blob: 984f3f5a34ab11d5586d0aeb445550327e594988 [file] [log] [blame]
//===- Loops.cpp - conversion from Linalg named and generic ops to loops --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/TypeSwitch.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTLINALGTOAFFINELOOPSPASS
#define GEN_PASS_DEF_CONVERTLINALGTOLOOPSPASS
#define GEN_PASS_DEF_CONVERTLINALGTOPARALLELLOOPSPASS
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::linalg;
static SmallVector<Value> makeCanonicalAffineApplies(OpBuilder &b, Location loc,
AffineMap map,
ArrayRef<Value> vals) {
if (map.isEmpty())
return {};
assert(map.getNumInputs() == vals.size());
SmallVector<Value> res;
res.reserve(map.getNumResults());
auto dims = map.getNumDims();
for (auto e : map.getResults()) {
auto exprMap = AffineMap::get(dims, map.getNumSymbols(), e);
SmallVector<Value> operands(vals);
affine::canonicalizeMapAndOperands(&exprMap, &operands);
res.push_back(b.create<affine::AffineApplyOp>(loc, exprMap, operands));
}
return res;
}
template <typename LoadOpTy, typename StoreOpTy, typename OpType>
static void inlineRegionAndEmitStore(OpBuilder &b, Location loc, OpType op,
ArrayRef<Value> indexedValues,
ArrayRef<SmallVector<Value>> indexing,
ArrayRef<Value> outputBuffers) {
auto &block = op->getRegion(0).front();
IRMapping map;
map.map(block.getArguments(), indexedValues);
for (auto &op : block.without_terminator()) {
auto *newOp = b.clone(op, map);
map.map(op.getResults(), newOp->getResults());
}
Operation *terminator = block.getTerminator();
for (OpOperand &operand : terminator->getOpOperands()) {
Value toStore = map.lookupOrDefault(operand.get());
b.create<StoreOpTy>(loc, toStore, outputBuffers[operand.getOperandNumber()],
indexing[operand.getOperandNumber()]);
}
}
// Returns a pair that contains input indices and output indices of a
// SingleInputPoolingOp `op`.
struct InputAndOutputIndices {
SmallVector<Value> inputs;
SmallVector<Value> outputs;
};
template <typename SingleInputPoolingOp>
static InputAndOutputIndices
getInputAndOutputIndices(OpBuilder &b, Location loc, ArrayRef<Value> allIvs,
SingleInputPoolingOp op) {
auto mapsRange = op.getIndexingMapsArray();
auto maps = llvm::to_vector<8>(
llvm::map_range(mapsRange, [](AffineMapAttr a) { return a.getValue(); }));
return InputAndOutputIndices{
makeCanonicalAffineApplies(b, loc, maps[0], allIvs),
makeCanonicalAffineApplies(b, loc, maps[2], allIvs)};
}
/// Emits the MLIR for the scalar part of the generic op by:
/// 1. Emitting load ops for each input and output view in order. This is
/// achieved by applying the appropriate input or output map to the
/// enclosing induction variables.
/// 2. Emitting a call to `op.fun()` that takes as arguments the scalars
/// from point 1. above.
/// 3. Emitting store ops to store the results of 2. to the output
/// views.
///
/// An example output may resemble:
///
/// ```
/// scf.for %i = %c0 to %0 step %c1 {
/// scf.for %j = %c0 to %1 step %c1 {
/// scf.for %k = %c0 to %4 step %c1 {
/// %11 = load %arg0[%i, %j] :
/// memref<?x?xf32, stride_specification>
/// %12 = load %arg1[%i, %j, %k] :
/// memref<?x?x?xf32, stride_specification>
/// %13 = load %arg2[%i, %k, %j] :
/// memref<?x?x?xf32, stride_specification>
/// %14:2 = call @foo(%11, %12, %13) : (f32, f32, f32) -> (f32, f32)
/// store %14#0, %arg1[%i, %j, %k] :
/// memref<?x?x?Xf32, stride_specification>
/// store %14#1, %arg2[%i, %k, %j] :
/// memref<?x?x?Xf32, stride_specification>
/// }
/// }
/// }
/// ```
template <typename LoadOpTy, typename StoreOpTy>
static void emitScalarImplementation(OpBuilder &b, Location loc,
ArrayRef<Value> allIvs,
LinalgOp linalgOp) {
assert(linalgOp.hasPureBufferSemantics() &&
"expected linalg op with buffer semantics");
SmallVector<Value> indexedValues;
indexedValues.reserve(linalgOp->getNumOperands());
auto allIvsPlusDims = SmallVector<Value>(allIvs);
// TODO: Avoid the loads if the corresponding argument of the
// region has no uses.
