| //===- Deserializer.cpp - MLIR SPIR-V Deserializer ------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the SPIR-V binary to MLIR SPIR-V module deserializer. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Deserializer.h" |
| |
| #include "mlir/Dialect/SPIRV/IR/SPIRVAttributes.h" |
| #include "mlir/Dialect/SPIRV/IR/SPIRVEnums.h" |
| #include "mlir/Dialect/SPIRV/IR/SPIRVOps.h" |
| #include "mlir/Dialect/SPIRV/IR/SPIRVTypes.h" |
| #include "mlir/IR/Builders.h" |
| #include "mlir/IR/IRMapping.h" |
| #include "mlir/IR/Location.h" |
| #include "mlir/Target/SPIRV/SPIRVBinaryUtils.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/Sequence.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/bit.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/SaveAndRestore.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <optional> |
| |
| using namespace mlir; |
| |
| #define DEBUG_TYPE "spirv-deserialization" |
| |
| //===----------------------------------------------------------------------===// |
| // Utility Functions |
| //===----------------------------------------------------------------------===// |
| |
| /// Returns true if the given `block` is a function entry block. |
| static inline bool isFnEntryBlock(Block *block) { |
| return block->isEntryBlock() && |
| isa_and_nonnull<spirv::FuncOp>(block->getParentOp()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Deserializer Method Definitions |
| //===----------------------------------------------------------------------===// |
| |
| spirv::Deserializer::Deserializer(ArrayRef<uint32_t> binary, |
| MLIRContext *context) |
| : binary(binary), context(context), unknownLoc(UnknownLoc::get(context)), |
| module(createModuleOp()), opBuilder(module->getRegion()) |
| #ifndef NDEBUG |
| , |
| logger(llvm::dbgs()) |
| #endif |
| { |
| } |
| |
| LogicalResult spirv::Deserializer::deserialize() { |
| LLVM_DEBUG({ |
| logger.resetIndent(); |
| logger.startLine() |
| << "//+++---------- start deserialization ----------+++//\n"; |
| }); |
| |
| if (failed(processHeader())) |
| return failure(); |
| |
| spirv::Opcode opcode = spirv::Opcode::OpNop; |
| ArrayRef<uint32_t> operands; |
| auto binarySize = binary.size(); |
| while (curOffset < binarySize) { |
| // Slice the next instruction out and populate `opcode` and `operands`. |
| // Internally this also updates `curOffset`. |
| if (failed(sliceInstruction(opcode, operands))) |
| return failure(); |
| |
| if (failed(processInstruction(opcode, operands))) |
| return failure(); |
| } |
| |
| assert(curOffset == binarySize && |
| "deserializer should never index beyond the binary end"); |
| |
| for (auto &deferred : deferredInstructions) { |
| if (failed(processInstruction(deferred.first, deferred.second, false))) { |
| return failure(); |
| } |
| } |
| |
| attachVCETriple(); |
| |
| LLVM_DEBUG(logger.startLine() |
| << "//+++-------- completed deserialization --------+++//\n"); |
| return success(); |
| } |
| |
| OwningOpRef<spirv::ModuleOp> spirv::Deserializer::collect() { |
| return std::move(module); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Module structure |
| //===----------------------------------------------------------------------===// |
| |
| OwningOpRef<spirv::ModuleOp> spirv::Deserializer::createModuleOp() { |
| OpBuilder builder(context); |
| OperationState state(unknownLoc, spirv::ModuleOp::getOperationName()); |
| spirv::ModuleOp::build(builder, state); |
| return cast<spirv::ModuleOp>(Operation::create(state)); |
| } |
| |
| LogicalResult spirv::Deserializer::processHeader() { |
| if (binary.size() < spirv::kHeaderWordCount) |
| return emitError(unknownLoc, |
| "SPIR-V binary module must have a 5-word header"); |
| |
| if (binary[0] != spirv::kMagicNumber) |
| return emitError(unknownLoc, "incorrect magic number"); |
| |
| // Version number bytes: 0 | major number | minor number | 0 |
| uint32_t majorVersion = (binary[1] << 8) >> 24; |
| uint32_t minorVersion = (binary[1] << 16) >> 24; |
| if (majorVersion == 1) { |
| switch (minorVersion) { |
| #define MIN_VERSION_CASE(v) \ |
| case v: \ |
| version = spirv::Version::V_1_##v; \ |
| break |
| |
| MIN_VERSION_CASE(0); |
| MIN_VERSION_CASE(1); |
| MIN_VERSION_CASE(2); |
| MIN_VERSION_CASE(3); |
| MIN_VERSION_CASE(4); |
| MIN_VERSION_CASE(5); |
| #undef MIN_VERSION_CASE |
| default: |
| return emitError(unknownLoc, "unsupported SPIR-V minor version: ") |
| << minorVersion; |
| } |
| } else { |
| return emitError(unknownLoc, "unsupported SPIR-V major version: ") |
| << majorVersion; |
| } |
| |
| // TODO: generator number, bound, schema |
| curOffset = spirv::kHeaderWordCount; |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processCapability(ArrayRef<uint32_t> operands) { |
| if (operands.size() != 1) |
| return emitError(unknownLoc, "OpCapability must have one parameter"); |
| |
| auto cap = spirv::symbolizeCapability(operands[0]); |
| if (!cap) |
| return emitError(unknownLoc, "unknown capability: ") << operands[0]; |
| |
| capabilities.insert(*cap); |
| return success(); |
| } |
| |
| LogicalResult spirv::Deserializer::processExtension(ArrayRef<uint32_t> words) { |
| if (words.empty()) { |
| return emitError( |
| unknownLoc, |
| "OpExtension must have a literal string for the extension name"); |
| } |
| |
| unsigned wordIndex = 0; |
| StringRef extName = decodeStringLiteral(words, wordIndex); |
| if (wordIndex != words.size()) |
| return emitError(unknownLoc, |
| "unexpected trailing words in OpExtension instruction"); |
| auto ext = spirv::symbolizeExtension(extName); |
| if (!ext) |
| return emitError(unknownLoc, "unknown extension: ") << extName; |
| |
| extensions.insert(*ext); |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processExtInstImport(ArrayRef<uint32_t> words) { |
| if (words.size() < 2) { |
| return emitError(unknownLoc, |
| "OpExtInstImport must have a result <id> and a literal " |
| "string for the extended instruction set name"); |
| } |
| |
| unsigned wordIndex = 1; |
| extendedInstSets[words[0]] = decodeStringLiteral(words, wordIndex); |
| if (wordIndex != words.size()) { |
| return emitError(unknownLoc, |
| "unexpected trailing words in OpExtInstImport"); |
| } |
| return success(); |
| } |
| |
| void spirv::Deserializer::attachVCETriple() { |
| (*module)->setAttr( |
| spirv::ModuleOp::getVCETripleAttrName(), |
| spirv::VerCapExtAttr::get(version, capabilities.getArrayRef(), |
| extensions.getArrayRef(), context)); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processMemoryModel(ArrayRef<uint32_t> operands) { |
| if (operands.size() != 2) |
| return emitError(unknownLoc, "OpMemoryModel must have two operands"); |
| |
| (*module)->setAttr( |
| module->getAddressingModelAttrName(), |
| opBuilder.getAttr<spirv::AddressingModelAttr>( |
| static_cast<spirv::AddressingModel>(operands.front()))); |
| |
| (*module)->setAttr(module->getMemoryModelAttrName(), |
| opBuilder.getAttr<spirv::MemoryModelAttr>( |
| static_cast<spirv::MemoryModel>(operands.back()))); |
| |
| return success(); |
| } |
| |
| template <typename AttrTy, typename EnumAttrTy, typename EnumTy> |
| LogicalResult deserializeCacheControlDecoration( |
| Location loc, OpBuilder &opBuilder, |
| DenseMap<uint32_t, NamedAttrList> &decorations, ArrayRef<uint32_t> words, |
| StringAttr symbol, StringRef decorationName, StringRef cacheControlKind) { |
| if (words.size() != 4) { |
| return emitError(loc, "OpDecoration with ") |
| << decorationName << "needs a cache control integer literal and a " |
| << cacheControlKind << " cache control literal"; |
| } |
| unsigned cacheLevel = words[2]; |
| auto cacheControlAttr = static_cast<EnumTy>(words[3]); |
| auto value = opBuilder.getAttr<AttrTy>(cacheLevel, cacheControlAttr); |
| SmallVector<Attribute> attrs; |
| if (auto attrList = |
| llvm::dyn_cast_or_null<ArrayAttr>(decorations[words[0]].get(symbol))) |
| llvm::append_range(attrs, attrList); |
| attrs.push_back(value); |
| decorations[words[0]].set(symbol, opBuilder.getArrayAttr(attrs)); |
| return success(); |
| } |
| |
| LogicalResult spirv::Deserializer::processDecoration(ArrayRef<uint32_t> words) { |
| // TODO: This function should also be auto-generated. For now, since only a |
| // few decorations are processed/handled in a meaningful manner, going with a |
| // manual implementation. |
| if (words.size() < 2) { |
| return emitError( |
| unknownLoc, "OpDecorate must have at least result <id> and Decoration"); |
| } |
| auto decorationName = |
| stringifyDecoration(static_cast<spirv::Decoration>(words[1])); |
| if (decorationName.empty()) { |
| return emitError(unknownLoc, "invalid Decoration code : ") << words[1]; |
| } |
| auto symbol = getSymbolDecoration(decorationName); |
| switch (static_cast<spirv::Decoration>(words[1])) { |
| case spirv::Decoration::FPFastMathMode: |
| if (words.size() != 3) { |
| return emitError(unknownLoc, "OpDecorate with ") |
| << decorationName << " needs a single integer literal"; |
| } |
| decorations[words[0]].set( |
| symbol, FPFastMathModeAttr::get(opBuilder.getContext(), |
| static_cast<FPFastMathMode>(words[2]))); |
| break; |
| case spirv::Decoration::FPRoundingMode: |
| if (words.size() != 3) { |
| return emitError(unknownLoc, "OpDecorate with ") |
| << decorationName << " needs a single integer literal"; |
| } |
| decorations[words[0]].set( |
| symbol, FPRoundingModeAttr::get(opBuilder.getContext(), |
| static_cast<FPRoundingMode>(words[2]))); |
| break; |
| case spirv::Decoration::DescriptorSet: |
| case spirv::Decoration::Binding: |
| if (words.size() != 3) { |
| return emitError(unknownLoc, "OpDecorate with ") |
| << decorationName << " needs a single integer literal"; |
| } |
| decorations[words[0]].set( |
| symbol, opBuilder.getI32IntegerAttr(static_cast<int32_t>(words[2]))); |
| break; |
| case spirv::Decoration::BuiltIn: |
| if (words.size() != 3) { |
| return emitError(unknownLoc, "OpDecorate with ") |
| << decorationName << " needs a single integer literal"; |
| } |
| decorations[words[0]].set( |
| symbol, opBuilder.getStringAttr( |
| stringifyBuiltIn(static_cast<spirv::BuiltIn>(words[2])))); |
| break; |
| case spirv::Decoration::ArrayStride: |
| if (words.size() != 3) { |
| return emitError(unknownLoc, "OpDecorate with ") |
| << decorationName << " needs a single integer literal"; |
| } |
| typeDecorations[words[0]] = words[2]; |
| break; |
| case spirv::Decoration::LinkageAttributes: { |
| if (words.size() < 4) { |
| return emitError(unknownLoc, "OpDecorate with ") |
| << decorationName |
| << " needs at least 1 string and 1 integer literal"; |
| } |
| // LinkageAttributes has two parameters ["linkageName", linkageType] |
| // e.g., OpDecorate %imported_func LinkageAttributes "outside.func" Import |
| // "linkageName" is a stringliteral encoded as uint32_t, |
| // hence the size of name is variable length which results in words.size() |
| // being variable length, words.size() = 3 + strlen(name)/4 + 1 or |
| // 3 + ceildiv(strlen(name), 4). |
| unsigned wordIndex = 2; |
| auto linkageName = spirv::decodeStringLiteral(words, wordIndex).str(); |
