32>; |
| def : BitConvert <v2i16, f32, SReg_32>; |
| def : BitConvert <f32, v2i16, SReg_32>; |
| def : BitConvert <v2bf16, i32, SReg_32>; |
| def : BitConvert <i32, v2bf16, SReg_32>; |
| def : BitConvert <v2bf16, i32, VGPR_32>; |
| def : BitConvert <i32, v2bf16, VGPR_32>; |
| def : BitConvert <v2bf16, v2i16, SReg_32>; |
| def : BitConvert <v2i16, v2bf16, SReg_32>; |
| def : BitConvert <v2bf16, v2i16, VGPR_32>; |
| def : BitConvert <v2i16, v2bf16, VGPR_32>; |
| def : BitConvert <v2bf16, v2f16, SReg_32>; |
| def : BitConvert <v2f16, v2bf16, SReg_32>; |
| def : BitConvert <v2bf16, v2f16, VGPR_32>; |
| def : BitConvert <v2f16, v2bf16, VGPR_32>; |
| def : BitConvert <f32, v2bf16, VGPR_32>; |
| def : BitConvert <v2bf16, f32, VGPR_32>; |
| def : BitConvert <f32, v2bf16, SReg_32>; |
| def : BitConvert <v2bf16, f32, SReg_32>; |
| |
| |
| // 64-bit bitcast |
| def : BitConvert <i64, f64, VReg_64>; |
| def : BitConvert <f64, i64, VReg_64>; |
| def : BitConvert <v2i32, v2f32, VReg_64>; |
| def : BitConvert <v2f32, v2i32, VReg_64>; |
| def : BitConvert <i64, v2i32, VReg_64>; |
| def : BitConvert <v2i32, i64, VReg_64>; |
| def : BitConvert <i64, v2f32, VReg_64>; |
| def : BitConvert <v2f32, i64, VReg_64>; |
| def : BitConvert <f64, v2f32, VReg_64>; |
| def : BitConvert <v2f32, f64, VReg_64>; |
| def : BitConvert <f64, v2i32, VReg_64>; |
| def : BitConvert <v2i32, f64, VReg_64>; |
| def : BitConvert <v4i16, v4f16, VReg_64>; |
| def : BitConvert <v4f16, v4i16, VReg_64>; |
| def : BitConvert <v4bf16, v2i32, VReg_64>; |
| def : BitConvert <v2i32, v4bf16, VReg_64>; |
| def : BitConvert <v4bf16, i64, VReg_64>; |
| def : BitConvert <i64, v4bf16, VReg_64>; |
| def : BitConvert <v4bf16, v4i16, VReg_64>; |
| def : BitConvert <v4i16, v4bf16, VReg_64>; |
| def : BitConvert <v4bf16, v4f16, VReg_64>; |
| def : BitConvert <v4f16, v4bf16, VReg_64>; |
| def : BitConvert <v4bf16, v2f32, VReg_64>; |
| def : BitConvert <v2f32, v4bf16, VReg_64>; |
| def : BitConvert <v4bf16, f64, VReg_64>; |
| def : BitConvert <f64, v4bf16, VReg_64>; |
| |
| |
| // FIXME: Make SGPR |
| def : BitConvert <v2i32, v4f16, VReg_64>; |
| def : BitConvert <v4f16, v2i32, VReg_64>; |
| def : BitConvert <v2i32, v4f16, VReg_64>; |
| def : BitConvert <v2i32, v4i16, VReg_64>; |
| def : BitConvert <v4i16, v2i32, VReg_64>; |
| def : BitConvert <v2f32, v4f16, VReg_64>; |
| def : BitConvert <v4f16, v2f32, VReg_64>; |
| def : BitConvert <v2f32, v4i16, VReg_64>; |
| def : BitConvert <v4i16, v2f32, VReg_64>; |
| def : BitConvert <v4i16, f64, VReg_64>; |
| def : BitConvert <v4f16, f64, VReg_64>; |
| def : BitConvert <f64, v4i16, VReg_64>; |
| def : BitConvert <f64, v4f16, VReg_64>; |
| def : BitConvert <v4i16, i64, VReg_64>; |
| def : BitConvert <v4f16, i64, VReg_64>; |
| def : BitConvert <i64, v4i16, VReg_64>; |
| def : BitConvert <i64, v4f16, VReg_64>; |
| |
| def : BitConvert <v4i32, v4f32, VReg_128>; |
| def : BitConvert <v4f32, v4i32, VReg_128>; |
| |
| // 96-bit bitcast |
| def : BitConvert <v3i32, v3f32, SGPR_96>; |
| def : BitConvert <v3f32, v3i32, SGPR_96>; |
| |
| // 128-bit bitcast |
| def : BitConvert <v2i64, v4i32, SReg_128>; |
| def : BitConvert <v4i32, v2i64, SReg_128>; |
| def : BitConvert <v2f64, v4f32, VReg_128>; |
| def : BitConvert <v2f64, v4i32, VReg_128>; |
| def : BitConvert <v4f32, v2f64, VReg_128>; |
| def : BitConvert <v4i32, v2f64, VReg_128>; |
| def : BitConvert <v2i64, v2f64, VReg_128>; |
| def : BitConvert <v2f64, v2i64, VReg_128>; |
| def : BitConvert <v4f32, v2i64, VReg_128>; |
| def : BitConvert <v2i64, v4f32, VReg_128>; |
| def : BitConvert <v8i16, v4i32, SReg_128>; |
| def : BitConvert <v4i32, v8i16, SReg_128>; |
| def : BitConvert <v8f16, v4f32, VReg_128>; |
| def : BitConvert <v8f16, v4i32, VReg_128>; |
| def : BitConvert <v4f32, v8f16, VReg_128>; |
| def : BitConvert <v4i32, v8f16, VReg_128>; |
| def : BitConvert <v8i16, v8f16, VReg_128>; |
| def : BitConvert <v8f16, v8i16, VReg_128>; |
| def : BitConvert <v4f32, v8i16, VReg_128>; |
| def : BitConvert <v8i16, v4f32, VReg_128>; |
| def : BitConvert <v8i16, v8f16, SReg_128>; |
| def : BitConvert <v8i16, v2i64, SReg_128>; |
| def : BitConvert <v8i16, v2f64, SReg_128>; |
| def : BitConvert <v8f16, v2i64, SReg_128>; |
| def : BitConvert <v8f16, v2f64, SReg_128>; |
| def : BitConvert <v8f16, v8i16, SReg_128>; |
| def : BitConvert <v2i64, v8i16, SReg_128>; |
| def : BitConvert <v2f64, v8i16, SReg_128>; |
| def : BitConvert <v2i64, v8f16, SReg_128>; |
| def : BitConvert <v2f64, v8f16, SReg_128>; |
| |
| def : BitConvert <v4i32, v8bf16, SReg_128>; |
| def : BitConvert <v8bf16, v4i32, SReg_128>; |
| def : BitConvert <v4i32, v8bf16, VReg_128>; |
| def : BitConvert <v8bf16, v4i32, VReg_128>; |
| |
| def : BitConvert <v4f32, v8bf16, SReg_128>; |
| def : BitConvert <v8bf16, v4f32, SReg_128>; |
| def : BitConvert <v4f32, v8bf16, VReg_128>; |
| def : BitConvert <v8bf16, v4f32, VReg_128>; |
| |
| def : BitConvert <v8i16, v8bf16, SReg_128>; |
| def : BitConvert <v8bf16, v8i16, SReg_128>; |
| def : BitConvert <v8i16, v8bf16, VReg_128>; |
| def : BitConvert <v8bf16, v8i16, VReg_128>; |
| |
| def : BitConvert <v8f16, v8bf16, SReg_128>; |
| def : BitConvert <v8bf16, v8f16, SReg_128>; |
| def : BitConvert <v8f16, v8bf16, VReg_128>; |
| def : BitConvert <v8bf16, v8f16, VReg_128>; |
| |
| def : BitConvert <v2f64, v8bf16, SReg_128>; |
| def : BitConvert <v8bf16, v2f64, SReg_128>; |
| def : BitConvert <v2f64, v8bf16, VReg_128>; |
| def : BitConvert <v8bf16, v2f64, VReg_128>; |
| |
| def : BitConvert <v2i64, v8bf16, SReg_128>; |
| def : BitConvert <v8bf16, v2i64, SReg_128>; |
| def : BitConvert <v2i64, v8bf16, VReg_128>; |
| def : BitConvert <v8bf16, v2i64, VReg_128>; |
| |
| |
| // 160-bit bitcast |
| def : BitConvert <v5i32, v5f32, SReg_160>; |
| def : BitConvert <v5f32, v5i32, SReg_160>; |
| def : BitConvert <v5i32, v5f32, VReg_160>; |
| def : BitConvert <v5f32, v5i32, VReg_160>; |
| |
| // 192-bit bitcast |
| def : BitConvert <v6i32, v6f32, SReg_192>; |
| def : BitConvert <v6f32, v6i32, SReg_192>; |
| def : BitConvert <v6i32, v6f32, VReg_192>; |
| def : BitConvert <v6f32, v6i32, VReg_192>; |
| def : BitConvert <v3i64, v3f64, VReg_192>; |
| def : BitConvert <v3f64, v3i64, VReg_192>; |
| def : BitConvert <v3i64, v6i32, VReg_192>; |
| def : BitConvert <v3i64, v6f32, VReg_192>; |
| def : BitConvert <v3f64, v6i32, VReg_192>; |
| def : BitConvert <v3f64, v6f32, VReg_192>; |
| def : BitConvert <v6i32, v3i64, VReg_192>; |
| def : BitConvert <v6f32, v3i64, VReg_192>; |
| def : BitConvert <v6i32, v3f64, VReg_192>; |
| def : BitConvert <v6f32, v3f64, VReg_192>; |
| |
| // 224-bit bitcast |
| def : BitConvert <v7i32, v7f32, SReg_224>; |
| def : BitConvert <v7f32, v7i32, SReg_224>; |
| def : BitConvert <v7i32, v7f32, VReg_224>; |
| def : BitConvert <v7f32, v7i32, VReg_224>; |
| |
| // 256-bit bitcast |
| def : BitConvert <v8i32, v8f32, SReg_256>; |
| def : BitConvert <v8f32, v8i32, SReg_256>; |
| def : BitConvert <v8i32, v8f32, VReg_256>; |
| def : BitConvert <v8f32, v8i32, VReg_256>; |
| def : BitConvert <v4i64, v4f64, VReg_256>; |
| def : BitConvert <v4f64, v4i64, VReg_256>; |
| def : BitConvert <v4i64, v8i32, VReg_256>; |
| def : BitConvert <v4i64, v8f32, VReg_256>; |
| def : BitConvert <v4f64, v8i32, VReg_256>; |
| def : BitConvert <v4f64, v8f32, VReg_256>; |
| def : BitConvert <v8i32, v4i64, VReg_256>; |
| def : BitConvert <v8f32, v4i64, VReg_256>; |
| def : BitConvert <v8i32, v4f64, VReg_256>; |
| def : BitConvert <v8f32, v4f64, VReg_256>; |
| def : BitConvert <v16i16, v16f16, SReg_256>; |
| def : BitConvert <v16f16, v16i16, SReg_256>; |
| def : BitConvert <v16i16, v16f16, VReg_256>; |
| def : BitConvert <v16f16, v16i16, VReg_256>; |
| def : BitConvert <v16f16, v8i32, VReg_256>; |
| def : BitConvert <v16i16, v8i32, VReg_256>; |
| def : BitConvert <v16f16, v8f32, VReg_256>; |
| def : BitConvert <v16i16, v8f32, VReg_256>; |
| def : BitConvert <v8i32, v16f16, VReg_256>; |
| def : BitConvert <v8i32, v16i16, VReg_256>; |
| def : BitConvert <v8f32, v16f16, VReg_256>; |
| def : BitConvert <v8f32, v16i16, VReg_256>; |
| def : BitConvert <v16f16, v4i64, VReg_256>; |
| def : BitConvert <v16i16, v4i64, VReg_256>; |
| def : BitConvert <v16f16, v4f64, VReg_256>; |
| def : BitConvert <v16i16, v4f64, VReg_256>; |
| def : BitConvert <v4i64, v16f16, VReg_256>; |
| def : BitConvert <v4i64, v16i16, VReg_256>; |
| def : BitConvert <v4f64, v16f16, VReg_256>; |
| def : BitConvert <v4f64, v16i16, VReg_256>; |
| |
| |
| def : BitConvert <v8i32, v16bf16, VReg_256>; |
| def : BitConvert <v16bf16, v8i32, VReg_256>; |
| def : BitConvert <v8f32, v16bf16, VReg_256>; |
| def : BitConvert <v16bf16, v8f32, VReg_256>; |
| def : BitConvert <v4i64, v16bf16, VReg_256>; |
| def : BitConvert <v16bf16, v4i64, VReg_256>; |
| def : BitConvert <v4f64, v16bf16, VReg_256>; |
| def : BitConvert <v16bf16, v4f64, VReg_256>; |
| |
| |
| |
| def : BitConvert <v16i16, v16bf16, SReg_256>; |
| def : BitConvert <v16bf16, v16i16, SReg_256>; |
| def : BitConvert <v16i16, v16bf16, VReg_256>; |
| def : BitConvert <v16bf16, v16i16, VReg_256>; |
| |
| def : BitConvert <v16f16, v16bf16, SReg_256>; |
| def : BitConvert <v16bf16, v16f16, SReg_256>; |
| def : BitConvert <v16f16, v16bf16, VReg_256>; |
| def : BitConvert <v16bf16, v16f16, VReg_256>; |
| |
| |
| |
| |
| // 288-bit bitcast |
| def : BitConvert <v9i32, v9f32, SReg_288>; |
| def : BitConvert <v9f32, v9i32, SReg_288>; |
| def : BitConvert <v9i32, v9f32, VReg_288>; |
| def : BitConvert <v9f32, v9i32, VReg_288>; |
| |
| // 320-bit bitcast |
| def : BitConvert <v10i32, v10f32, SReg_320>; |
| def : BitConvert <v10f32, v10i32, SReg_320>; |
| def : BitConvert <v10i32, v10f32, VReg_320>; |
| def : BitConvert <v10f32, v10i32, VReg_320>; |
| |
| // 320-bit bitcast |
| def : BitConvert <v11i32, v11f32, SReg_352>; |
| def : BitConvert <v11f32, v11i32, SReg_352>; |
| def : BitConvert <v11i32, v11f32, VReg_352>; |
| def : BitConvert <v11f32, v11i32, VReg_352>; |
| |
| // 384-bit bitcast |
| def : BitConvert <v12i32, v12f32, SReg_384>; |
| def : BitConvert <v12f32, v12i32, SReg_384>; |
| def : BitConvert <v12i32, v12f32, VReg_384>; |
| def : BitConvert <v12f32, v12i32, VReg_384>; |
| |
| // 512-bit bitcast |
| def : BitConvert <v32f16, v32i16, VReg_512>; |
| def : BitConvert <v32i16, v32f16, VReg_512>; |
| def : BitConvert <v32f16, v16i32, VReg_512>; |
| def : BitConvert <v32f16, v16f32, VReg_512>; |
| def : BitConvert <v16f32, v32f16, VReg_512>; |
| def : BitConvert <v16i32, v32f16, VReg_512>; |
| def : BitConvert <v32i16, v16i32, VReg_512>; |
| def : BitConvert <v32i16, v16f32, VReg_512>; |
| def : BitConvert <v16f32, v32i16, VReg_512>; |
| def : BitConvert <v16i32, v32i16, VReg_512>; |
| def : BitConvert <v16i32, v16f32, VReg_512>; |
| def : BitConvert <v16f32, v16i32, VReg_512>; |
| def : BitConvert <v8i64, v8f64, VReg_512>; |
| def : BitConvert <v8f64, v8i64, VReg_512>; |
| def : BitConvert <v8i64, v16i32, VReg_512>; |
| def : BitConvert <v8f64, v16i32, VReg_512>; |
| def : BitConvert <v16i32, v8i64, VReg_512>; |
| def : BitConvert <v16i32, v8f64, VReg_512>; |
| def : BitConvert <v8i64, v16f32, VReg_512>; |
| def : BitConvert <v8f64, v16f32, VReg_512>; |
| def : BitConvert <v16f32, v8i64, VReg_512>; |
| def : BitConvert <v16f32, v8f64, VReg_512>; |
| |
| |
| |
| def : BitConvert <v32bf16, v32i16, VReg_512>; |
| def : BitConvert <v32i16, v32bf16, VReg_512>; |
| def : BitConvert <v32bf16, v32i16, SReg_512>; |
| def : BitConvert <v32i16, v32bf16, SReg_512>; |
| |
| def : BitConvert <v32bf16, v32f16, VReg_512>; |
| def : BitConvert <v32f16, v32bf16, VReg_512>; |
| def : BitConvert <v32bf16, v32f16, SReg_512>; |
| def : BitConvert <v32f16, v32bf16, SReg_512>; |
| |
| def : BitConvert <v32bf16, v16i32, VReg_512>; |
| def : BitConvert <v16i32, v32bf16, VReg_512>; |
| def : BitConvert <v32bf16, v16i32, SReg_512>; |
| def : BitConvert <v16i32, v32bf16, SReg_512>; |
| |
| def : BitConvert <v32bf16, v16f32, VReg_512>; |
| def : BitConvert <v16f32, v32bf16, VReg_512>; |
| def : BitConvert <v32bf16, v16f32, SReg_512>; |
| def : BitConvert <v16f32, v32bf16, SReg_512>; |
| |
| def : BitConvert <v32bf16, v8f64, VReg_512>; |
| def : BitConvert <v8f64, v32bf16, VReg_512>; |
| def : BitConvert <v32bf16, v8f64, SReg_512>; |
| def : BitConvert <v8f64, v32bf16, SReg_512>; |
| |
| def : BitConvert <v32bf16, v8i64, VReg_512>; |
| def : BitConvert <v8i64, v32bf16, VReg_512>; |
| def : BitConvert <v32bf16, v8i64, SReg_512>; |
| def : BitConvert <v8i64, v32bf16, SReg_512>; |
| |
| // 1024-bit bitcast |
