| //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file This register allocator allocates registers to a basic block at a |
| /// time, attempting to keep values in registers and reusing registers as |
| /// appropriate. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/RegAllocFast.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/IndexedMap.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/SparseSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RegAllocCommon.h" |
| #include "llvm/CodeGen/RegAllocRegistry.h" |
| #include "llvm/CodeGen/RegisterClassInfo.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/InitializePasses.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <tuple> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "regalloc" |
| |
| STATISTIC(NumStores, "Number of stores added"); |
| STATISTIC(NumLoads, "Number of loads added"); |
| STATISTIC(NumCoalesced, "Number of copies coalesced"); |
| |
| // FIXME: Remove this switch when all testcases are fixed! |
| static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", |
| cl::Hidden); |
| |
| static RegisterRegAlloc fastRegAlloc("fast", "fast register allocator", |
| createFastRegisterAllocator); |
| |
| namespace { |
| |
| /// Assign ascending index for instructions in machine basic block. The index |
| /// can be used to determine dominance between instructions in same MBB. |
| class InstrPosIndexes { |
| public: |
| void unsetInitialized() { IsInitialized = false; } |
| |
| void init(const MachineBasicBlock &MBB) { |
| CurMBB = &MBB; |
| Instr2PosIndex.clear(); |
| uint64_t LastIndex = 0; |
| for (const MachineInstr &MI : MBB) { |
| LastIndex += InstrDist; |
| Instr2PosIndex[&MI] = LastIndex; |
| } |
| } |
| |
| /// Set \p Index to index of \p MI. If \p MI is new inserted, it try to assign |
| /// index without affecting existing instruction's index. Return true if all |
| /// instructions index has been reassigned. |
| bool getIndex(const MachineInstr &MI, uint64_t &Index) { |
| if (!IsInitialized) { |
| init(*MI.getParent()); |
| IsInitialized = true; |
| Index = Instr2PosIndex.at(&MI); |
| return true; |
| } |
| |
| assert(MI.getParent() == CurMBB && "MI is not in CurMBB"); |
| auto It = Instr2PosIndex.find(&MI); |
| if (It != Instr2PosIndex.end()) { |
| Index = It->second; |
| return false; |
| } |
| |
| // Distance is the number of consecutive unassigned instructions including |
| // MI. Start is the first instruction of them. End is the next of last |
| // instruction of them. |
| // e.g. |
| // |Instruction| A | B | C | MI | D | E | |
| // | Index | 1024 | | | | | 2048 | |
| // |
| // In this case, B, C, MI, D are unassigned. Distance is 4, Start is B, End |
| // is E. |
| unsigned Distance = 1; |
| MachineBasicBlock::const_iterator Start = MI.getIterator(), |
| End = std::next(Start); |
| while (Start != CurMBB->begin() && |
| !Instr2PosIndex.count(&*std::prev(Start))) { |
| --Start; |
| ++Distance; |
| } |
| while (End != CurMBB->end() && !Instr2PosIndex.count(&*(End))) { |
| ++End; |
| ++Distance; |
| } |
| |
| // LastIndex is initialized to last used index prior to MI or zero. |
| // In previous example, LastIndex is 1024, EndIndex is 2048; |
| uint64_t LastIndex = |
| Start == CurMBB->begin() ? 0 : Instr2PosIndex.at(&*std::prev(Start)); |
| uint64_t Step; |
| if (End == CurMBB->end()) |
| Step = static_cast<uint64_t>(InstrDist); |
| else { |
| // No instruction uses index zero. |
| uint64_t EndIndex = Instr2PosIndex.at(&*End); |
| assert(EndIndex > LastIndex && "Index must be ascending order"); |
| unsigned NumAvailableIndexes = EndIndex - LastIndex - 1; |
| // We want index gap between two adjacent MI is as same as possible. Given |
| // total A available indexes, D is number of consecutive unassigned |
| // instructions, S is the step. |
| // |<- S-1 -> MI <- S-1 -> MI <- A-S*D ->| |
| // There're S-1 available indexes between unassigned instruction and its |
| // predecessor. There're A-S*D available indexes between the last |
| // unassigned instruction and its successor. |
| // Ideally, we want |
| // S-1 = A-S*D |
| // then |
| // S = (A+1)/(D+1) |
| // An valid S must be integer greater than zero, so |
| // S <= (A+1)/(D+1) |
| // => |
| // A-S*D >= 0 |
| // That means we can safely use (A+1)/(D+1) as step. |
| // In previous example, Step is 204, Index of B, C, MI, D is 1228, 1432, |
| // 1636, 1840. |
| Step = (NumAvailableIndexes + 1) / (Distance + 1); |
| } |
| |
| // Reassign index for all instructions if number of new inserted |
| // instructions exceed slot or all instructions are new. |
| if (LLVM_UNLIKELY(!Step || (!LastIndex && Step == InstrDist))) { |
| init(*CurMBB); |
| Index = Instr2PosIndex.at(&MI); |
| return true; |
| } |
| |
| for (auto I = Start; I != End; ++I) { |
| LastIndex += Step; |
| Instr2PosIndex[&*I] = LastIndex; |
| } |
| Index = Instr2PosIndex.at(&MI); |
| return false; |
| } |
| |
| private: |
| bool IsInitialized = false; |
| enum { InstrDist = 1024 }; |
| const MachineBasicBlock *CurMBB = nullptr; |
| DenseMap<const MachineInstr *, uint64_t> Instr2PosIndex; |
| }; |
| |
| class RegAllocFastImpl { |
| public: |
| RegAllocFastImpl(const RegAllocFilterFunc F = nullptr, |
| bool ClearVirtRegs_ = true) |
| : ShouldAllocateRegisterImpl(F), StackSlotForVirtReg(-1), |
| ClearVirtRegs(ClearVirtRegs_) {} |
| |
| private: |
| MachineFrameInfo *MFI = nullptr; |
| MachineRegisterInfo *MRI = nullptr; |
| const TargetRegisterInfo *TRI = nullptr; |
| const TargetInstrInfo *TII = nullptr; |
| RegisterClassInfo RegClassInfo; |
| const RegAllocFilterFunc ShouldAllocateRegisterImpl; |
| |
| /// Basic block currently being allocated. |
| MachineBasicBlock *MBB = nullptr; |
| |
| /// Maps virtual regs to the frame index where these values are spilled. |
| IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; |
| |
| /// Everything we know about a live virtual register. |
| struct LiveReg { |
| MachineInstr *LastUse = nullptr; ///< Last instr to use reg. |
| Register VirtReg; ///< Virtual register number. |
| MCPhysReg PhysReg = 0; ///< Currently held here. |
| bool LiveOut = false; ///< Register is possibly live out. |
| bool Reloaded = false; ///< Register was reloaded. |
| bool Error = false; ///< Could not allocate. |
| |
| explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} |
| explicit LiveReg() {} |
| |
| unsigned getSparseSetIndex() const { return VirtReg.virtRegIndex(); } |
| }; |
| |
| using LiveRegMap = SparseSet<LiveReg, identity<unsigned>, uint16_t>; |
| /// This map contains entries for each virtual register that is currently |
| /// available in a physical register. |
| LiveRegMap LiveVirtRegs; |
| |
| /// Stores assigned virtual registers present in the bundle MI. |
| DenseMap<Register, LiveReg> BundleVirtRegsMap; |
| |
| DenseMap<Register, SmallVector<MachineOperand *, 2>> LiveDbgValueMap; |
| /// List of DBG_VALUE that we encountered without the vreg being assigned |
| /// because they were placed after the last use of the vreg. |
| DenseMap<Register, SmallVector<MachineInstr *, 1>> DanglingDbgValues; |
| |
| /// Has a bit set for every virtual register for which it was determined |
| /// that it is alive across blocks. |
| BitVector MayLiveAcrossBlocks; |
| |
| /// State of a register unit. |
| enum RegUnitState { |
| /// A free register is not currently in use and can be allocated |
| /// immediately without checking aliases. |
| regFree, |
| |
| /// A pre-assigned register has been assigned before register allocation |
| /// (e.g., setting up a call parameter). |
| regPreAssigned, |
| |
| /// Used temporarily in reloadAtBegin() to mark register units that are |
| /// live-in to the basic block. |
| regLiveIn, |
| |
| /// A register state may also be a virtual register number, indication |
| /// that the physical register is currently allocated to a virtual |
| /// register. In that case, LiveVirtRegs contains the inverse mapping. |
| }; |
| |
| /// Maps each physical register to a RegUnitState enum or virtual register. |
| std::vector<unsigned> RegUnitStates; |
| |