| auto linkageTypeAttr = opBuilder.getAttr<::mlir::spirv::LinkageTypeAttr>( |
| static_cast<::mlir::spirv::LinkageType>(words[wordIndex++])); |
| auto linkageAttr = opBuilder.getAttr<::mlir::spirv::LinkageAttributesAttr>( |
| StringAttr::get(context, linkageName), linkageTypeAttr); |
| decorations[words[0]].set(symbol, llvm::dyn_cast<Attribute>(linkageAttr)); |
| break; |
| } |
| case spirv::Decoration::Aliased: |
| case spirv::Decoration::AliasedPointer: |
| case spirv::Decoration::Block: |
| case spirv::Decoration::BufferBlock: |
| case spirv::Decoration::Flat: |
| case spirv::Decoration::NonReadable: |
| case spirv::Decoration::NonWritable: |
| case spirv::Decoration::NoPerspective: |
| case spirv::Decoration::NoSignedWrap: |
| case spirv::Decoration::NoUnsignedWrap: |
| case spirv::Decoration::RelaxedPrecision: |
| case spirv::Decoration::Restrict: |
| case spirv::Decoration::RestrictPointer: |
| case spirv::Decoration::NoContraction: |
| case spirv::Decoration::Constant: |
| if (words.size() != 2) { |
| return emitError(unknownLoc, "OpDecoration with ") |
| << decorationName << "needs a single target <id>"; |
| } |
| // Block decoration does not affect spirv.struct type, but is still stored |
| // for verification. |
| // TODO: Update StructType to contain this information since |
| // it is needed for many validation rules. |
| decorations[words[0]].set(symbol, opBuilder.getUnitAttr()); |
| break; |
| case spirv::Decoration::Location: |
| case spirv::Decoration::SpecId: |
| if (words.size() != 3) { |
| return emitError(unknownLoc, "OpDecoration with ") |
| << decorationName << "needs a single integer literal"; |
| } |
| decorations[words[0]].set( |
| symbol, opBuilder.getI32IntegerAttr(static_cast<int32_t>(words[2]))); |
| break; |
| case spirv::Decoration::CacheControlLoadINTEL: { |
| LogicalResult res = deserializeCacheControlDecoration< |
| CacheControlLoadINTELAttr, LoadCacheControlAttr, LoadCacheControl>( |
| unknownLoc, opBuilder, decorations, words, symbol, decorationName, |
| "load"); |
| if (failed(res)) |
| return res; |
| break; |
| } |
| case spirv::Decoration::CacheControlStoreINTEL: { |
| LogicalResult res = deserializeCacheControlDecoration< |
| CacheControlStoreINTELAttr, StoreCacheControlAttr, StoreCacheControl>( |
| unknownLoc, opBuilder, decorations, words, symbol, decorationName, |
| "store"); |
| if (failed(res)) |
| return res; |
| break; |
| } |
| default: |
| return emitError(unknownLoc, "unhandled Decoration : '") << decorationName; |
| } |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processMemberDecoration(ArrayRef<uint32_t> words) { |
| // The binary layout of OpMemberDecorate is different comparing to OpDecorate |
| if (words.size() < 3) { |
| return emitError(unknownLoc, |
| "OpMemberDecorate must have at least 3 operands"); |
| } |
| |
| auto decoration = static_cast<spirv::Decoration>(words[2]); |
| if (decoration == spirv::Decoration::Offset && words.size() != 4) { |
| return emitError(unknownLoc, |
| " missing offset specification in OpMemberDecorate with " |
| "Offset decoration"); |
| } |
| ArrayRef<uint32_t> decorationOperands; |
| if (words.size() > 3) { |
| decorationOperands = words.slice(3); |
| } |
| memberDecorationMap[words[0]][words[1]][decoration] = decorationOperands; |
| return success(); |
| } |
| |
| LogicalResult spirv::Deserializer::processMemberName(ArrayRef<uint32_t> words) { |
| if (words.size() < 3) { |
| return emitError(unknownLoc, "OpMemberName must have at least 3 operands"); |
| } |
| unsigned wordIndex = 2; |
| auto name = decodeStringLiteral(words, wordIndex); |
| if (wordIndex != words.size()) { |
| return emitError(unknownLoc, |
| "unexpected trailing words in OpMemberName instruction"); |
| } |
| memberNameMap[words[0]][words[1]] = name; |
| return success(); |
| } |
| |
| LogicalResult spirv::Deserializer::setFunctionArgAttrs( |
| uint32_t argID, SmallVectorImpl<Attribute> &argAttrs, size_t argIndex) { |
| if (!decorations.contains(argID)) { |
| argAttrs[argIndex] = DictionaryAttr::get(context, {}); |
| return success(); |
| } |
| |
| spirv::DecorationAttr foundDecorationAttr; |
| for (NamedAttribute decAttr : decorations[argID]) { |
| for (auto decoration : |
| {spirv::Decoration::Aliased, spirv::Decoration::Restrict, |
| spirv::Decoration::AliasedPointer, |
| spirv::Decoration::RestrictPointer}) { |
| |
| if (decAttr.getName() != |
| getSymbolDecoration(stringifyDecoration(decoration))) |
| continue; |
| |
| if (foundDecorationAttr) |
| return emitError(unknownLoc, |
| "more than one Aliased/Restrict decorations for " |
| "function argument with result <id> ") |
| << argID; |
| |
| foundDecorationAttr = spirv::DecorationAttr::get(context, decoration); |
| break; |
| } |
| } |
| |
| if (!foundDecorationAttr) |
| return emitError(unknownLoc, "unimplemented decoration support for " |
| "function argument with result <id> ") |
| << argID; |
| |
| NamedAttribute attr(StringAttr::get(context, spirv::DecorationAttr::name), |
| foundDecorationAttr); |
| argAttrs[argIndex] = DictionaryAttr::get(context, attr); |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processFunction(ArrayRef<uint32_t> operands) { |
| if (curFunction) { |
| return emitError(unknownLoc, "found function inside function"); |
| } |
| |
| // Get the result type |
| if (operands.size() != 4) { |
| return emitError(unknownLoc, "OpFunction must have 4 parameters"); |
| } |
| Type resultType = getType(operands[0]); |
| if (!resultType) { |
| return emitError(unknownLoc, "undefined result type from <id> ") |
| << operands[0]; |
| } |
| |
| uint32_t fnID = operands[1]; |
| if (funcMap.count(fnID)) { |
| return emitError(unknownLoc, "duplicate function definition/declaration"); |
| } |
| |
| auto fnControl = spirv::symbolizeFunctionControl(operands[2]); |
| if (!fnControl) { |
| return emitError(unknownLoc, "unknown Function Control: ") << operands[2]; |
| } |
| |
| Type fnType = getType(operands[3]); |
| if (!fnType || !isa<FunctionType>(fnType)) { |
| return emitError(unknownLoc, "unknown function type from <id> ") |
| << operands[3]; |
| } |
| auto functionType = cast<FunctionType>(fnType); |
| |
| if ((isVoidType(resultType) && functionType.getNumResults() != 0) || |
| (functionType.getNumResults() == 1 && |
| functionType.getResult(0) != resultType)) { |
| return emitError(unknownLoc, "mismatch in function type ") |
| << functionType << " and return type " << resultType << " specified"; |
| } |
| |
| std::string fnName = getFunctionSymbol(fnID); |
| auto funcOp = opBuilder.create<spirv::FuncOp>( |
| unknownLoc, fnName, functionType, fnControl.value()); |
| // Processing other function attributes. |
| if (decorations.count(fnID)) { |
| for (auto attr : decorations[fnID].getAttrs()) { |
| funcOp->setAttr(attr.getName(), attr.getValue()); |
| } |
| } |
| curFunction = funcMap[fnID] = funcOp; |
| auto *entryBlock = funcOp.addEntryBlock(); |
| LLVM_DEBUG({ |
| logger.startLine() |
| << "//===-------------------------------------------===//\n"; |
| logger.startLine() << "[fn] name: " << fnName << "\n"; |
| logger.startLine() << "[fn] type: " << fnType << "\n"; |
| logger.startLine() << "[fn] ID: " << fnID << "\n"; |
| logger.startLine() << "[fn] entry block: " << entryBlock << "\n"; |
| logger.indent(); |
| }); |
| |
| SmallVector<Attribute> argAttrs; |
| argAttrs.resize(functionType.getNumInputs()); |
| |
| // Parse the op argument instructions |
| if (functionType.getNumInputs()) { |
| for (size_t i = 0, e = functionType.getNumInputs(); i != e; ++i) { |
| auto argType = functionType.getInput(i); |
| spirv::Opcode opcode = spirv::Opcode::OpNop; |
| ArrayRef<uint32_t> operands; |
| if (failed(sliceInstruction(opcode, operands, |
| spirv::Opcode::OpFunctionParameter))) { |
| return failure(); |
| } |
| if (opcode != spirv::Opcode::OpFunctionParameter) { |
| return emitError( |
| unknownLoc, |
| "missing OpFunctionParameter instruction for argument ") |
| << i; |
| } |
| if (operands.size() != 2) { |
| return emitError( |
| unknownLoc, |
| "expected result type and result <id> for OpFunctionParameter"); |
| } |
| auto argDefinedType = getType(operands[0]); |
| if (!argDefinedType || argDefinedType != argType) { |
| return emitError(unknownLoc, |
| "mismatch in argument type between function type " |
| "definition ") |
| << functionType << " and argument type definition " |
| << argDefinedType << " at argument " << i; |
| } |
| if (getValue(operands[1])) { |
| return emitError(unknownLoc, "duplicate definition of result <id> ") |
| << operands[1]; |
| } |
| if (failed(setFunctionArgAttrs(operands[1], argAttrs, i))) { |
| return failure(); |
| } |
| |
| auto argValue = funcOp.getArgument(i); |
| valueMap[operands[1]] = argValue; |
| } |
| } |
| |
| if (llvm::any_of(argAttrs, [](Attribute attr) { |
| auto argAttr = cast<DictionaryAttr>(attr); |
| return !argAttr.empty(); |
| })) |
| funcOp.setArgAttrsAttr(ArrayAttr::get(context, argAttrs)); |
| |
| // entryBlock is needed to access the arguments, Once that is done, we can |
| // erase the block for functions with 'Import' LinkageAttributes, since these |
| // are essentially function declarations, so they have no body. |
| auto linkageAttr = funcOp.getLinkageAttributes(); |
| auto hasImportLinkage = |
| linkageAttr && (linkageAttr.value().getLinkageType().getValue() == |
| spirv::LinkageType::Import); |
| if (hasImportLinkage) |
| funcOp.eraseBody(); |
| |
| // RAII guard to reset the insertion point to the module's region after |
| // deserializing the body of this function. |
| OpBuilder::InsertionGuard moduleInsertionGuard(opBuilder); |
| |
| spirv::Opcode opcode = spirv::Opcode::OpNop; |
| ArrayRef<uint32_t> instOperands; |
| |
| // Special handling for the entry block. We need to make sure it starts with |
| // an OpLabel instruction. The entry block takes the same parameters as the |
| // function. All other blocks do not take any parameter. We have already |
| // created the entry block, here we need to register it to the correct label |
| // <id>. |
| if (failed(sliceInstruction(opcode, instOperands, |
| spirv::Opcode::OpFunctionEnd))) { |
| return failure(); |
| } |
| if (opcode == spirv::Opcode::OpFunctionEnd) { |
| return processFunctionEnd(instOperands); |
| } |
| if (opcode != spirv::Opcode::OpLabel) { |
| return emitError(unknownLoc, "a basic block must start with OpLabel"); |
| } |
| if (instOperands.size() != 1) { |
| return emitError(unknownLoc, "OpLabel should only have result <id>"); |
| } |
| blockMap[instOperands[0]] = entryBlock; |
| if (failed(processLabel(instOperands))) { |
| return failure(); |
| } |
| |
| // Then process all the other instructions in the function until we hit |
| // OpFunctionEnd. |
| while (succeeded(sliceInstruction(opcode, instOperands, |
| spirv::Opcode::OpFunctionEnd)) && |
| opcode != spirv::Opcode::OpFunctionEnd) { |
| if (failed(processInstruction(opcode, instOperands))) { |
| return failure(); |
| } |
| } |
| if (opcode != spirv::Opcode::OpFunctionEnd) { |
| return failure(); |
| } |
| |