// 1.a. Emit load from input operand or for scalars access the operand itself.
for (OpOperand *inputOperand : linalgOp.getDpsInputOperands()) {
if (linalgOp.isScalar(inputOperand)) {
indexedValues.push_back(inputOperand->get());
continue;
}
auto indexing = makeCanonicalAffineApplies(
b, loc, linalgOp.getMatchingIndexingMap(inputOperand), allIvsPlusDims);
indexedValues.push_back(
b.create<LoadOpTy>(loc, inputOperand->get(), indexing));
}
// 1.b. Emit load from output views.
for (OpOperand &outputOperand : linalgOp.getDpsInitsMutable()) {
SmallVector<Value> indexing = makeCanonicalAffineApplies(
b, loc, linalgOp.getMatchingIndexingMap(&outputOperand),
allIvsPlusDims);
indexedValues.push_back(
b.create<LoadOpTy>(loc, outputOperand.get(), indexing));
}
// TODO: When a region inliner exists, use it.
// 2. Inline region, currently only works for a single basic block.
// 3. Emit store.
SmallVector<SmallVector<Value>, 8> indexing;
SmallVector<Value> outputBuffers;
for (OpOperand &outputOperand : linalgOp.getDpsInitsMutable()) {
if (!isa<MemRefType>(outputOperand.get().getType()))
continue;
indexing.push_back(makeCanonicalAffineApplies(
b, loc, linalgOp.getMatchingIndexingMap(&outputOperand),
allIvsPlusDims));
outputBuffers.push_back(outputOperand.get());
}
inlineRegionAndEmitStore<LoadOpTy, StoreOpTy>(b, loc, linalgOp, indexedValues,
indexing, outputBuffers);
}
/// Replace the index operations in the body of the loop nest by the matching
/// induction variables.
static void replaceIndexOpsByInductionVariables(RewriterBase &rewriter,
LinalgOp linalgOp,
ArrayRef<Operation *> loopOps) {
// Extract the induction variables of the loop nest from outer to inner.
SmallVector<Value> allIvs;
for (Operation *loopOp : loopOps) {
llvm::TypeSwitch<Operation *>(loopOp)
.Case([&](scf::ParallelOp parallelOp) {
allIvs.append(parallelOp.getInductionVars());
})
.Case([&](scf::ForOp forOp) {
allIvs.push_back(forOp.getInductionVar());
})
.Case([&](affine::AffineForOp affineForOp) {
allIvs.push_back(affineForOp.getInductionVar());
})
.Default([&](Operation *op) { assert(false && "unexpected op"); });
}
assert(linalgOp.getNumLoops() == allIvs.size() &&
"expected the number of loops and induction variables to match");
// Replace the index operations in the body of the innermost loop op.
if (!loopOps.empty()) {
auto loopOp = cast<LoopLikeOpInterface>(loopOps.back());
for (Region *r : loopOp.getLoopRegions())
for (IndexOp indexOp : llvm::make_early_inc_range(r->getOps<IndexOp>()))
rewriter.replaceOp(indexOp, allIvs[indexOp.getDim()]);
}
}
template <typename LoopTy>
static FailureOr<LinalgLoops> linalgOpToLoopsImpl(RewriterBase &rewriter,
LinalgOp linalgOp) {
using LoadOpTy =
std::conditional_t<std::is_same<LoopTy, affine::AffineForOp>::value,
affine::AffineLoadOp, memref::LoadOp>;
using StoreOpTy =
std::conditional_t<std::is_same<LoopTy, affine::AffineForOp>::value,
affine::AffineStoreOp, memref::StoreOp>;
// The flattened loopToOperandRangesMaps is expected to be an invertible
// permutation map (which is asserted in the inverse calculation).
assert(linalgOp.hasPureBufferSemantics() &&
"expected linalg op with buffer semantics");
auto loopRanges = linalgOp.createLoopRanges(rewriter, linalgOp.getLoc());
auto iteratorTypes = linalgOp.getIteratorTypesArray();
SmallVector<Value> allIvs;
GenerateLoopNest<LoopTy>::doit(
rewriter, linalgOp.getLoc(), loopRanges, linalgOp, iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange ivs,
ValueRange operandValuesToUse) -> scf::ValueVector {
assert(operandValuesToUse == linalgOp->getOperands() &&
"expect operands are captured and not passed by loop argument");
allIvs.append(ivs.begin(), ivs.end());
emitScalarImplementation<LoadOpTy, StoreOpTy>(b, loc, allIvs, linalgOp);
return scf::ValueVector{};
});
// Number of loop ops might be different from the number of ivs since some
// loops like affine.parallel and scf.parallel have multiple ivs.
SetVector<Operation *> loopSet;
for (Value iv : allIvs) {
if (!iv)
return failure();
// The induction variable is a block argument of the entry block of the
// loop operation.
