| //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements decl-related attribute processing. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTMutationListener.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/DynamicRecursiveASTVisitor.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/Mangle.h" |
| #include "clang/AST/Type.h" |
| #include "clang/Basic/CharInfo.h" |
| #include "clang/Basic/Cuda.h" |
| #include "clang/Basic/DarwinSDKInfo.h" |
| #include "clang/Basic/IdentifierTable.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/SourceLocation.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/Sema/Attr.h" |
| #include "clang/Sema/DeclSpec.h" |
| #include "clang/Sema/DelayedDiagnostic.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/ParsedAttr.h" |
| #include "clang/Sema/Scope.h" |
| #include "clang/Sema/ScopeInfo.h" |
| #include "clang/Sema/SemaAMDGPU.h" |
| #include "clang/Sema/SemaARM.h" |
| #include "clang/Sema/SemaAVR.h" |
| #include "clang/Sema/SemaBPF.h" |
| #include "clang/Sema/SemaCUDA.h" |
| #include "clang/Sema/SemaHLSL.h" |
| #include "clang/Sema/SemaM68k.h" |
| #include "clang/Sema/SemaMIPS.h" |
| #include "clang/Sema/SemaMSP430.h" |
| #include "clang/Sema/SemaObjC.h" |
| #include "clang/Sema/SemaOpenCL.h" |
| #include "clang/Sema/SemaOpenMP.h" |
| #include "clang/Sema/SemaRISCV.h" |
| #include "clang/Sema/SemaSYCL.h" |
| #include "clang/Sema/SemaSwift.h" |
| #include "clang/Sema/SemaWasm.h" |
| #include "clang/Sema/SemaX86.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/STLForwardCompat.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Demangle/Demangle.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/MC/MCSectionMachO.h" |
| #include "llvm/Support/Error.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/TargetParser/Triple.h" |
| #include <optional> |
| |
| using namespace clang; |
| using namespace sema; |
| |
| namespace AttributeLangSupport { |
| enum LANG { |
| C, |
| Cpp, |
| ObjC |
| }; |
| } // end namespace AttributeLangSupport |
| |
| static unsigned getNumAttributeArgs(const ParsedAttr &AL) { |
| // FIXME: Include the type in the argument list. |
| return AL.getNumArgs() + AL.hasParsedType(); |
| } |
| |
| SourceLocation Sema::getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); } |
| |
| /// Wrapper around checkUInt32Argument, with an extra check to be sure |
| /// that the result will fit into a regular (signed) int. All args have the same |
| /// purpose as they do in checkUInt32Argument. |
| template <typename AttrInfo> |
| static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr, |
| int &Val, unsigned Idx = UINT_MAX) { |
| uint32_t UVal; |
| if (!S.checkUInt32Argument(AI, Expr, UVal, Idx)) |
| return false; |
| |
| if (UVal > (uint32_t)std::numeric_limits<int>::max()) { |
| llvm::APSInt I(32); // for toString |
| I = UVal; |
| S.Diag(Expr->getExprLoc(), diag::err_ice_too_large) |
| << toString(I, 10, false) << 32 << /* Unsigned */ 0; |
| return false; |
| } |
| |
| Val = UVal; |
| return true; |
| } |
| |
| bool Sema::checkStringLiteralArgumentAttr(const AttributeCommonInfo &CI, |
| const Expr *E, StringRef &Str, |
| SourceLocation *ArgLocation) { |
| const auto *Literal = dyn_cast<StringLiteral>(E->IgnoreParenCasts()); |
| if (ArgLocation) |
| *ArgLocation = E->getBeginLoc(); |
| |
| if (!Literal || (!Literal->isUnevaluated() && !Literal->isOrdinary())) { |
| Diag(E->getBeginLoc(), diag::err_attribute_argument_type) |
| << CI << AANT_ArgumentString; |
| return false; |
| } |
| |
| Str = Literal->getString(); |
| return true; |
| } |
| |
| bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum, |
| StringRef &Str, |
| SourceLocation *ArgLocation) { |
| // Look for identifiers. If we have one emit a hint to fix it to a literal. |
| if (AL.isArgIdent(ArgNum)) { |
| IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum); |
| Diag(Loc->Loc, diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentString |
| << FixItHint::CreateInsertion(Loc->Loc, "\"") |
| << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\""); |
| Str = Loc->Ident->getName(); |
| if (ArgLocation) |
| *ArgLocation = Loc->Loc; |
| return true; |
| } |
| |
| // Now check for an actual string literal. |
| Expr *ArgExpr = AL.getArgAsExpr(ArgNum); |
| const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts()); |
| if (ArgLocation) |
| *ArgLocation = ArgExpr->getBeginLoc(); |
| |
| if (!Literal || (!Literal->isUnevaluated() && !Literal->isOrdinary())) { |
| Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentString; |
| return false; |
| } |
| Str = Literal->getString(); |
| return checkStringLiteralArgumentAttr(AL, ArgExpr, Str, ArgLocation); |
| } |
| |
| /// Check if the passed-in expression is of type int or bool. |
| static bool isIntOrBool(Expr *Exp) { |
| QualType QT = Exp->getType(); |
| return QT->isBooleanType() || QT->isIntegerType(); |
| } |
| |
| |
| // Check to see if the type is a smart pointer of some kind. We assume |
| // it's a smart pointer if it defines both operator-> and operator*. |
| static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) { |
| auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record, |
| OverloadedOperatorKind Op) { |
| DeclContextLookupResult Result = |
| Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op)); |
| return !Result.empty(); |
| }; |
| |
| const RecordDecl *Record = RT->getDecl(); |
| bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star); |
| bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow); |
| if (foundStarOperator && foundArrowOperator) |
| return true; |
| |
| const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record); |
| if (!CXXRecord) |
| return false; |
| |
| for (const auto &BaseSpecifier : CXXRecord->bases()) { |
| if (!foundStarOperator) |
| foundStarOperator = IsOverloadedOperatorPresent( |
| BaseSpecifier.getType()->getAsRecordDecl(), OO_Star); |
| if (!foundArrowOperator) |
| foundArrowOperator = IsOverloadedOperatorPresent( |
| BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow); |
| } |
| |
| if (foundStarOperator && foundArrowOperator) |
| return true; |
| |
| return false; |
| } |
| |
| /// Check if passed in Decl is a pointer type. |
| /// Note that this function may produce an error message. |
| /// \return true if the Decl is a pointer type; false otherwise |
| static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D, |
| const ParsedAttr &AL) { |
| const auto *VD = cast<ValueDecl>(D); |
| QualType QT = VD->getType(); |
| if (QT->isAnyPointerType()) |
| return true; |
| |
| if (const auto *RT = QT->getAs<RecordType>()) { |
| // If it's an incomplete type, it could be a smart pointer; skip it. |
| // (We don't want to force template instantiation if we can avoid it, |
| // since that would alter the order in which templates are instantiated.) |
| if (RT->isIncompleteType()) |
| return true; |
| |
| if (threadSafetyCheckIsSmartPointer(S, RT)) |
| return true; |
| } |
| |
| S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT; |
| return false; |
| } |
| |
| /// Checks that the passed in QualType either is of RecordType or points |
| /// to RecordType. Returns the relevant RecordType, null if it does not exit. |
| static const RecordType *getRecordType(QualType QT) { |
| if (const auto *RT = QT->getAs<RecordType>()) |
| return RT; |
| |
| // Now check if we point to record type. |
| if (const auto *PT = QT->getAs<PointerType>()) |
| return PT->getPointeeType()->getAs<RecordType>(); |
| |
| return nullptr; |
| } |
| |
| template <typename AttrType> |
| static bool checkRecordDeclForAttr(const RecordDecl *RD) { |
| // Check if the record itself has the attribute. |
| if (RD->hasAttr<AttrType>()) |
| return true; |
| |
| // Else check if any base classes have the attribute. |
| if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) { |
| if (!CRD->forallBases([](const CXXRecordDecl *Base) { |
| return !Base->hasAttr<AttrType>(); |
| })) |
| return true; |
| } |
| return false; |
| } |
| |
| static bool checkRecordTypeForCapability(Sema &S, QualType Ty) { |
| const RecordType *RT = getRecordType(Ty); |
| |
| if (!RT) |
| return false; |
| |
| // Don't check for the capability if the class hasn't been defined yet. |
| if (RT->isIncompleteType()) |
| return true; |
| |
| // Allow smart pointers to be used as capability objects. |
| // FIXME -- Check the type that the smart pointer points to. |
| if (threadSafetyCheckIsSmartPointer(S, RT)) |
| return true; |
| |
| return checkRecordDeclForAttr<CapabilityAttr>(RT->getDecl()); |
| } |
| |
| static bool checkRecordTypeForScopedCapability(Sema &S, QualType Ty) { |
| const RecordType *RT = getRecordType(Ty); |
| |
| if (!RT) |
| return false; |
| |
| // Don't check for the capability if the class hasn't been defined yet. |
| if (RT->isIncompleteType()) |
| return true; |
| |
| return checkRecordDeclForAttr<ScopedLockableAttr>(RT->getDecl()); |
| } |
| |
| static bool checkTypedefTypeForCapability(QualType Ty) { |
| const auto *TD = Ty->getAs<TypedefType>(); |
| if (!TD) |
| return false; |
| |
| TypedefNameDecl *TN = TD->getDecl(); |
| if (!TN) |
| return false; |
| |
| return TN->hasAttr<CapabilityAttr>(); |
| } |
| |
| static bool typeHasCapability(Sema &S, QualType Ty) { |
| if (checkTypedefTypeForCapability(Ty)) |
| return true; |
| |
| if (checkRecordTypeForCapability(S, Ty)) |
| return true; |
| |
| return false; |
| } |
| |
| static bool isCapabilityExpr(Sema &S, const Expr *Ex) { |
| // Capability expressions are simple expressions involving the boolean logic |
| // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once |
| // a DeclRefExpr is found, its type should be checked to determine whether it |
| // is a capability or not. |
| |
| if (const auto *E = dyn_cast<CastExpr>(Ex)) |
| return isCapabilityExpr(S, E->getSubExpr()); |
| else if (const auto *E = dyn_cast<ParenExpr>(Ex)) |
| return isCapabilityExpr(S, E->getSubExpr()); |
| else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) { |
| if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf || |
| E->getOpcode() == UO_Deref) |
| return isCapabilityExpr(S, E->getSubExpr()); |
| return false; |
| } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) { |
| if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr) |
| return isCapabilityExpr(S, E->getLHS()) && |
| isCapabilityExpr(S, E->getRHS()); |
| return false; |
| } |
| |
| return typeHasCapability(S, Ex->getType()); |
| } |
| |
| /// Checks that all attribute arguments, starting from Sidx, resolve to |
| /// a capability object. |
| /// \param Sidx The attribute argument index to start checking with. |
| /// \param ParamIdxOk Whether an argument can be indexing into a function |
| /// parameter list. |
| static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D, |
| const ParsedAttr &AL, |
| SmallVectorImpl<Expr *> &Args, |
| unsigned Sidx = 0, |
| bool ParamIdxOk = false) { |
| if (Sidx == AL.getNumArgs()) { |
| // If we don't have any capability arguments, the attribute implicitly |
| // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're |
| // a non-static method, and that the class is a (scoped) capability. |
| const auto *MD = dyn_cast<const CXXMethodDecl>(D); |
| if (MD && !MD->isStatic()) { |
| const CXXRecordDecl *RD = MD->getParent(); |
| // FIXME -- need to check this again on template instantiation |
| if (!checkRecordDeclForAttr<CapabilityAttr>(RD) && |
| !checkRecordDeclForAttr<ScopedLockableAttr>(RD)) |
| S.Diag(AL.getLoc(), |
| diag::warn_thread_attribute_not_on_capability_member) |
| << AL << MD->getParent(); |
| } else { |
| S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member) |
| << AL; |
| } |
| } |
| |
| for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) { |
| Expr *ArgExp = AL.getArgAsExpr(Idx); |
| |
| if (ArgExp->isTypeDependent()) { |
| // FIXME -- need to check this again on template instantiation |
| Args.push_back(ArgExp); |
| continue; |
| } |
| |
| if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) { |
| if (StrLit->getLength() == 0 || |
| (StrLit->isOrdinary() && StrLit->getString() == "*")) { |
| // Pass empty strings to the analyzer without warnings. |
| // Treat "*" as the universal lock. |
| Args.push_back(ArgExp); |
| continue; |
| } |
| |
| // We allow constant strings to be used as a placeholder for expressions |
| // that are not valid C++ syntax, but warn that they are ignored. |
| S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL; |
| Args.push_back(ArgExp); |
| continue; |
| } |
| |
| QualType ArgTy = ArgExp->getType(); |
| |
| // A pointer to member expression of the form &MyClass::mu is treated |
| // specially -- we need to look at the type of the member. |
| if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp)) |
| if (UOp->getOpcode() == UO_AddrOf) |
| if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr())) |
| if (DRE->getDecl()->isCXXInstanceMember()) |
| ArgTy = DRE->getDecl()->getType(); |
| |
| // First see if we can just cast to record type, or pointer to record type. |
| const RecordType *RT = getRecordType(ArgTy); |
| |
| // Now check if we index into a record type function param. |
| if(!RT && ParamIdxOk) { |
| const auto *FD = dyn_cast<FunctionDecl>(D); |
| const auto *IL = dyn_cast<IntegerLiteral>(ArgExp); |
| if(FD && IL) { |
| unsigned int NumParams = FD->getNumParams(); |
| llvm::APInt ArgValue = IL->getValue(); |
| uint64_t ParamIdxFromOne = ArgValue.getZExtValue(); |
| uint64_t ParamIdxFromZero = ParamIdxFromOne - 1; |
| if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) { |
| S.Diag(AL.getLoc(), |
| diag::err_attribute_argument_out_of_bounds_extra_info) |
| << AL << Idx + 1 << NumParams; |
| continue; |
| } |
| ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType(); |
| } |
| } |
| |
| // If the type does not have a capability, see if the components of the |
| // expression have capabilities. This allows for writing C code where the |
| // capability may be on the type, and the expression is a capability |
| // boolean logic expression. Eg) requires_capability(A || B && !C) |
| if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp)) |
| S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable) |
| << AL << ArgTy; |
| |
| Args.push_back(ArgExp); |
| } |
| } |
| |
| static bool checkFunParamsAreScopedLockable(Sema &S, |
| const ParmVarDecl *ParamDecl, |
| const ParsedAttr &AL) { |
| QualType ParamType = ParamDecl->getType(); |
| if (const auto *RefType = ParamType->getAs<ReferenceType>(); |
| RefType && |
| checkRecordTypeForScopedCapability(S, RefType->getPointeeType())) |
| return true; |
| S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_scoped_lockable_param) |
| << AL; |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Attribute Implementations |
| //===----------------------------------------------------------------------===// |
| |
| static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!threadSafetyCheckIsPointer(S, D, AL)) |
| return; |
| |
| D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL)); |
| } |
| |
| static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
| Expr *&Arg) { |
| SmallVector<Expr *, 1> Args; |
| // check that all arguments are lockable objects |
| checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
| unsigned Size = Args.size(); |
| if (Size != 1) |
| return false; |
| |
| Arg = Args[0]; |
| |
| return true; |
| } |
| |
| static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| Expr *Arg = nullptr; |
| if (!checkGuardedByAttrCommon(S, D, AL, Arg)) |
| return; |
| |
| D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg)); |
| } |
| |
| static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| Expr *Arg = nullptr; |
| if (!checkGuardedByAttrCommon(S, D, AL, Arg)) |
| return; |
| |
| if (!threadSafetyCheckIsPointer(S, D, AL)) |
| return; |
| |
| D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg)); |
| } |
| |
| static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
| SmallVectorImpl<Expr *> &Args) { |
| if (!AL.checkAtLeastNumArgs(S, 1)) |
| return false; |
| |
| // Check that this attribute only applies to lockable types. |
| QualType QT = cast<ValueDecl>(D)->getType(); |
| if (!QT->isDependentType() && !typeHasCapability(S, QT)) { |
| S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL; |
| return false; |
| } |
| |
| // Check that all arguments are lockable objects. |
| checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
| if (Args.empty()) |
| return false; |
| |
| return true; |
| } |
| |
| static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| SmallVector<Expr *, 1> Args; |
| if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) |
| return; |
| |
| Expr **StartArg = &Args[0]; |
| D->addAttr(::new (S.Context) |
| AcquiredAfterAttr(S.Context, AL, StartArg, Args.size())); |
| } |
| |
| static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| SmallVector<Expr *, 1> Args; |
| if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) |
| return; |
| |
| Expr **StartArg = &Args[0]; |
| D->addAttr(::new (S.Context) |
| AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size())); |
| } |
| |
| static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
| SmallVectorImpl<Expr *> &Args) { |
| // zero or more arguments ok |
| // check that all arguments are lockable objects |
| checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true); |
| |
| return true; |
| } |
| |
| static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| SmallVector<Expr *, 1> Args; |
| if (!checkLockFunAttrCommon(S, D, AL, Args)) |
| return; |
| |
| unsigned Size = Args.size(); |
| Expr **StartArg = Size == 0 ? nullptr : &Args[0]; |
| D->addAttr(::new (S.Context) |
| AssertSharedLockAttr(S.Context, AL, StartArg, Size)); |
| } |
| |
| static void handleAssertExclusiveLockAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| SmallVector<Expr *, 1> Args; |
| if (!checkLockFunAttrCommon(S, D, AL, Args)) |
| return; |
| |
| unsigned Size = Args.size(); |
| Expr **StartArg = Size == 0 ? nullptr : &Args[0]; |
| D->addAttr(::new (S.Context) |
| AssertExclusiveLockAttr(S.Context, AL, StartArg, Size)); |
| } |
| |
| /// Checks to be sure that the given parameter number is in bounds, and |
| /// is an integral type. Will emit appropriate diagnostics if this returns |
| /// false. |
| /// |
| /// AttrArgNo is used to actually retrieve the argument, so it's base-0. |
| template <typename AttrInfo> |
| static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI, |
| unsigned AttrArgNo) { |
| assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument"); |
| Expr *AttrArg = AI.getArgAsExpr(AttrArgNo); |
| ParamIdx Idx; |
| if (!S.checkFunctionOrMethodParameterIndex(D, AI, AttrArgNo + 1, AttrArg, |
| Idx)) |
| return false; |
| |
| QualType ParamTy = getFunctionOrMethodParamType(D, Idx.getASTIndex()); |
| if (!ParamTy->isIntegerType() && !ParamTy->isCharType()) { |
| SourceLocation SrcLoc = AttrArg->getBeginLoc(); |
| S.Diag(SrcLoc, diag::err_attribute_integers_only) |
| << AI << getFunctionOrMethodParamRange(D, Idx.getASTIndex()); |
| return false; |
| } |
| return true; |
| } |
| |
| static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2)) |
| return; |
| |
| assert(isFuncOrMethodForAttrSubject(D) && hasFunctionProto(D)); |
| |
| QualType RetTy = getFunctionOrMethodResultType(D); |
| if (!RetTy->isPointerType()) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL; |
| return; |
| } |
| |
| const Expr *SizeExpr = AL.getArgAsExpr(0); |
| int SizeArgNoVal; |
| // Parameter indices are 1-indexed, hence Index=1 |
| if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1)) |
| return; |
| if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/0)) |
| return; |
| ParamIdx SizeArgNo(SizeArgNoVal, D); |
| |
| ParamIdx NumberArgNo; |
| if (AL.getNumArgs() == 2) { |
| const Expr *NumberExpr = AL.getArgAsExpr(1); |
| int Val; |
| // Parameter indices are 1-based, hence Index=2 |
| if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2)) |
| return; |
| if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/1)) |
| return; |
| NumberArgNo = ParamIdx(Val, D); |
| } |
| |
| D->addAttr(::new (S.Context) |
| AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo)); |
| } |
| |
| static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
| SmallVectorImpl<Expr *> &Args) { |
| if (!AL.checkAtLeastNumArgs(S, 1)) |
| return false; |
| |
| if (!isIntOrBool(AL.getArgAsExpr(0))) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 1 << AANT_ArgumentIntOrBool; |
| return false; |
| } |
| |
| // check that all arguments are lockable objects |
| checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1); |
| |
| return true; |
| } |
| |
| static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| SmallVector<Expr*, 2> Args; |
| if (!checkTryLockFunAttrCommon(S, D, AL, Args)) |
| return; |
| |
| D->addAttr(::new (S.Context) SharedTrylockFunctionAttr( |
| S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); |
| } |
| |
| static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| SmallVector<Expr*, 2> Args; |
| if (!checkTryLockFunAttrCommon(S, D, AL, Args)) |
| return; |
| |
| D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr( |
| S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); |
| } |
| |
| static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // check that the argument is lockable object |
| SmallVector<Expr*, 1> Args; |
| checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
| unsigned Size = Args.size(); |
| if (Size == 0) |
| return; |
| |
| D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0])); |
| } |
| |
| static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(D); |
| ParmDecl && !checkFunParamsAreScopedLockable(S, ParmDecl, AL)) |
| return; |
| |
| if (!AL.checkAtLeastNumArgs(S, 1)) |
| return; |
| |
| // check that all arguments are lockable objects |
| SmallVector<Expr*, 1> Args; |
| checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
| unsigned Size = Args.size(); |
| if (Size == 0) |
| return; |
| Expr **StartArg = &Args[0]; |
| |
| D->addAttr(::new (S.Context) |
| LocksExcludedAttr(S.Context, AL, StartArg, Size)); |
| } |
| |
| static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL, |
| Expr *&Cond, StringRef &Msg) { |
| Cond = AL.getArgAsExpr(0); |
| if (!Cond->isTypeDependent()) { |
| ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); |
| if (Converted.isInvalid()) |
| return false; |
| Cond = Converted.get(); |
| } |
| |
| if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg)) |
| return false; |
| |
| if (Msg.empty()) |
| Msg = "<no message provided>"; |
| |
| SmallVector<PartialDiagnosticAt, 8> Diags; |
| if (isa<FunctionDecl>(D) && !Cond->isValueDependent() && |
| !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D), |
| Diags)) { |
| S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL; |
| for (const PartialDiagnosticAt &PDiag : Diags) |
| S.Diag(PDiag.first, PDiag.second); |
| return false; |
| } |
| return true; |
| } |
| |
| static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| S.Diag(AL.getLoc(), diag::ext_clang_enable_if); |
| |
| Expr *Cond; |
| StringRef Msg; |
| if (checkFunctionConditionAttr(S, D, AL, Cond, Msg)) |
| D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg)); |
| } |
| |
| static void handleErrorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef NewUserDiagnostic; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, NewUserDiagnostic)) |
| return; |
| if (ErrorAttr *EA = S.mergeErrorAttr(D, AL, NewUserDiagnostic)) |
| D->addAttr(EA); |
| } |
| |
| static void handleExcludeFromExplicitInstantiationAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| const auto *PD = isa<CXXRecordDecl>(D) |
| ? cast<DeclContext>(D) |
| : D->getDeclContext()->getRedeclContext(); |
| if (const auto *RD = dyn_cast<CXXRecordDecl>(PD); RD && RD->isLocalClass()) { |
| S.Diag(AL.getLoc(), |
| diag::warn_attribute_exclude_from_explicit_instantiation_local_class) |
| << AL << /*IsMember=*/!isa<CXXRecordDecl>(D); |
| return; |
| } |
| D->addAttr(::new (S.Context) |
| ExcludeFromExplicitInstantiationAttr(S.Context, AL)); |
| } |
| |
| namespace { |
| /// Determines if a given Expr references any of the given function's |
| /// ParmVarDecls, or the function's implicit `this` parameter (if applicable). |
| class ArgumentDependenceChecker : public DynamicRecursiveASTVisitor { |
| #ifndef NDEBUG |
| const CXXRecordDecl *ClassType; |
| #endif |
| llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms; |
| bool Result; |
| |
| public: |
| ArgumentDependenceChecker(const FunctionDecl *FD) { |
| #ifndef NDEBUG |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) |
| ClassType = MD->getParent(); |
| else |
| ClassType = nullptr; |
| #endif |
| Parms.insert(FD->param_begin(), FD->param_end()); |
| } |
| |
| bool referencesArgs(Expr *E) { |
| Result = false; |
| TraverseStmt(E); |
| return Result; |
| } |
| |
| bool VisitCXXThisExpr(CXXThisExpr *E) override { |
| assert(E->getType()->getPointeeCXXRecordDecl() == ClassType && |
| "`this` doesn't refer to the enclosing class?"); |
| Result = true; |
| return false; |
| } |
| |
| bool VisitDeclRefExpr(DeclRefExpr *DRE) override { |
| if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) |
| if (Parms.count(PVD)) { |
| Result = true; |
| return false; |
| } |
| return true; |
| } |
| }; |
| } |
| |
| static void handleDiagnoseAsBuiltinAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| const auto *DeclFD = cast<FunctionDecl>(D); |
| |
| if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(DeclFD)) |
| if (!MethodDecl->isStatic()) { |
| S.Diag(AL.getLoc(), diag::err_attribute_no_member_function) << AL; |
| return; |
| } |
| |
| auto DiagnoseType = [&](unsigned Index, AttributeArgumentNType T) { |
| SourceLocation Loc = [&]() { |
| auto Union = AL.getArg(Index - 1); |
| if (auto *E = dyn_cast<Expr *>(Union)) |
| return E->getBeginLoc(); |
| return cast<IdentifierLoc *>(Union)->Loc; |
| }(); |
| |
| S.Diag(Loc, diag::err_attribute_argument_n_type) << AL << Index << T; |
| }; |
| |
| FunctionDecl *AttrFD = [&]() -> FunctionDecl * { |
| if (!AL.isArgExpr(0)) |
| return nullptr; |
| auto *F = dyn_cast_if_present<DeclRefExpr>(AL.getArgAsExpr(0)); |
| if (!F) |
| return nullptr; |
| return dyn_cast_if_present<FunctionDecl>(F->getFoundDecl()); |
| }(); |
| |
| if (!AttrFD || !AttrFD->getBuiltinID(true)) { |
| DiagnoseType(1, AANT_ArgumentBuiltinFunction); |
| return; |
| } |
| |
| if (AttrFD->getNumParams() != AL.getNumArgs() - 1) { |
| S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments_for) |
| << AL << AttrFD << AttrFD->getNumParams(); |
| return; |
| } |
| |
| SmallVector<unsigned, 8> Indices; |
| |
| for (unsigned I = 1; I < AL.getNumArgs(); ++I) { |
| if (!AL.isArgExpr(I)) { |
| DiagnoseType(I + 1, AANT_ArgumentIntegerConstant); |
| return; |
| } |
| |
| const Expr *IndexExpr = AL.getArgAsExpr(I); |
| uint32_t Index; |
| |
| if (!S.checkUInt32Argument(AL, IndexExpr, Index, I + 1, false)) |
| return; |
| |
| if (Index > DeclFD->getNumParams()) { |
| S.Diag(AL.getLoc(), diag::err_attribute_bounds_for_function) |
| << AL << Index << DeclFD << DeclFD->getNumParams(); |
| return; |
| } |
| |
| QualType T1 = AttrFD->getParamDecl(I - 1)->getType(); |
| QualType T2 = DeclFD->getParamDecl(Index - 1)->getType(); |
| |
| if (T1.getCanonicalType().getUnqualifiedType() != |
| T2.getCanonicalType().getUnqualifiedType()) { |
| S.Diag(IndexExpr->getBeginLoc(), diag::err_attribute_parameter_types) |
| << AL << Index << DeclFD << T2 << I << AttrFD << T1; |
| return; |
| } |
| |
| Indices.push_back(Index - 1); |
| } |
| |
| D->addAttr(::new (S.Context) DiagnoseAsBuiltinAttr( |
| S.Context, AL, AttrFD, Indices.data(), Indices.size())); |
| } |
| |
| static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if); |
| |
| Expr *Cond; |
| StringRef Msg; |
| if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg)) |
| return; |
| |
| StringRef DefaultSevStr; |
| if (!S.checkStringLiteralArgumentAttr(AL, 2, DefaultSevStr)) |
| return; |
| |
| DiagnoseIfAttr::DefaultSeverity DefaultSev; |
| if (!DiagnoseIfAttr::ConvertStrToDefaultSeverity(DefaultSevStr, DefaultSev)) { |
| S.Diag(AL.getArgAsExpr(2)->getBeginLoc(), |
| diag::err_diagnose_if_invalid_diagnostic_type); |
| return; |
| } |
| |
| StringRef WarningGroup; |
| SmallVector<StringRef, 2> Options; |
| if (AL.getNumArgs() > 3) { |
| if (!S.checkStringLiteralArgumentAttr(AL, 3, WarningGroup)) |
| return; |
| if (WarningGroup.empty() || |
| !S.getDiagnostics().getDiagnosticIDs()->getGroupForWarningOption( |
| WarningGroup)) { |
| S.Diag(AL.getArgAsExpr(3)->getBeginLoc(), |
| diag::err_diagnose_if_unknown_warning) |
| << WarningGroup; |
| return; |
| } |
| } |
| |
| bool ArgDependent = false; |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) |
| ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond); |
| D->addAttr(::new (S.Context) DiagnoseIfAttr( |
| S.Context, AL, Cond, Msg, DefaultSev, WarningGroup, ArgDependent, |
| cast<NamedDecl>(D))); |
| } |
| |
| static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| static constexpr const StringRef kWildcard = "*"; |
| |
| llvm::SmallVector<StringRef, 16> Names; |
| bool HasWildcard = false; |
| |
| const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) { |
| if (Name == kWildcard) |
| HasWildcard = true; |
| Names.push_back(Name); |
| }; |
| |
| // Add previously defined attributes. |
| if (const auto *NBA = D->getAttr<NoBuiltinAttr>()) |
| for (StringRef BuiltinName : NBA->builtinNames()) |
| AddBuiltinName(BuiltinName); |
| |
| // Add current attributes. |
| if (AL.getNumArgs() == 0) |
| AddBuiltinName(kWildcard); |
| else |
| for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
| StringRef BuiltinName; |
| SourceLocation LiteralLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc)) |
| return; |
| |
| if (Builtin::Context::isBuiltinFunc(BuiltinName)) |
| AddBuiltinName(BuiltinName); |
| else |
| S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name) |
| << BuiltinName << AL; |
| } |
| |
| // Repeating the same attribute is fine. |
| llvm::sort(Names); |
| Names.erase(std::unique(Names.begin(), Names.end()), Names.end()); |
| |
| // Empty no_builtin must be on its own. |
| if (HasWildcard && Names.size() > 1) |
| S.Diag(D->getLocation(), |
| diag::err_attribute_no_builtin_wildcard_or_builtin_name) |
| << AL; |
| |
| if (D->hasAttr<NoBuiltinAttr>()) |
| D->dropAttr<NoBuiltinAttr>(); |
| D->addAttr(::new (S.Context) |
| NoBuiltinAttr(S.Context, AL, Names.data(), Names.size())); |
| } |
| |
| static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (D->hasAttr<PassObjectSizeAttr>()) { |
| S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL; |
| return; |
| } |
| |
| Expr *E = AL.getArgAsExpr(0); |
| uint32_t Type; |
| if (!S.checkUInt32Argument(AL, E, Type, /*Idx=*/1)) |
| return; |
| |
| // pass_object_size's argument is passed in as the second argument of |
| // __builtin_object_size. So, it has the same constraints as that second |
| // argument; namely, it must be in the range [0, 3]. |
| if (Type > 3) { |
| S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range) |
| << AL << 0 << 3 << E->getSourceRange(); |
| return; |
| } |
| |
| // pass_object_size is only supported on constant pointer parameters; as a |
| // kindness to users, we allow the parameter to be non-const for declarations. |
| // At this point, we have no clue if `D` belongs to a function declaration or |
| // definition, so we defer the constness check until later. |
| if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) { |
| S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type)); |
| } |
| |
| static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| ConsumableAttr::ConsumedState DefaultState; |
| |
| if (AL.isArgIdent(0)) { |
| IdentifierLoc *IL = AL.getArgAsIdent(0); |
| if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(), |
| DefaultState)) { |
| S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL |
| << IL->Ident; |
| return; |
| } |
| } else { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState)); |
| } |
| |
| static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD, |
| const ParsedAttr &AL) { |
| QualType ThisType = MD->getFunctionObjectParameterType(); |
| |
| if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) { |
| if (!RD->hasAttr<ConsumableAttr>()) { |
| S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD; |
| |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!AL.checkAtLeastNumArgs(S, 1)) |
| return; |
| |
| if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL)) |
| return; |
| |
| SmallVector<CallableWhenAttr::ConsumedState, 3> States; |
| for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) { |
| CallableWhenAttr::ConsumedState CallableState; |
| |
| StringRef StateString; |
| SourceLocation Loc; |
| if (AL.isArgIdent(ArgIndex)) { |
| IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex); |
| StateString = Ident->Ident->getName(); |
| Loc = Ident->Loc; |
| } else { |
| if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc)) |
| return; |
| } |
| |
| if (!CallableWhenAttr::ConvertStrToConsumedState(StateString, |
| CallableState)) { |
| S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString; |
| return; |
| } |
| |
| States.push_back(CallableState); |
| } |
| |
| D->addAttr(::new (S.Context) |
| CallableWhenAttr(S.Context, AL, States.data(), States.size())); |
| } |
| |
| static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| ParamTypestateAttr::ConsumedState ParamState; |
| |
| if (AL.isArgIdent(0)) { |
| IdentifierLoc *Ident = AL.getArgAsIdent(0); |
| StringRef StateString = Ident->Ident->getName(); |
| |
| if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString, |
| ParamState)) { |
| S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) |
| << AL << StateString; |
| return; |
| } |
| } else { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| // FIXME: This check is currently being done in the analysis. It can be |