| return processFunctionEnd(instOperands); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processFunctionEnd(ArrayRef<uint32_t> operands) { |
| // Process OpFunctionEnd. |
| if (!operands.empty()) { |
| return emitError(unknownLoc, "unexpected operands for OpFunctionEnd"); |
| } |
| |
| // Wire up block arguments from OpPhi instructions. |
| // Put all structured control flow in spirv.mlir.selection/spirv.mlir.loop |
| // ops. |
| if (failed(wireUpBlockArgument()) || failed(structurizeControlFlow())) { |
| return failure(); |
| } |
| |
| curBlock = nullptr; |
| curFunction = std::nullopt; |
| |
| LLVM_DEBUG({ |
| logger.unindent(); |
| logger.startLine() |
| << "//===-------------------------------------------===//\n"; |
| }); |
| return success(); |
| } |
| |
| std::optional<std::pair<Attribute, Type>> |
| spirv::Deserializer::getConstant(uint32_t id) { |
| auto constIt = constantMap.find(id); |
| if (constIt == constantMap.end()) |
| return std::nullopt; |
| return constIt->getSecond(); |
| } |
| |
| std::optional<spirv::SpecConstOperationMaterializationInfo> |
| spirv::Deserializer::getSpecConstantOperation(uint32_t id) { |
| auto constIt = specConstOperationMap.find(id); |
| if (constIt == specConstOperationMap.end()) |
| return std::nullopt; |
| return constIt->getSecond(); |
| } |
| |
| std::string spirv::Deserializer::getFunctionSymbol(uint32_t id) { |
| auto funcName = nameMap.lookup(id).str(); |
| if (funcName.empty()) { |
| funcName = "spirv_fn_" + std::to_string(id); |
| } |
| return funcName; |
| } |
| |
| std::string spirv::Deserializer::getSpecConstantSymbol(uint32_t id) { |
| auto constName = nameMap.lookup(id).str(); |
| if (constName.empty()) { |
| constName = "spirv_spec_const_" + std::to_string(id); |
| } |
| return constName; |
| } |
| |
| spirv::SpecConstantOp |
| spirv::Deserializer::createSpecConstant(Location loc, uint32_t resultID, |
| TypedAttr defaultValue) { |
| auto symName = opBuilder.getStringAttr(getSpecConstantSymbol(resultID)); |
| auto op = opBuilder.create<spirv::SpecConstantOp>(unknownLoc, symName, |
| defaultValue); |
| if (decorations.count(resultID)) { |
| for (auto attr : decorations[resultID].getAttrs()) |
| op->setAttr(attr.getName(), attr.getValue()); |
| } |
| specConstMap[resultID] = op; |
| return op; |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processGlobalVariable(ArrayRef<uint32_t> operands) { |
| unsigned wordIndex = 0; |
| if (operands.size() < 3) { |
| return emitError( |
| unknownLoc, |
| "OpVariable needs at least 3 operands, type, <id> and storage class"); |
| } |
| |
| // Result Type. |
| auto type = getType(operands[wordIndex]); |
| if (!type) { |
| return emitError(unknownLoc, "unknown result type <id> : ") |
| << operands[wordIndex]; |
| } |
| auto ptrType = dyn_cast<spirv::PointerType>(type); |
| if (!ptrType) { |
| return emitError(unknownLoc, |
| "expected a result type <id> to be a spirv.ptr, found : ") |
| << type; |
| } |
| wordIndex++; |
| |
| // Result <id>. |
| auto variableID = operands[wordIndex]; |
| auto variableName = nameMap.lookup(variableID).str(); |
| if (variableName.empty()) { |
| variableName = "spirv_var_" + std::to_string(variableID); |
| } |
| wordIndex++; |
| |
| // Storage class. |
| auto storageClass = static_cast<spirv::StorageClass>(operands[wordIndex]); |
| if (ptrType.getStorageClass() != storageClass) { |
| return emitError(unknownLoc, "mismatch in storage class of pointer type ") |
| << type << " and that specified in OpVariable instruction : " |
| << stringifyStorageClass(storageClass); |
| } |
| wordIndex++; |
| |
| // Initializer. |
| FlatSymbolRefAttr initializer = nullptr; |
| |
| if (wordIndex < operands.size()) { |
| Operation *op = nullptr; |
| |
| if (auto initOp = getGlobalVariable(operands[wordIndex])) |
| op = initOp; |
| else if (auto initOp = getSpecConstant(operands[wordIndex])) |
| op = initOp; |
| else if (auto initOp = getSpecConstantComposite(operands[wordIndex])) |
| op = initOp; |
| else |
| return emitError(unknownLoc, "unknown <id> ") |
| << operands[wordIndex] << "used as initializer"; |
| |
| initializer = SymbolRefAttr::get(op); |
| wordIndex++; |
| } |
| if (wordIndex != operands.size()) { |
| return emitError(unknownLoc, |
| "found more operands than expected when deserializing " |
| "OpVariable instruction, only ") |
| << wordIndex << " of " << operands.size() << " processed"; |
| } |
| auto loc = createFileLineColLoc(opBuilder); |
| auto varOp = opBuilder.create<spirv::GlobalVariableOp>( |
| loc, TypeAttr::get(type), opBuilder.getStringAttr(variableName), |
| initializer); |
| |
| // Decorations. |
| if (decorations.count(variableID)) { |
| for (auto attr : decorations[variableID].getAttrs()) |
| varOp->setAttr(attr.getName(), attr.getValue()); |
| } |
| globalVariableMap[variableID] = varOp; |
| return success(); |
| } |
| |
| IntegerAttr spirv::Deserializer::getConstantInt(uint32_t id) { |
| auto constInfo = getConstant(id); |
| if (!constInfo) { |
| return nullptr; |
| } |
| return dyn_cast<IntegerAttr>(constInfo->first); |
| } |
| |
| LogicalResult spirv::Deserializer::processName(ArrayRef<uint32_t> operands) { |
| if (operands.size() < 2) { |
| return emitError(unknownLoc, "OpName needs at least 2 operands"); |
| } |
| if (!nameMap.lookup(operands[0]).empty()) { |
| return emitError(unknownLoc, "duplicate name found for result <id> ") |
| << operands[0]; |
| } |
| unsigned wordIndex = 1; |
| StringRef name = decodeStringLiteral(operands, wordIndex); |
| if (wordIndex != operands.size()) { |
| return emitError(unknownLoc, |
| "unexpected trailing words in OpName instruction"); |
| } |
| nameMap[operands[0]] = name; |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Type |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult spirv::Deserializer::processType(spirv::Opcode opcode, |
| ArrayRef<uint32_t> operands) { |
| if (operands.empty()) { |
| return emitError(unknownLoc, "type instruction with opcode ") |
| << spirv::stringifyOpcode(opcode) << " needs at least one <id>"; |
| } |
| |
| /// TODO: Types might be forward declared in some instructions and need to be |
| /// handled appropriately. |
| if (typeMap.count(operands[0])) { |
| return emitError(unknownLoc, "duplicate definition for result <id> ") |
| << operands[0]; |
| } |
| |
| switch (opcode) { |
| case spirv::Opcode::OpTypeVoid: |
| if (operands.size() != 1) |
| return emitError(unknownLoc, "OpTypeVoid must have no parameters"); |
| typeMap[operands[0]] = opBuilder.getNoneType(); |
| break; |
| case spirv::Opcode::OpTypeBool: |
| if (operands.size() != 1) |
| return emitError(unknownLoc, "OpTypeBool must have no parameters"); |
| typeMap[operands[0]] = opBuilder.getI1Type(); |
| break; |
| case spirv::Opcode::OpTypeInt: { |
| if (operands.size() != 3) |
| return emitError( |
| unknownLoc, "OpTypeInt must have bitwidth and signedness parameters"); |
| |
| // SPIR-V OpTypeInt "Signedness specifies whether there are signed semantics |
| // to preserve or validate. |
| // 0 indicates unsigned, or no signedness semantics |
| // 1 indicates signed semantics." |
| // |
| // So we cannot differentiate signless and unsigned integers; always use |
| // signless semantics for such cases. |
| auto sign = operands[2] == 1 ? IntegerType::SignednessSemantics::Signed |
| : IntegerType::SignednessSemantics::Signless; |
| typeMap[operands[0]] = IntegerType::get(context, operands[1], sign); |
| } break; |
| case spirv::Opcode::OpTypeFloat: { |
| if (operands.size() != 2) |
| return emitError(unknownLoc, "OpTypeFloat must have bitwidth parameter"); |
| |
| Type floatTy; |
| switch (operands[1]) { |
| case 16: |
| floatTy = opBuilder.getF16Type(); |
| break; |
| case 32: |
| floatTy = opBuilder.getF32Type(); |
| break; |
| case 64: |
| floatTy = opBuilder.getF64Type(); |
| break; |
| default: |
| return emitError(unknownLoc, "unsupported OpTypeFloat bitwidth: ") |
| << operands[1]; |
| } |
| typeMap[operands[0]] = floatTy; |
| } break; |
| case spirv::Opcode::OpTypeVector: { |
| if (operands.size() != 3) { |
| return emitError( |
| unknownLoc, |
| "OpTypeVector must have element type and count parameters"); |
| } |
| Type elementTy = getType(operands[1]); |
| if (!elementTy) { |
| return emitError(unknownLoc, "OpTypeVector references undefined <id> ") |
| << operands[1]; |
| } |
| typeMap[operands[0]] = VectorType::get({operands[2]}, elementTy); |
| } break; |
| case spirv::Opcode::OpTypePointer: { |
| return processOpTypePointer(operands); |
| } break; |
| case spirv::Opcode::OpTypeArray: |
| return processArrayType(operands); |
| case spirv::Opcode::OpTypeCooperativeMatrixKHR: |
| return processCooperativeMatrixTypeKHR(operands); |
| case spirv::Opcode::OpTypeFunction: |
| return processFunctionType(operands); |
| case spirv::Opcode::OpTypeImage: |
| return processImageType(operands); |
| case spirv::Opcode::OpTypeSampledImage: |
| return processSampledImageType(operands); |
| case spirv::Opcode::OpTypeRuntimeArray: |
| return processRuntimeArrayType(operands); |
| case spirv::Opcode::OpTypeStruct: |
| return processStructType(operands); |
| case spirv::Opcode::OpTypeMatrix: |
| return processMatrixType(operands); |
| default: |
| return emitError(unknownLoc, "unhandled type instruction"); |
| } |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processOpTypePointer(ArrayRef<uint32_t> operands) { |
| if (operands.size() != 3) |
| return emitError(unknownLoc, "OpTypePointer must have two parameters"); |
| |
| auto pointeeType = getType(operands[2]); |
| if (!pointeeType) |
| return emitError(unknownLoc, "unknown OpTypePointer pointee type <id> ") |
| << operands[2]; |
| |
| uint32_t typePointerID = operands[0]; |
| auto storageClass = static_cast<spirv::StorageClass>(operands[1]); |
| typeMap[typePointerID] = spirv::PointerType::get(pointeeType, storageClass); |
| |
| for (auto *deferredStructIt = std::begin(deferredStructTypesInfos); |
| deferredStructIt != std::end(deferredStructTypesInfos);) { |
| for (auto *unresolvedMemberIt = |
| std::begin(deferredStructIt->unresolvedMemberTypes); |
| unresolvedMemberIt != |
| std::end(deferredStructIt->unresolvedMemberTypes);) { |
| if (unresolvedMemberIt->first == typePointerID) { |
| // The newly constructed pointer type can resolve one of the |
| // deferred struct type members; update the memberTypes list and |
| // clean the unresolvedMemberTypes list accordingly. |
| deferredStructIt->memberTypes[unresolvedMemberIt->second] = |
| typeMap[typePointerID]; |
| unresolvedMemberIt = |
| deferredStructIt->unresolvedMemberTypes.erase(unresolvedMemberIt); |
| } else { |
| ++unresolvedMemberIt; |
| } |
| } |
| |
| if (deferredStructIt->unresolvedMemberTypes.empty()) { |
| // All deferred struct type members are now resolved, set the struct body. |
| auto structType = deferredStructIt->deferredStructType; |
| |
| assert(structType && "expected a spirv::StructType"); |
| assert(structType.isIdentified() && "expected an indentified struct"); |
| |
| if (failed(structType.trySetBody( |
| deferredStructIt->memberTypes, deferredStructIt->offsetInfo, |
| deferredStructIt->memberDecorationsInfo))) |