| def : BitConvert <v32i32, v32f32, VReg_1024>; |
| def : BitConvert <v32f32, v32i32, VReg_1024>; |
| def : BitConvert <v16i64, v16f64, VReg_1024>; |
| def : BitConvert <v16f64, v16i64, VReg_1024>; |
| def : BitConvert <v16i64, v32i32, VReg_1024>; |
| def : BitConvert <v32i32, v16i64, VReg_1024>; |
| def : BitConvert <v16f64, v32f32, VReg_1024>; |
| def : BitConvert <v32f32, v16f64, VReg_1024>; |
| def : BitConvert <v16i64, v32f32, VReg_1024>; |
| def : BitConvert <v32i32, v16f64, VReg_1024>; |
| def : BitConvert <v16f64, v32i32, VReg_1024>; |
| def : BitConvert <v32f32, v16i64, VReg_1024>; |
| |
| |
| /********** =================== **********/ |
| /********** Src & Dst modifiers **********/ |
| /********** =================== **********/ |
| |
| |
| // If denormals are not enabled, it only impacts the compare of the |
| // inputs. The output result is not flushed. |
| class ClampPat<Instruction inst, ValueType vt> : GCNPat < |
| (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))), |
| (inst i32:$src0_modifiers, vt:$src0, |
| i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE) |
| >; |
| |
| def : ClampPat<V_MAX_F32_e64, f32>; |
| let SubtargetPredicate = isNotGFX12Plus in |
| def : ClampPat<V_MAX_F64_e64, f64>; |
| let SubtargetPredicate = isGFX12Plus in |
| def : ClampPat<V_MAX_NUM_F64_e64, f64>; |
| let SubtargetPredicate = NotHasTrue16BitInsts in |
| def : ClampPat<V_MAX_F16_e64, f16>; |
| let SubtargetPredicate = UseRealTrue16Insts in |
| def : ClampPat<V_MAX_F16_t16_e64, f16>; |
| let SubtargetPredicate = UseFakeTrue16Insts in |
| def : ClampPat<V_MAX_F16_fake16_e64, f16>; |
| |
| let SubtargetPredicate = HasVOP3PInsts in { |
| def : GCNPat < |
| (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))), |
| (V_PK_MAX_F16 $src0_modifiers, $src0, |
| $src0_modifiers, $src0, DSTCLAMP.ENABLE) |
| >; |
| } |
| |
| |
| /********** ================================ **********/ |
| /********** Floating point absolute/negative **********/ |
| /********** ================================ **********/ |
| |
| def : GCNPat < |
| (UniformUnaryFrag<fneg> (fabs (f32 SReg_32:$src))), |
| (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) // Set sign bit |
| >; |
| |
| def : GCNPat < |
| (UniformUnaryFrag<fabs> (f32 SReg_32:$src)), |
| (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fffffff))) |
| >; |
| |
| def : GCNPat < |
| (UniformUnaryFrag<fneg> (f32 SReg_32:$src)), |
| (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) |
| >; |
| |
| foreach fp16vt = [f16, bf16] in { |
| def : GCNPat < |
| (UniformUnaryFrag<fneg> (fp16vt SReg_32:$src)), |
| (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) |
| >; |
| |
| def : GCNPat < |
| (UniformUnaryFrag<fabs> (fp16vt SReg_32:$src)), |
| (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00007fff))) |
| >; |
| |
| def : GCNPat < |
| (UniformUnaryFrag<fneg> (fabs (fp16vt SReg_32:$src))), |
| (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit |
| >; |
| } // End foreach fp16vt = ... |
| |
| def : GCNPat < |
| (UniformUnaryFrag<fneg> (v2f16 SReg_32:$src)), |
| (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) |
| >; |
| |
| def : GCNPat < |
| (UniformUnaryFrag<fabs> (v2f16 SReg_32:$src)), |
| (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fff7fff))) |
| >; |
| |
| // This is really (fneg (fabs v2f16:$src)) |
| // |
| // fabs is not reported as free because there is modifier for it in |
| // VOP3P instructions, so it is turned into the bit op. |
| def : GCNPat < |
| (UniformUnaryFrag<fneg> (v2f16 (bitconvert (and_oneuse (i32 SReg_32:$src), 0x7fff7fff)))), |
| (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit |
| >; |
| |
| def : GCNPat < |
| (UniformUnaryFrag<fneg> (v2f16 (fabs SReg_32:$src))), |
| (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit |
| >; |
| |
| |
| // COPY_TO_REGCLASS is needed to avoid using SCC from S_XOR_B32 instead |
| // of the real value. |
| def : GCNPat < |
| (UniformUnaryFrag<fneg> (v2f32 SReg_64:$src)), |
| (v2f32 (REG_SEQUENCE SReg_64, |
| (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub0)), |
| (i32 (S_MOV_B32 (i32 0x80000000)))), |
| SReg_32)), sub0, |
| (f32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG $src, sub1)), |
| (i32 (S_MOV_B32 (i32 0x80000000)))), |
| SReg_32)), sub1)) |
| >; |
| |
| def : GCNPat < |
| (UniformUnaryFrag<fabs> (v2f32 SReg_64:$src)), |
| (v2f32 (REG_SEQUENCE SReg_64, |
| (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub0)), |
| (i32 (S_MOV_B32 (i32 0x7fffffff)))), |
| SReg_32)), sub0, |
| (f32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG $src, sub1)), |
| (i32 (S_MOV_B32 (i32 0x7fffffff)))), |
| SReg_32)), sub1)) |
| >; |
| |
| def : GCNPat < |
| (UniformUnaryFrag<fneg> (fabs (v2f32 SReg_64:$src))), |
| (v2f32 (REG_SEQUENCE SReg_64, |
| (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub0)), |
| (i32 (S_MOV_B32 (i32 0x80000000)))), |
| SReg_32)), sub0, |
| (f32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG $src, sub1)), |
| (i32 (S_MOV_B32 (i32 0x80000000)))), |
| SReg_32)), sub1)) |
| >; |
| |
| // FIXME: Use S_BITSET0_B32/B64? |
| def : GCNPat < |
| (UniformUnaryFrag<fabs> (f64 SReg_64:$src)), |
| (REG_SEQUENCE SReg_64, |
| (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)), |
| sub0, |
| (i32 (COPY_TO_REGCLASS (S_AND_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)), |
| (S_MOV_B32 (i32 0x7fffffff))), SReg_32)), // Set sign bit. |
| sub1) |
| >; |
| |
| def : GCNPat < |
| (UniformUnaryFrag<fneg> (f64 SReg_64:$src)), |
| (REG_SEQUENCE SReg_64, |
| (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)), |
| sub0, |
| (i32 (COPY_TO_REGCLASS (S_XOR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)), |
| (i32 (S_MOV_B32 (i32 0x80000000)))), SReg_32)), |
| sub1) |
| >; |
| |
| def : GCNPat < |
| (UniformUnaryFrag<fneg> (fabs (f64 SReg_64:$src))), |
| (REG_SEQUENCE SReg_64, |
| (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)), |
| sub0, |
| (i32 (COPY_TO_REGCLASS (S_OR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)), |
| (S_MOV_B32 (i32 0x80000000))), SReg_32)),// Set sign bit. |
| sub1) |
| >; |
| |
| |
| def : GCNPat < |
| (fneg (fabs (f32 VGPR_32:$src))), |
| (V_OR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src) // Set sign bit |
| >; |
| |
| def : GCNPat < |
| (fabs (f32 VGPR_32:$src)), |
| (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), VGPR_32:$src) |
| >; |
| |
| def : GCNPat < |
| (fneg (f32 VGPR_32:$src)), |
| (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src) |
| >; |
| |
| foreach fp16vt = [f16, bf16] in { |
| foreach p = [NotHasTrue16BitInsts, UseFakeTrue16Insts] in |
| let SubtargetPredicate = p in { |
| def : GCNPat < |
| (fabs (fp16vt VGPR_32:$src)), |
| (V_AND_B32_e64 (S_MOV_B32 (i32 0x00007fff)), VGPR_32:$src) |
| >; |
| |
| def : GCNPat < |
| (fneg (fp16vt VGPR_32:$src)), |
| (V_XOR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) |
| >; |
| |
| def : GCNPat < |
| (fneg (fabs (fp16vt VGPR_32:$src))), |
| (V_OR_B32_e64 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) // Set sign bit |
| >; |
| } |
| |
| let SubtargetPredicate = UseRealTrue16Insts in { |
| def : GCNPat < |
| (fabs (fp16vt VGPR_16:$src)), |
| (V_AND_B16_t16_e64 (i32 0), (i16 0x7fff), (i32 0), VGPR_16:$src) |
| >; |
| |
| def : GCNPat < |
| (fneg (fp16vt VGPR_16:$src)), |
| (V_XOR_B16_t16_e64 (i32 0), (i16 0x8000), (i32 0), VGPR_16:$src) |
| >; |
| |
| def : GCNPat < |
| (fneg (fabs (fp16vt VGPR_16:$src))), |
| (V_OR_B16_t16_e64 (i32 0), (i16 0x8000), (i32 0), VGPR_16:$src) // Set sign bit |
| >; |
| } // End SubtargetPredicate = UseRealTrue16Insts |
| } // End foreach fp16vt = ... |
| |
| def : GCNPat < |
| (fneg (v2f16 VGPR_32:$src)), |
| (V_XOR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src) |
| >; |
| |
| def : GCNPat < |
| (fabs (v2f16 VGPR_32:$src)), |
| (V_AND_B32_e64 (S_MOV_B32 (i32 0x7fff7fff)), VGPR_32:$src) |
| >; |
| |
| def : GCNPat < |
| (fneg (v2f16 (fabs VGPR_32:$src))), |
| (V_OR_B32_e64 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src) |
| >; |
| |
| def : GCNPat < |
| (fabs (f64 VReg_64:$src)), |
| (REG_SEQUENCE VReg_64, |
| (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)), |
| sub0, |
| (V_AND_B32_e64 (i32 (S_MOV_B32 (i32 0x7fffffff))), |
| (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))), |
| sub1) |
| >; |
| |
| def : GCNPat < |
| (fneg (f64 VReg_64:$src)), |
| (REG_SEQUENCE VReg_64, |
| (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)), |
| sub0, |
| (V_XOR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))), |
| (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))), |
| sub1) |
| >; |
| |
| def : GCNPat < |
| (fneg (fabs (f64 VReg_64:$src))), |
| (REG_SEQUENCE VReg_64, |
| (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)), |
| sub0, |
| (V_OR_B32_e64 (i32 (S_MOV_B32 (i32 0x80000000))), |
| (i32 (EXTRACT_SUBREG VReg_64:$src, sub1))), |
| sub1) |
| >; |
| |
| def : GCNPat < |
| (DivergentUnaryFrag<fneg> (v2f32 VReg_64:$src)), |
| (V_PK_ADD_F32 11 /* OP_SEL_1 | NEG_LO | HEG_HI */, VReg_64:$src, |
| 11 /* OP_SEL_1 | NEG_LO | HEG_HI */, (i64 0), |
| 0, 0, 0, 0, 0) |
| > { |
| let SubtargetPredicate = HasPackedFP32Ops; |
| } |
| |
| foreach fp16vt = [f16, bf16] in { |
| |
| def : GCNPat < |
| (fcopysign fp16vt:$src0, fp16vt:$src1), |
| (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1) |
| >; |
| |
| def : GCNPat < |
| (fcopysign f32:$src0, fp16vt:$src1), |
| (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, |
| (V_LSHLREV_B32_e64 (i32 16), $src1)) |
| >; |
| |
| def : GCNPat < |
| (fcopysign f64:$src0, fp16vt:$src1), |
| (REG_SEQUENCE SReg_64, |
| (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, |
| (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)), |
| (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1) |
| >; |
| |
| def : GCNPat < |
| (fcopysign fp16vt:$src0, f32:$src1), |
| (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, |
| (V_LSHRREV_B32_e64 (i32 16), $src1)) |
| >; |
| |
| def : GCNPat < |
| (fcopysign fp16vt:$src0, f64:$src1), |
| (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00007fff)), $src0, |
| (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1))) |
| >; |
| } // End foreach fp16vt = [f16, bf16] |
| |
| /********** ================== **********/ |
| /********** Immediate Patterns **********/ |
| /********** ================== **********/ |
| |
| // FIXME: Remove VGPRImm. Should be inferrable from register bank. |
| |
| foreach vt = [i32, p3, p5, p6, p2] in { |
| def : GCNPat < |
| (VGPRImm<(vt imm)>:$imm), |
| (V_MOV_B32_e32 imm:$imm) |
| >; |
| |
| def : GCNPat < |
| (vt imm:$imm), |
| (S_MOV_B32 imm:$imm) |
| >; |
| } |
| |
| // FIXME: The register bank of the frame index should depend on the |
| // users, and transitive users of the add. We may require an |
| // unnecessary copy from SGPR to VGPR. |
| def : GCNPat < |
| (VGPRImm<(p5 frameindex)>:$fi), |
| (V_MOV_B32_e32 (p5 (frameindex_to_targetframeindex $fi))) |
| >; |
| |
| def : GCNPat < |
| (p5 frameindex:$fi), |
| (S_MOV_B32 (p5 (frameindex_to_targetframeindex $fi))) |
| >; |
| |
| def : GCNPat < |
| (VGPRImm<(SIlds tglobaladdr:$ga)>), |
| (V_MOV_B32_e32 $ga) |
| >; |
| |
| def : GCNPat < |
| (SIlds tglobaladdr:$ga), |
| (S_MOV_B32 $ga) |
| >; |
| |
| foreach pred = [NotHasTrue16BitInsts, UseFakeTrue16Insts] in { |
| let True16Predicate = pred in { |
| def : GCNPat < |
| (VGPRImm<(i16 imm)>:$imm), |
| (V_MOV_B32_e32 imm:$imm) |
| >; |
| } |
| |
| // FIXME: Workaround for ordering issue with peephole optimizer where |
| // a register class copy interferes with immediate folding. Should |
| // use s_mov_b32, which can be shrunk to s_movk_i32 |
| |
| foreach vt = [f16, bf16] in { |
| def : GCNPat < |
| (VGPRImm<(f16 fpimm)>:$imm), |
| (V_MOV_B32_e32 (vt (bitcast_fpimm_to_i32 $imm))) |
| >; |
| } |
| } |
| |
| let True16Predicate = UseRealTrue16Insts in { |
| def : GCNPat < |
| (VGPRImm<(i16 imm)>:$imm), |
| (V_MOV_B16_t16_e64 0, imm:$imm, 0) |
| >; |
| |
| foreach vt = [f16, bf16] in { |
| def : GCNPat < |
| (VGPRImm<(vt fpimm)>:$imm), |
| (V_MOV_B16_t16_e64 0, $imm, 0) |
| >; |
| } |
| } |
| |
| // V_MOV_B64_PSEUDO and S_MOV_B64_IMM_PSEUDO can be used with any 64-bit |
| // immediate and wil be expanded as needed, but we will only use these patterns |
| // for values which can be encoded. |
| def : GCNPat < |
| (VGPRImm<(i64 imm)>:$imm), |
| (V_MOV_B64_PSEUDO imm:$imm) |
| >; |
| |
| def : GCNPat < |
| (VGPRImm<(f64 fpimm)>:$imm), |