| // enabled here only after the parser propagates attributes at |
| // template specialization definition, not declaration. |
| //QualType ReturnType = cast<ParmVarDecl>(D)->getType(); |
| //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); |
| // |
| //if (!RD || !RD->hasAttr<ConsumableAttr>()) { |
| // S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) << |
| // ReturnType.getAsString(); |
| // return; |
| //} |
| |
| D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState)); |
| } |
| |
| static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| ReturnTypestateAttr::ConsumedState ReturnState; |
| |
| if (AL.isArgIdent(0)) { |
| IdentifierLoc *IL = AL.getArgAsIdent(0); |
| if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(), |
| ReturnState)) { |
| S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL |
| << IL->Ident; |
| return; |
| } |
| } else { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| // FIXME: This check is currently being done in the analysis. It can be |
| // enabled here only after the parser propagates attributes at |
| // template specialization definition, not declaration. |
| // QualType ReturnType; |
| // |
| // if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) { |
| // ReturnType = Param->getType(); |
| // |
| //} else if (const CXXConstructorDecl *Constructor = |
| // dyn_cast<CXXConstructorDecl>(D)) { |
| // ReturnType = Constructor->getFunctionObjectParameterType(); |
| // |
| //} else { |
| // |
| // ReturnType = cast<FunctionDecl>(D)->getCallResultType(); |
| //} |
| // |
| // const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); |
| // |
| // if (!RD || !RD->hasAttr<ConsumableAttr>()) { |
| // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) << |
| // ReturnType.getAsString(); |
| // return; |
| //} |
| |
| D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState)); |
| } |
| |
| static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL)) |
| return; |
| |
| SetTypestateAttr::ConsumedState NewState; |
| if (AL.isArgIdent(0)) { |
| IdentifierLoc *Ident = AL.getArgAsIdent(0); |
| StringRef Param = Ident->Ident->getName(); |
| if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) { |
| S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL |
| << Param; |
| return; |
| } |
| } else { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState)); |
| } |
| |
| static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL)) |
| return; |
| |
| TestTypestateAttr::ConsumedState TestState; |
| if (AL.isArgIdent(0)) { |
| IdentifierLoc *Ident = AL.getArgAsIdent(0); |
| StringRef Param = Ident->Ident->getName(); |
| if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) { |
| S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL |
| << Param; |
| return; |
| } |
| } else { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState)); |
| } |
| |
| static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Remember this typedef decl, we will need it later for diagnostics. |
| if (isa<TypedefNameDecl>(D)) |
| S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D)); |
| } |
| |
| static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (auto *TD = dyn_cast<TagDecl>(D)) |
| TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); |
| else if (auto *FD = dyn_cast<FieldDecl>(D)) { |
| bool BitfieldByteAligned = (!FD->getType()->isDependentType() && |
| !FD->getType()->isIncompleteType() && |
| FD->isBitField() && |
| S.Context.getTypeAlign(FD->getType()) <= 8); |
| |
| if (S.getASTContext().getTargetInfo().getTriple().isPS()) { |
| if (BitfieldByteAligned) |
| // The PS4/PS5 targets need to maintain ABI backwards compatibility. |
| S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type) |
| << AL << FD->getType(); |
| else |
| FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); |
| } else { |
| // Report warning about changed offset in the newer compiler versions. |
| if (BitfieldByteAligned) |
| S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield); |
| |
| FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); |
| } |
| |
| } else |
| S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL; |
| } |
| |
| static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) { |
| auto *RD = cast<CXXRecordDecl>(D); |
| ClassTemplateDecl *CTD = RD->getDescribedClassTemplate(); |
| assert(CTD && "attribute does not appertain to this declaration"); |
| |
| ParsedType PT = AL.getTypeArg(); |
| TypeSourceInfo *TSI = nullptr; |
| QualType T = S.GetTypeFromParser(PT, &TSI); |
| if (!TSI) |
| TSI = S.Context.getTrivialTypeSourceInfo(T, AL.getLoc()); |
| |
| if (!T.hasQualifiers() && T->isTypedefNameType()) { |
| // Find the template name, if this type names a template specialization. |
| const TemplateDecl *Template = nullptr; |
| if (const auto *CTSD = dyn_cast_if_present<ClassTemplateSpecializationDecl>( |
| T->getAsCXXRecordDecl())) { |
| Template = CTSD->getSpecializedTemplate(); |
| } else if (const auto *TST = T->getAs<TemplateSpecializationType>()) { |
| while (TST && TST->isTypeAlias()) |
| TST = TST->getAliasedType()->getAs<TemplateSpecializationType>(); |
| if (TST) |
| Template = TST->getTemplateName().getAsTemplateDecl(); |
| } |
| |
| if (Template && declaresSameEntity(Template, CTD)) { |
| D->addAttr(::new (S.Context) PreferredNameAttr(S.Context, AL, TSI)); |
| return; |
| } |
| } |
| |
| S.Diag(AL.getLoc(), diag::err_attribute_preferred_name_arg_invalid) |
| << T << CTD; |
| if (const auto *TT = T->getAs<TypedefType>()) |
| S.Diag(TT->getDecl()->getLocation(), diag::note_entity_declared_at) |
| << TT->getDecl(); |
| } |
| |
| static void handleNoSpecializations(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Message; |
| if (AL.getNumArgs() != 0) |
| S.checkStringLiteralArgumentAttr(AL, 0, Message); |
| D->getDescribedTemplate()->addAttr( |
| NoSpecializationsAttr::Create(S.Context, Message, AL)); |
| } |
| |
| bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) { |
| if (T->isDependentType()) |
| return true; |
| if (RefOkay) { |
| if (T->isReferenceType()) |
| return true; |
| } else { |
| T = T.getNonReferenceType(); |
| } |
| |
| // The nonnull attribute, and other similar attributes, can be applied to a |
| // transparent union that contains a pointer type. |
| if (const RecordType *UT = T->getAsUnionType()) { |
| if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) { |
| RecordDecl *UD = UT->getDecl(); |
| for (const auto *I : UD->fields()) { |
| QualType QT = I->getType(); |
| if (QT->isAnyPointerType() || QT->isBlockPointerType()) |
| return true; |
| } |
| } |
| } |
| |
| return T->isAnyPointerType() || T->isBlockPointerType(); |
| } |
| |
| static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL, |
| SourceRange AttrParmRange, |
| SourceRange TypeRange, |
| bool isReturnValue = false) { |
| if (!S.isValidPointerAttrType(T)) { |
| if (isReturnValue) |
| S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) |
| << AL << AttrParmRange << TypeRange; |
| else |
| S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only) |
| << AL << AttrParmRange << TypeRange << 0; |
| return false; |
| } |
| return true; |
| } |
| |
| static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| SmallVector<ParamIdx, 8> NonNullArgs; |
| for (unsigned I = 0; I < AL.getNumArgs(); ++I) { |
| Expr *Ex = AL.getArgAsExpr(I); |
| ParamIdx Idx; |
| if (!S.checkFunctionOrMethodParameterIndex( |
| D, AL, I + 1, Ex, Idx, |
| /*CanIndexImplicitThis=*/false, |
| /*CanIndexVariadicArguments=*/true)) |
| return; |
| |
| // Is the function argument a pointer type? |
| if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) && |
| !attrNonNullArgCheck( |
| S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL, |
| Ex->getSourceRange(), |
| getFunctionOrMethodParamRange(D, Idx.getASTIndex()))) |
| continue; |
| |
| NonNullArgs.push_back(Idx); |
| } |
| |
| // If no arguments were specified to __attribute__((nonnull)) then all pointer |
| // arguments have a nonnull attribute; warn if there aren't any. Skip this |
| // check if the attribute came from a macro expansion or a template |
| // instantiation. |
| if (NonNullArgs.empty() && AL.getLoc().isFileID() && |
| !S.inTemplateInstantiation()) { |
| bool AnyPointers = isFunctionOrMethodVariadic(D); |
| for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); |
| I != E && !AnyPointers; ++I) { |
| QualType T = getFunctionOrMethodParamType(D, I); |
| if (S.isValidPointerAttrType(T)) |
| AnyPointers = true; |
| } |
| |
| if (!AnyPointers) |
| S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers); |
| } |
| |
| ParamIdx *Start = NonNullArgs.data(); |
| unsigned Size = NonNullArgs.size(); |
| llvm::array_pod_sort(Start, Start + Size); |
| D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size)); |
| } |
| |
| static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D, |
| const ParsedAttr &AL) { |
| if (AL.getNumArgs() > 0) { |
| if (D->getFunctionType()) { |
| handleNonNullAttr(S, D, AL); |
| } else { |
| S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args) |
| << D->getSourceRange(); |
| } |
| return; |
| } |
| |
| // Is the argument a pointer type? |
| if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(), |
| D->getSourceRange())) |
| return; |
| |
| D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0)); |
| } |
| |
| static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| QualType ResultType = getFunctionOrMethodResultType(D); |
| SourceRange SR = getFunctionOrMethodResultSourceRange(D); |
| if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR, |
| /* isReturnValue */ true)) |
| return; |
| |
| D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL)); |
| } |
| |
| static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (D->isInvalidDecl()) |
| return; |
| |
| // noescape only applies to pointer types. |
| QualType T = cast<ParmVarDecl>(D)->getType(); |
| if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only) |
| << AL << AL.getRange() << 0; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL)); |
| } |
| |
| static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| Expr *E = AL.getArgAsExpr(0), |
| *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr; |
| S.AddAssumeAlignedAttr(D, AL, E, OE); |
| } |
| |
| static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0)); |
| } |
| |
| void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, |
| Expr *OE) { |
| QualType ResultType = getFunctionOrMethodResultType(D); |
| SourceRange SR = getFunctionOrMethodResultSourceRange(D); |
| |
| AssumeAlignedAttr TmpAttr(Context, CI, E, OE); |
| SourceLocation AttrLoc = TmpAttr.getLocation(); |
| |
| if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) { |
| Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) |
| << &TmpAttr << TmpAttr.getRange() << SR; |
| return; |
| } |
| |
| if (!E->isValueDependent()) { |
| std::optional<llvm::APSInt> I = llvm::APSInt(64); |
| if (!(I = E->getIntegerConstantExpr(Context))) { |
| if (OE) |
| Diag(AttrLoc, diag::err_attribute_argument_n_type) |
| << &TmpAttr << 1 << AANT_ArgumentIntegerConstant |
| << E->getSourceRange(); |
| else |
| Diag(AttrLoc, diag::err_attribute_argument_type) |
| << &TmpAttr << AANT_ArgumentIntegerConstant |
| << E->getSourceRange(); |
| return; |
| } |
| |
| if (!I->isPowerOf2()) { |
| Diag(AttrLoc, diag::err_alignment_not_power_of_two) |
| << E->getSourceRange(); |
| return; |
| } |
| |
| if (*I > Sema::MaximumAlignment) |
| Diag(CI.getLoc(), diag::warn_assume_aligned_too_great) |
| << CI.getRange() << Sema::MaximumAlignment; |
| } |
| |
| if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Context)) { |
| Diag(AttrLoc, diag::err_attribute_argument_n_type) |
| << &TmpAttr << 2 << AANT_ArgumentIntegerConstant |
| << OE->getSourceRange(); |
| return; |
| } |
| |
| D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE)); |
| } |
| |
| void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI, |
| Expr *ParamExpr) { |
| QualType ResultType = getFunctionOrMethodResultType(D); |
| |
| AllocAlignAttr TmpAttr(Context, CI, ParamIdx()); |
| SourceLocation AttrLoc = CI.getLoc(); |
| |
| if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) { |
| Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) |
| << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D); |
| return; |
| } |
| |
| ParamIdx Idx; |
| const auto *FuncDecl = cast<FunctionDecl>(D); |
| if (!checkFunctionOrMethodParameterIndex(FuncDecl, TmpAttr, |
| /*AttrArgNum=*/1, ParamExpr, Idx)) |
| return; |
| |
| QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex()); |
| if (!Ty->isDependentType() && !Ty->isIntegralType(Context) && |
| !Ty->isAlignValT()) { |
| Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only) |
| << &TmpAttr |
| << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange(); |
| return; |
| } |
| |
| D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx)); |
| } |
| |
| /// Normalize the attribute, __foo__ becomes foo. |
| /// Returns true if normalization was applied. |
| static bool normalizeName(StringRef &AttrName) { |
| if (AttrName.size() > 4 && AttrName.starts_with("__") && |
| AttrName.ends_with("__")) { |
| AttrName = AttrName.drop_front(2).drop_back(2); |
| return true; |
| } |
| return false; |
| } |
| |
| static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // This attribute must be applied to a function declaration. The first |
| // argument to the attribute must be an identifier, the name of the resource, |
| // for example: malloc. The following arguments must be argument indexes, the |
| // arguments must be of integer type for Returns, otherwise of pointer type. |
| // The difference between Holds and Takes is that a pointer may still be used |
| // after being held. free() should be __attribute((ownership_takes)), whereas |
| // a list append function may well be __attribute((ownership_holds)). |
| |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 1 << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| // Figure out our Kind. |
| OwnershipAttr::OwnershipKind K = |
| OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind(); |
| |
| // Check arguments. |
| switch (K) { |
| case OwnershipAttr::Takes: |
| case OwnershipAttr::Holds: |
| if (AL.getNumArgs() < 2) { |
| S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2; |
| return; |
| } |
| break; |
| case OwnershipAttr::Returns: |
| if (AL.getNumArgs() > 2) { |
| S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; |
| return; |
| } |
| break; |
| } |
| |
| // Allow only pointers to be return type for functions with ownership_returns |
| // attribute. This matches with current OwnershipAttr::Takes semantics |
| if (K == OwnershipAttr::Returns && |
| !getFunctionOrMethodResultType(D)->isPointerType()) { |
| S.Diag(AL.getLoc(), diag::err_ownership_takes_return_type) << AL; |
| return; |
| } |
| |
| IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident; |
| |
| StringRef ModuleName = Module->getName(); |
| if (normalizeName(ModuleName)) { |
| Module = &S.PP.getIdentifierTable().get(ModuleName); |
| } |
| |
| SmallVector<ParamIdx, 8> OwnershipArgs; |
| for (unsigned i = 1; i < AL.getNumArgs(); ++i) { |
| Expr *Ex = AL.getArgAsExpr(i); |
| ParamIdx Idx; |
| if (!S.checkFunctionOrMethodParameterIndex(D, AL, i, Ex, Idx)) |
| return; |
| |
| // Is the function argument a pointer type? |
| QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex()); |
| int Err = -1; // No error |
| switch (K) { |
| case OwnershipAttr::Takes: |
| case OwnershipAttr::Holds: |
| if (!T->isAnyPointerType() && !T->isBlockPointerType()) |
| Err = 0; |
| break; |
| case OwnershipAttr::Returns: |
| if (!T->isIntegerType()) |
| Err = 1; |
| break; |
| } |
| if (-1 != Err) { |
| S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err |
| << Ex->getSourceRange(); |
| return; |
| } |
| |
| // Check we don't have a conflict with another ownership attribute. |
| for (const auto *I : D->specific_attrs<OwnershipAttr>()) { |
| // Cannot have two ownership attributes of different kinds for the same |
| // index. |
| if (I->getOwnKind() != K && llvm::is_contained(I->args(), Idx)) { |
| S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) |
| << AL << I |
| << (AL.isRegularKeywordAttribute() || |
| I->isRegularKeywordAttribute()); |
| return; |
| } else if (K == OwnershipAttr::Returns && |
| I->getOwnKind() == OwnershipAttr::Returns) { |
| // A returns attribute conflicts with any other returns attribute using |
| // a different index. |
| if (!llvm::is_contained(I->args(), Idx)) { |
| S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch) |
| << I->args_begin()->getSourceIndex(); |
| if (I->args_size()) |
| S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch) |
| << Idx.getSourceIndex() << Ex->getSourceRange(); |
| return; |
| } |
| } else if (K == OwnershipAttr::Takes && |
| I->getOwnKind() == OwnershipAttr::Takes) { |
| if (I->getModule()->getName() != ModuleName) { |
| S.Diag(I->getLocation(), diag::err_ownership_takes_class_mismatch) |
| << I->getModule()->getName(); |
| S.Diag(AL.getLoc(), diag::note_ownership_takes_class_mismatch) |
| << ModuleName << Ex->getSourceRange(); |
| |
| return; |
| } |
| } |
| } |
| OwnershipArgs.push_back(Idx); |
| } |
| |
| ParamIdx *Start = OwnershipArgs.data(); |
| unsigned Size = OwnershipArgs.size(); |
| llvm::array_pod_sort(Start, Start + Size); |
| D->addAttr(::new (S.Context) |
| OwnershipAttr(S.Context, AL, Module, Start, Size)); |
| } |
| |
| static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Check the attribute arguments. |
| if (AL.getNumArgs() > 1) { |
| S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; |
| return; |
| } |
| |
| // gcc rejects |
| // class c { |
| // static int a __attribute__((weakref ("v2"))); |
| // static int b() __attribute__((weakref ("f3"))); |
| // }; |
| // and ignores the attributes of |
| // void f(void) { |
| // static int a __attribute__((weakref ("v2"))); |
| // } |
| // we reject them |
| const DeclContext *Ctx = D->getDeclContext()->getRedeclContext(); |
| if (!Ctx->isFileContext()) { |
| S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context) |
| << cast<NamedDecl>(D); |
| return; |
| } |
| |
| // The GCC manual says |
| // |
| // At present, a declaration to which `weakref' is attached can only |
| // be `static'. |
| // |
| // It also says |
| // |
| // Without a TARGET, |
| // given as an argument to `weakref' or to `alias', `weakref' is |
| // equivalent to `weak'. |
| // |
| // gcc 4.4.1 will accept |
| // int a7 __attribute__((weakref)); |
| // as |
| // int a7 __attribute__((weak)); |
| // This looks like a bug in gcc. We reject that for now. We should revisit |
| // it if this behaviour is actually used. |
| |
| // GCC rejects |
| // static ((alias ("y"), weakref)). |
| // Should we? How to check that weakref is before or after alias? |
| |
| // FIXME: it would be good for us to keep the WeakRefAttr as-written instead |
| // of transforming it into an AliasAttr. The WeakRefAttr never uses the |
| // StringRef parameter it was given anyway. |
| StringRef Str; |
| if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str)) |
| // GCC will accept anything as the argument of weakref. Should we |
| // check for an existing decl? |
| D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str)); |
| |
| D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL)); |
| } |
| |
| // Mark alias/ifunc target as used. Due to name mangling, we look up the |
| // demangled name ignoring parameters (not supported by microsoftDemangle |
| // https://github.com/llvm/llvm-project/issues/88825). This should handle the |
| // majority of use cases while leaving namespace scope names unmarked. |
| static void markUsedForAliasOrIfunc(Sema &S, Decl *D, const ParsedAttr &AL, |
| StringRef Str) { |
| std::unique_ptr<char, llvm::FreeDeleter> Demangled; |
| if (S.getASTContext().getCXXABIKind() != TargetCXXABI::Microsoft) |
| Demangled.reset(llvm::itaniumDemangle(Str, /*ParseParams=*/false)); |
| std::unique_ptr<MangleContext> MC(S.Context.createMangleContext()); |
| SmallString<256> Name; |
| |
| const DeclarationNameInfo Target( |
| &S.Context.Idents.get(Demangled ? Demangled.get() : Str), AL.getLoc()); |
| LookupResult LR(S, Target, Sema::LookupOrdinaryName); |
| if (S.LookupName(LR, S.TUScope)) { |
| for (NamedDecl *ND : LR) { |
| if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) |
| continue; |
| if (MC->shouldMangleDeclName(ND)) { |
| llvm::raw_svector_ostream Out(Name); |
| Name.clear(); |
| MC->mangleName(GlobalDecl(ND), Out); |
| } else { |
| Name = ND->getIdentifier()->getName(); |
| } |
| if (Name == Str) |
| ND->markUsed(S.Context); |
| } |
| } |
| } |
| |
| static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Str; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) |
| return; |
| |
| // Aliases should be on declarations, not definitions. |
| const auto *FD = cast<FunctionDecl>(D); |
| if (FD->isThisDeclarationADefinition()) { |
| S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1; |
| return; |
| } |
| |
| markUsedForAliasOrIfunc(S, D, AL, Str); |
| D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str)); |
| } |
| |
| static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Str; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) |
| return; |
| |
| if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { |
| S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin); |
| return; |
| } |
| |
| if (S.Context.getTargetInfo().getTriple().isNVPTX()) { |
| CudaVersion Version = |
| ToCudaVersion(S.Context.getTargetInfo().getSDKVersion()); |
| if (Version != CudaVersion::UNKNOWN && Version < CudaVersion::CUDA_100) |
| S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx); |
| } |
| |
| // Aliases should be on declarations, not definitions. |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->isThisDeclarationADefinition()) { |
| S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0; |
| return; |
| } |
| } else { |
| const auto *VD = cast<VarDecl>(D); |
| if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) { |
| S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0; |
| return; |
| } |
| } |
| |
| markUsedForAliasOrIfunc(S, D, AL, Str); |
| D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str)); |
| } |
| |
| static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Model; |
| SourceLocation LiteralLoc; |
| // Check that it is a string. |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc)) |
| return; |
| |
| // Check that the value. |
| if (Model != "global-dynamic" && Model != "local-dynamic" |
| && Model != "initial-exec" && Model != "local-exec") { |
| S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg); |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model)); |
| } |
| |
| static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| QualType ResultType = getFunctionOrMethodResultType(D); |
| if (!ResultType->isAnyPointerType() && !ResultType->isBlockPointerType()) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) |
| << AL << getFunctionOrMethodResultSourceRange(D); |
| return; |
| } |
| |
| if (AL.getNumArgs() == 0) { |
| D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL)); |
| return; |
| } |
| |
| if (AL.getAttributeSpellingListIndex() == RestrictAttr::Declspec_restrict) { |
| // __declspec(restrict) accepts no arguments |
| S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 0; |
| return; |
| } |
| |
| // [[gnu::malloc(deallocator)]] with args specifies a deallocator function |
| Expr *DeallocE = AL.getArgAsExpr(0); |
| SourceLocation DeallocLoc = DeallocE->getExprLoc(); |
| FunctionDecl *DeallocFD = nullptr; |
| DeclarationNameInfo DeallocNI; |
| |
| if (auto *DRE = dyn_cast<DeclRefExpr>(DeallocE)) { |
| DeallocFD = dyn_cast<FunctionDecl>(DRE->getDecl()); |
| DeallocNI = DRE->getNameInfo(); |
| if (!DeallocFD) { |
| S.Diag(DeallocLoc, diag::err_attribute_malloc_arg_not_function) |
| << 1 << DeallocNI.getName(); |
| return; |
| } |
| } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(DeallocE)) { |
| DeallocFD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true); |
| DeallocNI = ULE->getNameInfo(); |
| if (!DeallocFD) { |
| S.Diag(DeallocLoc, diag::err_attribute_malloc_arg_not_function) |
| << 2 << DeallocNI.getName(); |
| if (ULE->getType() == S.Context.OverloadTy) |
| S.NoteAllOverloadCandidates(ULE); |
| return; |
| } |
| } else { |
| S.Diag(DeallocLoc, diag::err_attribute_malloc_arg_not_function) << 0; |
| return; |
| } |
| |
| // 2nd arg of [[gnu::malloc(deallocator, 2)]] with args specifies the param |
| // of deallocator that deallocates the pointer (defaults to 1) |
| ParamIdx DeallocPtrIdx; |
| if (AL.getNumArgs() == 1) { |
| DeallocPtrIdx = ParamIdx(1, DeallocFD); |
| |
| if (!DeallocPtrIdx.isValid() || |
| !getFunctionOrMethodParamType(DeallocFD, DeallocPtrIdx.getASTIndex()) |
| .getCanonicalType() |
| ->isPointerType()) { |
| S.Diag(DeallocLoc, |
| diag::err_attribute_malloc_arg_not_function_with_pointer_arg) |
| << DeallocNI.getName(); |
| return; |
| } |
| } else { |
| if (!S.checkFunctionOrMethodParameterIndex( |
| DeallocFD, AL, 2, AL.getArgAsExpr(1), DeallocPtrIdx, |
| /* CanIndexImplicitThis=*/false)) |
| return; |
| |
| QualType DeallocPtrArgType = |
| getFunctionOrMethodParamType(DeallocFD, DeallocPtrIdx.getASTIndex()); |
| if (!DeallocPtrArgType.getCanonicalType()->isPointerType()) { |
| S.Diag(DeallocLoc, |
| diag::err_attribute_malloc_arg_refers_to_non_pointer_type) |
| << DeallocPtrIdx.getSourceIndex() << DeallocPtrArgType |
| << DeallocNI.getName(); |
| return; |
| } |
| } |
| |
| // FIXME: we should add this attribute to Clang's AST, so that clang-analyzer |
| // can use it, see -Wmismatched-dealloc in GCC for what we can do with this. |
| S.Diag(AL.getLoc(), diag::warn_attribute_form_ignored) << AL; |
| D->addAttr(::new (S.Context) |
| RestrictAttr(S.Context, AL, DeallocE, DeallocPtrIdx)); |
| } |
| |
| static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Ensure we don't combine these with themselves, since that causes some |
| // confusing behavior. |
| if (AL.getParsedKind() == ParsedAttr::AT_CPUDispatch) { |
| if (checkAttrMutualExclusion<CPUSpecificAttr>(S, D, AL)) |
| return; |
| |
| if (const auto *Other = D->getAttr<CPUDispatchAttr>()) { |
| S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL; |
| S.Diag(Other->getLocation(), diag::note_conflicting_attribute); |
| return; |
| } |
| } else if (AL.getParsedKind() == ParsedAttr::AT_CPUSpecific) { |
| if (checkAttrMutualExclusion<CPUDispatchAttr>(S, D, AL)) |
| return; |
| |
| if (const auto *Other = D->getAttr<CPUSpecificAttr>()) { |
| S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL; |
| S.Diag(Other->getLocation(), diag::note_conflicting_attribute); |
| return; |
| } |
| } |
| |
| FunctionDecl *FD = cast<FunctionDecl>(D); |
| |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { |
| if (MD->getParent()->isLambda()) { |
| S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL; |
| return; |
| } |
| } |
| |
| if (!AL.checkAtLeastNumArgs(S, 1)) |
| return; |
| |
| SmallVector<IdentifierInfo *, 8> CPUs; |
| for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) { |
| if (!AL.isArgIdent(ArgNo)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo); |
| StringRef CPUName = CPUArg->Ident->getName().trim(); |
| |
| if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) { |
| S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value) |
| << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch); |
| return; |
| } |
| |
| const TargetInfo &Target = S.Context.getTargetInfo(); |
| if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) { |
| return Target.CPUSpecificManglingCharacter(CPUName) == |
| Target.CPUSpecificManglingCharacter(Cur->getName()); |
| })) { |
| S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries); |
| return; |
| } |
| CPUs.push_back(CPUArg->Ident); |
| } |
| |
| FD->setIsMultiVersion(true); |
| if (AL.getKind() == ParsedAttr::AT_CPUSpecific) |
| D->addAttr(::new (S.Context) |
| CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size())); |
| else |
| D->addAttr(::new (S.Context) |
| CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size())); |
| } |
| |
| static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (S.LangOpts.CPlusPlus) { |
| S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) |
| << AL << AttributeLangSupport::Cpp; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) CommonAttr(S.Context, AL)); |
| } |
| |
| static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (AL.isDeclspecAttribute()) { |
| const auto &Triple = S.getASTContext().getTargetInfo().getTriple(); |
| const auto &Arch = Triple.getArch(); |
| if (Arch != llvm::Triple::x86 && |
| (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch) |
| << AL << Triple.getArchName(); |
| return; |
| } |
| |
| // This form is not allowed to be written on a member function (static or |
| // nonstatic) when in Microsoft compatibility mode. |
| if (S.getLangOpts().MSVCCompat && isa<CXXMethodDecl>(D)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type) |
| << AL << AL.isRegularKeywordAttribute() << ExpectedNonMemberFunction; |
| return; |
| } |
| } |
| |
| D->addAttr(::new (S.Context) NakedAttr(S.Context, AL)); |
| } |
| |
| static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { |
| if (hasDeclarator(D)) return; |
| |
| if (!isa<ObjCMethodDecl>(D)) { |
| S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << Attrs << Attrs.isRegularKeywordAttribute() |
| << ExpectedFunctionOrMethod; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs)); |
| } |
| |
| static void handleStandardNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &A) { |
| // The [[_Noreturn]] spelling is deprecated in C23, so if that was used, |
| // issue an appropriate diagnostic. However, don't issue a diagnostic if the |
| // attribute name comes from a macro expansion. We don't want to punish users |
| // who write [[noreturn]] after including <stdnoreturn.h> (where 'noreturn' |
| // is defined as a macro which expands to '_Noreturn'). |
| if (!S.getLangOpts().CPlusPlus && |
| A.getSemanticSpelling() == CXX11NoReturnAttr::C23_Noreturn && |
| !(A.getLoc().isMacroID() && |
| S.getSourceManager().isInSystemMacro(A.getLoc()))) |
| S.Diag(A.getLoc(), diag::warn_deprecated_noreturn_spelling) << A.getRange(); |
| |
| D->addAttr(::new (S.Context) CXX11NoReturnAttr(S.Context, A)); |
| } |
| |
| static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { |
| if (!S.getLangOpts().CFProtectionBranch) |
| S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored); |
| else |
| handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs); |
| } |
| |
| bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) { |
| if (!Attrs.checkExactlyNumArgs(*this, 0)) { |
| Attrs.setInvalid(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool Sema::CheckAttrTarget(const ParsedAttr &AL) { |
| // Check whether the attribute is valid on the current target. |
| if (!AL.existsInTarget(Context.getTargetInfo())) { |
| Diag(AL.getLoc(), AL.isRegularKeywordAttribute() |
| ? diag::err_keyword_not_supported_on_target |
| : diag::warn_unknown_attribute_ignored) |
| << AL << AL.getRange(); |
| AL.setInvalid(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| |
| // The checking path for 'noreturn' and 'analyzer_noreturn' are different |
| // because 'analyzer_noreturn' does not impact the type. |
| if (!isFunctionOrMethodOrBlockForAttrSubject(D)) { |
| ValueDecl *VD = dyn_cast<ValueDecl>(D); |
| if (!VD || (!VD->getType()->isBlockPointerType() && |
| !VD->getType()->isFunctionPointerType())) { |
| S.Diag(AL.getLoc(), AL.isStandardAttributeSyntax() |
| ? diag::err_attribute_wrong_decl_type |
| : diag::warn_attribute_wrong_decl_type) |
| << AL << AL.isRegularKeywordAttribute() |
| << ExpectedFunctionMethodOrBlock; |
| return; |
| } |
| } |
| |
| D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL)); |
| } |
| |
| // PS3 PPU-specific. |
| static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| /* |
| Returning a Vector Class in Registers |
| |
| According to the PPU ABI specifications, a class with a single member of |
| vector type is returned in memory when used as the return value of a |
| function. |
| This results in inefficient code when implementing vector classes. To return |
| the value in a single vector register, add the vecreturn attribute to the |
| class definition. This attribute is also applicable to struct types. |
| |
| Example: |
| |
| struct Vector |
| { |
| __vector float xyzw; |
| } __attribute__((vecreturn)); |
| |
| Vector Add(Vector lhs, Vector rhs) |
| { |
| Vector result; |
| result.xyzw = vec_add(lhs.xyzw, rhs.xyzw); |
| return result; // This will be returned in a register |
| } |
| */ |
| if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) { |
| S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A; |
| return; |
| } |
| |
| const auto *R = cast<RecordDecl>(D); |
| int count = 0; |
| |
| if (!isa<CXXRecordDecl>(R)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member); |
| return; |
| } |
| |
| if (!cast<CXXRecordDecl>(R)->isPOD()) { |
| S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record); |
| return; |
| } |
| |
| for (const auto *I : R->fields()) { |
| if ((count == 1) || !I->getType()->isVectorType()) { |
| S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member); |
| return; |
| } |
| count++; |
| } |
| |
| D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL)); |
| } |
| |
| static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D, |
| const ParsedAttr &AL) { |
| if (isa<ParmVarDecl>(D)) { |
| // [[carries_dependency]] can only be applied to a parameter if it is a |
| // parameter of a function declaration or lambda. |
| if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) { |
| S.Diag(AL.getLoc(), |
| diag::err_carries_dependency_param_not_function_decl); |
| return; |
| } |
| } |
| |
| D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL)); |
| } |
| |