| return failure(); |
| |
| deferredStructIt = deferredStructTypesInfos.erase(deferredStructIt); |
| } else { |
| ++deferredStructIt; |
| } |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processArrayType(ArrayRef<uint32_t> operands) { |
| if (operands.size() != 3) { |
| return emitError(unknownLoc, |
| "OpTypeArray must have element type and count parameters"); |
| } |
| |
| Type elementTy = getType(operands[1]); |
| if (!elementTy) { |
| return emitError(unknownLoc, "OpTypeArray references undefined <id> ") |
| << operands[1]; |
| } |
| |
| unsigned count = 0; |
| // TODO: The count can also come frome a specialization constant. |
| auto countInfo = getConstant(operands[2]); |
| if (!countInfo) { |
| return emitError(unknownLoc, "OpTypeArray count <id> ") |
| << operands[2] << "can only come from normal constant right now"; |
| } |
| |
| if (auto intVal = dyn_cast<IntegerAttr>(countInfo->first)) { |
| count = intVal.getValue().getZExtValue(); |
| } else { |
| return emitError(unknownLoc, "OpTypeArray count must come from a " |
| "scalar integer constant instruction"); |
| } |
| |
| typeMap[operands[0]] = spirv::ArrayType::get( |
| elementTy, count, typeDecorations.lookup(operands[0])); |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processFunctionType(ArrayRef<uint32_t> operands) { |
| assert(!operands.empty() && "No operands for processing function type"); |
| if (operands.size() == 1) { |
| return emitError(unknownLoc, "missing return type for OpTypeFunction"); |
| } |
| auto returnType = getType(operands[1]); |
| if (!returnType) { |
| return emitError(unknownLoc, "unknown return type in OpTypeFunction"); |
| } |
| SmallVector<Type, 1> argTypes; |
| for (size_t i = 2, e = operands.size(); i < e; ++i) { |
| auto ty = getType(operands[i]); |
| if (!ty) { |
| return emitError(unknownLoc, "unknown argument type in OpTypeFunction"); |
| } |
| argTypes.push_back(ty); |
| } |
| ArrayRef<Type> returnTypes; |
| if (!isVoidType(returnType)) { |
| returnTypes = llvm::ArrayRef(returnType); |
| } |
| typeMap[operands[0]] = FunctionType::get(context, argTypes, returnTypes); |
| return success(); |
| } |
| |
| LogicalResult spirv::Deserializer::processCooperativeMatrixTypeKHR( |
| ArrayRef<uint32_t> operands) { |
| if (operands.size() != 6) { |
| return emitError(unknownLoc, |
| "OpTypeCooperativeMatrixKHR must have element type, " |
| "scope, row and column parameters, and use"); |
| } |
| |
| Type elementTy = getType(operands[1]); |
| if (!elementTy) { |
| return emitError(unknownLoc, |
| "OpTypeCooperativeMatrixKHR references undefined <id> ") |
| << operands[1]; |
| } |
| |
| std::optional<spirv::Scope> scope = |
| spirv::symbolizeScope(getConstantInt(operands[2]).getInt()); |
| if (!scope) { |
| return emitError( |
| unknownLoc, |
| "OpTypeCooperativeMatrixKHR references undefined scope <id> ") |
| << operands[2]; |
| } |
| |
| unsigned rows = getConstantInt(operands[3]).getInt(); |
| unsigned columns = getConstantInt(operands[4]).getInt(); |
| |
| std::optional<spirv::CooperativeMatrixUseKHR> use = |
| spirv::symbolizeCooperativeMatrixUseKHR( |
| getConstantInt(operands[5]).getInt()); |
| if (!use) { |
| return emitError( |
| unknownLoc, |
| "OpTypeCooperativeMatrixKHR references undefined use <id> ") |
| << operands[5]; |
| } |
| |
| typeMap[operands[0]] = |
| spirv::CooperativeMatrixType::get(elementTy, rows, columns, *scope, *use); |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processRuntimeArrayType(ArrayRef<uint32_t> operands) { |
| if (operands.size() != 2) { |
| return emitError(unknownLoc, "OpTypeRuntimeArray must have two operands"); |
| } |
| Type memberType = getType(operands[1]); |
| if (!memberType) { |
| return emitError(unknownLoc, |
| "OpTypeRuntimeArray references undefined <id> ") |
| << operands[1]; |
| } |
| typeMap[operands[0]] = spirv::RuntimeArrayType::get( |
| memberType, typeDecorations.lookup(operands[0])); |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processStructType(ArrayRef<uint32_t> operands) { |
| // TODO: Find a way to handle identified structs when debug info is stripped. |
| |
| if (operands.empty()) { |
| return emitError(unknownLoc, "OpTypeStruct must have at least result <id>"); |
| } |
| |
| if (operands.size() == 1) { |
| // Handle empty struct. |
| typeMap[operands[0]] = |
| spirv::StructType::getEmpty(context, nameMap.lookup(operands[0]).str()); |
| return success(); |
| } |
| |
| // First element is operand ID, second element is member index in the struct. |
| SmallVector<std::pair<uint32_t, unsigned>, 0> unresolvedMemberTypes; |
| SmallVector<Type, 4> memberTypes; |
| |
| for (auto op : llvm::drop_begin(operands, 1)) { |
| Type memberType = getType(op); |
| bool typeForwardPtr = (typeForwardPointerIDs.count(op) != 0); |
| |
| if (!memberType && !typeForwardPtr) |
| return emitError(unknownLoc, "OpTypeStruct references undefined <id> ") |
| << op; |
| |
| if (!memberType) |
| unresolvedMemberTypes.emplace_back(op, memberTypes.size()); |
| |
| memberTypes.push_back(memberType); |
| } |
| |
| SmallVector<spirv::StructType::OffsetInfo, 0> offsetInfo; |
| SmallVector<spirv::StructType::MemberDecorationInfo, 0> memberDecorationsInfo; |
| if (memberDecorationMap.count(operands[0])) { |
| auto &allMemberDecorations = memberDecorationMap[operands[0]]; |
| for (auto memberIndex : llvm::seq<uint32_t>(0, memberTypes.size())) { |
| if (allMemberDecorations.count(memberIndex)) { |
| for (auto &memberDecoration : allMemberDecorations[memberIndex]) { |
| // Check for offset. |
| if (memberDecoration.first == spirv::Decoration::Offset) { |
| // If offset info is empty, resize to the number of members; |
| if (offsetInfo.empty()) { |
| offsetInfo.resize(memberTypes.size()); |
| } |
| offsetInfo[memberIndex] = memberDecoration.second[0]; |
| } else { |
| if (!memberDecoration.second.empty()) { |
| memberDecorationsInfo.emplace_back(memberIndex, /*hasValue=*/1, |
| memberDecoration.first, |
| memberDecoration.second[0]); |
| } else { |
| memberDecorationsInfo.emplace_back(memberIndex, /*hasValue=*/0, |
| memberDecoration.first, 0); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| uint32_t structID = operands[0]; |
| std::string structIdentifier = nameMap.lookup(structID).str(); |
| |
| if (structIdentifier.empty()) { |
| assert(unresolvedMemberTypes.empty() && |
| "didn't expect unresolved member types"); |
| typeMap[structID] = |
| spirv::StructType::get(memberTypes, offsetInfo, memberDecorationsInfo); |
| } else { |
| auto structTy = spirv::StructType::getIdentified(context, structIdentifier); |
| typeMap[structID] = structTy; |
| |
| if (!unresolvedMemberTypes.empty()) |
| deferredStructTypesInfos.push_back({structTy, unresolvedMemberTypes, |
| memberTypes, offsetInfo, |
| memberDecorationsInfo}); |
| else if (failed(structTy.trySetBody(memberTypes, offsetInfo, |
| memberDecorationsInfo))) |
| return failure(); |
| } |
| |
| // TODO: Update StructType to have member name as attribute as |
| // well. |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processMatrixType(ArrayRef<uint32_t> operands) { |
| if (operands.size() != 3) { |
| // Three operands are needed: result_id, column_type, and column_count |
| return emitError(unknownLoc, "OpTypeMatrix must have 3 operands" |
| " (result_id, column_type, and column_count)"); |
| } |
| // Matrix columns must be of vector type |
| Type elementTy = getType(operands[1]); |
| if (!elementTy) { |
| return emitError(unknownLoc, |
| "OpTypeMatrix references undefined column type.") |
| << operands[1]; |
| } |
| |
| uint32_t colsCount = operands[2]; |
| typeMap[operands[0]] = spirv::MatrixType::get(elementTy, colsCount); |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processTypeForwardPointer(ArrayRef<uint32_t> operands) { |
| if (operands.size() != 2) |
| return emitError(unknownLoc, |
| "OpTypeForwardPointer instruction must have two operands"); |
| |
| typeForwardPointerIDs.insert(operands[0]); |
| // TODO: Use the 2nd operand (Storage Class) to validate the OpTypePointer |
| // instruction that defines the actual type. |
| |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processImageType(ArrayRef<uint32_t> operands) { |
| // TODO: Add support for Access Qualifier. |
| if (operands.size() != 8) |
| return emitError( |
| unknownLoc, |
| "OpTypeImage with non-eight operands are not supported yet"); |
| |
| Type elementTy = getType(operands[1]); |
| if (!elementTy) |
| return emitError(unknownLoc, "OpTypeImage references undefined <id>: ") |
| << operands[1]; |
| |
| auto dim = spirv::symbolizeDim(operands[2]); |
| if (!dim) |
| return emitError(unknownLoc, "unknown Dim for OpTypeImage: ") |
| << operands[2]; |
| |
| auto depthInfo = spirv::symbolizeImageDepthInfo(operands[3]); |
| if (!depthInfo) |
| return emitError(unknownLoc, "unknown Depth for OpTypeImage: ") |
| << operands[3]; |
| |
| auto arrayedInfo = spirv::symbolizeImageArrayedInfo(operands[4]); |
| if (!arrayedInfo) |
| return emitError(unknownLoc, "unknown Arrayed for OpTypeImage: ") |
| << operands[4]; |
| |
| auto samplingInfo = spirv::symbolizeImageSamplingInfo(operands[5]); |
| if (!samplingInfo) |
| return emitError(unknownLoc, "unknown MS for OpTypeImage: ") << operands[5]; |
| |
| auto samplerUseInfo = spirv::symbolizeImageSamplerUseInfo(operands[6]); |
| if (!samplerUseInfo) |
| return emitError(unknownLoc, "unknown Sampled for OpTypeImage: ") |
| << operands[6]; |
| |
| auto format = spirv::symbolizeImageFormat(operands[7]); |
| if (!format) |
| return emitError(unknownLoc, "unknown Format for OpTypeImage: ") |
| << operands[7]; |
| |
| typeMap[operands[0]] = spirv::ImageType::get( |
| elementTy, dim.value(), depthInfo.value(), arrayedInfo.value(), |
| samplingInfo.value(), samplerUseInfo.value(), format.value()); |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processSampledImageType(ArrayRef<uint32_t> operands) { |
| if (operands.size() != 2) |
| return emitError(unknownLoc, "OpTypeSampledImage must have two operands"); |
| |
| Type elementTy = getType(operands[1]); |
| if (!elementTy) |
| return emitError(unknownLoc, |
| "OpTypeSampledImage references undefined <id>: ") |
| << operands[1]; |
| |
| typeMap[operands[0]] = spirv::SampledImageType::get(elementTy); |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Constant |
| //===----------------------------------------------------------------------===// |
| |
| LogicalResult spirv::Deserializer::processConstant(ArrayRef<uint32_t> operands, |
| bool isSpec) { |
| StringRef opname = isSpec ? "OpSpecConstant" : "OpConstant"; |
| |
| if (operands.size() < 2) { |
| return emitError(unknownLoc) |
| << opname << " must have type <id> and result <id>"; |
| } |
| if (operands.size() < 3) { |
| return emitError(unknownLoc) |
| << opname << " must have at least 1 more parameter"; |
| } |
| |
| Type resultType = getType(operands[0]); |
| if (!resultType) { |
| return emitError(unknownLoc, "undefined result type from <id> ") |
| << operands[0]; |
| } |
| |
| auto checkOperandSizeForBitwidth = [&](unsigned bitwidth) -> LogicalResult { |