| (V_MOV_B64_PSEUDO (f64 (bitcast_fpimm_to_i64 $imm))) |
| >; |
| |
| def : GCNPat < |
| (i64 imm:$imm), |
| (S_MOV_B64_IMM_PSEUDO imm:$imm) |
| >; |
| |
| def : GCNPat < |
| (f64 fpimm:$imm), |
| (S_MOV_B64_IMM_PSEUDO (i64 (bitcast_fpimm_to_i64 fpimm:$imm))) |
| >; |
| |
| def : GCNPat < |
| (f32 fpimm:$imm), |
| (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm))) |
| >; |
| |
| def : GCNPat < |
| (f16 fpimm:$imm), |
| (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm))) |
| >; |
| |
| def : GCNPat < |
| (VGPRImm<(bf16 fpimm)>:$imm), |
| (V_MOV_B32_e32 (bf16 (bitcast_fpimm_to_i32 $imm))) |
| >; |
| |
| def : GCNPat < |
| (bf16 fpimm:$imm), |
| (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm))) |
| >; |
| |
| def : GCNPat < |
| (VGPRImm<(f32 fpimm)>:$imm), |
| (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm))) |
| >; |
| |
| def : GCNPat < |
| (f32 fpimm:$imm), |
| (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm))) |
| >; |
| |
| foreach vt = [i64, p1, p0, p4] in { // FIXME: Should accept arbitrary addrspace |
| def : GCNPat < |
| (VGPRImm<(vt imm)>:$imm), |
| (V_MOV_B64_PSEUDO imm:$imm) |
| >; |
| |
| def : GCNPat < |
| (vt InlineImm64:$imm), |
| (S_MOV_B64 InlineImm64:$imm) |
| >; |
| |
| def : GCNPat < |
| (vt imm:$imm), |
| (S_MOV_B64_IMM_PSEUDO imm:$imm) |
| >; |
| } |
| |
| def : GCNPat < |
| (VGPRImm<(f64 fpimm)>:$imm), |
| (V_MOV_B64_PSEUDO (f64 (bitcast_fpimm_to_i64 $imm))) |
| >; |
| |
| // V_MOV_B64_PSEUDO and S_MOV_B64_IMM_PSEUDO can be used with any 64-bit |
| // immediate and wil be expanded as needed, but we will only use these patterns |
| // for values which can be encoded. |
| def : GCNPat < |
| (f64 InlineImmFP64:$imm), |
| (S_MOV_B64 (i64 (bitcast_fpimm_to_i64 $imm))) |
| >; |
| |
| def : GCNPat < |
| (f64 fpimm:$imm), |
| (S_MOV_B64_IMM_PSEUDO (i64 (bitcast_fpimm_to_i64 fpimm:$imm))) |
| >; |
| |
| // Set to sign-extended 64-bit value (true = -1, false = 0) |
| def : GCNPat <(i1 imm:$imm), |
| (S_MOV_B64 imm:$imm)> { |
| let WaveSizePredicate = isWave64; |
| } |
| |
| def : GCNPat <(i1 imm:$imm), |
| (S_MOV_B32 imm:$imm)> { |
| let WaveSizePredicate = isWave32; |
| } |
| |
| /********** ================== **********/ |
| /********** Intrinsic Patterns **********/ |
| /********** ================== **********/ |
| |
| def : GCNPat < |
| (f32 (fpow (VOP3Mods f32:$src0, i32:$src0_mods), (VOP3Mods f32:$src1, i32:$src1_mods))), |
| (V_EXP_F32_e64 SRCMODS.NONE, (V_MUL_LEGACY_F32_e64 $src1_mods, $src1, SRCMODS.NONE, (V_LOG_F32_e64 $src0_mods, $src0), 0, 0)) |
| >; |
| |
| def : GCNPat < |
| (i32 (sext i1:$src0)), |
| (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), |
| /*src1mod*/(i32 0), /*src1*/(i32 -1), i1:$src0) |
| >; |
| |
| class Ext32Pat <SDNode ext> : GCNPat < |
| (i32 (ext i1:$src0)), |
| (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), |
| /*src1mod*/(i32 0), /*src1*/(i32 1), i1:$src0) |
| >; |
| |
| def : Ext32Pat <zext>; |
| def : Ext32Pat <anyext>; |
| |
| // The multiplication scales from [0,1) to the unsigned integer range, |
| // rounding down a bit to avoid unwanted overflow. |
| def : GCNPat < |
| (AMDGPUurecip i32:$src0), |
| (V_CVT_U32_F32_e32 |
| (V_MUL_F32_e32 (i32 CONST.FP_4294966784), |
| (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0)))) |
| >; |
| |
| //===----------------------------------------------------------------------===// |
| // VOP3 Patterns |
| //===----------------------------------------------------------------------===// |
| |
| def : IMad24Pat<V_MAD_I32_I24_e64, 1>; |
| def : UMad24Pat<V_MAD_U32_U24_e64, 1>; |
| |
| // BFI patterns |
| |
| def BFIImm32 : PatFrag< |
| (ops node:$x, node:$y, node:$z), |
| (i32 (DivergentBinFrag<or> (and node:$y, node:$x), (and node:$z, imm))), |
| [{ |
| auto *X = dyn_cast<ConstantSDNode>(N->getOperand(0)->getOperand(1)); |
| auto *NotX = dyn_cast<ConstantSDNode>(N->getOperand(1)->getOperand(1)); |
| return X && NotX && |
| ~(unsigned)X->getZExtValue() == (unsigned)NotX->getZExtValue(); |
| }] |
| >; |
| |
| |
| // Definition from ISA doc: |
| // (y & x) | (z & ~x) |
| def : AMDGPUPatIgnoreCopies < |
| (DivergentBinFrag<or> (and i32:$y, i32:$x), (and i32:$z, (not i32:$x))), |
| (V_BFI_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32), |
| (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32), |
| (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32)) |
| >; |
| |
| // (y & C) | (z & ~C) |
| def : AMDGPUPatIgnoreCopies < |
| (BFIImm32 i32:$x, i32:$y, i32:$z), |
| (V_BFI_B32_e64 VSrc_b32:$x, VSrc_b32:$y, VSrc_b32:$z) |
| >; |
| |
| // 64-bit version |
| def : AMDGPUPatIgnoreCopies < |
| (DivergentBinFrag<or> (and i64:$y, i64:$x), (and i64:$z, (not i64:$x))), |
| (REG_SEQUENCE VReg_64, |
| (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)), |
| (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)), |
| (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0, |
| (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)), |
| (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)), |
| (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1) |
| >; |
| |
| // SHA-256 Ch function |
| // z ^ (x & (y ^ z)) |
| def : AMDGPUPatIgnoreCopies < |
| (DivergentBinFrag<xor> i32:$z, (and i32:$x, (xor i32:$y, i32:$z))), |
| (V_BFI_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32), |
| (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32), |
| (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32)) |
| >; |
| |
| // 64-bit version |
| def : AMDGPUPatIgnoreCopies < |
| (DivergentBinFrag<xor> i64:$z, (and i64:$x, (xor i64:$y, i64:$z))), |
| (REG_SEQUENCE VReg_64, |
| (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)), |
| (i32 (EXTRACT_SUBREG VReg_64:$y, sub0)), |
| (i32 (EXTRACT_SUBREG VReg_64:$z, sub0))), sub0, |
| (V_BFI_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)), |
| (i32 (EXTRACT_SUBREG VReg_64:$y, sub1)), |
| (i32 (EXTRACT_SUBREG VReg_64:$z, sub1))), sub1) |
| >; |
| |
| def : AMDGPUPat < |
| (fcopysign f32:$src0, f32:$src1), |
| (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, $src1) |
| >; |
| |
| def : AMDGPUPat < |
| (fcopysign f32:$src0, f64:$src1), |
| (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), $src0, |
| (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1))) |
| >; |
| |
| def : AMDGPUPat < |
| (fcopysign f64:$src0, f64:$src1), |
| (REG_SEQUENCE SReg_64, |
| (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, |
| (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), |
| (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)), |
| (i32 (EXTRACT_SUBREG SReg_64:$src1, sub1))), sub1) |
| >; |
| |
| def : AMDGPUPat < |
| (fcopysign f64:$src0, f32:$src1), |
| (REG_SEQUENCE SReg_64, |
| (i32 (EXTRACT_SUBREG $src0, sub0)), sub0, |
| (V_BFI_B32_e64 (S_MOV_B32 (i32 0x7fffffff)), |
| (i32 (EXTRACT_SUBREG SReg_64:$src0, sub1)), |
| $src1), sub1) |
| >; |
| |
| let True16Predicate = NotHasTrue16BitInsts in { |
| def : ROTRPattern <V_ALIGNBIT_B32_e64>; |
| |
| def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))), |
| (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), |
| (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>; |
| |
| def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))), |
| (V_ALIGNBIT_B32_e64 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), |
| (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>; |
| } // end True16Predicate = NotHasTrue16BitInsts |
| |
| let True16Predicate = UseRealTrue16Insts in { |
| def : GCNPat < |
| (rotr i32:$src0, i32:$src1), |
| (V_ALIGNBIT_B32_t16_e64 /* src0_modifiers */ 0, $src0, |
| /* src1_modifiers */ 0, $src0, |
| /* src2_modifiers */ 0, |
| (EXTRACT_SUBREG $src1, lo16), |
| /* clamp */ 0, /* op_sel */ 0) |
| >; |
| |
| def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))), |
| (V_ALIGNBIT_B32_t16_e64 0, /* src0_modifiers */ |
| (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), |
| 0, /* src1_modifiers */ |
| (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), |
| 0, /* src2_modifiers */ |
| (i16 (EXTRACT_SUBREG VGPR_32:$src1, lo16)), |
| /* clamp */ 0, /* op_sel */ 0)>; |
| |
| def : GCNPat<(fshr i32:$src0, i32:$src1, i32:$src2), |
| (V_ALIGNBIT_B32_t16_e64 /* src0_modifiers */ 0, $src0, |
| /* src1_modifiers */ 0, $src1, |
| /* src2_modifiers */ 0, |
| (EXTRACT_SUBREG VGPR_32:$src2, lo16), |
| /* clamp */ 0, /* op_sel */ 0)>; |
| } // end True16Predicate = UseRealTrue16Insts |
| |
| let True16Predicate = UseFakeTrue16Insts in { |
| def : GCNPat < |
| (rotr i32:$src0, i32:$src1), |
| (V_ALIGNBIT_B32_fake16_e64 /* src0_modifiers */ 0, $src0, |
| /* src1_modifiers */ 0, $src0, |
| /* src2_modifiers */ 0, |
| $src1, /* clamp */ 0, /* op_sel */ 0) |
| >; |
| |
| def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))), |
| (V_ALIGNBIT_B32_fake16_e64 0, /* src0_modifiers */ |
| (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), |
| 0, /* src1_modifiers */ |
| (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), |
| 0, /* src2_modifiers */ |
| $src1, /* clamp */ 0, /* op_sel */ 0) |
| >; |
| |
| def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))), |
| (V_ALIGNBIT_B32_fake16_e64 0, /* src0_modifiers */ |
| (i32 (EXTRACT_SUBREG (i64 $src0), sub1)), |
| 0, /* src1_modifiers */ |
| (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), |
| 0, /* src2_modifiers */ |
| $src1, /* clamp */ 0, /* op_sel */ 0) |
| >; |
| |
| def : GCNPat<(fshr i32:$src0, i32:$src1, i32:$src2), |
| (V_ALIGNBIT_B32_fake16_e64 /* src0_modifiers */ 0, $src0, |
| /* src1_modifiers */ 0, $src1, |
| /* src2_modifiers */ 0, |
| $src2, /* clamp */ 0, /* op_sel */ 0) |
| >; |
| } // end True16Predicate = UseFakeTrue16Insts |
| |
| /********** ====================== **********/ |
| /********** Indirect addressing **********/ |
| /********** ====================== **********/ |
| |
| multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> { |
| // Extract with offset |
| def : GCNPat< |
| (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))), |
| (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset) |
| >; |
| |
| // Insert with offset |
| def : GCNPat< |
| (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))), |
| (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val) |
| >; |
| } |
| |
| defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">; |
| defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">; |
| defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">; |
| defm : SI_INDIRECT_Pattern <v9f32, f32, "V9">; |
| defm : SI_INDIRECT_Pattern <v10f32, f32, "V10">; |
| defm : SI_INDIRECT_Pattern <v11f32, f32, "V11">; |
| defm : SI_INDIRECT_Pattern <v12f32, f32, "V12">; |
| defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">; |
| defm : SI_INDIRECT_Pattern <v32f32, f32, "V32">; |
| |
| defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">; |
| defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">; |
| defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">; |
| defm : SI_INDIRECT_Pattern <v9i32, i32, "V9">; |
| defm : SI_INDIRECT_Pattern <v10i32, i32, "V10">; |
| defm : SI_INDIRECT_Pattern <v11i32, i32, "V11">; |
| defm : SI_INDIRECT_Pattern <v12i32, i32, "V12">; |
| defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">; |
| defm : SI_INDIRECT_Pattern <v32i32, i32, "V32">; |
| |
| //===----------------------------------------------------------------------===// |
| // SAD Patterns |
| //===----------------------------------------------------------------------===// |
| |
| def : GCNPat < |
| (add (sub_oneuse (umax i32:$src0, i32:$src1), |
| (umin i32:$src0, i32:$src1)), |
| i32:$src2), |
| (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0)) |
| >; |
| |
| def : GCNPat < |
| (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)), |
| (sub i32:$src0, i32:$src1), |
| (sub i32:$src1, i32:$src0)), |
| i32:$src2), |
| (V_SAD_U32_e64 $src0, $src1, $src2, (i1 0)) |
| >; |
| |
| //===----------------------------------------------------------------------===// |
| // Conversion Patterns |
| //===----------------------------------------------------------------------===// |
| def : GCNPat<(i32 (UniformSextInreg<i1> i32:$src)), |
| (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16 |
| |
| // Handle sext_inreg in i64 |
| def : GCNPat < |
| (i64 (UniformSextInreg<i1> i64:$src)), |
| (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16 |
| >; |
| |
| def : GCNPat < |
| (i16 (UniformSextInreg<i1> i16:$src)), |
| (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16 |
