|  | //===-- LoopUnrollAndJam.cpp - Loop unrolling utilities -------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements loop unroll and jam as a routine, much like | 
|  | // LoopUnroll.cpp implements loop unroll. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringRef.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/DependenceAnalysis.h" | 
|  | #include "llvm/Analysis/DomTreeUpdater.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/LoopIterator.h" | 
|  | #include "llvm/Analysis/MustExecute.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/DiagnosticInfo.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/IR/ValueMap.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/GenericDomTree.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Cloning.h" | 
|  | #include "llvm/Transforms/Utils/LoopUtils.h" | 
|  | #include "llvm/Transforms/Utils/UnrollLoop.h" | 
|  | #include "llvm/Transforms/Utils/ValueMapper.h" | 
|  | #include <assert.h> | 
|  | #include <memory> | 
|  | #include <type_traits> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "loop-unroll-and-jam" | 
|  |  | 
|  | STATISTIC(NumUnrolledAndJammed, "Number of loops unroll and jammed"); | 
|  | STATISTIC(NumCompletelyUnrolledAndJammed, "Number of loops unroll and jammed"); | 
|  |  | 
|  | typedef SmallPtrSet<BasicBlock *, 4> BasicBlockSet; | 
|  |  | 
|  | // Partition blocks in an outer/inner loop pair into blocks before and after | 
|  | // the loop | 
|  | static bool partitionLoopBlocks(Loop &L, BasicBlockSet &ForeBlocks, | 
|  | BasicBlockSet &AftBlocks, DominatorTree &DT) { | 
|  | Loop *SubLoop = L.getSubLoops()[0]; | 
|  | BasicBlock *SubLoopLatch = SubLoop->getLoopLatch(); | 
|  |  | 
|  | for (BasicBlock *BB : L.blocks()) { | 
|  | if (!SubLoop->contains(BB)) { | 
|  | if (DT.dominates(SubLoopLatch, BB)) | 
|  | AftBlocks.insert(BB); | 
|  | else | 
|  | ForeBlocks.insert(BB); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check that all blocks in ForeBlocks together dominate the subloop | 
|  | // TODO: This might ideally be done better with a dominator/postdominators. | 
|  | BasicBlock *SubLoopPreHeader = SubLoop->getLoopPreheader(); | 
|  | for (BasicBlock *BB : ForeBlocks) { | 
|  | if (BB == SubLoopPreHeader) | 
|  | continue; | 
|  | Instruction *TI = BB->getTerminator(); | 
|  | for (BasicBlock *Succ : successors(TI)) | 
|  | if (!ForeBlocks.count(Succ)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Partition blocks in a loop nest into blocks before and after each inner | 
|  | /// loop. | 
|  | static bool partitionOuterLoopBlocks( | 
|  | Loop &Root, Loop &JamLoop, BasicBlockSet &JamLoopBlocks, | 
|  | DenseMap<Loop *, BasicBlockSet> &ForeBlocksMap, | 
|  | DenseMap<Loop *, BasicBlockSet> &AftBlocksMap, DominatorTree &DT) { | 
|  | JamLoopBlocks.insert(JamLoop.block_begin(), JamLoop.block_end()); | 
|  |  | 
|  | for (Loop *L : Root.getLoopsInPreorder()) { | 
|  | if (L == &JamLoop) | 
|  | break; | 
|  |  | 
|  | if (!partitionLoopBlocks(*L, ForeBlocksMap[L], AftBlocksMap[L], DT)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // TODO Remove when UnrollAndJamLoop changed to support unroll and jamming more | 
|  | // than 2 levels loop. | 
|  | static bool partitionOuterLoopBlocks(Loop *L, Loop *SubLoop, | 
|  | BasicBlockSet &ForeBlocks, | 
|  | BasicBlockSet &SubLoopBlocks, | 
|  | BasicBlockSet &AftBlocks, | 
|  | DominatorTree *DT) { | 
|  | SubLoopBlocks.insert(SubLoop->block_begin(), SubLoop->block_end()); | 
|  | return partitionLoopBlocks(*L, ForeBlocks, AftBlocks, *DT); | 
|  | } | 
|  |  | 
|  | // Looks at the phi nodes in Header for values coming from Latch. For these | 
|  | // instructions and all their operands calls Visit on them, keeping going for | 
|  | // all the operands in AftBlocks. Returns false if Visit returns false, | 
|  | // otherwise returns true. This is used to process the instructions in the | 
|  | // Aft blocks that need to be moved before the subloop. It is used in two | 
|  | // places. One to check that the required set of instructions can be moved | 
|  | // before the loop. Then to collect the instructions to actually move in | 
|  | // moveHeaderPhiOperandsToForeBlocks. | 
|  | template <typename T> | 
|  | static bool processHeaderPhiOperands(BasicBlock *Header, BasicBlock *Latch, | 
|  | BasicBlockSet &AftBlocks, T Visit) { | 
|  | SmallPtrSet<Instruction *, 8> VisitedInstr; | 
|  |  | 
|  | std::function<bool(Instruction * I)> ProcessInstr = [&](Instruction *I) { | 
|  | if (VisitedInstr.count(I)) | 
|  | return true; | 
|  |  | 
|  | VisitedInstr.insert(I); | 
|  |  | 
|  | if (AftBlocks.count(I->getParent())) | 
|  | for (auto &U : I->operands()) | 
|  | if (Instruction *II = dyn_cast<Instruction>(U)) | 
|  | if (!ProcessInstr(II)) | 
|  | return false; | 
|  |  | 
|  | return Visit(I); | 
|  | }; | 
|  |  | 
|  | for (auto &Phi : Header->phis()) { | 
