| //===- Fusion.cpp - Implementation of linalg Fusion -----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the linalg dialect Fusion pass. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| #include "mlir/Dialect/Arith/IR/Arith.h" |
| #include "mlir/Dialect/Linalg/IR/Linalg.h" |
| #include "mlir/Dialect/Linalg/Passes.h" |
| #include "mlir/Dialect/Linalg/Transforms/Transforms.h" |
| #include "mlir/Dialect/Linalg/Utils/Utils.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/IR/AffineExpr.h" |
| #include "mlir/IR/AffineMap.h" |
| #include "mlir/IR/Dominance.h" |
| #include "mlir/Support/LLVM.h" |
| #include "mlir/Transforms/GreedyPatternRewriteDriver.h" |
| #include "mlir/Transforms/RegionUtils.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/ScopeExit.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| |
| #include <optional> |
| #include <set> |
| |
| #define DEBUG_TYPE "linalg-fusion" |
| |
| using namespace mlir; |
| using namespace mlir::linalg; |
| |
| /// Implements a simple high-level fusion pass on linalg structured operations. |
| /// |
| /// In each block, linalg ops are processed in reverse textual order. |
| /// Given a linalg op `O`, fusion occurs by: |
| /// 1. inspecting the linalg ops that write into the views read by `O`. There |
| /// are 2 cases: |
| /// a) buffer case: use the SSA value of the views and a simple alias |
| /// analysis on subview ops to determine producer-consumer dependences; |
| /// b) tensor case: use SSA use-def chains on extract_slice ops; |
| /// 2. greedily fuse the linalg ops that produce the subview/extract_slice. |
| /// 3. inspect the fused ops and determine whether they have other remaining |
| /// LinalgOp uses. If not, then erase the original producing linalg op. |
| /// |
| /// More advanced use cases, analyses as well as profitability heuristics are |
| /// left for future work. |
| |
| struct ShapeDimension { |
| Value shape; |
| unsigned dimension; |
| }; |
| |
| // Given an `op`, returns the first (`shape`, `dimension`) pair that identifies |
| // the loop range at `loopDepth`. The semantics of the loopToOperandRangesMaps |
| // guarantees at least one such dimension is found. If multiple candidates exist |
| // they must agree by construction (i.e. have the same size) and we just return |
| // the first one. |
| static ShapeDimension |
| getShapeDefiningLoopRange(LinalgOp op, unsigned loopDepth, |
| bool fromSubViewOpOnly = false) { |
| // Iterate over the inputs and outputs in order. |
| // Extract the subranges from the linearized ranges. |
| for (OpOperand &opOperand : op->getOpOperands()) { |
| // The method `getRangeFromOperandShape` requires using SubViewOp or |
| // ExtractSliceOps. If the value isn't defined from there continue. |
| // todo: The method should be adapted to get the values from |
| // `ViewInterface`. The interface needs a `getOrCreateRanges` method which |
| // currently returns a `linalg.range`. The fix here is to move this op to |
| // `std` dialect and add the method to `ViewInterface`. |
| if (fromSubViewOpOnly && |
| !isa_and_nonnull<memref::SubViewOp, tensor::ExtractSliceOp>( |
| opOperand.get().getDefiningOp())) |
| continue; |
| |
| AffineMap map = op.getMatchingIndexingMap(&opOperand); |
| LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange I/O idx: " |
| << opOperand.getOperandNumber() << "\n"); |
| LLVM_DEBUG(llvm::dbgs() |
| << "getShapeDefiningLoopRange map: " << map << "\n"); |
| SmallVector<Value, 8> shapeRanges(map.getNumResults(), nullptr); |
| for (const auto &en : llvm::enumerate(map.getResults())) { |
| auto dimExpr = dyn_cast<AffineDimExpr>(en.value()); |
| if (!dimExpr) |
| continue; |
| if (loopDepth == cast<AffineDimExpr>(en.value()).getPosition()) { |
| LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange loopDepth: " |
| << loopDepth << "\n"); |
| LLVM_DEBUG(llvm::dbgs() << "getShapeDefiningLoopRange shape: " |