| >; |
| |
| def : GCNPat < |
| (i16 (UniformSextInreg<i8> i16:$src)), |
| (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16 |
| >; |
| |
| def : GCNPat < |
| (i64 (UniformSextInreg<i8> i64:$src)), |
| (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16 |
| >; |
| |
| def : GCNPat < |
| (i64 (UniformSextInreg<i16> i64:$src)), |
| (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16 |
| >; |
| |
| def : GCNPat < |
| (i64 (UniformSextInreg<i32> i64:$src)), |
| (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16 |
| >; |
| |
| def : GCNPat< |
| (i32 (DivergentSextInreg<i1> i32:$src)), |
| (V_BFE_I32_e64 i32:$src, (i32 0), (i32 1))>; |
| |
| def : GCNPat < |
| (i16 (DivergentSextInreg<i1> i16:$src)), |
| (V_BFE_I32_e64 $src, (i32 0), (i32 1)) |
| >; |
| |
| def : GCNPat < |
| (i16 (DivergentSextInreg<i8> i16:$src)), |
| (V_BFE_I32_e64 $src, (i32 0), (i32 8)) |
| >; |
| |
| def : GCNPat< |
| (i32 (DivergentSextInreg<i8> i32:$src)), |
| (V_BFE_I32_e64 i32:$src, (i32 0), (i32 8)) |
| >; |
| |
| def : GCNPat < |
| (i32 (DivergentSextInreg<i16> i32:$src)), |
| (V_BFE_I32_e64 $src, (i32 0), (i32 16)) |
| >; |
| |
| def : GCNPat < |
| (i64 (DivergentSextInreg<i1> i64:$src)), |
| (REG_SEQUENCE VReg_64, |
| (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1)), sub0, |
| (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 1))), sub1) |
| >; |
| |
| def : GCNPat < |
| (i64 (DivergentSextInreg<i8> i64:$src)), |
| (REG_SEQUENCE VReg_64, |
| (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8)), sub0, |
| (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 8))), sub1) |
| >; |
| |
| def : GCNPat < |
| (i64 (DivergentSextInreg<i16> i64:$src)), |
| (REG_SEQUENCE VReg_64, |
| (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16)), sub0, |
| (V_ASHRREV_I32_e32 (i32 31), (V_BFE_I32_e64 (i32 (EXTRACT_SUBREG i64:$src, sub0)), (i32 0), (i32 16))), sub1) |
| >; |
| |
| def : GCNPat < |
| (i64 (DivergentSextInreg<i32> i64:$src)), |
| (REG_SEQUENCE VReg_64, |
| (i32 (EXTRACT_SUBREG i64:$src, sub0)), sub0, |
| (V_ASHRREV_I32_e32 (i32 31), (i32 (EXTRACT_SUBREG i64:$src, sub0))), sub1) |
| >; |
| |
| def : GCNPat < |
| (i64 (zext i32:$src)), |
| (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1) |
| >; |
| |
| def : GCNPat < |
| (i64 (anyext i32:$src)), |
| (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1) |
| >; |
| |
| class ZExt_i64_i1_Pat <SDNode ext> : GCNPat < |
| (i64 (ext i1:$src)), |
| (REG_SEQUENCE VReg_64, |
| (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), |
| /*src1mod*/(i32 0), /*src1*/(i32 1), $src), |
| sub0, (S_MOV_B32 (i32 0)), sub1) |
| >; |
| |
| |
| def : ZExt_i64_i1_Pat<zext>; |
| def : ZExt_i64_i1_Pat<anyext>; |
| |
| // FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that |
| // REG_SEQUENCE patterns don't support instructions with multiple outputs. |
| def : GCNPat < |
| (i64 (UniformUnaryFrag<sext> i32:$src)), |
| (REG_SEQUENCE SReg_64, $src, sub0, |
| (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1) |
| >; |
| |
| def : GCNPat < |
| (i64 (DivergentUnaryFrag<sext> i32:$src)), |
| (REG_SEQUENCE VReg_64, $src, sub0, |
| (i32 (COPY_TO_REGCLASS (V_ASHRREV_I32_e64 (i32 31), $src), VGPR_32)), sub1) |
| >; |
| |
| def : GCNPat < |
| (i64 (sext i1:$src)), |
| (REG_SEQUENCE VReg_64, |
| (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), |
| /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub0, |
| (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), |
| /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub1) |
| >; |
| |
| class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat < |
| (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))), |
| (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE)) |
| >; |
| |
| let True16Predicate = NotHasTrue16BitInsts in { |
| def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_ONE, i16, f16, fp_to_uint>; |
| def : FPToI1Pat<V_CMP_EQ_F16_e64, CONST.FP16_NEG_ONE, i16, f16, fp_to_sint>; |
| } // end True16Predicate = NotHasTrue16BitInsts |
| |
| let True16Predicate = UseRealTrue16Insts in { |
| def : FPToI1Pat<V_CMP_EQ_F16_t16_e64, CONST.FP16_ONE, i16, f16, fp_to_uint>; |
| def : FPToI1Pat<V_CMP_EQ_F16_t16_e64, CONST.FP16_NEG_ONE, i16, f16, fp_to_sint>; |
| } // end True16Predicate = UseRealTrue16BitInsts |
| |
| let True16Predicate = UseFakeTrue16Insts in { |
| def : FPToI1Pat<V_CMP_EQ_F16_fake16_e64, CONST.FP16_ONE, i16, f16, fp_to_uint>; |
| def : FPToI1Pat<V_CMP_EQ_F16_fake16_e64, CONST.FP16_NEG_ONE, i16, f16, fp_to_sint>; |
| } // end True16Predicate = UseFakeTrue16BitInsts |
| |
| def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>; |
| def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>; |
| def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>; |
| def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>; |
| |
| // If we need to perform a logical operation on i1 values, we need to |
| // use vector comparisons since there is only one SCC register. Vector |
| // comparisons may write to a pair of SGPRs or a single SGPR, so treat |
| // these as 32 or 64-bit comparisons. When legalizing SGPR copies, |
| // instructions resulting in the copies from SCC to these instructions |
| // will be moved to the VALU. |
| |
| let WaveSizePredicate = isWave64 in { |
| def : GCNPat < |
| (i1 (and i1:$src0, i1:$src1)), |
| (S_AND_B64 $src0, $src1) |
| >; |
| |
| def : GCNPat < |
| (i1 (or i1:$src0, i1:$src1)), |
| (S_OR_B64 $src0, $src1) |
| >; |
| |
| def : GCNPat < |
| (i1 (xor i1:$src0, i1:$src1)), |
| (S_XOR_B64 $src0, $src1) |
| >; |
| |
| def : GCNPat < |
| (i1 (add i1:$src0, i1:$src1)), |
| (S_XOR_B64 $src0, $src1) |
| >; |
| |
| def : GCNPat < |
| (i1 (sub i1:$src0, i1:$src1)), |
| (S_XOR_B64 $src0, $src1) |
| >; |
| |
| let AddedComplexity = 1 in { |
| def : GCNPat < |
| (i1 (add i1:$src0, (i1 -1))), |
| (S_NOT_B64 $src0) |
| >; |
| |
| def : GCNPat < |
| (i1 (sub i1:$src0, (i1 -1))), |
| (S_NOT_B64 $src0) |
| >; |
| } |
| } // end isWave64 |
| |
| let WaveSizePredicate = isWave32 in { |
| def : GCNPat < |
| (i1 (and i1:$src0, i1:$src1)), |
| (S_AND_B32 $src0, $src1) |
| >; |
| |
| def : GCNPat < |
| (i1 (or i1:$src0, i1:$src1)), |
| (S_OR_B32 $src0, $src1) |
| >; |
| |
| def : GCNPat < |
| (i1 (xor i1:$src0, i1:$src1)), |
| (S_XOR_B32 $src0, $src1) |
| >; |
| |
| def : GCNPat < |
| (i1 (add i1:$src0, i1:$src1)), |
| (S_XOR_B32 $src0, $src1) |
| >; |
| |
| def : GCNPat < |
| (i1 (sub i1:$src0, i1:$src1)), |
| (S_XOR_B32 $src0, $src1) |
| >; |
| |
| let AddedComplexity = 1 in { |
| def : GCNPat < |
| (i1 (add i1:$src0, (i1 -1))), |
| (S_NOT_B32 $src0) |
| >; |
| |
| def : GCNPat < |
| (i1 (sub i1:$src0, (i1 -1))), |
| (S_NOT_B32 $src0) |
| >; |
| } |
| } // end isWave32 |
| |
| def : GCNPat < |
| (i32 (DivergentBinFrag<xor> i32:$src0, (i32 -1))), |
| (V_NOT_B32_e32 $src0) |
| >; |
| |
| def : GCNPat < |
| (i64 (DivergentBinFrag<xor> i64:$src0, (i64 -1))), |
| (REG_SEQUENCE VReg_64, |
| (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub0))), sub0, |
| (V_NOT_B32_e32 (i32 (EXTRACT_SUBREG i64:$src0, sub1))), sub1 |
| ) |
| >; |
| |
| let SubtargetPredicate = NotHasTrue16BitInsts in |
| def : GCNPat < |
| (f16 (sint_to_fp i1:$src)), |
| (V_CVT_F16_F32_e32 ( |
| V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), |
| /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE), |
| SSrc_i1:$src)) |
| >; |
| |
| let True16Predicate = UseRealTrue16Insts in |
| def : GCNPat < |
| (f16 (sint_to_fp i1:$src)), |
| (V_CVT_F16_F32_t16_e64 /*src0_modifiers*/ 0, |
| (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), |
| /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE), |
| SSrc_i1:$src), |
| /*clamp*/ 0, /*omod*/ 0, /*op_sel*/ 0) |
| >; |
| |
| let True16Predicate = UseFakeTrue16Insts in |
| def : GCNPat < |
| (f16 (sint_to_fp i1:$src)), |
| (V_CVT_F16_F32_fake16_e64 /*src0_modifiers*/ 0, |
| (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), |
| /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE), |
| SSrc_i1:$src), |
| /*clamp*/ 0, /*omod*/ 0) |
| >; |
| |
| let True16Predicate = NotHasTrue16BitInsts in |
| def : GCNPat < |
| (f16 (uint_to_fp i1:$src)), |
| (V_CVT_F16_F32_e32 ( |
| V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), |
| /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE), |
| SSrc_i1:$src)) |
| >; |
| |
| let True16Predicate = UseRealTrue16Insts in |
| def : GCNPat < |
| (f16 (uint_to_fp i1:$src)), |
| (V_CVT_F16_F32_t16_e64 /*src0_modifiers*/ 0, |
| (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), |
| /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE), |
| SSrc_i1:$src), |
| /*clamp*/ 0, /*omod*/ 0, /*op_sel*/ 0) |
| >; |
| |
| let True16Predicate = UseFakeTrue16Insts in |
| def : GCNPat < |
| (f16 (uint_to_fp i1:$src)), |
| (V_CVT_F16_F32_fake16_e64 /*src0_modifiers*/ 0, |
| (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), |
| /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE), |
| SSrc_i1:$src), |
| /*clamp*/ 0, /*omod*/ 0) |
| >; |
| |
| def : GCNPat < |
| (f32 (sint_to_fp i1:$src)), |
| (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), |
| /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE), |
| SSrc_i1:$src) |
| >; |
| |
| def : GCNPat < |
| (f32 (uint_to_fp i1:$src)), |
| (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), |
| /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE), |
| SSrc_i1:$src) |
| >; |
| |
| def : GCNPat < |
| (f64 (sint_to_fp i1:$src)), |
| (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), |
| /*src1mod*/(i32 0), /*src1*/(i32 -1), |
| SSrc_i1:$src)) |
| >; |
| |
| def : GCNPat < |
| (f64 (uint_to_fp i1:$src)), |
| (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0), |
| /*src1mod*/(i32 0), /*src1*/(i32 1), |
| SSrc_i1:$src)) |
| >; |
| |
| //===----------------------------------------------------------------------===// |
| // Miscellaneous Patterns |
| //===----------------------------------------------------------------------===// |
| |
| // Eliminate a zero extension from an fp16 operation if it already |
| // zeros the high bits of the 32-bit register. |
| // |
| // This is complicated on gfx9+. Some instructions maintain the legacy |
| // zeroing behavior, but others preserve the high bits. Some have a |
| // control bit to change the behavior. We can't simply say with |
| // certainty what the source behavior is without more context on how |
| // the src is lowered. e.g. fptrunc + fma may be lowered to a |
| // v_fma_mix* instruction which does not zero, or may not. |
| def : GCNPat< |
| (i32 (DivergentUnaryFrag<abs> i32:$src)), |
| (V_MAX_I32_e64 (V_SUB_CO_U32_e32 (i32 0), $src), $src)>; |
| |
| let AddedComplexity = 1 in { |
| def : GCNPat< |
| (i32 (DivergentUnaryFrag<abs> i32:$src)), |
| (V_MAX_I32_e64 (V_SUB_U32_e32 (i32 0), $src), $src)>{ |
| let SubtargetPredicate = HasAddNoCarryInsts; |
| } |
| } // AddedComplexity = 1 |
| |
| def : GCNPat< |
| (i32 (DivergentUnaryFrag<zext> i16:$src)), |
| (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src) |
| >; |
| |
| def : GCNPat< |
| (i64 (DivergentUnaryFrag<zext> i16:$src)), |
| (REG_SEQUENCE VReg_64, |
| (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff)), $src), sub0, |
| (S_MOV_B32 (i32 0)), sub1) |
| >; |
| |
| def : GCNPat< |
| (i32 (zext (i16 (bitconvert fp16_zeros_high_16bits:$src)))), |
| (COPY VSrc_b16:$src)>; |
| |
| def : GCNPat < |
| (i32 (trunc i64:$a)), |
| (EXTRACT_SUBREG $a, sub0) |
| >; |
| |
| def : GCNPat < |
| (i1 (UniformUnaryFrag<trunc> i32:$a)), |
| (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1)) |
| >; |
| |
| def : GCNPat < |
| (i1 (UniformUnaryFrag<trunc> i16:$a)), |
| (S_CMP_EQ_U32 (S_AND_B32 (i32 1), $a), (i32 1)) |
| >; |
| |
| def : GCNPat < |
| (i1 (UniformUnaryFrag<trunc> i64:$a)), |
| (S_CMP_EQ_U32 (S_AND_B32 (i32 1), |
| (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1)) |
| >; |
| |
| def : GCNPat < |
| (i1 (DivergentUnaryFrag<trunc> i32:$a)), |
| (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1)) |
| >; |
| |
| def : GCNPat < |
| (i1 (DivergentUnaryFrag<trunc> i16:$a)), |
| (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), $a), (i32 1)) |
| >; |
| |
| def IMMBitSelConst : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(1ULL << N->getZExtValue(), SDLoc(N), |
| MVT::i32); |
| }]>; |
| |
| // Matching separate SRL and TRUNC instructions |
| // with dependent operands (SRL dest is source of TRUNC) |
| // generates three instructions. However, by using bit shifts, |