| static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName(); |
| |
| // If this is spelled as the standard C++17 attribute, but not in C++17, warn |
| // about using it as an extension. |
| if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr) |
| S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL; |
| |
| D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL)); |
| } |
| |
| static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| uint32_t priority = ConstructorAttr::DefaultPriority; |
| if (S.getLangOpts().HLSL && AL.getNumArgs()) { |
| S.Diag(AL.getLoc(), diag::err_hlsl_init_priority_unsupported); |
| return; |
| } |
| if (AL.getNumArgs() && |
| !S.checkUInt32Argument(AL, AL.getArgAsExpr(0), priority)) |
| return; |
| S.Diag(D->getLocation(), diag::warn_global_constructor) |
| << D->getSourceRange(); |
| |
| D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority)); |
| } |
| |
| static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| uint32_t priority = DestructorAttr::DefaultPriority; |
| if (AL.getNumArgs() && |
| !S.checkUInt32Argument(AL, AL.getArgAsExpr(0), priority)) |
| return; |
| S.Diag(D->getLocation(), diag::warn_global_destructor) << D->getSourceRange(); |
| |
| D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority)); |
| } |
| |
| template <typename AttrTy> |
| static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Handle the case where the attribute has a text message. |
| StringRef Str; |
| if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str)) |
| return; |
| |
| D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str)); |
| } |
| |
| static bool checkAvailabilityAttr(Sema &S, SourceRange Range, |
| IdentifierInfo *Platform, |
| VersionTuple Introduced, |
| VersionTuple Deprecated, |
| VersionTuple Obsoleted) { |
| StringRef PlatformName |
| = AvailabilityAttr::getPrettyPlatformName(Platform->getName()); |
| if (PlatformName.empty()) |
| PlatformName = Platform->getName(); |
| |
| // Ensure that Introduced <= Deprecated <= Obsoleted (although not all |
| // of these steps are needed). |
| if (!Introduced.empty() && !Deprecated.empty() && |
| !(Introduced <= Deprecated)) { |
| S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) |
| << 1 << PlatformName << Deprecated.getAsString() |
| << 0 << Introduced.getAsString(); |
| return true; |
| } |
| |
| if (!Introduced.empty() && !Obsoleted.empty() && |
| !(Introduced <= Obsoleted)) { |
| S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) |
| << 2 << PlatformName << Obsoleted.getAsString() |
| << 0 << Introduced.getAsString(); |
| return true; |
| } |
| |
| if (!Deprecated.empty() && !Obsoleted.empty() && |
| !(Deprecated <= Obsoleted)) { |
| S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) |
| << 2 << PlatformName << Obsoleted.getAsString() |
| << 1 << Deprecated.getAsString(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Check whether the two versions match. |
| /// |
| /// If either version tuple is empty, then they are assumed to match. If |
| /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y. |
| static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y, |
| bool BeforeIsOkay) { |
| if (X.empty() || Y.empty()) |
| return true; |
| |
| if (X == Y) |
| return true; |
| |
| if (BeforeIsOkay && X < Y) |
| return true; |
| |
| return false; |
| } |
| |
| AvailabilityAttr *Sema::mergeAvailabilityAttr( |
| NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform, |
| bool Implicit, VersionTuple Introduced, VersionTuple Deprecated, |
| VersionTuple Obsoleted, bool IsUnavailable, StringRef Message, |
| bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK, |
| int Priority, IdentifierInfo *Environment) { |
| VersionTuple MergedIntroduced = Introduced; |
| VersionTuple MergedDeprecated = Deprecated; |
| VersionTuple MergedObsoleted = Obsoleted; |
| bool FoundAny = false; |
| bool OverrideOrImpl = false; |
| switch (AMK) { |
| case AMK_None: |
| case AMK_Redeclaration: |
| OverrideOrImpl = false; |
| break; |
| |
| case AMK_Override: |
| case AMK_ProtocolImplementation: |
| case AMK_OptionalProtocolImplementation: |
| OverrideOrImpl = true; |
| break; |
| } |
| |
| if (D->hasAttrs()) { |
| AttrVec &Attrs = D->getAttrs(); |
| for (unsigned i = 0, e = Attrs.size(); i != e;) { |
| const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]); |
| if (!OldAA) { |
| ++i; |
| continue; |
| } |
| |
| IdentifierInfo *OldPlatform = OldAA->getPlatform(); |
| if (OldPlatform != Platform) { |
| ++i; |
| continue; |
| } |
| |
| IdentifierInfo *OldEnvironment = OldAA->getEnvironment(); |
| if (OldEnvironment != Environment) { |
| ++i; |
| continue; |
| } |
| |
| // If there is an existing availability attribute for this platform that |
| // has a lower priority use the existing one and discard the new |
| // attribute. |
| if (OldAA->getPriority() < Priority) |
| return nullptr; |
| |
| // If there is an existing attribute for this platform that has a higher |
| // priority than the new attribute then erase the old one and continue |
| // processing the attributes. |
| if (OldAA->getPriority() > Priority) { |
| Attrs.erase(Attrs.begin() + i); |
| --e; |
| continue; |
| } |
| |
| FoundAny = true; |
| VersionTuple OldIntroduced = OldAA->getIntroduced(); |
| VersionTuple OldDeprecated = OldAA->getDeprecated(); |
| VersionTuple OldObsoleted = OldAA->getObsoleted(); |
| bool OldIsUnavailable = OldAA->getUnavailable(); |
| |
| if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) || |
| !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) || |
| !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) || |
| !(OldIsUnavailable == IsUnavailable || |
| (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) { |
| if (OverrideOrImpl) { |
| int Which = -1; |
| VersionTuple FirstVersion; |
| VersionTuple SecondVersion; |
| if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) { |
| Which = 0; |
| FirstVersion = OldIntroduced; |
| SecondVersion = Introduced; |
| } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) { |
| Which = 1; |
| FirstVersion = Deprecated; |
| SecondVersion = OldDeprecated; |
| } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) { |
| Which = 2; |
| FirstVersion = Obsoleted; |
| SecondVersion = OldObsoleted; |
| } |
| |
| if (Which == -1) { |
| Diag(OldAA->getLocation(), |
| diag::warn_mismatched_availability_override_unavail) |
| << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) |
| << (AMK == AMK_Override); |
| } else if (Which != 1 && AMK == AMK_OptionalProtocolImplementation) { |
| // Allow different 'introduced' / 'obsoleted' availability versions |
| // on a method that implements an optional protocol requirement. It |
| // makes less sense to allow this for 'deprecated' as the user can't |
| // see if the method is 'deprecated' as 'respondsToSelector' will |
| // still return true when the method is deprecated. |
| ++i; |
| continue; |
| } else { |
| Diag(OldAA->getLocation(), |
| diag::warn_mismatched_availability_override) |
| << Which |
| << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) |
| << FirstVersion.getAsString() << SecondVersion.getAsString() |
| << (AMK == AMK_Override); |
| } |
| if (AMK == AMK_Override) |
| Diag(CI.getLoc(), diag::note_overridden_method); |
| else |
| Diag(CI.getLoc(), diag::note_protocol_method); |
| } else { |
| Diag(OldAA->getLocation(), diag::warn_mismatched_availability); |
| Diag(CI.getLoc(), diag::note_previous_attribute); |
| } |
| |
| Attrs.erase(Attrs.begin() + i); |
| --e; |
| continue; |
| } |
| |
| VersionTuple MergedIntroduced2 = MergedIntroduced; |
| VersionTuple MergedDeprecated2 = MergedDeprecated; |
| VersionTuple MergedObsoleted2 = MergedObsoleted; |
| |
| if (MergedIntroduced2.empty()) |
| MergedIntroduced2 = OldIntroduced; |
| if (MergedDeprecated2.empty()) |
| MergedDeprecated2 = OldDeprecated; |
| if (MergedObsoleted2.empty()) |
| MergedObsoleted2 = OldObsoleted; |
| |
| if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform, |
| MergedIntroduced2, MergedDeprecated2, |
| MergedObsoleted2)) { |
| Attrs.erase(Attrs.begin() + i); |
| --e; |
| continue; |
| } |
| |
| MergedIntroduced = MergedIntroduced2; |
| MergedDeprecated = MergedDeprecated2; |
| MergedObsoleted = MergedObsoleted2; |
| ++i; |
| } |
| } |
| |
| if (FoundAny && |
| MergedIntroduced == Introduced && |
| MergedDeprecated == Deprecated && |
| MergedObsoleted == Obsoleted) |
| return nullptr; |
| |
| // Only create a new attribute if !OverrideOrImpl, but we want to do |
| // the checking. |
| if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced, |
| MergedDeprecated, MergedObsoleted) && |
| !OverrideOrImpl) { |
| auto *Avail = ::new (Context) AvailabilityAttr( |
| Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable, |
| Message, IsStrict, Replacement, Priority, Environment); |
| Avail->setImplicit(Implicit); |
| return Avail; |
| } |
| return nullptr; |
| } |
| |
| static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (isa<UsingDecl, UnresolvedUsingTypenameDecl, UnresolvedUsingValueDecl>( |
| D)) { |
| S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using) |
| << AL; |
| return; |
| } |
| |
| if (!AL.checkExactlyNumArgs(S, 1)) |
| return; |
| IdentifierLoc *Platform = AL.getArgAsIdent(0); |
| |
| IdentifierInfo *II = Platform->Ident; |
| if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty()) |
| S.Diag(Platform->Loc, diag::warn_availability_unknown_platform) |
| << Platform->Ident; |
| |
| auto *ND = dyn_cast<NamedDecl>(D); |
| if (!ND) // We warned about this already, so just return. |
| return; |
| |
| AvailabilityChange Introduced = AL.getAvailabilityIntroduced(); |
| AvailabilityChange Deprecated = AL.getAvailabilityDeprecated(); |
| AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted(); |
| bool IsUnavailable = AL.getUnavailableLoc().isValid(); |
| bool IsStrict = AL.getStrictLoc().isValid(); |
| StringRef Str; |
| if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getMessageExpr())) |
| Str = SE->getString(); |
| StringRef Replacement; |
| if (const auto *SE = |
| dyn_cast_if_present<StringLiteral>(AL.getReplacementExpr())) |
| Replacement = SE->getString(); |
| |
| if (II->isStr("swift")) { |
| if (Introduced.isValid() || Obsoleted.isValid() || |
| (!IsUnavailable && !Deprecated.isValid())) { |
| S.Diag(AL.getLoc(), |
| diag::warn_availability_swift_unavailable_deprecated_only); |
| return; |
| } |
| } |
| |
| if (II->isStr("fuchsia")) { |
| std::optional<unsigned> Min, Sub; |
| if ((Min = Introduced.Version.getMinor()) || |
| (Sub = Introduced.Version.getSubminor())) { |
| S.Diag(AL.getLoc(), diag::warn_availability_fuchsia_unavailable_minor); |
| return; |
| } |
| } |
| |
| if (S.getLangOpts().HLSL && IsStrict) |
| S.Diag(AL.getStrictLoc(), diag::err_availability_unexpected_parameter) |
| << "strict" << /* HLSL */ 0; |
| |
| int PriorityModifier = AL.isPragmaClangAttribute() |
| ? Sema::AP_PragmaClangAttribute |
| : Sema::AP_Explicit; |
| |
| const IdentifierLoc *EnvironmentLoc = AL.getEnvironment(); |
| IdentifierInfo *IIEnvironment = nullptr; |
| if (EnvironmentLoc) { |
| if (S.getLangOpts().HLSL) { |
| IIEnvironment = EnvironmentLoc->Ident; |
| if (AvailabilityAttr::getEnvironmentType( |
| EnvironmentLoc->Ident->getName()) == |
| llvm::Triple::EnvironmentType::UnknownEnvironment) |
| S.Diag(EnvironmentLoc->Loc, diag::warn_availability_unknown_environment) |
| << EnvironmentLoc->Ident; |
| } else { |
| S.Diag(EnvironmentLoc->Loc, diag::err_availability_unexpected_parameter) |
| << "environment" << /* C/C++ */ 1; |
| } |
| } |
| |
| AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
| ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version, |
| Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement, |
| Sema::AMK_None, PriorityModifier, IIEnvironment); |
| if (NewAttr) |
| D->addAttr(NewAttr); |
| |
| // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning |
| // matches before the start of the watchOS platform. |
| if (S.Context.getTargetInfo().getTriple().isWatchOS()) { |
| IdentifierInfo *NewII = nullptr; |
| if (II->getName() == "ios") |
| NewII = &S.Context.Idents.get("watchos"); |
| else if (II->getName() == "ios_app_extension") |
| NewII = &S.Context.Idents.get("watchos_app_extension"); |
| |
| if (NewII) { |
| const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking(); |
| const auto *IOSToWatchOSMapping = |
| SDKInfo ? SDKInfo->getVersionMapping( |
| DarwinSDKInfo::OSEnvPair::iOStoWatchOSPair()) |
| : nullptr; |
| |
| auto adjustWatchOSVersion = |
| [IOSToWatchOSMapping](VersionTuple Version) -> VersionTuple { |
| if (Version.empty()) |
| return Version; |
| auto MinimumWatchOSVersion = VersionTuple(2, 0); |
| |
| if (IOSToWatchOSMapping) { |
| if (auto MappedVersion = IOSToWatchOSMapping->map( |
| Version, MinimumWatchOSVersion, std::nullopt)) { |
| return *MappedVersion; |
| } |
| } |
| |
| auto Major = Version.getMajor(); |
| auto NewMajor = Major >= 9 ? Major - 7 : 0; |
| if (NewMajor >= 2) { |
| if (Version.getMinor()) { |
| if (Version.getSubminor()) |
| return VersionTuple(NewMajor, *Version.getMinor(), |
| *Version.getSubminor()); |
| else |
| return VersionTuple(NewMajor, *Version.getMinor()); |
| } |
| return VersionTuple(NewMajor); |
| } |
| |
| return MinimumWatchOSVersion; |
| }; |
| |
| auto NewIntroduced = adjustWatchOSVersion(Introduced.Version); |
| auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version); |
| auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version); |
| |
| AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
| ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated, |
| NewObsoleted, IsUnavailable, Str, IsStrict, Replacement, |
| Sema::AMK_None, PriorityModifier + Sema::AP_InferredFromOtherPlatform, |
| IIEnvironment); |
| if (NewAttr) |
| D->addAttr(NewAttr); |
| } |
| } else if (S.Context.getTargetInfo().getTriple().isTvOS()) { |
| // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning |
| // matches before the start of the tvOS platform. |
| IdentifierInfo *NewII = nullptr; |
| if (II->getName() == "ios") |
| NewII = &S.Context.Idents.get("tvos"); |
| else if (II->getName() == "ios_app_extension") |
| NewII = &S.Context.Idents.get("tvos_app_extension"); |
| |
| if (NewII) { |
| const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking(); |
| const auto *IOSToTvOSMapping = |
| SDKInfo ? SDKInfo->getVersionMapping( |
| DarwinSDKInfo::OSEnvPair::iOStoTvOSPair()) |
| : nullptr; |
| |
| auto AdjustTvOSVersion = |
| [IOSToTvOSMapping](VersionTuple Version) -> VersionTuple { |
| if (Version.empty()) |
| return Version; |
| |
| if (IOSToTvOSMapping) { |
| if (auto MappedVersion = IOSToTvOSMapping->map( |
| Version, VersionTuple(0, 0), std::nullopt)) { |
| return *MappedVersion; |
| } |
| } |
| return Version; |
| }; |
| |
| auto NewIntroduced = AdjustTvOSVersion(Introduced.Version); |
| auto NewDeprecated = AdjustTvOSVersion(Deprecated.Version); |
| auto NewObsoleted = AdjustTvOSVersion(Obsoleted.Version); |
| |
| AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
| ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated, |
| NewObsoleted, IsUnavailable, Str, IsStrict, Replacement, |
| Sema::AMK_None, PriorityModifier + Sema::AP_InferredFromOtherPlatform, |
| IIEnvironment); |
| if (NewAttr) |
| D->addAttr(NewAttr); |
| } |
| } else if (S.Context.getTargetInfo().getTriple().getOS() == |
| llvm::Triple::IOS && |
| S.Context.getTargetInfo().getTriple().isMacCatalystEnvironment()) { |
| auto GetSDKInfo = [&]() { |
| return S.getDarwinSDKInfoForAvailabilityChecking(AL.getRange().getBegin(), |
| "macOS"); |
| }; |
| |
| // Transcribe "ios" to "maccatalyst" (and add a new attribute). |
| IdentifierInfo *NewII = nullptr; |
| if (II->getName() == "ios") |
| NewII = &S.Context.Idents.get("maccatalyst"); |
| else if (II->getName() == "ios_app_extension") |
| NewII = &S.Context.Idents.get("maccatalyst_app_extension"); |
| if (NewII) { |
| auto MinMacCatalystVersion = [](const VersionTuple &V) { |
| if (V.empty()) |
| return V; |
| if (V.getMajor() < 13 || |
| (V.getMajor() == 13 && V.getMinor() && *V.getMinor() < 1)) |
| return VersionTuple(13, 1); // The min Mac Catalyst version is 13.1. |
| return V; |
| }; |
| AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
| ND, AL, NewII, true /*Implicit*/, |
| MinMacCatalystVersion(Introduced.Version), |
| MinMacCatalystVersion(Deprecated.Version), |
| MinMacCatalystVersion(Obsoleted.Version), IsUnavailable, Str, |
| IsStrict, Replacement, Sema::AMK_None, |
| PriorityModifier + Sema::AP_InferredFromOtherPlatform, IIEnvironment); |
| if (NewAttr) |
| D->addAttr(NewAttr); |
| } else if (II->getName() == "macos" && GetSDKInfo() && |
| (!Introduced.Version.empty() || !Deprecated.Version.empty() || |
| !Obsoleted.Version.empty())) { |
| if (const auto *MacOStoMacCatalystMapping = |
| GetSDKInfo()->getVersionMapping( |
| DarwinSDKInfo::OSEnvPair::macOStoMacCatalystPair())) { |
| // Infer Mac Catalyst availability from the macOS availability attribute |
| // if it has versioned availability. Don't infer 'unavailable'. This |
| // inferred availability has lower priority than the other availability |
| // attributes that are inferred from 'ios'. |
| NewII = &S.Context.Idents.get("maccatalyst"); |
| auto RemapMacOSVersion = |
| [&](const VersionTuple &V) -> std::optional<VersionTuple> { |
| if (V.empty()) |
| return std::nullopt; |
| // API_TO_BE_DEPRECATED is 100000. |
| if (V.getMajor() == 100000) |
| return VersionTuple(100000); |
| // The minimum iosmac version is 13.1 |
| return MacOStoMacCatalystMapping->map(V, VersionTuple(13, 1), |
| std::nullopt); |
| }; |
| std::optional<VersionTuple> NewIntroduced = |
| RemapMacOSVersion(Introduced.Version), |
| NewDeprecated = |
| RemapMacOSVersion(Deprecated.Version), |
| NewObsoleted = |
| RemapMacOSVersion(Obsoleted.Version); |
| if (NewIntroduced || NewDeprecated || NewObsoleted) { |
| auto VersionOrEmptyVersion = |
| [](const std::optional<VersionTuple> &V) -> VersionTuple { |
| return V ? *V : VersionTuple(); |
| }; |
| AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
| ND, AL, NewII, true /*Implicit*/, |
| VersionOrEmptyVersion(NewIntroduced), |
| VersionOrEmptyVersion(NewDeprecated), |
| VersionOrEmptyVersion(NewObsoleted), /*IsUnavailable=*/false, Str, |
| IsStrict, Replacement, Sema::AMK_None, |
| PriorityModifier + Sema::AP_InferredFromOtherPlatform + |
| Sema::AP_InferredFromOtherPlatform, |
| IIEnvironment); |
| if (NewAttr) |
| D->addAttr(NewAttr); |
| } |
| } |
| } |
| } |
| } |
| |
| static void handleExternalSourceSymbolAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 4)) |
| return; |
| |
| StringRef Language; |
| if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getArgAsExpr(0))) |
| Language = SE->getString(); |
| StringRef DefinedIn; |
| if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getArgAsExpr(1))) |
| DefinedIn = SE->getString(); |
| bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr; |
| StringRef USR; |
| if (const auto *SE = dyn_cast_if_present<StringLiteral>(AL.getArgAsExpr(3))) |
| USR = SE->getString(); |
| |
| D->addAttr(::new (S.Context) ExternalSourceSymbolAttr( |
| S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration, USR)); |
| } |
| |
| template <class T> |
| static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI, |
| typename T::VisibilityType value) { |
| T *existingAttr = D->getAttr<T>(); |
| if (existingAttr) { |
| typename T::VisibilityType existingValue = existingAttr->getVisibility(); |
| if (existingValue == value) |
| return nullptr; |
| S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility); |
| S.Diag(CI.getLoc(), diag::note_previous_attribute); |
| D->dropAttr<T>(); |
| } |
| return ::new (S.Context) T(S.Context, CI, value); |
| } |
| |
| VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, |
| const AttributeCommonInfo &CI, |
| VisibilityAttr::VisibilityType Vis) { |
| return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, CI, Vis); |
| } |
| |
| TypeVisibilityAttr * |
| Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, |
| TypeVisibilityAttr::VisibilityType Vis) { |
| return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, CI, Vis); |
| } |
| |
| static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL, |
| bool isTypeVisibility) { |
| // Visibility attributes don't mean anything on a typedef. |
| if (isa<TypedefNameDecl>(D)) { |
| S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL; |
| return; |
| } |
| |
| // 'type_visibility' can only go on a type or namespace. |
| if (isTypeVisibility && !(isa<TagDecl>(D) || isa<ObjCInterfaceDecl>(D) || |
| isa<NamespaceDecl>(D))) { |
| S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type) |
| << AL << AL.isRegularKeywordAttribute() << ExpectedTypeOrNamespace; |
| return; |
| } |
| |
| // Check that the argument is a string literal. |
| StringRef TypeStr; |
| SourceLocation LiteralLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc)) |
| return; |
| |
| VisibilityAttr::VisibilityType type; |
| if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) { |
| S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL |
| << TypeStr; |
| return; |
| } |
| |
| // Complain about attempts to use protected visibility on targets |
| // (like Darwin) that don't support it. |
| if (type == VisibilityAttr::Protected && |
| !S.Context.getTargetInfo().hasProtectedVisibility()) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility); |
| type = VisibilityAttr::Default; |
| } |
| |
| Attr *newAttr; |
| if (isTypeVisibility) { |
| newAttr = S.mergeTypeVisibilityAttr( |
| D, AL, (TypeVisibilityAttr::VisibilityType)type); |
| } else { |
| newAttr = S.mergeVisibilityAttr(D, AL, type); |
| } |
| if (newAttr) |
| D->addAttr(newAttr); |
| } |
| |
| static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel; |
| if (AL.getNumArgs() > 0) { |
| Expr *E = AL.getArgAsExpr(0); |
| std::optional<llvm::APSInt> Idx = llvm::APSInt(32); |
| if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
| return; |
| } |
| |
| if (Idx->isSigned() && Idx->isNegative()) { |
| S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero) |
| << E->getSourceRange(); |
| return; |
| } |
| |
| sentinel = Idx->getZExtValue(); |
| } |
| |
| unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos; |
| if (AL.getNumArgs() > 1) { |
| Expr *E = AL.getArgAsExpr(1); |
| std::optional<llvm::APSInt> Idx = llvm::APSInt(32); |
| if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
| return; |
| } |
| nullPos = Idx->getZExtValue(); |
| |
| if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) { |
| // FIXME: This error message could be improved, it would be nice |
| // to say what the bounds actually are. |
| S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one) |
| << E->getSourceRange(); |
| return; |
| } |
| } |
| |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| const FunctionType *FT = FD->getType()->castAs<FunctionType>(); |
| if (isa<FunctionNoProtoType>(FT)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments); |
| return; |
| } |
| |
| if (!cast<FunctionProtoType>(FT)->isVariadic()) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; |
| return; |
| } |
| } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) { |
| if (!MD->isVariadic()) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; |
| return; |
| } |
| } else if (const auto *BD = dyn_cast<BlockDecl>(D)) { |
| if (!BD->isVariadic()) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1; |
| return; |
| } |
| } else if (const auto *V = dyn_cast<VarDecl>(D)) { |
| QualType Ty = V->getType(); |
| if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { |
| const FunctionType *FT = Ty->isFunctionPointerType() |
| ? D->getFunctionType() |
| : Ty->castAs<BlockPointerType>() |
| ->getPointeeType() |
| ->castAs<FunctionType>(); |
| if (!cast<FunctionProtoType>(FT)->isVariadic()) { |
| int m = Ty->isFunctionPointerType() ? 0 : 1; |
| S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m; |
| return; |
| } |
| } else { |
| S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << AL << AL.isRegularKeywordAttribute() |
| << ExpectedFunctionMethodOrBlock; |
| return; |
| } |
| } else { |
| S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << AL << AL.isRegularKeywordAttribute() |
| << ExpectedFunctionMethodOrBlock; |
| return; |
| } |
| D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos)); |
| } |
| |
| static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (D->getFunctionType() && |
| D->getFunctionType()->getReturnType()->isVoidType() && |
| !isa<CXXConstructorDecl>(D)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0; |
| return; |
| } |
| if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) |
| if (MD->getReturnType()->isVoidType()) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1; |
| return; |
| } |
| |
| StringRef Str; |
| if (AL.isStandardAttributeSyntax() && !AL.getScopeName()) { |
| // The standard attribute cannot be applied to variable declarations such |
| // as a function pointer. |
| if (isa<VarDecl>(D)) |
| S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << AL << AL.isRegularKeywordAttribute() |
| << ExpectedFunctionOrClassOrEnum; |
| |
| // If this is spelled as the standard C++17 attribute, but not in C++17, |
| // warn about using it as an extension. If there are attribute arguments, |
| // then claim it's a C++20 extension instead. |
| // FIXME: If WG14 does not seem likely to adopt the same feature, add an |
| // extension warning for C23 mode. |
| const LangOptions &LO = S.getLangOpts(); |
| if (AL.getNumArgs() == 1) { |
| if (LO.CPlusPlus && !LO.CPlusPlus20) |
| S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL; |
| |
| // Since this is spelled [[nodiscard]], get the optional string |
| // literal. If in C++ mode, but not in C++20 mode, diagnose as an |
| // extension. |
| // FIXME: C23 should support this feature as well, even as an extension. |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr)) |
| return; |
| } else if (LO.CPlusPlus && !LO.CPlusPlus17) |
| S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL; |
| } |
| |
| if ((!AL.isGNUAttribute() && |
| !(AL.isStandardAttributeSyntax() && AL.isClangScope())) && |
| isa<TypedefNameDecl>(D)) { |
| S.Diag(AL.getLoc(), diag::warn_unused_result_typedef_unsupported_spelling) |
| << AL.isGNUScope(); |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str)); |
| } |
| |
| static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // weak_import only applies to variable & function declarations. |
| bool isDef = false; |
| if (!D->canBeWeakImported(isDef)) { |
| if (isDef) |
| S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition) |
| << "weak_import"; |
| else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) || |
| (S.Context.getTargetInfo().getTriple().isOSDarwin() && |
| (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) { |
| // Nothing to warn about here. |
| } else |
| S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << AL << AL.isRegularKeywordAttribute() << ExpectedVariableOrFunction; |
| |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL)); |
| } |
| |
| // Checks whether an argument of launch_bounds-like attribute is |
| // acceptable, performs implicit conversion to Rvalue, and returns |
| // non-nullptr Expr result on success. Otherwise, it returns nullptr |
| // and may output an error. |
| template <class Attribute> |
| static Expr *makeAttributeArgExpr(Sema &S, Expr *E, const Attribute &Attr, |
| const unsigned Idx) { |
| if (S.DiagnoseUnexpandedParameterPack(E)) |
| return nullptr; |
| |
| // Accept template arguments for now as they depend on something else. |
| // We'll get to check them when they eventually get instantiated. |
| if (E->isValueDependent()) |
| return E; |
| |
| std::optional<llvm::APSInt> I = llvm::APSInt(64); |
| if (!(I = E->getIntegerConstantExpr(S.Context))) { |
| S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type) |
| << &Attr << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
| return nullptr; |
| } |
| // Make sure we can fit it in 32 bits. |
| if (!I->isIntN(32)) { |
| S.Diag(E->getExprLoc(), diag::err_ice_too_large) |
| << toString(*I, 10, false) << 32 << /* Unsigned */ 1; |
| return nullptr; |
| } |
| if (*I < 0) |
| S.Diag(E->getExprLoc(), diag::err_attribute_requires_positive_integer) |
| << &Attr << /*non-negative*/ 1 << E->getSourceRange(); |
| |
| // We may need to perform implicit conversion of the argument. |
| InitializedEntity Entity = InitializedEntity::InitializeParameter( |
| S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false); |
| ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E); |
| assert(!ValArg.isInvalid() && |
| "Unexpected PerformCopyInitialization() failure."); |
| |
| return ValArg.getAs<Expr>(); |
| } |
| |
| // Handles reqd_work_group_size and work_group_size_hint. |
| template <typename WorkGroupAttr> |
| static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) { |
| Expr *WGSize[3]; |
| for (unsigned i = 0; i < 3; ++i) { |
| if (Expr *E = makeAttributeArgExpr(S, AL.getArgAsExpr(i), AL, i)) |
| WGSize[i] = E; |
| else |
| return; |
| } |
| |
| auto IsZero = [&](Expr *E) { |
| if (E->isValueDependent()) |
| return false; |
| std::optional<llvm::APSInt> I = E->getIntegerConstantExpr(S.Context); |
| assert(I && "Non-integer constant expr"); |
| return I->isZero(); |
| }; |
| |
| if (!llvm::all_of(WGSize, IsZero)) { |
| for (unsigned i = 0; i < 3; ++i) { |
| const Expr *E = AL.getArgAsExpr(i); |
| if (IsZero(WGSize[i])) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero) |
| << AL << E->getSourceRange(); |
| return; |
| } |
| } |
| } |
| |
| auto Equal = [&](Expr *LHS, Expr *RHS) { |
| if (LHS->isValueDependent() || RHS->isValueDependent()) |
| return true; |
| std::optional<llvm::APSInt> L = LHS->getIntegerConstantExpr(S.Context); |
| assert(L && "Non-integer constant expr"); |
| std::optional<llvm::APSInt> R = RHS->getIntegerConstantExpr(S.Context); |
| assert(L && "Non-integer constant expr"); |
| return L == R; |
| }; |
| |
| WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>(); |
| if (Existing && |
| !llvm::equal(std::initializer_list<Expr *>{Existing->getXDim(), |
| Existing->getYDim(), |
| Existing->getZDim()}, |
| WGSize, Equal)) |
| S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; |
| |
| D->addAttr(::new (S.Context) |
| WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2])); |
| } |
| |
| static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!AL.hasParsedType()) { |
| S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; |
| return; |
| } |
| |
| TypeSourceInfo *ParmTSI = nullptr; |
| QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI); |
| assert(ParmTSI && "no type source info for attribute argument"); |
| |
| if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() && |
| (ParmType->isBooleanType() || |
| !ParmType->isIntegralType(S.getASTContext()))) { |
| S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL; |
| return; |
| } |
| |
| if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) { |
| if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) { |
| S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; |
| return; |
| } |
| } |
| |
| D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI)); |
| } |
| |
| SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI, |
| StringRef Name) { |
| // Explicit or partial specializations do not inherit |
| // the section attribute from the primary template. |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate && |
| FD->isFunctionTemplateSpecialization()) |
| return nullptr; |
| } |
| if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) { |
| if (ExistingAttr->getName() == Name) |
| return nullptr; |
| Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section) |
| << 1 /*section*/; |
| Diag(CI.getLoc(), diag::note_previous_attribute); |
| return nullptr; |
| } |
| return ::new (Context) SectionAttr(Context, CI, Name); |
| } |
| |
| llvm::Error Sema::isValidSectionSpecifier(StringRef SecName) { |
| if (!Context.getTargetInfo().getTriple().isOSDarwin()) |
| return llvm::Error::success(); |
| |
| // Let MCSectionMachO validate this. |
| StringRef Segment, Section; |
| unsigned TAA, StubSize; |
| bool HasTAA; |
| return llvm::MCSectionMachO::ParseSectionSpecifier(SecName, Segment, Section, |
| TAA, HasTAA, StubSize); |
| } |
| |
| bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) { |
| if (llvm::Error E = isValidSectionSpecifier(SecName)) { |
| Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) |
| << toString(std::move(E)) << 1 /*'section'*/; |
| return false; |
| } |
| return true; |
| } |
| |
| static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Make sure that there is a string literal as the sections's single |
| // argument. |
| StringRef Str; |
| SourceLocation LiteralLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc)) |
| return; |
| |
| if (!S.checkSectionName(LiteralLoc, Str)) |
| return; |
| |
| SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str); |
| if (NewAttr) { |
| D->addAttr(NewAttr); |
| if (isa<FunctionDecl, FunctionTemplateDecl, ObjCMethodDecl, |
| ObjCPropertyDecl>(D)) |
| S.UnifySection(NewAttr->getName(), |
| ASTContext::PSF_Execute | ASTContext::PSF_Read, |
| cast<NamedDecl>(D)); |
| } |
| } |
| |
| static bool isValidCodeModelAttr(llvm::Triple &Triple, StringRef Str) { |
| if (Triple.isLoongArch()) { |
| return Str == "normal" || Str == "medium" || Str == "extreme"; |
| } else { |
| assert(Triple.getArch() == llvm::Triple::x86_64 && |
| "only loongarch/x86-64 supported"); |
| return Str == "small" || Str == "large"; |
| } |
| } |
| |
| static void handleCodeModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Str; |
| SourceLocation LiteralLoc; |
| auto IsTripleSupported = [](llvm::Triple &Triple) { |
| return Triple.getArch() == llvm::Triple::ArchType::x86_64 || |
| Triple.isLoongArch(); |
| }; |
| |
| // Check that it is a string. |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc)) |
| return; |
| |