BlockArgument ivVal = dyn_cast<BlockArgument>(iv);
if (!ivVal)
return failure();
loopSet.insert(ivVal.getOwner()->getParentOp());
}
LinalgLoops loops(loopSet.begin(), loopSet.end());
// Replace all index operations in the loop body.
replaceIndexOpsByInductionVariables(rewriter, linalgOp, loops);
return loops;
}
namespace {
template <typename LoopType>
class LinalgRewritePattern : public RewritePattern {
public:
LinalgRewritePattern(MLIRContext *context)
: RewritePattern(MatchAnyOpTypeTag(), /*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto linalgOp = dyn_cast<LinalgOp>(op);
if (!isa<LinalgOp>(op) || !linalgOp.hasPureBufferSemantics()) {
return rewriter.notifyMatchFailure(
op, "expected linalg op with buffer semantics");
}
if (failed(linalgOpToLoopsImpl<LoopType>(rewriter, linalgOp)))
return failure();
rewriter.eraseOp(op);
return success();
}
};
/// Local folding pattern for AffineApplyOp that we can apply greedily.
/// This replaces AffineApplyOp by the proper value in cases where the
/// associated map is trivial.
/// A trivial map here is defined as a map with a single result and either:
/// 1. Zero operand + returns a single AffineConstantExpr
/// 2. One operand + returns a single AffineDimExpr
/// 3. One operand + returns a single AffineSymbolExpr
//
/// In the first case, the AffineApplyOp is replaced by a new constant. In the
/// other cases, it is replaced by its unique operand.
struct FoldAffineOp : public RewritePattern {
FoldAffineOp(MLIRContext *context)
: RewritePattern(affine::AffineApplyOp::getOperationName(), 0, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
auto affineApplyOp = cast<affine::AffineApplyOp>(op);
auto map = affineApplyOp.getAffineMap();
if (map.getNumResults() != 1 || map.getNumInputs() > 1)
return failure();
AffineExpr expr = map.getResult(0);
if (map.getNumInputs() == 0) {
if (auto val = dyn_cast<AffineConstantExpr>(expr)) {
rewriter.replaceOpWithNewOp<arith::ConstantIndexOp>(op, val.getValue());
return success();
}
return failure();
}
if (dyn_cast<AffineDimExpr>(expr) || dyn_cast<AffineSymbolExpr>(expr)) {
rewriter.replaceOp(op, op->getOperand(0));
return success();
}
return failure();
}
};
template <typename LoopType>
static void lowerLinalgToLoopsImpl(Operation *enclosingOp) {
MLIRContext *context = enclosingOp->getContext();
RewritePatternSet patterns(context);
patterns.add<LinalgRewritePattern<LoopType>>(context);
memref::DimOp::getCanonicalizationPatterns(patterns, context);
tensor::DimOp::getCanonicalizationPatterns(patterns, context);
affine::AffineApplyOp::getCanonicalizationPatterns(patterns, context);
patterns.add<FoldAffineOp>(context);
// Just apply the patterns greedily.
(void)applyPatternsGreedily(enclosingOp, std::move(patterns));
}
struct LowerToAffineLoops
: public impl::ConvertLinalgToAffineLoopsPassBase<LowerToAffineLoops> {
using impl::ConvertLinalgToAffineLoopsPassBase<
LowerToAffineLoops>::ConvertLinalgToAffineLoopsPassBase;
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<memref::MemRefDialect>();
}
void runOnOperation() override {
lowerLinalgToLoopsImpl<affine::AffineForOp>(getOperation());
}
};
struct LowerToLoops : public impl::ConvertLinalgToLoopsPassBase<LowerToLoops> {
using impl::ConvertLinalgToLoopsPassBase<
LowerToLoops>::ConvertLinalgToLoopsPassBase;
void getDependentDialects(DialectRegistry &registry) const override {
registry.insert<memref::MemRefDialect, scf::SCFDialect>();
}
void runOnOperation() override {
lowerLinalgToLoopsImpl<scf::ForOp>(getOperation());
}
};
struct LowerToParallelLoops
: public impl::ConvertLinalgToParallelLoopsPassBase<LowerToParallelLoops> {
using impl::ConvertLinalgToParallelLoopsPassBase<
LowerToParallelLoops>::ConvertLinalgToParallelLoopsPassBase;
void runOnOperation() override {
lowerLinalgToLoopsImpl<scf::ParallelOp>(getOperation());
}
};
} // namespace
/// Emits a loop nest of `affine.for` with the proper body for `linalgOp`.
FailureOr<LinalgLoops>
mlir::linalg::linalgOpToAffineLoops(RewriterBase &rewriter, LinalgOp linalgOp) {
return linalgOpToLoopsImpl<affine::AffineForOp>(rewriter, linalgOp);
}
/// Emits a loop nest of `scf.for` with the proper body for `linalgOp`.
FailureOr<LinalgLoops> mlir::linalg::linalgOpToLoops(RewriterBase &rewriter,
LinalgOp linalgOp) {
return linalgOpToLoopsImpl<scf::ForOp>(rewriter, linalgOp);
}
/// Emits a loop nest of `scf.parallel` with the proper body for `linalgOp`.
FailureOr<LinalgLoops>
mlir::linalg::linalgOpToParallelLoops(RewriterBase &rewriter,
LinalgOp linalgOp) {
return linalgOpToLoopsImpl<scf::ParallelOp>(rewriter, linalgOp);
}