| // the V_LSHRREV_B32_e64 result can be directly used in the |
| // operand of the V_AND_B32_e64 instruction: |
| // (trunc i32 (srl i32 $a, i32 $b)) -> |
| // v_and_b32_e64 $a, (1 << $b), $a |
| // v_cmp_ne_u32_e64 $a, 0, $a |
| |
| // Handle the VALU case. |
| def : GCNPat < |
| (i1 (DivergentUnaryFrag<trunc> (i32 (srl i32:$a, (i32 imm:$b))))), |
| (V_CMP_NE_U32_e64 (V_AND_B32_e64 (i32 (IMMBitSelConst $b)), $a), |
| (i32 0)) |
| >; |
| |
| // Handle the scalar case. |
| def : GCNPat < |
| (i1 (UniformUnaryFrag<trunc> (i32 (srl i32:$a, (i32 imm:$b))))), |
| (S_CMP_LG_U32 (S_AND_B32 (i32 (IMMBitSelConst $b)), $a), |
| (i32 0)) |
| >; |
| |
| def : GCNPat < |
| (i1 (DivergentUnaryFrag<trunc> i64:$a)), |
| (V_CMP_EQ_U32_e64 (V_AND_B32_e64 (i32 1), |
| (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1)) |
| >; |
| |
| let True16Predicate = NotHasTrue16BitInsts in |
| def : GCNPat < |
| (i32 (bswap i32:$a)), |
| (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)), |
| (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 24)), |
| (V_ALIGNBIT_B32_e64 VSrc_b32:$a, VSrc_b32:$a, (i32 8))) |
| >; |
| |
| let True16Predicate = UseFakeTrue16Insts in |
| def : GCNPat < |
| (i32 (bswap i32:$a)), |
| (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)), |
| (V_ALIGNBIT_B32_fake16_e64 0, /* src0_modifiers */ |
| VSrc_b32:$a, |
| 0, /* src1_modifiers */ |
| VSrc_b32:$a, |
| 0, /* src2_modifiers */ |
| (i32 24), /* clamp */ 0, /* op_sel */ 0), |
| (V_ALIGNBIT_B32_fake16_e64 0, /* src0_modifiers */ |
| VSrc_b32:$a, |
| 0, /* src1_modifiers */ |
| VSrc_b32:$a, |
| 0, /* src2_modifiers */ |
| (i32 8), /* clamp */ 0, /* op_sel */ 0)) |
| >; |
| |
| class AlignBit32Inst<dag op1, dag op2, dag op3, bit isTrue16> { |
| defvar inst = !if(isTrue16, V_ALIGNBIT_B32_fake16_e64, V_ALIGNBIT_B32_e64); |
| defvar NoMods = !if(isTrue16, (inst 0), (inst)); |
| dag ret = !con(NoMods, (inst op1), NoMods, (inst op2), |
| NoMods, (inst op3), NoMods, NoMods); |
| } |
| |
| multiclass bswapi64ExtPat<bit hasTrue16> { |
| def : GCNPat < |
| (i64 (bswap i64:$a)), |
| (REG_SEQUENCE VReg_64, |
| (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)), |
| AlignBit32Inst<(i32 (EXTRACT_SUBREG VReg_64:$a, sub1)), |
| (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)), |
| (i32 24), hasTrue16>.ret, |
| AlignBit32Inst<(i32 (EXTRACT_SUBREG VReg_64:$a, sub1)), |
| (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)), |
| (i32 8), hasTrue16>.ret), |
| sub0, |
| (V_BFI_B32_e64 (S_MOV_B32 (i32 0x00ff00ff)), |
| AlignBit32Inst<(i32 (EXTRACT_SUBREG VReg_64:$a, sub0)), |
| (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)), |
| (i32 24), hasTrue16>.ret, |
| AlignBit32Inst<(i32 (EXTRACT_SUBREG VReg_64:$a, sub0)), |
| (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)), |
| (i32 8), hasTrue16>.ret), |
| sub1) |
| >; |
| } |
| |
| // FIXME: This should have been narrowed to i32 during legalization. |
| // This pattern should also be skipped for GlobalISel |
| let True16Predicate = NotHasTrue16BitInsts in |
| defm : bswapi64ExtPat</*hasTrue16*/0>; |
| |
| let True16Predicate = UseFakeTrue16Insts in |
| defm : bswapi64ExtPat</*hasTrue16*/1>; |
| |
| // FIXME: The AddedComplexity should not be needed, but in GlobalISel |
| // the BFI pattern ends up taking precedence without it. |
| let SubtargetPredicate = isGFX8Plus, AddedComplexity = 1 in { |
| // Magic number: 3 | (2 << 8) | (1 << 16) | (0 << 24) |
| // |
| // My reading of the manual suggests we should be using src0 for the |
| // register value, but this is what seems to work. |
| def : GCNPat < |
| (i32 (bswap i32:$a)), |
| (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x00010203))) |
| >; |
| |
| // FIXME: This should have been narrowed to i32 during legalization. |
| // This pattern should also be skipped for GlobalISel |
| def : GCNPat < |
| (i64 (bswap i64:$a)), |
| (REG_SEQUENCE VReg_64, |
| (V_PERM_B32_e64 (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub1), |
| (S_MOV_B32 (i32 0x00010203))), |
| sub0, |
| (V_PERM_B32_e64 (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub0), |
| (S_MOV_B32 (i32 0x00010203))), |
| sub1) |
| >; |
| |
| // Magic number: 1 | (0 << 8) | (12 << 16) | (12 << 24) |
| // The 12s emit 0s. |
| foreach p = [NotHasTrue16BitInsts, UseFakeTrue16Insts] in |
| let True16Predicate = p in { |
| def : GCNPat < |
| (i16 (bswap i16:$a)), |
| (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001))) |
| >; |
| |
| def : GCNPat < |
| (i32 (zext (bswap i16:$a))), |
| (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001))) |
| >; |
| } |
| |
| let True16Predicate = UseRealTrue16Insts in { |
| def : GCNPat < |
| (i16 (bswap i16:$a)), |
| (EXTRACT_SUBREG (V_PERM_B32_e64 (i32 0), (COPY VGPR_16:$a), (S_MOV_B32 (i32 0x0c0c0001))), lo16) |
| >; |
| |
| def : GCNPat < |
| (i32 (zext (bswap i16:$a))), |
| (V_PERM_B32_e64 (i32 0), (COPY VGPR_16:$a), (S_MOV_B32 (i32 0x0c0c0001))) |
| >; |
| } |
| |
| // Magic number: 1 | (0 << 8) | (3 << 16) | (2 << 24) |
| def : GCNPat < |
| (v2i16 (bswap v2i16:$a)), |
| (V_PERM_B32_e64 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x02030001))) |
| >; |
| |
| } |
| |
| def : GCNPat< |
| (i64 (DivergentUnaryFrag<bitreverse> i64:$a)), |
| (REG_SEQUENCE VReg_64, |
| (V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1))), sub0, |
| (V_BFREV_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0))), sub1)>; |
| |
| // If fcanonicalize's operand is implicitly canonicalized, we only need a copy. |
| let AddedComplexity = 8 in { |
| foreach vt = [f16, v2f16, f32, v2f32, f64] in { |
| def : GCNPat< |
| (fcanonicalize (vt is_canonicalized:$src)), |
| (COPY vt:$src) |
| >; |
| } |
| } |
| |
| // Prefer selecting to max when legal, but using mul is always valid. |
| let AddedComplexity = -5 in { |
| |
| let True16Predicate = NotHasTrue16BitInsts in { |
| def : GCNPat< |
| (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), |
| (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src) |
| >; |
| |
| def : GCNPat< |
| (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))), |
| (V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src) |
| >; |
| } // End True16Predicate |
| |
| let True16Predicate = UseRealTrue16Insts in { |
| def : GCNPat< |
| (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), |
| (V_MUL_F16_t16_e64 0, (i16 CONST.FP16_ONE), $src_mods, $src, 0/*Clamp*/, /*omod*/0, /*opsel*/0) |
| >; |
| |
| def : GCNPat< |
| (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))), |
| (V_MUL_F16_t16_e64 0, (i16 CONST.FP16_NEG_ONE), $src_mods, $src, 0/*Clamp*/, /*omod*/0, /*opsel*/0) |
| >; |
| } // End True16Predicate |
| |
| let True16Predicate = UseFakeTrue16Insts in { |
| def : GCNPat< |
| (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), |
| (V_MUL_F16_fake16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src) |
| >; |
| |
| def : GCNPat< |
| (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))), |
| (V_MUL_F16_fake16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src) |
| >; |
| } // End True16Predicate |
| |
| def : GCNPat< |
| (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))), |
| (V_PK_MUL_F16 0, (i32 CONST.FP16_ONE), $src_mods, $src, DSTCLAMP.NONE) |
| >; |
| |
| def : GCNPat< |
| (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))), |
| (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src) |
| >; |
| |
| def : GCNPat< |
| (fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))), |
| (V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src) |
| >; |
| |
| let SubtargetPredicate = HasPackedFP32Ops in { |
| def : GCNPat< |
| (fcanonicalize (v2f32 (VOP3PMods v2f32:$src, i32:$src_mods))), |
| (V_PK_MUL_F32 0, (i64 CONST.FP32_ONE), $src_mods, $src) |
| >; |
| } |
| |
| // TODO: Handle fneg like other types. |
| let SubtargetPredicate = isNotGFX12Plus in { |
| def : GCNPat< |
| (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), |
| (V_MUL_F64_e64 0, (i64 CONST.FP64_ONE), $src_mods, $src) |
| >; |
| } |
| } // End AddedComplexity = -5 |
| |
| multiclass SelectCanonicalizeAsMax< |
| list<Predicate> f32_preds = [], |
| list<Predicate> f64_preds = [], |
| list<Predicate> f16_preds = []> { |
| def : GCNPat< |
| (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))), |
| (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src)> { |
| let OtherPredicates = f32_preds; |
| } |
| |
| def : GCNPat< |
| (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), |
| (V_MAX_F64_e64 $src_mods, $src, $src_mods, $src)> { |
| let OtherPredicates = !listconcat(f64_preds, [isNotGFX12Plus]); |
| } |
| |
| def : GCNPat< |
| (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))), |
| (V_MAX_NUM_F64_e64 $src_mods, $src, $src_mods, $src)> { |
| let OtherPredicates = !listconcat(f64_preds, [isGFX12Plus]); |
| } |
| |
| def : GCNPat< |
| (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), |
| (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> { |
| let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts]); |
| let True16Predicate = NotHasTrue16BitInsts; |
| } |
| |
| def : GCNPat< |
| (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), |
| (V_MAX_F16_t16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> { |
| let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts]); |
| let True16Predicate = UseRealTrue16Insts; |
| } |
| |
| def : GCNPat< |
| (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))), |
| (V_MAX_F16_fake16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> { |
| let OtherPredicates = !listconcat(f16_preds, [Has16BitInsts]); |
| let True16Predicate = UseFakeTrue16Insts; |
| } |
| |
| def : GCNPat< |
| (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))), |
| (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE)> { |
| // FIXME: Should have VOP3P subtarget predicate |
| let OtherPredicates = f16_preds; |
| } |
| } |
| |
| // On pre-gfx9 targets, v_max_*/v_min_* did not respect the denormal |
| // mode, and would never flush. For f64, it's faster to do implement |
| // this with a max. For f16/f32 it's a wash, but prefer max when |
| // valid. |
| // |
| // FIXME: Lowering f32/f16 with max is worse since we can use a |
| // smaller encoding if the input is fneg'd. It also adds an extra |
| // register use. |
| let SubtargetPredicate = HasMinMaxDenormModes in { |
| defm : SelectCanonicalizeAsMax<[], [], []>; |
| } // End SubtargetPredicate = HasMinMaxDenormModes |
| |
| let SubtargetPredicate = NotHasMinMaxDenormModes in { |
| // Use the max lowering if we don't need to flush. |
| |
| // FIXME: We don't do use this for f32 as a workaround for the |
| // library being compiled with the default ieee mode, but |
| // potentially being called from flushing kernels. Really we should |
| // not be mixing code expecting different default FP modes, but mul |
| // works in any FP environment. |
| defm : SelectCanonicalizeAsMax<[FalsePredicate], [FP64Denormals], [FP16Denormals]>; |
| } // End SubtargetPredicate = NotHasMinMaxDenormModes |
| |
| |
| let OtherPredicates = [HasDLInsts] in { |
| // Don't allow source modifiers. If there are any source modifiers then it's |
| // better to select fma instead of fmac. |
| def : GCNPat < |
| (fma (f32 (VOP3NoMods f32:$src0)), |
| (f32 (VOP3NoMods f32:$src1)), |
| (f32 (VOP3NoMods f32:$src2))), |
| (V_FMAC_F32_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, |
| SRCMODS.NONE, $src2) |
| >; |
| } // End OtherPredicates = [HasDLInsts] |
| |
| let SubtargetPredicate = isGFX10Plus in { |
| // Don't allow source modifiers. If there are any source modifiers then it's |
| // better to select fma instead of fmac. |
| let True16Predicate = NotHasTrue16BitInsts in |
| def : GCNPat < |
| (fma (f16 (VOP3NoMods f32:$src0)), |
| (f16 (VOP3NoMods f32:$src1)), |
| (f16 (VOP3NoMods f32:$src2))), |
| (V_FMAC_F16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, |
| SRCMODS.NONE, $src2) |
| >; |
| let True16Predicate = UseRealTrue16Insts in |
| def : GCNPat < |
| (fma (f16 (VOP3NoMods f16:$src0)), |
| (f16 (VOP3NoMods f16:$src1)), |
| (f16 (VOP3NoMods f16:$src2))), |
| (V_FMAC_F16_t16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, |
| SRCMODS.NONE, $src2) |
| >; |
| let True16Predicate = UseFakeTrue16Insts in |
| def : GCNPat < |
| (fma (f16 (VOP3NoMods f16:$src0)), |
| (f16 (VOP3NoMods f16:$src1)), |
| (f16 (VOP3NoMods f16:$src2))), |
| (V_FMAC_F16_fake16_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, |
