| //===- Padding.cpp - Padding of Linalg ops --------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
| |
| #include "mlir/Dialect/Bufferization/IR/Bufferization.h" |
| #include "mlir/Dialect/Complex/IR/Complex.h" |
| #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/Interfaces/ValueBoundsOpInterface.h" |
| |
| #define DEBUG_TYPE "linalg-padding" |
| |
| using namespace mlir; |
| using namespace mlir::linalg; |
| |
| #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ") |
| #define DBGSNL() (llvm::dbgs() << "\n") |
| |
| /// Compute the padded shape of the given operand. The operand is padded to a |
| /// static bounding box according to the specified padding options. |
| static LogicalResult computePaddedShape(linalg::LinalgOp opToPad, |
| OpOperand *opOperand, |
| const LinalgPaddingOptions &options, |
| SmallVector<int64_t> &paddedShape, |
| bool &alreadyHasRequestedShape) { |
| AffineMap indexingMap = opToPad.getMatchingIndexingMap(opOperand); |
| ArrayRef<int64_t> shape = opToPad.getShape(opOperand); |
| |
| // Collect the shape dimensions that are a function of "paddingDimensions", |
| // along with the multiple that they should be padded to ("1" if none). |
| alreadyHasRequestedShape = true; |
| DenseMap<int64_t, int64_t> shapeDimToMultiple; |
| for (const auto &dimEn : enumerate(options.paddingDimensions)) { |
| for (const auto &en : enumerate(indexingMap.getResults())) { |
| if (en.value().isFunctionOfDim(dimEn.value())) { |
| int64_t dimSize = shape[en.index()]; |
| if (options.padToMultipleOf.has_value()) { |
| shapeDimToMultiple[en.index()] = |
| (*options.padToMultipleOf)[dimEn.index()]; |
| } else { |
| shapeDimToMultiple[en.index()] = 1; |
| } |
| if (ShapedType::isDynamic(dimSize)) { |
| alreadyHasRequestedShape = false; |
| } else if (dimSize % shapeDimToMultiple[en.index()] != 0) { |
| alreadyHasRequestedShape = false; |
| } |
| } |
| } |
| } |
| |
| // Helper function to round a number up to a given multiple. |
| auto ceil = [](int64_t val, int64_t multiple) { |
| return ((val + multiple - 1) / multiple) * multiple; |
| }; |
| |
| // Upper bound the sizes to obtain a static bounding box. |
| paddedShape.assign(shape.begin(), shape.end()); |
| for (int64_t i = 0, e = shape.size(); i < e; ++i) { |
| LLVM_DEBUG(DBGS() << "--compute padded size for dim " << i << "\n"); |
| // Skip dimensions that do not require padding. |
| if (!shapeDimToMultiple.contains(i)) { |
| LLVM_DEBUG(DBGS() << "----dim does not require padding, SKIP\n"); |
| continue; |
| } |
| // Otherwise, try to compute a constant upper bound for the size value. |
| FailureOr<int64_t> upperBound = |
| ValueBoundsConstraintSet::computeConstantBound( |
| presburger::BoundType::UB, |
| {opOperand->get(), |
| /*dim=*/i}, |
| /*stopCondition=*/nullptr, /*closedUB=*/true); |
| if (failed(upperBound)) { |
| LLVM_DEBUG(DBGS() << "----could not compute a bounding box for padding"); |
| return failure(); |
| } |
| paddedShape[i] = ceil(*upperBound, shapeDimToMultiple[i]); |
| LLVM_DEBUG(DBGS() << "----new dim size: " << paddedShape[i] << "\n"); |
| } |
| |
| return success(); |
| } |
| |
| /// Pad the `opOperand` in the "paddingDimensions" using the padding value and |
| /// the nofold flag found in "paddingValues" and "nofoldFlags", respectively. |
| /// |
| /// Exit early and return the `opOperand` value if it already has the requested |
| /// shape. i.e.: |
| /// - static shape |
| /// - nofold is not set |
| /// - dim sizes are multiples of "padToMultipleOf" |
| /// |
| /// Otherwise, try to pad the shape dimensions that match the iterator |
| /// dimensions "paddingDimensions" and return the tensor::PadOp result if |
| /// padding succeeds or failure otherwise. |
| static FailureOr<Value> padOperandToSmallestStaticBoundingBox( |
| RewriterBase &rewriter, linalg::LinalgOp opToPad, OpOperand *opOperand, |
| const LinalgPaddingOptions &options) { |
| assert( |
| (!options.padToMultipleOf.has_value() || |
| options.padToMultipleOf->size() == options.paddingDimensions.size()) && |
| "invalid number of elements in padToMultipleOf"); |
| |
| // Compute padded shape. |
| SmallVector<int64_t> paddedShape; |
| bool alreadyHasRequestedShape = false; |
| if (failed(computePaddedShape(opToPad, opOperand, options, paddedShape, |