| SmallVector<llvm::Triple, 2> Triples = { |
| S.Context.getTargetInfo().getTriple()}; |
| if (auto *aux = S.Context.getAuxTargetInfo()) { |
| Triples.push_back(aux->getTriple()); |
| } else if (S.Context.getTargetInfo().getTriple().isNVPTX() || |
| S.Context.getTargetInfo().getTriple().isAMDGPU() || |
| S.Context.getTargetInfo().getTriple().isSPIRV()) { |
| // Ignore the attribute for pure GPU device compiles since it only applies |
| // to host globals. |
| return; |
| } |
| |
| auto SupportedTripleIt = llvm::find_if(Triples, IsTripleSupported); |
| if (SupportedTripleIt == Triples.end()) { |
| S.Diag(LiteralLoc, diag::warn_unknown_attribute_ignored) << AL; |
| return; |
| } |
| |
| llvm::CodeModel::Model CM; |
| if (!CodeModelAttr::ConvertStrToModel(Str, CM) || |
| !isValidCodeModelAttr(*SupportedTripleIt, Str)) { |
| S.Diag(LiteralLoc, diag::err_attr_codemodel_arg) << Str; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) CodeModelAttr(S.Context, AL, CM)); |
| } |
| |
| // This is used for `__declspec(code_seg("segname"))` on a decl. |
| // `#pragma code_seg("segname")` uses checkSectionName() instead. |
| static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc, |
| StringRef CodeSegName) { |
| if (llvm::Error E = S.isValidSectionSpecifier(CodeSegName)) { |
| S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) |
| << toString(std::move(E)) << 0 /*'code-seg'*/; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI, |
| StringRef Name) { |
| // Explicit or partial specializations do not inherit |
| // the code_seg attribute from the primary template. |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->isFunctionTemplateSpecialization()) |
| return nullptr; |
| } |
| if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) { |
| if (ExistingAttr->getName() == Name) |
| return nullptr; |
| Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section) |
| << 0 /*codeseg*/; |
| Diag(CI.getLoc(), diag::note_previous_attribute); |
| return nullptr; |
| } |
| return ::new (Context) CodeSegAttr(Context, CI, Name); |
| } |
| |
| static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Str; |
| SourceLocation LiteralLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc)) |
| return; |
| if (!checkCodeSegName(S, LiteralLoc, Str)) |
| return; |
| if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) { |
| if (!ExistingAttr->isImplicit()) { |
| S.Diag(AL.getLoc(), |
| ExistingAttr->getName() == Str |
| ? diag::warn_duplicate_codeseg_attribute |
| : diag::err_conflicting_codeseg_attribute); |
| return; |
| } |
| D->dropAttr<CodeSegAttr>(); |
| } |
| if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str)) |
| D->addAttr(CSA); |
| } |
| |
| bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) { |
| enum FirstParam { Unsupported, Duplicate, Unknown }; |
| enum SecondParam { None, CPU, Tune }; |
| enum ThirdParam { Target, TargetClones }; |
| if (AttrStr.contains("fpmath=")) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << "fpmath=" << Target; |
| |
| // Diagnose use of tune if target doesn't support it. |
| if (!Context.getTargetInfo().supportsTargetAttributeTune() && |
| AttrStr.contains("tune=")) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << "tune=" << Target; |
| |
| ParsedTargetAttr ParsedAttrs = |
| Context.getTargetInfo().parseTargetAttr(AttrStr); |
| |
| if (!ParsedAttrs.CPU.empty() && |
| !Context.getTargetInfo().isValidCPUName(ParsedAttrs.CPU)) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unknown << CPU << ParsedAttrs.CPU << Target; |
| |
| if (!ParsedAttrs.Tune.empty() && |
| !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Tune)) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unknown << Tune << ParsedAttrs.Tune << Target; |
| |
| if (Context.getTargetInfo().getTriple().isRISCV()) { |
| if (ParsedAttrs.Duplicate != "") |
| return Diag(LiteralLoc, diag::err_duplicate_target_attribute) |
| << Duplicate << None << ParsedAttrs.Duplicate << Target; |
| for (const auto &Feature : ParsedAttrs.Features) { |
| StringRef CurFeature = Feature; |
| if (!CurFeature.starts_with('+') && !CurFeature.starts_with('-')) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << AttrStr << Target; |
| } |
| } |
| |
| if (ParsedAttrs.Duplicate != "") |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Duplicate << None << ParsedAttrs.Duplicate << Target; |
| |
| for (const auto &Feature : ParsedAttrs.Features) { |
| auto CurFeature = StringRef(Feature).drop_front(); // remove + or -. |
| if (!Context.getTargetInfo().isValidFeatureName(CurFeature)) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << CurFeature << Target; |
| } |
| |
| TargetInfo::BranchProtectionInfo BPI{}; |
| StringRef DiagMsg; |
| if (ParsedAttrs.BranchProtection.empty()) |
| return false; |
| if (!Context.getTargetInfo().validateBranchProtection( |
| ParsedAttrs.BranchProtection, ParsedAttrs.CPU, BPI, |
| Context.getLangOpts(), DiagMsg)) { |
| if (DiagMsg.empty()) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << "branch-protection" << Target; |
| return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec) |
| << DiagMsg; |
| } |
| if (!DiagMsg.empty()) |
| Diag(LiteralLoc, diag::warn_unsupported_branch_protection_spec) << DiagMsg; |
| |
| return false; |
| } |
| |
| bool Sema::checkTargetVersionAttr(SourceLocation LiteralLoc, Decl *D, |
| StringRef AttrStr) { |
| enum FirstParam { Unsupported }; |
| enum SecondParam { None }; |
| enum ThirdParam { Target, TargetClones, TargetVersion }; |
| llvm::SmallVector<StringRef, 8> Features; |
| if (Context.getTargetInfo().getTriple().isRISCV()) { |
| llvm::SmallVector<StringRef, 8> AttrStrs; |
| AttrStr.split(AttrStrs, ';'); |
| |
| bool HasArch = false; |
| bool HasPriority = false; |
| bool HasDefault = false; |
| bool DuplicateAttr = false; |
| for (auto &AttrStr : AttrStrs) { |
| // Only support arch=+ext,... syntax. |
| if (AttrStr.starts_with("arch=+")) { |
| if (HasArch) |
| DuplicateAttr = true; |
| HasArch = true; |
| ParsedTargetAttr TargetAttr = |
| Context.getTargetInfo().parseTargetAttr(AttrStr); |
| |
| if (TargetAttr.Features.empty() || |
| llvm::any_of(TargetAttr.Features, [&](const StringRef Ext) { |
| return !RISCV().isValidFMVExtension(Ext); |
| })) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << AttrStr << TargetVersion; |
| } else if (AttrStr.starts_with("default")) { |
| if (HasDefault) |
| DuplicateAttr = true; |
| HasDefault = true; |
| } else if (AttrStr.consume_front("priority=")) { |
| if (HasPriority) |
| DuplicateAttr = true; |
| HasPriority = true; |
| unsigned Digit; |
| if (AttrStr.getAsInteger(0, Digit)) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << AttrStr << TargetVersion; |
| } else { |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << AttrStr << TargetVersion; |
| } |
| } |
| |
| if (((HasPriority || HasArch) && HasDefault) || DuplicateAttr || |
| (HasPriority && !HasArch)) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << AttrStr << TargetVersion; |
| |
| return false; |
| } |
| AttrStr.split(Features, "+"); |
| for (auto &CurFeature : Features) { |
| CurFeature = CurFeature.trim(); |
| if (CurFeature == "default") |
| continue; |
| if (!Context.getTargetInfo().validateCpuSupports(CurFeature)) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << CurFeature << TargetVersion; |
| } |
| return false; |
| } |
| |
| static void handleTargetVersionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Str; |
| SourceLocation LiteralLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) || |
| S.checkTargetVersionAttr(LiteralLoc, D, Str)) |
| return; |
| TargetVersionAttr *NewAttr = |
| ::new (S.Context) TargetVersionAttr(S.Context, AL, Str); |
| D->addAttr(NewAttr); |
| } |
| |
| static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Str; |
| SourceLocation LiteralLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) || |
| S.checkTargetAttr(LiteralLoc, Str)) |
| return; |
| |
| TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str); |
| D->addAttr(NewAttr); |
| } |
| |
| bool Sema::checkTargetClonesAttrString( |
| SourceLocation LiteralLoc, StringRef Str, const StringLiteral *Literal, |
| Decl *D, bool &HasDefault, bool &HasCommas, bool &HasNotDefault, |
| SmallVectorImpl<SmallString<64>> &StringsBuffer) { |
| enum FirstParam { Unsupported, Duplicate, Unknown }; |
| enum SecondParam { None, CPU, Tune }; |
| enum ThirdParam { Target, TargetClones }; |
| HasCommas = HasCommas || Str.contains(','); |
| const TargetInfo &TInfo = Context.getTargetInfo(); |
| // Warn on empty at the beginning of a string. |
| if (Str.size() == 0) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << "" << TargetClones; |
| |
| std::pair<StringRef, StringRef> Parts = {{}, Str}; |
| while (!Parts.second.empty()) { |
| Parts = Parts.second.split(','); |
| StringRef Cur = Parts.first.trim(); |
| SourceLocation CurLoc = |
| Literal->getLocationOfByte(Cur.data() - Literal->getString().data(), |
| getSourceManager(), getLangOpts(), TInfo); |
| |
| bool DefaultIsDupe = false; |
| bool HasCodeGenImpact = false; |
| if (Cur.empty()) |
| return Diag(CurLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << "" << TargetClones; |
| |
| if (TInfo.getTriple().isAArch64()) { |
| // AArch64 target clones specific |
| if (Cur == "default") { |
| DefaultIsDupe = HasDefault; |
| HasDefault = true; |
| if (llvm::is_contained(StringsBuffer, Cur) || DefaultIsDupe) |
| Diag(CurLoc, diag::warn_target_clone_duplicate_options); |
| else |
| StringsBuffer.push_back(Cur); |
| } else { |
| std::pair<StringRef, StringRef> CurParts = {{}, Cur}; |
| llvm::SmallVector<StringRef, 8> CurFeatures; |
| while (!CurParts.second.empty()) { |
| CurParts = CurParts.second.split('+'); |
| StringRef CurFeature = CurParts.first.trim(); |
| if (!TInfo.validateCpuSupports(CurFeature)) { |
| Diag(CurLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << CurFeature << TargetClones; |
| continue; |
| } |
| if (TInfo.doesFeatureAffectCodeGen(CurFeature)) |
| HasCodeGenImpact = true; |
| CurFeatures.push_back(CurFeature); |
| } |
| // Canonize TargetClones Attributes |
| llvm::sort(CurFeatures); |
| SmallString<64> Res; |
| for (auto &CurFeat : CurFeatures) { |
| if (!Res.empty()) |
| Res.append("+"); |
| Res.append(CurFeat); |
| } |
| if (llvm::is_contained(StringsBuffer, Res) || DefaultIsDupe) |
| Diag(CurLoc, diag::warn_target_clone_duplicate_options); |
| else if (!HasCodeGenImpact) |
| // Ignore features in target_clone attribute that don't impact |
| // code generation |
| Diag(CurLoc, diag::warn_target_clone_no_impact_options); |
| else if (!Res.empty()) { |
| StringsBuffer.push_back(Res); |
| HasNotDefault = true; |
| } |
| } |
| } else if (TInfo.getTriple().isRISCV()) { |
| // Suppress warn_target_clone_mixed_values |
| HasCommas = false; |
| |
| // Cur is split's parts of Str. RISC-V uses Str directly, |
| // so skip when encountered more than once. |
| if (!Str.starts_with(Cur)) |
| continue; |
| |
| llvm::SmallVector<StringRef, 8> AttrStrs; |
| Str.split(AttrStrs, ";"); |
| |
| bool IsPriority = false; |
| bool IsDefault = false; |
| for (auto &AttrStr : AttrStrs) { |
| // Only support arch=+ext,... syntax. |
| if (AttrStr.starts_with("arch=+")) { |
| ParsedTargetAttr TargetAttr = |
| Context.getTargetInfo().parseTargetAttr(AttrStr); |
| |
| if (TargetAttr.Features.empty() || |
| llvm::any_of(TargetAttr.Features, [&](const StringRef Ext) { |
| return !RISCV().isValidFMVExtension(Ext); |
| })) |
| return Diag(CurLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << Str << TargetClones; |
| } else if (AttrStr.starts_with("default")) { |
| IsDefault = true; |
| DefaultIsDupe = HasDefault; |
| HasDefault = true; |
| } else if (AttrStr.consume_front("priority=")) { |
| IsPriority = true; |
| unsigned Digit; |
| if (AttrStr.getAsInteger(0, Digit)) |
| return Diag(CurLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << Str << TargetClones; |
| } else { |
| return Diag(CurLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << Str << TargetClones; |
| } |
| } |
| |
| if (IsPriority && IsDefault) |
| return Diag(CurLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << Str << TargetClones; |
| |
| if (llvm::is_contained(StringsBuffer, Str) || DefaultIsDupe) |
| Diag(CurLoc, diag::warn_target_clone_duplicate_options); |
| StringsBuffer.push_back(Str); |
| } else { |
| // Other targets ( currently X86 ) |
| if (Cur.starts_with("arch=")) { |
| if (!Context.getTargetInfo().isValidCPUName( |
| Cur.drop_front(sizeof("arch=") - 1))) |
| return Diag(CurLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << CPU << Cur.drop_front(sizeof("arch=") - 1) |
| << TargetClones; |
| } else if (Cur == "default") { |
| DefaultIsDupe = HasDefault; |
| HasDefault = true; |
| } else if (!Context.getTargetInfo().isValidFeatureName(Cur) || |
| Context.getTargetInfo().getFMVPriority(Cur) == 0) |
| return Diag(CurLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << Cur << TargetClones; |
| if (llvm::is_contained(StringsBuffer, Cur) || DefaultIsDupe) |
| Diag(CurLoc, diag::warn_target_clone_duplicate_options); |
| // Note: Add even if there are duplicates, since it changes name mangling. |
| StringsBuffer.push_back(Cur); |
| } |
| } |
| if (Str.rtrim().ends_with(",")) |
| return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) |
| << Unsupported << None << "" << TargetClones; |
| return false; |
| } |
| |
| static void handleTargetClonesAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (S.Context.getTargetInfo().getTriple().isAArch64() && |
| !S.Context.getTargetInfo().hasFeature("fmv")) |
| return; |
| |
| // Ensure we don't combine these with themselves, since that causes some |
| // confusing behavior. |
| if (const auto *Other = D->getAttr<TargetClonesAttr>()) { |
| S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL; |
| S.Diag(Other->getLocation(), diag::note_conflicting_attribute); |
| return; |
| } |
| if (checkAttrMutualExclusion<TargetClonesAttr>(S, D, AL)) |
| return; |
| |
| SmallVector<StringRef, 2> Strings; |
| SmallVector<SmallString<64>, 2> StringsBuffer; |
| bool HasCommas = false, HasDefault = false, HasNotDefault = false; |
| |
| for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
| StringRef CurStr; |
| SourceLocation LiteralLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, I, CurStr, &LiteralLoc) || |
| S.checkTargetClonesAttrString( |
| LiteralLoc, CurStr, |
| cast<StringLiteral>(AL.getArgAsExpr(I)->IgnoreParenCasts()), D, |
| HasDefault, HasCommas, HasNotDefault, StringsBuffer)) |
| return; |
| } |
| for (auto &SmallStr : StringsBuffer) |
| Strings.push_back(SmallStr.str()); |
| |
| if (HasCommas && AL.getNumArgs() > 1) |
| S.Diag(AL.getLoc(), diag::warn_target_clone_mixed_values); |
| |
| if (S.Context.getTargetInfo().getTriple().isAArch64() && !HasDefault) { |
| // Add default attribute if there is no one |
| HasDefault = true; |
| Strings.push_back("default"); |
| } |
| |
| if (!HasDefault) { |
| S.Diag(AL.getLoc(), diag::err_target_clone_must_have_default); |
| return; |
| } |
| |
| // FIXME: We could probably figure out how to get this to work for lambdas |
| // someday. |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { |
| if (MD->getParent()->isLambda()) { |
| S.Diag(D->getLocation(), diag::err_multiversion_doesnt_support) |
| << static_cast<unsigned>(MultiVersionKind::TargetClones) |
| << /*Lambda*/ 9; |
| return; |
| } |
| } |
| |
| // No multiversion if we have default version only. |
| if (S.Context.getTargetInfo().getTriple().isAArch64() && !HasNotDefault) |
| return; |
| |
| cast<FunctionDecl>(D)->setIsMultiVersion(); |
| TargetClonesAttr *NewAttr = ::new (S.Context) |
| TargetClonesAttr(S.Context, AL, Strings.data(), Strings.size()); |
| D->addAttr(NewAttr); |
| } |
| |
| static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| Expr *E = AL.getArgAsExpr(0); |
| uint32_t VecWidth; |
| if (!S.checkUInt32Argument(AL, E, VecWidth)) { |
| AL.setInvalid(); |
| return; |
| } |
| |
| MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>(); |
| if (Existing && Existing->getVectorWidth() != VecWidth) { |
| S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth)); |
| } |
| |
| static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| Expr *E = AL.getArgAsExpr(0); |
| SourceLocation Loc = E->getExprLoc(); |
| FunctionDecl *FD = nullptr; |
| DeclarationNameInfo NI; |
| |
| // gcc only allows for simple identifiers. Since we support more than gcc, we |
| // will warn the user. |
| if (auto *DRE = dyn_cast<DeclRefExpr>(E)) { |
| if (DRE->hasQualifier()) |
| S.Diag(Loc, diag::warn_cleanup_ext); |
| FD = dyn_cast<FunctionDecl>(DRE->getDecl()); |
| NI = DRE->getNameInfo(); |
| if (!FD) { |
| S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1 |
| << NI.getName(); |
| return; |
| } |
| } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { |
| if (ULE->hasExplicitTemplateArgs()) |
| S.Diag(Loc, diag::warn_cleanup_ext); |
| FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true); |
| NI = ULE->getNameInfo(); |
| if (!FD) { |
| S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2 |
| << NI.getName(); |
| if (ULE->getType() == S.Context.OverloadTy) |
| S.NoteAllOverloadCandidates(ULE); |
| return; |
| } |
| } else { |
| S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0; |
| return; |
| } |
| |
| if (FD->getNumParams() != 1) { |
| S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg) |
| << NI.getName(); |
| return; |
| } |
| |
| // We're currently more strict than GCC about what function types we accept. |
| // If this ever proves to be a problem it should be easy to fix. |
| QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType()); |
| QualType ParamTy = FD->getParamDecl(0)->getType(); |
| if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(), |
| ParamTy, Ty) != Sema::Compatible) { |
| S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type) |
| << NI.getName() << ParamTy << Ty; |
| return; |
| } |
| VarDecl *VD = cast<VarDecl>(D); |
| // Create a reference to the variable declaration. This is a fake/dummy |
| // reference. |
| DeclRefExpr *VariableReference = DeclRefExpr::Create( |
| S.Context, NestedNameSpecifierLoc{}, FD->getLocation(), VD, false, |
| DeclarationNameInfo{VD->getDeclName(), VD->getLocation()}, VD->getType(), |
| VK_LValue); |
| |
| // Create a unary operator expression that represents taking the address of |
| // the variable. This is a fake/dummy expression. |
| Expr *AddressOfVariable = UnaryOperator::Create( |
| S.Context, VariableReference, UnaryOperatorKind::UO_AddrOf, |
| S.Context.getPointerType(VD->getType()), VK_PRValue, OK_Ordinary, Loc, |
| +false, FPOptionsOverride{}); |
| |
| // Create a function call expression. This is a fake/dummy call expression. |
| CallExpr *FunctionCallExpression = |
| CallExpr::Create(S.Context, E, ArrayRef{AddressOfVariable}, |
| S.Context.VoidTy, VK_PRValue, Loc, FPOptionsOverride{}); |
| |
| if (S.CheckFunctionCall(FD, FunctionCallExpression, |
| FD->getType()->getAs<FunctionProtoType>())) { |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD)); |
| } |
| |
| static void handleEnumExtensibilityAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 0 << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| EnumExtensibilityAttr::Kind ExtensibilityKind; |
| IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; |
| if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(), |
| ExtensibilityKind)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) |
| EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind)); |
| } |
| |
| /// Handle __attribute__((format_arg((idx)))) attribute based on |
| /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html |
| static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| const Expr *IdxExpr = AL.getArgAsExpr(0); |
| ParamIdx Idx; |
| if (!S.checkFunctionOrMethodParameterIndex(D, AL, 1, IdxExpr, Idx)) |
| return; |
| |
| // Make sure the format string is really a string. |
| QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex()); |
| |
| bool NotNSStringTy = !S.ObjC().isNSStringType(Ty); |
| if (NotNSStringTy && !S.ObjC().isCFStringType(Ty) && |
| (!Ty->isPointerType() || |
| !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { |
| S.Diag(AL.getLoc(), diag::err_format_attribute_not) |
| << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0); |
| return; |
| } |
| Ty = getFunctionOrMethodResultType(D); |
| // replace instancetype with the class type |
| auto Instancetype = S.Context.getObjCInstanceTypeDecl()->getTypeForDecl(); |
| if (Ty->getAs<TypedefType>() == Instancetype) |
| if (auto *OMD = dyn_cast<ObjCMethodDecl>(D)) |
| if (auto *Interface = OMD->getClassInterface()) |
| Ty = S.Context.getObjCObjectPointerType( |
| QualType(Interface->getTypeForDecl(), 0)); |
| if (!S.ObjC().isNSStringType(Ty, /*AllowNSAttributedString=*/true) && |
| !S.ObjC().isCFStringType(Ty) && |
| (!Ty->isPointerType() || |
| !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { |
| S.Diag(AL.getLoc(), diag::err_format_attribute_result_not) |
| << (NotNSStringTy ? "string type" : "NSString") |
| << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0); |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx)); |
| } |
| |
| enum FormatAttrKind { |
| CFStringFormat, |
| NSStringFormat, |
| StrftimeFormat, |
| SupportedFormat, |
| IgnoredFormat, |
| InvalidFormat |
| }; |
| |
| /// getFormatAttrKind - Map from format attribute names to supported format |
| /// types. |
| static FormatAttrKind getFormatAttrKind(StringRef Format) { |
| return llvm::StringSwitch<FormatAttrKind>(Format) |
| // Check for formats that get handled specially. |
| .Case("NSString", NSStringFormat) |
| .Case("CFString", CFStringFormat) |
| .Case("strftime", StrftimeFormat) |
| |
| // Otherwise, check for supported formats. |
| .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat) |
| .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat) |
| .Cases("kprintf", "syslog", SupportedFormat) // OpenBSD. |
| .Case("freebsd_kprintf", SupportedFormat) // FreeBSD. |
| .Case("os_trace", SupportedFormat) |
| .Case("os_log", SupportedFormat) |
| |
| .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat) |
| .Default(InvalidFormat); |
| } |
| |
| /// Handle __attribute__((init_priority(priority))) attributes based on |
| /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html |
| static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!S.getLangOpts().CPlusPlus) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL; |
| return; |
| } |
| |
| if (S.getLangOpts().HLSL) { |
| S.Diag(AL.getLoc(), diag::err_hlsl_init_priority_unsupported); |
| return; |
| } |
| |
| if (S.getCurFunctionOrMethodDecl()) { |
| S.Diag(AL.getLoc(), diag::err_init_priority_object_attr); |
| AL.setInvalid(); |
| return; |
| } |
| QualType T = cast<VarDecl>(D)->getType(); |
| if (S.Context.getAsArrayType(T)) |
| T = S.Context.getBaseElementType(T); |
| if (!T->getAs<RecordType>()) { |
| S.Diag(AL.getLoc(), diag::err_init_priority_object_attr); |
| AL.setInvalid(); |
| return; |
| } |
| |
| Expr *E = AL.getArgAsExpr(0); |
| uint32_t prioritynum; |
| if (!S.checkUInt32Argument(AL, E, prioritynum)) { |
| AL.setInvalid(); |
| return; |
| } |
| |
| if (prioritynum > 65535) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range) |
| << E->getSourceRange() << AL << 0 << 65535; |
| AL.setInvalid(); |
| return; |
| } |
| |
| // Values <= 100 are reserved for the implementation, and libc++ |
| // benefits from being able to specify values in that range. |
| if (prioritynum < 101) |
| S.Diag(AL.getLoc(), diag::warn_init_priority_reserved) |
| << E->getSourceRange() << prioritynum; |
| D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum)); |
| } |
| |
| ErrorAttr *Sema::mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI, |
| StringRef NewUserDiagnostic) { |
| if (const auto *EA = D->getAttr<ErrorAttr>()) { |
| std::string NewAttr = CI.getNormalizedFullName(); |
| assert((NewAttr == "error" || NewAttr == "warning") && |
| "unexpected normalized full name"); |
| bool Match = (EA->isError() && NewAttr == "error") || |
| (EA->isWarning() && NewAttr == "warning"); |
| if (!Match) { |
| Diag(EA->getLocation(), diag::err_attributes_are_not_compatible) |
| << CI << EA |
| << (CI.isRegularKeywordAttribute() || |
| EA->isRegularKeywordAttribute()); |
| Diag(CI.getLoc(), diag::note_conflicting_attribute); |
| return nullptr; |
| } |
| if (EA->getUserDiagnostic() != NewUserDiagnostic) { |
| Diag(CI.getLoc(), diag::warn_duplicate_attribute) << EA; |
| Diag(EA->getLoc(), diag::note_previous_attribute); |
| } |
| D->dropAttr<ErrorAttr>(); |
| } |
| return ::new (Context) ErrorAttr(Context, CI, NewUserDiagnostic); |
| } |
| |
| FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI, |
| IdentifierInfo *Format, int FormatIdx, |
| int FirstArg) { |
| // Check whether we already have an equivalent format attribute. |
| for (auto *F : D->specific_attrs<FormatAttr>()) { |
| if (F->getType() == Format && |
| F->getFormatIdx() == FormatIdx && |
| F->getFirstArg() == FirstArg) { |
| // If we don't have a valid location for this attribute, adopt the |
| // location. |
| if (F->getLocation().isInvalid()) |
| F->setRange(CI.getRange()); |
| return nullptr; |
| } |
| } |
| |
| return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg); |
| } |
| |
| FormatMatchesAttr *Sema::mergeFormatMatchesAttr(Decl *D, |
| const AttributeCommonInfo &CI, |
| IdentifierInfo *Format, |
| int FormatIdx, |
| StringLiteral *FormatStr) { |
| // Check whether we already have an equivalent FormatMatches attribute. |
| for (auto *F : D->specific_attrs<FormatMatchesAttr>()) { |
| if (F->getType() == Format && F->getFormatIdx() == FormatIdx) { |
| if (!CheckFormatStringsCompatible(GetFormatStringType(Format->getName()), |
| F->getFormatString(), FormatStr)) |
| return nullptr; |
| |
| // If we don't have a valid location for this attribute, adopt the |
| // location. |
| if (F->getLocation().isInvalid()) |
| F->setRange(CI.getRange()); |
| return nullptr; |
| } |
| } |
| |
| return ::new (Context) |
| FormatMatchesAttr(Context, CI, Format, FormatIdx, FormatStr); |
| } |
| |
| struct FormatAttrCommon { |
| FormatAttrKind Kind; |
| IdentifierInfo *Identifier; |
| unsigned NumArgs; |
| unsigned FormatStringIdx; |
| }; |
| |
| /// Handle __attribute__((format(type,idx,firstarg))) attributes based on |
| /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html |
| static bool handleFormatAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
| FormatAttrCommon *Info) { |
| // Checks the first two arguments of the attribute; this is shared between |
| // Format and FormatMatches attributes. |
| |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 1 << AANT_ArgumentIdentifier; |
| return false; |
| } |
| |
| // In C++ the implicit 'this' function parameter also counts, and they are |
| // counted from one. |
| bool HasImplicitThisParam = isInstanceMethod(D); |
| Info->NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam; |
| |
| Info->Identifier = AL.getArgAsIdent(0)->Ident; |
| StringRef Format = Info->Identifier->getName(); |
| |
| if (normalizeName(Format)) { |
| // If we've modified the string name, we need a new identifier for it. |
| Info->Identifier = &S.Context.Idents.get(Format); |
| } |
| |
| // Check for supported formats. |
| Info->Kind = getFormatAttrKind(Format); |
| |
| if (Info->Kind == IgnoredFormat) |
| return false; |
| |
| if (Info->Kind == InvalidFormat) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) |
| << AL << Info->Identifier->getName(); |
| return false; |
| } |
| |
| // checks for the 2nd argument |
| Expr *IdxExpr = AL.getArgAsExpr(1); |
| if (!S.checkUInt32Argument(AL, IdxExpr, Info->FormatStringIdx, 2)) |
| return false; |
| |
| if (Info->FormatStringIdx < 1 || Info->FormatStringIdx > Info->NumArgs) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
| << AL << 2 << IdxExpr->getSourceRange(); |
| return false; |
| } |
| |
| // FIXME: Do we need to bounds check? |
| unsigned ArgIdx = Info->FormatStringIdx - 1; |
| |
| if (HasImplicitThisParam) { |
| if (ArgIdx == 0) { |
| S.Diag(AL.getLoc(), |
| diag::err_format_attribute_implicit_this_format_string) |
| << IdxExpr->getSourceRange(); |
| return false; |
| } |
| ArgIdx--; |
| } |
| |
| // make sure the format string is really a string |
| QualType Ty = getFunctionOrMethodParamType(D, ArgIdx); |
| |
| if (!S.ObjC().isNSStringType(Ty, true) && !S.ObjC().isCFStringType(Ty) && |
| (!Ty->isPointerType() || |
| !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { |
| S.Diag(AL.getLoc(), diag::err_format_attribute_not) |
| << IdxExpr->getSourceRange() |
| << getFunctionOrMethodParamRange(D, ArgIdx); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| FormatAttrCommon Info; |
| if (!handleFormatAttrCommon(S, D, AL, &Info)) |
| return; |
| |
| // check the 3rd argument |
| Expr *FirstArgExpr = AL.getArgAsExpr(2); |
| uint32_t FirstArg; |
| if (!S.checkUInt32Argument(AL, FirstArgExpr, FirstArg, 3)) |
| return; |
| |
| // FirstArg == 0 is is always valid. |
| if (FirstArg != 0) { |
| if (Info.Kind == StrftimeFormat) { |
| // If the kind is strftime, FirstArg must be 0 because strftime does not |
| // use any variadic arguments. |
| S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter) |
| << FirstArgExpr->getSourceRange() |
| << FixItHint::CreateReplacement(FirstArgExpr->getSourceRange(), "0"); |
| return; |
| } else if (isFunctionOrMethodVariadic(D)) { |
| // Else, if the function is variadic, then FirstArg must be 0 or the |
| // "position" of the ... parameter. It's unusual to use 0 with variadic |
| // functions, so the fixit proposes the latter. |
| if (FirstArg != Info.NumArgs + 1) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
| << AL << 3 << FirstArgExpr->getSourceRange() |
| << FixItHint::CreateReplacement(FirstArgExpr->getSourceRange(), |
| std::to_string(Info.NumArgs + 1)); |
| return; |
| } |
| } else { |
| // Inescapable GCC compatibility diagnostic. |
| S.Diag(D->getLocation(), diag::warn_gcc_requires_variadic_function) << AL; |
| if (FirstArg <= Info.FormatStringIdx) { |
| // Else, the function is not variadic, and FirstArg must be 0 or any |
| // parameter after the format parameter. We don't offer a fixit because |
| // there are too many possible good values. |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
| << AL << 3 << FirstArgExpr->getSourceRange(); |
| return; |
| } |
| } |
| } |
| |
| FormatAttr *NewAttr = |
| S.mergeFormatAttr(D, AL, Info.Identifier, Info.FormatStringIdx, FirstArg); |
| if (NewAttr) |
| D->addAttr(NewAttr); |
| } |
| |
| static void handleFormatMatchesAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| FormatAttrCommon Info; |
| if (!handleFormatAttrCommon(S, D, AL, &Info)) |
| return; |
| |
| Expr *FormatStrExpr = AL.getArgAsExpr(2)->IgnoreParenImpCasts(); |
| if (auto *SL = dyn_cast<StringLiteral>(FormatStrExpr)) { |
| Sema::FormatStringType FST = |
| S.GetFormatStringType(Info.Identifier->getName()); |
| if (S.ValidateFormatString(FST, SL)) |
| if (auto *NewAttr = S.mergeFormatMatchesAttr(D, AL, Info.Identifier, |
| Info.FormatStringIdx, SL)) |
| D->addAttr(NewAttr); |
| return; |
| } |
| |
| S.Diag(AL.getLoc(), diag::err_format_nonliteral) |
| << FormatStrExpr->getSourceRange(); |
| return; |
| } |
| |
| /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes. |
| static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // The index that identifies the callback callee is mandatory. |
| if (AL.getNumArgs() == 0) { |
| S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee) |
| << AL.getRange(); |
| return; |
| } |
| |
| bool HasImplicitThisParam = isInstanceMethod(D); |
| int32_t NumArgs = getFunctionOrMethodNumParams(D); |
| |
| FunctionDecl *FD = D->getAsFunction(); |
| assert(FD && "Expected a function declaration!"); |
| |
| llvm::StringMap<int> NameIdxMapping; |
| NameIdxMapping["__"] = -1; |
| |
| NameIdxMapping["this"] = 0; |
| |
| int Idx = 1; |
| for (const ParmVarDecl *PVD : FD->parameters()) |
| NameIdxMapping[PVD->getName()] = Idx++; |
| |
| auto UnknownName = NameIdxMapping.end(); |
| |
| SmallVector<int, 8> EncodingIndices; |
| for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) { |
| SourceRange SR; |
| int32_t ArgIdx; |
| |
| if (AL.isArgIdent(I)) { |
| IdentifierLoc *IdLoc = AL.getArgAsIdent(I); |
| auto It = NameIdxMapping.find(IdLoc->Ident->getName()); |
| if (It == UnknownName) { |
| S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown) |
| << IdLoc->Ident << IdLoc->Loc; |
| return; |
| } |
| |
| SR = SourceRange(IdLoc->Loc); |
| ArgIdx = It->second; |
| } else if (AL.isArgExpr(I)) { |
| Expr *IdxExpr = AL.getArgAsExpr(I); |
| |
| // If the expression is not parseable as an int32_t we have a problem. |
| if (!S.checkUInt32Argument(AL, IdxExpr, (uint32_t &)ArgIdx, I + 1, |
| false)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
| << AL << (I + 1) << IdxExpr->getSourceRange(); |
| return; |
| } |
| |
| // Check oob, excluding the special values, 0 and -1. |
| if (ArgIdx < -1 || ArgIdx > NumArgs) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
| << AL << (I + 1) << IdxExpr->getSourceRange(); |
| return; |
| } |
| |
| SR = IdxExpr->getSourceRange(); |
| } else { |
| llvm_unreachable("Unexpected ParsedAttr argument type!"); |
| } |
| |
| if (ArgIdx == 0 && !HasImplicitThisParam) { |
| S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available) |
| << (I + 1) << SR; |
| return; |
| } |
| |
| // Adjust for the case we do not have an implicit "this" parameter. In this |
| // case we decrease all positive values by 1 to get LLVM argument indices. |
| if (!HasImplicitThisParam && ArgIdx > 0) |
| ArgIdx -= 1; |
| |
| EncodingIndices.push_back(ArgIdx); |
| } |
| |
| int CalleeIdx = EncodingIndices.front(); |
| // Check if the callee index is proper, thus not "this" and not "unknown". |
| // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam" |
| // is false and positive if "HasImplicitThisParam" is true. |
| if (CalleeIdx < (int)HasImplicitThisParam) { |