| SRCMODS.NONE, $src2) |
| >; |
| } |
| |
| let OtherPredicates = [HasFmacF64Inst] in |
| // Don't allow source modifiers. If there are any source modifiers then it's |
| // better to select fma instead of fmac. |
| def : GCNPat < |
| (fma (f64 (VOP3NoMods f64:$src0)), |
| (f64 (VOP3NoMods f64:$src1)), |
| (f64 (VOP3NoMods f64:$src2))), |
| (V_FMAC_F64_e64 SRCMODS.NONE, $src0, SRCMODS.NONE, $src1, |
| SRCMODS.NONE, $src2) |
| >; |
| |
| // COPY is workaround tablegen bug from multiple outputs |
| // from S_LSHL_B32's multiple outputs from implicit scc def. |
| let AddedComplexity = 1 in { |
| def : GCNPat < |
| (v2i16 (UniformBinFrag<build_vector> (i16 0), (i16 SReg_32:$src1))), |
| (S_LSHL_B32 SReg_32:$src1, (i16 16)) |
| >; |
| |
| def : GCNPat < |
| (v2i16 (DivergentBinFrag<build_vector> (i16 0), (i16 VGPR_32:$src1))), |
| (v2i16 (V_LSHLREV_B32_e64 (i16 16), VGPR_32:$src1)) |
| >; |
| |
| |
| def : GCNPat < |
| (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src1), (i16 0))), |
| (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1) |
| >; |
| |
| def : GCNPat < |
| (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src1), (i16 0))), |
| (v2i16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), VGPR_32:$src1)) |
| >; |
| |
| def : GCNPat < |
| (v2f16 (UniformBinFrag<build_vector> (f16 SReg_32:$src1), (f16 FP_ZERO))), |
| (S_AND_B32 (S_MOV_B32 (i32 0xffff)), SReg_32:$src1) |
| >; |
| |
| def : GCNPat < |
| (v2f16 (DivergentBinFrag<build_vector> (f16 VGPR_32:$src1), (f16 FP_ZERO))), |
| (v2f16 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), VGPR_32:$src1)) |
| >; |
| |
| foreach vecTy = [v2i16, v2f16, v2bf16] in { |
| |
| defvar Ty = vecTy.ElementType; |
| |
| def : GCNPat < |
| (vecTy (UniformBinFrag<build_vector> (Ty SReg_32:$src0), (Ty undef))), |
| (COPY_TO_REGCLASS SReg_32:$src0, SReg_32) |
| >; |
| |
| foreach p = [NotHasTrue16BitInsts, UseFakeTrue16Insts] in |
| let True16Predicate = p in { |
| def : GCNPat < |
| (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$src0), (Ty undef))), |
| (COPY_TO_REGCLASS VGPR_32:$src0, VGPR_32) |
| >; |
| |
| def : GCNPat < |
| (vecTy (UniformBinFrag<build_vector> (Ty undef), (Ty SReg_32:$src1))), |
| (S_LSHL_B32 SReg_32:$src1, (i32 16)) |
| >; |
| } |
| |
| def : GCNPat < |
| (vecTy (DivergentBinFrag<build_vector> (Ty undef), (Ty VGPR_32:$src1))), |
| (vecTy (V_LSHLREV_B32_e64 (i32 16), VGPR_32:$src1)) |
| >; |
| } // End foreach Ty = ... |
| } |
| |
| let SubtargetPredicate = HasVOP3PInsts in { |
| foreach p = [NotHasTrue16BitInsts, UseFakeTrue16Insts] in |
| let True16Predicate = p in |
| def : GCNPat < |
| (v2i16 (DivergentBinFrag<build_vector> (i16 VGPR_32:$src0), (i16 VGPR_32:$src1))), |
| (v2i16 (V_LSHL_OR_B32_e64 $src1, (i32 16), (i32 (V_AND_B32_e64 (i32 (V_MOV_B32_e32 (i32 0xffff))), $src0)))) |
| >; |
| |
| // With multiple uses of the shift, this will duplicate the shift and |
| // increase register pressure. |
| def : GCNPat < |
| (v2i16 (UniformBinFrag<build_vector> (i16 SReg_32:$src0), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))), |
| (v2i16 (S_PACK_LH_B32_B16 SReg_32:$src0, SReg_32:$src1)) |
| >; |
| |
| def : GCNPat < |
| (v2i16 (UniformBinFrag<build_vector> (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))), |
| (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))), |
| (S_PACK_HH_B32_B16 SReg_32:$src0, SReg_32:$src1) |
| >; |
| |
| |
| foreach vecTy = [v2i16, v2f16, v2bf16] in { |
| |
| defvar Ty = vecTy.ElementType; |
| defvar immzeroTy = !if(!eq(Ty, i16), immzero, fpimmzero); |
| |
| def : GCNPat < |
| (vecTy (UniformBinFrag<build_vector> (Ty SReg_32:$src0), (Ty SReg_32:$src1))), |
| (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1) |
| >; |
| |
| foreach p = [NotHasTrue16BitInsts, UseFakeTrue16Insts] in |
| let True16Predicate = p in |
| // Take the lower 16 bits from each VGPR_32 and concat them |
| def : GCNPat < |
| (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$a), (Ty VGPR_32:$b))), |
| (V_PERM_B32_e64 VGPR_32:$b, VGPR_32:$a, (S_MOV_B32 (i32 0x05040100))) |
| >; |
| |
| let True16Predicate = UseRealTrue16Insts in { |
| def : GCNPat < |
| (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_16:$a), (Ty VGPR_16:$b))), |
| (REG_SEQUENCE VGPR_32, VGPR_16:$a, lo16, VGPR_16:$b, hi16) |
| >; |
| def : GCNPat < |
| (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_16:$src0), (Ty undef))), |
| (REG_SEQUENCE VGPR_32, $src0, lo16, (IMPLICIT_DEF), hi16) |
| >; |
| } |
| |
| // Take the lower 16 bits from V[0] and the upper 16 bits from V[1] |
| // Special case, can use V_BFI (0xffff literal likely more reusable than 0x70601000) |
| def : GCNPat < |
| (vecTy (DivergentBinFrag<build_vector> (Ty (immzeroTy)), |
| (Ty !if(!eq(Ty, i16), |
| (Ty (trunc (srl VGPR_32:$b, (i32 16)))), |
| (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))), |
| (V_AND_B32_e64 (S_MOV_B32 (i32 0xffff0000)), VGPR_32:$b) |
| >; |
| |
| |
| // Take the lower 16 bits from V[0] and the upper 16 bits from V[1] |
| // Special case, can use V_BFI (0xffff literal likely more reusable than 0x70601000) |
| def : GCNPat < |
| (vecTy (DivergentBinFrag<build_vector> (Ty VGPR_32:$a), |
| (Ty !if(!eq(Ty, i16), |
| (Ty (trunc (srl VGPR_32:$b, (i32 16)))), |
| (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))), |
| (V_BFI_B32_e64 (S_MOV_B32 (i32 0x0000ffff)), VGPR_32:$a, VGPR_32:$b) |
| >; |
| |
| |
| // Take the upper 16 bits from V[0] and the lower 16 bits from V[1] |
| // Special case, can use V_ALIGNBIT (always uses encoded literal) |
| let True16Predicate = NotHasTrue16BitInsts in |
| def : GCNPat < |
| (vecTy (DivergentBinFrag<build_vector> |
| (Ty !if(!eq(Ty, i16), |
| (Ty (trunc (srl VGPR_32:$a, (i32 16)))), |
| (Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))), |
| (Ty VGPR_32:$b))), |
| (V_ALIGNBIT_B32_e64 VGPR_32:$b, VGPR_32:$a, (i32 16)) |
| >; |
| |
| let True16Predicate = UseFakeTrue16Insts in |
| def : GCNPat < |
| (vecTy (DivergentBinFrag<build_vector> |
| (Ty !if(!eq(Ty, i16), |
| (Ty (trunc (srl VGPR_32:$a, (i32 16)))), |
| (Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))), |
| (Ty VGPR_32:$b))), |
| (V_ALIGNBIT_B32_fake16_e64 0, VGPR_32:$b, 0, VGPR_32:$a, 0, (i16 16), 0, 0) |
| >; |
| |
| // Take the upper 16 bits from each VGPR_32 and concat them |
| foreach p = [NotHasTrue16BitInsts, UseFakeTrue16Insts] in |
| let True16Predicate = p in |
| def : GCNPat < |
| (vecTy (DivergentBinFrag<build_vector> |
| (Ty !if(!eq(Ty, i16), |
| (Ty (trunc (srl VGPR_32:$a, (i32 16)))), |
| (Ty (bitconvert (i16 (trunc (srl VGPR_32:$a, (i32 16)))))))), |
| (Ty !if(!eq(Ty, i16), |
| (Ty (trunc (srl VGPR_32:$b, (i32 16)))), |
| (Ty (bitconvert (i16 (trunc (srl VGPR_32:$b, (i32 16)))))))))), |
| (V_PERM_B32_e64 VGPR_32:$b, VGPR_32:$a, (S_MOV_B32 (i32 0x07060302))) |
| >; |
| |
| } // end foreach Ty |
| |
| } // End SubtargetPredicate = HasVOP3PInsts |
| |
| let AddedComplexity = 5 in { |
| class PackB32Pat<Instruction inst> : GCNPat < |
| (v2f16 (is_canonicalized_2<build_vector> (f16 (VOP3Mods (f16 VGPR_32:$src0), i32:$src0_mods)), |
| (f16 (VOP3Mods (f16 VGPR_32:$src1), i32:$src1_mods)))), |
| (inst $src0_mods, VGPR_32:$src0, $src1_mods, VGPR_32:$src1) |
| >; |
| } |
| let SubtargetPredicate = isGFX9Plus in { |
| let True16Predicate = NotHasTrue16BitInsts in |
| def : PackB32Pat<V_PACK_B32_F16_e64>; |
| |
| let True16Predicate = UseRealTrue16Insts in |
| def : PackB32Pat<V_PACK_B32_F16_t16_e64>; |
| |
| let True16Predicate = UseFakeTrue16Insts in |
| def : PackB32Pat<V_PACK_B32_F16_fake16_e64>; |
| } // End SubtargetPredicate = isGFX9Plus |
| |
| // With multiple uses of the shift, this will duplicate the shift and |
| // increase register pressure. |
| let SubtargetPredicate = isGFX11Plus in |
| def : GCNPat < |
| (v2i16 (build_vector (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))), (i16 SReg_32:$src1))), |
| (v2i16 (S_PACK_HL_B32_B16 SReg_32:$src0, SReg_32:$src1)) |
| >; |
| |
| |
| def : GCNPat < |
| (v2f16 (scalar_to_vector f16:$src0)), |
| (COPY $src0) |
| >; |
| |
| def : GCNPat < |
| (v2i16 (scalar_to_vector i16:$src0)), |
| (COPY $src0) |
| >; |
| |
| def : GCNPat < |
| (v4i16 (scalar_to_vector i16:$src0)), |
| (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0) |
| >; |
| |
| def : GCNPat < |
| (v4f16 (scalar_to_vector f16:$src0)), |
| (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0) |
| >; |
| |
| def : GCNPat < |
| (i64 (int_amdgcn_mov_dpp i64:$src, timm:$dpp_ctrl, timm:$row_mask, |
| timm:$bank_mask, timm:$bound_ctrl)), |
| (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$src, VReg_64_Align2:$src, |
| (as_i32timm $dpp_ctrl), (as_i32timm $row_mask), |
| (as_i32timm $bank_mask), |
| (as_i1timm $bound_ctrl)) |
| >; |
| |
| foreach vt = Reg64Types.types in { |
| def : GCNPat < |
| (vt (int_amdgcn_update_dpp vt:$old, vt:$src, timm:$dpp_ctrl, timm:$row_mask, |
| timm:$bank_mask, timm:$bound_ctrl)), |
| (V_MOV_B64_DPP_PSEUDO VReg_64_Align2:$old, VReg_64_Align2:$src, (as_i32timm $dpp_ctrl), |
| (as_i32timm $row_mask), (as_i32timm $bank_mask), |
| (as_i1timm $bound_ctrl)) |
| >; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Fract Patterns |
| //===----------------------------------------------------------------------===// |
| |
| let SubtargetPredicate = isGFX6 in { |
| |
| // V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is |
| // used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient |
| // way to implement it is using V_FRACT_F64. |
| // The workaround for the V_FRACT bug is: |
| // fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999) |
| |
| // Convert floor(x) to (x - fract(x)) |
| |
| // Don't bother handling this for GlobalISel, it's handled during |
| // lowering. |
| // |
| // FIXME: DAG should also custom lower this. |
| def : GCNPat < |
| (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))), |
| (V_ADD_F64_e64 |
| $mods, |
| $x, |
| SRCMODS.NEG, |
| (V_CNDMASK_B64_PSEUDO |
| (V_MIN_F64_e64 |
| SRCMODS.NONE, |
| (V_FRACT_F64_e64 $mods, $x), |
| SRCMODS.NONE, |
| (V_MOV_B64_PSEUDO (i64 0x3fefffffffffffff))), |
| $x, |
| (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/)))) |
| >; |
| |
| } // End SubtargetPredicates = isGFX6 |
| |
| //============================================================================// |
| // Miscellaneous Optimization Patterns |
| //============================================================================// |
| |
| // Undo sub x, c -> add x, -c canonicalization since c is more likely |
| // an inline immediate than -c. |
| // TODO: Also do for 64-bit. |
| def : GCNPat< |
| (UniformBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)), |
| (S_SUB_I32 SReg_32:$src0, NegSubInlineConst32:$src1) |
| >; |
| |
| def : GCNPat< |
| (DivergentBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)), |
| (V_SUB_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> { |
| let SubtargetPredicate = HasAddNoCarryInsts; |
| } |
| |
| def : GCNPat< |
| (DivergentBinFrag<add> i32:$src0, (i32 NegSubInlineConst32:$src1)), |
| (V_SUB_CO_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> { |
| let SubtargetPredicate = NotHasAddNoCarryInsts; |
| } |
| |
| |
| // Avoid pointlessly materializing a constant in VGPR. |
| // FIXME: Should also do this for readlane, but tablegen crashes on |
| // the ignored src1. |
| def : GCNPat< |
| (i32 (int_amdgcn_readfirstlane (i32 imm:$src))), |
| (S_MOV_B32 SReg_32:$src) |
| >; |
| |
| multiclass BFMPatterns <ValueType vt, PatFrag SHL, PatFrag ADD, InstSI BFM> { |
| def : GCNPat < |
| (vt (SHL (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)), |
| (BFM $a, $b) |
| >; |
| |
| def : GCNPat < |
| (vt (ADD (vt (shl 1, vt:$a)), -1)), |
| (BFM $a, (i32 0)) |
| >; |
| } |
| |
| defm : BFMPatterns <i32, UniformBinFrag<shl>, UniformBinFrag<add>, S_BFM_B32>; |
| // FIXME: defm : BFMPatterns <i64, UniformBinFrag<shl>, UniformBinFrag<add>, S_BFM_B64>; |
| defm : BFMPatterns <i32, DivergentBinFrag<shl>, DivergentBinFrag<add>, V_BFM_B32_e64>; |
| |
| // Bitfield extract patterns |
| |
| def IMMZeroBasedBitfieldMask : ImmLeaf <i32, [{ |
| return isMask_32(Imm); |
| }]>; |
| |
| def IMMPopCount : SDNodeXForm<imm, [{ |
| return CurDAG->getTargetConstant(llvm::popcount(N->getZExtValue()), SDLoc(N), |
| MVT::i32); |
| }]>; |
| |
| def : AMDGPUPat < |
| (DivergentBinFrag<and> (i32 (srl i32:$src, i32:$rshift)), |
| IMMZeroBasedBitfieldMask:$mask), |
| (V_BFE_U32_e64 $src, $rshift, (i32 (IMMPopCount $mask))) |
| >; |
| |
| // x & ((1 << y) - 1) |