| SmallVector<MachineInstr *, 32> Coalesced; |
| |
| /// Track register units that are used in the current instruction, and so |
| /// cannot be allocated. |
| /// |
| /// In the first phase (tied defs/early clobber), we consider also physical |
| /// uses, afterwards, we don't. If the lowest bit isn't set, it's a solely |
| /// physical use (markPhysRegUsedInInstr), otherwise, it's a normal use. To |
| /// avoid resetting the entire vector after every instruction, we track the |
| /// instruction "generation" in the remaining 31 bits -- this means, that if |
| /// UsedInInstr[Idx] < InstrGen, the register unit is unused. InstrGen is |
| /// never zero and always incremented by two. |
| /// |
| /// Don't allocate inline storage: the number of register units is typically |
| /// quite large (e.g., AArch64 > 100, X86 > 200, AMDGPU > 1000). |
| uint32_t InstrGen; |
| SmallVector<unsigned, 0> UsedInInstr; |
| |
| SmallVector<unsigned, 8> DefOperandIndexes; |
| // Register masks attached to the current instruction. |
| SmallVector<const uint32_t *> RegMasks; |
| |
| // Assign index for each instruction to quickly determine dominance. |
| InstrPosIndexes PosIndexes; |
| |
| void setPhysRegState(MCRegister PhysReg, unsigned NewState); |
| bool isPhysRegFree(MCRegister PhysReg) const; |
| |
| /// Mark a physreg as used in this instruction. |
| void markRegUsedInInstr(MCPhysReg PhysReg) { |
| for (MCRegUnit Unit : TRI->regunits(PhysReg)) |
| UsedInInstr[Unit] = InstrGen | 1; |
| } |
| |
| // Check if physreg is clobbered by instruction's regmask(s). |
| bool isClobberedByRegMasks(MCRegister PhysReg) const { |
| return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) { |
| return MachineOperand::clobbersPhysReg(Mask, PhysReg); |
| }); |
| } |
| |
| /// Check if a physreg or any of its aliases are used in this instruction. |
| bool isRegUsedInInstr(MCRegister PhysReg, bool LookAtPhysRegUses) const { |
| if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg)) |
| return true; |
| for (MCRegUnit Unit : TRI->regunits(PhysReg)) |
| if (UsedInInstr[Unit] >= (InstrGen | !LookAtPhysRegUses)) |
| return true; |
| return false; |
| } |
| |
| /// Mark physical register as being used in a register use operand. |
| /// This is only used by the special livethrough handling code. |
| void markPhysRegUsedInInstr(MCRegister PhysReg) { |
| for (MCRegUnit Unit : TRI->regunits(PhysReg)) { |
| assert(UsedInInstr[Unit] <= InstrGen && "non-phys use before phys use?"); |
| UsedInInstr[Unit] = InstrGen; |
| } |
| } |
| |
| /// Remove mark of physical register being used in the instruction. |
| void unmarkRegUsedInInstr(MCRegister PhysReg) { |
| for (MCRegUnit Unit : TRI->regunits(PhysReg)) |
| UsedInInstr[Unit] = 0; |
| } |
| |
| enum : unsigned { |
| spillClean = 50, |
| spillDirty = 100, |
| spillPrefBonus = 20, |
| spillImpossible = ~0u |
| }; |
| |
| public: |
| bool ClearVirtRegs; |
| |
| bool runOnMachineFunction(MachineFunction &MF); |
| |
| private: |
| void allocateBasicBlock(MachineBasicBlock &MBB); |
| |
| void addRegClassDefCounts(MutableArrayRef<unsigned> RegClassDefCounts, |
| Register Reg) const; |
| |
| void findAndSortDefOperandIndexes(const MachineInstr &MI); |
| |
| void allocateInstruction(MachineInstr &MI); |
| void handleDebugValue(MachineInstr &MI); |
| void handleBundle(MachineInstr &MI); |
| |
| bool usePhysReg(MachineInstr &MI, MCRegister PhysReg); |
| bool definePhysReg(MachineInstr &MI, MCRegister PhysReg); |
| bool displacePhysReg(MachineInstr &MI, MCRegister PhysReg); |
| void freePhysReg(MCRegister PhysReg); |
| |
| unsigned calcSpillCost(MCPhysReg PhysReg) const; |
| |
| LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { |
| return LiveVirtRegs.find(VirtReg.virtRegIndex()); |
| } |
| |
| LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { |
| return LiveVirtRegs.find(VirtReg.virtRegIndex()); |
| } |
| |
| void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCRegister PhysReg); |
| void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, |
| bool LookAtPhysRegUses = false); |
| void allocVirtRegUndef(MachineOperand &MO); |
| void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, |
| MCRegister Reg); |
| bool defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, |
| Register VirtReg); |
| bool defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, |
| bool LookAtPhysRegUses = false); |
| bool useVirtReg(MachineInstr &MI, MachineOperand &MO, Register VirtReg); |
| |
| MCPhysReg getErrorAssignment(const LiveReg &LR, MachineInstr &MI, |
| const TargetRegisterClass &RC); |
| |
| MachineBasicBlock::iterator |
| getMBBBeginInsertionPoint(MachineBasicBlock &MBB, |
| SmallSet<Register, 2> &PrologLiveIns) const; |
| |
| void reloadAtBegin(MachineBasicBlock &MBB); |
| bool setPhysReg(MachineInstr &MI, MachineOperand &MO, |
| const LiveReg &Assignment); |
| |
| Register traceCopies(Register VirtReg) const; |
| Register traceCopyChain(Register Reg) const; |
| |
| bool shouldAllocateRegister(const Register Reg) const; |
| int getStackSpaceFor(Register VirtReg); |
| void spill(MachineBasicBlock::iterator Before, Register VirtReg, |
| MCPhysReg AssignedReg, bool Kill, bool LiveOut); |
| void reload(MachineBasicBlock::iterator Before, Register VirtReg, |
| MCPhysReg PhysReg); |
| |
| bool mayLiveOut(Register VirtReg); |
| bool mayLiveIn(Register VirtReg); |
| |
| bool mayBeSpillFromInlineAsmBr(const MachineInstr &MI) const; |
| |
| void dumpState() const; |
| }; |
| |
| class RegAllocFast : public MachineFunctionPass { |
| RegAllocFastImpl Impl; |
| |
| public: |
| static char ID; |
| |
| RegAllocFast(const RegAllocFilterFunc F = nullptr, bool ClearVirtRegs_ = true) |
| : MachineFunctionPass(ID), Impl(F, ClearVirtRegs_) {} |
| |
| bool runOnMachineFunction(MachineFunction &MF) override { |
| return Impl.runOnMachineFunction(MF); |
| } |
| |
| StringRef getPassName() const override { return "Fast Register Allocator"; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.setPreservesCFG(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| MachineFunctionProperties getRequiredProperties() const override { |
| return MachineFunctionProperties().set( |
| MachineFunctionProperties::Property::NoPHIs); |
| } |
| |
| MachineFunctionProperties getSetProperties() const override { |
| if (Impl.ClearVirtRegs) { |
| return MachineFunctionProperties().set( |
| MachineFunctionProperties::Property::NoVRegs); |
| } |
| |
| return MachineFunctionProperties(); |
| } |
| |
| MachineFunctionProperties getClearedProperties() const override { |
| return MachineFunctionProperties().set( |
| MachineFunctionProperties::Property::IsSSA); |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| char RegAllocFast::ID = 0; |
| |
| INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, |
| false) |
| |
| bool RegAllocFastImpl::shouldAllocateRegister(const Register Reg) const { |
| assert(Reg.isVirtual()); |
| if (!ShouldAllocateRegisterImpl) |
| return true; |
| |
| return ShouldAllocateRegisterImpl(*TRI, *MRI, Reg); |
| } |
| |
| void RegAllocFastImpl::setPhysRegState(MCRegister PhysReg, unsigned NewState) { |
| for (MCRegUnit Unit : TRI->regunits(PhysReg)) |
| RegUnitStates[Unit] = NewState; |
| } |
| |
| bool RegAllocFastImpl::isPhysRegFree(MCRegister PhysReg) const { |
| for (MCRegUnit Unit : TRI->regunits(PhysReg)) { |
| if (RegUnitStates[Unit] != regFree) |
| return false; |
| } |
| return true; |
| } |
| |
| /// This allocates space for the specified virtual register to be held on the |
| /// stack. |
| int RegAllocFastImpl::getStackSpaceFor(Register VirtReg) { |
| // Find the location Reg would belong... |
| int SS = StackSlotForVirtReg[VirtReg]; |
| // Already has space allocated? |
| if (SS != -1) |
| return SS; |
| |
| // Allocate a new stack object for this spill location... |
| const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); |
| unsigned Size = TRI->getSpillSize(RC); |
| Align Alignment = TRI->getSpillAlign(RC); |
| int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); |
| |
| // Assign the slot. |
| StackSlotForVirtReg[VirtReg] = FrameIdx; |