| alreadyHasRequestedShape))) |
| return rewriter.notifyMatchFailure(opToPad, |
| "--failed to compute padded shape"); |
| |
| // Return the unpadded operand if padding to a static shape is not needed and |
| // if the nofold flag is not set. |
| bool nofold = opOperand->getOperandNumber() < options.nofoldFlags.size() |
| ? bool(options.nofoldFlags[opOperand->getOperandNumber()]) |
| : false; |
| if (!nofold && alreadyHasRequestedShape) |
| return opOperand->get(); |
| |
| // Fail if `paddingValues` specifies no padding value. |
| if (opOperand->getOperandNumber() >= options.paddingValues.size()) { |
| return rewriter.notifyMatchFailure(opToPad, "--no padding value specified"); |
| } |
| Attribute paddingAttr = options.paddingValues[opOperand->getOperandNumber()]; |
| |
| Value paddingValue; |
| if (auto complexTy = dyn_cast<ComplexType>( |
| getElementTypeOrSelf(opOperand->get().getType()))) { |
| auto complexAttr = cast<ArrayAttr>(paddingAttr); |
| paddingValue = rewriter.create<complex::ConstantOp>(opToPad.getLoc(), |
| complexTy, complexAttr); |
| } else { |
| paddingValue = rewriter.create<arith::ConstantOp>( |
| opToPad.getLoc(), cast<TypedAttr>(paddingAttr)); |
| } |
| |
| // Pad the operand to the bounding box defined by `paddedShape`. |
| auto paddedTensorType = RankedTensorType::get( |
| paddedShape, getElementTypeOrSelf(opOperand->get())); |
| LLVM_DEBUG(DBGS() << "--SUCCESS, makeComposedPadHighOp with type: " |
| << paddedTensorType); |
| return makeComposedPadHighOp(rewriter, opToPad->getLoc(), paddedTensorType, |
| opOperand->get(), paddingValue, nofold); |
| } |
| |
| LogicalResult |
| linalg::rewriteAsPaddedOp(RewriterBase &rewriter, LinalgOp opToPad, |
| const LinalgPaddingOptions &constOptions, |
| LinalgOp &paddedOp, SmallVector<Value> &replacements, |
| SmallVector<tensor::PadOp> &padOps) { |
| LLVM_DEBUG(DBGS() << "Start rewriteAsPaddedOp : " << opToPad << "\n"); |
| Location loc = opToPad->getLoc(); |
| |
| LinalgPaddingOptions options(constOptions); |
| // Allow inference of pad values if they are not explicitly specified. |
| // TODO: be mindful about the value depending on the actual operation. |
| if (options.paddingValues.empty()) { |
| SmallVector<Type> types(opToPad->getOperandTypes()); |
| llvm::append_range(types, opToPad->getResultTypes()); |
| for (Type t : types) { |
| options.paddingValues.push_back( |
| rewriter.getZeroAttr(getElementTypeOrSelf(t))); |
| } |
| } |
| |
| // TODO: there are cases where we may still want to pad to larger sizes. |
| if (!opToPad.hasPureTensorSemantics()) |
| return rewriter.notifyMatchFailure(opToPad, |
| "expected operation on tensors"); |
| |
| OpBuilder::InsertionGuard g(rewriter); |
| // Set IP after op because we also take the dims of the original output. |
| rewriter.setInsertionPointAfter(opToPad); |
| |
| // Make a copy of the shaped operands and update it. |
| SmallVector<Value> newOperands; |
| newOperands.reserve(opToPad->getNumOperands()); |
| for (OpOperand &opOperand : opToPad->getOpOperands()) { |
| FailureOr<Value> paddedOperand = padOperandToSmallestStaticBoundingBox( |
| rewriter, opToPad, &opOperand, options); |
| // Exit if `paddingDimensions` cannot be bounded statically. |
| if (failed(paddedOperand)) { |
| LLVM_DEBUG(DBGS() << "--operand cannot be bound statically : " |
| << opOperand.get() << " -> FAIL\n"); |
| return rewriter.notifyMatchFailure(opToPad, |
| "operand cannot be bound statically"); |
| } |
| newOperands.push_back(*paddedOperand); |
| if (auto padOp = paddedOperand->getDefiningOp<tensor::PadOp>()) |
| padOps.push_back(padOp); |
| } |
| |
| ReifiedRankedShapedTypeDims reifiedResultShapes; |
| if (failed(reifyResultShapes(rewriter, opToPad, reifiedResultShapes))) { |
| LLVM_DEBUG(DBGS() << "--failed to reify result shapes -> FAIL\n"); |
| return rewriter.notifyMatchFailure(opToPad, |
| "failed to reify result shapes"); |
| } |
| assert(reifiedResultShapes.size() == opToPad->getNumResults() && |
| "expected same number of results"); |
| |
| // Clone `opToPad` to operate on the statically padded shapes. |
| auto resultTensorTypes = |
| ValueRange(newOperands).take_back(opToPad.getNumDpsInits()).getTypes(); |
| // clone **should** properly notify the rewriter. |
| paddedOp = clone(rewriter, opToPad, resultTensorTypes, newOperands); |