| def : AMDGPUPat < |
| (DivergentBinFrag<and> i32:$src, (add_oneuse (shl_oneuse 1, i32:$width), -1)), |
| (V_BFE_U32_e64 $src, (i32 0), $width) |
| >; |
| |
| // x & ~(-1 << y) |
| def : AMDGPUPat < |
| (DivergentBinFrag<and> i32:$src, |
| (xor_oneuse (shl_oneuse -1, i32:$width), -1)), |
| (V_BFE_U32_e64 $src, (i32 0), $width) |
| >; |
| |
| def uint5Bits : PatLeaf<(i32 VGPR_32:$width), [{ |
| return CurDAG->computeKnownBits(SDValue(N, 0)).countMaxActiveBits() <= 5; |
| }]>; |
| |
| // x & (-1 >> (bitwidth - y)) |
| def : AMDGPUPat < |
| (DivergentBinFrag<and> i32:$src, (srl_oneuse -1, (sub 32, uint5Bits:$width))), |
| (V_BFE_U32_e64 $src, (i32 0), $width) |
| >; |
| |
| // SHA-256 Ma patterns |
| |
| // ((x & z) | (y & (x | z))) -> BFI (XOR x, y), z, y |
| def : AMDGPUPatIgnoreCopies < |
| (DivergentBinFrag<or> (and i32:$x, i32:$z), |
| (and i32:$y, (or i32:$x, i32:$z))), |
| (V_BFI_B32_e64 (V_XOR_B32_e64 (COPY_TO_REGCLASS VSrc_b32:$x, VGPR_32), |
| (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32)), |
| (COPY_TO_REGCLASS VSrc_b32:$z, VGPR_32), |
| (COPY_TO_REGCLASS VSrc_b32:$y, VGPR_32)) |
| >; |
| |
| def : AMDGPUPatIgnoreCopies < |
| (DivergentBinFrag<or> (and i64:$x, i64:$z), |
| (and i64:$y, (or i64:$x, i64:$z))), |
| (REG_SEQUENCE VReg_64, |
| (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub0)), |
| (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))), |
| (i32 (EXTRACT_SUBREG VReg_64:$z, sub0)), |
| (i32 (EXTRACT_SUBREG VReg_64:$y, sub0))), sub0, |
| (V_BFI_B32_e64 (V_XOR_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$x, sub1)), |
| (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))), |
| (i32 (EXTRACT_SUBREG VReg_64:$z, sub1)), |
| (i32 (EXTRACT_SUBREG VReg_64:$y, sub1))), sub1) |
| >; |
| |
| multiclass IntMed3Pat<Instruction med3Inst, |
| SDPatternOperator min, |
| SDPatternOperator max> { |
| |
| // This matches 16 permutations of |
| // min(max(a, b), max(min(a, b), c)) |
| def : AMDGPUPat < |
| (min (max i32:$src0, i32:$src1), |
| (max (min i32:$src0, i32:$src1), i32:$src2)), |
| (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2) |
| >; |
| |
| // This matches 16 permutations of |
| // max(min(x, y), min(max(x, y), z)) |
| def : AMDGPUPat < |
| (max (min i32:$src0, i32:$src1), |
| (min (max i32:$src0, i32:$src1), i32:$src2)), |
| (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2) |
| >; |
| } |
| |
| defm : IntMed3Pat<V_MED3_I32_e64, smin, smax>; |
| defm : IntMed3Pat<V_MED3_U32_e64, umin, umax>; |
| |
| multiclass FPMed3Pat<ValueType vt, |
| Instruction med3Inst> { |
| // This matches 16 permutations of max(min(x, y), min(max(x, y), z)) |
| def : GCNPat< |
| (fmaxnum_like_nnan |
| (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods), |
| (VOP3Mods vt:$src1, i32:$src1_mods)), |
| (fminnum_like (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods), |
| (VOP3Mods vt:$src1, i32:$src1_mods)), |
| (vt (VOP3Mods vt:$src2, i32:$src2_mods)))), |
| (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, |
| DSTCLAMP.NONE, DSTOMOD.NONE)>; |
| |
| |
| // This matches 16 permutations of min(max(x, y), max(min(x, y), z)) |
| def : GCNPat< |
| (fminnum_like_nnan |
| (fmaxnum_like (VOP3Mods vt:$src0, i32:$src0_mods), |
| (VOP3Mods vt:$src1, i32:$src1_mods)), |
| (fmaxnum_like (fminnum_like (VOP3Mods vt:$src0, i32:$src0_mods), |
| (VOP3Mods vt:$src1, i32:$src1_mods)), |
| (vt (VOP3Mods vt:$src2, i32:$src2_mods)))), |
| (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, |
| DSTCLAMP.NONE, DSTOMOD.NONE)>; |
| } |
| |
| multiclass Int16Med3Pat<Instruction med3Inst, |
| SDPatternOperator min, |
| SDPatternOperator max, |
| RegisterOperand outputSrcType> { |
| // This matches 16 permutations of |
| // max(min(x, y), min(max(x, y), z)) |
| def : GCNPat < |
| (max (min i16:$src0, i16:$src1), |
| (min (max i16:$src0, i16:$src1), i16:$src2)), |
| (med3Inst SRCMODS.NONE, outputSrcType:$src0, SRCMODS.NONE, outputSrcType:$src1, |
| SRCMODS.NONE, outputSrcType:$src2, DSTCLAMP.NONE) |
| >; |
| |
| // This matches 16 permutations of |
| // min(max(a, b), max(min(a, b), c)) |
| def : GCNPat < |
| (min (max i16:$src0, i16:$src1), |
| (max (min i16:$src0, i16:$src1), i16:$src2)), |
| (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE) |
| >; |
| } |
| |
| defm : FPMed3Pat<f32, V_MED3_F32_e64>; |
| |
| let SubtargetPredicate = HasMed3_16 in { |
| let True16Predicate = NotHasTrue16BitInsts in |
| defm : FPMed3Pat<f16, V_MED3_F16_e64>; |
| let True16Predicate = UseRealTrue16Insts in |
| defm : FPMed3Pat<f16, V_MED3_F16_t16_e64>; |
| let True16Predicate = UseFakeTrue16Insts in |
| defm : FPMed3Pat<f16, V_MED3_F16_fake16_e64>; |
| } |
| |
| class |
| IntMinMaxPat<Instruction minmaxInst, SDPatternOperator min_or_max, |
| SDPatternOperator max_or_min_oneuse> : AMDGPUPat < |
| (DivergentBinFrag<min_or_max> (max_or_min_oneuse i32:$src0, i32:$src1), |
| i32:$src2), |
| (minmaxInst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2) |
| >; |
| |
| class |
| FPMinMaxPat<Instruction minmaxInst, ValueType vt, SDPatternOperator min_or_max, |
| SDPatternOperator max_or_min_oneuse> : GCNPat < |
| (min_or_max (max_or_min_oneuse (VOP3Mods vt:$src0, i32:$src0_mods), |
| (VOP3Mods vt:$src1, i32:$src1_mods)), |
| (vt (VOP3Mods vt:$src2, i32:$src2_mods))), |
| (minmaxInst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, |
| DSTCLAMP.NONE, DSTOMOD.NONE) |
| >; |
| |
| class |
| FPMinCanonMaxPat<Instruction minmaxInst, ValueType vt, SDPatternOperator min_or_max, |
| SDPatternOperator max_or_min_oneuse> : GCNPat < |
| (min_or_max (is_canonicalized_1<fcanonicalize> |
| (max_or_min_oneuse (VOP3Mods vt:$src0, i32:$src0_mods), |
| (VOP3Mods vt:$src1, i32:$src1_mods))), |
| (vt (VOP3Mods vt:$src2, i32:$src2_mods))), |
| (minmaxInst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, |
| DSTCLAMP.NONE, DSTOMOD.NONE) |
| >; |
| |
| let OtherPredicates = [isGFX11Plus] in { |
| def : IntMinMaxPat<V_MAXMIN_I32_e64, smin, smax_oneuse>; |
| def : IntMinMaxPat<V_MINMAX_I32_e64, smax, smin_oneuse>; |
| def : IntMinMaxPat<V_MAXMIN_U32_e64, umin, umax_oneuse>; |
| def : IntMinMaxPat<V_MINMAX_U32_e64, umax, umin_oneuse>; |
| def : FPMinMaxPat<V_MINMAX_F32_e64, f32, fmaxnum_like, fminnum_like_oneuse>; |
| def : FPMinMaxPat<V_MAXMIN_F32_e64, f32, fminnum_like, fmaxnum_like_oneuse>; |
| def : FPMinCanonMaxPat<V_MINMAX_F32_e64, f32, fmaxnum_like, fminnum_like_oneuse>; |
| def : FPMinCanonMaxPat<V_MAXMIN_F32_e64, f32, fminnum_like, fmaxnum_like_oneuse>; |
| } |
| |
| let True16Predicate = UseRealTrue16Insts in { |
| def : FPMinMaxPat<V_MINMAX_F16_t16_e64, f16, fmaxnum_like, fminnum_like_oneuse>; |
| def : FPMinMaxPat<V_MAXMIN_F16_t16_e64, f16, fminnum_like, fmaxnum_like_oneuse>; |
| def : FPMinCanonMaxPat<V_MINMAX_F16_t16_e64, f16, fmaxnum_like, fminnum_like_oneuse>; |
| def : FPMinCanonMaxPat<V_MAXMIN_F16_t16_e64, f16, fminnum_like, fmaxnum_like_oneuse>; |
| } |
| |
| let True16Predicate = UseFakeTrue16Insts in { |
| def : FPMinMaxPat<V_MINMAX_F16_fake16_e64, f16, fmaxnum_like, fminnum_like_oneuse>; |
| def : FPMinMaxPat<V_MAXMIN_F16_fake16_e64, f16, fminnum_like, fmaxnum_like_oneuse>; |
| def : FPMinCanonMaxPat<V_MINMAX_F16_fake16_e64, f16, fmaxnum_like, fminnum_like_oneuse>; |
| def : FPMinCanonMaxPat<V_MAXMIN_F16_fake16_e64, f16, fminnum_like, fmaxnum_like_oneuse>; |
| } |
| |
| let SubtargetPredicate = isGFX9Plus in { |
| let True16Predicate = NotHasTrue16BitInsts in { |
| defm : Int16Med3Pat<V_MED3_I16_e64, smin, smax, VSrc_b16>; |
| defm : Int16Med3Pat<V_MED3_U16_e64, umin, umax, VSrc_b16>; |
| } |
| let True16Predicate = UseRealTrue16Insts in { |
| defm : Int16Med3Pat<V_MED3_I16_t16_e64, smin, smax, VSrcT_b16>; |
| defm : Int16Med3Pat<V_MED3_U16_t16_e64, umin, umax, VSrcT_b16>; |
| } |
| let True16Predicate = UseFakeTrue16Insts in { |
| defm : Int16Med3Pat<V_MED3_I16_fake16_e64, smin, smax, VSrc_b16>; |
| defm : Int16Med3Pat<V_MED3_U16_fake16_e64, umin, umax, VSrc_b16>; |
| } |
| } // End SubtargetPredicate = [isGFX9Plus] |
| |
| let SubtargetPredicate = isGFX12Plus in { |
| def : FPMinMaxPat<V_MINIMUMMAXIMUM_F32_e64, f32, DivergentBinFrag<fmaximum>, fminimum_oneuse>; |
| def : FPMinMaxPat<V_MAXIMUMMINIMUM_F32_e64, f32, DivergentBinFrag<fminimum>, fmaximum_oneuse>; |
| def : FPMinCanonMaxPat<V_MINIMUMMAXIMUM_F32_e64, f32, DivergentBinFrag<fmaximum>, fminimum_oneuse>; |
| def : FPMinCanonMaxPat<V_MAXIMUMMINIMUM_F32_e64, f32, DivergentBinFrag<fminimum>, fmaximum_oneuse>; |
| } |
| |
| let True16Predicate = UseRealTrue16Insts, SubtargetPredicate = isGFX12Plus in { |
| def : FPMinMaxPat<V_MINIMUMMAXIMUM_F16_t16_e64, f16, DivergentBinFrag<fmaximum>, fminimum_oneuse>; |
| def : FPMinMaxPat<V_MAXIMUMMINIMUM_F16_t16_e64, f16, DivergentBinFrag<fminimum>, fmaximum_oneuse>; |
| def : FPMinCanonMaxPat<V_MINIMUMMAXIMUM_F16_t16_e64, f16, DivergentBinFrag<fmaximum>, fminimum_oneuse>; |
| def : FPMinCanonMaxPat<V_MAXIMUMMINIMUM_F16_t16_e64, f16, DivergentBinFrag<fminimum>, fmaximum_oneuse>; |
| } |
| |
| let True16Predicate = UseFakeTrue16Insts, SubtargetPredicate = isGFX12Plus in { |
| def : FPMinMaxPat<V_MINIMUMMAXIMUM_F16_fake16_e64, f16, DivergentBinFrag<fmaximum>, fminimum_oneuse>; |
| def : FPMinMaxPat<V_MAXIMUMMINIMUM_F16_fake16_e64, f16, DivergentBinFrag<fminimum>, fmaximum_oneuse>; |
| def : FPMinCanonMaxPat<V_MINIMUMMAXIMUM_F16_fake16_e64, f16, DivergentBinFrag<fmaximum>, fminimum_oneuse>; |
| def : FPMinCanonMaxPat<V_MAXIMUMMINIMUM_F16_fake16_e64, f16, DivergentBinFrag<fminimum>, fmaximum_oneuse>; |
| } |
| |
| // Convert a floating-point power of 2 to the integer exponent. |
| def FPPow2ToExponentXForm : SDNodeXForm<fpimm, [{ |
| const auto &APF = N->getValueAPF(); |
| int Log2 = APF.getExactLog2Abs(); |
| assert(Log2 != INT_MIN); |
| return CurDAG->getSignedTargetConstant(Log2, SDLoc(N), MVT::i32); |
| }]>; |
| |
| // Check if a floating point value is a power of 2 floating-point |
| // immediate where it's preferable to emit a multiply by as an |
| // ldexp. We skip over 0.5 to 4.0 as those are inline immediates |
| // anyway. |
| def fpimm_pos_pow2_prefer_ldexp_f64 : FPImmLeaf<f64, [{ |
| if (Imm.isNegative()) |
| return false; |
| |
| int Exp = Imm.getExactLog2Abs(); |
| // Prefer leaving the FP inline immediates as they are. |
| // 0.5, 1.0, 2.0, 4.0 |
| |
| // For f64 ldexp is always better than materializing a 64-bit |
| // constant. |
| return Exp != INT_MIN && (Exp < -1 || Exp > 2); |
| }], FPPow2ToExponentXForm |
| >; |
| |
| def fpimm_neg_pow2_prefer_ldexp_f64 : FPImmLeaf<f64, [{ |
| if (!Imm.isNegative()) |
| return false; |
| int Exp = Imm.getExactLog2Abs(); |
| // Prefer leaving the FP inline immediates as they are. |
| // 0.5, 1.0, 2.0, 4.0 |
| |
| // For f64 ldexp is always better than materializing a 64-bit |
| // constant. |
| return Exp != INT_MIN && (Exp < -1 || Exp > 2); |
| }], FPPow2ToExponentXForm |
| >; |
| |
| // f64 is different because we also want to handle cases that may |
| // require materialization of the exponent. |
| // TODO: If we know f64 ops are fast, prefer add (ldexp x, N), y over fma |
| // TODO: For f32/f16, it's not a clear win on code size to use ldexp |
| // in place of mul since we have to use the vop3 form. Are there power |
| // savings or some other reason to prefer ldexp over mul? |
| def : GCNPat< |
| (any_fmul (f64 (VOP3Mods f64:$src0, i32:$src0_mods)), |
| fpimm_pos_pow2_prefer_ldexp_f64:$src1), |
| (V_LDEXP_F64_e64 i32:$src0_mods, VSrc_b64:$src0, |
| 0, (S_MOV_B32 (i32 (FPPow2ToExponentXForm $src1)))) |
| >; |
| |
| def : GCNPat< |
| (any_fmul f64:$src0, fpimm_neg_pow2_prefer_ldexp_f64:$src1), |
| (V_LDEXP_F64_e64 SRCMODS.NEG, VSrc_b64:$src0, |
| 0, (S_MOV_B32 (i32 (FPPow2ToExponentXForm $src1)))) |
| >; |
| |
| // We want to avoid using VOP3Mods which could pull in another fneg |
| // which we would need to be re-negated (which should never happen in |
| // practice). I don't see a way to apply an SDNodeXForm that accounts |
| // for a second operand. |
| def : GCNPat< |
| (any_fmul (fabs f64:$src0), fpimm_neg_pow2_prefer_ldexp_f64:$src1), |
| (V_LDEXP_F64_e64 SRCMODS.NEG_ABS, VSrc_b64:$src0, |
| 0, (S_MOV_B32 (i32 (FPPow2ToExponentXForm $src1)))) |
| >; |
| |
| class AMDGPUGenericInstruction : GenericInstruction { |
| let Namespace = "AMDGPU"; |
| } |
| |
| // Convert a wave address to a swizzled vector address (i.e. this is |
| // for copying the stack pointer to a vector address appropriate to |
| // use in the offset field of mubuf instructions). |
| def G_AMDGPU_WAVE_ADDRESS : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type0:$src); |