| << opOperand.get() << "\n"); |
| return ShapeDimension{opOperand.get(), |
| static_cast<unsigned>(en.index())}; |
| } |
| } |
| } |
| llvm_unreachable("Expect to be able to extract a shape defining loop range"); |
| } |
| |
| static SmallVector<Value> getTiledOperands(LinalgOp producer) { |
| return producer->getOperands(); |
| } |
| |
| /// Fuses the producer by cloning the `producer`. The `fusedLoopsAndRanges` |
| /// provides the loop range information for the fused loops. The rest are |
| /// obtained from the producer itself, since they are not tiled + fused. |
| static LinalgOp fuse(OpBuilder &b, LinalgOp producer, |
| const DenseMap<unsigned, Range> &fusedLoopsAndRanges) { |
| SmallVector<OpFoldResult> ivs, tileSizes, sizeBounds; |
| SmallVector<Range> loopRanges; |
| Location loc = producer.getLoc(); |
| |
| for (unsigned i = 0, e = producer.getNumLoops(); i < e; ++i) { |
| auto shapeDim = getShapeDefiningLoopRange(producer, i); |
| OpFoldResult dim = |
| createFoldedDimOp(b, loc, shapeDim.shape, shapeDim.dimension); |
| sizeBounds.push_back(dim); |
| auto it = fusedLoopsAndRanges.find(i); |
| if (it != fusedLoopsAndRanges.end()) { |
| ivs.push_back(it->second.offset); |
| tileSizes.push_back(it->second.size); |
| loopRanges.push_back(it->second); |
| LLVM_DEBUG(llvm::dbgs() << "tiled loop#" << i << " with LoopRange " |
| << loopRanges.back() << "\n"); |
| } else { |
| tileSizes.push_back(b.getIndexAttr(0)); |
| loopRanges.push_back(Range{b.getIndexAttr(0), dim, b.getIndexAttr(1)}); |
| LLVM_DEBUG(llvm::dbgs() << "full loop#" << i << " with LoopRange " |
| << loopRanges.back() << "\n"); |
| } |
| } |
| |
| SmallVector<Value, 8> clonedShapes; |
| clonedShapes.reserve(producer->getNumOperands()); |
| |
| // Compute subranges for all tensor input/output operands. |
| clonedShapes.append(makeTiledShapes( |
| b, loc, producer, getTiledOperands(producer), ivs, tileSizes, sizeBounds, |
| /**omitPartialTileCheck=*/false)); |
| |
| // Take result types from the tiled init operands. |
| MutableOperandRange producerDpsInits = producer.getDpsInitsMutable(); |
| SmallVector<Type, 4> resultTypes; |
| resultTypes.reserve(producer->getNumResults()); |
| int64_t firstInitOperandIdx = |
| producerDpsInits.getAsOperandRange().getBeginOperandIndex(); |
| for (int64_t i = 0, e = producer->getNumResults(); i < e; ++i) { |
| resultTypes.push_back(clonedShapes[firstInitOperandIdx + i].getType()); |
| } |
| |
| // Clone the producer with new operands and result types. |
| LinalgOp clonedOp = clone(b, producer, resultTypes, clonedShapes); |
| |
| // Shift all IndexOp results by the tile offset. |
| SmallVector<OpFoldResult> allIvs = llvm::to_vector( |
| llvm::map_range(loopRanges, [&](Range range) { return range.offset; })); |
| offsetIndices(b, clonedOp, allIvs); |
| |
| return clonedOp; |
| } |
| |
| /// Get the loop range for a dimension `dim` based on the `shapedOperand`. It is |
| /// expected to be defined by a subview op or an extract_slice op. |
| static Range getRangeFromOperandShape(OpBuilder &b, Location loc, |
| Value shapedOperand, unsigned dim) { |
| Operation *shapeProducingOp = shapedOperand.getDefiningOp(); |
| if (auto subViewOp = dyn_cast<memref::SubViewOp>(shapeProducingOp)) |
| return subViewOp.getOrCreateRanges(b, loc)[dim]; |
| if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(shapeProducingOp)) |
| return sliceOp.getOrCreateRanges(b, loc)[dim]; |
| llvm_unreachable("SubviewOp or ExtractSliceOp expected"); |
| } |
| |
| /// Fuses the producer into the loop immediately enclosing the consumer. |
| /// This is achieved by "recomputing" the producer at the time it |
| /// is needed just before the consumer. |
| static LinalgOp fuse(OpBuilder &b, LinalgOp producerOp, AffineMap producerMap, |
| OpOperand &consumerOpOperand) { |
| LLVM_DEBUG(llvm::dbgs() << "Producer map: " << producerMap << "\n"); |
| DenseMap<unsigned, Range> fusedLoopsAndRanges; |