| return FrameIdx; |
| } |
| |
| static bool dominates(InstrPosIndexes &PosIndexes, const MachineInstr &A, |
| const MachineInstr &B) { |
| uint64_t IndexA, IndexB; |
| PosIndexes.getIndex(A, IndexA); |
| if (LLVM_UNLIKELY(PosIndexes.getIndex(B, IndexB))) |
| PosIndexes.getIndex(A, IndexA); |
| return IndexA < IndexB; |
| } |
| |
| /// Returns true if \p MI is a spill of a live-in physical register in a block |
| /// targeted by an INLINEASM_BR. Such spills must precede reloads of live-in |
| /// virtual registers, so that we do not reload from an uninitialized stack |
| /// slot. |
| bool RegAllocFastImpl::mayBeSpillFromInlineAsmBr(const MachineInstr &MI) const { |
| int FI; |
| auto *MBB = MI.getParent(); |
| if (MBB->isInlineAsmBrIndirectTarget() && TII->isStoreToStackSlot(MI, FI) && |
| MFI->isSpillSlotObjectIndex(FI)) |
| for (const auto &Op : MI.operands()) |
| if (Op.isReg() && MBB->isLiveIn(Op.getReg())) |
| return true; |
| return false; |
| } |
| |
| /// Returns false if \p VirtReg is known to not live out of the current block. |
| bool RegAllocFastImpl::mayLiveOut(Register VirtReg) { |
| if (MayLiveAcrossBlocks.test(VirtReg.virtRegIndex())) { |
| // Cannot be live-out if there are no successors. |
| return !MBB->succ_empty(); |
| } |
| |
| const MachineInstr *SelfLoopDef = nullptr; |
| |
| // If this block loops back to itself, it is necessary to check whether the |
| // use comes after the def. |
| if (MBB->isSuccessor(MBB)) { |
| // Find the first def in the self loop MBB. |
| for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { |
| if (DefInst.getParent() != MBB) { |
| MayLiveAcrossBlocks.set(VirtReg.virtRegIndex()); |
| return true; |
| } else { |
| if (!SelfLoopDef || dominates(PosIndexes, DefInst, *SelfLoopDef)) |
| SelfLoopDef = &DefInst; |
| } |
| } |
| if (!SelfLoopDef) { |
| MayLiveAcrossBlocks.set(VirtReg.virtRegIndex()); |
| return true; |
| } |
| } |
| |
| // See if the first \p Limit uses of the register are all in the current |
| // block. |
| static const unsigned Limit = 8; |
| unsigned C = 0; |
| for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { |
| if (UseInst.getParent() != MBB || ++C >= Limit) { |
| MayLiveAcrossBlocks.set(VirtReg.virtRegIndex()); |
| // Cannot be live-out if there are no successors. |
| return !MBB->succ_empty(); |
| } |
| |
| if (SelfLoopDef) { |
| // Try to handle some simple cases to avoid spilling and reloading every |
| // value inside a self looping block. |
| if (SelfLoopDef == &UseInst || |
| !dominates(PosIndexes, *SelfLoopDef, UseInst)) { |
| MayLiveAcrossBlocks.set(VirtReg.virtRegIndex()); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Returns false if \p VirtReg is known to not be live into the current block. |
| bool RegAllocFastImpl::mayLiveIn(Register VirtReg) { |
| if (MayLiveAcrossBlocks.test(VirtReg.virtRegIndex())) |
| return !MBB->pred_empty(); |
| |
| // See if the first \p Limit def of the register are all in the current block. |
| static const unsigned Limit = 8; |
| unsigned C = 0; |
| for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { |
| if (DefInst.getParent() != MBB || ++C >= Limit) { |
| MayLiveAcrossBlocks.set(VirtReg.virtRegIndex()); |
| return !MBB->pred_empty(); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Insert spill instruction for \p AssignedReg before \p Before. Update |
| /// DBG_VALUEs with \p VirtReg operands with the stack slot. |
| void RegAllocFastImpl::spill(MachineBasicBlock::iterator Before, |
| Register VirtReg, MCPhysReg AssignedReg, bool Kill, |
| bool LiveOut) { |
| LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) << " in " |
| << printReg(AssignedReg, TRI)); |
| int FI = getStackSpaceFor(VirtReg); |
| LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); |
| |
| const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); |
| TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI, |
| VirtReg); |
| ++NumStores; |
| |
| MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); |
| |
| // When we spill a virtual register, we will have spill instructions behind |
| // every definition of it, meaning we can switch all the DBG_VALUEs over |
| // to just reference the stack slot. |
| SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg]; |
| SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2> |
| SpilledOperandsMap; |
| for (MachineOperand *MO : LRIDbgOperands) |
| SpilledOperandsMap[MO->getParent()].push_back(MO); |
| for (const auto &MISpilledOperands : SpilledOperandsMap) { |
| MachineInstr &DBG = *MISpilledOperands.first; |
| // We don't have enough support for tracking operands of DBG_VALUE_LISTs. |
| if (DBG.isDebugValueList()) |
| continue; |
| MachineInstr *NewDV = buildDbgValueForSpill( |
| *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second); |
| assert(NewDV->getParent() == MBB && "dangling parent pointer"); |
| (void)NewDV; |
| LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); |
| |
| if (LiveOut) { |
| // We need to insert a DBG_VALUE at the end of the block if the spill slot |
| // is live out, but there is another use of the value after the |
| // spill. This will allow LiveDebugValues to see the correct live out |
| // value to propagate to the successors. |
| MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV); |
| MBB->insert(FirstTerm, ClonedDV); |
| LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n"); |
| } |
| |
| // Rewrite unassigned dbg_values to use the stack slot. |
| // TODO We can potentially do this for list debug values as well if we know |
| // how the dbg_values are getting unassigned. |
| if (DBG.isNonListDebugValue()) { |
| MachineOperand &MO = DBG.getDebugOperand(0); |
| if (MO.isReg() && MO.getReg() == 0) { |
| updateDbgValueForSpill(DBG, FI, 0); |
| } |
| } |
| } |
| // Now this register is spilled there is should not be any DBG_VALUE |
| // pointing to this register because they are all pointing to spilled value |
| // now. |
| LRIDbgOperands.clear(); |
| } |
| |
| /// Insert reload instruction for \p PhysReg before \p Before. |
| void RegAllocFastImpl::reload(MachineBasicBlock::iterator Before, |
| Register VirtReg, MCPhysReg PhysReg) { |
| LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " |
| << printReg(PhysReg, TRI) << '\n'); |
| int FI = getStackSpaceFor(VirtReg); |
| const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); |
| TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI, VirtReg); |
| ++NumLoads; |
| } |
| |
| /// Get basic block begin insertion point. |
| /// This is not just MBB.begin() because surprisingly we have EH_LABEL |
| /// instructions marking the begin of a basic block. This means we must insert |
| /// new instructions after such labels... |
| MachineBasicBlock::iterator RegAllocFastImpl::getMBBBeginInsertionPoint( |
| MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { |
| MachineBasicBlock::iterator I = MBB.begin(); |
| while (I != MBB.end()) { |
| if (I->isLabel()) { |
| ++I; |
| continue; |
| } |
| |
| // Skip prologues and inlineasm_br spills to place reloads afterwards. |
| if (!TII->isBasicBlockPrologue(*I) && !mayBeSpillFromInlineAsmBr(*I)) |
| break; |
| |
| // However if a prolog instruction reads a register that needs to be |
| // reloaded, the reload should be inserted before the prolog. |
| for (MachineOperand &MO : I->operands()) { |
| if (MO.isReg()) |
| PrologLiveIns.insert(MO.getReg()); |
| } |
| |
| ++I; |
| } |
| |
| return I; |
| } |
| |
| /// Reload all currently assigned virtual registers. |
| void RegAllocFastImpl::reloadAtBegin(MachineBasicBlock &MBB) { |
| if (LiveVirtRegs.empty()) |
| return; |
| |
| for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { |
| MCRegister Reg = P.PhysReg; |
| // Set state to live-in. This possibly overrides mappings to virtual |
| // registers but we don't care anymore at this point. |
| setPhysRegState(Reg, regLiveIn); |
| } |
| |
| SmallSet<Register, 2> PrologLiveIns; |
| |
| // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order |
| // of spilling here is deterministic, if arbitrary. |