| let hasSideEffects = 0; |
| } |
| |
| // Returns -1 if the input is zero. |
| def G_AMDGPU_FFBH_U32 : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type1:$src); |
| let hasSideEffects = 0; |
| } |
| |
| // Returns -1 if the input is zero. |
| def G_AMDGPU_FFBL_B32 : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type1:$src); |
| let hasSideEffects = 0; |
| } |
| |
| def G_AMDGPU_RCP_IFLAG : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type1:$src); |
| let hasSideEffects = 0; |
| } |
| |
| class BufferLoadGenericInstruction : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset, |
| type2:$soffset, untyped_imm_0:$offset, |
| untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); |
| let hasSideEffects = 0; |
| let mayLoad = 1; |
| } |
| |
| class TBufferLoadGenericInstruction : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset, |
| type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$format, |
| untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); |
| let hasSideEffects = 0; |
| let mayLoad = 1; |
| } |
| |
| def G_AMDGPU_BUFFER_LOAD_UBYTE : BufferLoadGenericInstruction; |
| def G_AMDGPU_BUFFER_LOAD_SBYTE : BufferLoadGenericInstruction; |
| def G_AMDGPU_BUFFER_LOAD_USHORT : BufferLoadGenericInstruction; |
| def G_AMDGPU_BUFFER_LOAD_SSHORT : BufferLoadGenericInstruction; |
| def G_AMDGPU_BUFFER_LOAD : BufferLoadGenericInstruction; |
| def G_AMDGPU_BUFFER_LOAD_UBYTE_TFE : BufferLoadGenericInstruction; |
| def G_AMDGPU_BUFFER_LOAD_SBYTE_TFE : BufferLoadGenericInstruction; |
| def G_AMDGPU_BUFFER_LOAD_USHORT_TFE : BufferLoadGenericInstruction; |
| def G_AMDGPU_BUFFER_LOAD_SSHORT_TFE : BufferLoadGenericInstruction; |
| def G_AMDGPU_BUFFER_LOAD_TFE : BufferLoadGenericInstruction; |
| def G_AMDGPU_BUFFER_LOAD_FORMAT : BufferLoadGenericInstruction; |
| def G_AMDGPU_BUFFER_LOAD_FORMAT_TFE : BufferLoadGenericInstruction; |
| def G_AMDGPU_BUFFER_LOAD_FORMAT_D16 : BufferLoadGenericInstruction; |
| def G_AMDGPU_TBUFFER_LOAD_FORMAT : TBufferLoadGenericInstruction; |
| def G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 : TBufferLoadGenericInstruction; |
| |
| class BufferStoreGenericInstruction : AMDGPUGenericInstruction { |
| let OutOperandList = (outs); |
| let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset, |
| type2:$soffset, untyped_imm_0:$offset, |
| untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); |
| let hasSideEffects = 0; |
| let mayStore = 1; |
| } |
| |
| class TBufferStoreGenericInstruction : AMDGPUGenericInstruction { |
| let OutOperandList = (outs); |
| let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset, |
| type2:$soffset, untyped_imm_0:$offset, |
| untyped_imm_0:$format, |
| untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); |
| let hasSideEffects = 0; |
| let mayStore = 1; |
| } |
| |
| def G_AMDGPU_BUFFER_STORE : BufferStoreGenericInstruction; |
| def G_AMDGPU_BUFFER_STORE_BYTE : BufferStoreGenericInstruction; |
| def G_AMDGPU_BUFFER_STORE_SHORT : BufferStoreGenericInstruction; |
| def G_AMDGPU_BUFFER_STORE_FORMAT : BufferStoreGenericInstruction; |
| def G_AMDGPU_BUFFER_STORE_FORMAT_D16 : BufferStoreGenericInstruction; |
| def G_AMDGPU_TBUFFER_STORE_FORMAT : TBufferStoreGenericInstruction; |
| def G_AMDGPU_TBUFFER_STORE_FORMAT_D16 : TBufferStoreGenericInstruction; |
| |
| def G_AMDGPU_FMIN_LEGACY : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type0:$src0, type0:$src1); |
| let hasSideEffects = 0; |
| } |
| |
| def G_AMDGPU_FMAX_LEGACY : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type0:$src0, type0:$src1); |
| let hasSideEffects = 0; |
| } |
| |
| foreach N = 0-3 in { |
| def G_AMDGPU_CVT_F32_UBYTE#N : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type0:$src0); |
| let hasSideEffects = 0; |
| } |
| } |
| |
| def G_AMDGPU_CVT_PK_I16_I32 : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type0:$src0, type0:$src1); |
| let hasSideEffects = 0; |
| } |
| |
| def G_AMDGPU_SMED3 : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2); |
| let hasSideEffects = 0; |
| } |
| |
| def G_AMDGPU_UMED3 : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2); |
| let hasSideEffects = 0; |
| } |
| |
| def G_AMDGPU_FMED3 : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type0:$src0, type0:$src1, type0:$src2); |
| let hasSideEffects = 0; |
| } |
| |
| def G_AMDGPU_CLAMP : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type0:$src); |
| let hasSideEffects = 0; |
| } |
| |
| // Integer multiply-add: arg0 * arg1 + arg2. |
| // |
| // arg0 and arg1 are 32-bit integers (interpreted as signed or unsigned), |
| // arg2 is a 64-bit integer. Result is a 64-bit integer and a 1-bit carry-out. |
| class G_AMDGPU_MAD_64_32 : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst, type1:$carry_out); |
| let InOperandList = (ins type2:$arg0, type2:$arg1, type0:$arg2); |
| let hasSideEffects = 0; |
| } |
| |
| def G_AMDGPU_MAD_U64_U32 : G_AMDGPU_MAD_64_32; |
| def G_AMDGPU_MAD_I64_I32 : G_AMDGPU_MAD_64_32; |
| |
| // Atomic cmpxchg. $cmpval ad $newval are packed in a single vector |
| // operand Expects a MachineMemOperand in addition to explicit |
| // operands. |
| def G_AMDGPU_ATOMIC_CMPXCHG : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$oldval); |
| let InOperandList = (ins ptype1:$addr, type0:$cmpval_newval); |
| let hasSideEffects = 0; |
| let mayLoad = 1; |
| let mayStore = 1; |
| } |
| |
| class BufferAtomicGenericInstruction : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset, |
| type2:$soffset, untyped_imm_0:$offset, |
| untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); |
| let hasSideEffects = 0; |
| let mayLoad = 1; |
| let mayStore = 1; |
| } |
| |
| def G_AMDGPU_BUFFER_ATOMIC_SWAP : BufferAtomicGenericInstruction; |
| def G_AMDGPU_BUFFER_ATOMIC_ADD : BufferAtomicGenericInstruction; |
| def G_AMDGPU_BUFFER_ATOMIC_SUB : BufferAtomicGenericInstruction; |
| def G_AMDGPU_BUFFER_ATOMIC_SMIN : BufferAtomicGenericInstruction; |
| def G_AMDGPU_BUFFER_ATOMIC_UMIN : BufferAtomicGenericInstruction; |
| def G_AMDGPU_BUFFER_ATOMIC_SMAX : BufferAtomicGenericInstruction; |
| def G_AMDGPU_BUFFER_ATOMIC_UMAX : BufferAtomicGenericInstruction; |
| def G_AMDGPU_BUFFER_ATOMIC_AND : BufferAtomicGenericInstruction; |
| def G_AMDGPU_BUFFER_ATOMIC_COND_SUB_U32 : BufferAtomicGenericInstruction; |
| def G_AMDGPU_BUFFER_ATOMIC_OR : BufferAtomicGenericInstruction; |
| def G_AMDGPU_BUFFER_ATOMIC_XOR : BufferAtomicGenericInstruction; |
| def G_AMDGPU_BUFFER_ATOMIC_INC : BufferAtomicGenericInstruction; |
| def G_AMDGPU_BUFFER_ATOMIC_DEC : BufferAtomicGenericInstruction; |
| def G_AMDGPU_BUFFER_ATOMIC_FADD : BufferAtomicGenericInstruction; |
| def G_AMDGPU_BUFFER_ATOMIC_FMIN : BufferAtomicGenericInstruction; |
| def G_AMDGPU_BUFFER_ATOMIC_FMAX : BufferAtomicGenericInstruction; |
| |
| def G_AMDGPU_BUFFER_ATOMIC_CMPSWAP : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type0:$vdata, type0:$cmp, type1:$rsrc, type2:$vindex, |
| type2:$voffset, type2:$soffset, untyped_imm_0:$offset, |
| untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen); |
| let hasSideEffects = 0; |
| let mayLoad = 1; |
| let mayStore = 1; |
| } |
| |
| // Wrapper around llvm.amdgcn.s.buffer.load. This is mostly needed as |
| // a workaround for the intrinsic being defined as readnone, but |
| // really needs a memory operand. |
| |
| class SBufferLoadInstruction : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type1:$rsrc, type2:$offset, untyped_imm_0:$cachepolicy); |
| let hasSideEffects = 0; |
| let mayLoad = 1; |
| let mayStore = 0; |
| } |
| |
| def G_AMDGPU_S_BUFFER_LOAD : SBufferLoadInstruction; |
| def G_AMDGPU_S_BUFFER_LOAD_SBYTE : SBufferLoadInstruction; |
| def G_AMDGPU_S_BUFFER_LOAD_UBYTE : SBufferLoadInstruction; |
| def G_AMDGPU_S_BUFFER_LOAD_SSHORT : SBufferLoadInstruction; |
| def G_AMDGPU_S_BUFFER_LOAD_USHORT : SBufferLoadInstruction; |
| |
| class SBufferPrefetchInstruction : AMDGPUGenericInstruction { |
| let OutOperandList = (outs); |
| let InOperandList = (ins type0:$rsrc, untyped_imm_0:$offset, type1:$len); |
| let hasSideEffects = 0; |
| let mayLoad = 1; |
| let mayStore = 1; |
| } |
| |
| def G_AMDGPU_S_BUFFER_PREFETCH : SBufferPrefetchInstruction; |
| |
| def G_AMDGPU_S_MUL_U64_U32 : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type0:$src0, type0:$src1); |
| let hasSideEffects = 0; |
| } |
| |
| def G_AMDGPU_S_MUL_I64_I32 : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type0:$src0, type0:$src1); |
| let hasSideEffects = 0; |
| } |
| |
| // This is equivalent to the G_INTRINSIC*, but the operands may have |
| // been legalized depending on the subtarget requirements. |
| def G_AMDGPU_INTRIN_IMAGE_LOAD : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins unknown:$intrin, variable_ops); |
| let hasSideEffects = 0; |
| let mayLoad = 1; |
| |
| // FIXME: Use separate opcode for atomics. |
| let mayStore = 1; |
| } |
| |
| def G_AMDGPU_INTRIN_IMAGE_LOAD_D16 : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins unknown:$intrin, variable_ops); |
| let hasSideEffects = 0; |
| let mayLoad = 1; |
| |
| // FIXME: Use separate opcode for atomics. |
| let mayStore = 1; |
| } |
| |
| def G_AMDGPU_INTRIN_IMAGE_LOAD_NORET : AMDGPUGenericInstruction { |
| let OutOperandList = (outs); |
| let InOperandList = (ins unknown:$intrin, variable_ops); |
| let hasSideEffects = 0; |
| let mayLoad = 1; |
| let mayStore = 1; |
| } |
| |
| // This is equivalent to the G_INTRINSIC*, but the operands may have |
| // been legalized depending on the subtarget requirements. |
| def G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPUGenericInstruction { |
| let OutOperandList = (outs); |
| let InOperandList = (ins unknown:$intrin, variable_ops); |
| let hasSideEffects = 0; |
| let mayStore = 1; |
| } |
| |
| def G_AMDGPU_INTRIN_IMAGE_STORE_D16 : AMDGPUGenericInstruction { |
| let OutOperandList = (outs); |
| let InOperandList = (ins unknown:$intrin, variable_ops); |
| let hasSideEffects = 0; |
| let mayStore = 1; |
| } |
| |
| def G_AMDGPU_BVH_INTERSECT_RAY : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins unknown:$intrin, variable_ops); |
| let hasSideEffects = 0; |
| let mayLoad = 1; |
| let mayStore = 0; |
| } |
| |
| // Generic instruction for SI_CALL, so we can select the register bank and insert a waterfall loop |
| // if necessary. |
| def G_SI_CALL : AMDGPUGenericInstruction { |
| let OutOperandList = (outs SReg_64:$dst); |
| let InOperandList = (ins type0:$src0, unknown:$callee); |
| let Size = 4; |
| let isCall = 1; |
| let UseNamedOperandTable = 1; |
| let SchedRW = [WriteBranch]; |
| // TODO: Should really base this on the call target |
| let isConvergent = 1; |
| } |
| |
| // Uniform in vgpr - vgpr with same value in all active lanes. |
| |
| // $dst = $src0 != 0, selected as: |
| // $dst(SCC) = s_cmp_lg $src0, 0 |
| // src0 is either exec or 0 (same value for all active lanes), |
| // for example result of comparison of two uniform in vgpr. |
| def G_AMDGPU_COPY_SCC_VCC : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type1:$src0); |
| let hasSideEffects = 0; |
| } |
| |
| // $dst = $src0 ? exec : 0, selected as: |
| // SCC = COPY $src0 |
| // $dst(SReg_32/64) = s_cselect exec, 0 |
| def G_AMDGPU_COPY_VCC_SCC : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type1:$src0); |
| let hasSideEffects = 0; |
| } |
| |
| // Move uniform in vgpr to sgpr. Selected as v_readfirstlane_b32. |
| // Semantic difference in READ ANY instead of FIRST(active) LANE allows for |
| // vgpr to sgpr back-to vgpr combine, vgpr has same value in all active lanes |
| // vgprDst = COPY (G_AMDGPU_READANYLANE vgprSrc) -> vgprDst = sgprSrc |
| def G_AMDGPU_READANYLANE : AMDGPUGenericInstruction { |
| let OutOperandList = (outs type0:$dst); |
| let InOperandList = (ins type0:$src0); |
| let hasSideEffects = 0; |
| } |
| |
| //============================================================================// |
| // Dummy Instructions |
| //============================================================================// |
| |
| def V_ILLEGAL : Enc32, InstSI<(outs), (ins), "v_illegal"> { |
| let Inst{31-0} = 0x00000000; |
| let FixedSize = 1; |
| let Size = 4; |
| let Uses = [EXEC]; |
| let hasSideEffects = 1; |
| let SubtargetPredicate = isGFX10Plus; |
| } |
| |
| // FIXME: Would be nice if we could set the register class for the destination |
| // register too. |
| def IMP_DEF_FROM_INTRINSIC: Pat< |
| (i32 (int_amdgcn_dead)), (IMPLICIT_DEF)>; |
| |