| LLVM_DEBUG(DBGS() << "--cloned padded op: " << paddedOp << "\n"); |
| |
| // Recover the slice out of the new static results. This keeps the original |
| // linalg op around because it uses the dims of the original results. |
| SmallVector<Value> paddedSubtensorResults; |
| paddedSubtensorResults.reserve(opToPad->getNumResults()); |
| for (const auto &en : llvm::enumerate(paddedOp->getResults())) { |
| Value paddedResult = en.value(); |
| int64_t resultNumber = en.index(); |
| int64_t rank = cast<RankedTensorType>(paddedResult.getType()).getRank(); |
| SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0)); |
| SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1)); |
| paddedSubtensorResults.push_back(rewriter.create<tensor::ExtractSliceOp>( |
| loc, paddedResult, offsets, reifiedResultShapes[resultNumber], |
| strides)); |
| } |
| |
| if (options.copyBackOp == LinalgPaddingOptions::CopyBackOp::None) { |
| replacements = std::move(paddedSubtensorResults); |
| return success(); |
| } |
| |
| // Copy back unpadded results to the original destination (i.e., inits of the |
| // linalg op), so that the destination buffer of the computation does not |
| // change. If the padding folds away, this will materialize as a memcpy |
| // between two identical buffers, which will then also fold away. |
| assert(static_cast<int64_t>(paddedSubtensorResults.size()) == |
| opToPad.getNumDpsInits() && |
| "expected matching number of results"); |
| for (auto it : |
| llvm::zip(paddedSubtensorResults, opToPad.getDpsInitsMutable())) { |
| if (options.copyBackOp == LinalgPaddingOptions::CopyBackOp::LinalgCopy) { |
| replacements.push_back(rewriter |
| .create<linalg::CopyOp>(loc, std::get<0>(it), |
| std::get<1>(it).get()) |
| .getResult(0)); |
| } else if (options.copyBackOp == |
| LinalgPaddingOptions::CopyBackOp:: |
| BufferizationMaterializeInDestination) { |
| replacements.push_back( |
| rewriter |
| .create<bufferization::MaterializeInDestinationOp>( |
| loc, std::get<0>(it), std::get<1>(it).get()) |
| ->getResult(0)); |
| } else { |
| llvm_unreachable("unsupported copy back op"); |
| } |
| } |
| return success(); |
| } |
| |
| FailureOr<LinalgOp> |
| mlir::linalg::padAndHoistLinalgOp(RewriterBase &rewriter, LinalgOp linalgOp, |
| const LinalgPaddingOptions &options) { |
| assert(options.copyBackOp == LinalgPaddingOptions::CopyBackOp::None && |
| "invalid options"); |
| |
| if (!linalgOp.hasPureTensorSemantics()) |
| return rewriter.notifyMatchFailure( |
| linalgOp, "only applies to Linalg ops with tensor semantics"); |
| |
| // Pad the operation. |
| LinalgOp paddedOp; |
| SmallVector<Value> newResults; |
| SmallVector<tensor::PadOp> padOps; |
| if (failed(rewriteAsPaddedOp(rewriter, linalgOp, options, paddedOp, |
| newResults, padOps))) |
| return rewriter.notifyMatchFailure(linalgOp, |
| "failed to rewrite as a padded op"); |
| |
| // Hoist the padding. |
| for (const auto &en : enumerate(options.hoistPaddings)) { |
| if (static_cast<int64_t>(en.index()) >= paddedOp->getNumOperands()) |
| break; |
| OpOperand &opOperand = paddedOp->getOpOperand(en.index()); |
| auto padOp = opOperand.get().getDefiningOp<tensor::PadOp>(); |
| if (!padOp || en.value() == 0) { |
| (void)rewriter.notifyMatchFailure(linalgOp, "not a tensor.pad -- skip"); |
| continue; |
| } |
| |
| // Fail hoisting if the operand shape is not fully static. |
| if (llvm::any_of(paddedOp.getShape(&opOperand), ShapedType::isDynamic)) { |
| (void)rewriter.notifyMatchFailure(linalgOp, |
| "non static padding shape -- skip"); |
| continue; |
| } |
| |
| tensor::PadOp hoistedOp; |
| SmallVector<TransposeOp> transposeOps; |
| SmallVector<int64_t> transposeVector = |
| en.index() < options.transposePaddings.size() |
| ? options.transposePaddings[en.index()] |
| : SmallVector<int64_t>{}; |
| |
| FailureOr<Value> newResult = hoistPaddingOnTensors( |
| padOp, en.value(), transposeVector, hoistedOp, transposeOps); |
| if (failed(newResult)) { |
| (void)rewriter.notifyMatchFailure(linalgOp, |
| "failed to apply hoistPadding"); |
| continue; |
| } |
| rewriter.replaceOp(padOp, *newResult); |
| } |
| |
| // Replace the original operation to pad. |
| rewriter.replaceOp(linalgOp, newResults); |
| |
| return paddedOp; |
| } |