| MachineBasicBlock::iterator InsertBefore = |
| getMBBBeginInsertionPoint(MBB, PrologLiveIns); |
| for (const LiveReg &LR : LiveVirtRegs) { |
| MCPhysReg PhysReg = LR.PhysReg; |
| if (PhysReg == 0 || LR.Error) |
| continue; |
| |
| MCRegUnit FirstUnit = *TRI->regunits(PhysReg).begin(); |
| if (RegUnitStates[FirstUnit] == regLiveIn) |
| continue; |
| |
| assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && |
| "no reload in start block. Missing vreg def?"); |
| |
| if (PrologLiveIns.count(PhysReg)) { |
| // FIXME: Theoretically this should use an insert point skipping labels |
| // but I'm not sure how labels should interact with prolog instruction |
| // that need reloads. |
| reload(MBB.begin(), LR.VirtReg, PhysReg); |
| } else |
| reload(InsertBefore, LR.VirtReg, PhysReg); |
| } |
| LiveVirtRegs.clear(); |
| } |
| |
| /// Handle the direct use of a physical register. Check that the register is |
| /// not used by a virtreg. Kill the physreg, marking it free. This may add |
| /// implicit kills to MO->getParent() and invalidate MO. |
| bool RegAllocFastImpl::usePhysReg(MachineInstr &MI, MCRegister Reg) { |
| assert(Register::isPhysicalRegister(Reg) && "expected physreg"); |
| bool displacedAny = displacePhysReg(MI, Reg); |
| setPhysRegState(Reg, regPreAssigned); |
| markRegUsedInInstr(Reg); |
| return displacedAny; |
| } |
| |
| bool RegAllocFastImpl::definePhysReg(MachineInstr &MI, MCRegister Reg) { |
| bool displacedAny = displacePhysReg(MI, Reg); |
| setPhysRegState(Reg, regPreAssigned); |
| return displacedAny; |
| } |
| |
| /// Mark PhysReg as reserved or free after spilling any virtregs. This is very |
| /// similar to defineVirtReg except the physreg is reserved instead of |
| /// allocated. |
| bool RegAllocFastImpl::displacePhysReg(MachineInstr &MI, MCRegister PhysReg) { |
| bool displacedAny = false; |
| |
| for (MCRegUnit Unit : TRI->regunits(PhysReg)) { |
| switch (unsigned VirtReg = RegUnitStates[Unit]) { |
| default: { |
| LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); |
| assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); |
| MachineBasicBlock::iterator ReloadBefore = |
| std::next((MachineBasicBlock::iterator)MI.getIterator()); |
| while (mayBeSpillFromInlineAsmBr(*ReloadBefore)) |
| ++ReloadBefore; |
| reload(ReloadBefore, VirtReg, LRI->PhysReg); |
| |
| setPhysRegState(LRI->PhysReg, regFree); |
| LRI->PhysReg = 0; |
| LRI->Reloaded = true; |
| displacedAny = true; |
| break; |
| } |
| case regPreAssigned: |
| RegUnitStates[Unit] = regFree; |
| displacedAny = true; |
| break; |
| case regFree: |
| break; |
| } |
| } |
| return displacedAny; |
| } |
| |
| void RegAllocFastImpl::freePhysReg(MCRegister PhysReg) { |
| LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); |
| |
| MCRegUnit FirstUnit = *TRI->regunits(PhysReg).begin(); |
| switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { |
| case regFree: |
| LLVM_DEBUG(dbgs() << '\n'); |
| return; |
| case regPreAssigned: |
| LLVM_DEBUG(dbgs() << '\n'); |
| setPhysRegState(PhysReg, regFree); |
| return; |
| default: { |
| LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); |
| assert(LRI != LiveVirtRegs.end()); |
| LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); |
| setPhysRegState(LRI->PhysReg, regFree); |
| LRI->PhysReg = 0; |
| } |
| return; |
| } |
| } |
| |
| /// Return the cost of spilling clearing out PhysReg and aliases so it is free |
| /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases |
| /// disabled - it can be allocated directly. |
| /// \returns spillImpossible when PhysReg or an alias can't be spilled. |
| unsigned RegAllocFastImpl::calcSpillCost(MCPhysReg PhysReg) const { |
| for (MCRegUnit Unit : TRI->regunits(PhysReg)) { |
| switch (unsigned VirtReg = RegUnitStates[Unit]) { |
| case regFree: |
| break; |
| case regPreAssigned: |
| LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " |
| << printReg(PhysReg, TRI) << '\n'); |
| return spillImpossible; |
| default: { |
| bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || |
| findLiveVirtReg(VirtReg)->LiveOut; |
| return SureSpill ? spillClean : spillDirty; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| void RegAllocFastImpl::assignDanglingDebugValues(MachineInstr &Definition, |
| Register VirtReg, |
| MCRegister Reg) { |
| auto UDBGValIter = DanglingDbgValues.find(VirtReg); |
| if (UDBGValIter == DanglingDbgValues.end()) |
| return; |
| |
| SmallVectorImpl<MachineInstr *> &Dangling = UDBGValIter->second; |
| for (MachineInstr *DbgValue : Dangling) { |
| assert(DbgValue->isDebugValue()); |
| if (!DbgValue->hasDebugOperandForReg(VirtReg)) |
| continue; |
| |
| // Test whether the physreg survives from the definition to the DBG_VALUE. |
| MCPhysReg SetToReg = Reg; |
| unsigned Limit = 20; |
| for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), |
| E = DbgValue->getIterator(); |
| I != E; ++I) { |
| if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { |
| LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue |
| << '\n'); |
| SetToReg = 0; |
| break; |
| } |
| } |
| for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) { |
| MO.setReg(SetToReg); |
| if (SetToReg != 0) |
| MO.setIsRenamable(); |
| } |
| } |
| Dangling.clear(); |
| } |
| |
| /// This method updates local state so that we know that PhysReg is the |
| /// proper container for VirtReg now. The physical register must not be used |
| /// for anything else when this is called. |
| void RegAllocFastImpl::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, |
| MCRegister PhysReg) { |
| Register VirtReg = LR.VirtReg; |
| LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " |
| << printReg(PhysReg, TRI) << '\n'); |
| assert(LR.PhysReg == 0 && "Already assigned a physreg"); |
| assert(PhysReg != 0 && "Trying to assign no register"); |
| LR.PhysReg = PhysReg; |
| setPhysRegState(PhysReg, VirtReg.id()); |
| |
| assignDanglingDebugValues(AtMI, VirtReg, PhysReg); |
| } |
| |
| static bool isCoalescable(const MachineInstr &MI) { return MI.isFullCopy(); } |
| |
| Register RegAllocFastImpl::traceCopyChain(Register Reg) const { |
| static const unsigned ChainLengthLimit = 3; |
| unsigned C = 0; |
| do { |
| if (Reg.isPhysical()) |
| return Reg; |
| assert(Reg.isVirtual()); |
| |
| MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); |
| if (!VRegDef || !isCoalescable(*VRegDef)) |
| return 0; |
| Reg = VRegDef->getOperand(1).getReg(); |
| } while (++C <= ChainLengthLimit); |
| return 0; |
| } |
| |
| /// Check if any of \p VirtReg's definitions is a copy. If it is follow the |
| /// chain of copies to check whether we reach a physical register we can |
| /// coalesce with. |
| Register RegAllocFastImpl::traceCopies(Register VirtReg) const { |
| static const unsigned DefLimit = 3; |
| unsigned C = 0; |
| for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { |
| if (isCoalescable(MI)) { |
| Register Reg = MI.getOperand(1).getReg(); |
| Reg = traceCopyChain(Reg); |
| if (Reg.isValid()) |
| return Reg; |
| } |
| |
| if (++C >= DefLimit) |
| break; |
| } |
| return Register(); |
| } |
| |
| /// Allocates a physical register for VirtReg. |
| void RegAllocFastImpl::allocVirtReg(MachineInstr &MI, LiveReg &LR, |
| Register Hint0, bool LookAtPhysRegUses) { |
| const Register VirtReg = LR.VirtReg; |
| assert(LR.PhysReg == 0); |
| |
| const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); |
| LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) |
| << " in class " << TRI->getRegClassName(&RC) |
| << " with hint " << printReg(Hint0, TRI) << '\n'); |
| |
| // Take hint when possible. |
| if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && |
| !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { |
| // Take hint if the register is currently free. |
| if (isPhysRegFree(Hint0)) { |
| LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) |
| << '\n'); |
| assignVirtToPhysReg(MI, LR, Hint0); |
| return; |
| } else { |
| LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) |
| << " occupied\n"); |
| } |
| } else { |
| Hint0 = Register(); |
| } |
| |
| // Try other hint. |