| if (bitwidth == 64) { |
| if (operands.size() == 4) { |
| return success(); |
| } |
| return emitError(unknownLoc) |
| << opname << " should have 2 parameters for 64-bit values"; |
| } |
| if (bitwidth <= 32) { |
| if (operands.size() == 3) { |
| return success(); |
| } |
| |
| return emitError(unknownLoc) |
| << opname |
| << " should have 1 parameter for values with no more than 32 bits"; |
| } |
| return emitError(unknownLoc, "unsupported OpConstant bitwidth: ") |
| << bitwidth; |
| }; |
| |
| auto resultID = operands[1]; |
| |
| if (auto intType = dyn_cast<IntegerType>(resultType)) { |
| auto bitwidth = intType.getWidth(); |
| if (failed(checkOperandSizeForBitwidth(bitwidth))) { |
| return failure(); |
| } |
| |
| APInt value; |
| if (bitwidth == 64) { |
| // 64-bit integers are represented with two SPIR-V words. According to |
| // SPIR-V spec: "When the type’s bit width is larger than one word, the |
| // literal’s low-order words appear first." |
| struct DoubleWord { |
| uint32_t word1; |
| uint32_t word2; |
| } words = {operands[2], operands[3]}; |
| value = APInt(64, llvm::bit_cast<uint64_t>(words), /*isSigned=*/true); |
| } else if (bitwidth <= 32) { |
| value = APInt(bitwidth, operands[2], /*isSigned=*/true, |
| /*implicitTrunc=*/true); |
| } |
| |
| auto attr = opBuilder.getIntegerAttr(intType, value); |
| |
| if (isSpec) { |
| createSpecConstant(unknownLoc, resultID, attr); |
| } else { |
| // For normal constants, we just record the attribute (and its type) for |
| // later materialization at use sites. |
| constantMap.try_emplace(resultID, attr, intType); |
| } |
| |
| return success(); |
| } |
| |
| if (auto floatType = dyn_cast<FloatType>(resultType)) { |
| auto bitwidth = floatType.getWidth(); |
| if (failed(checkOperandSizeForBitwidth(bitwidth))) { |
| return failure(); |
| } |
| |
| APFloat value(0.f); |
| if (floatType.isF64()) { |
| // Double values are represented with two SPIR-V words. According to |
| // SPIR-V spec: "When the type’s bit width is larger than one word, the |
| // literal’s low-order words appear first." |
| struct DoubleWord { |
| uint32_t word1; |
| uint32_t word2; |
| } words = {operands[2], operands[3]}; |
| value = APFloat(llvm::bit_cast<double>(words)); |
| } else if (floatType.isF32()) { |
| value = APFloat(llvm::bit_cast<float>(operands[2])); |
| } else if (floatType.isF16()) { |
| APInt data(16, operands[2]); |
| value = APFloat(APFloat::IEEEhalf(), data); |
| } |
| |
| auto attr = opBuilder.getFloatAttr(floatType, value); |
| if (isSpec) { |
| createSpecConstant(unknownLoc, resultID, attr); |
| } else { |
| // For normal constants, we just record the attribute (and its type) for |
| // later materialization at use sites. |
| constantMap.try_emplace(resultID, attr, floatType); |
| } |
| |
| return success(); |
| } |
| |
| return emitError(unknownLoc, "OpConstant can only generate values of " |
| "scalar integer or floating-point type"); |
| } |
| |
| LogicalResult spirv::Deserializer::processConstantBool( |
| bool isTrue, ArrayRef<uint32_t> operands, bool isSpec) { |
| if (operands.size() != 2) { |
| return emitError(unknownLoc, "Op") |
| << (isSpec ? "Spec" : "") << "Constant" |
| << (isTrue ? "True" : "False") |
| << " must have type <id> and result <id>"; |
| } |
| |
| auto attr = opBuilder.getBoolAttr(isTrue); |
| auto resultID = operands[1]; |
| if (isSpec) { |
| createSpecConstant(unknownLoc, resultID, attr); |
| } else { |
| // For normal constants, we just record the attribute (and its type) for |
| // later materialization at use sites. |
| constantMap.try_emplace(resultID, attr, opBuilder.getI1Type()); |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processConstantComposite(ArrayRef<uint32_t> operands) { |
| if (operands.size() < 2) { |
| return emitError(unknownLoc, |
| "OpConstantComposite must have type <id> and result <id>"); |
| } |
| if (operands.size() < 3) { |
| return emitError(unknownLoc, |
| "OpConstantComposite must have at least 1 parameter"); |
| } |
| |
| Type resultType = getType(operands[0]); |
| if (!resultType) { |
| return emitError(unknownLoc, "undefined result type from <id> ") |
| << operands[0]; |
| } |
| |
| SmallVector<Attribute, 4> elements; |
| elements.reserve(operands.size() - 2); |
| for (unsigned i = 2, e = operands.size(); i < e; ++i) { |
| auto elementInfo = getConstant(operands[i]); |
| if (!elementInfo) { |
| return emitError(unknownLoc, "OpConstantComposite component <id> ") |
| << operands[i] << " must come from a normal constant"; |
| } |
| elements.push_back(elementInfo->first); |
| } |
| |
| auto resultID = operands[1]; |
| if (auto vectorType = dyn_cast<VectorType>(resultType)) { |
| auto attr = DenseElementsAttr::get(vectorType, elements); |
| // For normal constants, we just record the attribute (and its type) for |
| // later materialization at use sites. |
| constantMap.try_emplace(resultID, attr, resultType); |
| } else if (auto arrayType = dyn_cast<spirv::ArrayType>(resultType)) { |
| auto attr = opBuilder.getArrayAttr(elements); |
| constantMap.try_emplace(resultID, attr, resultType); |
| } else { |
| return emitError(unknownLoc, "unsupported OpConstantComposite type: ") |
| << resultType; |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processSpecConstantComposite(ArrayRef<uint32_t> operands) { |
| if (operands.size() < 2) { |
| return emitError(unknownLoc, |
| "OpConstantComposite must have type <id> and result <id>"); |
| } |
| if (operands.size() < 3) { |
| return emitError(unknownLoc, |
| "OpConstantComposite must have at least 1 parameter"); |
| } |
| |
| Type resultType = getType(operands[0]); |
| if (!resultType) { |
| return emitError(unknownLoc, "undefined result type from <id> ") |
| << operands[0]; |
| } |
| |
| auto resultID = operands[1]; |
| auto symName = opBuilder.getStringAttr(getSpecConstantSymbol(resultID)); |
| |
| SmallVector<Attribute, 4> elements; |
| elements.reserve(operands.size() - 2); |
| for (unsigned i = 2, e = operands.size(); i < e; ++i) { |
| auto elementInfo = getSpecConstant(operands[i]); |
| elements.push_back(SymbolRefAttr::get(elementInfo)); |
| } |
| |
| auto op = opBuilder.create<spirv::SpecConstantCompositeOp>( |
| unknownLoc, TypeAttr::get(resultType), symName, |
| opBuilder.getArrayAttr(elements)); |
| specConstCompositeMap[resultID] = op; |
| |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processSpecConstantOperation(ArrayRef<uint32_t> operands) { |
| if (operands.size() < 3) |
| return emitError(unknownLoc, "OpConstantOperation must have type <id>, " |
| "result <id>, and operand opcode"); |
| |
| uint32_t resultTypeID = operands[0]; |
| |
| if (!getType(resultTypeID)) |
| return emitError(unknownLoc, "undefined result type from <id> ") |
| << resultTypeID; |
| |
| uint32_t resultID = operands[1]; |
| spirv::Opcode enclosedOpcode = static_cast<spirv::Opcode>(operands[2]); |
| auto emplaceResult = specConstOperationMap.try_emplace( |
| resultID, |
| SpecConstOperationMaterializationInfo{ |
| enclosedOpcode, resultTypeID, |
| SmallVector<uint32_t>{operands.begin() + 3, operands.end()}}); |
| |
| if (!emplaceResult.second) |
| return emitError(unknownLoc, "value with <id>: ") |
| << resultID << " is probably defined before."; |
| |
| return success(); |
| } |
| |
| Value spirv::Deserializer::materializeSpecConstantOperation( |
| uint32_t resultID, spirv::Opcode enclosedOpcode, uint32_t resultTypeID, |
| ArrayRef<uint32_t> enclosedOpOperands) { |
| |
| Type resultType = getType(resultTypeID); |
| |
| // Instructions wrapped by OpSpecConstantOp need an ID for their |
| // Deserializer::processOp<op_name>(...) to emit the corresponding SPIR-V |
| // dialect wrapped op. For that purpose, a new value map is created and "fake" |
| // ID in that map is assigned to the result of the enclosed instruction. Note |
| // that there is no need to update this fake ID since we only need to |
| // reference the created Value for the enclosed op from the spv::YieldOp |
| // created later in this method (both of which are the only values in their |
| // region: the SpecConstantOperation's region). If we encounter another |
| // SpecConstantOperation in the module, we simply re-use the fake ID since the |
| // previous Value assigned to it isn't visible in the current scope anyway. |
| DenseMap<uint32_t, Value> newValueMap; |
| llvm::SaveAndRestore valueMapGuard(valueMap, newValueMap); |
| constexpr uint32_t fakeID = static_cast<uint32_t>(-3); |
| |
| SmallVector<uint32_t, 4> enclosedOpResultTypeAndOperands; |
| enclosedOpResultTypeAndOperands.push_back(resultTypeID); |
| enclosedOpResultTypeAndOperands.push_back(fakeID); |
| enclosedOpResultTypeAndOperands.append(enclosedOpOperands.begin(), |
| enclosedOpOperands.end()); |
| |
| // Process enclosed instruction before creating the enclosing |
| // specConstantOperation (and its region). This way, references to constants, |
| // global variables, and spec constants will be materialized outside the new |
| // op's region. For more info, see Deserializer::getValue's implementation. |
| if (failed( |
| processInstruction(enclosedOpcode, enclosedOpResultTypeAndOperands))) |
| return Value(); |
| |
| // Since the enclosed op is emitted in the current block, split it in a |
| // separate new block. |
| Block *enclosedBlock = curBlock->splitBlock(&curBlock->back()); |
| |
| auto loc = createFileLineColLoc(opBuilder); |
| auto specConstOperationOp = |
| opBuilder.create<spirv::SpecConstantOperationOp>(loc, resultType); |
| |
| Region &body = specConstOperationOp.getBody(); |
| // Move the new block into SpecConstantOperation's body. |
| body.getBlocks().splice(body.end(), curBlock->getParent()->getBlocks(), |
| Region::iterator(enclosedBlock)); |
| Block &block = body.back(); |
| |
| // RAII guard to reset the insertion point to the module's region after |
| // deserializing the body of the specConstantOperation. |
| OpBuilder::InsertionGuard moduleInsertionGuard(opBuilder); |
| opBuilder.setInsertionPointToEnd(&block); |
| |
| opBuilder.create<spirv::YieldOp>(loc, block.front().getResult(0)); |
| return specConstOperationOp.getResult(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processConstantNull(ArrayRef<uint32_t> operands) { |
| if (operands.size() != 2) { |
| return emitError(unknownLoc, |
| "OpConstantNull must have type <id> and result <id>"); |
| } |
| |
| Type resultType = getType(operands[0]); |
| if (!resultType) { |
| return emitError(unknownLoc, "undefined result type from <id> ") |
| << operands[0]; |
| } |
| |
| auto resultID = operands[1]; |
| if (resultType.isIntOrFloat() || isa<VectorType>(resultType)) { |
| auto attr = opBuilder.getZeroAttr(resultType); |
| // For normal constants, we just record the attribute (and its type) for |
| // later materialization at use sites. |
| constantMap.try_emplace(resultID, attr, resultType); |
| return success(); |
| } |
| |
| return emitError(unknownLoc, "unsupported OpConstantNull type: ") |
| << resultType; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Control flow |