|  | Value *V = Phi.getIncomingValueForBlock(Latch); | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | if (!ProcessInstr(I)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Move the phi operands of Header from Latch out of AftBlocks to InsertLoc. | 
|  | static void moveHeaderPhiOperandsToForeBlocks(BasicBlock *Header, | 
|  | BasicBlock *Latch, | 
|  | Instruction *InsertLoc, | 
|  | BasicBlockSet &AftBlocks) { | 
|  | // We need to ensure we move the instructions in the correct order, | 
|  | // starting with the earliest required instruction and moving forward. | 
|  | processHeaderPhiOperands(Header, Latch, AftBlocks, | 
|  | [&AftBlocks, &InsertLoc](Instruction *I) { | 
|  | if (AftBlocks.count(I->getParent())) | 
|  | I->moveBefore(InsertLoc); | 
|  | return true; | 
|  | }); | 
|  | } | 
|  |  | 
|  | /* | 
|  | This method performs Unroll and Jam. For a simple loop like: | 
|  | for (i = ..) | 
|  | Fore(i) | 
|  | for (j = ..) | 
|  | SubLoop(i, j) | 
|  | Aft(i) | 
|  |  | 
|  | Instead of doing normal inner or outer unrolling, we do: | 
|  | for (i = .., i+=2) | 
|  | Fore(i) | 
|  | Fore(i+1) | 
|  | for (j = ..) | 
|  | SubLoop(i, j) | 
|  | SubLoop(i+1, j) | 
|  | Aft(i) | 
|  | Aft(i+1) | 
|  |  | 
|  | So the outer loop is essetially unrolled and then the inner loops are fused | 
|  | ("jammed") together into a single loop. This can increase speed when there | 
|  | are loads in SubLoop that are invariant to i, as they become shared between | 
|  | the now jammed inner loops. | 
|  |  | 
|  | We do this by spliting the blocks in the loop into Fore, Subloop and Aft. | 
|  | Fore blocks are those before the inner loop, Aft are those after. Normal | 
|  | Unroll code is used to copy each of these sets of blocks and the results are | 
|  | combined together into the final form above. | 
|  |  | 
|  | isSafeToUnrollAndJam should be used prior to calling this to make sure the | 
|  | unrolling will be valid. Checking profitablility is also advisable. | 
|  |  | 
|  | If EpilogueLoop is non-null, it receives the epilogue loop (if it was | 
|  | necessary to create one and not fully unrolled). | 
|  | */ | 
|  | LoopUnrollResult | 
|  | llvm::UnrollAndJamLoop(Loop *L, unsigned Count, unsigned TripCount, | 
|  | unsigned TripMultiple, bool UnrollRemainder, | 
|  | LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, | 
|  | AssumptionCache *AC, const TargetTransformInfo *TTI, | 
|  | OptimizationRemarkEmitter *ORE, Loop **EpilogueLoop) { | 
|  |  | 
|  | // When we enter here we should have already checked that it is safe | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | assert(Header && "No header."); | 
|  | assert(L->getSubLoops().size() == 1); | 
|  | Loop *SubLoop = *L->begin(); | 
|  |  | 
|  | // Don't enter the unroll code if there is nothing to do. | 
|  | if (TripCount == 0 && Count < 2) { | 
|  | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; almost nothing to do\n"); | 
|  | return LoopUnrollResult::Unmodified; | 
|  | } | 
|  |  | 
|  | assert(Count > 0); | 
|  | assert(TripMultiple > 0); | 
|  | assert(TripCount == 0 || TripCount % TripMultiple == 0); | 
|  |  | 
|  | // Are we eliminating the loop control altogether? | 
|  | bool CompletelyUnroll = (Count == TripCount); | 
|  |  | 
|  | // We use the runtime remainder in cases where we don't know trip multiple | 
|  | if (TripMultiple % Count != 0) { | 
|  | if (!UnrollRuntimeLoopRemainder(L, Count, /*AllowExpensiveTripCount*/ false, | 
|  | /*UseEpilogRemainder*/ true, | 
|  | UnrollRemainder, /*ForgetAllSCEV*/ false, | 
|  | LI, SE, DT, AC, TTI, true, EpilogueLoop)) { | 
|  | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; remainder loop could not be " | 
|  | "generated when assuming runtime trip count\n"); | 
|  | return LoopUnrollResult::Unmodified; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Notify ScalarEvolution that the loop will be substantially changed, | 
|  | // if not outright eliminated. | 
|  | if (SE) { | 
|  | SE->forgetLoop(L); | 
|  | SE->forgetBlockAndLoopDispositions(); | 
|  | } | 
|  |  | 
|  | using namespace ore; | 
|  | // Report the unrolling decision. | 
|  | if (CompletelyUnroll) { | 
|  | LLVM_DEBUG(dbgs() << "COMPLETELY UNROLL AND JAMMING loop %" | 
|  | << Header->getName() << " with trip count " << TripCount | 
|  | << "!\n"); | 
|  | ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(), | 
|  | L->getHeader()) | 
|  | << "completely unroll and jammed loop with " | 
|  | << NV("UnrollCount", TripCount) << " iterations"); | 
|  | } else { | 
|  | auto DiagBuilder = [&]() { | 
|  | OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(), | 
|  | L->getHeader()); | 
|  | return Diag << "unroll and jammed loop by a factor of " | 
|  | << NV("UnrollCount", Count); | 
|  | }; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "UNROLL AND JAMMING loop %" << Header->getName() | 
|  | << " by " << Count); | 
|  | if (TripMultiple != 1) { | 
|  | LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); | 
|  | ORE->emit([&]() { | 