| Register Hint1 = traceCopies(VirtReg); |
| if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && |
| !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { |
| // Take hint if the register is currently free. |
| if (isPhysRegFree(Hint1)) { |
| LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) |
| << '\n'); |
| assignVirtToPhysReg(MI, LR, Hint1); |
| return; |
| } else { |
| LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) |
| << " occupied\n"); |
| } |
| } else { |
| Hint1 = Register(); |
| } |
| |
| MCPhysReg BestReg = 0; |
| unsigned BestCost = spillImpossible; |
| ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); |
| for (MCPhysReg PhysReg : AllocationOrder) { |
| LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); |
| if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { |
| LLVM_DEBUG(dbgs() << "already used in instr.\n"); |
| continue; |
| } |
| |
| unsigned Cost = calcSpillCost(PhysReg); |
| LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); |
| // Immediate take a register with cost 0. |
| if (Cost == 0) { |
| assignVirtToPhysReg(MI, LR, PhysReg); |
| return; |
| } |
| |
| if (PhysReg == Hint0 || PhysReg == Hint1) |
| Cost -= spillPrefBonus; |
| |
| if (Cost < BestCost) { |
| BestReg = PhysReg; |
| BestCost = Cost; |
| } |
| } |
| |
| if (!BestReg) { |
| // Nothing we can do: Report an error and keep going with an invalid |
| // allocation. |
| LR.PhysReg = getErrorAssignment(LR, MI, RC); |
| LR.Error = true; |
| return; |
| } |
| |
| displacePhysReg(MI, BestReg); |
| assignVirtToPhysReg(MI, LR, BestReg); |
| } |
| |
| void RegAllocFastImpl::allocVirtRegUndef(MachineOperand &MO) { |
| assert(MO.isUndef() && "expected undef use"); |
| Register VirtReg = MO.getReg(); |
| assert(VirtReg.isVirtual() && "Expected virtreg"); |
| if (!shouldAllocateRegister(VirtReg)) |
| return; |
| |
| LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); |
| MCPhysReg PhysReg; |
| bool IsRenamable = true; |
| if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { |
| PhysReg = LRI->PhysReg; |
| } else { |
| const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); |
| ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); |
| if (AllocationOrder.empty()) { |
| // All registers in the class were reserved. |
| // |
| // It might be OK to take any entry from the class as this is an undef |
| // use, but accepting this would give different behavior than greedy and |
| // basic. |
| PhysReg = getErrorAssignment(*LRI, *MO.getParent(), RC); |
| LRI->Error = true; |
| IsRenamable = false; |
| } else |
| PhysReg = AllocationOrder.front(); |
| } |
| |
| unsigned SubRegIdx = MO.getSubReg(); |
| if (SubRegIdx != 0) { |
| PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); |
| MO.setSubReg(0); |
| } |
| MO.setReg(PhysReg); |
| MO.setIsRenamable(IsRenamable); |
| } |
| |
| /// Variation of defineVirtReg() with special handling for livethrough regs |
| /// (tied or earlyclobber) that may interfere with preassigned uses. |
| /// \return true if MI's MachineOperands were re-arranged/invalidated. |
| bool RegAllocFastImpl::defineLiveThroughVirtReg(MachineInstr &MI, |
| unsigned OpNum, |
| Register VirtReg) { |
| if (!shouldAllocateRegister(VirtReg)) |
| return false; |
| LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); |
| if (LRI != LiveVirtRegs.end()) { |
| MCPhysReg PrevReg = LRI->PhysReg; |
| if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { |
| LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) |
| << " (tied/earlyclobber resolution)\n"); |
| freePhysReg(PrevReg); |
| LRI->PhysReg = 0; |
| allocVirtReg(MI, *LRI, 0, true); |
| MachineBasicBlock::iterator InsertBefore = |
| std::next((MachineBasicBlock::iterator)MI.getIterator()); |
| LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " |
| << printReg(PrevReg, TRI) << '\n'); |
| BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), |
| TII->get(TargetOpcode::COPY), PrevReg) |
| .addReg(LRI->PhysReg, llvm::RegState::Kill); |
| } |
| MachineOperand &MO = MI.getOperand(OpNum); |
| if (MO.getSubReg() && !MO.isUndef()) { |
| LRI->LastUse = &MI; |
| } |
| } |
| return defineVirtReg(MI, OpNum, VirtReg, true); |
| } |
| |
| /// Allocates a register for VirtReg definition. Typically the register is |
| /// already assigned from a use of the virtreg, however we still need to |
| /// perform an allocation if: |
| /// - It is a dead definition without any uses. |
| /// - The value is live out and all uses are in different basic blocks. |
| /// |
| /// \return true if MI's MachineOperands were re-arranged/invalidated. |
| bool RegAllocFastImpl::defineVirtReg(MachineInstr &MI, unsigned OpNum, |
| Register VirtReg, bool LookAtPhysRegUses) { |
| assert(VirtReg.isVirtual() && "Not a virtual register"); |
| if (!shouldAllocateRegister(VirtReg)) |
| return false; |
| MachineOperand &MO = MI.getOperand(OpNum); |
| LiveRegMap::iterator LRI; |
| bool New; |
| std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); |
| if (New) { |
| if (!MO.isDead()) { |
| if (mayLiveOut(VirtReg)) { |
| LRI->LiveOut = true; |
| } else { |
| // It is a dead def without the dead flag; add the flag now. |
| MO.setIsDead(true); |
| } |
| } |
| } |
| if (LRI->PhysReg == 0) { |
| allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); |
| } else { |
| assert((!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) || LRI->Error) && |
| "TODO: preassign mismatch"); |
| LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) |
| << " use existing assignment to " |
| << printReg(LRI->PhysReg, TRI) << '\n'); |
| } |
| |
| MCPhysReg PhysReg = LRI->PhysReg; |
| if (LRI->Reloaded || LRI->LiveOut) { |
| if (!MI.isImplicitDef()) { |
| MachineBasicBlock::iterator SpillBefore = |
| std::next((MachineBasicBlock::iterator)MI.getIterator()); |
| LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut |
| << " RL: " << LRI->Reloaded << '\n'); |
| bool Kill = LRI->LastUse == nullptr; |
| spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut); |
| |
| // We need to place additional spills for each indirect destination of an |
| // INLINEASM_BR. |
| if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) { |
| int FI = StackSlotForVirtReg[VirtReg]; |
| const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); |
| for (MachineOperand &MO : MI.operands()) { |
| if (MO.isMBB()) { |
| MachineBasicBlock *Succ = MO.getMBB(); |
| TII->storeRegToStackSlot(*Succ, Succ->begin(), PhysReg, Kill, FI, |
| &RC, TRI, VirtReg); |
| ++NumStores; |
| Succ->addLiveIn(PhysReg); |
| } |
| } |
| } |
| |
| LRI->LastUse = nullptr; |
| } |
| LRI->LiveOut = false; |
| LRI->Reloaded = false; |
| } |
| if (MI.getOpcode() == TargetOpcode::BUNDLE) { |
| BundleVirtRegsMap[VirtReg] = *LRI; |
| } |
| markRegUsedInInstr(PhysReg); |
| return setPhysReg(MI, MO, *LRI); |
| } |
| |
| /// Allocates a register for a VirtReg use. |
| /// \return true if MI's MachineOperands were re-arranged/invalidated. |
| bool RegAllocFastImpl::useVirtReg(MachineInstr &MI, MachineOperand &MO, |
| Register VirtReg) { |
| assert(VirtReg.isVirtual() && "Not a virtual register"); |
| if (!shouldAllocateRegister(VirtReg)) |
| return false; |
| LiveRegMap::iterator LRI; |
| bool New; |
| std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); |
| if (New) { |
| if (!MO.isKill()) { |
| if (mayLiveOut(VirtReg)) { |
| LRI->LiveOut = true; |
| } else { |
| // It is a last (killing) use without the kill flag; add the flag now. |
| MO.setIsKill(true); |
| } |
| } |
| } else { |
| assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); |
| } |
| |
| // If necessary allocate a register. |
| if (LRI->PhysReg == 0) { |
| assert(!MO.isTied() && "tied op should be allocated"); |
| Register Hint; |
| if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { |
| Hint = MI.getOperand(0).getReg(); |
| if (Hint.isVirtual()) { |
| assert(!shouldAllocateRegister(Hint)); |
| Hint = Register(); |
| } else { |
| assert(Hint.isPhysical() && |
| "Copy destination should already be assigned"); |
| } |
| } |
| allocVirtReg(MI, *LRI, Hint, false); |
| } |
| |