| S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee) |
| << AL.getRange(); |
| return; |
| } |
| |
| // Get the callee type, note the index adjustment as the AST doesn't contain |
| // the this type (which the callee cannot reference anyway!). |
| const Type *CalleeType = |
| getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam) |
| .getTypePtr(); |
| if (!CalleeType || !CalleeType->isFunctionPointerType()) { |
| S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type) |
| << AL.getRange(); |
| return; |
| } |
| |
| const Type *CalleeFnType = |
| CalleeType->getPointeeType()->getUnqualifiedDesugaredType(); |
| |
| // TODO: Check the type of the callee arguments. |
| |
| const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(CalleeFnType); |
| if (!CalleeFnProtoType) { |
| S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type) |
| << AL.getRange(); |
| return; |
| } |
| |
| if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) { |
| S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) |
| << AL << (unsigned)(EncodingIndices.size() - 1); |
| return; |
| } |
| |
| if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) { |
| S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) |
| << AL << (unsigned)(EncodingIndices.size() - 1); |
| return; |
| } |
| |
| if (CalleeFnProtoType->isVariadic()) { |
| S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange(); |
| return; |
| } |
| |
| // Do not allow multiple callback attributes. |
| if (D->hasAttr<CallbackAttr>()) { |
| S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange(); |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) CallbackAttr( |
| S.Context, AL, EncodingIndices.data(), EncodingIndices.size())); |
| } |
| |
| LifetimeCaptureByAttr *Sema::ParseLifetimeCaptureByAttr(const ParsedAttr &AL, |
| StringRef ParamName) { |
| // Atleast one capture by is required. |
| if (AL.getNumArgs() == 0) { |
| Diag(AL.getLoc(), diag::err_capture_by_attribute_no_entity) |
| << AL.getRange(); |
| return nullptr; |
| } |
| unsigned N = AL.getNumArgs(); |
| auto ParamIdents = |
| MutableArrayRef<IdentifierInfo *>(new (Context) IdentifierInfo *[N], N); |
| auto ParamLocs = |
| MutableArrayRef<SourceLocation>(new (Context) SourceLocation[N], N); |
| bool IsValid = true; |
| for (unsigned I = 0; I < N; ++I) { |
| if (AL.isArgExpr(I)) { |
| Expr *E = AL.getArgAsExpr(I); |
| Diag(E->getExprLoc(), diag::err_capture_by_attribute_argument_unknown) |
| << E << E->getExprLoc(); |
| IsValid = false; |
| continue; |
| } |
| assert(AL.isArgIdent(I)); |
| IdentifierLoc *IdLoc = AL.getArgAsIdent(I); |
| if (IdLoc->Ident->getName() == ParamName) { |
| Diag(IdLoc->Loc, diag::err_capture_by_references_itself) << IdLoc->Loc; |
| IsValid = false; |
| continue; |
| } |
| ParamIdents[I] = IdLoc->Ident; |
| ParamLocs[I] = IdLoc->Loc; |
| } |
| if (!IsValid) |
| return nullptr; |
| SmallVector<int> FakeParamIndices(N, LifetimeCaptureByAttr::INVALID); |
| auto *CapturedBy = |
| LifetimeCaptureByAttr::Create(Context, FakeParamIndices.data(), N, AL); |
| CapturedBy->setArgs(ParamIdents, ParamLocs); |
| return CapturedBy; |
| } |
| |
| static void handleLifetimeCaptureByAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| // Do not allow multiple attributes. |
| if (D->hasAttr<LifetimeCaptureByAttr>()) { |
| S.Diag(AL.getLoc(), diag::err_capture_by_attribute_multiple) |
| << AL.getRange(); |
| return; |
| } |
| auto *PVD = dyn_cast<ParmVarDecl>(D); |
| assert(PVD); |
| auto *CaptureByAttr = S.ParseLifetimeCaptureByAttr(AL, PVD->getName()); |
| if (CaptureByAttr) |
| D->addAttr(CaptureByAttr); |
| } |
| |
| void Sema::LazyProcessLifetimeCaptureByParams(FunctionDecl *FD) { |
| bool HasImplicitThisParam = isInstanceMethod(FD); |
| SmallVector<LifetimeCaptureByAttr *, 1> Attrs; |
| for (ParmVarDecl *PVD : FD->parameters()) |
| if (auto *A = PVD->getAttr<LifetimeCaptureByAttr>()) |
| Attrs.push_back(A); |
| if (HasImplicitThisParam) { |
| TypeSourceInfo *TSI = FD->getTypeSourceInfo(); |
| if (!TSI) |
| return; |
| AttributedTypeLoc ATL; |
| for (TypeLoc TL = TSI->getTypeLoc(); |
| (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); |
| TL = ATL.getModifiedLoc()) { |
| if (auto *A = ATL.getAttrAs<LifetimeCaptureByAttr>()) |
| Attrs.push_back(const_cast<LifetimeCaptureByAttr *>(A)); |
| } |
| } |
| if (Attrs.empty()) |
| return; |
| llvm::StringMap<int> NameIdxMapping = { |
| {"global", LifetimeCaptureByAttr::GLOBAL}, |
| {"unknown", LifetimeCaptureByAttr::UNKNOWN}}; |
| int Idx = 0; |
| if (HasImplicitThisParam) { |
| NameIdxMapping["this"] = 0; |
| Idx++; |
| } |
| for (const ParmVarDecl *PVD : FD->parameters()) |
| NameIdxMapping[PVD->getName()] = Idx++; |
| auto DisallowReservedParams = [&](StringRef Reserved) { |
| for (const ParmVarDecl *PVD : FD->parameters()) |
| if (PVD->getName() == Reserved) |
| Diag(PVD->getLocation(), diag::err_capture_by_param_uses_reserved_name) |
| << (PVD->getName() == "unknown"); |
| }; |
| for (auto *CapturedBy : Attrs) { |
| const auto &Entities = CapturedBy->getArgIdents(); |
| for (size_t I = 0; I < Entities.size(); ++I) { |
| StringRef Name = Entities[I]->getName(); |
| auto It = NameIdxMapping.find(Name); |
| if (It == NameIdxMapping.end()) { |
| auto Loc = CapturedBy->getArgLocs()[I]; |
| if (!HasImplicitThisParam && Name == "this") |
| Diag(Loc, diag::err_capture_by_implicit_this_not_available) << Loc; |
| else |
| Diag(Loc, diag::err_capture_by_attribute_argument_unknown) |
| << Entities[I] << Loc; |
| continue; |
| } |
| if (Name == "unknown" || Name == "global") |
| DisallowReservedParams(Name); |
| CapturedBy->setParamIdx(I, It->second); |
| } |
| } |
| } |
| |
| static bool isFunctionLike(const Type &T) { |
| // Check for explicit function types. |
| // 'called_once' is only supported in Objective-C and it has |
| // function pointers and block pointers. |
| return T.isFunctionPointerType() || T.isBlockPointerType(); |
| } |
| |
| /// Handle 'called_once' attribute. |
| static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // 'called_once' only applies to parameters representing functions. |
| QualType T = cast<ParmVarDecl>(D)->getType(); |
| |
| if (!isFunctionLike(*T)) { |
| S.Diag(AL.getLoc(), diag::err_called_once_attribute_wrong_type); |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) CalledOnceAttr(S.Context, AL)); |
| } |
| |
| static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Try to find the underlying union declaration. |
| RecordDecl *RD = nullptr; |
| const auto *TD = dyn_cast<TypedefNameDecl>(D); |
| if (TD && TD->getUnderlyingType()->isUnionType()) |
| RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); |
| else |
| RD = dyn_cast<RecordDecl>(D); |
| |
| if (!RD || !RD->isUnion()) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << AL << AL.isRegularKeywordAttribute() << ExpectedUnion; |
| return; |
| } |
| |
| if (!RD->isCompleteDefinition()) { |
| if (!RD->isBeingDefined()) |
| S.Diag(AL.getLoc(), |
| diag::warn_transparent_union_attribute_not_definition); |
| return; |
| } |
| |
| RecordDecl::field_iterator Field = RD->field_begin(), |
| FieldEnd = RD->field_end(); |
| if (Field == FieldEnd) { |
| S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields); |
| return; |
| } |
| |
| FieldDecl *FirstField = *Field; |
| QualType FirstType = FirstField->getType(); |
| if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) { |
| S.Diag(FirstField->getLocation(), |
| diag::warn_transparent_union_attribute_floating) |
| << FirstType->isVectorType() << FirstType; |
| return; |
| } |
| |
| if (FirstType->isIncompleteType()) |
| return; |
| uint64_t FirstSize = S.Context.getTypeSize(FirstType); |
| uint64_t FirstAlign = S.Context.getTypeAlign(FirstType); |
| for (; Field != FieldEnd; ++Field) { |
| QualType FieldType = Field->getType(); |
| if (FieldType->isIncompleteType()) |
| return; |
| // FIXME: this isn't fully correct; we also need to test whether the |
| // members of the union would all have the same calling convention as the |
| // first member of the union. Checking just the size and alignment isn't |
| // sufficient (consider structs passed on the stack instead of in registers |
| // as an example). |
| if (S.Context.getTypeSize(FieldType) != FirstSize || |
| S.Context.getTypeAlign(FieldType) > FirstAlign) { |
| // Warn if we drop the attribute. |
| bool isSize = S.Context.getTypeSize(FieldType) != FirstSize; |
| unsigned FieldBits = isSize ? S.Context.getTypeSize(FieldType) |
| : S.Context.getTypeAlign(FieldType); |
| S.Diag(Field->getLocation(), |
| diag::warn_transparent_union_attribute_field_size_align) |
| << isSize << *Field << FieldBits; |
| unsigned FirstBits = isSize ? FirstSize : FirstAlign; |
| S.Diag(FirstField->getLocation(), |
| diag::note_transparent_union_first_field_size_align) |
| << isSize << FirstBits; |
| return; |
| } |
| } |
| |
| RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL)); |
| } |
| |
| static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| auto *Attr = S.CreateAnnotationAttr(AL); |
| if (Attr) { |
| D->addAttr(Attr); |
| } |
| } |
| |
| static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0)); |
| } |
| |
| void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) { |
| AlignValueAttr TmpAttr(Context, CI, E); |
| SourceLocation AttrLoc = CI.getLoc(); |
| |
| QualType T; |
| if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) |
| T = TD->getUnderlyingType(); |
| else if (const auto *VD = dyn_cast<ValueDecl>(D)) |
| T = VD->getType(); |
| else |
| llvm_unreachable("Unknown decl type for align_value"); |
| |
| if (!T->isDependentType() && !T->isAnyPointerType() && |
| !T->isReferenceType() && !T->isMemberPointerType()) { |
| Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only) |
| << &TmpAttr << T << D->getSourceRange(); |
| return; |
| } |
| |
| if (!E->isValueDependent()) { |
| llvm::APSInt Alignment; |
| ExprResult ICE = VerifyIntegerConstantExpression( |
| E, &Alignment, diag::err_align_value_attribute_argument_not_int); |
| if (ICE.isInvalid()) |
| return; |
| |
| if (!Alignment.isPowerOf2()) { |
| Diag(AttrLoc, diag::err_alignment_not_power_of_two) |
| << E->getSourceRange(); |
| return; |
| } |
| |
| D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get())); |
| return; |
| } |
| |
| // Save dependent expressions in the AST to be instantiated. |
| D->addAttr(::new (Context) AlignValueAttr(Context, CI, E)); |
| } |
| |
| static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (AL.hasParsedType()) { |
| const ParsedType &TypeArg = AL.getTypeArg(); |
| TypeSourceInfo *TInfo; |
| (void)S.GetTypeFromParser( |
| ParsedType::getFromOpaquePtr(TypeArg.getAsOpaquePtr()), &TInfo); |
| if (AL.isPackExpansion() && |
| !TInfo->getType()->containsUnexpandedParameterPack()) { |
| S.Diag(AL.getEllipsisLoc(), |
| diag::err_pack_expansion_without_parameter_packs); |
| return; |
| } |
| |
| if (!AL.isPackExpansion() && |
| S.DiagnoseUnexpandedParameterPack(TInfo->getTypeLoc().getBeginLoc(), |
| TInfo, Sema::UPPC_Expression)) |
| return; |
| |
| S.AddAlignedAttr(D, AL, TInfo, AL.isPackExpansion()); |
| return; |
| } |
| |
| // check the attribute arguments. |
| if (AL.getNumArgs() > 1) { |
| S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; |
| return; |
| } |
| |
| if (AL.getNumArgs() == 0) { |
| D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr)); |
| return; |
| } |
| |
| Expr *E = AL.getArgAsExpr(0); |
| if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) { |
| S.Diag(AL.getEllipsisLoc(), |
| diag::err_pack_expansion_without_parameter_packs); |
| return; |
| } |
| |
| if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E)) |
| return; |
| |
| S.AddAlignedAttr(D, AL, E, AL.isPackExpansion()); |
| } |
| |
| /// Perform checking of type validity |
| /// |
| /// C++11 [dcl.align]p1: |
| /// An alignment-specifier may be applied to a variable or to a class |
| /// data member, but it shall not be applied to a bit-field, a function |
| /// parameter, the formal parameter of a catch clause, or a variable |
| /// declared with the register storage class specifier. An |
| /// alignment-specifier may also be applied to the declaration of a class |
| /// or enumeration type. |
| /// CWG 2354: |
| /// CWG agreed to remove permission for alignas to be applied to |
| /// enumerations. |
| /// C11 6.7.5/2: |
| /// An alignment attribute shall not be specified in a declaration of |
| /// a typedef, or a bit-field, or a function, or a parameter, or an |
| /// object declared with the register storage-class specifier. |
| static bool validateAlignasAppliedType(Sema &S, Decl *D, |
| const AlignedAttr &Attr, |
| SourceLocation AttrLoc) { |
| int DiagKind = -1; |
| if (isa<ParmVarDecl>(D)) { |
| DiagKind = 0; |
| } else if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| if (VD->getStorageClass() == SC_Register) |
| DiagKind = 1; |
| if (VD->isExceptionVariable()) |
| DiagKind = 2; |
| } else if (const auto *FD = dyn_cast<FieldDecl>(D)) { |
| if (FD->isBitField()) |
| DiagKind = 3; |
| } else if (const auto *ED = dyn_cast<EnumDecl>(D)) { |
| if (ED->getLangOpts().CPlusPlus) |
| DiagKind = 4; |
| } else if (!isa<TagDecl>(D)) { |
| return S.Diag(AttrLoc, diag::err_attribute_wrong_decl_type) |
| << &Attr << Attr.isRegularKeywordAttribute() |
| << (Attr.isC11() ? ExpectedVariableOrField |
| : ExpectedVariableFieldOrTag); |
| } |
| if (DiagKind != -1) { |
| return S.Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type) |
| << &Attr << DiagKind; |
| } |
| return false; |
| } |
| |
| void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, |
| bool IsPackExpansion) { |
| AlignedAttr TmpAttr(Context, CI, true, E); |
| SourceLocation AttrLoc = CI.getLoc(); |
| |
| // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. |
| if (TmpAttr.isAlignas() && |
| validateAlignasAppliedType(*this, D, TmpAttr, AttrLoc)) |
| return; |
| |
| if (E->isValueDependent()) { |
| // We can't support a dependent alignment on a non-dependent type, |
| // because we have no way to model that a type is "alignment-dependent" |
| // but not dependent in any other way. |
| if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) { |
| if (!TND->getUnderlyingType()->isDependentType()) { |
| Diag(AttrLoc, diag::err_alignment_dependent_typedef_name) |
| << E->getSourceRange(); |
| return; |
| } |
| } |
| |
| // Save dependent expressions in the AST to be instantiated. |
| AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E); |
| AA->setPackExpansion(IsPackExpansion); |
| D->addAttr(AA); |
| return; |
| } |
| |
| // FIXME: Cache the number on the AL object? |
| llvm::APSInt Alignment; |
| ExprResult ICE = VerifyIntegerConstantExpression( |
| E, &Alignment, diag::err_aligned_attribute_argument_not_int); |
| if (ICE.isInvalid()) |
| return; |
| |
| uint64_t MaximumAlignment = Sema::MaximumAlignment; |
| if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF()) |
| MaximumAlignment = std::min(MaximumAlignment, uint64_t(8192)); |
| if (Alignment > MaximumAlignment) { |
| Diag(AttrLoc, diag::err_attribute_aligned_too_great) |
| << MaximumAlignment << E->getSourceRange(); |
| return; |
| } |
| |
| uint64_t AlignVal = Alignment.getZExtValue(); |
| // C++11 [dcl.align]p2: |
| // -- if the constant expression evaluates to zero, the alignment |
| // specifier shall have no effect |
| // C11 6.7.5p6: |
| // An alignment specification of zero has no effect. |
| if (!(TmpAttr.isAlignas() && !Alignment)) { |
| if (!llvm::isPowerOf2_64(AlignVal)) { |
| Diag(AttrLoc, diag::err_alignment_not_power_of_two) |
| << E->getSourceRange(); |
| return; |
| } |
| } |
| |
| const auto *VD = dyn_cast<VarDecl>(D); |
| if (VD) { |
| unsigned MaxTLSAlign = |
| Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign()) |
| .getQuantity(); |
| if (MaxTLSAlign && AlignVal > MaxTLSAlign && |
| VD->getTLSKind() != VarDecl::TLS_None) { |
| Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) |
| << (unsigned)AlignVal << VD << MaxTLSAlign; |
| return; |
| } |
| } |
| |
| // On AIX, an aligned attribute can not decrease the alignment when applied |
| // to a variable declaration with vector type. |
| if (VD && Context.getTargetInfo().getTriple().isOSAIX()) { |
| const Type *Ty = VD->getType().getTypePtr(); |
| if (Ty->isVectorType() && AlignVal < 16) { |
| Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned) |
| << VD->getType() << 16; |
| return; |
| } |
| } |
| |
| AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get()); |
| AA->setPackExpansion(IsPackExpansion); |
| AA->setCachedAlignmentValue( |
| static_cast<unsigned>(AlignVal * Context.getCharWidth())); |
| D->addAttr(AA); |
| } |
| |
| void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, |
| TypeSourceInfo *TS, bool IsPackExpansion) { |
| AlignedAttr TmpAttr(Context, CI, false, TS); |
| SourceLocation AttrLoc = CI.getLoc(); |
| |
| // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. |
| if (TmpAttr.isAlignas() && |
| validateAlignasAppliedType(*this, D, TmpAttr, AttrLoc)) |
| return; |
| |
| if (TS->getType()->isDependentType()) { |
| // We can't support a dependent alignment on a non-dependent type, |
| // because we have no way to model that a type is "type-dependent" |
| // but not dependent in any other way. |
| if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) { |
| if (!TND->getUnderlyingType()->isDependentType()) { |
| Diag(AttrLoc, diag::err_alignment_dependent_typedef_name) |
| << TS->getTypeLoc().getSourceRange(); |
| return; |
| } |
| } |
| |
| AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS); |
| AA->setPackExpansion(IsPackExpansion); |
| D->addAttr(AA); |
| return; |
| } |
| |
| const auto *VD = dyn_cast<VarDecl>(D); |
| unsigned AlignVal = TmpAttr.getAlignment(Context); |
| // On AIX, an aligned attribute can not decrease the alignment when applied |
| // to a variable declaration with vector type. |
| if (VD && Context.getTargetInfo().getTriple().isOSAIX()) { |
| const Type *Ty = VD->getType().getTypePtr(); |
| if (Ty->isVectorType() && |
| Context.toCharUnitsFromBits(AlignVal).getQuantity() < 16) { |
| Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned) |
| << VD->getType() << 16; |
| return; |
| } |
| } |
| |
| AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS); |
| AA->setPackExpansion(IsPackExpansion); |
| AA->setCachedAlignmentValue(AlignVal); |
| D->addAttr(AA); |
| } |
| |
| void Sema::CheckAlignasUnderalignment(Decl *D) { |
| assert(D->hasAttrs() && "no attributes on decl"); |
| |
| QualType UnderlyingTy, DiagTy; |
| if (const auto *VD = dyn_cast<ValueDecl>(D)) { |
| UnderlyingTy = DiagTy = VD->getType(); |
| } else { |
| UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D)); |
| if (const auto *ED = dyn_cast<EnumDecl>(D)) |
| UnderlyingTy = ED->getIntegerType(); |
| } |
| if (DiagTy->isDependentType() || DiagTy->isIncompleteType()) |
| return; |
| |
| // C++11 [dcl.align]p5, C11 6.7.5/4: |
| // The combined effect of all alignment attributes in a declaration shall |
| // not specify an alignment that is less strict than the alignment that |
| // would otherwise be required for the entity being declared. |
| AlignedAttr *AlignasAttr = nullptr; |
| AlignedAttr *LastAlignedAttr = nullptr; |
| unsigned Align = 0; |
| for (auto *I : D->specific_attrs<AlignedAttr>()) { |
| if (I->isAlignmentDependent()) |
| return; |
| if (I->isAlignas()) |
| AlignasAttr = I; |
| Align = std::max(Align, I->getAlignment(Context)); |
| LastAlignedAttr = I; |
| } |
| |
| if (Align && DiagTy->isSizelessType()) { |
| Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type) |
| << LastAlignedAttr << DiagTy; |
| } else if (AlignasAttr && Align) { |
| CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align); |
| CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy); |
| if (NaturalAlign > RequestedAlign) |
| Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned) |
| << DiagTy << (unsigned)NaturalAlign.getQuantity(); |
| } |
| } |
| |
| bool Sema::checkMSInheritanceAttrOnDefinition( |
| CXXRecordDecl *RD, SourceRange Range, bool BestCase, |
| MSInheritanceModel ExplicitModel) { |
| assert(RD->hasDefinition() && "RD has no definition!"); |
| |
| // We may not have seen base specifiers or any virtual methods yet. We will |
| // have to wait until the record is defined to catch any mismatches. |
| if (!RD->getDefinition()->isCompleteDefinition()) |
| return false; |
| |
| // The unspecified model never matches what a definition could need. |
| if (ExplicitModel == MSInheritanceModel::Unspecified) |
| return false; |
| |
| if (BestCase) { |
| if (RD->calculateInheritanceModel() == ExplicitModel) |
| return false; |
| } else { |
| if (RD->calculateInheritanceModel() <= ExplicitModel) |
| return false; |
| } |
| |
| Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance) |
| << 0 /*definition*/; |
| Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD; |
| return true; |
| } |
| |
| /// parseModeAttrArg - Parses attribute mode string and returns parsed type |
| /// attribute. |
| static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth, |
| bool &IntegerMode, bool &ComplexMode, |
| FloatModeKind &ExplicitType) { |
| IntegerMode = true; |
| ComplexMode = false; |
| ExplicitType = FloatModeKind::NoFloat; |
| switch (Str.size()) { |
| case 2: |
| switch (Str[0]) { |
| case 'Q': |
| DestWidth = 8; |
| break; |
| case 'H': |
| DestWidth = 16; |
| break; |
| case 'S': |
| DestWidth = 32; |
| break; |
| case 'D': |
| DestWidth = 64; |
| break; |
| case 'X': |
| DestWidth = 96; |
| break; |
| case 'K': // KFmode - IEEE quad precision (__float128) |
| ExplicitType = FloatModeKind::Float128; |
| DestWidth = Str[1] == 'I' ? 0 : 128; |
| break; |
| case 'T': |
| ExplicitType = FloatModeKind::LongDouble; |
| DestWidth = 128; |
| break; |
| case 'I': |
| ExplicitType = FloatModeKind::Ibm128; |
| DestWidth = Str[1] == 'I' ? 0 : 128; |
| break; |
| } |
| if (Str[1] == 'F') { |
| IntegerMode = false; |
| } else if (Str[1] == 'C') { |
| IntegerMode = false; |
| ComplexMode = true; |
| } else if (Str[1] != 'I') { |
| DestWidth = 0; |
| } |
| break; |
| case 4: |
| // FIXME: glibc uses 'word' to define register_t; this is narrower than a |
| // pointer on PIC16 and other embedded platforms. |
| if (Str == "word") |
| DestWidth = S.Context.getTargetInfo().getRegisterWidth(); |
| else if (Str == "byte") |
| DestWidth = S.Context.getTargetInfo().getCharWidth(); |
| break; |
| case 7: |
| if (Str == "pointer") |
| DestWidth = S.Context.getTargetInfo().getPointerWidth(LangAS::Default); |
| break; |
| case 11: |
| if (Str == "unwind_word") |
| DestWidth = S.Context.getTargetInfo().getUnwindWordWidth(); |
| break; |
| } |
| } |
| |
| /// handleModeAttr - This attribute modifies the width of a decl with primitive |
| /// type. |
| /// |
| /// Despite what would be logical, the mode attribute is a decl attribute, not a |
| /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be |
| /// HImode, not an intermediate pointer. |
| static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // This attribute isn't documented, but glibc uses it. It changes |
| // the width of an int or unsigned int to the specified size. |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident; |
| |
| S.AddModeAttr(D, AL, Name); |
| } |
| |
| void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI, |
| IdentifierInfo *Name, bool InInstantiation) { |
| StringRef Str = Name->getName(); |
| normalizeName(Str); |
| SourceLocation AttrLoc = CI.getLoc(); |
| |
| unsigned DestWidth = 0; |
| bool IntegerMode = true; |
| bool ComplexMode = false; |
| FloatModeKind ExplicitType = FloatModeKind::NoFloat; |
| llvm::APInt VectorSize(64, 0); |
| if (Str.size() >= 4 && Str[0] == 'V') { |
| // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2). |
| size_t StrSize = Str.size(); |
| size_t VectorStringLength = 0; |
| while ((VectorStringLength + 1) < StrSize && |
| isdigit(Str[VectorStringLength + 1])) |
| ++VectorStringLength; |
| if (VectorStringLength && |
| !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) && |
| VectorSize.isPowerOf2()) { |
| parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth, |
| IntegerMode, ComplexMode, ExplicitType); |
| // Avoid duplicate warning from template instantiation. |
| if (!InInstantiation) |
| Diag(AttrLoc, diag::warn_vector_mode_deprecated); |
| } else { |
| VectorSize = 0; |
| } |
| } |
| |
| if (!VectorSize) |
| parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode, |
| ExplicitType); |
| |
| // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t |
| // and friends, at least with glibc. |
| // FIXME: Make sure floating-point mappings are accurate |
| // FIXME: Support XF and TF types |
| if (!DestWidth) { |
| Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name; |
| return; |
| } |
| |
| QualType OldTy; |
| if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) |
| OldTy = TD->getUnderlyingType(); |
| else if (const auto *ED = dyn_cast<EnumDecl>(D)) { |
| // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'. |
| // Try to get type from enum declaration, default to int. |
| OldTy = ED->getIntegerType(); |
| if (OldTy.isNull()) |
| OldTy = Context.IntTy; |
| } else |
| OldTy = cast<ValueDecl>(D)->getType(); |
| |
| if (OldTy->isDependentType()) { |
| D->addAttr(::new (Context) ModeAttr(Context, CI, Name)); |
| return; |
| } |
| |
| // Base type can also be a vector type (see PR17453). |
| // Distinguish between base type and base element type. |
| QualType OldElemTy = OldTy; |
| if (const auto *VT = OldTy->getAs<VectorType>()) |
| OldElemTy = VT->getElementType(); |
| |
| // GCC allows 'mode' attribute on enumeration types (even incomplete), except |
| // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete |
| // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected. |
| if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) && |
| VectorSize.getBoolValue()) { |
| Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange(); |
| return; |
| } |
| bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() && |
| !OldElemTy->isBitIntType()) || |
| OldElemTy->getAs<EnumType>(); |
| |
| if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() && |
| !IntegralOrAnyEnumType) |
| Diag(AttrLoc, diag::err_mode_not_primitive); |
| else if (IntegerMode) { |
| if (!IntegralOrAnyEnumType) |
| Diag(AttrLoc, diag::err_mode_wrong_type); |
| } else if (ComplexMode) { |
| if (!OldElemTy->isComplexType()) |
| Diag(AttrLoc, diag::err_mode_wrong_type); |
| } else { |
| if (!OldElemTy->isFloatingType()) |
| Diag(AttrLoc, diag::err_mode_wrong_type); |
| } |
| |
| QualType NewElemTy; |
| |
| if (IntegerMode) |
| NewElemTy = Context.getIntTypeForBitwidth(DestWidth, |
| OldElemTy->isSignedIntegerType()); |
| else |
| NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitType); |
| |
| if (NewElemTy.isNull()) { |
| // Only emit diagnostic on host for 128-bit mode attribute |
| if (!(DestWidth == 128 && |
| (getLangOpts().CUDAIsDevice || getLangOpts().SYCLIsDevice))) |
| Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name; |
| return; |
| } |
| |
| if (ComplexMode) { |
| NewElemTy = Context.getComplexType(NewElemTy); |
| } |
| |
| QualType NewTy = NewElemTy; |
| if (VectorSize.getBoolValue()) { |
| NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(), |
| VectorKind::Generic); |
| } else if (const auto *OldVT = OldTy->getAs<VectorType>()) { |
| // Complex machine mode does not support base vector types. |
| if (ComplexMode) { |
| Diag(AttrLoc, diag::err_complex_mode_vector_type); |
| return; |
| } |
| unsigned NumElements = Context.getTypeSize(OldElemTy) * |
| OldVT->getNumElements() / |
| Context.getTypeSize(NewElemTy); |
| NewTy = |
| Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind()); |
| } |
| |
| if (NewTy.isNull()) { |
| Diag(AttrLoc, diag::err_mode_wrong_type); |
| return; |
| } |
| |
| // Install the new type. |
| if (auto *TD = dyn_cast<TypedefNameDecl>(D)) |
| TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy); |
| else if (auto *ED = dyn_cast<EnumDecl>(D)) |
| ED->setIntegerType(NewTy); |
| else |
| cast<ValueDecl>(D)->setType(NewTy); |
| |
| D->addAttr(::new (Context) ModeAttr(Context, CI, Name)); |
| } |
| |
| static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL)); |
| } |
| |
| AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, |
| const AttributeCommonInfo &CI, |
| const IdentifierInfo *Ident) { |
| if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { |
| Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident; |
| Diag(Optnone->getLocation(), diag::note_conflicting_attribute); |
| return nullptr; |
| } |
| |
| if (D->hasAttr<AlwaysInlineAttr>()) |
| return nullptr; |
| |
| return ::new (Context) AlwaysInlineAttr(Context, CI); |
| } |
| |
| InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D, |
| const ParsedAttr &AL) { |
| if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| // Attribute applies to Var but not any subclass of it (like ParmVar, |
| // ImplicitParm or VarTemplateSpecialization). |
| if (VD->getKind() != Decl::Var) { |
| Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << AL << AL.isRegularKeywordAttribute() |
| << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass |
| : ExpectedVariableOrFunction); |
| return nullptr; |
| } |
| // Attribute does not apply to non-static local variables. |
| if (VD->hasLocalStorage()) { |
| Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage); |
| return nullptr; |
| } |
| } |
| |
| return ::new (Context) InternalLinkageAttr(Context, AL); |
| } |
| InternalLinkageAttr * |
| Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) { |
| if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| // Attribute applies to Var but not any subclass of it (like ParmVar, |
| // ImplicitParm or VarTemplateSpecialization). |
| if (VD->getKind() != Decl::Var) { |
| Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type) |
| << &AL << AL.isRegularKeywordAttribute() |
| << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass |
| : ExpectedVariableOrFunction); |
| return nullptr; |
| } |
| // Attribute does not apply to non-static local variables. |
| if (VD->hasLocalStorage()) { |
| Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage); |
| return nullptr; |
| } |
| } |
| |
| return ::new (Context) InternalLinkageAttr(Context, AL); |
| } |
| |
| MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) { |
| if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { |
| Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'"; |
| Diag(Optnone->getLocation(), diag::note_conflicting_attribute); |
| return nullptr; |
| } |
| |
| if (D->hasAttr<MinSizeAttr>()) |
| return nullptr; |
| |
| return ::new (Context) MinSizeAttr(Context, CI); |
| } |
| |
| OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, |
| const AttributeCommonInfo &CI) { |
| if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) { |
| Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline; |
| Diag(CI.getLoc(), diag::note_conflicting_attribute); |
| D->dropAttr<AlwaysInlineAttr>(); |
| } |
| if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) { |
| Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize; |
| Diag(CI.getLoc(), diag::note_conflicting_attribute); |
| D->dropAttr<MinSizeAttr>(); |
| } |
| |
| if (D->hasAttr<OptimizeNoneAttr>()) |
| return nullptr; |
| |
| return ::new (Context) OptimizeNoneAttr(Context, CI); |
| } |
| |
| static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (AlwaysInlineAttr *Inline = |
| S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName())) |
| D->addAttr(Inline); |
| } |
| |
| static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL)) |
| D->addAttr(MinSize); |
| } |
| |
| static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL)) |
| D->addAttr(Optnone); |
| } |
| |
| static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| const auto *VD = cast<VarDecl>(D); |
| if (VD->hasLocalStorage()) { |
| S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev); |
| return; |
| } |
| // constexpr variable may already get an implicit constant attr, which should |
| // be replaced by the explicit constant attr. |
| if (auto *A = D->getAttr<CUDAConstantAttr>()) { |
| if (!A->isImplicit()) |
| return; |
| D->dropAttr<CUDAConstantAttr>(); |
| } |
| D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL)); |
| } |
| |
| static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| const auto *VD = cast<VarDecl>(D); |
| // extern __shared__ is only allowed on arrays with no length (e.g. |
| // "int x[]"). |
| if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() && |
| !isa<IncompleteArrayType>(VD->getType())) { |
| S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD; |
| return; |
| } |
| if (S.getLangOpts().CUDA && VD->hasLocalStorage() && |
| S.CUDA().DiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared) |
| << llvm::to_underlying(S.CUDA().CurrentTarget())) |
| return; |
| D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL)); |
| } |
| |
| static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| const auto *FD = cast<FunctionDecl>(D); |
| if (!FD->getReturnType()->isVoidType() && |
| !FD->getReturnType()->getAs<AutoType>() && |
| !FD->getReturnType()->isInstantiationDependentType()) { |
| SourceRange RTRange = FD->getReturnTypeSourceRange(); |
| S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return) |
| << FD->getType() |
| << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") |
| : FixItHint()); |
| return; |
| } |
| if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) { |
| if (Method->isInstance()) { |
| S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method) |
| << Method; |
| return; |
| } |
| S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method; |
| } |
| // Only warn for "inline" when compiling for host, to cut down on noise. |
| if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice) |
| S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD; |
| |
| if (AL.getKind() == ParsedAttr::AT_NVPTXKernel) |
| D->addAttr(::new (S.Context) NVPTXKernelAttr(S.Context, AL)); |
| else |