|  | return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple) | 
|  | << " trips per branch"; | 
|  | }); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << " with run-time trip count"); | 
|  | ORE->emit([&]() { return DiagBuilder() << " with run-time trip count"; }); | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "!\n"); | 
|  | } | 
|  |  | 
|  | BasicBlock *Preheader = L->getLoopPreheader(); | 
|  | BasicBlock *LatchBlock = L->getLoopLatch(); | 
|  | assert(Preheader && "No preheader"); | 
|  | assert(LatchBlock && "No latch block"); | 
|  | BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); | 
|  | assert(BI && !BI->isUnconditional()); | 
|  | bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); | 
|  | BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); | 
|  | bool SubLoopContinueOnTrue = SubLoop->contains( | 
|  | SubLoop->getLoopLatch()->getTerminator()->getSuccessor(0)); | 
|  |  | 
|  | // Partition blocks in an outer/inner loop pair into blocks before and after | 
|  | // the loop | 
|  | BasicBlockSet SubLoopBlocks; | 
|  | BasicBlockSet ForeBlocks; | 
|  | BasicBlockSet AftBlocks; | 
|  | partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, AftBlocks, | 
|  | DT); | 
|  |  | 
|  | // We keep track of the entering/first and exiting/last block of each of | 
|  | // Fore/SubLoop/Aft in each iteration. This helps make the stapling up of | 
|  | // blocks easier. | 
|  | std::vector<BasicBlock *> ForeBlocksFirst; | 
|  | std::vector<BasicBlock *> ForeBlocksLast; | 
|  | std::vector<BasicBlock *> SubLoopBlocksFirst; | 
|  | std::vector<BasicBlock *> SubLoopBlocksLast; | 
|  | std::vector<BasicBlock *> AftBlocksFirst; | 
|  | std::vector<BasicBlock *> AftBlocksLast; | 
|  | ForeBlocksFirst.push_back(Header); | 
|  | ForeBlocksLast.push_back(SubLoop->getLoopPreheader()); | 
|  | SubLoopBlocksFirst.push_back(SubLoop->getHeader()); | 
|  | SubLoopBlocksLast.push_back(SubLoop->getExitingBlock()); | 
|  | AftBlocksFirst.push_back(SubLoop->getExitBlock()); | 
|  | AftBlocksLast.push_back(L->getExitingBlock()); | 
|  | // Maps Blocks[0] -> Blocks[It] | 
|  | ValueToValueMapTy LastValueMap; | 
|  |  | 
|  | // Move any instructions from fore phi operands from AftBlocks into Fore. | 
|  | moveHeaderPhiOperandsToForeBlocks( | 
|  | Header, LatchBlock, ForeBlocksLast[0]->getTerminator(), AftBlocks); | 
|  |  | 
|  | // The current on-the-fly SSA update requires blocks to be processed in | 
|  | // reverse postorder so that LastValueMap contains the correct value at each | 
|  | // exit. | 
|  | LoopBlocksDFS DFS(L); | 
|  | DFS.perform(LI); | 
|  | // Stash the DFS iterators before adding blocks to the loop. | 
|  | LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); | 
|  | LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); | 
|  |  | 
|  | // When a FSDiscriminator is enabled, we don't need to add the multiply | 
|  | // factors to the discriminators. | 
|  | if (Header->getParent()->shouldEmitDebugInfoForProfiling() && | 
|  | !EnableFSDiscriminator) | 
|  | for (BasicBlock *BB : L->getBlocks()) | 
|  | for (Instruction &I : *BB) | 
|  | if (!isa<DbgInfoIntrinsic>(&I)) | 
|  | if (const DILocation *DIL = I.getDebugLoc()) { | 
|  | auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(Count); | 
|  | if (NewDIL) | 
|  | I.setDebugLoc(*NewDIL); | 
|  | else | 
|  | LLVM_DEBUG(dbgs() | 
|  | << "Failed to create new discriminator: " | 
|  | << DIL->getFilename() << " Line: " << DIL->getLine()); | 
|  | } | 
|  |  | 
|  | // Copy all blocks | 
|  | for (unsigned It = 1; It != Count; ++It) { | 
|  | SmallVector<BasicBlock *, 8> NewBlocks; | 
|  | // Maps Blocks[It] -> Blocks[It-1] | 
|  | DenseMap<Value *, Value *> PrevItValueMap; | 
|  | SmallDenseMap<const Loop *, Loop *, 4> NewLoops; | 
|  | NewLoops[L] = L; | 
|  | NewLoops[SubLoop] = SubLoop; | 
|  |  | 
|  | for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { | 
|  | ValueToValueMapTy VMap; | 
|  | BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); | 
|  | Header->getParent()->insert(Header->getParent()->end(), New); | 
|  |  | 
|  | // Tell LI about New. | 
|  | addClonedBlockToLoopInfo(*BB, New, LI, NewLoops); | 
|  |  | 
|  | if (ForeBlocks.count(*BB)) { | 
|  | if (*BB == ForeBlocksFirst[0]) | 
|  | ForeBlocksFirst.push_back(New); | 
|  | if (*BB == ForeBlocksLast[0]) | 
|  | ForeBlocksLast.push_back(New); | 
|  | } else if (SubLoopBlocks.count(*BB)) { | 
|  | if (*BB == SubLoopBlocksFirst[0]) | 
|  | SubLoopBlocksFirst.push_back(New); | 
|  | if (*BB == SubLoopBlocksLast[0]) | 
|  | SubLoopBlocksLast.push_back(New); | 
|  | } else if (AftBlocks.count(*BB)) { | 
|  | if (*BB == AftBlocksFirst[0]) | 
|  | AftBlocksFirst.push_back(New); | 
|  | if (*BB == AftBlocksLast[0]) | 
|  | AftBlocksLast.push_back(New); | 
|  | } else { | 
|  | llvm_unreachable("BB being cloned should be in Fore/Sub/Aft"); | 
|  | } | 
|  |  | 
|  | // Update our running maps of newest clones | 