| //===----------------------------------------------------------------------===// |
| |
| Block *spirv::Deserializer::getOrCreateBlock(uint32_t id) { |
| if (auto *block = getBlock(id)) { |
| LLVM_DEBUG(logger.startLine() << "[block] got exiting block for id = " << id |
| << " @ " << block << "\n"); |
| return block; |
| } |
| |
| // We don't know where this block will be placed finally (in a |
| // spirv.mlir.selection or spirv.mlir.loop or function). Create it into the |
| // function for now and sort out the proper place later. |
| auto *block = curFunction->addBlock(); |
| LLVM_DEBUG(logger.startLine() << "[block] created block for id = " << id |
| << " @ " << block << "\n"); |
| return blockMap[id] = block; |
| } |
| |
| LogicalResult spirv::Deserializer::processBranch(ArrayRef<uint32_t> operands) { |
| if (!curBlock) { |
| return emitError(unknownLoc, "OpBranch must appear inside a block"); |
| } |
| |
| if (operands.size() != 1) { |
| return emitError(unknownLoc, "OpBranch must take exactly one target label"); |
| } |
| |
| auto *target = getOrCreateBlock(operands[0]); |
| auto loc = createFileLineColLoc(opBuilder); |
| // The preceding instruction for the OpBranch instruction could be an |
| // OpLoopMerge or an OpSelectionMerge instruction, in this case they will have |
| // the same OpLine information. |
| opBuilder.create<spirv::BranchOp>(loc, target); |
| |
| clearDebugLine(); |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processBranchConditional(ArrayRef<uint32_t> operands) { |
| if (!curBlock) { |
| return emitError(unknownLoc, |
| "OpBranchConditional must appear inside a block"); |
| } |
| |
| if (operands.size() != 3 && operands.size() != 5) { |
| return emitError(unknownLoc, |
| "OpBranchConditional must have condition, true label, " |
| "false label, and optionally two branch weights"); |
| } |
| |
| auto condition = getValue(operands[0]); |
| auto *trueBlock = getOrCreateBlock(operands[1]); |
| auto *falseBlock = getOrCreateBlock(operands[2]); |
| |
| std::optional<std::pair<uint32_t, uint32_t>> weights; |
| if (operands.size() == 5) { |
| weights = std::make_pair(operands[3], operands[4]); |
| } |
| // The preceding instruction for the OpBranchConditional instruction could be |
| // an OpSelectionMerge instruction, in this case they will have the same |
| // OpLine information. |
| auto loc = createFileLineColLoc(opBuilder); |
| opBuilder.create<spirv::BranchConditionalOp>( |
| loc, condition, trueBlock, |
| /*trueArguments=*/ArrayRef<Value>(), falseBlock, |
| /*falseArguments=*/ArrayRef<Value>(), weights); |
| |
| clearDebugLine(); |
| return success(); |
| } |
| |
| LogicalResult spirv::Deserializer::processLabel(ArrayRef<uint32_t> operands) { |
| if (!curFunction) { |
| return emitError(unknownLoc, "OpLabel must appear inside a function"); |
| } |
| |
| if (operands.size() != 1) { |
| return emitError(unknownLoc, "OpLabel should only have result <id>"); |
| } |
| |
| auto labelID = operands[0]; |
| // We may have forward declared this block. |
| auto *block = getOrCreateBlock(labelID); |
| LLVM_DEBUG(logger.startLine() |
| << "[block] populating block " << block << "\n"); |
| // If we have seen this block, make sure it was just a forward declaration. |
| assert(block->empty() && "re-deserialize the same block!"); |
| |
| opBuilder.setInsertionPointToStart(block); |
| blockMap[labelID] = curBlock = block; |
| |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processSelectionMerge(ArrayRef<uint32_t> operands) { |
| if (!curBlock) { |
| return emitError(unknownLoc, "OpSelectionMerge must appear in a block"); |
| } |
| |
| if (operands.size() < 2) { |
| return emitError( |
| unknownLoc, |
| "OpSelectionMerge must specify merge target and selection control"); |
| } |
| |
| auto *mergeBlock = getOrCreateBlock(operands[0]); |
| auto loc = createFileLineColLoc(opBuilder); |
| auto selectionControl = operands[1]; |
| |
| if (!blockMergeInfo.try_emplace(curBlock, loc, selectionControl, mergeBlock) |
| .second) { |
| return emitError( |
| unknownLoc, |
| "a block cannot have more than one OpSelectionMerge instruction"); |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processLoopMerge(ArrayRef<uint32_t> operands) { |
| if (!curBlock) { |
| return emitError(unknownLoc, "OpLoopMerge must appear in a block"); |
| } |
| |
| if (operands.size() < 3) { |
| return emitError(unknownLoc, "OpLoopMerge must specify merge target, " |
| "continue target and loop control"); |
| } |
| |
| auto *mergeBlock = getOrCreateBlock(operands[0]); |
| auto *continueBlock = getOrCreateBlock(operands[1]); |
| auto loc = createFileLineColLoc(opBuilder); |
| uint32_t loopControl = operands[2]; |
| |
| if (!blockMergeInfo |
| .try_emplace(curBlock, loc, loopControl, mergeBlock, continueBlock) |
| .second) { |
| return emitError( |
| unknownLoc, |
| "a block cannot have more than one OpLoopMerge instruction"); |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult spirv::Deserializer::processPhi(ArrayRef<uint32_t> operands) { |
| if (!curBlock) { |
| return emitError(unknownLoc, "OpPhi must appear in a block"); |
| } |
| |
| if (operands.size() < 4) { |
| return emitError(unknownLoc, "OpPhi must specify result type, result <id>, " |
| "and variable-parent pairs"); |
| } |
| |
| // Create a block argument for this OpPhi instruction. |
| Type blockArgType = getType(operands[0]); |
| BlockArgument blockArg = curBlock->addArgument(blockArgType, unknownLoc); |
| valueMap[operands[1]] = blockArg; |
| LLVM_DEBUG(logger.startLine() |
| << "[phi] created block argument " << blockArg |
| << " id = " << operands[1] << " of type " << blockArgType << "\n"); |
| |
| // For each (value, predecessor) pair, insert the value to the predecessor's |
| // blockPhiInfo entry so later we can fix the block argument there. |
| for (unsigned i = 2, e = operands.size(); i < e; i += 2) { |
| uint32_t value = operands[i]; |
| Block *predecessor = getOrCreateBlock(operands[i + 1]); |
| std::pair<Block *, Block *> predecessorTargetPair{predecessor, curBlock}; |
| blockPhiInfo[predecessorTargetPair].push_back(value); |
| LLVM_DEBUG(logger.startLine() << "[phi] predecessor @ " << predecessor |
| << " with arg id = " << value << "\n"); |
| } |
| |
| return success(); |
| } |
| |
| namespace { |
| /// A class for putting all blocks in a structured selection/loop in a |
| /// spirv.mlir.selection/spirv.mlir.loop op. |
| class ControlFlowStructurizer { |
| public: |
| #ifndef NDEBUG |
| ControlFlowStructurizer(Location loc, uint32_t control, |
| spirv::BlockMergeInfoMap &mergeInfo, Block *header, |
| Block *merge, Block *cont, |
| llvm::ScopedPrinter &logger) |
| : location(loc), control(control), blockMergeInfo(mergeInfo), |
| headerBlock(header), mergeBlock(merge), continueBlock(cont), |
| logger(logger) {} |
| #else |
| ControlFlowStructurizer(Location loc, uint32_t control, |
| spirv::BlockMergeInfoMap &mergeInfo, Block *header, |
| Block *merge, Block *cont) |
| : location(loc), control(control), blockMergeInfo(mergeInfo), |
| headerBlock(header), mergeBlock(merge), continueBlock(cont) {} |
| #endif |
| |
| /// Structurizes the loop at the given `headerBlock`. |
| /// |
| /// This method will create an spirv.mlir.loop op in the `mergeBlock` and move |
| /// all blocks in the structured loop into the spirv.mlir.loop's region. All |
| /// branches to the `headerBlock` will be redirected to the `mergeBlock`. This |
| /// method will also update `mergeInfo` by remapping all blocks inside to the |
| /// newly cloned ones inside structured control flow op's regions. |
| LogicalResult structurize(); |
| |
| private: |
| /// Creates a new spirv.mlir.selection op at the beginning of the |
| /// `mergeBlock`. |
| spirv::SelectionOp createSelectionOp(uint32_t selectionControl); |
| |
| /// Creates a new spirv.mlir.loop op at the beginning of the `mergeBlock`. |
| spirv::LoopOp createLoopOp(uint32_t loopControl); |
| |
| /// Collects all blocks reachable from `headerBlock` except `mergeBlock`. |
| void collectBlocksInConstruct(); |
| |
| Location location; |
| uint32_t control; |
| |
| spirv::BlockMergeInfoMap &blockMergeInfo; |
| |
| Block *headerBlock; |
| Block *mergeBlock; |
| Block *continueBlock; // nullptr for spirv.mlir.selection |
| |
| SetVector<Block *> constructBlocks; |
| |
| #ifndef NDEBUG |
| /// A logger used to emit information during the deserialzation process. |
| llvm::ScopedPrinter &logger; |
| #endif |
| }; |
| } // namespace |
| |
| spirv::SelectionOp |
| ControlFlowStructurizer::createSelectionOp(uint32_t selectionControl) { |
| // Create a builder and set the insertion point to the beginning of the |
| // merge block so that the newly created SelectionOp will be inserted there. |
| OpBuilder builder(&mergeBlock->front()); |
| |
| auto control = static_cast<spirv::SelectionControl>(selectionControl); |
| auto selectionOp = builder.create<spirv::SelectionOp>(location, control); |
| selectionOp.addMergeBlock(builder); |
| |
| return selectionOp; |
| } |
| |
| spirv::LoopOp ControlFlowStructurizer::createLoopOp(uint32_t loopControl) { |
| // Create a builder and set the insertion point to the beginning of the |
| // merge block so that the newly created LoopOp will be inserted there. |
| OpBuilder builder(&mergeBlock->front()); |
| |
| auto control = static_cast<spirv::LoopControl>(loopControl); |
| auto loopOp = builder.create<spirv::LoopOp>(location, control); |
| loopOp.addEntryAndMergeBlock(builder); |
| |
| return loopOp; |
| } |
| |
| void ControlFlowStructurizer::collectBlocksInConstruct() { |
| assert(constructBlocks.empty() && "expected empty constructBlocks"); |
| |
| // Put the header block in the work list first. |
| constructBlocks.insert(headerBlock); |
| |
| // For each item in the work list, add its successors excluding the merge |
| // block. |
| for (unsigned i = 0; i < constructBlocks.size(); ++i) { |
| for (auto *successor : constructBlocks[i]->getSuccessors()) |
| if (successor != mergeBlock) |
| constructBlocks.insert(successor); |
| } |
| } |
| |
| LogicalResult ControlFlowStructurizer::structurize() { |
| Operation *op = nullptr; |
| bool isLoop = continueBlock != nullptr; |
| if (isLoop) { |
| if (auto loopOp = createLoopOp(control)) |
| op = loopOp.getOperation(); |
| } else { |
| if (auto selectionOp = createSelectionOp(control)) |
| op = selectionOp.getOperation(); |
| } |
| if (!op) |
| return failure(); |
| Region &body = op->getRegion(0); |
| |
| IRMapping mapper; |
| // All references to the old merge block should be directed to the |
| // selection/loop merge block in the SelectionOp/LoopOp's region. |
| mapper.map(mergeBlock, &body.back()); |
| |
| collectBlocksInConstruct(); |
| |
| // We've identified all blocks belonging to the selection/loop's region. Now |
| // need to "move" them into the selection/loop. Instead of really moving the |
| // blocks, in the following we copy them and remap all values and branches. |
| // This is because: |
| // * Inserting a block into a region requires the block not in any region |
| // before. But selections/loops can nest so we can create selection/loop ops |