| D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL)); |
| // In host compilation the kernel is emitted as a stub function, which is |
| // a helper function for launching the kernel. The instructions in the helper |
| // function has nothing to do with the source code of the kernel. Do not emit |
| // debug info for the stub function to avoid confusing the debugger. |
| if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice) |
| D->addAttr(NoDebugAttr::CreateImplicit(S.Context)); |
| } |
| |
| static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| if (VD->hasLocalStorage()) { |
| S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev); |
| return; |
| } |
| } |
| |
| if (auto *A = D->getAttr<CUDADeviceAttr>()) { |
| if (!A->isImplicit()) |
| return; |
| D->dropAttr<CUDADeviceAttr>(); |
| } |
| D->addAttr(::new (S.Context) CUDADeviceAttr(S.Context, AL)); |
| } |
| |
| static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (const auto *VD = dyn_cast<VarDecl>(D)) { |
| if (VD->hasLocalStorage()) { |
| S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev); |
| return; |
| } |
| } |
| if (!D->hasAttr<HIPManagedAttr>()) |
| D->addAttr(::new (S.Context) HIPManagedAttr(S.Context, AL)); |
| if (!D->hasAttr<CUDADeviceAttr>()) |
| D->addAttr(CUDADeviceAttr::CreateImplicit(S.Context)); |
| } |
| |
| static void handleGridConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (D->isInvalidDecl()) |
| return; |
| // Whether __grid_constant__ is allowed to be used will be checked in |
| // Sema::CheckFunctionDeclaration as we need complete function decl to make |
| // the call. |
| D->addAttr(::new (S.Context) CUDAGridConstantAttr(S.Context, AL)); |
| } |
| |
| static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| const auto *Fn = cast<FunctionDecl>(D); |
| if (!Fn->isInlineSpecified()) { |
| S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline); |
| return; |
| } |
| |
| if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern) |
| S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern); |
| |
| D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL)); |
| } |
| |
| static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (hasDeclarator(D)) return; |
| |
| // Diagnostic is emitted elsewhere: here we store the (valid) AL |
| // in the Decl node for syntactic reasoning, e.g., pretty-printing. |
| CallingConv CC; |
| if (S.CheckCallingConvAttr( |
| AL, CC, /*FD*/ nullptr, |
| S.CUDA().IdentifyTarget(dyn_cast<FunctionDecl>(D)))) |
| return; |
| |
| if (!isa<ObjCMethodDecl>(D)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) |
| << AL << AL.isRegularKeywordAttribute() << ExpectedFunctionOrMethod; |
| return; |
| } |
| |
| switch (AL.getKind()) { |
| case ParsedAttr::AT_FastCall: |
| D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_StdCall: |
| D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_ThisCall: |
| D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_CDecl: |
| D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_Pascal: |
| D->addAttr(::new (S.Context) PascalAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_SwiftCall: |
| D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_SwiftAsyncCall: |
| D->addAttr(::new (S.Context) SwiftAsyncCallAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_VectorCall: |
| D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_MSABI: |
| D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_SysVABI: |
| D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_RegCall: |
| D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_Pcs: { |
| PcsAttr::PCSType PCS; |
| switch (CC) { |
| case CC_AAPCS: |
| PCS = PcsAttr::AAPCS; |
| break; |
| case CC_AAPCS_VFP: |
| PCS = PcsAttr::AAPCS_VFP; |
| break; |
| default: |
| llvm_unreachable("unexpected calling convention in pcs attribute"); |
| } |
| |
| D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS)); |
| return; |
| } |
| case ParsedAttr::AT_AArch64VectorPcs: |
| D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_AArch64SVEPcs: |
| D->addAttr(::new (S.Context) AArch64SVEPcsAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_AMDGPUKernelCall: |
| D->addAttr(::new (S.Context) AMDGPUKernelCallAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_IntelOclBicc: |
| D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_PreserveMost: |
| D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_PreserveAll: |
| D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_M68kRTD: |
| D->addAttr(::new (S.Context) M68kRTDAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_PreserveNone: |
| D->addAttr(::new (S.Context) PreserveNoneAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_RISCVVectorCC: |
| D->addAttr(::new (S.Context) RISCVVectorCCAttr(S.Context, AL)); |
| return; |
| case ParsedAttr::AT_RISCVVLSCC: { |
| // If the riscv_abi_vlen doesn't have any argument, default ABI_VLEN is 128. |
| unsigned VectorLength = 128; |
| if (AL.getNumArgs() && |
| !S.checkUInt32Argument(AL, AL.getArgAsExpr(0), VectorLength)) |
| return; |
| if (VectorLength < 32 || VectorLength > 65536) { |
| S.Diag(AL.getLoc(), diag::err_argument_invalid_range) |
| << VectorLength << 32 << 65536; |
| return; |
| } |
| if (!llvm::isPowerOf2_64(VectorLength)) { |
| S.Diag(AL.getLoc(), diag::err_argument_not_power_of_2); |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) RISCVVLSCCAttr(S.Context, AL, VectorLength)); |
| return; |
| } |
| default: |
| llvm_unreachable("unexpected attribute kind"); |
| } |
| } |
| |
| static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (AL.getAttributeSpellingListIndex() == SuppressAttr::CXX11_gsl_suppress) { |
| // Suppression attribute with GSL spelling requires at least 1 argument. |
| if (!AL.checkAtLeastNumArgs(S, 1)) |
| return; |
| } |
| |
| std::vector<StringRef> DiagnosticIdentifiers; |
| for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
| StringRef RuleName; |
| |
| if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr)) |
| return; |
| |
| DiagnosticIdentifiers.push_back(RuleName); |
| } |
| D->addAttr(::new (S.Context) |
| SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(), |
| DiagnosticIdentifiers.size())); |
| } |
| |
| static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| TypeSourceInfo *DerefTypeLoc = nullptr; |
| QualType ParmType; |
| if (AL.hasParsedType()) { |
| ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc); |
| |
| unsigned SelectIdx = ~0U; |
| if (ParmType->isReferenceType()) |
| SelectIdx = 0; |
| else if (ParmType->isArrayType()) |
| SelectIdx = 1; |
| |
| if (SelectIdx != ~0U) { |
| S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) |
| << SelectIdx << AL; |
| return; |
| } |
| } |
| |
| // To check if earlier decl attributes do not conflict the newly parsed ones |
| // we always add (and check) the attribute to the canonical decl. We need |
| // to repeat the check for attribute mutual exclusion because we're attaching |
| // all of the attributes to the canonical declaration rather than the current |
| // declaration. |
| D = D->getCanonicalDecl(); |
| if (AL.getKind() == ParsedAttr::AT_Owner) { |
| if (checkAttrMutualExclusion<PointerAttr>(S, D, AL)) |
| return; |
| if (const auto *OAttr = D->getAttr<OwnerAttr>()) { |
| const Type *ExistingDerefType = OAttr->getDerefTypeLoc() |
| ? OAttr->getDerefType().getTypePtr() |
| : nullptr; |
| if (ExistingDerefType != ParmType.getTypePtrOrNull()) { |
| S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) |
| << AL << OAttr |
| << (AL.isRegularKeywordAttribute() || |
| OAttr->isRegularKeywordAttribute()); |
| S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute); |
| } |
| return; |
| } |
| for (Decl *Redecl : D->redecls()) { |
| Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc)); |
| } |
| } else { |
| if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL)) |
| return; |
| if (const auto *PAttr = D->getAttr<PointerAttr>()) { |
| const Type *ExistingDerefType = PAttr->getDerefTypeLoc() |
| ? PAttr->getDerefType().getTypePtr() |
| : nullptr; |
| if (ExistingDerefType != ParmType.getTypePtrOrNull()) { |
| S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) |
| << AL << PAttr |
| << (AL.isRegularKeywordAttribute() || |
| PAttr->isRegularKeywordAttribute()); |
| S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute); |
| } |
| return; |
| } |
| for (Decl *Redecl : D->redecls()) { |
| Redecl->addAttr(::new (S.Context) |
| PointerAttr(S.Context, AL, DerefTypeLoc)); |
| } |
| } |
| } |
| |
| static void handleRandomizeLayoutAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (checkAttrMutualExclusion<NoRandomizeLayoutAttr>(S, D, AL)) |
| return; |
| if (!D->hasAttr<RandomizeLayoutAttr>()) |
| D->addAttr(::new (S.Context) RandomizeLayoutAttr(S.Context, AL)); |
| } |
| |
| static void handleNoRandomizeLayoutAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| if (checkAttrMutualExclusion<RandomizeLayoutAttr>(S, D, AL)) |
| return; |
| if (!D->hasAttr<NoRandomizeLayoutAttr>()) |
| D->addAttr(::new (S.Context) NoRandomizeLayoutAttr(S.Context, AL)); |
| } |
| |
| bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC, |
| const FunctionDecl *FD, |
| CUDAFunctionTarget CFT) { |
| if (Attrs.isInvalid()) |
| return true; |
| |
| if (Attrs.hasProcessingCache()) { |
| CC = (CallingConv) Attrs.getProcessingCache(); |
| return false; |
| } |
| |
| if (Attrs.getKind() == ParsedAttr::AT_RISCVVLSCC) { |
| // riscv_vls_cc only accepts 0 or 1 argument. |
| if (!Attrs.checkAtLeastNumArgs(*this, 0) || |
| !Attrs.checkAtMostNumArgs(*this, 1)) { |
| Attrs.setInvalid(); |
| return true; |
| } |
| } else { |
| unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0; |
| if (!Attrs.checkExactlyNumArgs(*this, ReqArgs)) { |
| Attrs.setInvalid(); |
| return true; |
| } |
| } |
| |
| // TODO: diagnose uses of these conventions on the wrong target. |
| switch (Attrs.getKind()) { |
| case ParsedAttr::AT_CDecl: |
| CC = CC_C; |
| break; |
| case ParsedAttr::AT_FastCall: |
| CC = CC_X86FastCall; |
| break; |
| case ParsedAttr::AT_StdCall: |
| CC = CC_X86StdCall; |
| break; |
| case ParsedAttr::AT_ThisCall: |
| CC = CC_X86ThisCall; |
| break; |
| case ParsedAttr::AT_Pascal: |
| CC = CC_X86Pascal; |
| break; |
| case ParsedAttr::AT_SwiftCall: |
| CC = CC_Swift; |
| break; |
| case ParsedAttr::AT_SwiftAsyncCall: |
| CC = CC_SwiftAsync; |
| break; |
| case ParsedAttr::AT_VectorCall: |
| CC = CC_X86VectorCall; |
| break; |
| case ParsedAttr::AT_AArch64VectorPcs: |
| CC = CC_AArch64VectorCall; |
| break; |
| case ParsedAttr::AT_AArch64SVEPcs: |
| CC = CC_AArch64SVEPCS; |
| break; |
| case ParsedAttr::AT_AMDGPUKernelCall: |
| CC = CC_AMDGPUKernelCall; |
| break; |
| case ParsedAttr::AT_RegCall: |
| CC = CC_X86RegCall; |
| break; |
| case ParsedAttr::AT_MSABI: |
| CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C : |
| CC_Win64; |
| break; |
| case ParsedAttr::AT_SysVABI: |
| CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV : |
| CC_C; |
| break; |
| case ParsedAttr::AT_Pcs: { |
| StringRef StrRef; |
| if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) { |
| Attrs.setInvalid(); |
| return true; |
| } |
| if (StrRef == "aapcs") { |
| CC = CC_AAPCS; |
| break; |
| } else if (StrRef == "aapcs-vfp") { |
| CC = CC_AAPCS_VFP; |
| break; |
| } |
| |
| Attrs.setInvalid(); |
| Diag(Attrs.getLoc(), diag::err_invalid_pcs); |
| return true; |
| } |
| case ParsedAttr::AT_IntelOclBicc: |
| CC = CC_IntelOclBicc; |
| break; |
| case ParsedAttr::AT_PreserveMost: |
| CC = CC_PreserveMost; |
| break; |
| case ParsedAttr::AT_PreserveAll: |
| CC = CC_PreserveAll; |
| break; |
| case ParsedAttr::AT_M68kRTD: |
| CC = CC_M68kRTD; |
| break; |
| case ParsedAttr::AT_PreserveNone: |
| CC = CC_PreserveNone; |
| break; |
| case ParsedAttr::AT_RISCVVectorCC: |
| CC = CC_RISCVVectorCall; |
| break; |
| case ParsedAttr::AT_RISCVVLSCC: { |
| // If the riscv_abi_vlen doesn't have any argument, we set set it to default |
| // value 128. |
| unsigned ABIVLen = 128; |
| if (Attrs.getNumArgs() && |
| !checkUInt32Argument(Attrs, Attrs.getArgAsExpr(0), ABIVLen)) { |
| Attrs.setInvalid(); |
| return true; |
| } |
| if (Attrs.getNumArgs() && (ABIVLen < 32 || ABIVLen > 65536)) { |
| Attrs.setInvalid(); |
| Diag(Attrs.getLoc(), diag::err_argument_invalid_range) |
| << ABIVLen << 32 << 65536; |
| return true; |
| } |
| if (!llvm::isPowerOf2_64(ABIVLen)) { |
| Attrs.setInvalid(); |
| Diag(Attrs.getLoc(), diag::err_argument_not_power_of_2); |
| return true; |
| } |
| CC = static_cast<CallingConv>(CallingConv::CC_RISCVVLSCall_32 + |
| llvm::Log2_64(ABIVLen) - 5); |
| break; |
| } |
| default: llvm_unreachable("unexpected attribute kind"); |
| } |
| |
| TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK; |
| const TargetInfo &TI = Context.getTargetInfo(); |
| // CUDA functions may have host and/or device attributes which indicate |
| // their targeted execution environment, therefore the calling convention |
| // of functions in CUDA should be checked against the target deduced based |
| // on their host/device attributes. |
| if (LangOpts.CUDA) { |
| auto *Aux = Context.getAuxTargetInfo(); |
| assert(FD || CFT != CUDAFunctionTarget::InvalidTarget); |
| auto CudaTarget = FD ? CUDA().IdentifyTarget(FD) : CFT; |
| bool CheckHost = false, CheckDevice = false; |
| switch (CudaTarget) { |
| case CUDAFunctionTarget::HostDevice: |
| CheckHost = true; |
| CheckDevice = true; |
| break; |
| case CUDAFunctionTarget::Host: |
| CheckHost = true; |
| break; |
| case CUDAFunctionTarget::Device: |
| case CUDAFunctionTarget::Global: |
| CheckDevice = true; |
| break; |
| case CUDAFunctionTarget::InvalidTarget: |
| llvm_unreachable("unexpected cuda target"); |
| } |
| auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI; |
| auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux; |
| if (CheckHost && HostTI) |
| A = HostTI->checkCallingConvention(CC); |
| if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI) |
| A = DeviceTI->checkCallingConvention(CC); |
| } else { |
| A = TI.checkCallingConvention(CC); |
| } |
| |
| switch (A) { |
| case TargetInfo::CCCR_OK: |
| break; |
| |
| case TargetInfo::CCCR_Ignore: |
| // Treat an ignored convention as if it was an explicit C calling convention |
| // attribute. For example, __stdcall on Win x64 functions as __cdecl, so |
| // that command line flags that change the default convention to |
| // __vectorcall don't affect declarations marked __stdcall. |
| CC = CC_C; |
| break; |
| |
| case TargetInfo::CCCR_Error: |
| Diag(Attrs.getLoc(), diag::error_cconv_unsupported) |
| << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; |
| break; |
| |
| case TargetInfo::CCCR_Warning: { |
| Diag(Attrs.getLoc(), diag::warn_cconv_unsupported) |
| << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; |
| |
| // This convention is not valid for the target. Use the default function or |
| // method calling convention. |
| bool IsCXXMethod = false, IsVariadic = false; |
| if (FD) { |
| IsCXXMethod = FD->isCXXInstanceMember(); |
| IsVariadic = FD->isVariadic(); |
| } |
| CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod); |
| break; |
| } |
| } |
| |
| Attrs.setProcessingCache((unsigned) CC); |
| return false; |
| } |
| |
| bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) { |
| if (AL.isInvalid()) |
| return true; |
| |
| if (!AL.checkExactlyNumArgs(*this, 1)) { |
| AL.setInvalid(); |
| return true; |
| } |
| |
| uint32_t NP; |
| Expr *NumParamsExpr = AL.getArgAsExpr(0); |
| if (!checkUInt32Argument(AL, NumParamsExpr, NP)) { |
| AL.setInvalid(); |
| return true; |
| } |
| |
| if (Context.getTargetInfo().getRegParmMax() == 0) { |
| Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform) |
| << NumParamsExpr->getSourceRange(); |
| AL.setInvalid(); |
| return true; |
| } |
| |
| numParams = NP; |
| if (numParams > Context.getTargetInfo().getRegParmMax()) { |
| Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number) |
| << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange(); |
| AL.setInvalid(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // Helper to get OffloadArch. |
| static OffloadArch getOffloadArch(const TargetInfo &TI) { |
| if (!TI.getTriple().isNVPTX()) |
| llvm_unreachable("getOffloadArch is only valid for NVPTX triple"); |
| auto &TO = TI.getTargetOpts(); |
| return StringToOffloadArch(TO.CPU); |
| } |
| |
| // Checks whether an argument of launch_bounds attribute is |
| // acceptable, performs implicit conversion to Rvalue, and returns |
| // non-nullptr Expr result on success. Otherwise, it returns nullptr |
| // and may output an error. |
| static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E, |
| const CUDALaunchBoundsAttr &AL, |
| const unsigned Idx) { |
| if (S.DiagnoseUnexpandedParameterPack(E)) |
| return nullptr; |
| |
| // Accept template arguments for now as they depend on something else. |
| // We'll get to check them when they eventually get instantiated. |
| if (E->isValueDependent()) |
| return E; |
| |
| std::optional<llvm::APSInt> I = llvm::APSInt(64); |
| if (!(I = E->getIntegerConstantExpr(S.Context))) { |
| S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type) |
| << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
| return nullptr; |
| } |
| // Make sure we can fit it in 32 bits. |
| if (!I->isIntN(32)) { |
| S.Diag(E->getExprLoc(), diag::err_ice_too_large) |
| << toString(*I, 10, false) << 32 << /* Unsigned */ 1; |
| return nullptr; |
| } |
| if (*I < 0) |
| S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative) |
| << &AL << Idx << E->getSourceRange(); |
| |
| // We may need to perform implicit conversion of the argument. |
| InitializedEntity Entity = InitializedEntity::InitializeParameter( |
| S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false); |
| ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E); |
| assert(!ValArg.isInvalid() && |
| "Unexpected PerformCopyInitialization() failure."); |
| |
| return ValArg.getAs<Expr>(); |
| } |
| |
| CUDALaunchBoundsAttr * |
| Sema::CreateLaunchBoundsAttr(const AttributeCommonInfo &CI, Expr *MaxThreads, |
| Expr *MinBlocks, Expr *MaxBlocks) { |
| CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks, MaxBlocks); |
| MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0); |
| if (!MaxThreads) |
| return nullptr; |
| |
| if (MinBlocks) { |
| MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1); |
| if (!MinBlocks) |
| return nullptr; |
| } |
| |
| if (MaxBlocks) { |
| // '.maxclusterrank' ptx directive requires .target sm_90 or higher. |
| auto SM = getOffloadArch(Context.getTargetInfo()); |
| if (SM == OffloadArch::UNKNOWN || SM < OffloadArch::SM_90) { |
| Diag(MaxBlocks->getBeginLoc(), diag::warn_cuda_maxclusterrank_sm_90) |
| << OffloadArchToString(SM) << CI << MaxBlocks->getSourceRange(); |
| // Ignore it by setting MaxBlocks to null; |
| MaxBlocks = nullptr; |
| } else { |
| MaxBlocks = makeLaunchBoundsArgExpr(*this, MaxBlocks, TmpAttr, 2); |
| if (!MaxBlocks) |
| return nullptr; |
| } |
| } |
| |
| return ::new (Context) |
| CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks, MaxBlocks); |
| } |
| |
| void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI, |
| Expr *MaxThreads, Expr *MinBlocks, |
| Expr *MaxBlocks) { |
| if (auto *Attr = CreateLaunchBoundsAttr(CI, MaxThreads, MinBlocks, MaxBlocks)) |
| D->addAttr(Attr); |
| } |
| |
| static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 3)) |
| return; |
| |
| S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0), |
| AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr, |
| AL.getNumArgs() > 2 ? AL.getArgAsExpr(2) : nullptr); |
| } |
| |
| static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| ParamIdx ArgumentIdx; |
| if (!S.checkFunctionOrMethodParameterIndex( |
| D, AL, 2, AL.getArgAsExpr(1), ArgumentIdx, |
| /*CanIndexImplicitThis=*/false, |
| /*CanIndexVariadicArguments=*/true)) |
| return; |
| |
| ParamIdx TypeTagIdx; |
| if (!S.checkFunctionOrMethodParameterIndex( |
| D, AL, 3, AL.getArgAsExpr(2), TypeTagIdx, |
| /*CanIndexImplicitThis=*/false, |
| /*CanIndexVariadicArguments=*/true)) |
| return; |
| |
| bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag"; |
| if (IsPointer) { |
| // Ensure that buffer has a pointer type. |
| unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex(); |
| if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) || |
| !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType()) |
| S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0; |
| } |
| |
| D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr( |
| S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx, |
| IsPointer)); |
| } |
| |
| static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 1 << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| if (!AL.checkExactlyNumArgs(S, 1)) |
| return; |
| |
| if (!isa<VarDecl>(D)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type) |
| << AL << AL.isRegularKeywordAttribute() << ExpectedVariable; |
| return; |
| } |
| |
| IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident; |
| TypeSourceInfo *MatchingCTypeLoc = nullptr; |
| S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc); |
| assert(MatchingCTypeLoc && "no type source info for attribute argument"); |
| |
| D->addAttr(::new (S.Context) TypeTagForDatatypeAttr( |
| S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(), |
| AL.getMustBeNull())); |
| } |
| |
| static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| ParamIdx ArgCount; |
| |
| if (!S.checkFunctionOrMethodParameterIndex(D, AL, 1, AL.getArgAsExpr(0), |
| ArgCount, |
| true /* CanIndexImplicitThis */)) |
| return; |
| |
| // ArgCount isn't a parameter index [0;n), it's a count [1;n] |
| D->addAttr(::new (S.Context) |
| XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex())); |
| } |
| |
| static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| if (S.Context.getTargetInfo().getTriple().isOSAIX()) { |
| S.Diag(AL.getLoc(), diag::err_aix_attr_unsupported) << AL; |
| return; |
| } |
| uint32_t Count = 0, Offset = 0; |
| StringRef Section; |
| if (!S.checkUInt32Argument(AL, AL.getArgAsExpr(0), Count, 0, true)) |
| return; |
| if (AL.getNumArgs() >= 2) { |
| Expr *Arg = AL.getArgAsExpr(1); |
| if (!S.checkUInt32Argument(AL, Arg, Offset, 1, true)) |
| return; |
| if (Count < Offset) { |
| S.Diag(S.getAttrLoc(AL), diag::err_attribute_argument_out_of_range) |
| << &AL << 0 << Count << Arg->getBeginLoc(); |
| return; |
| } |
| } |
| if (AL.getNumArgs() == 3) { |
| SourceLocation LiteralLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 2, Section, &LiteralLoc)) |
| return; |
| if (llvm::Error E = S.isValidSectionSpecifier(Section)) { |
| S.Diag(LiteralLoc, |
| diag::err_attribute_patchable_function_entry_invalid_section) |
| << toString(std::move(E)); |
| return; |
| } |
| if (Section.empty()) { |
| S.Diag(LiteralLoc, |
| diag::err_attribute_patchable_function_entry_invalid_section) |
| << "section must not be empty"; |
| return; |
| } |
| } |
| D->addAttr(::new (S.Context) PatchableFunctionEntryAttr(S.Context, AL, Count, |
| Offset, Section)); |
| } |
| |
| static void handleBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) |
| << AL << 1 << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident; |
| unsigned BuiltinID = Ident->getBuiltinID(); |
| StringRef AliasName = cast<FunctionDecl>(D)->getIdentifier()->getName(); |
| |
| bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); |
| bool IsARM = S.Context.getTargetInfo().getTriple().isARM(); |
| bool IsRISCV = S.Context.getTargetInfo().getTriple().isRISCV(); |
| bool IsHLSL = S.Context.getLangOpts().HLSL; |
| if ((IsAArch64 && !S.ARM().SveAliasValid(BuiltinID, AliasName)) || |
| (IsARM && !S.ARM().MveAliasValid(BuiltinID, AliasName) && |
| !S.ARM().CdeAliasValid(BuiltinID, AliasName)) || |
| (IsRISCV && !S.RISCV().isAliasValid(BuiltinID, AliasName)) || |
| (!IsAArch64 && !IsARM && !IsRISCV && !IsHLSL)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_builtin_alias) << AL; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) BuiltinAliasAttr(S.Context, AL, Ident)); |
| } |
| |
| static void handleNullableTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (AL.isUsedAsTypeAttr()) |
| return; |
| |
| if (auto *CRD = dyn_cast<CXXRecordDecl>(D); |
| !CRD || !(CRD->isClass() || CRD->isStruct())) { |
| S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type) |
| << AL << AL.isRegularKeywordAttribute() << ExpectedClass; |
| return; |
| } |
| |
| handleSimpleAttribute<TypeNullableAttr>(S, D, AL); |
| } |
| |
| static void handlePreferredTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!AL.hasParsedType()) { |
| S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; |
| return; |
| } |
| |
| TypeSourceInfo *ParmTSI = nullptr; |
| QualType QT = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI); |
| assert(ParmTSI && "no type source info for attribute argument"); |
| S.RequireCompleteType(ParmTSI->getTypeLoc().getBeginLoc(), QT, |
| diag::err_incomplete_type); |
| |
| D->addAttr(::new (S.Context) PreferredTypeAttr(S.Context, AL, ParmTSI)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Microsoft specific attribute handlers. |
| //===----------------------------------------------------------------------===// |
| |
| UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI, |
| StringRef UuidAsWritten, MSGuidDecl *GuidDecl) { |
| if (const auto *UA = D->getAttr<UuidAttr>()) { |
| if (declaresSameEntity(UA->getGuidDecl(), GuidDecl)) |
| return nullptr; |
| if (!UA->getGuid().empty()) { |
| Diag(UA->getLocation(), diag::err_mismatched_uuid); |
| Diag(CI.getLoc(), diag::note_previous_uuid); |
| D->dropAttr<UuidAttr>(); |
| } |
| } |
| |
| return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl); |
| } |
| |
| static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!S.LangOpts.CPlusPlus) { |
| S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) |
| << AL << AttributeLangSupport::C; |
| return; |
| } |
| |
| StringRef OrigStrRef; |
| SourceLocation LiteralLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, OrigStrRef, &LiteralLoc)) |
| return; |
| |
| // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or |
| // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former. |
| StringRef StrRef = OrigStrRef; |
| if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}') |
| StrRef = StrRef.drop_front().drop_back(); |
| |
| // Validate GUID length. |
| if (StrRef.size() != 36) { |
| S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); |
| return; |
| } |
| |
| for (unsigned i = 0; i < 36; ++i) { |
| if (i == 8 || i == 13 || i == 18 || i == 23) { |
| if (StrRef[i] != '-') { |
| S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); |
| return; |
| } |
| } else if (!isHexDigit(StrRef[i])) { |
| S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); |
| return; |
| } |
| } |
| |
| // Convert to our parsed format and canonicalize. |
| MSGuidDecl::Parts Parsed; |
| StrRef.substr(0, 8).getAsInteger(16, Parsed.Part1); |
| StrRef.substr(9, 4).getAsInteger(16, Parsed.Part2); |
| StrRef.substr(14, 4).getAsInteger(16, Parsed.Part3); |
| for (unsigned i = 0; i != 8; ++i) |
| StrRef.substr(19 + 2 * i + (i >= 2 ? 1 : 0), 2) |
| .getAsInteger(16, Parsed.Part4And5[i]); |
| MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed); |
| |
| // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's |
| // the only thing in the [] list, the [] too), and add an insertion of |
| // __declspec(uuid(...)). But sadly, neither the SourceLocs of the commas |
| // separating attributes nor of the [ and the ] are in the AST. |
| // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc" |
| // on cfe-dev. |
| if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling. |
| S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated); |
| |
| UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid); |
| if (UA) |
| D->addAttr(UA); |
| } |
| |
| static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!S.LangOpts.CPlusPlus) { |
| S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) |
| << AL << AttributeLangSupport::C; |
| return; |
| } |
| MSInheritanceAttr *IA = S.mergeMSInheritanceAttr( |
| D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling()); |
| if (IA) { |
| D->addAttr(IA); |
| S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D)); |
| } |
| } |
| |
| static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| const auto *VD = cast<VarDecl>(D); |
| if (!S.Context.getTargetInfo().isTLSSupported()) { |
| S.Diag(AL.getLoc(), diag::err_thread_unsupported); |
| return; |
| } |
| if (VD->getTSCSpec() != TSCS_unspecified) { |
| S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable); |
| return; |
| } |
| if (VD->hasLocalStorage()) { |
| S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)"; |
| return; |
| } |
| D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL)); |
| } |
| |
| static void handleMSConstexprAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2022_3)) { |
| S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) |
| << AL << AL.getRange(); |
| return; |
| } |
| auto *FD = cast<FunctionDecl>(D); |
| if (FD->isConstexprSpecified() || FD->isConsteval()) { |
| S.Diag(AL.getLoc(), diag::err_ms_constexpr_cannot_be_applied) |
| << FD->isConsteval() << FD; |
| return; |
| } |
| if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| if (!S.getLangOpts().CPlusPlus20 && MD->isVirtual()) { |
| S.Diag(AL.getLoc(), diag::err_ms_constexpr_cannot_be_applied) |
| << /*virtual*/ 2 << MD; |
| return; |
| } |
| } |
| D->addAttr(::new (S.Context) MSConstexprAttr(S.Context, AL)); |
| } |
| |
| static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| SmallVector<StringRef, 4> Tags; |
| for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
| StringRef Tag; |
| if (!S.checkStringLiteralArgumentAttr(AL, I, Tag)) |
| return; |
| Tags.push_back(Tag); |
| } |
| |
| if (const auto *NS = dyn_cast<NamespaceDecl>(D)) { |
| if (!NS->isInline()) { |
| S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0; |
| return; |
| } |
| if (NS->isAnonymousNamespace()) { |
| S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1; |
| return; |
| } |
| if (AL.getNumArgs() == 0) |
| Tags.push_back(NS->getName()); |
| } else if (!AL.checkAtLeastNumArgs(S, 1)) |
| return; |
| |
| // Store tags sorted and without duplicates. |
| llvm::sort(Tags); |
| Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end()); |
| |
| D->addAttr(::new (S.Context) |
| AbiTagAttr(S.Context, AL, Tags.data(), Tags.size())); |
| } |
| |
| static bool hasBTFDeclTagAttr(Decl *D, StringRef Tag) { |
| for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) { |
| if (I->getBTFDeclTag() == Tag) |
| return true; |
| } |
| return false; |
| } |
| |
| static void handleBTFDeclTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Str; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) |
| return; |
| if (hasBTFDeclTagAttr(D, Str)) |
| return; |
| |
| D->addAttr(::new (S.Context) BTFDeclTagAttr(S.Context, AL, Str)); |
| } |
| |
| BTFDeclTagAttr *Sema::mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL) { |
| if (hasBTFDeclTagAttr(D, AL.getBTFDeclTag())) |
| return nullptr; |
| return ::new (Context) BTFDeclTagAttr(Context, AL, AL.getBTFDeclTag()); |
| } |
| |
| static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Dispatch the interrupt attribute based on the current target. |
| switch (S.Context.getTargetInfo().getTriple().getArch()) { |
| case llvm::Triple::msp430: |
| S.MSP430().handleInterruptAttr(D, AL); |
| break; |
| case llvm::Triple::mipsel: |
| case llvm::Triple::mips: |
| S.MIPS().handleInterruptAttr(D, AL); |
| break; |
| case llvm::Triple::m68k: |
| S.M68k().handleInterruptAttr(D, AL); |
| break; |
| case llvm::Triple::x86: |
| case llvm::Triple::x86_64: |
| S.X86().handleAnyInterruptAttr(D, AL); |
| break; |
| case llvm::Triple::avr: |
| S.AVR().handleInterruptAttr(D, AL); |
| break; |
| case llvm::Triple::riscv32: |
| case llvm::Triple::riscv64: |
| S.RISCV().handleInterruptAttr(D, AL); |
| break; |
| default: |
| S.ARM().handleInterruptAttr(D, AL); |
| break; |
| } |
| } |
| |
| static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) { |
| uint32_t Version; |
| Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0)); |
| if (!S.checkUInt32Argument(AL, AL.getArgAsExpr(0), Version)) |
| return; |
| |
| // TODO: Investigate what happens with the next major version of MSVC. |
| if (Version != LangOptions::MSVC2015 / 100) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) |
| << AL << Version << VersionExpr->getSourceRange(); |
| return; |
| } |
| |
| // The attribute expects a "major" version number like 19, but new versions of |
| // MSVC have moved to updating the "minor", or less significant numbers, so we |
| // have to multiply by 100 now. |
| Version *= 100; |
| |
| D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version)); |
| } |
| |
| DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, |
| const AttributeCommonInfo &CI) { |
| if (D->hasAttr<DLLExportAttr>()) { |
| Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'"; |
| return nullptr; |
| } |
| |
| if (D->hasAttr<DLLImportAttr>()) |
| return nullptr; |
| |
| return ::new (Context) DLLImportAttr(Context, CI); |
| } |
| |
| DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, |
| const AttributeCommonInfo &CI) { |
| if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) { |
| Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import; |
| D->dropAttr<DLLImportAttr>(); |
| } |
| |
| if (D->hasAttr<DLLExportAttr>()) |
| return nullptr; |
| |
| return ::new (Context) DLLExportAttr(Context, CI); |
| } |
| |
| static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) { |
| if (isa<ClassTemplatePartialSpecializationDecl>(D) && |
| (S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) { |
| S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A; |
| return; |
| } |
| |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport && |
| !(S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) { |