|  | PrevItValueMap[New] = (It == 1 ? *BB : LastValueMap[*BB]); | 
|  | LastValueMap[*BB] = New; | 
|  | for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); | 
|  | VI != VE; ++VI) { | 
|  | PrevItValueMap[VI->second] = | 
|  | const_cast<Value *>(It == 1 ? VI->first : LastValueMap[VI->first]); | 
|  | LastValueMap[VI->first] = VI->second; | 
|  | } | 
|  |  | 
|  | NewBlocks.push_back(New); | 
|  |  | 
|  | // Update DomTree: | 
|  | if (*BB == ForeBlocksFirst[0]) | 
|  | DT->addNewBlock(New, ForeBlocksLast[It - 1]); | 
|  | else if (*BB == SubLoopBlocksFirst[0]) | 
|  | DT->addNewBlock(New, SubLoopBlocksLast[It - 1]); | 
|  | else if (*BB == AftBlocksFirst[0]) | 
|  | DT->addNewBlock(New, AftBlocksLast[It - 1]); | 
|  | else { | 
|  | // Each set of blocks (Fore/Sub/Aft) will have the same internal domtree | 
|  | // structure. | 
|  | auto BBDomNode = DT->getNode(*BB); | 
|  | auto BBIDom = BBDomNode->getIDom(); | 
|  | BasicBlock *OriginalBBIDom = BBIDom->getBlock(); | 
|  | assert(OriginalBBIDom); | 
|  | assert(LastValueMap[cast<Value>(OriginalBBIDom)]); | 
|  | DT->addNewBlock( | 
|  | New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)])); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Remap all instructions in the most recent iteration | 
|  | remapInstructionsInBlocks(NewBlocks, LastValueMap); | 
|  | for (BasicBlock *NewBlock : NewBlocks) { | 
|  | for (Instruction &I : *NewBlock) { | 
|  | if (auto *II = dyn_cast<AssumeInst>(&I)) | 
|  | AC->registerAssumption(II); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Alter the ForeBlocks phi's, pointing them at the latest version of the | 
|  | // value from the previous iteration's phis | 
|  | for (PHINode &Phi : ForeBlocksFirst[It]->phis()) { | 
|  | Value *OldValue = Phi.getIncomingValueForBlock(AftBlocksLast[It]); | 
|  | assert(OldValue && "should have incoming edge from Aft[It]"); | 
|  | Value *NewValue = OldValue; | 
|  | if (Value *PrevValue = PrevItValueMap[OldValue]) | 
|  | NewValue = PrevValue; | 
|  |  | 
|  | assert(Phi.getNumOperands() == 2); | 
|  | Phi.setIncomingBlock(0, ForeBlocksLast[It - 1]); | 
|  | Phi.setIncomingValue(0, NewValue); | 
|  | Phi.removeIncomingValue(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that all the basic blocks for the unrolled iterations are in place, | 
|  | // finish up connecting the blocks and phi nodes. At this point LastValueMap | 
|  | // is the last unrolled iterations values. | 
|  |  | 
|  | // Update Phis in BB from OldBB to point to NewBB and use the latest value | 
|  | // from LastValueMap | 
|  | auto updatePHIBlocksAndValues = [](BasicBlock *BB, BasicBlock *OldBB, | 
|  | BasicBlock *NewBB, | 
|  | ValueToValueMapTy &LastValueMap) { | 
|  | for (PHINode &Phi : BB->phis()) { | 
|  | for (unsigned b = 0; b < Phi.getNumIncomingValues(); ++b) { | 
|  | if (Phi.getIncomingBlock(b) == OldBB) { | 
|  | Value *OldValue = Phi.getIncomingValue(b); | 
|  | if (Value *LastValue = LastValueMap[OldValue]) | 
|  | Phi.setIncomingValue(b, LastValue); | 
|  | Phi.setIncomingBlock(b, NewBB); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  | // Move all the phis from Src into Dest | 
|  | auto movePHIs = [](BasicBlock *Src, BasicBlock *Dest) { | 
|  | Instruction *insertPoint = Dest->getFirstNonPHI(); | 
|  | while (PHINode *Phi = dyn_cast<PHINode>(Src->begin())) | 
|  | Phi->moveBefore(insertPoint); | 
|  | }; | 
|  |  | 
|  | // Update the PHI values outside the loop to point to the last block | 
|  | updatePHIBlocksAndValues(LoopExit, AftBlocksLast[0], AftBlocksLast.back(), | 
|  | LastValueMap); | 
|  |  | 
|  | // Update ForeBlocks successors and phi nodes | 
|  | BranchInst *ForeTerm = | 
|  | cast<BranchInst>(ForeBlocksLast.back()->getTerminator()); | 
|  | assert(ForeTerm->getNumSuccessors() == 1 && "Expecting one successor"); | 
|  | ForeTerm->setSuccessor(0, SubLoopBlocksFirst[0]); | 
|  |  | 
|  | if (CompletelyUnroll) { | 
|  | while (PHINode *Phi = dyn_cast<PHINode>(ForeBlocksFirst[0]->begin())) { | 
|  | Phi->replaceAllUsesWith(Phi->getIncomingValueForBlock(Preheader)); | 
|  | Phi->eraseFromParent(); | 
|  | } | 
|  | } else { | 
|  | // Update the PHI values to point to the last aft block | 
|  | updatePHIBlocksAndValues(ForeBlocksFirst[0], AftBlocksLast[0], | 
|  | AftBlocksLast.back(), LastValueMap); | 
|  | } | 
|  |  | 
|  | for (unsigned It = 1; It != Count; It++) { | 
|  | // Remap ForeBlock successors from previous iteration to this | 
|  | BranchInst *ForeTerm = | 
|  | cast<BranchInst>(ForeBlocksLast[It - 1]->getTerminator()); | 
|  | assert(ForeTerm->getNumSuccessors() == 1 && "Expecting one successor"); | 
|  | ForeTerm->setSuccessor(0, ForeBlocksFirst[It]); | 
|  | } | 
|  |  | 
|  | // Subloop successors and phis | 
|  | BranchInst *SubTerm = | 
|  | cast<BranchInst>(SubLoopBlocksLast.back()->getTerminator()); | 
|  | SubTerm->setSuccessor(!SubLoopContinueOnTrue, SubLoopBlocksFirst[0]); | 