| // in a nested manner, which means some blocks may already be in a |
| // selection/loop region when to be moved again. |
| // * It's much trickier to fix up the branches into and out of the loop's |
| // region: we need to treat not-moved blocks and moved blocks differently: |
| // Not-moved blocks jumping to the loop header block need to jump to the |
| // merge point containing the new loop op but not the loop continue block's |
| // back edge. Moved blocks jumping out of the loop need to jump to the |
| // merge block inside the loop region but not other not-moved blocks. |
| // We cannot use replaceAllUsesWith clearly and it's harder to follow the |
| // logic. |
| |
| // Create a corresponding block in the SelectionOp/LoopOp's region for each |
| // block in this loop construct. |
| OpBuilder builder(body); |
| for (auto *block : constructBlocks) { |
| // Create a block and insert it before the selection/loop merge block in the |
| // SelectionOp/LoopOp's region. |
| auto *newBlock = builder.createBlock(&body.back()); |
| mapper.map(block, newBlock); |
| LLVM_DEBUG(logger.startLine() << "[cf] cloned block " << newBlock |
| << " from block " << block << "\n"); |
| if (!isFnEntryBlock(block)) { |
| for (BlockArgument blockArg : block->getArguments()) { |
| auto newArg = |
| newBlock->addArgument(blockArg.getType(), blockArg.getLoc()); |
| mapper.map(blockArg, newArg); |
| LLVM_DEBUG(logger.startLine() << "[cf] remapped block argument " |
| << blockArg << " to " << newArg << "\n"); |
| } |
| } else { |
| LLVM_DEBUG(logger.startLine() |
| << "[cf] block " << block << " is a function entry block\n"); |
| } |
| |
| for (auto &op : *block) |
| newBlock->push_back(op.clone(mapper)); |
| } |
| |
| // Go through all ops and remap the operands. |
| auto remapOperands = [&](Operation *op) { |
| for (auto &operand : op->getOpOperands()) |
| if (Value mappedOp = mapper.lookupOrNull(operand.get())) |
| operand.set(mappedOp); |
| for (auto &succOp : op->getBlockOperands()) |
| if (Block *mappedOp = mapper.lookupOrNull(succOp.get())) |
| succOp.set(mappedOp); |
| }; |
| for (auto &block : body) |
| block.walk(remapOperands); |
| |
| // We have created the SelectionOp/LoopOp and "moved" all blocks belonging to |
| // the selection/loop construct into its region. Next we need to fix the |
| // connections between this new SelectionOp/LoopOp with existing blocks. |
| |
| // All existing incoming branches should go to the merge block, where the |
| // SelectionOp/LoopOp resides right now. |
| headerBlock->replaceAllUsesWith(mergeBlock); |
| |
| LLVM_DEBUG({ |
| logger.startLine() << "[cf] after cloning and fixing references:\n"; |
| headerBlock->getParentOp()->print(logger.getOStream()); |
| logger.startLine() << "\n"; |
| }); |
| |
| if (isLoop) { |
| if (!mergeBlock->args_empty()) { |
| return mergeBlock->getParentOp()->emitError( |
| "OpPhi in loop merge block unsupported"); |
| } |
| |
| // The loop header block may have block arguments. Since now we place the |
| // loop op inside the old merge block, we need to make sure the old merge |
| // block has the same block argument list. |
| for (BlockArgument blockArg : headerBlock->getArguments()) |
| mergeBlock->addArgument(blockArg.getType(), blockArg.getLoc()); |
| |
| // If the loop header block has block arguments, make sure the spirv.Branch |
| // op matches. |
| SmallVector<Value, 4> blockArgs; |
| if (!headerBlock->args_empty()) |
| blockArgs = {mergeBlock->args_begin(), mergeBlock->args_end()}; |
| |
| // The loop entry block should have a unconditional branch jumping to the |
| // loop header block. |
| builder.setInsertionPointToEnd(&body.front()); |
| builder.create<spirv::BranchOp>(location, mapper.lookupOrNull(headerBlock), |
| ArrayRef<Value>(blockArgs)); |
| } |
| |
| // Values defined inside the selection region that need to be yielded outside |
| // the region. |
| SmallVector<Value> valuesToYield; |
| // Outside uses of values that were sunk into the selection region. Those uses |
| // will be replaced with values returned by the SelectionOp. |
| SmallVector<Value> outsideUses; |
| |
| // Move block arguments of the original block (`mergeBlock`) into the merge |
| // block inside the selection (`body.back()`). Values produced by block |
| // arguments will be yielded by the selection region. We do not update uses or |
| // erase original block arguments yet. It will be done later in the code. |
| // |
| // Code below is not executed for loops as it would interfere with the logic |
| // above. Currently block arguments in the merge block are not supported, but |
| // instead, the code above copies those arguments from the header block into |
| // the merge block. As such, running the code would yield those copied |
| // arguments that is most likely not a desired behaviour. This may need to be |
| // revisited in the future. |
| if (!isLoop) |
| for (BlockArgument blockArg : mergeBlock->getArguments()) { |
| // Create new block arguments in the last block ("merge block") of the |
| // selection region. We create one argument for each argument in |
| // `mergeBlock`. This new value will need to be yielded, and the original |
| // value replaced, so add them to appropriate vectors. |
| body.back().addArgument(blockArg.getType(), blockArg.getLoc()); |
| valuesToYield.push_back(body.back().getArguments().back()); |
| outsideUses.push_back(blockArg); |
| } |
| |
| // All the blocks cloned into the SelectionOp/LoopOp's region can now be |
| // cleaned up. |
| LLVM_DEBUG(logger.startLine() << "[cf] cleaning up blocks after clone\n"); |
| // First we need to drop all operands' references inside all blocks. This is |
| // needed because we can have blocks referencing SSA values from one another. |
| for (auto *block : constructBlocks) |
| block->dropAllReferences(); |
| |
| // All internal uses should be removed from original blocks by now, so |
| // whatever is left is an outside use and will need to be yielded from |
| // the newly created selection / loop region. |
| for (Block *block : constructBlocks) { |
| for (Operation &op : *block) { |
| if (!op.use_empty()) |
| for (Value result : op.getResults()) { |
| valuesToYield.push_back(mapper.lookupOrNull(result)); |
| outsideUses.push_back(result); |
| } |
| } |
| for (BlockArgument &arg : block->getArguments()) { |
| if (!arg.use_empty()) { |
| valuesToYield.push_back(mapper.lookupOrNull(arg)); |
| outsideUses.push_back(arg); |
| } |
| } |
| } |
| |
| assert(valuesToYield.size() == outsideUses.size()); |
| |
| // If we need to yield any values from the selection / loop region we will |
| // take care of it here. |
| if (!valuesToYield.empty()) { |
| LLVM_DEBUG(logger.startLine() |
| << "[cf] yielding values from the selection / loop region\n"); |
| |
| // Update `mlir.merge` with values to be yield. |
| auto mergeOps = body.back().getOps<spirv::MergeOp>(); |
| Operation *merge = llvm::getSingleElement(mergeOps); |
| assert(merge); |
| merge->setOperands(valuesToYield); |
| |
| // MLIR does not allow changing the number of results of an operation, so |
| // we create a new SelectionOp / LoopOp with required list of results and |
| // move the region from the initial SelectionOp / LoopOp. The initial |
| // operation is then removed. Since we move the region to the new op all |
| // links between blocks and remapping we have previously done should be |
| // preserved. |
| builder.setInsertionPoint(&mergeBlock->front()); |
| |
| Operation *newOp = nullptr; |
| |
| if (isLoop) |
| newOp = builder.create<spirv::LoopOp>( |
| location, TypeRange(ValueRange(outsideUses)), |
| static_cast<spirv::LoopControl>(control)); |
| else |
| newOp = builder.create<spirv::SelectionOp>( |
| location, TypeRange(ValueRange(outsideUses)), |
| static_cast<spirv::SelectionControl>(control)); |
| |
| newOp->getRegion(0).takeBody(body); |
| |
| // Remove initial op and swap the pointer to the newly created one. |
| op->erase(); |
| op = newOp; |
| |
| // Update all outside uses to use results of the SelectionOp / LoopOp and |
| // remove block arguments from the original merge block. |
| for (unsigned i = 0, e = outsideUses.size(); i != e; ++i) |
| outsideUses[i].replaceAllUsesWith(op->getResult(i)); |
| |
| // We do not support block arguments in loop merge block. Also running this |
| // function with loop would break some of the loop specific code above |
| // dealing with block arguments. |
| if (!isLoop) |
| mergeBlock->eraseArguments(0, mergeBlock->getNumArguments()); |
| } |
| |
| // Check that whether some op in the to-be-erased blocks still has uses. Those |
| // uses come from blocks that won't be sinked into the SelectionOp/LoopOp's |
| // region. We cannot handle such cases given that once a value is sinked into |
| // the SelectionOp/LoopOp's region, there is no escape for it. |
| for (auto *block : constructBlocks) { |
| for (Operation &op : *block) |
| if (!op.use_empty()) |
| return op.emitOpError("failed control flow structurization: value has " |
| "uses outside of the " |
| "enclosing selection/loop construct"); |
| for (BlockArgument &arg : block->getArguments()) |
| if (!arg.use_empty()) |
| return emitError(arg.getLoc(), "failed control flow structurization: " |
| "block argument has uses outside of the " |
| "enclosing selection/loop construct"); |
| } |
| |
| // Then erase all old blocks. |
| for (auto *block : constructBlocks) { |
| // We've cloned all blocks belonging to this construct into the structured |
| // control flow op's region. Among these blocks, some may compose another |
| // selection/loop. If so, they will be recorded within blockMergeInfo. |
| // We need to update the pointers there to the newly remapped ones so we can |
| // continue structurizing them later. |
| // |
| // We need to walk each block as constructBlocks do not include blocks |
| // internal to ops already structured within those blocks. It is not |
| // fully clear to me why the mergeInfo of blocks (yet to be structured) |
| // inside already structured selections/loops get invalidated and needs |
| // updating, however the following example code can cause a crash (depending |
| // on the structuring order), when the most inner selection is being |
| // structured after the outer selection and loop have been already |
| // structured: |
| // |
| // spirv.mlir.for { |
| // // ... |
| // spirv.mlir.selection { |
| // // .. |
| // // A selection region that hasn't been yet structured! |
| // // .. |
| // } |
| // // ... |
| // } |
| // |
| // If the loop gets structured after the outer selection, but before the |
| // inner selection. Moving the already structured selection inside the loop |
| // will invalidate the mergeInfo of the region that is not yet structured. |
| // Just going over constructBlocks will not check and updated header blocks |
| // inside the already structured selection region. Walking block fixes that. |
| // |
| // TODO: If structuring was done in a fixed order starting with inner |
| // most constructs this most likely not be an issue and the whole code |