| LRI->LastUse = &MI; |
| |
| if (MI.getOpcode() == TargetOpcode::BUNDLE) { |
| BundleVirtRegsMap[VirtReg] = *LRI; |
| } |
| markRegUsedInInstr(LRI->PhysReg); |
| return setPhysReg(MI, MO, *LRI); |
| } |
| |
| /// Query a physical register to use as a filler in contexts where the |
| /// allocation has failed. This will raise an error, but not abort the |
| /// compilation. |
| MCPhysReg RegAllocFastImpl::getErrorAssignment(const LiveReg &LR, |
| MachineInstr &MI, |
| const TargetRegisterClass &RC) { |
| MachineFunction &MF = *MI.getMF(); |
| |
| // Avoid repeating the error every time a register is used. |
| bool EmitError = !MF.getProperties().hasProperty( |
| MachineFunctionProperties::Property::FailedRegAlloc); |
| if (EmitError) |
| MF.getProperties().set(MachineFunctionProperties::Property::FailedRegAlloc); |
| |
| // If the allocation order was empty, all registers in the class were |
| // probably reserved. Fall back to taking the first register in the class, |
| // even if it's reserved. |
| ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); |
| if (AllocationOrder.empty()) { |
| const Function &Fn = MF.getFunction(); |
| if (EmitError) { |
| Fn.getContext().diagnose(DiagnosticInfoRegAllocFailure( |
| "no registers from class available to allocate", Fn, |
| MI.getDebugLoc())); |
| } |
| |
| ArrayRef<MCPhysReg> RawRegs = RC.getRegisters(); |
| assert(!RawRegs.empty() && "register classes cannot have no registers"); |
| return RawRegs.front(); |
| } |
| |
| if (!LR.Error && EmitError) { |
| // Nothing we can do: Report an error and keep going with an invalid |
| // allocation. |
| if (MI.isInlineAsm()) { |
| MI.emitInlineAsmError( |
| "inline assembly requires more registers than available"); |
| } else { |
| const Function &Fn = MBB->getParent()->getFunction(); |
| Fn.getContext().diagnose(DiagnosticInfoRegAllocFailure( |
| "ran out of registers during register allocation", Fn, |
| MI.getDebugLoc())); |
| } |
| } |
| |
| return AllocationOrder.front(); |
| } |
| |
| /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. |
| /// \return true if MI's MachineOperands were re-arranged/invalidated. |
| bool RegAllocFastImpl::setPhysReg(MachineInstr &MI, MachineOperand &MO, |
| const LiveReg &Assignment) { |
| MCPhysReg PhysReg = Assignment.PhysReg; |
| assert(PhysReg && "assignments should always be to a valid physreg"); |
| |
| if (LLVM_UNLIKELY(Assignment.Error)) { |
| // Make sure we don't set renamable in error scenarios, as we may have |
| // assigned to a reserved register. |
| if (MO.isUse()) |
| MO.setIsUndef(true); |
| } |
| |
| if (!MO.getSubReg()) { |
| MO.setReg(PhysReg); |
| MO.setIsRenamable(!Assignment.Error); |
| return false; |
| } |
| |
| // Handle subregister index. |
| MO.setReg(TRI->getSubReg(PhysReg, MO.getSubReg())); |
| MO.setIsRenamable(!Assignment.Error); |
| |
| // Note: We leave the subreg number around a little longer in case of defs. |
| // This is so that the register freeing logic in allocateInstruction can still |
| // recognize this as subregister defs. The code there will clear the number. |
| if (!MO.isDef()) |
| MO.setSubReg(0); |
| |
| // A kill flag implies killing the full register. Add corresponding super |
| // register kill. |
| if (MO.isKill()) { |
| MI.addRegisterKilled(PhysReg, TRI, true); |
| // Conservatively assume implicit MOs were re-arranged |
| return true; |
| } |
| |
| // A <def,read-undef> of a sub-register requires an implicit def of the full |
| // register. |
| if (MO.isDef() && MO.isUndef()) { |
| if (MO.isDead()) |
| MI.addRegisterDead(PhysReg, TRI, true); |
| else |
| MI.addRegisterDefined(PhysReg, TRI); |
| // Conservatively assume implicit MOs were re-arranged |
| return true; |
| } |
| return false; |
| } |
| |
| #ifndef NDEBUG |
| |
| void RegAllocFastImpl::dumpState() const { |
| for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; |
| ++Unit) { |
| switch (unsigned VirtReg = RegUnitStates[Unit]) { |
| case regFree: |
| break; |
| case regPreAssigned: |
| dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; |
| break; |
| case regLiveIn: |
| llvm_unreachable("Should not have regLiveIn in map"); |
| default: { |
| dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); |
| LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); |
| assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); |
| if (I->LiveOut || I->Reloaded) { |
| dbgs() << '['; |
| if (I->LiveOut) |
| dbgs() << 'O'; |
| if (I->Reloaded) |
| dbgs() << 'R'; |
| dbgs() << ']'; |
| } |
| assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); |
| break; |
| } |
| } |
| } |
| dbgs() << '\n'; |
| // Check that LiveVirtRegs is the inverse. |
| for (const LiveReg &LR : LiveVirtRegs) { |
| Register VirtReg = LR.VirtReg; |
| assert(VirtReg.isVirtual() && "Bad map key"); |
| MCPhysReg PhysReg = LR.PhysReg; |
| if (PhysReg != 0) { |
| assert(Register::isPhysicalRegister(PhysReg) && "mapped to physreg"); |
| for (MCRegUnit Unit : TRI->regunits(PhysReg)) { |
| assert(RegUnitStates[Unit] == VirtReg && "inverse map valid"); |
| } |
| } |
| } |
| } |
| #endif |
| |
| /// Count number of defs consumed from each register class by \p Reg |
| void RegAllocFastImpl::addRegClassDefCounts( |
| MutableArrayRef<unsigned> RegClassDefCounts, Register Reg) const { |
| assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); |
| |
| if (Reg.isVirtual()) { |
| if (!shouldAllocateRegister(Reg)) |
| return; |
| const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); |
| for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); |
| RCIdx != RCIdxEnd; ++RCIdx) { |
| const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); |
| // FIXME: Consider aliasing sub/super registers. |
| if (OpRC->hasSubClassEq(IdxRC)) |
| ++RegClassDefCounts[RCIdx]; |
| } |
| |
| return; |
| } |
| |
| for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); |
| RCIdx != RCIdxEnd; ++RCIdx) { |
| const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); |
| for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { |
| if (IdxRC->contains(*Alias)) { |
| ++RegClassDefCounts[RCIdx]; |
| break; |
| } |
| } |
| } |
| } |
| |
| /// Compute \ref DefOperandIndexes so it contains the indices of "def" operands |
| /// that are to be allocated. Those are ordered in a way that small classes, |
| /// early clobbers and livethroughs are allocated first. |
| void RegAllocFastImpl::findAndSortDefOperandIndexes(const MachineInstr &MI) { |
| DefOperandIndexes.clear(); |
| |
| LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); |
| for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { |
| const MachineOperand &MO = MI.getOperand(I); |
| if (!MO.isReg()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (MO.readsReg()) { |
| if (Reg.isPhysical()) { |
| LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) << '\n'); |
| markPhysRegUsedInInstr(Reg); |
| } |
| } |
| |
| if (MO.isDef() && Reg.isVirtual() && shouldAllocateRegister(Reg)) |
| DefOperandIndexes.push_back(I); |
| } |
| |
| // Most instructions only have one virtual def, so there's no point in |
| // computing the possible number of defs for every register class. |
| if (DefOperandIndexes.size() <= 1) |
| return; |
| |
| // Track number of defs which may consume a register from the class. This is |
| // used to assign registers for possibly-too-small classes first. Example: |
| // defs are eax, 3 * gr32_abcd, 2 * gr32 => we want to assign the gr32_abcd |
| // registers first so that the gr32 don't use the gr32_abcd registers before |
| // we assign these. |
| SmallVector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); |
| |
| for (const MachineOperand &MO : MI.all_defs()) |
| addRegClassDefCounts(RegClassDefCounts, MO.getReg()); |
| |
| llvm::sort(DefOperandIndexes, [&](unsigned I0, unsigned I1) { |
| const MachineOperand &MO0 = MI.getOperand(I0); |
| const MachineOperand &MO1 = MI.getOperand(I1); |
| Register Reg0 = MO0.getReg(); |
| Register Reg1 = MO1.getReg(); |
| const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); |
| const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); |