|  | SubTerm->setSuccessor(SubLoopContinueOnTrue, AftBlocksFirst[0]); | 
|  | SubLoopBlocksFirst[0]->replacePhiUsesWith(ForeBlocksLast[0], | 
|  | ForeBlocksLast.back()); | 
|  | SubLoopBlocksFirst[0]->replacePhiUsesWith(SubLoopBlocksLast[0], | 
|  | SubLoopBlocksLast.back()); | 
|  |  | 
|  | for (unsigned It = 1; It != Count; It++) { | 
|  | // Replace the conditional branch of the previous iteration subloop with an | 
|  | // unconditional one to this one | 
|  | BranchInst *SubTerm = | 
|  | cast<BranchInst>(SubLoopBlocksLast[It - 1]->getTerminator()); | 
|  | BranchInst::Create(SubLoopBlocksFirst[It], SubTerm); | 
|  | SubTerm->eraseFromParent(); | 
|  |  | 
|  | SubLoopBlocksFirst[It]->replacePhiUsesWith(ForeBlocksLast[It], | 
|  | ForeBlocksLast.back()); | 
|  | SubLoopBlocksFirst[It]->replacePhiUsesWith(SubLoopBlocksLast[It], | 
|  | SubLoopBlocksLast.back()); | 
|  | movePHIs(SubLoopBlocksFirst[It], SubLoopBlocksFirst[0]); | 
|  | } | 
|  |  | 
|  | // Aft blocks successors and phis | 
|  | BranchInst *AftTerm = cast<BranchInst>(AftBlocksLast.back()->getTerminator()); | 
|  | if (CompletelyUnroll) { | 
|  | BranchInst::Create(LoopExit, AftTerm); | 
|  | AftTerm->eraseFromParent(); | 
|  | } else { | 
|  | AftTerm->setSuccessor(!ContinueOnTrue, ForeBlocksFirst[0]); | 
|  | assert(AftTerm->getSuccessor(ContinueOnTrue) == LoopExit && | 
|  | "Expecting the ContinueOnTrue successor of AftTerm to be LoopExit"); | 
|  | } | 
|  | AftBlocksFirst[0]->replacePhiUsesWith(SubLoopBlocksLast[0], | 
|  | SubLoopBlocksLast.back()); | 
|  |  | 
|  | for (unsigned It = 1; It != Count; It++) { | 
|  | // Replace the conditional branch of the previous iteration subloop with an | 
|  | // unconditional one to this one | 
|  | BranchInst *AftTerm = | 
|  | cast<BranchInst>(AftBlocksLast[It - 1]->getTerminator()); | 
|  | BranchInst::Create(AftBlocksFirst[It], AftTerm); | 
|  | AftTerm->eraseFromParent(); | 
|  |  | 
|  | AftBlocksFirst[It]->replacePhiUsesWith(SubLoopBlocksLast[It], | 
|  | SubLoopBlocksLast.back()); | 
|  | movePHIs(AftBlocksFirst[It], AftBlocksFirst[0]); | 
|  | } | 
|  |  | 
|  | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); | 
|  | // Dominator Tree. Remove the old links between Fore, Sub and Aft, adding the | 
|  | // new ones required. | 
|  | if (Count != 1) { | 
|  | SmallVector<DominatorTree::UpdateType, 4> DTUpdates; | 
|  | DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete, ForeBlocksLast[0], | 
|  | SubLoopBlocksFirst[0]); | 
|  | DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete, | 
|  | SubLoopBlocksLast[0], AftBlocksFirst[0]); | 
|  |  | 
|  | DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert, | 
|  | ForeBlocksLast.back(), SubLoopBlocksFirst[0]); | 
|  | DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert, | 
|  | SubLoopBlocksLast.back(), AftBlocksFirst[0]); | 
|  | DTU.applyUpdatesPermissive(DTUpdates); | 
|  | } | 
|  |  | 
|  | // Merge adjacent basic blocks, if possible. | 
|  | SmallPtrSet<BasicBlock *, 16> MergeBlocks; | 
|  | MergeBlocks.insert(ForeBlocksLast.begin(), ForeBlocksLast.end()); | 
|  | MergeBlocks.insert(SubLoopBlocksLast.begin(), SubLoopBlocksLast.end()); | 
|  | MergeBlocks.insert(AftBlocksLast.begin(), AftBlocksLast.end()); | 
|  |  | 
|  | MergeBlockSuccessorsIntoGivenBlocks(MergeBlocks, L, &DTU, LI); | 
|  |  | 
|  | // Apply updates to the DomTree. | 
|  | DT = &DTU.getDomTree(); | 
|  |  | 
|  | // At this point, the code is well formed.  We now do a quick sweep over the | 
|  | // inserted code, doing constant propagation and dead code elimination as we | 
|  | // go. | 
|  | simplifyLoopAfterUnroll(SubLoop, true, LI, SE, DT, AC, TTI); | 
|  | simplifyLoopAfterUnroll(L, !CompletelyUnroll && Count > 1, LI, SE, DT, AC, | 
|  | TTI); | 
|  |  | 
|  | NumCompletelyUnrolledAndJammed += CompletelyUnroll; | 
|  | ++NumUnrolledAndJammed; | 
|  |  | 
|  | // Update LoopInfo if the loop is completely removed. | 
|  | if (CompletelyUnroll) | 
|  | LI->erase(L); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // We shouldn't have done anything to break loop simplify form or LCSSA. | 
|  | Loop *OutestLoop = SubLoop->getParentLoop() | 
|  | ? SubLoop->getParentLoop()->getParentLoop() | 
|  | ? SubLoop->getParentLoop()->getParentLoop() | 
|  | : SubLoop->getParentLoop() | 
|  | : SubLoop; | 
|  | assert(DT->verify()); | 
|  | LI->verify(*DT); | 
|  | assert(OutestLoop->isRecursivelyLCSSAForm(*DT, *LI)); | 
|  | if (!CompletelyUnroll) | 
|  | assert(L->isLoopSimplifyForm()); | 
|  | assert(SubLoop->isLoopSimplifyForm()); | 
|  | SE->verify(); | 
|  | #endif | 
|  |  | 
|  | return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled | 
|  | : LoopUnrollResult::PartiallyUnrolled; | 
|  | } | 
|  |  | 
|  | static bool getLoadsAndStores(BasicBlockSet &Blocks, | 
|  | SmallVector<Instruction *, 4> &MemInstr) { | 
|  | // Scan the BBs and collect legal loads and stores. | 
|  | // Returns false if non-simple loads/stores are found. | 