| // section could be removed. However, with the current non-deterministic |
| // order this is not possible. |
| // |
| // TODO: The asserts in the following assumes input SPIR-V blob forms |
| // correctly nested selection/loop constructs. We should relax this and |
| // support error cases better. |
| auto updateMergeInfo = [&](Block *block) -> WalkResult { |
| auto it = blockMergeInfo.find(block); |
| if (it != blockMergeInfo.end()) { |
| // Use the original location for nested selection/loop ops. |
| Location loc = it->second.loc; |
| |
| Block *newHeader = mapper.lookupOrNull(block); |
| if (!newHeader) |
| return emitError(loc, "failed control flow structurization: nested " |
| "loop header block should be remapped!"); |
| |
| Block *newContinue = it->second.continueBlock; |
| if (newContinue) { |
| newContinue = mapper.lookupOrNull(newContinue); |
| if (!newContinue) |
| return emitError(loc, "failed control flow structurization: nested " |
| "loop continue block should be remapped!"); |
| } |
| |
| Block *newMerge = it->second.mergeBlock; |
| if (Block *mappedTo = mapper.lookupOrNull(newMerge)) |
| newMerge = mappedTo; |
| |
| // The iterator should be erased before adding a new entry into |
| // blockMergeInfo to avoid iterator invalidation. |
| blockMergeInfo.erase(it); |
| blockMergeInfo.try_emplace(newHeader, loc, it->second.control, newMerge, |
| newContinue); |
| } |
| |
| return WalkResult::advance(); |
| }; |
| |
| if (block->walk(updateMergeInfo).wasInterrupted()) |
| return failure(); |
| |
| // The structured selection/loop's entry block does not have arguments. |
| // If the function's header block is also part of the structured control |
| // flow, we cannot just simply erase it because it may contain arguments |
| // matching the function signature and used by the cloned blocks. |
| if (isFnEntryBlock(block)) { |
| LLVM_DEBUG(logger.startLine() << "[cf] changing entry block " << block |
| << " to only contain a spirv.Branch op\n"); |
| // Still keep the function entry block for the potential block arguments, |
| // but replace all ops inside with a branch to the merge block. |
| block->clear(); |
| builder.setInsertionPointToEnd(block); |
| builder.create<spirv::BranchOp>(location, mergeBlock); |
| } else { |
| LLVM_DEBUG(logger.startLine() << "[cf] erasing block " << block << "\n"); |
| block->erase(); |
| } |
| } |
| |
| LLVM_DEBUG(logger.startLine() |
| << "[cf] after structurizing construct with header block " |
| << headerBlock << ":\n" |
| << *op << "\n"); |
| |
| return success(); |
| } |
| |
| LogicalResult spirv::Deserializer::wireUpBlockArgument() { |
| LLVM_DEBUG({ |
| logger.startLine() |
| << "//----- [phi] start wiring up block arguments -----//\n"; |
| logger.indent(); |
| }); |
| |
| OpBuilder::InsertionGuard guard(opBuilder); |
| |
| for (const auto &info : blockPhiInfo) { |
| Block *block = info.first.first; |
| Block *target = info.first.second; |
| const BlockPhiInfo &phiInfo = info.second; |
| LLVM_DEBUG({ |
| logger.startLine() << "[phi] block " << block << "\n"; |
| logger.startLine() << "[phi] before creating block argument:\n"; |
| block->getParentOp()->print(logger.getOStream()); |
| logger.startLine() << "\n"; |
| }); |
| |
| // Set insertion point to before this block's terminator early because we |
| // may materialize ops via getValue() call. |
| auto *op = block->getTerminator(); |
| opBuilder.setInsertionPoint(op); |
| |
| SmallVector<Value, 4> blockArgs; |
| blockArgs.reserve(phiInfo.size()); |
| for (uint32_t valueId : phiInfo) { |
| if (Value value = getValue(valueId)) { |
| blockArgs.push_back(value); |
| LLVM_DEBUG(logger.startLine() << "[phi] block argument " << value |
| << " id = " << valueId << "\n"); |
| } else { |
| return emitError(unknownLoc, "OpPhi references undefined value!"); |
| } |
| } |
| |
| if (auto branchOp = dyn_cast<spirv::BranchOp>(op)) { |
| // Replace the previous branch op with a new one with block arguments. |
| opBuilder.create<spirv::BranchOp>(branchOp.getLoc(), branchOp.getTarget(), |
| blockArgs); |
| branchOp.erase(); |
| } else if (auto branchCondOp = dyn_cast<spirv::BranchConditionalOp>(op)) { |
| assert((branchCondOp.getTrueBlock() == target || |
| branchCondOp.getFalseBlock() == target) && |
| "expected target to be either the true or false target"); |
| if (target == branchCondOp.getTrueTarget()) |
| opBuilder.create<spirv::BranchConditionalOp>( |
| branchCondOp.getLoc(), branchCondOp.getCondition(), blockArgs, |
| branchCondOp.getFalseBlockArguments(), |
| branchCondOp.getBranchWeightsAttr(), branchCondOp.getTrueTarget(), |
| branchCondOp.getFalseTarget()); |
| else |
| opBuilder.create<spirv::BranchConditionalOp>( |
| branchCondOp.getLoc(), branchCondOp.getCondition(), |
| branchCondOp.getTrueBlockArguments(), blockArgs, |
| branchCondOp.getBranchWeightsAttr(), branchCondOp.getTrueBlock(), |
| branchCondOp.getFalseBlock()); |
| |
| branchCondOp.erase(); |
| } else { |
| return emitError(unknownLoc, "unimplemented terminator for Phi creation"); |
| } |
| |
| LLVM_DEBUG({ |
| logger.startLine() << "[phi] after creating block argument:\n"; |
| block->getParentOp()->print(logger.getOStream()); |
| logger.startLine() << "\n"; |
| }); |
| } |
| blockPhiInfo.clear(); |
| |
| LLVM_DEBUG({ |
| logger.unindent(); |
| logger.startLine() |
| << "//--- [phi] completed wiring up block arguments ---//\n"; |
| }); |
| return success(); |
| } |
| |
| LogicalResult spirv::Deserializer::splitConditionalBlocks() { |
| // Create a copy, so we can modify keys in the original. |
| BlockMergeInfoMap blockMergeInfoCopy = blockMergeInfo; |
| for (auto it = blockMergeInfoCopy.begin(), e = blockMergeInfoCopy.end(); |
| it != e; ++it) { |
| auto &[block, mergeInfo] = *it; |
| |
| // Skip processing loop regions. For loop regions continueBlock is non-null. |
| if (mergeInfo.continueBlock) |
| continue; |
| |
| if (!block->mightHaveTerminator()) |
| continue; |
| |
| Operation *terminator = block->getTerminator(); |
| assert(terminator); |
| |
| if (!isa<spirv::BranchConditionalOp>(terminator)) |
| continue; |
| |
| // Check if the current header block is a merge block of another construct. |
| bool splitHeaderMergeBlock = false; |
| for (const auto &[_, mergeInfo] : blockMergeInfo) { |
| if (mergeInfo.mergeBlock == block) |
| splitHeaderMergeBlock = true; |
| } |
| |
| // Do not split a block that only contains a conditional branch, unless it |
| // is also a merge block of another construct - in that case we want to |
| // split the block. We do not want two constructs to share header / merge |
| // block. |
| if (!llvm::hasSingleElement(*block) || splitHeaderMergeBlock) { |
| Block *newBlock = block->splitBlock(terminator); |
| OpBuilder builder(block, block->end()); |
| builder.create<spirv::BranchOp>(block->getParent()->getLoc(), newBlock); |
| |
| // After splitting we need to update the map to use the new block as a |
| // header. |
| blockMergeInfo.erase(block); |
| blockMergeInfo.try_emplace(newBlock, mergeInfo); |
| } |
| } |
| |
| return success(); |
| } |
| |
| LogicalResult spirv::Deserializer::structurizeControlFlow() { |
| LLVM_DEBUG({ |
| logger.startLine() |
| << "//----- [cf] start structurizing control flow -----//\n"; |
| logger.indent(); |
| }); |
| |
| LLVM_DEBUG({ |
| logger.startLine() << "[cf] split conditional blocks\n"; |
| logger.startLine() << "\n"; |
| }); |
| |
| if (failed(splitConditionalBlocks())) { |
| return failure(); |
| } |
| |
| // TODO: This loop is non-deterministic. Iteration order may vary between runs |
| // for the same shader as the key to the map is a pointer. See: |
| // https://github.com/llvm/llvm-project/issues/128547 |
| while (!blockMergeInfo.empty()) { |
| Block *headerBlock = blockMergeInfo.begin()->first; |
| BlockMergeInfo mergeInfo = blockMergeInfo.begin()->second; |
| |
| LLVM_DEBUG({ |
| logger.startLine() << "[cf] header block " << headerBlock << ":\n"; |
| headerBlock->print(logger.getOStream()); |
| logger.startLine() << "\n"; |
| }); |
| |
| auto *mergeBlock = mergeInfo.mergeBlock; |
| assert(mergeBlock && "merge block cannot be nullptr"); |
| if (mergeInfo.continueBlock && !mergeBlock->args_empty()) |
| return emitError(unknownLoc, "OpPhi in loop merge block unimplemented"); |
| LLVM_DEBUG({ |
| logger.startLine() << "[cf] merge block " << mergeBlock << ":\n"; |
| mergeBlock->print(logger.getOStream()); |
| logger.startLine() << "\n"; |
| }); |
| |
| auto *continueBlock = mergeInfo.continueBlock; |
| LLVM_DEBUG(if (continueBlock) { |
| logger.startLine() << "[cf] continue block " << continueBlock << ":\n"; |
| continueBlock->print(logger.getOStream()); |
| logger.startLine() << "\n"; |
| }); |
| // Erase this case before calling into structurizer, who will update |
| // blockMergeInfo. |
| blockMergeInfo.erase(blockMergeInfo.begin()); |
| ControlFlowStructurizer structurizer(mergeInfo.loc, mergeInfo.control, |
| blockMergeInfo, headerBlock, |
| mergeBlock, continueBlock |
| #ifndef NDEBUG |
| , |
| logger |
| #endif |
| ); |
| if (failed(structurizer.structurize())) |
| return failure(); |
| } |
| |
| LLVM_DEBUG({ |
| logger.unindent(); |
| logger.startLine() |
| << "//--- [cf] completed structurizing control flow ---//\n"; |
| }); |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Debug |
| //===----------------------------------------------------------------------===// |
| |
| Location spirv::Deserializer::createFileLineColLoc(OpBuilder opBuilder) { |
| if (!debugLine) |
| return unknownLoc; |
| |
| auto fileName = debugInfoMap.lookup(debugLine->fileID).str(); |
| if (fileName.empty()) |
| fileName = "<unknown>"; |
| return FileLineColLoc::get(opBuilder.getStringAttr(fileName), debugLine->line, |
| debugLine->column); |
| } |
| |
| LogicalResult |
| spirv::Deserializer::processDebugLine(ArrayRef<uint32_t> operands) { |
| // According to SPIR-V spec: |
| // "This location information applies to the instructions physically |
| // following this instruction, up to the first occurrence of any of the |
| // following: the next end of block, the next OpLine instruction, or the next |
| // OpNoLine instruction." |
| if (operands.size() != 3) |
| return emitError(unknownLoc, "OpLine must have 3 operands"); |
| debugLine = DebugLine{operands[0], operands[1], operands[2]}; |
| return success(); |
| } |
| |
| void spirv::Deserializer::clearDebugLine() { debugLine = std::nullopt; } |
| |
| LogicalResult |
| spirv::Deserializer::processDebugString(ArrayRef<uint32_t> operands) { |
| if (operands.size() < 2) |
| return emitError(unknownLoc, "OpString needs at least 2 operands"); |
| |
| if (!debugInfoMap.lookup(operands[0]).empty()) |
| return emitError(unknownLoc, |
| "duplicate debug string found for result <id> ") |
| << operands[0]; |
| |
| unsigned wordIndex = 1; |
| StringRef debugString = decodeStringLiteral(operands, wordIndex); |
| if (wordIndex != operands.size()) |
| return emitError(unknownLoc, |
| "unexpected trailing words in OpString instruction"); |
| |
| debugInfoMap[operands[0]] = debugString; |
| return success(); |
| } |