| |
| // Identify regclass that are easy to use up completely just in this |
| // instruction. |
| unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); |
| unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); |
| |
| bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; |
| bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; |
| if (SmallClass0 > SmallClass1) |
| return true; |
| if (SmallClass0 < SmallClass1) |
| return false; |
| |
| // Allocate early clobbers and livethrough operands first. |
| bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || |
| (MO0.getSubReg() == 0 && !MO0.isUndef()); |
| bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || |
| (MO1.getSubReg() == 0 && !MO1.isUndef()); |
| if (Livethrough0 > Livethrough1) |
| return true; |
| if (Livethrough0 < Livethrough1) |
| return false; |
| |
| // Tie-break rule: operand index. |
| return I0 < I1; |
| }); |
| } |
| |
| // Returns true if MO is tied and the operand it's tied to is not Undef (not |
| // Undef is not the same thing as Def). |
| static bool isTiedToNotUndef(const MachineOperand &MO) { |
| if (!MO.isTied()) |
| return false; |
| const MachineInstr &MI = *MO.getParent(); |
| unsigned TiedIdx = MI.findTiedOperandIdx(MI.getOperandNo(&MO)); |
| const MachineOperand &TiedMO = MI.getOperand(TiedIdx); |
| return !TiedMO.isUndef(); |
| } |
| |
| void RegAllocFastImpl::allocateInstruction(MachineInstr &MI) { |
| // The basic algorithm here is: |
| // 1. Mark registers of def operands as free |
| // 2. Allocate registers to use operands and place reload instructions for |
| // registers displaced by the allocation. |
| // |
| // However we need to handle some corner cases: |
| // - pre-assigned defs and uses need to be handled before the other def/use |
| // operands are processed to avoid the allocation heuristics clashing with |
| // the pre-assignment. |
| // - The "free def operands" step has to come last instead of first for tied |
| // operands and early-clobbers. |
| |
| InstrGen += 2; |
| // In the event we ever get more than 2**31 instructions... |
| if (LLVM_UNLIKELY(InstrGen == 0)) { |
| UsedInInstr.assign(UsedInInstr.size(), 0); |
| InstrGen = 2; |
| } |
| RegMasks.clear(); |
| BundleVirtRegsMap.clear(); |
| |
| // Scan for special cases; Apply pre-assigned register defs to state. |
| bool HasPhysRegUse = false; |
| bool HasRegMask = false; |
| bool HasVRegDef = false; |
| bool HasDef = false; |
| bool HasEarlyClobber = false; |
| bool NeedToAssignLiveThroughs = false; |
| for (MachineOperand &MO : MI.operands()) { |
| if (MO.isReg()) { |
| Register Reg = MO.getReg(); |
| if (Reg.isVirtual()) { |
| if (!shouldAllocateRegister(Reg)) |
| continue; |
| if (MO.isDef()) { |
| HasDef = true; |
| HasVRegDef = true; |
| if (MO.isEarlyClobber()) { |
| HasEarlyClobber = true; |
| NeedToAssignLiveThroughs = true; |
| } |
| if (isTiedToNotUndef(MO) || (MO.getSubReg() != 0 && !MO.isUndef())) |
| NeedToAssignLiveThroughs = true; |
| } |
| } else if (Reg.isPhysical()) { |
| if (!MRI->isReserved(Reg)) { |
| if (MO.isDef()) { |
| HasDef = true; |
| bool displacedAny = definePhysReg(MI, Reg); |
| if (MO.isEarlyClobber()) |
| HasEarlyClobber = true; |
| if (!displacedAny) |
| MO.setIsDead(true); |
| } |
| if (MO.readsReg()) |
| HasPhysRegUse = true; |
| } |
| } |
| } else if (MO.isRegMask()) { |
| HasRegMask = true; |
| RegMasks.push_back(MO.getRegMask()); |
| } |
| } |
| |
| // Allocate virtreg defs. |
| if (HasDef) { |
| if (HasVRegDef) { |
| // Note that Implicit MOs can get re-arranged by defineVirtReg(), so loop |
| // multiple times to ensure no operand is missed. |
| bool ReArrangedImplicitOps = true; |
| |
| // Special handling for early clobbers, tied operands or subregister defs: |
| // Compared to "normal" defs these: |
| // - Must not use a register that is pre-assigned for a use operand. |
| // - In order to solve tricky inline assembly constraints we change the |
| // heuristic to figure out a good operand order before doing |
| // assignments. |
| if (NeedToAssignLiveThroughs) { |
| while (ReArrangedImplicitOps) { |
| ReArrangedImplicitOps = false; |
| findAndSortDefOperandIndexes(MI); |
| for (unsigned OpIdx : DefOperandIndexes) { |
| MachineOperand &MO = MI.getOperand(OpIdx); |
| LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); |
| Register Reg = MO.getReg(); |
| if (MO.isEarlyClobber() || isTiedToNotUndef(MO) || |
| (MO.getSubReg() && !MO.isUndef())) { |
| ReArrangedImplicitOps = defineLiveThroughVirtReg(MI, OpIdx, Reg); |
| } else { |
| ReArrangedImplicitOps = defineVirtReg(MI, OpIdx, Reg); |
| } |
| // Implicit operands of MI were re-arranged, |
| // re-compute DefOperandIndexes. |
| if (ReArrangedImplicitOps) |
| break; |
| } |
| } |
| } else { |
| // Assign virtual register defs. |
| while (ReArrangedImplicitOps) { |
| ReArrangedImplicitOps = false; |
| for (MachineOperand &MO : MI.all_defs()) { |
| Register Reg = MO.getReg(); |
| if (Reg.isVirtual()) { |
| ReArrangedImplicitOps = |
| defineVirtReg(MI, MI.getOperandNo(&MO), Reg); |
| if (ReArrangedImplicitOps) |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| // Free registers occupied by defs. |
| // Iterate operands in reverse order, so we see the implicit super register |
| // defs first (we added them earlier in case of <def,read-undef>). |
| for (MachineOperand &MO : reverse(MI.all_defs())) { |
| Register Reg = MO.getReg(); |
| |
| // subreg defs don't free the full register. We left the subreg number |
| // around as a marker in setPhysReg() to recognize this case here. |
| if (Reg.isPhysical() && MO.getSubReg() != 0) { |
| MO.setSubReg(0); |
| continue; |
| } |
| |
| assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) && |
| "tied def assigned to clobbered register"); |
| |
| // Do not free tied operands and early clobbers. |
| if (isTiedToNotUndef(MO) || MO.isEarlyClobber()) |
| continue; |
| if (!Reg) |
| continue; |
| if (Reg.isVirtual()) { |
| assert(!shouldAllocateRegister(Reg)); |
| continue; |
| } |
| assert(Reg.isPhysical()); |
| if (MRI->isReserved(Reg)) |
| continue; |
| freePhysReg(Reg); |
| unmarkRegUsedInInstr(Reg); |
| } |
| } |
| |
| // Displace clobbered registers. |
| if (HasRegMask) { |
| assert(!RegMasks.empty() && "expected RegMask"); |
| // MRI bookkeeping. |
| for (const auto *RM : RegMasks) |
| MRI->addPhysRegsUsedFromRegMask(RM); |
| |
| // Displace clobbered registers. |
| for (const LiveReg &LR : LiveVirtRegs) { |
| MCPhysReg PhysReg = LR.PhysReg; |
| if (PhysReg != 0 && isClobberedByRegMasks(PhysReg)) |
| displacePhysReg(MI, PhysReg); |
| } |
| } |
| |
| // Apply pre-assigned register uses to state. |
| if (HasPhysRegUse) { |
| for (MachineOperand &MO : MI.operands()) { |
| if (!MO.isReg() || !MO.readsReg()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (!Reg.isPhysical()) |
| continue; |
| if (MRI->isReserved(Reg)) |
| continue; |
| if (!usePhysReg(MI, Reg)) |
| MO.setIsKill(true); |
| } |
| } |
| |
| // Allocate virtreg uses and insert reloads as necessary. |
| // Implicit MOs can get moved/removed by useVirtReg(), so loop multiple |
| // times to ensure no operand is missed. |
| bool HasUndefUse = false; |
| bool ReArrangedImplicitMOs = true; |
| while (ReArrangedImplicitMOs) { |
| ReArrangedImplicitMOs = false; |
| for (MachineOperand &MO : MI.operands()) { |
| if (!MO.isReg() || !MO.isUse()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) |
| continue; |
| |
| if (MO.isUndef()) { |
| HasUndefUse = true; |
| continue; |
| } |
| |
| // Populate MayLiveAcrossBlocks in case the use block is allocated before |
| // the def block (removing the vreg uses). |
| mayLiveIn(Reg); |
| |
| assert(!MO.isInternalRead() && "Bundles not supported"); |
| assert(MO.readsReg() && "reading use"); |
| ReArrangedImplicitMOs = useVirtReg(MI, MO, Reg); |
| if (ReArrangedImplicitMOs) |
| break; |
| } |
| } |
| |
| // Allocate undef operands. This is a separate step because in a situation |
| // like ` = OP undef %X, %X` both operands need the same register assign |
| // so we should perform the normal assignment first. |