| Value shapedOperand = consumerOpOperand.get(); |
| for (const auto &en : llvm::enumerate(producerMap.getResults())) { |
| unsigned posInProducerLoop = cast<AffineDimExpr>(en.value()).getPosition(); |
| fusedLoopsAndRanges[posInProducerLoop] = getRangeFromOperandShape( |
| b, consumerOpOperand.getOwner()->getLoc(), shapedOperand, en.index()); |
| } |
| return fuse(b, producerOp, fusedLoopsAndRanges); |
| } |
| |
| /// Walk back use-def chain through scf::For yields. |
| /// Sets `producer` and `outputIndex` if it finds a producer LinalgOp |
| |
| // TODO(ravishankarm, ntv): This can be moved into the dependence graphs |
| // dependence tracking since the dependence tracking is similar to what is done |
| // w.r.t to buffers. |
| static void getProducerOfTensor(Value tensor, OpResult &opResult) { |
| if (!isa<RankedTensorType>(tensor.getType())) |
| return; |
| |
| while (true) { |
| LLVM_DEBUG(llvm::dbgs() << "\ngetProducerOfTensor: " << tensor); |
| if (auto linalgOp = tensor.getDefiningOp<LinalgOp>()) { |
| opResult = cast<OpResult>(tensor); |
| return; |
| } |
| if (auto sliceOp = tensor.getDefiningOp<tensor::ExtractSliceOp>()) { |
| tensor = sliceOp.getSource(); |
| continue; |
| } |
| if (auto blockArg = dyn_cast<BlockArgument>(tensor)) { |
| if (auto forOp = blockArg.getDefiningOp<scf::ForOp>()) { |
| tensor = forOp.getInitArgs()[blockArg.getArgNumber()]; |
| continue; |
| } |
| } |
| return; |
| } |
| } |
| |
| FailureOr<FusionInfo> |
| mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpOperand &consumerOpOperand) { |
| Value inputTensor = consumerOpOperand.get(); |
| OpResult producerOpResult; |
| getProducerOfTensor(inputTensor, producerOpResult); |
| if (!producerOpResult) { |
| LLVM_DEBUG(llvm::dbgs() << "\nUnable to find producer"); |
| return failure(); |
| } |
| return fuseProducerOfTensor(b, producerOpResult, consumerOpOperand); |
| } |
| |
| FailureOr<FusionInfo> |
| mlir::linalg::fuseProducerOfTensor(OpBuilder &b, OpResult producerOpResult, |
| OpOperand &consumerOpOperand) { |
| auto producerOp = dyn_cast<LinalgOp>(producerOpResult.getOwner()); |
| if (!producerOp) |
| return failure(); |
| |
| LinalgOp consumerOp = dyn_cast<LinalgOp>(consumerOpOperand.getOwner()); |
| if (!consumerOp) |
| return failure(); |
| |
| Value inputTensor = consumerOpOperand.get(); |
| |
| // Must be an extract_slice op to guarantee there are loops we can fuse into. |
| auto sliceOp = inputTensor.getDefiningOp<tensor::ExtractSliceOp>(); |
| if (!sliceOp) { |
| LLVM_DEBUG(llvm::dbgs() |
| << "\nNot fusable, not an extract_slice op: " << inputTensor); |
| return failure(); |
| } |
| |
| // If producer is already in the same block as consumer, we are done. |
| if (consumerOpOperand.get().getParentBlock() == |
| producerOpResult.getParentBlock()) |
| return failure(); |
| |
| // Insert fused `producer` just before `consumer`. |
| OpBuilder::InsertionGuard g(b); |
| b.setInsertionPoint(consumerOp); |
| LLVM_DEBUG(llvm::dbgs() << "Fuse into consumer: " << *consumerOp << "\n"); |
| OpOperand *opOperand = |
| producerOp.getDpsInitOperand(producerOpResult.getResultNumber()); |
| LinalgOp fusedProducer = |
| fuse(b, producerOp, producerOp.getMatchingIndexingMap(opOperand), |
| consumerOpOperand); |
| |
| // Replace use. |
| // Canonicalizations are not guaranteed to have happened before constructing |
| // `fusedProducer`. In the tensor case this can result in temporary type |
| // mismatches. Insert a `tensor.cast` op to propagate the transformation |
| // invariant that types are compatible. |
| Value def = fusedProducer->getResult(producerOpResult.getResultNumber()); |
| Type consumerType = consumerOpOperand.get().getType(); |
| if (consumerType != def.getType()) |
| def = b.create<tensor::CastOp>(fusedProducer.getLoc(), consumerType, def); |
| consumerOpOperand.set(def); |
| return FusionInfo{cast<LinalgOp>(producerOpResult.getOwner()), fusedProducer}; |
| } |