|  | for (BasicBlock *BB : Blocks) { | 
|  | for (Instruction &I : *BB) { | 
|  | if (auto *Ld = dyn_cast<LoadInst>(&I)) { | 
|  | if (!Ld->isSimple()) | 
|  | return false; | 
|  | MemInstr.push_back(&I); | 
|  | } else if (auto *St = dyn_cast<StoreInst>(&I)) { | 
|  | if (!St->isSimple()) | 
|  | return false; | 
|  | MemInstr.push_back(&I); | 
|  | } else if (I.mayReadOrWriteMemory()) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool preservesForwardDependence(Instruction *Src, Instruction *Dst, | 
|  | unsigned UnrollLevel, unsigned JamLevel, | 
|  | bool Sequentialized, Dependence *D) { | 
|  | // UnrollLevel might carry the dependency Src --> Dst | 
|  | // Does a different loop after unrolling? | 
|  | for (unsigned CurLoopDepth = UnrollLevel + 1; CurLoopDepth <= JamLevel; | 
|  | ++CurLoopDepth) { | 
|  | auto JammedDir = D->getDirection(CurLoopDepth); | 
|  | if (JammedDir == Dependence::DVEntry::LT) | 
|  | return true; | 
|  |  | 
|  | if (JammedDir & Dependence::DVEntry::GT) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool preservesBackwardDependence(Instruction *Src, Instruction *Dst, | 
|  | unsigned UnrollLevel, unsigned JamLevel, | 
|  | bool Sequentialized, Dependence *D) { | 
|  | // UnrollLevel might carry the dependency Dst --> Src | 
|  | for (unsigned CurLoopDepth = UnrollLevel + 1; CurLoopDepth <= JamLevel; | 
|  | ++CurLoopDepth) { | 
|  | auto JammedDir = D->getDirection(CurLoopDepth); | 
|  | if (JammedDir == Dependence::DVEntry::GT) | 
|  | return true; | 
|  |  | 
|  | if (JammedDir & Dependence::DVEntry::LT) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Backward dependencies are only preserved if not interleaved. | 
|  | return Sequentialized; | 
|  | } | 
|  |  | 
|  | // Check whether it is semantically safe Src and Dst considering any potential | 
|  | // dependency between them. | 
|  | // | 
|  | // @param UnrollLevel The level of the loop being unrolled | 
|  | // @param JamLevel    The level of the loop being jammed; if Src and Dst are on | 
|  | // different levels, the outermost common loop counts as jammed level | 
|  | // | 
|  | // @return true if is safe and false if there is a dependency violation. | 
|  | static bool checkDependency(Instruction *Src, Instruction *Dst, | 
|  | unsigned UnrollLevel, unsigned JamLevel, | 
|  | bool Sequentialized, DependenceInfo &DI) { | 
|  | assert(UnrollLevel <= JamLevel && | 
|  | "Expecting JamLevel to be at least UnrollLevel"); | 
|  |  | 
|  | if (Src == Dst) | 
|  | return true; | 
|  | // Ignore Input dependencies. | 
|  | if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) | 
|  | return true; | 
|  |  | 
|  | // Check whether unroll-and-jam may violate a dependency. | 
|  | // By construction, every dependency will be lexicographically non-negative | 
|  | // (if it was, it would violate the current execution order), such as | 
|  | //   (0,0,>,*,*) | 
|  | // Unroll-and-jam changes the GT execution of two executions to the same | 
|  | // iteration of the chosen unroll level. That is, a GT dependence becomes a GE | 
|  | // dependence (or EQ, if we fully unrolled the loop) at the loop's position: | 
|  | //   (0,0,>=,*,*) | 
|  | // Now, the dependency is not necessarily non-negative anymore, i.e. | 
|  | // unroll-and-jam may violate correctness. | 
|  | std::unique_ptr<Dependence> D = DI.depends(Src, Dst, true); | 
|  | if (!D) | 
|  | return true; | 
|  | assert(D->isOrdered() && "Expected an output, flow or anti dep."); | 
|  |  | 
|  | if (D->isConfused()) { | 
|  | LLVM_DEBUG(dbgs() << "  Confused dependency between:\n" | 
|  | << "  " << *Src << "\n" | 
|  | << "  " << *Dst << "\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If outer levels (levels enclosing the loop being unroll-and-jammed) have a | 
|  | // non-equal direction, then the locations accessed in the inner levels cannot | 
|  | // overlap in memory. We assumes the indexes never overlap into neighboring | 
|  | // dimensions. | 
|  | for (unsigned CurLoopDepth = 1; CurLoopDepth < UnrollLevel; ++CurLoopDepth) | 
|  | if (!(D->getDirection(CurLoopDepth) & Dependence::DVEntry::EQ)) | 
|  | return true; | 
|  |  | 
|  | auto UnrollDirection = D->getDirection(UnrollLevel); | 
|  |  | 
|  | // If the distance carried by the unrolled loop is 0, then after unrolling | 
|  | // that distance will become non-zero resulting in non-overlapping accesses in | 
|  | // the inner loops. | 
|  | if (UnrollDirection == Dependence::DVEntry::EQ) | 
|  | return true; | 
|  |  | 
|  | if (UnrollDirection & Dependence::DVEntry::LT && | 
|  | !preservesForwardDependence(Src, Dst, UnrollLevel, JamLevel, | 
|  | Sequentialized, D.get())) | 
|  | return false; | 
|  |  | 
|  | if (UnrollDirection & Dependence::DVEntry::GT && | 
|  | !preservesBackwardDependence(Src, Dst, UnrollLevel, JamLevel, | 
|  | Sequentialized, D.get())) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | checkDependencies(Loop &Root, const BasicBlockSet &SubLoopBlocks, | 