| // MinGW doesn't allow dllimport on inline functions. |
| S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline) |
| << A; |
| return; |
| } |
| } |
| |
| if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { |
| if ((S.Context.getTargetInfo().shouldDLLImportComdatSymbols()) && |
| MD->getParent()->isLambda()) { |
| S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A; |
| return; |
| } |
| } |
| |
| Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport |
| ? (Attr *)S.mergeDLLExportAttr(D, A) |
| : (Attr *)S.mergeDLLImportAttr(D, A); |
| if (NewAttr) |
| D->addAttr(NewAttr); |
| } |
| |
| MSInheritanceAttr * |
| Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI, |
| bool BestCase, |
| MSInheritanceModel Model) { |
| if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) { |
| if (IA->getInheritanceModel() == Model) |
| return nullptr; |
| Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance) |
| << 1 /*previous declaration*/; |
| Diag(CI.getLoc(), diag::note_previous_ms_inheritance); |
| D->dropAttr<MSInheritanceAttr>(); |
| } |
| |
| auto *RD = cast<CXXRecordDecl>(D); |
| if (RD->hasDefinition()) { |
| if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase, |
| Model)) { |
| return nullptr; |
| } |
| } else { |
| if (isa<ClassTemplatePartialSpecializationDecl>(RD)) { |
| Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance) |
| << 1 /*partial specialization*/; |
| return nullptr; |
| } |
| if (RD->getDescribedClassTemplate()) { |
| Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance) |
| << 0 /*primary template*/; |
| return nullptr; |
| } |
| } |
| |
| return ::new (Context) MSInheritanceAttr(Context, CI, BestCase); |
| } |
| |
| static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // The capability attributes take a single string parameter for the name of |
| // the capability they represent. The lockable attribute does not take any |
| // parameters. However, semantically, both attributes represent the same |
| // concept, and so they use the same semantic attribute. Eventually, the |
| // lockable attribute will be removed. |
| // |
| // For backward compatibility, any capability which has no specified string |
| // literal will be considered a "mutex." |
| StringRef N("mutex"); |
| SourceLocation LiteralLoc; |
| if (AL.getKind() == ParsedAttr::AT_Capability && |
| !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc)) |
| return; |
| |
| D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N)); |
| } |
| |
| static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| SmallVector<Expr*, 1> Args; |
| if (!checkLockFunAttrCommon(S, D, AL, Args)) |
| return; |
| |
| D->addAttr(::new (S.Context) |
| AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size())); |
| } |
| |
| static void handleAcquireCapabilityAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(D); |
| ParmDecl && !checkFunParamsAreScopedLockable(S, ParmDecl, AL)) |
| return; |
| |
| SmallVector<Expr*, 1> Args; |
| if (!checkLockFunAttrCommon(S, D, AL, Args)) |
| return; |
| |
| D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(), |
| Args.size())); |
| } |
| |
| static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| SmallVector<Expr*, 2> Args; |
| if (!checkTryLockFunAttrCommon(S, D, AL, Args)) |
| return; |
| |
| D->addAttr(::new (S.Context) TryAcquireCapabilityAttr( |
| S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); |
| } |
| |
| static void handleReleaseCapabilityAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(D); |
| ParmDecl && !checkFunParamsAreScopedLockable(S, ParmDecl, AL)) |
| return; |
| // Check that all arguments are lockable objects. |
| SmallVector<Expr *, 1> Args; |
| checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true); |
| |
| D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(), |
| Args.size())); |
| } |
| |
| static void handleRequiresCapabilityAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(D); |
| ParmDecl && !checkFunParamsAreScopedLockable(S, ParmDecl, AL)) |
| return; |
| |
| if (!AL.checkAtLeastNumArgs(S, 1)) |
| return; |
| |
| // check that all arguments are lockable objects |
| SmallVector<Expr*, 1> Args; |
| checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
| if (Args.empty()) |
| return; |
| |
| RequiresCapabilityAttr *RCA = ::new (S.Context) |
| RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size()); |
| |
| D->addAttr(RCA); |
| } |
| |
| static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) { |
| if (NSD->isAnonymousNamespace()) { |
| S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace); |
| // Do not want to attach the attribute to the namespace because that will |
| // cause confusing diagnostic reports for uses of declarations within the |
| // namespace. |
| return; |
| } |
| } else if (isa<UsingDecl, UnresolvedUsingTypenameDecl, |
| UnresolvedUsingValueDecl>(D)) { |
| S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using) |
| << AL; |
| return; |
| } |
| |
| // Handle the cases where the attribute has a text message. |
| StringRef Str, Replacement; |
| if (AL.isArgExpr(0) && AL.getArgAsExpr(0) && |
| !S.checkStringLiteralArgumentAttr(AL, 0, Str)) |
| return; |
| |
| // Support a single optional message only for Declspec and [[]] spellings. |
| if (AL.isDeclspecAttribute() || AL.isStandardAttributeSyntax()) |
| AL.checkAtMostNumArgs(S, 1); |
| else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) && |
| !S.checkStringLiteralArgumentAttr(AL, 1, Replacement)) |
| return; |
| |
| if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope()) |
| S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL; |
| |
| D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement)); |
| } |
| |
| static bool isGlobalVar(const Decl *D) { |
| if (const auto *S = dyn_cast<VarDecl>(D)) |
| return S->hasGlobalStorage(); |
| return false; |
| } |
| |
| static bool isSanitizerAttributeAllowedOnGlobals(StringRef Sanitizer) { |
| return Sanitizer == "address" || Sanitizer == "hwaddress" || |
| Sanitizer == "memtag"; |
| } |
| |
| static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (!AL.checkAtLeastNumArgs(S, 1)) |
| return; |
| |
| std::vector<StringRef> Sanitizers; |
| |
| for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
| StringRef SanitizerName; |
| SourceLocation LiteralLoc; |
| |
| if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc)) |
| return; |
| |
| if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) == |
| SanitizerMask() && |
| SanitizerName != "coverage") |
| S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName; |
| else if (isGlobalVar(D) && !isSanitizerAttributeAllowedOnGlobals(SanitizerName)) |
| S.Diag(D->getLocation(), diag::warn_attribute_type_not_supported_global) |
| << AL << SanitizerName; |
| Sanitizers.push_back(SanitizerName); |
| } |
| |
| D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(), |
| Sanitizers.size())); |
| } |
| |
| static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| StringRef AttrName = AL.getAttrName()->getName(); |
| normalizeName(AttrName); |
| StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName) |
| .Case("no_address_safety_analysis", "address") |
| .Case("no_sanitize_address", "address") |
| .Case("no_sanitize_thread", "thread") |
| .Case("no_sanitize_memory", "memory"); |
| if (isGlobalVar(D) && SanitizerName != "address") |
| S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) |
| << AL << AL.isRegularKeywordAttribute() << ExpectedFunction; |
| |
| // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a |
| // NoSanitizeAttr object; but we need to calculate the correct spelling list |
| // index rather than incorrectly assume the index for NoSanitizeSpecificAttr |
| // has the same spellings as the index for NoSanitizeAttr. We don't have a |
| // general way to "translate" between the two, so this hack attempts to work |
| // around the issue with hard-coded indices. This is critical for calling |
| // getSpelling() or prettyPrint() on the resulting semantic attribute object |
| // without failing assertions. |
| unsigned TranslatedSpellingIndex = 0; |
| if (AL.isStandardAttributeSyntax()) |
| TranslatedSpellingIndex = 1; |
| |
| AttributeCommonInfo Info = AL; |
| Info.setAttributeSpellingListIndex(TranslatedSpellingIndex); |
| D->addAttr(::new (S.Context) |
| NoSanitizeAttr(S.Context, Info, &SanitizerName, 1)); |
| } |
| |
| static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL)) |
| D->addAttr(Internal); |
| } |
| |
| static void handleZeroCallUsedRegsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Check that the argument is a string literal. |
| StringRef KindStr; |
| SourceLocation LiteralLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, KindStr, &LiteralLoc)) |
| return; |
| |
| ZeroCallUsedRegsAttr::ZeroCallUsedRegsKind Kind; |
| if (!ZeroCallUsedRegsAttr::ConvertStrToZeroCallUsedRegsKind(KindStr, Kind)) { |
| S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) |
| << AL << KindStr; |
| return; |
| } |
| |
| D->dropAttr<ZeroCallUsedRegsAttr>(); |
| D->addAttr(ZeroCallUsedRegsAttr::Create(S.Context, Kind, AL)); |
| } |
| |
| static void handleCountedByAttrField(Sema &S, Decl *D, const ParsedAttr &AL) { |
| auto *FD = dyn_cast<FieldDecl>(D); |
| assert(FD); |
| |
| auto *CountExpr = AL.getArgAsExpr(0); |
| if (!CountExpr) |
| return; |
| |
| bool CountInBytes; |
| bool OrNull; |
| switch (AL.getKind()) { |
| case ParsedAttr::AT_CountedBy: |
| CountInBytes = false; |
| OrNull = false; |
| break; |
| case ParsedAttr::AT_CountedByOrNull: |
| CountInBytes = false; |
| OrNull = true; |
| break; |
| case ParsedAttr::AT_SizedBy: |
| CountInBytes = true; |
| OrNull = false; |
| break; |
| case ParsedAttr::AT_SizedByOrNull: |
| CountInBytes = true; |
| OrNull = true; |
| break; |
| default: |
| llvm_unreachable("unexpected counted_by family attribute"); |
| } |
| |
| if (S.CheckCountedByAttrOnField(FD, CountExpr, CountInBytes, OrNull)) |
| return; |
| |
| QualType CAT = S.BuildCountAttributedArrayOrPointerType( |
| FD->getType(), CountExpr, CountInBytes, OrNull); |
| FD->setType(CAT); |
| } |
| |
| static void handleFunctionReturnThunksAttr(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| StringRef KindStr; |
| SourceLocation LiteralLoc; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, KindStr, &LiteralLoc)) |
| return; |
| |
| FunctionReturnThunksAttr::Kind Kind; |
| if (!FunctionReturnThunksAttr::ConvertStrToKind(KindStr, Kind)) { |
| S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) |
| << AL << KindStr; |
| return; |
| } |
| // FIXME: it would be good to better handle attribute merging rather than |
| // silently replacing the existing attribute, so long as it does not break |
| // the expected codegen tests. |
| D->dropAttr<FunctionReturnThunksAttr>(); |
| D->addAttr(FunctionReturnThunksAttr::Create(S.Context, Kind, AL)); |
| } |
| |
| static void handleAvailableOnlyInDefaultEvalMethod(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| assert(isa<TypedefNameDecl>(D) && "This attribute only applies to a typedef"); |
| handleSimpleAttribute<AvailableOnlyInDefaultEvalMethodAttr>(S, D, AL); |
| } |
| |
| static void handleNoMergeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| auto *VDecl = dyn_cast<VarDecl>(D); |
| if (VDecl && !VDecl->isFunctionPointerType()) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_ignored_non_function_pointer) |
| << AL << VDecl; |
| return; |
| } |
| D->addAttr(NoMergeAttr::Create(S.Context, AL)); |
| } |
| |
| static void handleNoUniqueAddressAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| D->addAttr(NoUniqueAddressAttr::Create(S.Context, AL)); |
| } |
| |
| static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) { |
| if (!cast<VarDecl>(D)->hasGlobalStorage()) { |
| S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var) |
| << (A.getKind() == ParsedAttr::AT_AlwaysDestroy); |
| return; |
| } |
| |
| if (A.getKind() == ParsedAttr::AT_AlwaysDestroy) |
| handleSimpleAttribute<AlwaysDestroyAttr>(S, D, A); |
| else |
| handleSimpleAttribute<NoDestroyAttr>(S, D, A); |
| } |
| |
| static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic && |
| "uninitialized is only valid on automatic duration variables"); |
| D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL)); |
| } |
| |
| static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Check that the return type is a `typedef int kern_return_t` or a typedef |
| // around it, because otherwise MIG convention checks make no sense. |
| // BlockDecl doesn't store a return type, so it's annoying to check, |
| // so let's skip it for now. |
| if (!isa<BlockDecl>(D)) { |
| QualType T = getFunctionOrMethodResultType(D); |
| bool IsKernReturnT = false; |
| while (const auto *TT = T->getAs<TypedefType>()) { |
| IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t"); |
| T = TT->desugar(); |
| } |
| if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) { |
| S.Diag(D->getBeginLoc(), |
| diag::warn_mig_server_routine_does_not_return_kern_return_t); |
| return; |
| } |
| } |
| |
| handleSimpleAttribute<MIGServerRoutineAttr>(S, D, AL); |
| } |
| |
| static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // Warn if the return type is not a pointer or reference type. |
| if (auto *FD = dyn_cast<FunctionDecl>(D)) { |
| QualType RetTy = FD->getReturnType(); |
| if (!RetTy->isPointerOrReferenceType()) { |
| S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer) |
| << AL.getRange() << RetTy; |
| return; |
| } |
| } |
| |
| handleSimpleAttribute<MSAllocatorAttr>(S, D, AL); |
| } |
| |
| static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| if (AL.isUsedAsTypeAttr()) |
| return; |
| // Warn if the parameter is definitely not an output parameter. |
| if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) { |
| if (PVD->getType()->isIntegerType()) { |
| S.Diag(AL.getLoc(), diag::err_attribute_output_parameter) |
| << AL.getRange(); |
| return; |
| } |
| } |
| StringRef Argument; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument)) |
| return; |
| D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL)); |
| } |
| |
| template<typename Attr> |
| static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Argument; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument)) |
| return; |
| D->addAttr(Attr::Create(S.Context, Argument, AL)); |
| } |
| |
| template<typename Attr> |
| static void handleUnsafeBufferUsage(Sema &S, Decl *D, const ParsedAttr &AL) { |
| D->addAttr(Attr::Create(S.Context, AL)); |
| } |
| |
| static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| // The guard attribute takes a single identifier argument. |
| |
| if (!AL.isArgIdent(0)) { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| CFGuardAttr::GuardArg Arg; |
| IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; |
| if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) { |
| S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; |
| return; |
| } |
| |
| D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg)); |
| } |
| |
| |
| template <typename AttrTy> |
| static const AttrTy *findEnforceTCBAttrByName(Decl *D, StringRef Name) { |
| auto Attrs = D->specific_attrs<AttrTy>(); |
| auto I = llvm::find_if(Attrs, |
| [Name](const AttrTy *A) { |
| return A->getTCBName() == Name; |
| }); |
| return I == Attrs.end() ? nullptr : *I; |
| } |
| |
| template <typename AttrTy, typename ConflictingAttrTy> |
| static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
| StringRef Argument; |
| if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument)) |
| return; |
| |
| // A function cannot be have both regular and leaf membership in the same TCB. |
| if (const ConflictingAttrTy *ConflictingAttr = |
| findEnforceTCBAttrByName<ConflictingAttrTy>(D, Argument)) { |
| // We could attach a note to the other attribute but in this case |
| // there's no need given how the two are very close to each other. |
| S.Diag(AL.getLoc(), diag::err_tcb_conflicting_attributes) |
| << AL.getAttrName()->getName() << ConflictingAttr->getAttrName()->getName() |
| << Argument; |
| |
| // Error recovery: drop the non-leaf attribute so that to suppress |
| // all future warnings caused by erroneous attributes. The leaf attribute |
| // needs to be kept because it can only suppresses warnings, not cause them. |
| D->dropAttr<EnforceTCBAttr>(); |
| return; |
| } |
| |
| D->addAttr(AttrTy::Create(S.Context, Argument, AL)); |
| } |
| |
| template <typename AttrTy, typename ConflictingAttrTy> |
| static AttrTy *mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL) { |
| // Check if the new redeclaration has different leaf-ness in the same TCB. |
| StringRef TCBName = AL.getTCBName(); |
| if (const ConflictingAttrTy *ConflictingAttr = |
| findEnforceTCBAttrByName<ConflictingAttrTy>(D, TCBName)) { |
| S.Diag(ConflictingAttr->getLoc(), diag::err_tcb_conflicting_attributes) |
| << ConflictingAttr->getAttrName()->getName() |
| << AL.getAttrName()->getName() << TCBName; |
| |
| // Add a note so that the user could easily find the conflicting attribute. |
| S.Diag(AL.getLoc(), diag::note_conflicting_attribute); |
| |
| // More error recovery. |
| D->dropAttr<EnforceTCBAttr>(); |
| return nullptr; |
| } |
| |
| ASTContext &Context = S.getASTContext(); |
| return ::new(Context) AttrTy(Context, AL, AL.getTCBName()); |
| } |
| |
| EnforceTCBAttr *Sema::mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL) { |
| return mergeEnforceTCBAttrImpl<EnforceTCBAttr, EnforceTCBLeafAttr>( |
| *this, D, AL); |
| } |
| |
| EnforceTCBLeafAttr *Sema::mergeEnforceTCBLeafAttr( |
| Decl *D, const EnforceTCBLeafAttr &AL) { |
| return mergeEnforceTCBAttrImpl<EnforceTCBLeafAttr, EnforceTCBAttr>( |
| *this, D, AL); |
| } |
| |
| static void handleVTablePointerAuthentication(Sema &S, Decl *D, |
| const ParsedAttr &AL) { |
| CXXRecordDecl *Decl = cast<CXXRecordDecl>(D); |
| const uint32_t NumArgs = AL.getNumArgs(); |
| if (NumArgs > 4) { |
| S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 4; |
| AL.setInvalid(); |
| } |
| |
| if (NumArgs == 0) { |
| S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL; |
| AL.setInvalid(); |
| return; |
| } |
| |
| if (D->getAttr<VTablePointerAuthenticationAttr>()) { |
| S.Diag(AL.getLoc(), diag::err_duplicated_vtable_pointer_auth) << Decl; |
| AL.setInvalid(); |
| } |
| |
| auto KeyType = VTablePointerAuthenticationAttr::VPtrAuthKeyType::DefaultKey; |
| if (AL.isArgIdent(0)) { |
| IdentifierLoc *IL = AL.getArgAsIdent(0); |
| if (!VTablePointerAuthenticationAttr::ConvertStrToVPtrAuthKeyType( |
| IL->Ident->getName(), KeyType)) { |
| S.Diag(IL->Loc, diag::err_invalid_authentication_key) << IL->Ident; |
| AL.setInvalid(); |
| } |
| if (KeyType == VTablePointerAuthenticationAttr::DefaultKey && |
| !S.getLangOpts().PointerAuthCalls) { |
| S.Diag(AL.getLoc(), diag::err_no_default_vtable_pointer_auth) << 0; |
| AL.setInvalid(); |
| } |
| } else { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| return; |
| } |
| |
| auto AddressDiversityMode = VTablePointerAuthenticationAttr:: |
| AddressDiscriminationMode::DefaultAddressDiscrimination; |
| if (AL.getNumArgs() > 1) { |
| if (AL.isArgIdent(1)) { |
| IdentifierLoc *IL = AL.getArgAsIdent(1); |
| if (!VTablePointerAuthenticationAttr:: |
| ConvertStrToAddressDiscriminationMode(IL->Ident->getName(), |
| AddressDiversityMode)) { |
| S.Diag(IL->Loc, diag::err_invalid_address_discrimination) << IL->Ident; |
| AL.setInvalid(); |
| } |
| if (AddressDiversityMode == |
| VTablePointerAuthenticationAttr::DefaultAddressDiscrimination && |
| !S.getLangOpts().PointerAuthCalls) { |
| S.Diag(IL->Loc, diag::err_no_default_vtable_pointer_auth) << 1; |
| AL.setInvalid(); |
| } |
| } else { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| } |
| } |
| |
| auto ED = VTablePointerAuthenticationAttr::ExtraDiscrimination:: |
| DefaultExtraDiscrimination; |
| if (AL.getNumArgs() > 2) { |
| if (AL.isArgIdent(2)) { |
| IdentifierLoc *IL = AL.getArgAsIdent(2); |
| if (!VTablePointerAuthenticationAttr::ConvertStrToExtraDiscrimination( |
| IL->Ident->getName(), ED)) { |
| S.Diag(IL->Loc, diag::err_invalid_extra_discrimination) << IL->Ident; |
| AL.setInvalid(); |
| } |
| if (ED == VTablePointerAuthenticationAttr::DefaultExtraDiscrimination && |
| !S.getLangOpts().PointerAuthCalls) { |
| S.Diag(AL.getLoc(), diag::err_no_default_vtable_pointer_auth) << 2; |
| AL.setInvalid(); |
| } |
| } else { |
| S.Diag(AL.getLoc(), diag::err_attribute_argument_type) |
| << AL << AANT_ArgumentIdentifier; |
| } |
| } |
| |
| uint32_t CustomDiscriminationValue = 0; |
| if (ED == VTablePointerAuthenticationAttr::CustomDiscrimination) { |
| if (NumArgs < 4) { |
| S.Diag(AL.getLoc(), diag::err_missing_custom_discrimination) << AL << 4; |
| AL.setInvalid(); |
| return; |
| } |
| if (NumArgs > 4) { |
| S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 4; |
| AL.setInvalid(); |
| } |
| |
| if (!AL.isArgExpr(3) || !S.checkUInt32Argument(AL, AL.getArgAsExpr(3), |
| CustomDiscriminationValue)) { |
| S.Diag(AL.getLoc(), diag::err_invalid_custom_discrimination); |
| AL.setInvalid(); |
| } |
| } else if (NumArgs > 3) { |
| S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 3; |
| AL.setInvalid(); |
| } |
| |
| Decl->addAttr(::new (S.Context) VTablePointerAuthenticationAttr( |
| S.Context, AL, KeyType, AddressDiversityMode, ED, |
| CustomDiscriminationValue)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top Level Sema Entry Points |
| //===----------------------------------------------------------------------===// |
| |
| // Returns true if the attribute must delay setting its arguments until after |
| // template instantiation, and false otherwise. |
| static bool MustDelayAttributeArguments(const ParsedAttr &AL) { |
| // Only attributes that accept expression parameter packs can delay arguments. |
| if (!AL.acceptsExprPack()) |
| return false; |
| |
| bool AttrHasVariadicArg = AL.hasVariadicArg(); |
| unsigned AttrNumArgs = AL.getNumArgMembers(); |
| for (size_t I = 0; I < std::min(AL.getNumArgs(), AttrNumArgs); ++I) { |
| bool IsLastAttrArg = I == (AttrNumArgs - 1); |
| // If the argument is the last argument and it is variadic it can contain |
| // any expression. |
| if (IsLastAttrArg && AttrHasVariadicArg) |
| return false; |
| Expr *E = AL.getArgAsExpr(I); |
| bool ArgMemberCanHoldExpr = AL.isParamExpr(I); |
| // If the expression is a pack expansion then arguments must be delayed |
| // unless the argument is an expression and it is the last argument of the |
| // attribute. |
| if (isa<PackExpansionExpr>(E)) |
| return !(IsLastAttrArg && ArgMemberCanHoldExpr); |
| // Last case is if the expression is value dependent then it must delay |
| // arguments unless the corresponding argument is able to hold the |
| // expression. |
| if (E->isValueDependent() && !ArgMemberCanHoldExpr) |
| return true; |
| } |
| return false; |
| } |
| |
| /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if |
| /// the attribute applies to decls. If the attribute is a type attribute, just |
| /// silently ignore it if a GNU attribute. |
| static void |
| ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, const ParsedAttr &AL, |
| const Sema::ProcessDeclAttributeOptions &Options) { |
| if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) |
| return; |
| |
| // Ignore C++11 attributes on declarator chunks: they appertain to the type |
| // instead. Note, isCXX11Attribute() will look at whether the attribute is |
| // [[]] or alignas, while isC23Attribute() will only look at [[]]. This is |
| // important for ensuring that alignas in C23 is properly handled on a |
| // structure member declaration because it is a type-specifier-qualifier in |
| // C but still applies to the declaration rather than the type. |
| if ((S.getLangOpts().CPlusPlus ? AL.isCXX11Attribute() |
| : AL.isC23Attribute()) && |
| !Options.IncludeCXX11Attributes) |
| return; |
| |
| // Unknown attributes are automatically warned on. Target-specific attributes |
| // which do not apply to the current target architecture are treated as |
| // though they were unknown attributes. |
| if (AL.getKind() == ParsedAttr::UnknownAttribute || |
| !AL.existsInTarget(S.Context.getTargetInfo())) { |
| S.Diag(AL.getLoc(), |
| AL.isRegularKeywordAttribute() |
| ? (unsigned)diag::err_keyword_not_supported_on_target |
| : AL.isDeclspecAttribute() |
| ? (unsigned)diag::warn_unhandled_ms_attribute_ignored |
| : (unsigned)diag::warn_unknown_attribute_ignored) |
| << AL << AL.getRange(); |
| return; |
| } |
| |
| // Check if argument population must delayed to after template instantiation. |
| bool MustDelayArgs = MustDelayAttributeArguments(AL); |
| |
| // Argument number check must be skipped if arguments are delayed. |
| if (S.checkCommonAttributeFeatures(D, AL, MustDelayArgs)) |
| return; |
| |
| if (MustDelayArgs) { |
| AL.handleAttrWithDelayedArgs(S, D); |
| return; |
| } |
| |
| switch (AL.getKind()) { |
| default: |
| if (AL.getInfo().handleDeclAttribute(S, D, AL) != ParsedAttrInfo::NotHandled) |
| break; |
| if (!AL.isStmtAttr()) { |
| assert(AL.isTypeAttr() && "Non-type attribute not handled"); |
| } |
| if (AL.isTypeAttr()) { |
| if (Options.IgnoreTypeAttributes) |
| break; |
| if (!AL.isStandardAttributeSyntax() && !AL.isRegularKeywordAttribute()) { |
| // Non-[[]] type attributes are handled in processTypeAttrs(); silently |
| // move on. |
| break; |
| } |
| |
| // According to the C and C++ standards, we should never see a |
| // [[]] type attribute on a declaration. However, we have in the past |
| // allowed some type attributes to "slide" to the `DeclSpec`, so we need |
| // to continue to support this legacy behavior. We only do this, however, |
| // if |
| // - we actually have a `DeclSpec`, i.e. if we're looking at a |
| // `DeclaratorDecl`, or |
| // - we are looking at an alias-declaration, where historically we have |
| // allowed type attributes after the identifier to slide to the type. |
| if (AL.slidesFromDeclToDeclSpecLegacyBehavior() && |
| isa<DeclaratorDecl, TypeAliasDecl>(D)) { |
| // Suggest moving the attribute to the type instead, but only for our |
| // own vendor attributes; moving other vendors' attributes might hurt |
| // portability. |
| if (AL.isClangScope()) { |
| S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl) |
| << AL << D->getLocation(); |
| } |
| |
| // Allow this type attribute to be handled in processTypeAttrs(); |
| // silently move on. |
| break; |
| } |
| |
| if (AL.getKind() == ParsedAttr::AT_Regparm) { |
| // `regparm` is a special case: It's a type attribute but we still want |
| // to treat it as if it had been written on the declaration because that |
| // way we'll be able to handle it directly in `processTypeAttr()`. |
| // If we treated `regparm` it as if it had been written on the |
| // `DeclSpec`, the logic in `distributeFunctionTypeAttrFromDeclSepc()` |
| // would try to move it to the declarator, but that doesn't work: We |
| // can't remove the attribute from the list of declaration attributes |
| // because it might be needed by other declarators in the same |
| // declaration. |
| break; |
| } |
| |
| if (AL.getKind() == ParsedAttr::AT_VectorSize) { |
| // `vector_size` is a special case: It's a type attribute semantically, |
| // but GCC expects the [[]] syntax to be written on the declaration (and |
| // warns that the attribute has no effect if it is placed on the |
| // decl-specifier-seq). |
| // Silently move on and allow the attribute to be handled in |
| // processTypeAttr(). |
| break; |
| } |
| |
| if (AL.getKind() == ParsedAttr::AT_NoDeref) { |
| // FIXME: `noderef` currently doesn't work correctly in [[]] syntax. |
| // See https://github.com/llvm/llvm-project/issues/55790 for details. |
| // We allow processTypeAttrs() to emit a warning and silently move on. |
| break; |
| } |
| } |
| // N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a |
| // statement attribute is not written on a declaration, but this code is |
| // needed for type attributes as well as statement attributes in Attr.td |
| // that do not list any subjects. |
| S.Diag(AL.getLoc(), diag::err_attribute_invalid_on_decl) |
| << AL << AL.isRegularKeywordAttribute() << D->getLocation(); |
| break; |
| case ParsedAttr::AT_Interrupt: |
| handleInterruptAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_X86ForceAlignArgPointer: |
| S.X86().handleForceAlignArgPointerAttr(D, AL); |
| break; |
| case ParsedAttr::AT_ReadOnlyPlacement: |
| handleSimpleAttribute<ReadOnlyPlacementAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_DLLExport: |
| case ParsedAttr::AT_DLLImport: |
| handleDLLAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AMDGPUFlatWorkGroupSize: |
| S.AMDGPU().handleAMDGPUFlatWorkGroupSizeAttr(D, AL); |
| break; |
| case ParsedAttr::AT_AMDGPUWavesPerEU: |
| S.AMDGPU().handleAMDGPUWavesPerEUAttr(D, AL); |
| break; |
| case ParsedAttr::AT_AMDGPUNumSGPR: |
| S.AMDGPU().handleAMDGPUNumSGPRAttr(D, AL); |
| break; |
| case ParsedAttr::AT_AMDGPUNumVGPR: |
| S.AMDGPU().handleAMDGPUNumVGPRAttr(D, AL); |
| break; |
| case ParsedAttr::AT_AMDGPUMaxNumWorkGroups: |
| S.AMDGPU().handleAMDGPUMaxNumWorkGroupsAttr(D, AL); |
| break; |
| case ParsedAttr::AT_AVRSignal: |
| S.AVR().handleSignalAttr(D, AL); |
| break; |
| case ParsedAttr::AT_BPFPreserveAccessIndex: |
| S.BPF().handlePreserveAccessIndexAttr(D, AL); |
| break; |
| case ParsedAttr::AT_BPFPreserveStaticOffset: |
| handleSimpleAttribute<BPFPreserveStaticOffsetAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_BTFDeclTag: |
| handleBTFDeclTagAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_WebAssemblyExportName: |
| S.Wasm().handleWebAssemblyExportNameAttr(D, AL); |
| break; |
| case ParsedAttr::AT_WebAssemblyImportModule: |
| S.Wasm().handleWebAssemblyImportModuleAttr(D, AL); |
| break; |
| case ParsedAttr::AT_WebAssemblyImportName: |
| S.Wasm().handleWebAssemblyImportNameAttr(D, AL); |
| break; |
| case ParsedAttr::AT_IBOutlet: |
| S.ObjC().handleIBOutlet(D, AL); |
| break; |
| case ParsedAttr::AT_IBOutletCollection: |
| S.ObjC().handleIBOutletCollection(D, AL); |
| break; |
| case ParsedAttr::AT_IFunc: |
| handleIFuncAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Alias: |
| handleAliasAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Aligned: |
| handleAlignedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AlignValue: |
| handleAlignValueAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AllocSize: |
| handleAllocSizeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AlwaysInline: |
| handleAlwaysInlineAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AnalyzerNoReturn: |
| handleAnalyzerNoReturnAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_TLSModel: |
| handleTLSModelAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Annotate: |
| handleAnnotateAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Availability: |
| handleAvailabilityAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CarriesDependency: |
| handleDependencyAttr(S, scope, D, AL); |
| break; |
| case ParsedAttr::AT_CPUDispatch: |
| case ParsedAttr::AT_CPUSpecific: |
| handleCPUSpecificAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Common: |
| handleCommonAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CUDAConstant: |
| handleConstantAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_PassObjectSize: |
| handlePassObjectSizeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Constructor: |
| handleConstructorAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Deprecated: |
| handleDeprecatedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Destructor: |
| handleDestructorAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_EnableIf: |
| handleEnableIfAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Error: |
| handleErrorAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ExcludeFromExplicitInstantiation: |
| handleExcludeFromExplicitInstantiationAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_DiagnoseIf: |
| handleDiagnoseIfAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_DiagnoseAsBuiltin: |
| handleDiagnoseAsBuiltinAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NoBuiltin: |
| handleNoBuiltinAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ExtVectorType: |
| handleExtVectorTypeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ExternalSourceSymbol: |
| handleExternalSourceSymbolAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_MinSize: |
| handleMinSizeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_OptimizeNone: |
| handleOptimizeNoneAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_EnumExtensibility: |
| handleEnumExtensibilityAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_SYCLKernel: |
| S.SYCL().handleKernelAttr(D, AL); |
| break; |
| case ParsedAttr::AT_SYCLKernelEntryPoint: |
| S.SYCL().handleKernelEntryPointAttr(D, AL); |
| break; |
| case ParsedAttr::AT_SYCLSpecialClass: |
| handleSimpleAttribute<SYCLSpecialClassAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_Format: |
| handleFormatAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_FormatMatches: |
| handleFormatMatchesAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_FormatArg: |
| handleFormatArgAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Callback: |
| handleCallbackAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_LifetimeCaptureBy: |
| handleLifetimeCaptureByAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CalledOnce: |
| handleCalledOnceAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NVPTXKernel: |
| case ParsedAttr::AT_CUDAGlobal: |
| handleGlobalAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CUDADevice: |
| handleDeviceAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CUDAGridConstant: |
| handleGridConstantAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_HIPManaged: |
| handleManagedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_GNUInline: |
| handleGNUInlineAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CUDALaunchBounds: |
| handleLaunchBoundsAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Restrict: |
| handleRestrictAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Mode: |
| handleModeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NonNull: |
| if (auto *PVD = dyn_cast<ParmVarDecl>(D)) |
| handleNonNullAttrParameter(S, PVD, AL); |
| else |
| handleNonNullAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ReturnsNonNull: |
| handleReturnsNonNullAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NoEscape: |
| handleNoEscapeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_MaybeUndef: |
| handleSimpleAttribute<MaybeUndefAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_AssumeAligned: |
| handleAssumeAlignedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AllocAlign: |
| handleAllocAlignAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Ownership: |
| handleOwnershipAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Naked: |
| handleNakedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NoReturn: |
| handleNoReturnAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CXX11NoReturn: |
| handleStandardNoReturnAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AnyX86NoCfCheck: |
| handleNoCfCheckAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NoThrow: |
| if (!AL.isUsedAsTypeAttr()) |
| handleSimpleAttribute<NoThrowAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_CUDAShared: |
| handleSharedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_VecReturn: |
| handleVecReturnAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCOwnership: |
| S.ObjC().handleOwnershipAttr(D, AL); |
| break; |
| case ParsedAttr::AT_ObjCPreciseLifetime: |
| S.ObjC().handlePreciseLifetimeAttr(D, AL); |
| break; |
| case ParsedAttr::AT_ObjCReturnsInnerPointer: |
| S.ObjC().handleReturnsInnerPointerAttr(D, AL); |
| break; |
| case ParsedAttr::AT_ObjCRequiresSuper: |
| S.ObjC().handleRequiresSuperAttr(D, AL); |
| break; |
| case ParsedAttr::AT_ObjCBridge: |
| S.ObjC().handleBridgeAttr(D, AL); |
| break; |
| case ParsedAttr::AT_ObjCBridgeMutable: |
| S.ObjC().handleBridgeMutableAttr(D, AL); |
| break; |
| case ParsedAttr::AT_ObjCBridgeRelated: |
| S.ObjC().handleBridgeRelatedAttr(D, AL); |
| break; |
| case ParsedAttr::AT_ObjCDesignatedInitializer: |
| S.ObjC().handleDesignatedInitializer(D, AL); |
| break; |
| case ParsedAttr::AT_ObjCRuntimeName: |
| S.ObjC().handleRuntimeName(D, AL); |
| break; |
| case ParsedAttr::AT_ObjCBoxable: |
| S.ObjC().handleBoxable(D, AL); |
| break; |
| case ParsedAttr::AT_NSErrorDomain: |
| S.ObjC().handleNSErrorDomain(D, AL); |
| break; |
| case ParsedAttr::AT_CFConsumed: |
| case ParsedAttr::AT_NSConsumed: |
| case ParsedAttr::AT_OSConsumed: |
| S.ObjC().AddXConsumedAttr(D, AL, |
| S.ObjC().parsedAttrToRetainOwnershipKind(AL), |
| /*IsTemplateInstantiation=*/false); |
| break; |
| case ParsedAttr::AT_OSReturnsRetainedOnZero: |
| handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>( |
| S, D, AL, S.ObjC().isValidOSObjectOutParameter(D), |
| diag::warn_ns_attribute_wrong_parameter_type, |
| /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange()); |
| break; |
| case ParsedAttr::AT_OSReturnsRetainedOnNonZero: |
| handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>( |
| S, D, AL, S.ObjC().isValidOSObjectOutParameter(D), |
| diag::warn_ns_attribute_wrong_parameter_type, |
| /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange()); |
| break; |
| case ParsedAttr::AT_NSReturnsAutoreleased: |
| case ParsedAttr::AT_NSReturnsNotRetained: |
| case ParsedAttr::AT_NSReturnsRetained: |
| case ParsedAttr::AT_CFReturnsNotRetained: |
| case ParsedAttr::AT_CFReturnsRetained: |
| case ParsedAttr::AT_OSReturnsNotRetained: |
| case ParsedAttr::AT_OSReturnsRetained: |
| S.ObjC().handleXReturnsXRetainedAttr(D, AL); |
| break; |
| case ParsedAttr::AT_WorkGroupSizeHint: |
| handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_ReqdWorkGroupSize: |
| handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize: |
| S.OpenCL().handleSubGroupSize(D, AL); |
| break; |
| case ParsedAttr::AT_VecTypeHint: |
| handleVecTypeHint(S, D, AL); |
| break; |
| case ParsedAttr::AT_InitPriority: |
| handleInitPriorityAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Packed: |
| handlePackedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_PreferredName: |
| handlePreferredName(S, D, AL); |
| break; |
| case ParsedAttr::AT_NoSpecializations: |
| handleNoSpecializations(S, D, AL); |
| break; |
| case ParsedAttr::AT_Section: |
| handleSectionAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CodeModel: |
| handleCodeModelAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_RandomizeLayout: |
| handleRandomizeLayoutAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NoRandomizeLayout: |
| handleNoRandomizeLayoutAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CodeSeg: |
| handleCodeSegAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Target: |
| handleTargetAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_TargetVersion: |
| handleTargetVersionAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_TargetClones: |
| handleTargetClonesAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_MinVectorWidth: |
| handleMinVectorWidthAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Unavailable: |
| handleAttrWithMessage<UnavailableAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_OMPAssume: |
| S.OpenMP().handleOMPAssumeAttr(D, AL); |
| break; |
| case ParsedAttr::AT_ObjCDirect: |
| S.ObjC().handleDirectAttr(D, AL); |
| break; |
| case ParsedAttr::AT_ObjCDirectMembers: |
| S.ObjC().handleDirectMembersAttr(D, AL); |
| handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCExplicitProtocolImpl: |
| S.ObjC().handleSuppresProtocolAttr(D, AL); |
| break; |
| case ParsedAttr::AT_Unused: |
| handleUnusedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Visibility: |
| handleVisibilityAttr(S, D, AL, false); |
| break; |
| case ParsedAttr::AT_TypeVisibility: |
| handleVisibilityAttr(S, D, AL, true); |
| break; |
| case ParsedAttr::AT_WarnUnusedResult: |
| handleWarnUnusedResult(S, D, AL); |
| break; |
| case ParsedAttr::AT_WeakRef: |
| handleWeakRefAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_WeakImport: |
| handleWeakImportAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_TransparentUnion: |
| handleTransparentUnionAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ObjCMethodFamily: |
| S.ObjC().handleMethodFamilyAttr(D, AL); |
| break; |
| case ParsedAttr::AT_ObjCNSObject: |
| S.ObjC().handleNSObject(D, AL); |
| break; |
| case ParsedAttr::AT_ObjCIndependentClass: |
| S.ObjC().handleIndependentClass(D, AL); |
| break; |
| case ParsedAttr::AT_Blocks: |
| S.ObjC().handleBlocksAttr(D, AL); |
| break; |
| case ParsedAttr::AT_Sentinel: |
| handleSentinelAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Cleanup: |
| handleCleanupAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NoDebug: |
| handleNoDebugAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CmseNSEntry: |
| S.ARM().handleCmseNSEntryAttr(D, AL); |
| break; |
| case ParsedAttr::AT_StdCall: |
| case ParsedAttr::AT_CDecl: |
| case ParsedAttr::AT_FastCall: |
| case ParsedAttr::AT_ThisCall: |
| case ParsedAttr::AT_Pascal: |
| case ParsedAttr::AT_RegCall: |
| case ParsedAttr::AT_SwiftCall: |
| case ParsedAttr::AT_SwiftAsyncCall: |
| case ParsedAttr::AT_VectorCall: |
| case ParsedAttr::AT_MSABI: |
| case ParsedAttr::AT_SysVABI: |
| case ParsedAttr::AT_Pcs: |
| case ParsedAttr::AT_IntelOclBicc: |
| case ParsedAttr::AT_PreserveMost: |
| case ParsedAttr::AT_PreserveAll: |
| case ParsedAttr::AT_AArch64VectorPcs: |
| case ParsedAttr::AT_AArch64SVEPcs: |
| case ParsedAttr::AT_AMDGPUKernelCall: |
| case ParsedAttr::AT_M68kRTD: |
| case ParsedAttr::AT_PreserveNone: |
| case ParsedAttr::AT_RISCVVectorCC: |
| case ParsedAttr::AT_RISCVVLSCC: |
| handleCallConvAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Suppress: |
| handleSuppressAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Owner: |
| case ParsedAttr::AT_Pointer: |
| handleLifetimeCategoryAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_OpenCLAccess: |
| S.OpenCL().handleAccessAttr(D, AL); |
| break; |
| case ParsedAttr::AT_OpenCLNoSVM: |
| S.OpenCL().handleNoSVMAttr(D, AL); |
| break; |
| case ParsedAttr::AT_SwiftContext: |
| S.Swift().AddParameterABIAttr(D, AL, ParameterABI::SwiftContext); |
| break; |
| case ParsedAttr::AT_SwiftAsyncContext: |
| S.Swift().AddParameterABIAttr(D, AL, ParameterABI::SwiftAsyncContext); |
| break; |
| case ParsedAttr::AT_SwiftErrorResult: |
| S.Swift().AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult); |
| break; |
| case ParsedAttr::AT_SwiftIndirectResult: |
| S.Swift().AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult); |
| break; |
| case ParsedAttr::AT_InternalLinkage: |
| handleInternalLinkageAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ZeroCallUsedRegs: |
| handleZeroCallUsedRegsAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_FunctionReturnThunks: |
| handleFunctionReturnThunksAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NoMerge: |
| handleNoMergeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NoUniqueAddress: |
| handleNoUniqueAddressAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_AvailableOnlyInDefaultEvalMethod: |
| handleAvailableOnlyInDefaultEvalMethod(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_CountedBy: |
| case ParsedAttr::AT_CountedByOrNull: |
| case ParsedAttr::AT_SizedBy: |
| case ParsedAttr::AT_SizedByOrNull: |
| handleCountedByAttrField(S, D, AL); |
| break; |
| |
| // Microsoft attributes: |
| case ParsedAttr::AT_LayoutVersion: |
| handleLayoutVersion(S, D, AL); |
| break; |
| case ParsedAttr::AT_Uuid: |
| handleUuidAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_MSInheritance: |
| handleMSInheritanceAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_Thread: |
| handleDeclspecThreadAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_MSConstexpr: |
| handleMSConstexprAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_HybridPatchable: |
| handleSimpleAttribute<HybridPatchableAttr>(S, D, AL); |
| break; |
| |
| // HLSL attributes: |
| case ParsedAttr::AT_HLSLNumThreads: |
| S.HLSL().handleNumThreadsAttr(D, AL); |
| break; |
| case ParsedAttr::AT_HLSLWaveSize: |
| S.HLSL().handleWaveSizeAttr(D, AL); |
| break; |
| case ParsedAttr::AT_HLSLSV_GroupThreadID: |
| S.HLSL().handleSV_GroupThreadIDAttr(D, AL); |
| break; |
| case ParsedAttr::AT_HLSLSV_GroupID: |
| S.HLSL().handleSV_GroupIDAttr(D, AL); |
| break; |
| case ParsedAttr::AT_HLSLSV_GroupIndex: |
| handleSimpleAttribute<HLSLSV_GroupIndexAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_HLSLGroupSharedAddressSpace: |
| handleSimpleAttribute<HLSLGroupSharedAddressSpaceAttr>(S, D, AL); |
| break; |
| case ParsedAttr::AT_HLSLSV_DispatchThreadID: |
| S.HLSL().handleSV_DispatchThreadIDAttr(D, AL); |
| break; |
| case ParsedAttr::AT_HLSLPackOffset: |
| S.HLSL().handlePackOffsetAttr(D, AL); |
| break; |
| case ParsedAttr::AT_HLSLShader: |
| S.HLSL().handleShaderAttr(D, AL); |
| break; |
| case ParsedAttr::AT_HLSLResourceBinding: |
| S.HLSL().handleResourceBindingAttr(D, AL); |
| break; |
| case ParsedAttr::AT_HLSLParamModifier: |
| S.HLSL().handleParamModifierAttr(D, AL); |
| break; |
| |
| case ParsedAttr::AT_AbiTag: |
| handleAbiTagAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CFGuard: |
| handleCFGuardAttr(S, D, AL); |
| break; |
| |
| // Thread safety attributes: |
| case ParsedAttr::AT_AssertExclusiveLock: |
| handleAssertExclusiveLockAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AssertSharedLock: |
| handleAssertSharedLockAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_PtGuardedVar: |
| handlePtGuardedVarAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NoSanitize: |
| handleNoSanitizeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_NoSanitizeSpecific: |
| handleNoSanitizeSpecificAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_GuardedBy: |
| handleGuardedByAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_PtGuardedBy: |
| handlePtGuardedByAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ExclusiveTrylockFunction: |
| handleExclusiveTrylockFunctionAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_LockReturned: |
| handleLockReturnedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_LocksExcluded: |
| handleLocksExcludedAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_SharedTrylockFunction: |
| handleSharedTrylockFunctionAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AcquiredBefore: |
| handleAcquiredBeforeAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AcquiredAfter: |
| handleAcquiredAfterAttr(S, D, AL); |
| break; |
| |
| // Capability analysis attributes. |
| case ParsedAttr::AT_Capability: |
| case ParsedAttr::AT_Lockable: |
| handleCapabilityAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_RequiresCapability: |
| handleRequiresCapabilityAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_AssertCapability: |
| handleAssertCapabilityAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_AcquireCapability: |
| handleAcquireCapabilityAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ReleaseCapability: |
| handleReleaseCapabilityAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_TryAcquireCapability: |
| handleTryAcquireCapabilityAttr(S, D, AL); |
| break; |
| |
| // Consumed analysis attributes. |
| case ParsedAttr::AT_Consumable: |
| handleConsumableAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_CallableWhen: |
| handleCallableWhenAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ParamTypestate: |
| handleParamTypestateAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_ReturnTypestate: |
| handleReturnTypestateAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_SetTypestate: |
| handleSetTypestateAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_TestTypestate: |
| handleTestTypestateAttr(S, D, AL); |
| break; |
| |
| // Type safety attributes. |
| case ParsedAttr::AT_ArgumentWithTypeTag: |
| handleArgumentWithTypeTagAttr(S, D, AL); |
| break; |
| case ParsedAttr::AT_TypeTagForDatatype: |
| handleTypeTagForDatatypeAttr(S, D, AL); |
| break; |
| |
| // Swift attributes. |
| case ParsedAttr::AT_SwiftAsyncName: |
| S.Swift().handleAsyncName(D, AL); |
| break; |
| case ParsedAttr::AT_SwiftAttr: |
| S.Swift().handleAttrAttr(D, AL); |
| break; |
| case ParsedAttr::AT_SwiftBridge: |
| S.Swift().handleBridge(D, AL); |
| break; |
| case ParsedAttr::AT_SwiftError: |
| S.Swift().handleError(D, AL); |
| break; |
| case ParsedAttr::AT_SwiftName: |
| S.Swift().handleName(D, AL); |
| break; |
| case ParsedAttr::AT_SwiftNewType: |
| S.Swift().handleNewType(D, AL); |
| break; |
| case ParsedAttr::AT_SwiftAsync: |
| S.Swift().handleAsyncAttr(D, AL); |
| break; |
| case ParsedAttr::AT_SwiftAsyncError: |
| S.Swift().handleAsyncError(D, AL); |
| break; |
| |
| // XRay attributes. |
| case ParsedAttr::AT_XRayLogArgs: |
| handleXRayLogArgsAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_PatchableFunctionEntry: |
| handlePatchableFunctionEntryAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_AlwaysDestroy: |
| case ParsedAttr::AT_NoDestroy: |
| handleDestroyAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_Uninitialized: |
| handleUninitializedAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_ObjCExternallyRetained: |
| S.ObjC().handleExternallyRetainedAttr(D, AL); |
| break; |
| |
| case ParsedAttr::AT_MIGServerRoutine: |
| handleMIGServerRoutineAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_MSAllocator: |
| handleMSAllocatorAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_ArmBuiltinAlias: |
| S.ARM().handleBuiltinAliasAttr(D, AL); |
| break; |
| |
| case ParsedAttr::AT_ArmLocallyStreaming: |
| handleSimpleAttribute<ArmLocallyStreamingAttr>(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_ArmNew: |
| S.ARM().handleNewAttr(D, AL); |
| break; |
| |
| case ParsedAttr::AT_AcquireHandle: |
| handleAcquireHandleAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_ReleaseHandle: |
| handleHandleAttr<ReleaseHandleAttr>(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_UnsafeBufferUsage: |
| handleUnsafeBufferUsage<UnsafeBufferUsageAttr>(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_UseHandle: |
| handleHandleAttr<UseHandleAttr>(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_EnforceTCB: |
| handleEnforceTCBAttr<EnforceTCBAttr, EnforceTCBLeafAttr>(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_EnforceTCBLeaf: |
| handleEnforceTCBAttr<EnforceTCBLeafAttr, EnforceTCBAttr>(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_BuiltinAlias: |
| handleBuiltinAliasAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_PreferredType: |
| handlePreferredTypeAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_UsingIfExists: |
| handleSimpleAttribute<UsingIfExistsAttr>(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_TypeNullable: |
| handleNullableTypeAttr(S, D, AL); |
| break; |
| |
| case ParsedAttr::AT_VTablePointerAuthentication: |
| handleVTablePointerAuthentication(S, D, AL); |
| break; |
| } |
| } |
| |
| static bool isKernelDecl(Decl *D) { |
| const FunctionType *FnTy = D->getFunctionType(); |
| return D->hasAttr<OpenCLKernelAttr>() || |
| (FnTy && FnTy->getCallConv() == CallingConv::CC_AMDGPUKernelCall) || |
| D->hasAttr<CUDAGlobalAttr>() || D->getAttr<NVPTXKernelAttr>(); |
| } |
| |
| void Sema::ProcessDeclAttributeList( |
| Scope *S, Decl *D, const ParsedAttributesView &AttrList, |
| const ProcessDeclAttributeOptions &Options) { |
| if (AttrList.empty()) |
| return; |
| |
| for (const ParsedAttr &AL : AttrList) |
| ProcessDeclAttribute(*this, S, D, AL, Options); |
| |
| // FIXME: We should be able to handle these cases in TableGen. |
| // GCC accepts |
| // static int a9 __attribute__((weakref)); |
| // but that looks really pointless. We reject it. |
| if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) { |
| Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias) |
| << cast<NamedDecl>(D); |
| D->dropAttr<WeakRefAttr>(); |
| return; |
| } |
| |
| // FIXME: We should be able to handle this in TableGen as well. It would be |
| // good to have a way to specify "these attributes must appear as a group", |
| // for these. Additionally, it would be good to have a way to specify "these |
| // attribute must never appear as a group" for attributes like cold and hot. |
| if (!(D->hasAttr<OpenCLKernelAttr>() || |
| (D->hasAttr<CUDAGlobalAttr>() && |
| Context.getTargetInfo().getTriple().isSPIRV()))) { |
| // These attributes cannot be applied to a non-kernel function. |
| if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) { |
| // FIXME: This emits a different error message than |
| // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction. |
| Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; |
| D->setInvalidDecl(); |
| } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) { |
| Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; |
| D->setInvalidDecl(); |
| } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) { |
| Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; |
| D->setInvalidDecl(); |
| } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { |
| Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; |
| D->setInvalidDecl(); |
| } |
| } |
| if (!isKernelDecl(D)) { |
| if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) { |
| Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) |
| << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; |
| D->setInvalidDecl(); |
| } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) { |
| Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) |
| << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; |
| D->setInvalidDecl(); |
| } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) { |
| Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) |
| << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; |
| D->setInvalidDecl(); |
| } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) { |
| Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) |
| << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; |
| D->setInvalidDecl(); |
| } |
| } |
| |
| // Do not permit 'constructor' or 'destructor' attributes on __device__ code. |
| if (getLangOpts().CUDAIsDevice && D->hasAttr<CUDADeviceAttr>() && |
| (D->hasAttr<ConstructorAttr>() || D->hasAttr<DestructorAttr>()) && |
| !getLangOpts().GPUAllowDeviceInit) { |
| Diag(D->getLocation(), diag::err_cuda_ctor_dtor_attrs) |
| << (D->hasAttr<ConstructorAttr>() ? "constructors" : "destructors"); |
| D->setInvalidDecl(); |
| } |
| |
| // Do this check after processing D's attributes because the attribute |
| // objc_method_family can change whether the given method is in the init |
| // family, and it can be applied after objc_designated_initializer. This is a |
| // bit of a hack, but we need it to be compatible with versions of clang that |
| // processed the attribute list in the wrong order. |
| if (D->hasAttr<ObjCDesignatedInitializerAttr>() && |
| cast<ObjCMethodDecl>(D)->getMethodFamily() != OMF_init) { |
| Diag(D->getLocation(), diag::err_designated_init_attr_non_init); |
| D->dropAttr<ObjCDesignatedInitializerAttr>(); |
| } |
| } |
| |
| void Sema::ProcessDeclAttributeDelayed(Decl *D, |
| const ParsedAttributesView &AttrList) { |
| for (const ParsedAttr &AL : AttrList) |
| if (AL.getKind() == ParsedAttr::AT_TransparentUnion) { |
| handleTransparentUnionAttr(*this, D, AL); |
| break; |
| } |
| |
| // For BPFPreserveAccessIndexAttr, we want to populate the attributes |
| // to fields and inner records as well. |
| if (D && D->hasAttr<BPFPreserveAccessIndexAttr>()) |
| BPF().handlePreserveAIRecord(cast<RecordDecl>(D)); |
| } |
| |
| bool Sema::ProcessAccessDeclAttributeList( |
| AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) { |
| for (const ParsedAttr &AL : AttrList) { |
| if (AL.getKind() == ParsedAttr::AT_Annotate) { |
| ProcessDeclAttribute(*this, nullptr, ASDecl, AL, |
| ProcessDeclAttributeOptions()); |
| } else { |
| Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// checkUnusedDeclAttributes - Check a list of attributes to see if it |
| /// contains any decl attributes that we should warn about. |
| static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) { |
| for (const ParsedAttr &AL : A) { |
| // Only warn if the attribute is an unignored, non-type attribute. |
| if (AL.isUsedAsTypeAttr() || AL.isInvalid()) |
| continue; |
| if (AL.getKind() == ParsedAttr::IgnoredAttribute) |
| continue; |
| |
| if (AL.getKind() == ParsedAttr::UnknownAttribute) { |
| S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) |
| << AL << AL.getRange(); |
| } else { |
| S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL |
| << AL.getRange(); |
| } |
| } |
| } |
| |
| void Sema::checkUnusedDeclAttributes(Declarator &D) { |
| ::checkUnusedDeclAttributes(*this, D.getDeclarationAttributes()); |
| ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes()); |
| ::checkUnusedDeclAttributes(*this, D.getAttributes()); |
| for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) |
| ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs()); |
| } |
| |
| NamedDecl *Sema::DeclClonePragmaWeak(NamedDecl *ND, const IdentifierInfo *II, |
| SourceLocation Loc) { |
| assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND)); |
| NamedDecl *NewD = nullptr; |
| if (auto *FD = dyn_cast<FunctionDecl>(ND)) { |
| FunctionDecl *NewFD; |
| // FIXME: Missing call to CheckFunctionDeclaration(). |
| // FIXME: Mangling? |
| // FIXME: Is the qualifier info correct? |
| // FIXME: Is the DeclContext correct? |
| NewFD = FunctionDecl::Create( |
| FD->getASTContext(), FD->getDeclContext(), Loc, Loc, |
| DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None, |
| getCurFPFeatures().isFPConstrained(), false /*isInlineSpecified*/, |
| FD->hasPrototype(), ConstexprSpecKind::Unspecified, |
| FD->getTrailingRequiresClause()); |
| NewD = NewFD; |
| |
| if (FD->getQualifier()) |
| NewFD->setQualifierInfo(FD->getQualifierLoc()); |
| |
| // Fake up parameter variables; they are declared as if this were |
| // a typedef. |
| QualType FDTy = FD->getType(); |
| if (const auto *FT = FDTy->getAs<FunctionProtoType>()) { |
| SmallVector<ParmVarDecl*, 16> Params; |
| for (const auto &AI : FT->param_types()) { |
| ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI); |
| Param->setScopeInfo(0, Params.size()); |
| Params.push_back(Param); |
| } |
| NewFD->setParams(Params); |
| } |
| } else if (auto *VD = dyn_cast<VarDecl>(ND)) { |
| NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(), |
| VD->getInnerLocStart(), VD->getLocation(), II, |
| VD->getType(), VD->getTypeSourceInfo(), |
| VD->getStorageClass()); |
| if (VD->getQualifier()) |
| cast<VarDecl>(NewD)->setQualifierInfo(VD->getQualifierLoc()); |
| } |
| return NewD; |
| } |
| |
| void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, const WeakInfo &W) { |
| if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...)) |
| IdentifierInfo *NDId = ND->getIdentifier(); |
| NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation()); |
| NewD->addAttr( |
| AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation())); |
| NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation())); |
| WeakTopLevelDecl.push_back(NewD); |
| // FIXME: "hideous" code from Sema::LazilyCreateBuiltin |
| // to insert Decl at TU scope, sorry. |
| DeclContext *SavedContext = CurContext; |
| CurContext = Context.getTranslationUnitDecl(); |
| NewD->setDeclContext(CurContext); |
| NewD->setLexicalDeclContext(CurContext); |
| PushOnScopeChains(NewD, S); |
| CurContext = SavedContext; |
| } else { // just add weak to existing |
| ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation())); |
| } |
| } |
| |
| void Sema::ProcessPragmaWeak(Scope *S, Decl *D) { |
| // It's valid to "forward-declare" #pragma weak, in which case we |
| // have to do this. |
| LoadExternalWeakUndeclaredIdentifiers(); |
| if (WeakUndeclaredIdentifiers.empty()) |
| return; |
| NamedDecl *ND = nullptr; |
| if (auto *VD = dyn_cast<VarDecl>(D)) |
| if (VD->isExternC()) |
| ND = VD; |
| if (auto *FD = dyn_cast<FunctionDecl>(D)) |
| if (FD->isExternC()) |
| ND = FD; |
| if (!ND) |
| return; |
| if (IdentifierInfo *Id = ND->getIdentifier()) { |
| auto I = WeakUndeclaredIdentifiers.find(Id); |
| if (I != WeakUndeclaredIdentifiers.end()) { |
| auto &WeakInfos = I->second; |
| for (const auto &W : WeakInfos) |
| DeclApplyPragmaWeak(S, ND, W); |
| std::remove_reference_t<decltype(WeakInfos)> EmptyWeakInfos; |
| WeakInfos.swap(EmptyWeakInfos); |
| } |
| } |
| } |
| |
| /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in |
| /// it, apply them to D. This is a bit tricky because PD can have attributes |
| /// specified in many different places, and we need to find and apply them all. |
| void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) { |
| // Ordering of attributes can be important, so we take care to process |
| // attributes in the order in which they appeared in the source code. |
| |
| auto ProcessAttributesWithSliding = |
| [&](const ParsedAttributesView &Src, |
| const ProcessDeclAttributeOptions &Options) { |
| ParsedAttributesView NonSlidingAttrs; |
| for (ParsedAttr &AL : Src) { |
| // FIXME: this sliding is specific to standard attributes and should |
| // eventually be deprecated and removed as those are not intended to |
| // slide to anything. |
| if ((AL.isStandardAttributeSyntax() || AL.isAlignas()) && |
| AL.slidesFromDeclToDeclSpecLegacyBehavior()) { |
| // Skip processing the attribute, but do check if it appertains to |
| // the declaration. This is needed for the `MatrixType` attribute, |
| // which, despite being a type attribute, defines a `SubjectList` |
| // that only allows it to be used on typedef declarations. |
| AL.diagnoseAppertainsTo(*this, D); |
| } else { |
| NonSlidingAttrs.addAtEnd(&AL); |
| } |
| } |
| ProcessDeclAttributeList(S, D, NonSlidingAttrs, Options); |
| }; |
| |
| // First, process attributes that appeared on the declaration itself (but |
| // only if they don't have the legacy behavior of "sliding" to the DeclSepc). |
| ProcessAttributesWithSliding(PD.getDeclarationAttributes(), {}); |
| |
| // Apply decl attributes from the DeclSpec if present. |
| ProcessAttributesWithSliding(PD.getDeclSpec().getAttributes(), |
| ProcessDeclAttributeOptions() |
| .WithIncludeCXX11Attributes(false) |
| .WithIgnoreTypeAttributes(true)); |
| |
| // Walk the declarator structure, applying decl attributes that were in a type |
| // position to the decl itself. This handles cases like: |
| // int *__attr__(x)** D; |
| // when X is a decl attribute. |
| for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) { |
| ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(), |
| ProcessDeclAttributeOptions() |
| .WithIncludeCXX11Attributes(false) |
| .WithIgnoreTypeAttributes(true)); |
| } |
| |
| // Finally, apply any attributes on the decl itself. |
| ProcessDeclAttributeList(S, D, PD.getAttributes()); |
| |
| // Apply additional attributes specified by '#pragma clang attribute'. |
| AddPragmaAttributes(S, D); |
| |
| // Look for API notes that map to attributes. |
| ProcessAPINotes(D); |
| } |
| |
| /// Is the given declaration allowed to use a forbidden type? |
| /// If so, it'll still be annotated with an attribute that makes it |
| /// illegal to actually use. |
| static bool isForbiddenTypeAllowed(Sema &S, Decl *D, |
| const DelayedDiagnostic &diag, |
| UnavailableAttr::ImplicitReason &reason) { |
| // Private ivars are always okay. Unfortunately, people don't |
| // always properly make their ivars private, even in system headers. |
| // Plus we need to make fields okay, too. |
| if (!isa<FieldDecl>(D) && !isa<ObjCPropertyDecl>(D) && |
| !isa<FunctionDecl>(D)) |
| return false; |
| |
| // Silently accept unsupported uses of __weak in both user and system |
| // declarations when it's been disabled, for ease of integration with |
| // -fno-objc-arc files. We do have to take some care against attempts |
| // to define such things; for now, we've only done that for ivars |
| // and properties. |
| if ((isa<ObjCIvarDecl>(D) || isa<ObjCPropertyDecl>(D))) { |
| if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled || |
| diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) { |
| reason = UnavailableAttr::IR_ForbiddenWeak; |
| return true; |
| } |
| } |
| |
| // Allow all sorts of things in system headers. |
| if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) { |
| // Currently, all the failures dealt with this way are due to ARC |
| // restrictions. |
| reason = UnavailableAttr::IR_ARCForbiddenType; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Handle a delayed forbidden-type diagnostic. |
| static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD, |
| Decl *D) { |
| auto Reason = UnavailableAttr::IR_None; |
| if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) { |
| assert(Reason && "didn't set reason?"); |
| D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc)); |
| return; |
| } |
| if (S.getLangOpts().ObjCAutoRefCount) |
| if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| // FIXME: we may want to suppress diagnostics for all |
| // kind of forbidden type messages on unavailable functions. |
| if (FD->hasAttr<UnavailableAttr>() && |
| DD.getForbiddenTypeDiagnostic() == |
| diag::err_arc_array_param_no_ownership) { |
| DD.Triggered = true; |
| return; |
| } |
| } |
| |
| S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic()) |
| << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument(); |
| DD.Triggered = true; |
| } |
| |
| |
| void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) { |
| assert(DelayedDiagnostics.getCurrentPool()); |
| DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool(); |
| DelayedDiagnostics.popWithoutEmitting(state); |
| |
| // When delaying diagnostics to run in the context of a parsed |
| // declaration, we only want to actually emit anything if parsing |
| // succeeds. |
| if (!decl) return; |
| |
| // We emit all the active diagnostics in this pool or any of its |
| // parents. In general, we'll get one pool for the decl spec |
| // and a child pool for each declarator; in a decl group like: |
| // deprecated_typedef foo, *bar, baz(); |
| // only the declarator pops will be passed decls. This is correct; |
| // we really do need to consider delayed diagnostics from the decl spec |
| // for each of the different declarations. |
| const DelayedDiagnosticPool *pool = &poppedPool; |
| do { |
| bool AnyAccessFailures = false; |
| for (DelayedDiagnosticPool::pool_iterator |
| i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) { |
| // This const_cast is a bit lame. Really, Triggered should be mutable. |
| DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i); |
| if (diag.Triggered) |
| continue; |
| |
| switch (diag.Kind) { |
| case DelayedDiagnostic::Availability: |
| // Don't bother giving deprecation/unavailable diagnostics if |
| // the decl is invalid. |
| if (!decl->isInvalidDecl()) |
| handleDelayedAvailabilityCheck(diag, decl); |
| break; |
| |
| case DelayedDiagnostic::Access: |
| // Only produce one access control diagnostic for a structured binding |
| // declaration: we don't need to tell the user that all the fields are |
| // inaccessible one at a time. |
| if (AnyAccessFailures && isa<DecompositionDecl>(decl)) |
| continue; |
| HandleDelayedAccessCheck(diag, decl); |
| if (diag.Triggered) |
| AnyAccessFailures = true; |
| break; |
| |
| case DelayedDiagnostic::ForbiddenType: |
| handleDelayedForbiddenType(*this, diag, decl); |
| break; |
| } |
| } |
| } while ((pool = pool->getParent())); |
| } |
| |
| void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) { |
| DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool(); |
| assert(curPool && "re-emitting in undelayed context not supported"); |
| curPool->steal(pool); |
| } |