| if (HasUndefUse) { |
| for (MachineOperand &MO : MI.all_uses()) { |
| Register Reg = MO.getReg(); |
| if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) |
| continue; |
| |
| assert(MO.isUndef() && "Should only have undef virtreg uses left"); |
| allocVirtRegUndef(MO); |
| } |
| } |
| |
| // Free early clobbers. |
| if (HasEarlyClobber) { |
| for (MachineOperand &MO : reverse(MI.all_defs())) { |
| if (!MO.isEarlyClobber()) |
| continue; |
| assert(!MO.getSubReg() && "should be already handled in def processing"); |
| |
| Register Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| if (Reg.isVirtual()) { |
| assert(!shouldAllocateRegister(Reg)); |
| continue; |
| } |
| assert(Reg.isPhysical() && "should have register assigned"); |
| |
| // We sometimes get odd situations like: |
| // early-clobber %x0 = INSTRUCTION %x0 |
| // which is semantically questionable as the early-clobber should |
| // apply before the use. But in practice we consider the use to |
| // happen before the early clobber now. Don't free the early clobber |
| // register in this case. |
| if (MI.readsRegister(Reg, TRI)) |
| continue; |
| |
| freePhysReg(Reg); |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "<< " << MI); |
| if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && |
| MI.getNumOperands() == 2) { |
| LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); |
| Coalesced.push_back(&MI); |
| } |
| } |
| |
| void RegAllocFastImpl::handleDebugValue(MachineInstr &MI) { |
| // Ignore DBG_VALUEs that aren't based on virtual registers. These are |
| // mostly constants and frame indices. |
| assert(MI.isDebugValue() && "not a DBG_VALUE*"); |
| for (const auto &MO : MI.debug_operands()) { |
| if (!MO.isReg()) |
| continue; |
| Register Reg = MO.getReg(); |
| if (!Reg.isVirtual()) |
| continue; |
| if (!shouldAllocateRegister(Reg)) |
| continue; |
| |
| // Already spilled to a stackslot? |
| int SS = StackSlotForVirtReg[Reg]; |
| if (SS != -1) { |
| // Modify DBG_VALUE now that the value is in a spill slot. |
| updateDbgValueForSpill(MI, SS, Reg); |
| LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); |
| continue; |
| } |
| |
| // See if this virtual register has already been allocated to a physical |
| // register or spilled to a stack slot. |
| LiveRegMap::iterator LRI = findLiveVirtReg(Reg); |
| SmallVector<MachineOperand *> DbgOps; |
| for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg)) |
| DbgOps.push_back(&Op); |
| |
| if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { |
| // Update every use of Reg within MI. |
| for (auto &RegMO : DbgOps) |
| setPhysReg(MI, *RegMO, *LRI); |
| } else { |
| DanglingDbgValues[Reg].push_back(&MI); |
| } |
| |
| // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so |
| // that future spills of Reg will have DBG_VALUEs. |
| LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end()); |
| } |
| } |
| |
| void RegAllocFastImpl::handleBundle(MachineInstr &MI) { |
| MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); |
| ++BundledMI; |
| while (BundledMI->isBundledWithPred()) { |
| for (MachineOperand &MO : BundledMI->operands()) { |
| if (!MO.isReg()) |
| continue; |
| |
| Register Reg = MO.getReg(); |
| if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) |
| continue; |
| |
| DenseMap<Register, LiveReg>::iterator DI = BundleVirtRegsMap.find(Reg); |
| assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register"); |
| |
| setPhysReg(MI, MO, DI->second); |
| } |
| |
| ++BundledMI; |
| } |
| } |
| |
| void RegAllocFastImpl::allocateBasicBlock(MachineBasicBlock &MBB) { |
| this->MBB = &MBB; |
| LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); |
| |
| PosIndexes.unsetInitialized(); |
| RegUnitStates.assign(TRI->getNumRegUnits(), regFree); |
| assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); |
| |
| for (const auto &LiveReg : MBB.liveouts()) |
| setPhysRegState(LiveReg.PhysReg, regPreAssigned); |
| |
| Coalesced.clear(); |
| |
| // Traverse block in reverse order allocating instructions one by one. |
| for (MachineInstr &MI : reverse(MBB)) { |
| LLVM_DEBUG(dbgs() << "\n>> " << MI << "Regs:"; dumpState()); |
| |
| // Special handling for debug values. Note that they are not allowed to |
| // affect codegen of the other instructions in any way. |
| if (MI.isDebugValue()) { |
| handleDebugValue(MI); |
| continue; |
| } |
| |
| allocateInstruction(MI); |
| |
| // Once BUNDLE header is assigned registers, same assignments need to be |
| // done for bundled MIs. |
| if (MI.getOpcode() == TargetOpcode::BUNDLE) { |
| handleBundle(MI); |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "Begin Regs:"; dumpState()); |
| |
| // Spill all physical registers holding virtual registers now. |
| LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); |
| reloadAtBegin(MBB); |
| |
| // Erase all the coalesced copies. We are delaying it until now because |
| // LiveVirtRegs might refer to the instrs. |
| for (MachineInstr *MI : Coalesced) |
| MBB.erase(MI); |
| NumCoalesced += Coalesced.size(); |
| |
| for (auto &UDBGPair : DanglingDbgValues) { |
| for (MachineInstr *DbgValue : UDBGPair.second) { |
| assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); |
| // Nothing to do if the vreg was spilled in the meantime. |
| if (!DbgValue->hasDebugOperandForReg(UDBGPair.first)) |
| continue; |
| LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue |
| << '\n'); |
| DbgValue->setDebugValueUndef(); |
| } |
| } |
| DanglingDbgValues.clear(); |
| |
| LLVM_DEBUG(MBB.dump()); |
| } |
| |
| bool RegAllocFastImpl::runOnMachineFunction(MachineFunction &MF) { |
| LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" |
| << "********** Function: " << MF.getName() << '\n'); |
| MRI = &MF.getRegInfo(); |
| const TargetSubtargetInfo &STI = MF.getSubtarget(); |
| TRI = STI.getRegisterInfo(); |
| TII = STI.getInstrInfo(); |
| MFI = &MF.getFrameInfo(); |
| MRI->freezeReservedRegs(); |
| RegClassInfo.runOnMachineFunction(MF); |
| unsigned NumRegUnits = TRI->getNumRegUnits(); |
| InstrGen = 0; |
| UsedInInstr.assign(NumRegUnits, 0); |
| |
| // initialize the virtual->physical register map to have a 'null' |
| // mapping for all virtual registers |
| unsigned NumVirtRegs = MRI->getNumVirtRegs(); |
| StackSlotForVirtReg.resize(NumVirtRegs); |
| LiveVirtRegs.setUniverse(NumVirtRegs); |
| MayLiveAcrossBlocks.clear(); |
| MayLiveAcrossBlocks.resize(NumVirtRegs); |
| |
| // Loop over all of the basic blocks, eliminating virtual register references |
| for (MachineBasicBlock &MBB : MF) |
| allocateBasicBlock(MBB); |
| |
| if (ClearVirtRegs) { |
| // All machine operands and other references to virtual registers have been |
| // replaced. Remove the virtual registers. |
| MRI->clearVirtRegs(); |
| } |
| |
| StackSlotForVirtReg.clear(); |
| LiveDbgValueMap.clear(); |
| return true; |
| } |
| |
| PreservedAnalyses RegAllocFastPass::run(MachineFunction &MF, |
| MachineFunctionAnalysisManager &) { |
| MFPropsModifier _(*this, MF); |
| RegAllocFastImpl Impl(Opts.Filter, Opts.ClearVRegs); |
| bool Changed = Impl.runOnMachineFunction(MF); |
| if (!Changed) |
| return PreservedAnalyses::all(); |
| auto PA = getMachineFunctionPassPreservedAnalyses(); |
| PA.preserveSet<CFGAnalyses>(); |
| return PA; |
| } |
| |
| void RegAllocFastPass::printPipeline( |
| raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { |
| bool PrintFilterName = Opts.FilterName != "all"; |
| bool PrintNoClearVRegs = !Opts.ClearVRegs; |
| bool PrintSemicolon = PrintFilterName && PrintNoClearVRegs; |
| |
| OS << "regallocfast"; |
| if (PrintFilterName || PrintNoClearVRegs) { |
| OS << '<'; |
| if (PrintFilterName) |
| OS << "filter=" << Opts.FilterName; |
| if (PrintSemicolon) |
| OS << ';'; |
| if (PrintNoClearVRegs) |
| OS << "no-clear-vregs"; |
| OS << '>'; |
| } |
| } |
| |
| FunctionPass *llvm::createFastRegisterAllocator() { return new RegAllocFast(); } |
| |
| FunctionPass *llvm::createFastRegisterAllocator(RegAllocFilterFunc Ftor, |
| bool ClearVirtRegs) { |
| return new RegAllocFast(Ftor, ClearVirtRegs); |
| } |