|  | const DenseMap<Loop *, BasicBlockSet> &ForeBlocksMap, | 
|  | const DenseMap<Loop *, BasicBlockSet> &AftBlocksMap, | 
|  | DependenceInfo &DI, LoopInfo &LI) { | 
|  | SmallVector<BasicBlockSet, 8> AllBlocks; | 
|  | for (Loop *L : Root.getLoopsInPreorder()) | 
|  | if (ForeBlocksMap.contains(L)) | 
|  | AllBlocks.push_back(ForeBlocksMap.lookup(L)); | 
|  | AllBlocks.push_back(SubLoopBlocks); | 
|  | for (Loop *L : Root.getLoopsInPreorder()) | 
|  | if (AftBlocksMap.contains(L)) | 
|  | AllBlocks.push_back(AftBlocksMap.lookup(L)); | 
|  |  | 
|  | unsigned LoopDepth = Root.getLoopDepth(); | 
|  | SmallVector<Instruction *, 4> EarlierLoadsAndStores; | 
|  | SmallVector<Instruction *, 4> CurrentLoadsAndStores; | 
|  | for (BasicBlockSet &Blocks : AllBlocks) { | 
|  | CurrentLoadsAndStores.clear(); | 
|  | if (!getLoadsAndStores(Blocks, CurrentLoadsAndStores)) | 
|  | return false; | 
|  |  | 
|  | Loop *CurLoop = LI.getLoopFor((*Blocks.begin())->front().getParent()); | 
|  | unsigned CurLoopDepth = CurLoop->getLoopDepth(); | 
|  |  | 
|  | for (auto *Earlier : EarlierLoadsAndStores) { | 
|  | Loop *EarlierLoop = LI.getLoopFor(Earlier->getParent()); | 
|  | unsigned EarlierDepth = EarlierLoop->getLoopDepth(); | 
|  | unsigned CommonLoopDepth = std::min(EarlierDepth, CurLoopDepth); | 
|  | for (auto *Later : CurrentLoadsAndStores) { | 
|  | if (!checkDependency(Earlier, Later, LoopDepth, CommonLoopDepth, false, | 
|  | DI)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t NumInsts = CurrentLoadsAndStores.size(); | 
|  | for (size_t I = 0; I < NumInsts; ++I) { | 
|  | for (size_t J = I; J < NumInsts; ++J) { | 
|  | if (!checkDependency(CurrentLoadsAndStores[I], CurrentLoadsAndStores[J], | 
|  | LoopDepth, CurLoopDepth, true, DI)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | EarlierLoadsAndStores.append(CurrentLoadsAndStores.begin(), | 
|  | CurrentLoadsAndStores.end()); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isEligibleLoopForm(const Loop &Root) { | 
|  | // Root must have a child. | 
|  | if (Root.getSubLoops().size() != 1) | 
|  | return false; | 
|  |  | 
|  | const Loop *L = &Root; | 
|  | do { | 
|  | // All loops in Root need to be in simplify and rotated form. | 
|  | if (!L->isLoopSimplifyForm()) | 
|  | return false; | 
|  |  | 
|  | if (!L->isRotatedForm()) | 
|  | return false; | 
|  |  | 
|  | if (L->getHeader()->hasAddressTaken()) { | 
|  | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Address taken\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned SubLoopsSize = L->getSubLoops().size(); | 
|  | if (SubLoopsSize == 0) | 
|  | return true; | 
|  |  | 
|  | // Only one child is allowed. | 
|  | if (SubLoopsSize != 1) | 
|  | return false; | 
|  |  | 
|  | // Only loops with a single exit block can be unrolled and jammed. | 
|  | // The function getExitBlock() is used for this check, rather than | 
|  | // getUniqueExitBlock() to ensure loops with mulitple exit edges are | 
|  | // disallowed. | 
|  | if (!L->getExitBlock()) { | 
|  | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; only loops with single exit " | 
|  | "blocks can be unrolled and jammed.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Only loops with a single exiting block can be unrolled and jammed. | 
|  | if (!L->getExitingBlock()) { | 
|  | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; only loops with single " | 
|  | "exiting blocks can be unrolled and jammed.\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | L = L->getSubLoops()[0]; | 
|  | } while (L); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static Loop *getInnerMostLoop(Loop *L) { | 
|  | while (!L->getSubLoops().empty()) | 
|  | L = L->getSubLoops()[0]; | 
|  | return L; | 
|  | } | 
|  |  | 
|  | bool llvm::isSafeToUnrollAndJam(Loop *L, ScalarEvolution &SE, DominatorTree &DT, | 
|  | DependenceInfo &DI, LoopInfo &LI) { | 
|  | if (!isEligibleLoopForm(*L)) { | 
|  | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Ineligible loop form\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* We currently handle outer loops like this: | 
|  | | | 
|  | ForeFirst    <------\   } | 
|  | Blocks             |   } ForeBlocks of L | 
|  | ForeLast            |   } | 
|  | |               | | 
|  | ...              | | 
|  | |               | | 
|  | ForeFirst    <----\ |   } | 
|  | Blocks           | |   } ForeBlocks of a inner loop of L | 
|  | ForeLast          | |   } | 
|  | |             | | | 
|  | JamLoopFirst  <\  | |   } | 
|  | Blocks        |  | |   } JamLoopBlocks of the innermost loop | 
|  | JamLoopLast   -/  | |   } | 
|  | |             | | | 
|  | AftFirst          | |   } | 
|  | Blocks           | |   } AftBlocks of a inner loop of L | 
|  | AftLast     ------/ |   } | 
|  | |               | | 
|  | ...              | | 
|  | |               | | 
|  | AftFirst            |   } | 
|  | Blocks             |   } AftBlocks of L | 
|  | AftLast     --------/   } | 
|  | | | 
|  |  | 
|  | There are (theoretically) any number of blocks in ForeBlocks, SubLoopBlocks | 
|  | and AftBlocks, providing that there is one edge from Fores to SubLoops, | 
|  | one edge from SubLoops to Afts and a single outer loop exit (from Afts). | 
|  | In practice we currently limit Aft blocks to a single block, and limit | 
|  | things further in the profitablility checks of the unroll and jam pass. | 
|  |  | 
|  | Because of the way we rearrange basic blocks, we also require that | 
|  | the Fore blocks of L on all unrolled iterations are safe to move before the | 
|  | blocks of the direct child of L of all iterations. So we require that the | 
|  | phi node looping operands of ForeHeader can be moved to at least the end of | 
|  | ForeEnd, so that we can arrange cloned Fore Blocks before the subloop and | 
|  | match up Phi's correctly. | 
|  |  | 
|  | i.e. The old order of blocks used to be | 
|  | (F1)1 (F2)1 J1_1 J1_2 (A2)1 (A1)1 (F1)2 (F2)2 J2_1 J2_2 (A2)2 (A1)2. | 
|  | It needs to be safe to transform this to | 
|  | (F1)1 (F1)2 (F2)1 (F2)2 J1_1 J1_2 J2_1 J2_2 (A2)1 (A2)2 (A1)1 (A1)2. | 
|  |  | 
|  | There are then a number of checks along the lines of no calls, no | 
|  | exceptions, inner loop IV is consistent, etc. Note that for loops requiring | 
|  | runtime unrolling, UnrollRuntimeLoopRemainder can also fail in | 
|  | UnrollAndJamLoop if the trip count cannot be easily calculated. | 
|  | */ | 
|  |  | 
|  | // Split blocks into Fore/SubLoop/Aft based on dominators | 
|  | Loop *JamLoop = getInnerMostLoop(L); | 
|  | BasicBlockSet SubLoopBlocks; | 
|  | DenseMap<Loop *, BasicBlockSet> ForeBlocksMap; | 
|  | DenseMap<Loop *, BasicBlockSet> AftBlocksMap; | 
|  | if (!partitionOuterLoopBlocks(*L, *JamLoop, SubLoopBlocks, ForeBlocksMap, | 
|  | AftBlocksMap, DT)) { | 
|  | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Incompatible loop layout\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Aft blocks may need to move instructions to fore blocks, which becomes more | 
|  | // difficult if there are multiple (potentially conditionally executed) | 
|  | // blocks. For now we just exclude loops with multiple aft blocks. | 
|  | if (AftBlocksMap[L].size() != 1) { | 
|  | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Can't currently handle " | 
|  | "multiple blocks after the loop\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check inner loop backedge count is consistent on all iterations of the | 
|  | // outer loop | 
|  | if (any_of(L->getLoopsInPreorder(), [&SE](Loop *SubLoop) { | 
|  | return !hasIterationCountInvariantInParent(SubLoop, SE); | 
|  | })) { | 
|  | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Inner loop iteration count is " | 
|  | "not consistent on each iteration\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check the loop safety info for exceptions. | 
|  | SimpleLoopSafetyInfo LSI; | 
|  | LSI.computeLoopSafetyInfo(L); | 
|  | if (LSI.anyBlockMayThrow()) { | 
|  | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Something may throw\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // We've ruled out the easy stuff and now need to check that there are no | 
|  | // interdependencies which may prevent us from moving the: | 
|  | //  ForeBlocks before Subloop and AftBlocks. | 
|  | //  Subloop before AftBlocks. | 
|  | //  ForeBlock phi operands before the subloop | 
|  |  | 
|  | // Make sure we can move all instructions we need to before the subloop | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | BasicBlock *Latch = L->getLoopLatch(); | 
|  | BasicBlockSet AftBlocks = AftBlocksMap[L]; | 
|  | Loop *SubLoop = L->getSubLoops()[0]; | 
|  | if (!processHeaderPhiOperands( | 
|  | Header, Latch, AftBlocks, [&AftBlocks, &SubLoop](Instruction *I) { | 
|  | if (SubLoop->contains(I->getParent())) | 
|  | return false; | 
|  | if (AftBlocks.count(I->getParent())) { | 
|  | // If we hit a phi node in afts we know we are done (probably | 
|  | // LCSSA) | 
|  | if (isa<PHINode>(I)) | 
|  | return false; | 
|  | // Can't move instructions with side effects or memory | 
|  | // reads/writes | 
|  | if (I->mayHaveSideEffects() || I->mayReadOrWriteMemory()) | 
|  | return false; | 
|  | } | 
|  | // Keep going | 
|  | return true; | 
|  | })) { | 
|  | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; can't move required " | 
|  | "instructions after subloop to before it\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check for memory dependencies which prohibit the unrolling we are doing. | 
|  | // Because of the way we are unrolling Fore/Sub/Aft blocks, we need to check | 
|  | // there are no dependencies between Fore-Sub, Fore-Aft, Sub-Aft and Sub-Sub. | 
|  | if (!checkDependencies(*L, SubLoopBlocks, ForeBlocksMap, AftBlocksMap, DI, | 
|  | LI)) { | 
|  | LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; failed dependency check\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } |